diff --git a/01_query.html b/01_query.html index d6d7f3c..88dff0f 100644 --- a/01_query.html +++ b/01_query.html @@ -253,11 +253,6 @@ Using Jupyter -
  • - - Installing libraries - -
  • Connecting to Gaia @@ -396,24 +391,6 @@ But you might find it easier to learn from -

    Installing libraries

    -

    If you are running this notebook on Colab, you should run the following cell to install the libraries we’ll need.

    -

    If you are running this notebook on your own computer, you might have to install these libraries yourself.

    -
    -
    -
    # If we're running on Colab, install libraries
    -
    -import sys
    -IN_COLAB = 'google.colab' in sys.modules
    -
    -if IN_COLAB:
    -    !pip install astroquery
    -
    -
    -
    -
    -

    Connecting to Gaia

    The library we’ll use to get Gaia data is Astroquery. @@ -425,6 +402,20 @@ Astroquery provides

    +
    +
    Created TAP+ (v1.2.1) - Connection:
    +	Host: gea.esac.esa.int
    +	Use HTTPS: True
    +	Port: 443
    +	SSL Port: 443
    +Created TAP+ (v1.2.1) - Connection:
    +	Host: geadata.esac.esa.int
    +	Use HTTPS: True
    +	Port: 443
    +	SSL Port: 443
    +
    +
    +

    This import statement creates a TAP+ connection; TAP stands for “Table Access Protocol”, which is a network protocol for sending queries to the database and getting back the results.

    @@ -442,15 +433,160 @@ Astroquery provides +
    +
    INFO: Retrieving tables... [astroquery.utils.tap.core]
    +INFO: Parsing tables... [astroquery.utils.tap.core]
    +INFO: Done. [astroquery.utils.tap.core]
    +
    +
    +

    The following for loop prints the names of the tables.

    -
    +
    for table in tables:
         print(table.name)
     
    +
    +
    external.apassdr9
    +external.gaiadr2_geometric_distance
    +external.gaiaedr3_distance
    +external.galex_ais
    +external.ravedr5_com
    +external.ravedr5_dr5
    +external.ravedr5_gra
    +external.ravedr5_on
    +external.sdssdr13_photoprimary
    +external.skymapperdr1_master
    +external.skymapperdr2_master
    +external.tmass_xsc
    +public.hipparcos
    +public.hipparcos_newreduction
    +public.hubble_sc
    +public.igsl_source
    +public.igsl_source_catalog_ids
    +public.tycho2
    +public.dual
    +tap_config.coord_sys
    +tap_config.properties
    +tap_schema.columns
    +tap_schema.key_columns
    +tap_schema.keys
    +tap_schema.schemas
    +tap_schema.tables
    +gaiaedr3.gaia_source
    +gaiaedr3.agn_cross_id
    +gaiaedr3.commanded_scan_law
    +gaiaedr3.dr2_neighbourhood
    +gaiaedr3.frame_rotator_source
    +gaiaedr3.allwise_best_neighbour
    +gaiaedr3.allwise_neighbourhood
    +gaiaedr3.apassdr9_best_neighbour
    +gaiaedr3.apassdr9_join
    +gaiaedr3.apassdr9_neighbourhood
    +gaiaedr3.gsc23_best_neighbour
    +gaiaedr3.gsc23_join
    +gaiaedr3.gsc23_neighbourhood
    +gaiaedr3.hipparcos2_best_neighbour
    +gaiaedr3.hipparcos2_neighbourhood
    +gaiaedr3.panstarrs1_best_neighbour
    +gaiaedr3.panstarrs1_join
    +gaiaedr3.panstarrs1_neighbourhood
    +gaiaedr3.ravedr5_best_neighbour
    +gaiaedr3.ravedr5_join
    +gaiaedr3.ravedr5_neighbourhood
    +gaiaedr3.sdssdr13_best_neighbour
    +gaiaedr3.sdssdr13_join
    +gaiaedr3.sdssdr13_neighbourhood
    +gaiaedr3.skymapperdr2_best_neighbour
    +gaiaedr3.skymapperdr2_join
    +gaiaedr3.skymapperdr2_neighbourhood
    +gaiaedr3.tmass_psc_xsc_best_neighbour
    +gaiaedr3.tmass_psc_xsc_join
    +gaiaedr3.tmass_psc_xsc_neighbourhood
    +gaiaedr3.tycho2tdsc_merge_best_neighbour
    +gaiaedr3.tycho2tdsc_merge_neighbourhood
    +gaiaedr3.urat1_best_neighbour
    +gaiaedr3.urat1_neighbourhood
    +gaiaedr3.gaia_source_simulation
    +gaiaedr3.gaia_universe_model
    +gaiaedr3.tycho2tdsc_merge
    +gaiadr1.aux_qso_icrf2_match
    +gaiadr1.ext_phot_zero_point
    +gaiadr1.allwise_best_neighbour
    +gaiadr1.allwise_neighbourhood
    +gaiadr1.gsc23_best_neighbour
    +gaiadr1.gsc23_neighbourhood
    +gaiadr1.ppmxl_best_neighbour
    +gaiadr1.ppmxl_neighbourhood
    +gaiadr1.sdss_dr9_best_neighbour
    +gaiadr1.sdss_dr9_neighbourhood
    +gaiadr1.tmass_best_neighbour
    +gaiadr1.tmass_neighbourhood
    +gaiadr1.ucac4_best_neighbour
    +gaiadr1.ucac4_neighbourhood
    +gaiadr1.urat1_best_neighbour
    +gaiadr1.urat1_neighbourhood
    +gaiadr1.cepheid
    +gaiadr1.phot_variable_time_series_gfov
    +gaiadr1.phot_variable_time_series_gfov_statistical_parameters
    +gaiadr1.rrlyrae
    +gaiadr1.variable_summary
    +gaiadr1.allwise_original_valid
    +gaiadr1.gsc23_original_valid
    +gaiadr1.ppmxl_original_valid
    +gaiadr1.sdssdr9_original_valid
    +gaiadr1.tmass_original_valid
    +gaiadr1.ucac4_original_valid
    +gaiadr1.urat1_original_valid
    +gaiadr1.gaia_source
    +gaiadr1.tgas_source
    +gaiadr2.aux_allwise_agn_gdr2_cross_id
    +gaiadr2.aux_iers_gdr2_cross_id
    +gaiadr2.aux_sso_orbit_residuals
    +gaiadr2.aux_sso_orbits
    +gaiadr2.dr1_neighbourhood
    +gaiadr2.allwise_best_neighbour
    +gaiadr2.allwise_neighbourhood
    +gaiadr2.apassdr9_best_neighbour
    +gaiadr2.apassdr9_neighbourhood
    +gaiadr2.gsc23_best_neighbour
    +gaiadr2.gsc23_neighbourhood
    +gaiadr2.hipparcos2_best_neighbour
    +gaiadr2.hipparcos2_neighbourhood
    +gaiadr2.panstarrs1_best_neighbour
    +gaiadr2.panstarrs1_neighbourhood
    +gaiadr2.ppmxl_best_neighbour
    +gaiadr2.ppmxl_neighbourhood
    +gaiadr2.ravedr5_best_neighbour
    +gaiadr2.ravedr5_neighbourhood
    +gaiadr2.sdssdr9_best_neighbour
    +gaiadr2.sdssdr9_neighbourhood
    +gaiadr2.tmass_best_neighbour
    +gaiadr2.tmass_neighbourhood
    +gaiadr2.tycho2_best_neighbour
    +gaiadr2.tycho2_neighbourhood
    +gaiadr2.urat1_best_neighbour
    +gaiadr2.urat1_neighbourhood
    +gaiadr2.sso_observation
    +gaiadr2.sso_source
    +gaiadr2.vari_cepheid
    +gaiadr2.vari_classifier_class_definition
    +gaiadr2.vari_classifier_definition
    +gaiadr2.vari_classifier_result
    +gaiadr2.vari_long_period_variable
    +gaiadr2.vari_rotation_modulation
    +gaiadr2.vari_rrlyrae
    +gaiadr2.vari_short_timescale
    +gaiadr2.vari_time_series_statistics
    +gaiadr2.panstarrs1_original_valid
    +gaiadr2.gaia_source
    +gaiadr2.ruwe
    +
    +
    +

    So that’s a lot of tables. The ones we’ll use are:

      @@ -466,6 +602,16 @@ Astroquery provides
    +
    +
    Retrieving table 'gaiadr2.gaia_source'
    +Parsing table 'gaiadr2.gaia_source'...
    +Done.
    +
    +
    +
    <astroquery.utils.tap.model.taptable.TapTableMeta at 0x7f50edd2aeb0>
    +
    +
    +

    Jupyter shows that the result is an object of type TapTableMeta, but it does not display the contents.

    To see the metadata, we have to print the object.

    @@ -475,18 +621,129 @@ Astroquery provides +
    +
    TAP Table name: gaiadr2.gaiadr2.gaia_source
    +Description: This table has an entry for every Gaia observed source as listed in the
    +Main Database accumulating catalogue version from which the catalogue
    +release has been generated. It contains the basic source parameters,
    +that is only final data (no epoch data) and no spectra (neither final
    +nor epoch).
    +Num. columns: 96
    +
    +
    +

    Columns

    The following loop prints the names of the columns in the table.

    -
    +
    for column in meta.columns:
         print(column.name)
     
    +
    +
    solution_id
    +designation
    +source_id
    +random_index
    +ref_epoch
    +ra
    +ra_error
    +dec
    +dec_error
    +parallax
    +parallax_error
    +parallax_over_error
    +pmra
    +pmra_error
    +pmdec
    +pmdec_error
    +ra_dec_corr
    +ra_parallax_corr
    +ra_pmra_corr
    +ra_pmdec_corr
    +dec_parallax_corr
    +dec_pmra_corr
    +dec_pmdec_corr
    +parallax_pmra_corr
    +parallax_pmdec_corr
    +pmra_pmdec_corr
    +astrometric_n_obs_al
    +astrometric_n_obs_ac
    +astrometric_n_good_obs_al
    +astrometric_n_bad_obs_al
    +astrometric_gof_al
    +astrometric_chi2_al
    +astrometric_excess_noise
    +astrometric_excess_noise_sig
    +astrometric_params_solved
    +astrometric_primary_flag
    +astrometric_weight_al
    +astrometric_pseudo_colour
    +astrometric_pseudo_colour_error
    +mean_varpi_factor_al
    +astrometric_matched_observations
    +visibility_periods_used
    +astrometric_sigma5d_max
    +frame_rotator_object_type
    +matched_observations
    +duplicated_source
    +phot_g_n_obs
    +phot_g_mean_flux
    +phot_g_mean_flux_error
    +phot_g_mean_flux_over_error
    +phot_g_mean_mag
    +phot_bp_n_obs
    +phot_bp_mean_flux
    +phot_bp_mean_flux_error
    +phot_bp_mean_flux_over_error
    +phot_bp_mean_mag
    +phot_rp_n_obs
    +phot_rp_mean_flux
    +phot_rp_mean_flux_error
    +phot_rp_mean_flux_over_error
    +phot_rp_mean_mag
    +phot_bp_rp_excess_factor
    +phot_proc_mode
    +bp_rp
    +bp_g
    +g_rp
    +radial_velocity
    +radial_velocity_error
    +rv_nb_transits
    +rv_template_teff
    +rv_template_logg
    +rv_template_fe_h
    +phot_variable_flag
    +l
    +b
    +ecl_lon
    +ecl_lat
    +priam_flags
    +teff_val
    +teff_percentile_lower
    +teff_percentile_upper
    +a_g_val
    +a_g_percentile_lower
    +a_g_percentile_upper
    +e_bp_min_rp_val
    +e_bp_min_rp_percentile_lower
    +e_bp_min_rp_percentile_upper
    +flame_flags
    +radius_val
    +radius_percentile_lower
    +radius_percentile_upper
    +lum_val
    +lum_percentile_lower
    +lum_percentile_upper
    +datalink_url
    +epoch_photometry_url
    +
    +
    +

    You can probably infer what many of these columns are by looking at the names, but you should resist the temptation to guess. To find out what the columns mean, read the documentation.

    @@ -496,7 +753,113 @@ To find out what the columns mean, gaiadr2.panstarrs1_original_valid
    . Use load_table to get the metadata for this table. How many columns are there and what are their names?

    -
    # Solution goes here
    +
    # Solution
    +
    +meta2 = Gaia.load_table('gaiadr2.panstarrs1_original_valid')
    +print(meta2)
    +
    +for column in meta2.columns:
    +    print(column.name)
    +
    +
    +
    +
    +
    Retrieving table 'gaiadr2.panstarrs1_original_valid'
    +Parsing table 'gaiadr2.panstarrs1_original_valid'...
    +Done.
    +TAP Table name: gaiadr2.gaiadr2.panstarrs1_original_valid
    +Description: The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is
    +a system for wide-field astronomical imaging developed and operated by
    +the Institute for Astronomy at the University of Hawaii. Pan-STARRS1
    +(PS1) is the first part of Pan-STARRS to be completed and is the basis
    +for Data Release 1 (DR1). The PS1 survey used a 1.8 meter telescope and
    +its 1.4 Gigapixel camera to image the sky in five broadband filters (g,
    +r, i, z, y).
    +
    +The current table contains a filtered subsample of the 10 723 304 629
    +entries listed in the original ObjectThin table.
    +We used only ObjectThin and MeanObject tables to extract
    +panstarrs1OriginalValid table, this means that objects detected only in
    +stack images are not included here. The main reason for us to avoid the
    +use of objects detected in stack images is that their astrometry is not
    +as good as the mean objects astrometry: “The stack positions (raStack,
    +decStack) have considerably larger systematic astrometric errors than
    +the mean epoch positions (raMean, decMean).” The astrometry for the
    +MeanObject positions uses Gaia DR1 as a reference catalog, while the
    +stack positions use 2MASS as a reference catalog.
    +
    +In details, we filtered out all objects where:
    +
    +-   nDetections = 1
    +
    +-   no good quality data in Pan-STARRS, objInfoFlag 33554432 not set
    +
    +-   mean astrometry could not be measured, objInfoFlag 524288 set
    +
    +-   stack position used for mean astrometry, objInfoFlag 1048576 set
    +
    +-   error on all magnitudes equal to 0 or to -999;
    +
    +-   all magnitudes set to -999;
    +
    +-   error on RA or DEC greater than 1 arcsec.
    +
    +The number of objects in panstarrs1OriginalValid is 2 264 263 282.
    +
    +The panstarrs1OriginalValid table contains only a subset of the columns
    +available in the combined ObjectThin and MeanObject tables. A
    +description of the original ObjectThin and MeanObjects tables can be
    +found at:
    +https://outerspace.stsci.edu/display/PANSTARRS/PS1+Database+object+and+detection+tables
    +
    +Download:
    +http://mastweb.stsci.edu/ps1casjobs/home.aspx
    +Documentation:
    +https://outerspace.stsci.edu/display/PANSTARRS
    +http://pswww.ifa.hawaii.edu/pswww/
    +References:
    +The Pan-STARRS1 Surveys, Chambers, K.C., et al. 2016, arXiv:1612.05560
    +Pan-STARRS Data Processing System, Magnier, E. A., et al. 2016,
    +arXiv:1612.05240
    +Pan-STARRS Pixel Processing: Detrending, Warping, Stacking, Waters, C.
    +Z., et al. 2016, arXiv:1612.05245
    +Pan-STARRS Pixel Analysis: Source Detection and Characterization,
    +Magnier, E. A., et al. 2016, arXiv:1612.05244
    +Pan-STARRS Photometric and Astrometric Calibration, Magnier, E. A., et
    +al. 2016, arXiv:1612.05242
    +The Pan-STARRS1 Database and Data Products, Flewelling, H. A., et al.
    +2016, arXiv:1612.05243
    +
    +Catalogue curator:
    +SSDC - ASI Space Science Data Center
    +https://www.ssdc.asi.it/
    +Num. columns: 26
    +obj_name
    +obj_id
    +ra
    +dec
    +ra_error
    +dec_error
    +epoch_mean
    +g_mean_psf_mag
    +g_mean_psf_mag_error
    +g_flags
    +r_mean_psf_mag
    +r_mean_psf_mag_error
    +r_flags
    +i_mean_psf_mag
    +i_mean_psf_mag_error
    +i_flags
    +z_mean_psf_mag
    +z_mean_psf_mag_error
    +z_flags
    +y_mean_psf_mag
    +y_mean_psf_mag_error
    +y_flags
    +n_detections
    +zone_id
    +obj_info_flag
    +quality_flag
     
    @@ -537,6 +900,11 @@ To find out what the columns mean,
    +
    <astroquery.utils.tap.model.job.Job at 0x7f50edd2adc0>
    +
    +
    +

    The result is an object that represents the job running on a Gaia server.

    If you print it, it displays metadata for the forthcoming results.

    @@ -546,6 +914,22 @@ To find out what the columns mean,
    +
    <Table length=10>
    +   name    dtype  unit                            description                             n_bad
    +--------- ------- ---- ------------------------------------------------------------------ -----
    +source_id   int64      Unique source identifier (unique within a particular Data Release)     0
    +       ra float64  deg                                                    Right ascension     0
    +      dec float64  deg                                                        Declination     0
    + parallax float64  mas                                                           Parallax     2
    +Jobid: None
    +Phase: COMPLETED
    +Owner: None
    +Output file: sync_20210315090602.xml.gz
    +Results: None
    +
    +
    +

    Don’t worry about Results: None. That does not actually mean there are no results.

    However, Phase: COMPLETED indicates that the job is complete, so we can get the results like this:

    @@ -556,6 +940,11 @@ To find out what the columns mean,
    +
    astropy.table.table.Table
    +
    +
    +

    The type function indicates that the result is an Astropy Table.

    Optional detail: Why is table repeated three times? The first is the name of the module, the second is the name of the submodule, and the third is the name of the class. Most of the time we only care about the last one. It’s like the Linnean name for gorilla, which is Gorilla gorilla gorilla.

    @@ -571,6 +960,23 @@ To find out what the columns mean, +
    Table length=10 + + + + + + + + + + + + + + +
    source_idradecparallax
    degdegmas
    int64float64float64float64
    5887983246081387776227.978818386372-53.649969624501031.0493172163332998
    5887971250213117952228.32280834041364-53.662707262037260.29455652682279093
    5887991866047288704228.1582047014091-53.454724911639794-0.5789179941669236
    5887968673232040832228.07420888099884-53.80646128959610.41030970779603076
    5887979844465854720228.42547805195946-53.48882284470035-0.23379683441525864
    5887978607515442688228.23831627636855-53.56328249482688-0.9252161956789068
    5887978298278520704228.26015640396173-53.607284412896476--
    5887995581231772928228.12871598211902-53.373625663608316-0.3325818206439385
    5887982043490374016227.985260087594-53.6834444990555750.02878111976456593
    5887982971205433856227.89884570686218-53.67430215342567--

    Each column has a name, units, and a data type.

    For example, the units of ra and dec are degrees, and their data type is float64, which is a 64-bit floating-point number, used to store measurements with a fraction part.

    @@ -580,7 +986,23 @@ To find out what the columns mean, the documentation of this table and choose a column that looks interesting to you. Add the column name to the query and run it again. What are the units of the column you selected? What is its data type?

    -
    # Solution goes here
    +
    # Solution
    +
    +# Let's add
    +#
    +# radial_velocity : Radial velocity (double, Velocity[km/s] )
    +#
    +# Spectroscopic radial velocity in the solar barycentric 
    +# reference frame.
    +#
    +# The radial velocity provided is the median value of the 
    +# radial velocity measurements at all epochs.
    +
    +query = """SELECT 
    +TOP 10
    +source_id, ra, dec, parallax, radial_velocity
    +FROM gaiadr2.gaia_source
    +"""
     
    @@ -622,6 +1044,14 @@ We’ll use this clause to exclude nearby stars that are unlikely to be part of
    +
    +
    INFO: Query finished. [astroquery.utils.tap.core]
    +
    +
    +
    <astroquery.utils.tap.model.job.Job at 0x7f50edd40f40>
    +
    +
    +

    And here are the results.

    @@ -631,6 +1061,23 @@ We’ll use this clause to exclude nearby stars that are unlikely to be part of
    +
    +
    Table length=10 + + + + + + + + + + + + + + +
    source_idradecparallaxradial_velocity
    degdegmaskm / s
    int64float64float64float64float64
    5895270396817359872213.08433715252883-56.641047010056942.041947005434917--
    5895272561481374080213.2606587905109-56.550444015357150.15693467895110133--
    5895247410183786368213.38479712976664-56.97008551185148-0.19017525742552605--
    5895249226912448000213.41587389088238-56.849596577635786----
    5895261875598904576213.5508930114549-56.61037780154348-0.29471722363529257--
    5895258302187834624213.87631129557286-56.6785372590399060.6468437015289753--
    5895247444506644992213.33215109206796-56.9753477593809950.390215490234287--
    5895259470417635968213.78815034206346-56.645850474515940.953377710788918--
    5895264899260932352213.21521027193236-56.78420864489118----
    5895265925746051584213.17082359534547-56.745408851077540.2986918215101751--

    You might notice that some values of parallax are negative. As this FAQ explains, “Negative parallaxes are caused by errors in the observations.” They have “no physical meaning,” but they can be a “useful diagnostic on the quality of the astrometric solution.”

    @@ -646,7 +1093,16 @@ The modified query should fail, but notice that you don’t get much useful debu
    -
    # Solution goes here
    +
    # Solution
    +
    +# In this example, the WHERE clause is in the wrong place
    +
    +query = """SELECT 
    +TOP 3000
    +WHERE parallax < 1
    +source_id, ref_epoch, ra, dec, parallax
    +FROM gaiadr2.gaia_source
    +"""
     
    @@ -696,7 +1152,27 @@ Be careful to keep your Python out of your ADQL!

    Read about SQL operators here and then modify the previous query to select rows where bp_rp is between -0.75 and 2.

    -
    # Solution goes here
    +
    # Solution
    +
    +# Here's a solution using > and < operators
    +
    +query = """SELECT 
    +TOP 10
    +source_id, ref_epoch, ra, dec, parallax
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1 
    +  AND bp_rp > -0.75 AND bp_rp < 2
    +"""
    +
    +# And here's a solution using the BETWEEN operator
    +
    +query = """SELECT 
    +TOP 10
    +source_id, ref_epoch, ra, dec, parallax
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1 
    +  AND bp_rp BETWEEN -0.75 AND 2
    +"""
     
    @@ -754,6 +1230,11 @@ That’s not required, but it is a common style.

    +
    +
    'SELECT \nTOP 10 \nsource_id, ra, dec, pmra, pmdec\nFROM gaiadr2.gaia_source\nWHERE parallax < 1\n  AND bp_rp BETWEEN -0.75 AND 2\n'
    +
    +
    +

    But if you print it, the line breaks appear as… line breaks.

    @@ -762,6 +1243,16 @@ That’s not required, but it is a common style.

    +
    +
    SELECT 
    +TOP 10 
    +source_id, ra, dec, pmra, pmdec
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1
    +  AND bp_rp BETWEEN -0.75 AND 2
    +
    +
    +

    Notice that the format specifier has been replaced with the value of columns.

    Let’s run it and see if it works:

    @@ -772,6 +1263,23 @@ That’s not required, but it is a common style.

    +
    +
    <Table length=10>
    +   name    dtype    unit                              description                            
    +--------- ------- -------- ------------------------------------------------------------------
    +source_id   int64          Unique source identifier (unique within a particular Data Release)
    +       ra float64      deg                                                    Right ascension
    +      dec float64      deg                                                        Declination
    +     pmra float64 mas / yr                         Proper motion in right ascension direction
    +    pmdec float64 mas / yr                             Proper motion in declination direction
    +Jobid: None
    +Phase: COMPLETED
    +Owner: None
    +Output file: sync_20210315091929.xml.gz
    +Results: None
    +
    +
    +
    @@ -780,6 +1288,23 @@ That’s not required, but it is a common style.

    +
    +
    Table length=10 + + + + + + + + + + + + + + +
    source_idradecpmrapmdec
    degdegmas / yrmas / yr
    int64float64float64float64float64
    5895272561481374080213.2606587905109-56.550444015357150.38944388983017151.2299266281737415
    5895261875598904576213.5508930114549-56.610377801543480.16203641364393007-4.672602679543312
    5895247444506644992213.33215109206796-56.975347759380995-7.474003156859284-3.538080792097856
    5895259470417635968213.78815034206346-56.64585047451594-5.287202255231853-0.8163762113468646
    5895265925746051584213.17082359534547-56.74540885107754-7.880749306158471-4.8585444120179595
    5895260913525974528213.66936020541976-56.66655190442016-4.7820929042428215-1.5566420086447643
    5895264212062283008213.7755742121852-56.51570859067397-6.657690998559842-1.7616494482071872
    5895253457497979136213.30929960610283-56.78849448744587-5.242106718924749-0.18655636353898095
    4143614130253524096269.1749117455479-18.534151399721172.61642745108048261.3244248889980894
    4065443904433108992273.26868565443743-24.421651815402857-1.663096652191022-2.6514745376067683

    Good so far.

    @@ -788,7 +1313,29 @@ That’s not required, but it is a common style.

    Modify query3_base to replace 1 with a format specifier like {max_parallax}. Now, when you call format, add a keyword argument that assigns a value to max_parallax, and confirm that the format specifier gets replaced with the value you provide.

    -
    # Solution goes here
    +
    # Solution
    +
    +query_base = """SELECT 
    +TOP 10
    +{columns}
    +FROM gaiadr2.gaia_source
    +WHERE parallax < {max_parallax} AND 
    +bp_rp BETWEEN -0.75 AND 2
    +"""
    +
    +query = query_base.format(columns=columns,
    +                          max_parallax=0.5)
    +print(query)
    +
    +
    +
    +
    +
    SELECT 
    +TOP 10
    +source_id, ra, dec, pmra, pmdec
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 0.5 AND 
    +bp_rp BETWEEN -0.75 AND 2
     
    diff --git a/02_coords.html b/02_coords.html index 95aac6a..00c088a 100644 --- a/02_coords.html +++ b/02_coords.html @@ -243,11 +243,6 @@ Outline
  • -
  • - - Installing libraries - -
  • Working with Units @@ -352,26 +347,6 @@
  • Download the results of a query and store them in a file.

  • -
    -

    Installing libraries

    -

    If you are running this notebook on Colab, you can run the following cell to install the libraries we’ll use.

    -

    If you are running this notebook on your own computer, you might have to install these libraries yourself. See the instructions in the preface.

    -
    -
    -
    # If we're running on Colab, install libraries
    -
    -# TODO: When Colab can install gala, switch from astro-gala
    -
    -import sys
    -IN_COLAB = 'google.colab' in sys.modules
    -
    -if IN_COLAB:
    -    !pip install astroquery astro-gala
    -
    -
    -
    -
    -

    Working with Units

    The measurements we will work with are physical quantities, which means that they have two parts, a value and a unit. @@ -394,6 +369,1011 @@ For example, the coordinate \(30^{\ci

    +
    +
    ['A',
    + 'AA',
    + 'AB',
    + 'ABflux',
    + 'ABmag',
    + 'AU',
    + 'Angstrom',
    + 'B',
    + 'Ba',
    + 'Barye',
    + 'Bi',
    + 'Biot',
    + 'Bol',
    + 'Bq',
    + 'C',
    + 'Celsius',
    + 'Ci',
    + 'CompositeUnit',
    + 'D',
    + 'Da',
    + 'Dalton',
    + 'Debye',
    + 'Decibel',
    + 'DecibelUnit',
    + 'Dex',
    + 'DexUnit',
    + 'EA',
    + 'EAU',
    + 'EB',
    + 'EBa',
    + 'EC',
    + 'ED',
    + 'EF',
    + 'EG',
    + 'EGal',
    + 'EH',
    + 'EHz',
    + 'EJ',
    + 'EJy',
    + 'EK',
    + 'EL',
    + 'EN',
    + 'EOhm',
    + 'EP',
    + 'EPa',
    + 'ER',
    + 'ERy',
    + 'ES',
    + 'ESt',
    + 'ET',
    + 'EV',
    + 'EW',
    + 'EWb',
    + 'Ea',
    + 'Eadu',
    + 'Earcmin',
    + 'Earcsec',
    + 'Eau',
    + 'Eb',
    + 'Ebarn',
    + 'Ebeam',
    + 'Ebin',
    + 'Ebit',
    + 'Ebyte',
    + 'Ecd',
    + 'Echan',
    + 'Ecount',
    + 'Ect',
    + 'Ed',
    + 'Edeg',
    + 'Edyn',
    + 'EeV',
    + 'Eerg',
    + 'Eg',
    + 'Eh',
    + 'EiB',
    + 'Eib',
    + 'Eibit',
    + 'Eibyte',
    + 'Ek',
    + 'El',
    + 'Elm',
    + 'Elx',
    + 'Elyr',
    + 'Em',
    + 'Emag',
    + 'Emin',
    + 'Emol',
    + 'Eohm',
    + 'Epc',
    + 'Eph',
    + 'Ephoton',
    + 'Epix',
    + 'Epixel',
    + 'Erad',
    + 'Es',
    + 'Esr',
    + 'Eu',
    + 'Evox',
    + 'Evoxel',
    + 'Eyr',
    + 'F',
    + 'Farad',
    + 'Fr',
    + 'Franklin',
    + 'FunctionQuantity',
    + 'FunctionUnitBase',
    + 'G',
    + 'GA',
    + 'GAU',
    + 'GB',
    + 'GBa',
    + 'GC',
    + 'GD',
    + 'GF',
    + 'GG',
    + 'GGal',
    + 'GH',
    + 'GHz',
    + 'GJ',
    + 'GJy',
    + 'GK',
    + 'GL',
    + 'GN',
    + 'GOhm',
    + 'GP',
    + 'GPa',
    + 'GR',
    + 'GRy',
    + 'GS',
    + 'GSt',
    + 'GT',
    + 'GV',
    + 'GW',
    + 'GWb',
    + 'Ga',
    + 'Gadu',
    + 'Gal',
    + 'Garcmin',
    + 'Garcsec',
    + 'Gau',
    + 'Gauss',
    + 'Gb',
    + 'Gbarn',
    + 'Gbeam',
    + 'Gbin',
    + 'Gbit',
    + 'Gbyte',
    + 'Gcd',
    + 'Gchan',
    + 'Gcount',
    + 'Gct',
    + 'Gd',
    + 'Gdeg',
    + 'Gdyn',
    + 'GeV',
    + 'Gerg',
    + 'Gg',
    + 'Gh',
    + 'GiB',
    + 'Gib',
    + 'Gibit',
    + 'Gibyte',
    + 'Gk',
    + 'Gl',
    + 'Glm',
    + 'Glx',
    + 'Glyr',
    + 'Gm',
    + 'Gmag',
    + 'Gmin',
    + 'Gmol',
    + 'Gohm',
    + 'Gpc',
    + 'Gph',
    + 'Gphoton',
    + 'Gpix',
    + 'Gpixel',
    + 'Grad',
    + 'Gs',
    + 'Gsr',
    + 'Gu',
    + 'Gvox',
    + 'Gvoxel',
    + 'Gyr',
    + 'H',
    + 'Henry',
    + 'Hertz',
    + 'Hz',
    + 'IrreducibleUnit',
    + 'J',
    + 'Jansky',
    + 'Joule',
    + 'Jy',
    + 'K',
    + 'Kayser',
    + 'Kelvin',
    + 'KiB',
    + 'Kib',
    + 'Kibit',
    + 'Kibyte',
    + 'L',
    + 'L_bol',
    + 'L_sun',
    + 'LogQuantity',
    + 'LogUnit',
    + 'Lsun',
    + 'MA',
    + 'MAU',
    + 'MB',
    + 'MBa',
    + 'MC',
    + 'MD',
    + 'MF',
    + 'MG',
    + 'MGal',
    + 'MH',
    + 'MHz',
    + 'MJ',
    + 'MJy',
    + 'MK',
    + 'ML',
    + 'MN',
    + 'MOhm',
    + 'MP',
    + 'MPa',
    + 'MR',
    + 'MRy',
    + 'MS',
    + 'MSt',
    + 'MT',
    + 'MV',
    + 'MW',
    + 'MWb',
    + 'M_bol',
    + 'M_e',
    + 'M_earth',
    + 'M_jup',
    + 'M_jupiter',
    + 'M_p',
    + 'M_sun',
    + 'Ma',
    + 'Madu',
    + 'MagUnit',
    + 'Magnitude',
    + 'Marcmin',
    + 'Marcsec',
    + 'Mau',
    + 'Mb',
    + 'Mbarn',
    + 'Mbeam',
    + 'Mbin',
    + 'Mbit',
    + 'Mbyte',
    + 'Mcd',
    + 'Mchan',
    + 'Mcount',
    + 'Mct',
    + 'Md',
    + 'Mdeg',
    + 'Mdyn',
    + 'MeV',
    + 'Mearth',
    + 'Merg',
    + 'Mg',
    + 'Mh',
    + 'MiB',
    + 'Mib',
    + 'Mibit',
    + 'Mibyte',
    + 'Mjup',
    + 'Mjupiter',
    + 'Mk',
    + 'Ml',
    + 'Mlm',
    + 'Mlx',
    + 'Mlyr',
    + 'Mm',
    + 'Mmag',
    + 'Mmin',
    + 'Mmol',
    + 'Mohm',
    + 'Mpc',
    + 'Mph',
    + 'Mphoton',
    + 'Mpix',
    + 'Mpixel',
    + 'Mrad',
    + 'Ms',
    + 'Msr',
    + 'Msun',
    + 'Mu',
    + 'Mvox',
    + 'Mvoxel',
    + 'Myr',
    + 'N',
    + 'NamedUnit',
    + 'Newton',
    + 'Ohm',
    + 'P',
    + 'PA',
    + 'PAU',
    + 'PB',
    + 'PBa',
    + 'PC',
    + 'PD',
    + 'PF',
    + 'PG',
    + 'PGal',
    + 'PH',
    + 'PHz',
    + 'PJ',
    + 'PJy',
    + 'PK',
    + 'PL',
    + 'PN',
    + 'POhm',
    + 'PP',
    + 'PPa',
    + 'PR',
    + 'PRy',
    + 'PS',
    + 'PSt',
    + 'PT',
    + 'PV',
    + 'PW',
    + 'PWb',
    + 'Pa',
    + 'Padu',
    + 'Parcmin',
    + 'Parcsec',
    + 'Pascal',
    + 'Pau',
    + 'Pb',
    + 'Pbarn',
    + 'Pbeam',
    + 'Pbin',
    + 'Pbit',
    + 'Pbyte',
    + 'Pcd',
    + 'Pchan',
    + 'Pcount',
    + 'Pct',
    + 'Pd',
    + 'Pdeg',
    + 'Pdyn',
    + 'PeV',
    + 'Perg',
    + 'Pg',
    + 'Ph',
    + 'PiB',
    + 'Pib',
    + 'Pibit',
    + 'Pibyte',
    + 'Pk',
    + 'Pl',
    + 'Plm',
    + 'Plx',
    + 'Plyr',
    + 'Pm',
    + 'Pmag',
    + 'Pmin',
    + 'Pmol',
    + 'Pohm',
    + 'Ppc',
    + 'Pph',
    + 'Pphoton',
    + 'Ppix',
    + 'Ppixel',
    + 'Prad',
    + 'PrefixUnit',
    + 'Ps',
    + 'Psr',
    + 'Pu',
    + 'Pvox',
    + 'Pvoxel',
    + 'Pyr',
    + 'Quantity',
    + 'QuantityInfo',
    + 'QuantityInfoBase',
    + 'R',
    + 'R_earth',
    + 'R_jup',
    + 'R_jupiter',
    + 'R_sun',
    + 'Rayleigh',
    + 'Rearth',
    + 'Rjup',
    + 'Rjupiter',
    + 'Rsun',
    + 'Ry',
    + 'S',
    + 'ST',
    + 'STflux',
    + 'STmag',
    + 'Siemens',
    + 'SpecificTypeQuantity',
    + 'St',
    + 'Sun',
    + 'T',
    + 'TA',
    + 'TAU',
    + 'TB',
    + 'TBa',
    + 'TC',
    + 'TD',
    + 'TF',
    + 'TG',
    + 'TGal',
    + 'TH',
    + 'THz',
    + 'TJ',
    + 'TJy',
    + 'TK',
    + 'TL',
    + 'TN',
    + 'TOhm',
    + 'TP',
    + 'TPa',
    + 'TR',
    + 'TRy',
    + 'TS',
    + 'TSt',
    + 'TT',
    + 'TV',
    + 'TW',
    + 'TWb',
    + 'Ta',
    + 'Tadu',
    + 'Tarcmin',
    + 'Tarcsec',
    + 'Tau',
    + 'Tb',
    + 'Tbarn',
    + 'Tbeam',
    + 'Tbin',
    + 'Tbit',
    + 'Tbyte',
    + 'Tcd',
    + 'Tchan',
    + 'Tcount',
    + 'Tct',
    + 'Td',
    + 'Tdeg',
    + 'Tdyn',
    + 'TeV',
    + 'Terg',
    + 'Tesla',
    + 'Tg',
    + 'Th',
    + 'TiB',
    + 'Tib',
    + 'Tibit',
    + 'Tibyte',
    + 'Tk',
    + 'Tl',
    + 'Tlm',
    + 'Tlx',
    + 'Tlyr',
    + 'Tm',
    + 'Tmag',
    + 'Tmin',
    + 'Tmol',
    + 'Tohm',
    + 'Torr',
    + 'Tpc',
    + 'Tph',
    + 'Tphoton',
    + 'Tpix',
    + 'Tpixel',
    + 'Trad',
    + 'Ts',
    + 'Tsr',
    + 'Tu',
    + 'Tvox',
    + 'Tvoxel',
    + 'Tyr',
    + 'Unit',
    + 'UnitBase',
    + 'UnitConversionError',
    + 'UnitTypeError',
    + 'UnitsError',
    + 'UnitsWarning',
    + 'UnrecognizedUnit',
    + 'V',
    + 'Volt',
    + 'W',
    + 'Watt',
    + 'Wb',
    + 'Weber',
    + 'YA',
    + 'YAU',
    + 'YB',
    + 'YBa',
    + 'YC',
    + 'YD',
    + 'YF',
    + 'YG',
    + 'YGal',
    + 'YH',
    + 'YHz',
    + 'YJ',
    + 'YJy',
    + 'YK',
    + 'YL',
    + 'YN',
    + 'YOhm',
    + 'YP',
    + 'YPa',
    + 'YR',
    + 'YRy',
    + 'YS',
    + 'YSt',
    + 'YT',
    + 'YV',
    + 'YW',
    + 'YWb',
    + 'Ya',
    + 'Yadu',
    + 'Yarcmin',
    + 'Yarcsec',
    + 'Yau',
    + 'Yb',
    + 'Ybarn',
    + 'Ybeam',
    + 'Ybin',
    + 'Ybit',
    + 'Ybyte',
    + 'Ycd',
    + 'Ychan',
    + 'Ycount',
    + 'Yct',
    + 'Yd',
    + 'Ydeg',
    + 'Ydyn',
    + 'YeV',
    + 'Yerg',
    + 'Yg',
    + 'Yh',
    + 'Yk',
    + 'Yl',
    + 'Ylm',
    + 'Ylx',
    + 'Ylyr',
    + 'Ym',
    + 'Ymag',
    + 'Ymin',
    + 'Ymol',
    + 'Yohm',
    + 'Ypc',
    + 'Yph',
    + 'Yphoton',
    + 'Ypix',
    + 'Ypixel',
    + 'Yrad',
    + 'Ys',
    + 'Ysr',
    + 'Yu',
    + 'Yvox',
    + 'Yvoxel',
    + 'Yyr',
    + 'ZA',
    + 'ZAU',
    + 'ZB',
    + 'ZBa',
    + 'ZC',
    + 'ZD',
    + 'ZF',
    + 'ZG',
    + 'ZGal',
    + 'ZH',
    + 'ZHz',
    + 'ZJ',
    + 'ZJy',
    + 'ZK',
    + 'ZL',
    + 'ZN',
    + 'ZOhm',
    + 'ZP',
    + 'ZPa',
    + 'ZR',
    + 'ZRy',
    + 'ZS',
    + 'ZSt',
    + 'ZT',
    + 'ZV',
    + 'ZW',
    + 'ZWb',
    + 'Za',
    + 'Zadu',
    + 'Zarcmin',
    + 'Zarcsec',
    + 'Zau',
    + 'Zb',
    + 'Zbarn',
    + 'Zbeam',
    + 'Zbin',
    + 'Zbit',
    + 'Zbyte',
    + 'Zcd',
    + 'Zchan',
    + 'Zcount',
    + 'Zct',
    + 'Zd',
    + 'Zdeg',
    + 'Zdyn',
    + 'ZeV',
    + 'Zerg',
    + 'Zg',
    + 'Zh',
    + 'Zk',
    + 'Zl',
    + 'Zlm',
    + 'Zlx',
    + 'Zlyr',
    + 'Zm',
    + 'Zmag',
    + 'Zmin',
    + 'Zmol',
    + 'Zohm',
    + 'Zpc',
    + 'Zph',
    + 'Zphoton',
    + 'Zpix',
    + 'Zpixel',
    + 'Zrad',
    + 'Zs',
    + 'Zsr',
    + 'Zu',
    + 'Zvox',
    + 'Zvoxel',
    + 'Zyr',
    + '__builtins__',
    + '__cached__',
    + '__doc__',
    + '__file__',
    + '__loader__',
    + '__name__',
    + '__package__',
    + '__path__',
    + '__spec__',
    + 'a',
    + 'aA',
    + 'aAU',
    + 'aB',
    + 'aBa',
    + 'aC',
    + 'aD',
    + 'aF',
    + 'aG',
    + 'aGal',
    + 'aH',
    + 'aHz',
    + 'aJ',
    + 'aJy',
    + 'aK',
    + 'aL',
    + 'aN',
    + 'aOhm',
    + 'aP',
    + 'aPa',
    + 'aR',
    + 'aRy',
    + 'aS',
    + 'aSt',
    + 'aT',
    + 'aV',
    + 'aW',
    + 'aWb',
    + 'aa',
    + 'aadu',
    + 'aarcmin',
    + 'aarcsec',
    + 'aau',
    + 'ab',
    + 'abA',
    + 'abC',
    + 'abampere',
    + 'abarn',
    + 'abcoulomb',
    + 'abeam',
    + 'abin',
    + 'abit',
    + 'abyte',
    + 'acd',
    + 'achan',
    + 'acount',
    + 'act',
    + 'ad',
    + 'add_enabled_equivalencies',
    + 'add_enabled_units',
    + 'adeg',
    + 'adu',
    + 'adyn',
    + 'aeV',
    + 'aerg',
    + 'ag',
    + 'ah',
    + 'ak',
    + 'al',
    + 'allclose',
    + 'alm',
    + 'alx',
    + 'alyr',
    + 'am',
    + 'amag',
    + 'amin',
    + 'amol',
    + 'amp',
    + 'ampere',
    + 'angstrom',
    + 'annum',
    + 'aohm',
    + 'apc',
    + 'aph',
    + 'aphoton',
    + 'apix',
    + 'apixel',
    + 'arad',
    + 'arcmin',
    + 'arcminute',
    + 'arcsec',
    + 'arcsecond',
    + 'asr',
    + 'astronomical_unit',
    + 'astrophys',
    + 'attoBarye',
    + 'attoDa',
    + 'attoDalton',
    + 'attoDebye',
    + 'attoFarad',
    + 'attoGauss',
    + 'attoHenry',
    + 'attoHertz',
    + 'attoJansky',
    + 'attoJoule',
    + 'attoKayser',
    + 'attoKelvin',
    + 'attoNewton',
    + 'attoOhm',
    + 'attoPascal',
    + 'attoRayleigh',
    + 'attoSiemens',
    + 'attoTesla',
    + 'attoVolt',
    + 'attoWatt',
    + 'attoWeber',
    + 'attoamp',
    + 'attoampere',
    + 'attoannum',
    + 'attoarcminute',
    + 'attoarcsecond',
    + 'attoastronomical_unit',
    + 'attobarn',
    + 'attobarye',
    + 'attobit',
    + 'attobyte',
    + 'attocandela',
    + 'attocoulomb',
    + 'attocount',
    + 'attoday',
    + 'attodebye',
    + 'attodegree',
    + 'attodyne',
    + 'attoelectronvolt',
    + 'attofarad',
    + 'attogal',
    + 'attogauss',
    + 'attogram',
    + 'attohenry',
    + 'attohertz',
    + 'attohour',
    + 'attohr',
    + 'attojansky',
    + 'attojoule',
    + 'attokayser',
    + 'attolightyear',
    + 'attoliter',
    + 'attolumen',
    + 'attolux',
    + 'attometer',
    + 'attominute',
    + 'attomole',
    + 'attonewton',
    + 'attoparsec',
    + 'attopascal',
    + 'attophoton',
    + 'attopixel',
    + 'attopoise',
    + 'attoradian',
    + 'attorayleigh',
    + 'attorydberg',
    + 'attosecond',
    + 'attosiemens',
    + 'attosteradian',
    + 'attostokes',
    + 'attotesla',
    + 'attovolt',
    + 'attovoxel',
    + 'attowatt',
    + 'attoweber',
    + 'attoyear',
    + 'au',
    + 'avox',
    + 'avoxel',
    + 'ayr',
    + 'b',
    + 'bar',
    + 'barn',
    + 'barye',
    + 'beam',
    + 'beam_angular_area',
    + 'becquerel',
    + 'bin',
    + 'binary_prefixes',
    + 'bit',
    + 'bol',
    + 'brightness_temperature',
    + 'byte',
    + 'cA',
    + 'cAU',
    + 'cB',
    + 'cBa',
    + 'cC',
    + 'cD',
    + 'cF',
    + 'cG',
    + 'cGal',
    + 'cH',
    + 'cHz',
    + 'cJ',
    + 'cJy',
    + 'cK',
    + 'cL',
    + 'cN',
    + 'cOhm',
    + 'cP',
    + 'cPa',
    + 'cR',
    + 'cRy',
    + 'cS',
    + 'cSt',
    + 'cT',
    + 'cV',
    + 'cW',
    + 'cWb',
    + 'ca',
    + 'cadu',
    + 'candela',
    + 'carcmin',
    + 'carcsec',
    + 'cau',
    + 'cb',
    + 'cbarn',
    + 'cbeam',
    + 'cbin',
    + 'cbit',
    + 'cbyte',
    + 'ccd',
    + 'cchan',
    + 'ccount',
    + 'cct',
    + 'cd',
    + 'cdeg',
    + 'cdyn',
    + 'ceV',
    + 'centiBarye',
    + 'centiDa',
    + 'centiDalton',
    + 'centiDebye',
    + 'centiFarad',
    + 'centiGauss',
    + 'centiHenry',
    + 'centiHertz',
    + 'centiJansky',
    + 'centiJoule',
    + 'centiKayser',
    + 'centiKelvin',
    + 'centiNewton',
    + 'centiOhm',
    + 'centiPascal',
    + 'centiRayleigh',
    + 'centiSiemens',
    + 'centiTesla',
    + 'centiVolt',
    + 'centiWatt',
    + 'centiWeber',
    + 'centiamp',
    + 'centiampere',
    + 'centiannum',
    + 'centiarcminute',
    + 'centiarcsecond',
    + 'centiastronomical_unit',
    + 'centibarn',
    + 'centibarye',
    + 'centibit',
    + 'centibyte',
    + 'centicandela',
    + 'centicoulomb',
    + 'centicount',
    + 'centiday',
    + 'centidebye',
    + 'centidegree',
    + 'centidyne',
    + 'centielectronvolt',
    + 'centifarad',
    + 'centigal',
    + 'centigauss',
    + 'centigram',
    + 'centihenry',
    + 'centihertz',
    + 'centihour',
    + 'centihr',
    + 'centijansky',
    + 'centijoule',
    + 'centikayser',
    + 'centilightyear',
    + 'centiliter',
    + 'centilumen',
    + 'centilux',
    + 'centimeter',
    + 'centiminute',
    + 'centimole',
    + 'centinewton',
    + 'centiparsec',
    + 'centipascal',
    + 'centiphoton',
    + 'centipixel',
    + 'centipoise',
    + 'centiradian',
    + 'centirayleigh',
    + 'centirydberg',
    + 'centisecond',
    + 'centisiemens',
    + 'centisteradian',
    + 'centistokes',
    + 'centitesla',
    + 'centivolt',
    + 'centivoxel',
    + 'centiwatt',
    + 'centiweber',
    + 'centiyear',
    + 'cerg',
    + 'cg',
    + 'cgs',
    + 'ch',
    + 'chan',
    + 'ck',
    + 'cl',
    + 'clm',
    + 'clx',
    + 'clyr',
    + 'cm',
    + 'cmag',
    + 'cmin',
    + 'cmol',
    + 'cohm',
    + 'core',
    + 'coulomb',
    + 'count',
    + 'cpc',
    + 'cph',
    + 'cphoton',
    + 'cpix',
    + 'cpixel',
    + 'crad',
    + 'cs',
    + 'csr',
    + 'ct',
    + 'cu',
    + 'curie',
    + 'cvox',
    + 'cvoxel',
    + 'cy',
    + 'cycle',
    + 'cyr',
    + 'd',
    + 'dA',
    + 'dAU',
    + 'dB',
    + 'dBa',
    + 'dC',
    + 'dD',
    + 'dF',
    + 'dG',
    + 'dGal',
    + 'dH',
    + 'dHz',
    + 'dJ',
    + 'dJy',
    + 'dK',
    + 'dL',
    + 'dN',
    + 'dOhm',
    + 'dP',
    + 'dPa',
    + 'dR',
    + 'dRy',
    + 'dS',
    + 'dSt',
    + ...]
    +
    +
    +

    To create a quantity, we multiply a value by a unit.

    @@ -403,6 +1383,11 @@ For example, the coordinate \(30^{\ci
    +
    +
    astropy.units.quantity.Quantity
    +
    +
    +

    The result is a Quantity object. Jupyter knows how to display Quantities like this:

    @@ -412,6 +1397,10 @@ Jupyter knows how to display +
    +
    +\[10 \; \mathrm{{}^{\circ}}\]
    +

    Quantities provide a method called to that converts to other units. For example, we can compute the number of arcminutes in angle:

    @@ -421,6 +1410,10 @@ Jupyter knows how to display
    +
    +
    +\[600 \; \mathrm{{}^{\prime}}\]
    +

    If you add quantities, Astropy converts them to compatible units, if possible:

    @@ -429,6 +1422,10 @@ Jupyter knows how to display
    +
    +
    +\[10.5 \; \mathrm{{}^{\circ}}\]
    +

    If the units are not compatible, you get an error. For example:

    @@ -442,10 +1439,22 @@ For example:

    Then convert it to degrees.

    -
    # Solution goes here
    +
    # Solution
    +
    +radius = 5 * u.arcmin
    +print(radius)
    +
    +radius.to(u.degree)
     
    +
    +
    5.0 arcmin
    +
    +
    +
    +\[0.083333333 \; \mathrm{{}^{\circ}}\]
    +
    @@ -485,6 +1494,23 @@ Here’s how we run it.

    +
    +
    Created TAP+ (v1.2.1) - Connection:
    +	Host: gea.esac.esa.int
    +	Use HTTPS: True
    +	Port: 443
    +	SSL Port: 443
    +Created TAP+ (v1.2.1) - Connection:
    +	Host: geadata.esac.esa.int
    +	Use HTTPS: True
    +	Port: 443
    +	SSL Port: 443
    +
    +
    +
    <astroquery.utils.tap.model.job.Job at 0x7f277785fa30>
    +
    +
    +
    @@ -493,6 +1519,22 @@ Here’s how we run it.

    +
    +
    Table length=10 + + + + + + + + + + + + + +
    source_id
    int64
    3322773965056065536
    3322773758899157120
    3322774068134271104
    3322773930696320512
    3322774377374425728
    3322773724537891456
    3322773724537891328
    3322773930696321792
    3322773724537890944
    3322773930696322176

    Exercise

    @@ -501,10 +1543,29 @@ Here’s how we run it.

    In the previous query, replace TOP 10 source_id with COUNT(source_id) and run the query again. How many stars has Gaia identified in the cone we searched?

    -
    # Solution goes here
    +
    # Solution
    +
    +query = """SELECT 
    +COUNT(source_id)
    +FROM gaiadr2.gaia_source
    +WHERE 1=CONTAINS(
    +  POINT(ra, dec),
    +  CIRCLE(88.8, 7.4, 0.08333333))
    +"""
    +
    +job = Gaia.launch_job(query)
    +results = job.get_results()
    +results
     
    +
    +
    Table length=1 + + + + +
    count
    int64
    594
    @@ -544,6 +1605,12 @@ Here’s how we run it.

    +
    +
    <SkyCoord (ICRS): (ra, dec) in deg
    +    (88.8, 7.4)>
    +
    +
    +

    SkyCoord provides a function that transforms to other frames. For example, we can transform coords_icrs to Galactic coordinates like this:

    @@ -554,6 +1621,12 @@ For example, we can transform +
    +
    <SkyCoord (Galactic): (l, b) in deg
    +    (199.79693102, -8.95591653)>
    +
    +
    +

    Notice that in the Galactic frame, the coordinates are called l and b, not ra and dec.

    To transform to and from GD-1 coordinates, we’ll use a frame defined by Gala, which is an Astropy-affiliated library that provides tools for galactic dynamics.

    @@ -567,6 +1640,11 @@ For example, we can transform +
    +
    <GD1Koposov10 Frame>
    +
    +
    +

    We can use it to find the coordinates of Betelgeuse in the GD-1 frame, like this:

    @@ -576,6 +1654,12 @@ For example, we can transform
    +
    +
    <SkyCoord (GD1Koposov10): (phi1, phi2) in deg
    +    (-94.97222038, 34.5813813)>
    +
    +
    +

    Notice that the coordinates are called phi1 and phi2. These are the coordinates shown in the figure from the paper, above.

    @@ -589,7 +1673,30 @@ These are the coordinates shown in the figure from the paper, above.

    Hint: Because ICRS is built into Astropy, you can specify it by name, icrs (as we did with galactic).

    -
    # Solution goes here
    +
    # Solution
    +
    +origin_gd1 = SkyCoord(0*u.degree, 0*u.degree, frame=gd1_frame)
    +
    +# OR
    +
    +origin_gd1 = SkyCoord(phi1=0*u.degree, 
    +                      phi2=0*u.degree, 
    +                      frame=gd1_frame)
    +
    +# Note: because ICRS is built into Astropy, 
    +# we can identify it by string name
    +origin_gd1.transform_to('icrs')
    +
    +# More formally, we could instantiate it
    +from astropy.coordinates import ICRS
    +icrs_frame = ICRS()
    +origin_gd1.transform_to(icrs_frame)
    +
    +
    +
    +
    +
    <SkyCoord (ICRS): (ra, dec) in deg
    +    (200., 59.4504341)>
     
    @@ -641,6 +1748,12 @@ These are the coordinates shown in the figure from the paper, above.

    +
    +
    <SkyCoord (GD1Koposov10): (phi1, phi2) in deg
    +    [(-55., -8.), (-55.,  4.), (-45.,  4.), (-45., -8.), (-55., -8.)]>
    +
    +
    +

    Now we can use transform_to to convert to ICRS coordinates.

    @@ -650,6 +1763,14 @@ These are the coordinates shown in the figure from the paper, above.

    +
    +
    <SkyCoord (ICRS): (ra, dec) in deg
    +    [(146.27533314, 19.26190982), (135.42163944, 25.87738723),
    +     (141.60264825, 34.3048303 ), (152.81671045, 27.13611254),
    +     (146.27533314, 19.26190982)]>
    +
    +
    +

    Notice that a rectangle in one coordinate system is not necessarily a rectangle in another. In this example, the result is a (non-rectangular) polygon.

    @@ -672,6 +1793,15 @@ These are the coordinates shown in the figure from the paper, above.

    +
    +
    ['146.275 19.2619',
    + '135.422 25.8774',
    + '141.603 34.3048',
    + '152.817 27.1361',
    + '146.275 19.2619']
    +
    +
    +

    We can use the Python string function join to join t into a single string (with spaces between the pairs):

    @@ -681,6 +1811,11 @@ These are the coordinates shown in the figure from the paper, above.

    +
    +
    '146.275 19.2619 135.422 25.8774 141.603 34.3048 152.817 27.1361 146.275 19.2619'
    +
    +
    +

    That’s almost what we need, but we have to replace the spaces with commas.

    @@ -689,6 +1824,11 @@ These are the coordinates shown in the figure from the paper, above.

    +
    +
    '146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619'
    +
    +
    +

    The following function combines these steps.

    @@ -710,6 +1850,11 @@ These are the coordinates shown in the figure from the paper, above.

    +
    +
    '146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619'
    +
    +
    +
    @@ -763,6 +1908,18 @@ We need columns
    +
    +
    SELECT
    +TOP 10
    +source_id, ra, dec, pmra, pmdec
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1
    +  AND bp_rp BETWEEN -0.75 AND 2 
    +  AND 1 = CONTAINS(POINT(ra, dec), 
    +                   POLYGON(146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619))
    +
    +
    +

    As always, we should take a minute to proof-read the query before we launch it.

    @@ -772,6 +1929,24 @@ We need columns
    +
    +
    INFO: Query finished. [astroquery.utils.tap.core]
    +<Table length=10>
    +   name    dtype    unit                              description                            
    +--------- ------- -------- ------------------------------------------------------------------
    +source_id   int64          Unique source identifier (unique within a particular Data Release)
    +       ra float64      deg                                                    Right ascension
    +      dec float64      deg                                                        Declination
    +     pmra float64 mas / yr                         Proper motion in right ascension direction
    +    pmdec float64 mas / yr                             Proper motion in declination direction
    +Jobid: 1615815873808O
    +Phase: COMPLETED
    +Owner: None
    +Output file: async_20210315094433.vot
    +Results: None
    +
    +
    +

    Here are the results.

    @@ -781,6 +1956,23 @@ We need columns
    +
    +
    Table length=10 + + + + + + + + + + + + + + +
    source_idradecpmrapmdec
    degdegmas / yrmas / yr
    int64float64float64float64float64
    637987125186749568142.4830193599102321.75771616932985-2.51683846838757662.941813096629439
    638285195917112960142.2545294134634422.4761681711413782.6627020143457996-12.165984395577347
    638073505568978688142.6452855746807422.1669322495307818.30674739454163-7.950659620550862
    638086386175786752142.5773943092603422.227919514013650.9877856720147953-2.584105480335548
    638049655615392384142.5891356447861822.1107831666774180.24443878227817095-4.941079187010136
    638267565075964032141.8176222899961422.375696125322275-3.4131745896607961.8838892877285924
    638028902333511168143.1833980131767722.25124658123697.848511762712128-21.391145547787154
    638085767700610432142.934731946458922.46244080823965-3.6585960944321476-12.486419770278376
    638299863230178304142.2676974582326722.640183776884836-1.81683708922182971.0537342990941316
    637973067758974208142.8955129286901221.612824100339875-8.645166256559063-44.41164172204947

    Finally, we can remove TOP 10 run the query again.

    The result is bigger than our previous queries, so it will take a little longer.

    @@ -806,6 +1998,17 @@ We need columns +
    +
    SELECT
    +source_id, ra, dec, pmra, pmdec
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1
    +  AND bp_rp BETWEEN -0.75 AND 2 
    +  AND 1 = CONTAINS(POINT(ra, dec), 
    +                   POLYGON(146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619))
    +
    +
    +
    @@ -814,6 +2017,24 @@ We need columns
    +
    +
    INFO: Query finished. [astroquery.utils.tap.core]
    +<Table length=140339>
    +   name    dtype    unit                              description                            
    +--------- ------- -------- ------------------------------------------------------------------
    +source_id   int64          Unique source identifier (unique within a particular Data Release)
    +       ra float64      deg                                                    Right ascension
    +      dec float64      deg                                                        Declination
    +     pmra float64 mas / yr                         Proper motion in right ascension direction
    +    pmdec float64 mas / yr                             Proper motion in declination direction
    +Jobid: 1615815886707O
    +Phase: COMPLETED
    +Owner: None
    +Output file: async_20210315094446.vot
    +Results: None
    +
    +
    +
    @@ -822,6 +2043,11 @@ We need columns
    +
    +
    140339
    +
    +
    +

    There are more than 100,000 stars in this polygon, but that’s a manageable size to work with.

    @@ -850,6 +2076,11 @@ We need columns +
    +
    5.36407470703125
    +
    +
    +
    diff --git a/03_motion.html b/03_motion.html index c1fe0a6..a544a5c 100644 --- a/03_motion.html +++ b/03_motion.html @@ -243,11 +243,6 @@ Outline -
  • - - Installing libraries - -
  • Reload the data @@ -373,24 +368,6 @@
  • Save a DataFrame in an HDF5 file.

  • -
    -

    Installing libraries

    -

    If you are running this notebook on Colab, you can run the following cell to install the libraries we’ll use.

    -

    If you are running this notebook on your own computer, you might have to install these libraries yourself. See the instructions in the preface.

    -
    -
    -
    # If we're running on Colab, install libraries
    -
    -import sys
    -IN_COLAB = 'google.colab' in sys.modules
    -
    -if IN_COLAB:
    -    !pip install astroquery astro-gala
    -
    -
    -
    -
    -

    Reload the data

    In the previous lesson, we ran a query on the Gaia server and downloaded data for roughly 140,000 stars. We saved the data in a FITS file so that now, picking up where we left off, we can read the data from a local file rather than running the query again.

    @@ -432,6 +409,19 @@
    +
    +
    <Table length=140339>
    +   name    dtype    unit                              description                            
    +--------- ------- -------- ------------------------------------------------------------------
    +source_id   int64          Unique source identifier (unique within a particular Data Release)
    +       ra float64      deg                                                    Right ascension
    +      dec float64      deg                                                        Declination
    +     pmra float64 mas / yr                         Proper motion in right ascension direction
    +    pmdec float64 mas / yr                             Proper motion in declination direction
    + parallax float64      mas                                                           Parallax
    +
    +
    +
    @@ -444,6 +434,11 @@
    +
    +
    ['source_id', 'ra', 'dec', 'pmra', 'pmdec', 'parallax']
    +
    +
    +

    And select an individual column like this:

    @@ -452,6 +447,35 @@
    +
    +
    <Column name='ra' dtype='float64' unit='deg' description='Right ascension' length=140339> + + + + + + + + + + + + + + + + + + + + + + + + + + +
    142.48301935991023
    142.25452941346344
    142.64528557468074
    142.57739430926034
    142.58913564478618
    141.81762228999614
    143.18339801317677
    142.9347319464589
    142.26769745823267
    142.89551292869012
    142.2780935768316
    142.06138786534987
    ...
    143.05456487172972
    144.0436496516182
    144.06566578919313
    144.13177563215973
    143.77696341662764
    142.945956347594
    142.97282480557786
    143.4166017695258
    143.64484588686904
    143.41554585481808
    143.6908739159247
    143.7702681295401

    The result is a Column object that contains the data, and also the data type, units, and name of the column.

    @@ -460,6 +484,11 @@
    +
    +
    astropy.table.column.Column
    +
    +
    +

    The rows in the Table are numbered from 0 to n-1, where n is the number of rows. We can select the first row like this:

    @@ -468,6 +497,14 @@
    +
    +
    Row index=0 + + + + + +
    source_idradecpmrapmdecparallax
    degdegmas / yrmas / yrmas
    int64float64float64float64float64float64
    637987125186749568142.4830193599102321.75771616932985-2.51683846838757662.941813096629439-0.2573448962333354

    As you might have guessed, the result is a Row object.

    @@ -476,6 +513,11 @@
    +
    +
    astropy.table.row.Row
    +
    +
    +

    Notice that the bracket operator selects both columns and rows. You might wonder how it knows which to select. If the expression in brackets is a string, it selects a column; if the expression is an integer, it selects a row.

    @@ -486,6 +528,11 @@ If the expression in brackets is a string, it selects a column; if the expressio +
    +
    142.48301935991023
    +
    +
    +

    Or you can select a row and then an element from the row.

    @@ -494,6 +541,11 @@ If the expression in brackets is a string, it selects a column; if the expressio
    +
    +
    142.48301935991023
    +
    +
    +

    You get the same result either way.

    @@ -534,6 +586,9 @@ In that case, you might want to run the following Jupyter +_images/03_motion_30_0.png +

    The arguments to plt.plot are x, y, and a string that specifies the style. In this case, the letters ko indicate that we want a black, round marker (k is for black because b is for blue). The functions xlabel and ylabel put labels on the axes.

    @@ -548,7 +603,14 @@ The functions xlabe

    Note: Once you have made these changes, you might notice that the figure shows stripes with lower density of stars. These stripes are caused by the way Gaia scans the sky, which you can read about here. The dataset we are using, Gaia Data Release 2, covers 22 months of observations; during this time, some parts of the sky were scanned more than others.

    -
    # Solution goes here
    +
    # Solution
    +
    +# x = results['ra']
    +# y = results['dec']
    +# plt.plot(x, y, 'ko', markersize=0.1, alpha=0.1)
    +
    +# plt.xlabel('ra (degree ICRS)')
    +# plt.ylabel('dec (degree ICRS)');
     
    @@ -648,6 +710,9 @@ The coordinates in
    +
    +_images/03_motion_45_0.png +

    Remember that we started with a rectangle in the GD-1 frame. When transformed to the ICRS frame, it’s a non-rectangular region. Now, transformed back to the GD-1 frame, it’s a rectangle again.

    @@ -660,6 +725,11 @@ The coordinates in +
    +
    astropy.table.table.Table
    +
    +
    +

    And skycoord_gd1 is a SkyCoord object that contains the transformed coordinates and proper motions.

    @@ -668,6 +738,11 @@ The coordinates in
    +
    +
    astropy.coordinates.sky_coordinate.SkyCoord
    +
    +
    +

    On one hand, this division of labor makes sense because each object provides different capabilities. But working with multiple object types can be awkward.

    It will be more convenient to choose one object and get all of the data into it. We’ll choose a Pandas DataFrame, for two reasons:

    @@ -693,6 +768,11 @@ The coordinates in +
    +
    (140339, 6)
    +
    +
    +

    It also provides head, which displays the first few rows. head is useful for spot-checking large results as you go along.

    @@ -701,6 +781,82 @@ The coordinates in
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    source_idradecpmrapmdecparallax
    0637987125186749568142.48301921.757716-2.5168382.941813-0.257345
    1638285195917112960142.25452922.4761682.662702-12.1659840.422728
    2638073505568978688142.64528622.16693218.306747-7.9506600.103640
    3638086386175786752142.57739422.2279200.987786-2.584105-0.857327
    4638049655615392384142.58913622.1107830.244439-4.9410790.099625
    +

    Python detail: shape is an attribute, so we display its value without calling it as a function; head is a function, so we need the parentheses.

    Now we can extract the columns we want from skycoord_gd1 and add them as columns in the DataFrame. phi1 and phi2 contain the transformed coordinates.

    @@ -712,6 +868,11 @@ The coordinates in +
    +
    (140339, 8)
    +
    +
    +

    pm_phi1_cosphi2 and pm_phi2 contain the components of proper motion in the transformed frame.

    @@ -722,6 +883,11 @@ The coordinates in
    +
    +
    (140339, 10)
    +
    +
    +

    Detail: If you notice that SkyCoord has an attribute called proper_motion, you might wonder why we are not using it.

    We could have: proper_motion contains the same data as pm_phi1_cosphi2 and pm_phi2, but in a different format.

    @@ -736,6 +902,145 @@ One of the most useful of these functions is +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    source_idradecpmrapmdecparallaxphi1phi2pm_phi1pm_phi2
    count1.403390e+05140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000
    mean6.792399e+17143.82312226.780285-2.484404-6.1007770.179492-50.091158-1.803301-0.8689631.409208
    std3.792177e+163.6978503.0525925.9139397.2020470.7595902.8923443.4443986.6577146.518615
    min6.214900e+17135.42569919.286617-106.755260-138.065163-15.287602-54.999989-8.029159-115.275637-161.150142
    25%6.443517e+17140.96796624.592490-5.038789-8.341561-0.035981-52.602952-4.750426-2.948723-1.107128
    50%6.888060e+17143.73440926.746261-1.834943-4.6895960.362708-50.147362-1.6715020.5850371.987149
    75%6.976579e+17146.60735028.9905000.452893-1.9378090.657637-47.5932791.1605143.0017684.628965
    max7.974418e+17152.77739334.285481104.31992320.9810700.999957-44.9999854.01460939.80247179.275199
    +

    Exercise

    @@ -746,7 +1051,17 @@ One of the most useful of these functions is
    -
    # Solution goes here
    +
    # Solution
    +
    +# The most noticeable issue is that some of the
    +# parallax values are negative, which is non-physical.
    +
    +# The reason is that parallax measurements are less accurate
    +# for stars that are far away.
    +
    +# Fortunately, we don't use the parallax measurements in
    +# the analysis (one of the reasons we used constant distance
    +# for reflex correction).
     
    @@ -776,6 +1091,9 @@ Then we will use the bounds of the cluster to select stars that are more likely
    +
    +_images/03_motion_69_0.png +

    Most of the proper motions are near the origin, but there are a few extreme values. Following the example in the paper, we’ll use xlim and ylim to zoom in on the region near the origin.

    @@ -793,6 +1111,9 @@ Following the example in the paper, we’ll use +_images/03_motion_71_0.png +

    There is a hint of an overdense region near (-7.5, 0), but if you didn’t know where to look, you would miss it.

    To see the cluster more clearly, we need a sample that contains a higher proportion of stars in GD-1. @@ -811,6 +1132,11 @@ We’ll do that by selecting stars close to the centerline.

    +
    +
    pandas.core.series.Series
    +
    +
    +

    The result is a Series, which is the structure Pandas uses to represent columns.

    We can use a comparison operator, >, to compare the values in a Series to a constant.

    @@ -824,6 +1150,11 @@ We’ll do that by selecting stars close to the centerline.

    +
    +
    pandas.core.series.Series
    +
    +
    +

    The result is a Series of Boolean values, that is, True and False.

    @@ -832,6 +1163,16 @@ We’ll do that by selecting stars close to the centerline.

    +
    +
    0    False
    +1    False
    +2    False
    +3    False
    +4    False
    +Name: phi2, dtype: bool
    +
    +
    +

    To select values that fall between phi2_min and phi2_max, we’ll use the & operator, which computes “logical AND”. The result is true where elements from both Boolean Series are true.

    @@ -851,6 +1192,11 @@ The result is true where elements from both Boolean +
    25084
    +
    +
    +

    A Boolean Series is sometimes called a “mask” because we can use it to mask out some of the rows in a DataFrame and select the rest, like this:

    @@ -860,6 +1206,11 @@ The result is true where elements from both Boolean +
    pandas.core.frame.DataFrame
    +
    +
    +

    centerline_df is a DataFrame that contains only the rows from results_df that correspond to True values in mask. So it contains the stars near the centerline of GD-1.

    @@ -870,6 +1221,11 @@ So it contains the stars near the centerline of GD-1.

    +
    +
    25084
    +
    +
    +

    And what fraction of the rows we’ve selected.

    @@ -878,6 +1234,11 @@ So it contains the stars near the centerline of GD-1.

    +
    +
    0.1787386257562046
    +
    +
    +

    There are about 25,000 stars in this region, about 18% of the total.

    @@ -911,6 +1272,9 @@ So it contains the stars near the centerline of GD-1.

    +
    +_images/03_motion_94_0.png +

    Now we can see more clearly that there is a cluster near (-7.5, 0).

    You might notice that our figure is less dense than the one in the paper. That’s because we started with a set of stars from a relatively small region. The figure in the paper is based on a region about 10 times bigger.

    @@ -961,6 +1325,9 @@ So it contains the stars near the centerline of GD-1.

    +
    +_images/03_motion_102_0.png +

    Now that we’ve identified the bounds of the cluster in proper motion, we’ll use it to select rows from results_df.

    We’ll use the following function, which uses Pandas operators to make a mask that selects rows where series falls between low and high.

    @@ -992,6 +1359,11 @@ So it contains the stars near the centerline of GD-1.

    +
    +
    1049
    +
    +
    +

    Now we can use this mask to select rows from results_df.

    @@ -1001,6 +1373,11 @@ So it contains the stars near the centerline of GD-1.

    +
    +
    1049
    +
    +
    +

    These are the stars we think are likely to be in GD-1. Let’s see what they look like, plotting their coordinates (not their proper motion).

    @@ -1014,6 +1391,9 @@ So it contains the stars near the centerline of GD-1.

    +
    +_images/03_motion_112_0.png +

    Now that’s starting to look like a tidal stream!

    @@ -1028,6 +1408,11 @@ So it contains the stars near the centerline of GD-1.

    +
    +
    astropy.table.table.Table
    +
    +
    +

    Then we could write the Table to a FITS file, as we did in the previous lesson.

    But Pandas provides functions to write DataFrames in other formats; to see what they are find the functions here that begin with to_.

    @@ -1055,7 +1440,9 @@ So it contains the stars near the centerline of GD-1.

    Hint: Since the file already exists, you should not use mode='w'.

    -
    # Solution goes here
    +
    # Solution
    +
    +centerline_df.to_hdf(filename, 'centerline_df')
     
    @@ -1070,6 +1457,11 @@ So it contains the stars near the centerline of GD-1.

    +
    +
    2.2084197998046875
    +
    +
    +

    If you forget what the names of the Datasets in the file are, you can read them back like this:

    @@ -1079,6 +1471,11 @@ So it contains the stars near the centerline of GD-1.

    +
    +
    ['/centerline_df', '/selected_df']
    +
    +
    +

    Python note: We use a with statement here to open the file before the print statement and (automatically) close it after. Read more about context managers.

    The keys are the names of the Datasets. Notice that they start with /, which indicates that they are at the top level of the Dataset hierarchy, and not in a named “group”.

    diff --git a/04_select.html b/04_select.html index 3f95a5f..1227416 100644 --- a/04_select.html +++ b/04_select.html @@ -243,11 +243,6 @@ Outline -
  • - - Installing libraries - -
  • Reload the data @@ -332,24 +327,6 @@ We’ll also see how to write the results to a CSV file.

  • Save data in CSV format.

  • -
    -

    Installing libraries

    -

    If you are running this notebook on Colab, you can run the following cell to install the libraries we’ll use.

    -

    If you are running this notebook on your own computer, you might have to install these libraries yourself. See the instructions in the preface.

    -
    -
    -
    # If we're running on Colab, install libraries
    -
    -import sys
    -IN_COLAB = 'google.colab' in sys.modules
    -
    -if IN_COLAB:
    -    !pip install astroquery astro-gala
    -
    -
    -
    -
    -

    Reload the data

    You can download the data from the previous lesson or run the following cell, which downloads it if necessary.

    @@ -466,6 +443,9 @@ We’ll also see how to write the results to a CSV file.

    +
    +_images/04_select_16_0.png +

    Now we’ll make the same plot using proper motions in the ICRS frame, which are stored in columns pmra and pmdec.

    @@ -486,6 +466,9 @@ We’ll also see how to write the results to a CSV file.

    +
    +_images/04_select_18_0.png +

    The proper motions of the selected stars are more spread out in this frame, which is why it was preferable to do the selection in the GD-1 frame.

    But now we can define a polygon that encloses the proper motions of these stars in ICRS, and use that polygon as a selection criterion in an ADQL query.

    @@ -503,6 +486,11 @@ We’ll also see how to write the results to a CSV file.

    +
    +
    (1049, 2)
    +
    +
    +

    NOTE: If you are using an older version of Pandas, you might not have to_numpy(); you can use values instead, like this:

    points = selected_df[['pmra','pmdec']].values
    @@ -519,6 +507,11 @@ We’ll also see how to write the results to a CSV file.

    +
    +
    <scipy.spatial.qhull.ConvexHull at 0x7ff6207866a0>
    +
    +
    +

    hull.vertices contains the indices of the points that fall on the perimeter of the hull.

    @@ -527,6 +520,12 @@ We’ll also see how to write the results to a CSV file.

    +
    +
    array([ 692,  873,  141,  303,   42,  622,   45,   83,  127,  182, 1006,
    +        971,  967, 1001,  969,  940], dtype=int32)
    +
    +
    +

    We can use them as an index into the original array to select the corresponding rows.

    @@ -536,6 +535,26 @@ We’ll also see how to write the results to a CSV file.

    +
    +
    array([[ -4.05037121, -14.75623261],
    +       [ -3.41981085, -14.72365546],
    +       [ -3.03521988, -14.44357135],
    +       [ -2.26847919, -13.7140236 ],
    +       [ -2.61172203, -13.24797471],
    +       [ -2.73471401, -13.09054471],
    +       [ -3.19923146, -12.5942653 ],
    +       [ -3.34082546, -12.47611926],
    +       [ -5.67489413, -11.16083338],
    +       [ -5.95159272, -11.10547884],
    +       [ -6.42394023, -11.05981295],
    +       [ -7.09631023, -11.95187806],
    +       [ -7.30641519, -12.24559977],
    +       [ -7.04016696, -12.88580702],
    +       [ -6.00347705, -13.75912098],
    +       [ -4.42442296, -14.74641176]])
    +
    +
    +

    To plot the resulting polygon, we have to pull out the x and y coordinates.

    @@ -567,6 +586,9 @@ We’ll also see how to write the results to a CSV file.

    +
    +_images/04_select_31_0.png +

    So pm_vertices represents the polygon we want to select. The next step is to use it as part of an ADQL query.

    @@ -651,6 +673,11 @@ Here’s the function from Lesson 2 we used to do that.

    +
    +
    '135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862'
    +
    +
    +

    Here are the columns we want to select.

    @@ -669,6 +696,17 @@ Here’s the function from Lesson 2 we used to do that.

    +
    +
    SELECT
    +source_id, ra, dec, pmra, pmdec
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1
    +  AND bp_rp BETWEEN -0.75 AND 2 
    +  AND 1 = CONTAINS(POINT(ra, dec), 
    +                   POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))
    +
    +
    +

    But don’t try to run that query. Because it selects a larger region, there are too many stars to handle in a single query. @@ -688,6 +726,11 @@ Using flatten +

    +
    '[ -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176]'
    +
    +
    +

    We just have to remove the brackets.

    @@ -697,13 +740,29 @@ Using flatten
    +
    +
    ' -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176'
    +
    +
    +

    Exercise

    Define query6_base, starting with query5_base and adding a new clause to select stars whose coordinates of proper motion, pmra and pmdec, fall within the polygon defined by pm_point_list.

    -
    # Solution goes here
    +
    # Solution
    +
    +query6_base = """SELECT 
    +{columns}
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1
    +  AND bp_rp BETWEEN -0.75 AND 2 
    +  AND 1 = CONTAINS(POINT(ra, dec), 
    +                   POLYGON({point_list}))
    +  AND 1 = CONTAINS(POINT(pmra, pmdec),
    +                   POLYGON({pm_point_list}))
    +"""
     
    @@ -714,7 +773,25 @@ Using flattenUse format to format query6_base and define query6, filling in the values of columns, point_list, and pm_point_list.

    -
    # Solution goes here
    +
    # Solution
    +
    +query6 = query6_base.format(columns=columns, 
    +                            point_list=point_list,
    +                            pm_point_list=pm_point_list)
    +print(query6)
    +
    +
    +
    +
    +
    SELECT 
    +source_id, ra, dec, pmra, pmdec
    +FROM gaiadr2.gaia_source
    +WHERE parallax < 1
    +  AND bp_rp BETWEEN -0.75 AND 2 
    +  AND 1 = CONTAINS(POINT(ra, dec), 
    +                   POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))
    +  AND 1 = CONTAINS(POINT(pmra, pmdec),
    +                   POLYGON( -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176))
     
    @@ -729,6 +806,24 @@ Using flatten
    +
    +
    INFO: Query finished. [astroquery.utils.tap.core]
    +<Table length=7345>
    +   name    dtype    unit                              description                            
    +--------- ------- -------- ------------------------------------------------------------------
    +source_id   int64          Unique source identifier (unique within a particular Data Release)
    +       ra float64      deg                                                    Right ascension
    +      dec float64      deg                                                        Declination
    +     pmra float64 mas / yr                         Proper motion in right ascension direction
    +    pmdec float64 mas / yr                             Proper motion in declination direction
    +Jobid: 1616771462206O
    +Phase: COMPLETED
    +Owner: None
    +Output file: async_20210326111102.vot
    +Results: None
    +
    +
    +

    And get the results.

    @@ -738,6 +833,11 @@ Using flatten
    +
    +
    7345
    +
    +
    +

    We call the results candidate_table because it contains stars that are good candidates for GD-1.

    For the next lesson, we’ll need point_list and pm_point_list again, so we should save them in a file. @@ -752,6 +852,12 @@ To make one, we’ll start with a dictionary:

    +
    +
    {'point_list': '135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862',
    + 'pm_point_list': ' -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176'}
    +
    +
    +

    And use it to initialize a Series.

    @@ -761,6 +867,13 @@ To make one, we’ll start with a dictionary:

    +
    +
    point_list       135.306, 8.39862, 126.51, 13.4449, 163.017, 54...
    +pm_point_list     -4.05037121,-14.75623261, -3.41981085,-14.723...
    +dtype: object
    +
    +
    +

    Now we can save it in the usual way.

    @@ -787,6 +900,9 @@ To make one, we’ll start with a dictionary:

    +
    +_images/04_select_68_0.png +

    Here we can see why it was useful to transform these coordinates. In ICRS, it is more difficult to identity the stars near the centerline of GD-1.

    So let’s transform the results back to the GD-1 frame. @@ -844,6 +960,9 @@ Here’s the code we used to transform the coordinates and make a Pandas +

    +_images/04_select_74_0.png +

    We’re starting to see GD-1 more clearly. We can compare this figure with this panel from Figure 1 from the original paper:

    diff --git a/05_join.html b/05_join.html index 6b98ba7..bd422a1 100644 --- a/05_join.html +++ b/05_join.html @@ -243,11 +243,6 @@ Outline -
  • - - Installing libraries - -
  • Getting photometry data @@ -361,24 +356,6 @@ The following figure from the paper is a color-magnitude diagram for the stars s
  • Write ADQL queries involving JOIN operations.

  • -
    -

    Installing libraries

    -

    If you are running this notebook on Colab, you can run the following cell to install the libraries we’ll use.

    -

    If you are running this notebook on your own computer, you might have to install these libraries yourself. See the instructions in the preface.

    -
    -
    -
    # If we're running on Colab, install libraries
    -
    -import sys
    -IN_COLAB = 'google.colab' in sys.modules
    -
    -if IN_COLAB:
    -    !pip install astroquery
    -
    -
    -
    -
    -

    Getting photometry data

    The Gaia dataset contains some photometry data, including the variable bp_rp, which contains BP-RP color (the difference in mean flux between the BP and RP bands). @@ -414,6 +391,13 @@ Here’s the metadata for

    +
    +
    Retrieving table 'gaiadr2.panstarrs1_best_neighbour'
    +Parsing table 'gaiadr2.panstarrs1_best_neighbour'...
    +Done.
    +
    +
    +
    @@ -421,6 +405,16 @@ Here’s the metadata for
    +
    +
    TAP Table name: gaiadr2.gaiadr2.panstarrs1_best_neighbour
    +Description: Pan-STARRS1 BestNeighbour table lists each matched Gaia object with its
    +best neighbour in the external catalogue.
    +There are 1 327 157 objects in the filtered version of Pan-STARRS1 used
    +to compute this cross-match that have too early epochMean.
    +Num. columns: 7
    +
    +
    +

    And here are the columns.

    @@ -430,6 +424,17 @@ Here’s the metadata for
    +
    +
    source_id
    +original_ext_source_id
    +angular_distance
    +number_of_neighbours
    +number_of_mates
    +best_neighbour_multiplicity
    +gaia_astrometric_params
    +
    +
    +

    Here’s the documentation for these variables .

    The ones we’ll use are:

    @@ -458,6 +463,11 @@ Here’s the metadata for +
    +
    INFO: Query finished. [astroquery.utils.tap.core]
    +
    +
    +
    @@ -466,6 +476,17 @@ Here’s the metadata for
    +
    +
    Table length=5 + + + + + + + + +
    source_idnumber_of_neighboursnumber_of_matesoriginal_ext_source_id
    int64int32int16int64
    67459389724334807041069742925668851205
    60304667889559540481069742509325691172
    67564880993081696001069742879438541228
    67001549947150460161069743055581721207
    67570619413032527361069742856540241198
    @@ -477,6 +498,13 @@ Here’s the metadata for
    +
    +
    Retrieving table 'gaiadr2.panstarrs1_original_valid'
    +Parsing table 'gaiadr2.panstarrs1_original_valid'...
    +Done.
    +
    +
    +
    @@ -484,6 +512,77 @@ Here’s the metadata for
    +
    +
    TAP Table name: gaiadr2.gaiadr2.panstarrs1_original_valid
    +Description: The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is
    +a system for wide-field astronomical imaging developed and operated by
    +the Institute for Astronomy at the University of Hawaii. Pan-STARRS1
    +(PS1) is the first part of Pan-STARRS to be completed and is the basis
    +for Data Release 1 (DR1). The PS1 survey used a 1.8 meter telescope and
    +its 1.4 Gigapixel camera to image the sky in five broadband filters (g,
    +r, i, z, y).
    +
    +The current table contains a filtered subsample of the 10 723 304 629
    +entries listed in the original ObjectThin table.
    +We used only ObjectThin and MeanObject tables to extract
    +panstarrs1OriginalValid table, this means that objects detected only in
    +stack images are not included here. The main reason for us to avoid the
    +use of objects detected in stack images is that their astrometry is not
    +as good as the mean objects astrometry: “The stack positions (raStack,
    +decStack) have considerably larger systematic astrometric errors than
    +the mean epoch positions (raMean, decMean).” The astrometry for the
    +MeanObject positions uses Gaia DR1 as a reference catalog, while the
    +stack positions use 2MASS as a reference catalog.
    +
    +In details, we filtered out all objects where:
    +
    +-   nDetections = 1
    +
    +-   no good quality data in Pan-STARRS, objInfoFlag 33554432 not set
    +
    +-   mean astrometry could not be measured, objInfoFlag 524288 set
    +
    +-   stack position used for mean astrometry, objInfoFlag 1048576 set
    +
    +-   error on all magnitudes equal to 0 or to -999;
    +
    +-   all magnitudes set to -999;
    +
    +-   error on RA or DEC greater than 1 arcsec.
    +
    +The number of objects in panstarrs1OriginalValid is 2 264 263 282.
    +
    +The panstarrs1OriginalValid table contains only a subset of the columns
    +available in the combined ObjectThin and MeanObject tables. A
    +description of the original ObjectThin and MeanObjects tables can be
    +found at:
    +https://outerspace.stsci.edu/display/PANSTARRS/PS1+Database+object+and+detection+tables
    +
    +Download:
    +http://mastweb.stsci.edu/ps1casjobs/home.aspx
    +Documentation:
    +https://outerspace.stsci.edu/display/PANSTARRS
    +http://pswww.ifa.hawaii.edu/pswww/
    +References:
    +The Pan-STARRS1 Surveys, Chambers, K.C., et al. 2016, arXiv:1612.05560
    +Pan-STARRS Data Processing System, Magnier, E. A., et al. 2016,
    +arXiv:1612.05240
    +Pan-STARRS Pixel Processing: Detrending, Warping, Stacking, Waters, C.
    +Z., et al. 2016, arXiv:1612.05245
    +Pan-STARRS Pixel Analysis: Source Detection and Characterization,
    +Magnier, E. A., et al. 2016, arXiv:1612.05244
    +Pan-STARRS Photometric and Astrometric Calibration, Magnier, E. A., et
    +al. 2016, arXiv:1612.05242
    +The Pan-STARRS1 Database and Data Products, Flewelling, H. A., et al.
    +2016, arXiv:1612.05243
    +
    +Catalogue curator:
    +SSDC - ASI Space Science Data Center
    +https://www.ssdc.asi.it/
    +Num. columns: 26
    +
    +
    +

    And here are the columns.

    @@ -493,6 +592,36 @@ Here’s the metadata for
    +
    +
    obj_name
    +obj_id
    +ra
    +dec
    +ra_error
    +dec_error
    +epoch_mean
    +g_mean_psf_mag
    +g_mean_psf_mag_error
    +g_flags
    +r_mean_psf_mag
    +r_mean_psf_mag_error
    +r_flags
    +i_mean_psf_mag
    +i_mean_psf_mag_error
    +i_flags
    +z_mean_psf_mag
    +z_mean_psf_mag_error
    +z_flags
    +y_mean_psf_mag
    +y_mean_psf_mag_error
    +y_flags
    +n_detections
    +zone_id
    +obj_info_flag
    +quality_flag
    +
    +
    +

    Here’s the documentation for these variables .

    The ones we’ll use are:

    @@ -519,6 +648,11 @@ Here’s the metadata for +
    +
    INFO: Query finished. [astroquery.utils.tap.core]
    +
    +
    +
    @@ -527,6 +661,18 @@ Here’s the metadata for
    +
    +
    Table length=5 + + + + + + + + + +
    obj_idg_mean_psf_magi_mean_psf_mag
    mag
    int64float64float64
    67130655389101425--20.3516006469727
    67553305590067819--19.779899597168
    67551423248967849--19.8889007568359
    67132026238911331--20.9062995910645
    67553513677687787--21.2831001281738

    The following figure shows how these tables are related.

      @@ -565,6 +711,11 @@ As a starting place, let’s go all the way back to the cone search from Lesson +
      +
      INFO: Query finished. [astroquery.utils.tap.core]
      +
      +
      +
      @@ -573,6 +724,22 @@ As a starting place, let’s go all the way back to the cone search from Lesson
      +
      +
      Table length=10 + + + + + + + + + + + + + +
      source_id
      int64
      3322773965056065536
      3322773758899157120
      3322774068134271104
      3322773930696320512
      3322774377374425728
      3322773724537891456
      3322773724537891328
      3322773930696321792
      3322773724537890944
      3322773930696322176

      Now we can start adding features. First, let’s replace source_id with a format specifier, columns:

      @@ -599,6 +766,16 @@ First, let’s replace +
      SELECT 
      +source_id, ra, dec, pmra, pmdec
      +FROM gaiadr2.gaia_source
      +WHERE 1=CONTAINS(
      +  POINT(ra, dec),
      +  CIRCLE(88.8, 7.4, 0.08333333))
      +
      +
      +

      And let’s run the query again.

      @@ -607,6 +784,11 @@ First, let’s replace +
      INFO: Query finished. [astroquery.utils.tap.core]
      +
      +
      +
      @@ -615,6 +797,33 @@ First, let’s replace +
      Table length=594 + + + + + + + + + + + + + + + + + + + + + + + + +
      source_idradecpmrapmdec
      degdegmas / yrmas / yr
      int64float64float64float64float64
      332277396505606553688.781780201833757.3349365305831410.2980633722108194-2.5057036964736907
      332277375889915712088.832270571445857.325577341429926----
      332277406813427110488.82060921880337.353158142762173-1.1065462654445488-1.5260889445858044
      332277393069632051288.808433392903487.3348531622999282.6074384482375215-0.9292104395445717
      332277437737442572888.868061081822657.3712877312759393.9555477866915383-3.8676624830902435
      332277372453789145688.813086028134347.3248857449205951.34995462741039-33.078133430952086
      332277372453789132888.815703292087437.32230197723248551.93899884989518450.3110526931576576
      332277393069632179288.80507367703317.3323714722065832.2640148344763111.0772755505138008
      332277372453789094488.812416515405337.327864052479726-0.36003627434304625-6.393939291541333
      ...............
      332296211898335603288.761096377229497.380564308268047----
      332296352773258598488.788137017048237.4566968897595241.1363354614104264-2.46251296961979
      332296177538596902488.797232158623697.3597565529065352.121021366548921-6.605711792572964
      332296208462531251288.782867563138687.384598632215225-0.093507178109964871.3495903680571226
      332296293932269260888.732893578186797.407688975612043-0.110029347835697041.002126813991455
      332296376825076057688.75924440359617.469624531882018----
      332296345901311180888.803489318428457.4386999012048710.800833828337078-3.3780655466364626
      332296335593562636888.755285075860587.427795463027667----
      332296328721614988888.76581649321957.4157263708865572.3743092647634034-0.5046963243400879
      332296201590414387288.747408222716437.387057037713974-0.72011785332501120.5565841272341593
      @@ -666,6 +875,18 @@ Here’s the complete query, including the columns we want from the Gaia and bes
      +
      +
      SELECT 
      +gaia.source_id, gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, best.best_neighbour_multiplicity, best.number_of_mates
      +FROM gaiadr2.gaia_source AS gaia
      +JOIN gaiadr2.panstarrs1_best_neighbour AS best
      +  ON gaia.source_id = best.source_id
      +WHERE 1=CONTAINS(
      +  POINT(gaia.ra, gaia.dec),
      +  CIRCLE(88.8, 7.4, 0.08333333))
      +
      +
      +
      @@ -673,6 +894,11 @@ Here’s the complete query, including the columns we want from the Gaia and bes
      +
      +
      INFO: Query finished. [astroquery.utils.tap.core]
      +
      +
      +
      @@ -681,6 +907,33 @@ Here’s the complete query, including the columns we want from the Gaia and bes
      +
      +
      Table length=490 + + + + + + + + + + + + + + + + + + + + + + + + +
      source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_mates
      degdegmas / yrmas / yr
      int64float64float64float64float64int16int16
      332277396505606553688.781780201833757.3349365305831410.2980633722108194-2.505703696473690710
      332277406813427110488.82060921880337.353158142762173-1.1065462654445488-1.526088944585804410
      332277393069632051288.808433392903487.3348531622999282.6074384482375215-0.929210439544571710
      332277437737442572888.868061081822657.3712877312759393.9555477866915383-3.867662483090243510
      332277372453789145688.813086028134347.3248857449205951.34995462741039-33.07813343095208610
      332277372453789132888.815703292087437.32230197723248551.93899884989518450.311052693157657610
      332277393069632179288.80507367703317.3323714722065832.2640148344763111.077275550513800810
      332277372453789094488.812416515405337.327864052479726-0.36003627434304625-6.39393929154133310
      332277393069632217688.801286825748247.334292036448643----10
      .....................
      332296235950148108888.850377229082717.4021627170535842.058216493648542-2.24925532255858410
      332296239386122854488.821082349761557.4044425496203-0.916760881643629-1.111331905386144110
      332295583115125491288.746203477995087.3427286191458550.1559833902071379-1.75059845595973410
      332296211898335603288.761096377229497.380564308268047----10
      332296352773258598488.788137017048237.4566968897595241.1363354614104264-2.4625129696197910
      332296177538596902488.797232158623697.3597565529065352.121021366548921-6.60571179257296410
      332296208462531251288.782867563138687.384598632215225-0.093507178109964871.349590368057122610
      332296293932269260888.732893578186797.407688975612043-0.110029347835697041.00212681399145510
      332296345901311180888.803489318428457.4386999012048710.800833828337078-3.378065546636462610
      332296201590414387288.747408222716437.387057037713974-0.72011785332501120.556584127234159310

      Notice that this result has fewer rows than the previous result. That’s because there are sources in the Gaia table with no corresponding source in the Pan-STARRS table.

      @@ -697,10 +950,82 @@ This default is called an “inner” join because the results include only the The result should contain 490 rows and 9 columns.

      -
      # Solution goes here
      +
      # Solution
      +
      +query_base = """SELECT 
      +{columns}
      +FROM gaiadr2.gaia_source as gaia
      +JOIN gaiadr2.panstarrs1_best_neighbour as best
      +  ON gaia.source_id = best.source_id
      +JOIN gaiadr2.panstarrs1_original_valid as ps
      +  ON best.original_ext_source_id = ps.obj_id
      +WHERE 1=CONTAINS(
      +  POINT(gaia.ra, gaia.dec),
      +  CIRCLE(88.8, 7.4, 0.08333333))
      +"""
      +
      +column_list = ['gaia.source_id',
      +               'gaia.ra',
      +               'gaia.dec',
      +               'gaia.pmra',
      +               'gaia.pmdec',
      +               'best.best_neighbour_multiplicity',
      +               'best.number_of_mates',
      +               'ps.g_mean_psf_mag',
      +               'ps.i_mean_psf_mag']
      +
      +columns = ', '.join(column_list)
      +
      +query = query_base.format(columns=columns)
      +print(query)
      +
      +job = Gaia.launch_job_async(query=query)
      +results = job.get_results()
      +results
       
      +
      +
      SELECT 
      +gaia.source_id, gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, best.best_neighbour_multiplicity, best.number_of_mates, ps.g_mean_psf_mag, ps.i_mean_psf_mag
      +FROM gaiadr2.gaia_source as gaia
      +JOIN gaiadr2.panstarrs1_best_neighbour as best
      +  ON gaia.source_id = best.source_id
      +JOIN gaiadr2.panstarrs1_original_valid as ps
      +  ON best.original_ext_source_id = ps.obj_id
      +WHERE 1=CONTAINS(
      +  POINT(gaia.ra, gaia.dec),
      +  CIRCLE(88.8, 7.4, 0.08333333))
      +
      +INFO: Query finished. [astroquery.utils.tap.core]
      +
      +
      +
      Table length=490 + + + + + + + + + + + + + + + + + + + + + + + + +
      source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_mag
      degdegmas / yrmas / yrmag
      int64float64float64float64float64int16int16float64float64
      332277396505606553688.781780201833757.3349365305831410.2980633722108194-2.50570369647369071019.943199157714817.4221992492676
      332277406813427110488.82060921880337.353158142762173-1.1065462654445488-1.52608894458580441018.621200561523416.6007995605469
      332277393069632051288.808433392903487.3348531622999282.6074384482375215-0.929210439544571710--20.2203998565674
      332277437737442572888.868061081822657.3712877312759393.9555477866915383-3.86766248309024351018.067600250244116.9762001037598
      332277372453789145688.813086028134347.3248857449205951.34995462741039-33.0781334309520861020.190700531005917.8700008392334
      332277372453789132888.815703292087437.32230197723248551.93899884989518450.31105269315765761022.630800247192419.6004009246826
      332277393069632179288.80507367703317.3323714722065832.2640148344763111.07727555051380081021.211999893188518.3528003692627
      332277372453789094488.812416515405337.327864052479726-0.36003627434304625-6.3939392915413331020.809400558471718.1343002319336
      332277393069632217688.801286825748247.334292036448643----1019.7306003570557--
      ...........................
      332296235950148108888.850377229082717.4021627170535842.058216493648542-2.2492553225585841017.403499603271515.9040002822876
      332296239386122854488.821082349761557.4044425496203-0.916760881643629-1.111331905386144110----
      332295583115125491288.746203477995087.3427286191458550.1559833902071379-1.7505984559597341018.496099472045917.3892993927002
      332296211898335603288.761096377229497.380564308268047----1018.064399719238316.7395000457764
      332296352773258598488.788137017048237.4566968897595241.1363354614104264-2.462512969619791017.803499221801816.1214008331299
      332296177538596902488.797232158623697.3597565529065352.121021366548921-6.6057117925729641018.207000732421915.9947996139526
      332296208462531251288.782867563138687.384598632215225-0.093507178109964871.34959036805712261016.797899246215815.1180000305176
      332296293932269260888.732893578186797.407688975612043-0.110029347835697041.0021268139914551017.1863002777116.3645992279053
      332296345901311180888.803489318428457.4386999012048710.800833828337078-3.378065546636462610--16.294900894165
      332296201590414387288.747408222716437.387057037713974-0.72011785332501120.55658412723415931018.470699310302716.8038005828857
      @@ -735,6 +1060,13 @@ The result should contain 490 rows and 9 columns.

      +
      +
      point_list       135.306, 8.39862, 126.51, 13.4449, 163.017, 54...
      +pm_point_list     -4.05037121,-14.75623261, -3.41981085,-14.723...
      +dtype: object
      +
      +
      +

      Now we can assemble the query.

      @@ -749,6 +1081,19 @@ The result should contain 490 rows and 9 columns.

      +
      +
      SELECT 
      +source_id, ra, dec, pmra, pmdec
      +FROM gaiadr2.gaia_source
      +WHERE parallax < 1
      +  AND bp_rp BETWEEN -0.75 AND 2 
      +  AND 1 = CONTAINS(POINT(ra, dec), 
      +                   POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))
      +  AND 1 = CONTAINS(POINT(pmra, pmdec),
      +                   POLYGON( -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176))
      +
      +
      +

      Again, let’s run it to make sure we are starting with a working query.

      @@ -757,6 +1102,11 @@ The result should contain 490 rows and 9 columns.

      +
      +
      INFO: Query finished. [astroquery.utils.tap.core]
      +
      +
      +
      @@ -765,6 +1115,33 @@ The result should contain 490 rows and 9 columns.

      +
      +
      Table length=7345 + + + + + + + + + + + + + + + + + + + + + + + + +
      source_idradecpmrapmdec
      degdegmas / yrmas / yr
      int64float64float64float64float64
      635559124339440000137.5867169164674519.1965441084838-3.770521900009566-12.490481778113859
      635860218726658176138.518706521717319.09233926905897-5.941679495793577-11.346409129876392
      635674126383965568138.842874102638619.031798198627634-3.8970011609340207-12.702779525389634
      635535454774983040137.837751825543618.864006786112604-4.335040664412791-14.492308604905652
      635497276810313600138.044516021375919.00947118796605-7.1729306406216615-12.291499169815987
      635614168640132864139.5921974814583618.807955539071433-3.309602916796381-13.708904908478631
      635821843194387840139.8809403481508619.62185456718988-6.544201177153814-12.55978220563274
      635551706931167104138.0466558603819219.248909662830798-6.224595114220405-12.224246333795001
      635518889086133376137.237422920783718.7428630711791-3.3186800714801046-12.710314902969365
      ...............
      612282738058264960134.044576818923518.11915820167003-2.5972485319419127-13.651740929272187
      612485911486166656134.9658276904706319.309965857307247-4.519325315774155-11.998725329569156
      612386332668697600135.4570104832309318.63266345155342-5.07684899854408-12.436641304786672
      612296172717818624133.8006028696066818.08186533343457-6.112792578821885-12.50750861370402
      612250375480101760134.6475471246677418.122419425065015-2.8969262278467127-14.061676353845487
      612394926899159168135.5199706001384418.817675531233004-3.9968965218753763-13.526821099431533
      612288854091187712134.0797073348935818.15424015818678-5.96977151283562-11.162471664228455
      612428870024913152134.838424285329718.758253070693225-4.0022333299353825-14.247379430659198
      612256418500423168134.9075297273992418.280596648172743-6.109836304219565-12.145212331165776
      612429144902815104134.7729397950954318.73628415871413-5.257085979310591-13.962312685889454

      Exercise

      @@ -774,10 +1151,82 @@ Format the query base using the column names in
      -
      # Solution goes here
      +
      # Solution
      +
      +query7_base = """
      +SELECT 
      +{columns}
      +FROM gaiadr2.gaia_source as gaia
      +JOIN gaiadr2.panstarrs1_best_neighbour as best
      +  ON gaia.source_id = best.source_id
      +JOIN gaiadr2.panstarrs1_original_valid as ps
      +  ON best.original_ext_source_id = ps.obj_id
      +WHERE parallax < 1
      +  AND bp_rp BETWEEN -0.75 AND 2 
      +  AND 1 = CONTAINS(POINT(gaia.ra, gaia.dec), 
      +                   POLYGON({point_list}))
      +  AND 1 = CONTAINS(POINT(gaia.pmra, gaia.pmdec),
      +                   POLYGON({pm_point_list}))
      +"""
      +
      +columns = ', '.join(column_list)
      +
      +query7 = query7_base.format(columns=columns,
      +                            point_list=point_series['point_list'],
      +                            pm_point_list=point_series['pm_point_list'])
      +print(query7)
      +
      +
      +job = Gaia.launch_job_async(query=query7)
      +results = job.get_results()
      +results
       
      +
      +
      SELECT 
      +gaia.source_id, gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, best.best_neighbour_multiplicity, best.number_of_mates, ps.g_mean_psf_mag, ps.i_mean_psf_mag
      +FROM gaiadr2.gaia_source as gaia
      +JOIN gaiadr2.panstarrs1_best_neighbour as best
      +  ON gaia.source_id = best.source_id
      +JOIN gaiadr2.panstarrs1_original_valid as ps
      +  ON best.original_ext_source_id = ps.obj_id
      +WHERE parallax < 1
      +  AND bp_rp BETWEEN -0.75 AND 2 
      +  AND 1 = CONTAINS(POINT(gaia.ra, gaia.dec), 
      +                   POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))
      +  AND 1 = CONTAINS(POINT(gaia.pmra, gaia.pmdec),
      +                   POLYGON( -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176))
      +
      +INFO: Query finished. [astroquery.utils.tap.core]
      +
      +
      +
      Table length=3725 + + + + + + + + + + + + + + + + + + + + + + + + +
      source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_mag
      degdegmas / yrmas / yrmag
      int64float64float64float64float64int16int16float64float64
      635860218726658176138.518706521717319.09233926905897-5.941679495793577-11.3464091298763921017.897800445556617.5174007415771
      635674126383965568138.842874102638619.031798198627634-3.8970011609340207-12.7027795253896341019.287300109863317.6781005859375
      635535454774983040137.837751825543618.864006786112604-4.335040664412791-14.4923086049056521016.923799514770516.478099822998
      635497276810313600138.044516021375919.00947118796605-7.1729306406216615-12.2914991698159871019.924200057983418.3339996337891
      635614168640132864139.5921974814583618.807955539071433-3.309602916796381-13.7089049084786311016.151599884033214.6662998199463
      635598607974369792139.2092002308950818.624132868942702-6.124445176881091-12.8338240271006111016.522399902343816.1375007629395
      635737661835496576139.9332755247393419.167962454651423-7.119403303682826-12.6879474976337931014.503299713134813.9849004745483
      635850945892748672139.8654288847211520.011312663154804-3.786655365804428-14.284156007182061016.517499923706116.0450000762939
      635600532119713664139.2286994961681618.685939084485494-3.9742788217925122-12.3424266233842451020.450599670410219.5177001953125
      ...........................
      612241781249124608134.375583506519418.129179169751275-2.831807894848964-13.9021185736135971020.234399795532218.6518001556396
      612332147361443072134.1458472136365318.45685585044513-6.234287981021865-11.5004641956950721021.384899139404320.3076000213623
      612426744016802432134.6852280506107618.77090626983678-3.7691372464459554-12.8891674931188621017.828100204467817.4281005859375
      612331739340341760134.1217619690225418.42768872157865-3.9894012386388735-12.605044105074411021.865699768066419.5223007202148
      612282738058264960134.044576818923518.11915820167003-2.5972485319419127-13.6517409292721871022.515199661254919.9743995666504
      612386332668697600135.4570104832309318.63266345155342-5.07684899854408-12.4366413047866721019.379299163818417.9923000335693
      612296172717818624133.8006028696066818.08186533343457-6.112792578821885-12.507508613704021017.494400024414116.926700592041
      612250375480101760134.6475471246677418.122419425065015-2.8969262278467127-14.0616763538454871015.333000183105514.6280002593994
      612394926899159168135.5199706001384418.817675531233004-3.9968965218753763-13.5268210994315331016.441400527954115.8212003707886
      612256418500423168134.9075297273992418.280596648172743-6.109836304219565-12.1452123311657761020.871599197387719.9612007141113
      @@ -790,6 +1239,35 @@ Format the query base using the column names in +
      <MaskedColumn name='best_neighbour_multiplicity' dtype='int16' description='Number of neighbours with same probability as best neighbour' length=3725> + + + + + + + + + + + + + + + + + + + + + + + + + + +
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      ...
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1

      It looks like most of the values are 1, which is good; that means that for each candidate star we have identified exactly one source in Pan-STARRS that is likely to be the same star.

      To check whether there are any values other than 1, we can convert this column to a Pandas Series and use describe, which we saw in in Lesson 3.

      @@ -802,6 +1280,19 @@ Format the query base using the column names in +
      count    3725.0
      +mean        1.0
      +std         0.0
      +min         1.0
      +25%         1.0
      +50%         1.0
      +75%         1.0
      +max         1.0
      +dtype: float64
      +
      +
      +

      In fact, 1 is the only value in the Series, so every candidate star has a single best match.

      Similarly, number_of_mates indicates the number of other stars in Gaia that match with the same star in Pan-STARRS.

      @@ -812,6 +1303,19 @@ Format the query base using the column names in +
      count    3725.0
      +mean        0.0
      +std         0.0
      +min         0.0
      +25%         0.0
      +50%         0.0
      +75%         0.0
      +max         0.0
      +dtype: float64
      +
      +
      +

      All values in this column are 0, which means that for each match we found in Pan-STARRS, there are no other stars in Gaia that also match.

      Detail: The table also contains number_of_neighbors which is the number of stars in Pan-STARRS that match in terms of position, before using other criteria to choose the most likely match. But we are more interested in the final match, using both criteria.

      @@ -877,6 +1381,9 @@ Format the query base using the column names in +_images/05_join_72_0.png +

      The result is similar to what we saw in the previous lesson, except that have fewer stars now, because we did not find photometry data for all of the candidate sources.

      @@ -903,6 +1410,11 @@ The HDF file should already exist, so we’ll add +
      3.5835609436035156
      +
      +
      +
      @@ -933,6 +1445,11 @@ We won’t cover all of them, but one other important one is +
      0.7606849670410156
      +
      +
      +

      We can see the first few lines like this:

      The CSV file contains the names of the columns, but not the data types.

      We can read the CSV file back like this:

      @@ -969,6 +1495,92 @@ We won’t cover all of them, but one other important one is
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_magphi1phi2pm_phi1pm_phi2
      0635860218726658176138.51870719.092339-5.941679-11.3464091017.897817.517401-59.247330-2.016078-7.5271261.748779
      1635674126383965568138.84287419.031798-3.897001-12.7027801019.287317.678101-59.133391-2.306901-7.560608-0.741800
      2635535454774983040137.83775218.864007-4.335041-14.4923091016.923816.478100-59.785300-1.594569-9.357536-1.218492
      +

      Notice that the index in candidate_df has become an unnamed column in read_back_csv. The Pandas functions for writing and reading CSV files provide options to avoid that problem, but this is an example of the kind of thing that can go wrong with CSV files.

      diff --git a/06_photo.html b/06_photo.html index 57657ec..af4b435 100644 --- a/06_photo.html +++ b/06_photo.html @@ -412,6 +412,9 @@ The input can be an Astropy +
      +_images/06_photo_12_0.png +

      Our figure does not look exactly like the one in the paper because we are working with a smaller region of the sky, so we don’t have as many stars. But we can see an overdense region in the lower left that contains stars with the photometry we expect for GD-1.

      In the next section we’ll use an isochrone to specify a polygon that contains this overdense regioin.

      @@ -456,6 +459,11 @@ The input can be an Astropy +
      +
      Reading in: MIST_iso_5fd2532653c27.iso.cmd
      +
      +
      +

      The result is an ISOCMD object.

      @@ -464,6 +472,11 @@ The input can be an Astropy
      +
      +
      read_mist_models.ISOCMD
      +
      +
      +

      It contains a list of arrays, one for each isochrone.

      @@ -472,6 +485,11 @@ The input can be an Astropy
      +
      +
      list
      +
      +
      +

      We only got one isochrone.

      @@ -480,6 +498,11 @@ The input can be an Astropy
      +
      +
      1
      +
      +
      +

      So we can select it like this:

      @@ -496,6 +519,11 @@ The input can be an Astropy
      +
      +
      numpy.ndarray
      +
      +
      +

      But it’s an unusual NumPy array, because it contains names for the columns.

      @@ -504,6 +532,11 @@ The input can be an Astropy
      +
      +
      dtype([('EEP', '<i4'), ('isochrone_age_yr', '<f8'), ('initial_mass', '<f8'), ('star_mass', '<f8'), ('log_Teff', '<f8'), ('log_g', '<f8'), ('log_L', '<f8'), ('[Fe/H]_init', '<f8'), ('[Fe/H]', '<f8'), ('PS_g', '<f8'), ('PS_r', '<f8'), ('PS_i', '<f8'), ('PS_z', '<f8'), ('PS_y', '<f8'), ('PS_w', '<f8'), ('PS_open', '<f8'), ('phase', '<f8')])
      +
      +
      +

      Which means we can select columns using the bracket operator:

      @@ -512,6 +545,11 @@ The input can be an Astropy
      +
      +
      array([0., 0., 0., ..., 6., 6., 6.])
      +
      +
      +

      We can use phase to select the part of the isochrone for stars in the main sequence and red giant phases.

      @@ -521,6 +559,11 @@ The input can be an Astropy
      +
      +
      354
      +
      +
      +
      @@ -529,6 +572,11 @@ The input can be an Astropy
      +
      +
      354
      +
      +
      +

      The other two columns we’ll use are PS_g and PS_i, which contain simulated photometry data for stars with the given age and metallicity, based on a model of the Pan-STARRS sensors.

      We’ll use these columns to superimpose the isochrone on the color-magnitude diagram, but first we have to use a distance modulus to scale the isochrone based on the estimated distance of GD-1.

      @@ -544,6 +592,11 @@ The input can be an Astropy +
      +
      14.4604730134524
      +
      +
      +

      Now we can compute the scaled magnitude and color of the isochrone.

      @@ -562,6 +615,9 @@ The input can be an Astropy
      +
      +_images/06_photo_42_0.png +

      The theoretical isochrone passes through the overdense region where we expect to find stars in GD-1.

      Let’s save this result so we can reload it later without repeating the steps in this section.

      @@ -578,6 +634,58 @@ The input can be an Astropy +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      mag_gcolor_g_i
      028.2947432.195021
      128.1897182.166076
      228.0517612.129312
      327.9161942.093721
      427.7800242.058585
      +

      And then save it.

      @@ -609,6 +717,58 @@ The input can be an Astropy
      +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      mag_gcolor_g_i
      028.2947432.195021
      128.1897182.166076
      228.0517612.129312
      327.9161942.093721
      427.7800242.058585
      +

      Here’s what the isochrone looks like on the color-magnitude diagram.

      @@ -618,6 +778,9 @@ The input can be an Astropy
      +
      +_images/06_photo_52_0.png +

      In the bottom half of the figure, the isochrone passes through the overdense region where the stars are likely to belong to GD-1.

      In the top half, the isochrone passes through other regions where the stars have higher magnitude and metallicity than we expect for stars in GD-1.

      @@ -632,6 +795,11 @@ The input can be an Astropy +
      +
      117
      +
      +
      +

      We can use it to select the corresponding rows in iso_df:

      @@ -641,6 +809,58 @@ The input can be an Astropy
      +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      mag_gcolor_g_i
      9421.4117460.692171
      9521.3224660.670238
      9621.2333800.648449
      9721.1444270.626924
      9821.0545490.605461
      +

      Now, to select the stars in the overdense region, we have to define a polygon that includes stars near the isochrone.

      The original paper uses the following formulas to define the left and right boundaries.

      @@ -676,6 +896,9 @@ The input can be an Astropy +
      +_images/06_photo_62_0.png +
      @@ -711,6 +934,11 @@ The input can be an Astropy
      +
      +
      (234,)
      +
      +
      +

      And a corresponding loop with the elements of g in forward and reverse order.

      @@ -720,6 +948,11 @@ The input can be an Astropy
      +
      +
      (234,)
      +
      +
      +

      Here’s what the loop looks like.

      @@ -729,6 +962,9 @@ The input can be an Astropy
      +
      +_images/06_photo_70_0.png +

      To make a Polygon, it will be convenient to put color_loop and mag_loop into a DataFrame:

      @@ -740,6 +976,58 @@ The input can be an Astropy
      +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      color_loopmag_loop
      00.63217121.411746
      10.61023821.322466
      20.58844921.233380
      30.56692421.144427
      40.54546121.054549
      +

      Now we can pass loop_df to Polygon:

      @@ -751,6 +1039,11 @@ The input can be an Astropy
      +
      +
      <matplotlib.patches.Polygon at 0x7f439d33fdf0>
      +
      +
      +

      The result is a Polygon object , which provides contains_points, which figures out which points are inside the polygon.

      To test it, we’ll create a list with two points, one inside the polygon and one outside.

      @@ -770,6 +1063,11 @@ The input can be an Astropy +
      +
      array([ True, False])
      +
      +
      +

      The result is an array of Boolean values.

      We are almost ready to select stars whose photometry data falls in this polygon. But first we need to do some data cleaning.

      @@ -805,6 +1103,58 @@ We’ll put color and magnitude data from +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      colormag
      00.380417.8978
      11.609219.2873
      20.445716.9238
      31.590219.9242
      41.485316.1516
      +

      Which we can pass to contains_points:

      @@ -814,6 +1164,11 @@ We’ll put color and magnitude data from +
      array([False, False, False, ..., False, False, False])
      +
      +
      +

      The result is a Boolean array. We can use sum to see how many stars fall in the polygon.

      @@ -822,6 +1177,11 @@ We’ll put color and magnitude data from +
      454
      +
      +
      +

      Now we can use inside as a mask to select stars that fall inside the polygon.

      @@ -844,6 +1204,9 @@ We’ll put color and magnitude data from +_images/06_photo_91_0.png +

      It looks like the selected stars are, in fact, inside the polygon, which means they have photometry data consistent with GD-1.

      Finally, we can plot the coordinates of the selected stars:

      @@ -862,6 +1225,9 @@ We’ll put color and magnitude data from +_images/06_photo_93_0.png +

      This example includes two new Matplotlib commands:

        @@ -890,6 +1256,11 @@ We’ll put color and magnitude data from +
        3.6441001892089844
        +
        +
        +
        diff --git a/07_plot.html b/07_plot.html index 80e445f..00f906f 100644 --- a/07_plot.html +++ b/07_plot.html @@ -406,7 +406,36 @@
        -
        # Solution goes here
        +
        # Solution
        +
        +# Some topics that might come up in this discussion:
        +
        +# 1. The primary result is that the multiple stages of selection 
        +# make it possible to separate likely candidates from the 
        +# background more effectively than in previous work, which makes 
        +# it possible to see the structure of GD-1 in "unprecedented detail".
        +
        +# 2. The figure documents the selection process as a sequence of 
        +# steps.  Reading right-to-left, top-to-bottom, we see selection 
        +# based on proper motion, the results of the first selection, 
        +# selection based on color and magnitude, and the results of the 
        +# second selection.  So this figure documents the methodology and 
        +# presents the primary result.
        +
        +# 3. It's mostly black and white, with minimal use of color, so 
        +# it will work well in print.  The annotations in the bottom 
        +# left panel guide the reader to the most important results.  
        +# It contains enough technical detail for a professional audience, 
        +# but most of it is also comprehensible to a more general audience.  
        +# The two left panels have the same dimensions and their axes are 
        +# aligned.
        +
        +# 4. Since the panels represent a sequence, it might be better to 
        +# arrange them left-to-right.  The placement and size of the axis 
        +# labels could be tweaked.  The entire figure could be a little 
        +# bigger to match the width and proportion of the caption.  
        +# The top left panel has unnused white space (but that leaves 
        +# space for the annotations in the bottom left).
         
        @@ -471,6 +500,9 @@
        +
        +_images/07_plot_13_0.png +
        @@ -492,7 +524,23 @@

        And here is some additional information about text and arrows.

        -
        # Solution goes here
        +
        # Solution
        +
        +# plt.axvline(-55, ls='--', color='gray', 
        +#             alpha=0.4, dashes=(6,4), lw=2)
        +# plt.text(-60, 5.5, 'Previously\nundetected', 
        +#          fontsize='small', ha='right', va='top');
        +
        +# arrowprops=dict(color='gray', shrink=0.05, width=1.5, 
        +#                 headwidth=6, headlength=8, alpha=0.4)
        +
        +# plt.annotate('Spur', xy=(-33, 2), xytext=(-35, 5.5),
        +#              arrowprops=arrowprops,
        +#              fontsize='small')
        +
        +# plt.annotate('Gap', xy=(-22, -1), xytext=(-25, -5.5),
        +#              arrowprops=arrowprops,
        +#              fontsize='small')
         
        @@ -519,7 +567,9 @@

        Read the documentation of tick_params and use it to put ticks on the top and right sides of the axes.

        -
        # Solution goes here
        +
        # Solution
        +
        +# plt.gca().tick_params(top=True, right=True)
         
        @@ -536,6 +586,11 @@
        +
        +
        10.0
        +
        +
        +

        And sets it to a new value:

        @@ -560,6 +615,36 @@
        +
        +
        ['Solarize_Light2',
        + '_classic_test_patch',
        + 'bmh',
        + 'classic',
        + 'dark_background',
        + 'fast',
        + 'fivethirtyeight',
        + 'ggplot',
        + 'grayscale',
        + 'seaborn',
        + 'seaborn-bright',
        + 'seaborn-colorblind',
        + 'seaborn-dark',
        + 'seaborn-dark-palette',
        + 'seaborn-darkgrid',
        + 'seaborn-deep',
        + 'seaborn-muted',
        + 'seaborn-notebook',
        + 'seaborn-paper',
        + 'seaborn-pastel',
        + 'seaborn-poster',
        + 'seaborn-talk',
        + 'seaborn-ticks',
        + 'seaborn-white',
        + 'seaborn-whitegrid',
        + 'tableau-colorblind10']
        +
        +
        +

        Note that seaborn-paper, seaborn-talk and seaborn-poster are particularly intended to prepare versions of a figure with text sizes and other features that work well in papers, talks, and posters.

        To use any of these style sheets, run plt.style.use like this:

        @@ -674,6 +759,14 @@ +
        +
        array([[-8.9, -2.2],
        +       [-8.9,  1. ],
        +       [-6.9,  1. ],
        +       [-6.9, -2.2]])
        +
        +
        +

        The following function takes a DataFrame as a parameter, plots the proper motion for each star, and adds a shaded Polygon to show the region we selected.

        @@ -707,6 +800,9 @@
        +
        +_images/07_plot_53_0.png +
        @@ -745,6 +841,9 @@
        +
        +_images/07_plot_59_0.png +
        @@ -781,6 +880,9 @@
        +
        +_images/07_plot_63_0.png +

        And here’s how we read it back.

        @@ -791,6 +893,58 @@
        +
        +
        + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
        color_loopmag_loop
        00.63217121.411746
        10.61023821.322466
        20.58844921.233380
        30.56692421.144427
        40.54546121.054549
        +

        Exercise

        @@ -798,7 +952,11 @@

        Hint: pass coords as an argument to Polygon and plot it using add_patch.

        -
        # Solution goes here
        +
        # Solution
        +
        +# poly = Polygon(loop_df, closed=True, 
        +#                facecolor='C1', alpha=0.4)
        +# plt.gca().add_patch(poly)
         
        @@ -837,6 +995,9 @@
        +
        +_images/07_plot_69_0.png +

        We use plt.tight_layout at the end, which adjusts the sizes of the panels to make sure the titles and axis labels don’t overlap.

        As an exercise, see what happens if you leave out tight_layout.

        @@ -872,6 +1033,9 @@ +
        +_images/07_plot_72_0.png +

        This is looking more and more like the figure in the paper.

        @@ -879,7 +1043,27 @@

        In this example, the ratio of the widths of the panels is 3:1. How would you adjust it if you wanted the ratio to be 3:2?

        -
        # Solution goes here
        +
        # Solution
        +
        +# plt.figure(figsize=(9, 4.5))
        +
        +# shape = (2, 5)                                   # CHANGED
        +# plt.subplot2grid(shape, (0, 0), colspan=3)
        +# plot_first_selection(candidate_df)
        +
        +# plt.subplot2grid(shape, (0, 3), colspan=2)       # CHANGED
        +# plot_proper_motion(centerline_df)
        +
        +# plt.subplot2grid(shape, (1, 0), colspan=3)
        +# plot_second_selection(winner_df)
        +
        +# plt.subplot2grid(shape, (1, 3), colspan=2)       # CHANGED
        +# plot_cmd(candidate_df)
        +# poly = Polygon(coords, closed=True, 
        +#                facecolor='C1', alpha=0.4)
        +# plt.gca().add_patch(poly)
        +
        +# plt.tight_layout()
         
        diff --git a/_images/04_select_16_0.png b/_images/04_select_16_0.png new file mode 100644 index 0000000..42dcc0e Binary files /dev/null and b/_images/04_select_16_0.png differ diff --git a/_images/04_select_18_0.png b/_images/04_select_18_0.png new file mode 100644 index 0000000..24ad978 Binary files /dev/null and b/_images/04_select_18_0.png differ diff --git a/_images/04_select_31_0.png b/_images/04_select_31_0.png index da56759..b5d726e 100644 Binary files a/_images/04_select_31_0.png and b/_images/04_select_31_0.png differ diff --git a/_images/04_select_68_0.png b/_images/04_select_68_0.png index 568ba8a..602d5db 100644 Binary files a/_images/04_select_68_0.png and b/_images/04_select_68_0.png differ diff --git a/_images/04_select_74_0.png b/_images/04_select_74_0.png new file mode 100644 index 0000000..568ba8a Binary files /dev/null and b/_images/04_select_74_0.png differ diff --git a/_images/05_join_72_0.png b/_images/05_join_72_0.png new file mode 100644 index 0000000..f5c505e Binary files /dev/null and b/_images/05_join_72_0.png differ diff --git a/_images/06_photo_12_0.png b/_images/06_photo_12_0.png new file mode 100644 index 0000000..4a85c8b Binary files /dev/null and b/_images/06_photo_12_0.png differ diff --git a/_images/06_photo_42_0.png b/_images/06_photo_42_0.png new file mode 100644 index 0000000..30507f5 Binary files /dev/null and b/_images/06_photo_42_0.png differ diff --git a/_images/06_photo_52_0.png b/_images/06_photo_52_0.png new file mode 100644 index 0000000..30507f5 Binary files /dev/null and b/_images/06_photo_52_0.png differ diff --git a/_images/06_photo_62_0.png b/_images/06_photo_62_0.png new file mode 100644 index 0000000..09ec3b3 Binary files /dev/null and b/_images/06_photo_62_0.png differ diff --git a/_images/06_photo_70_0.png b/_images/06_photo_70_0.png new file mode 100644 index 0000000..a30ee1e Binary files /dev/null and b/_images/06_photo_70_0.png differ diff --git a/_images/06_photo_91_0.png b/_images/06_photo_91_0.png new file mode 100644 index 0000000..0e0b570 Binary files /dev/null and b/_images/06_photo_91_0.png differ diff --git a/_images/06_photo_93_0.png b/_images/06_photo_93_0.png new file mode 100644 index 0000000..b905958 Binary files /dev/null and b/_images/06_photo_93_0.png differ diff --git a/_images/07_plot_13_0.png b/_images/07_plot_13_0.png new file mode 100644 index 0000000..375bd7e Binary files /dev/null and b/_images/07_plot_13_0.png differ diff --git a/_images/07_plot_53_0.png b/_images/07_plot_53_0.png new file mode 100644 index 0000000..67063c8 Binary files /dev/null and b/_images/07_plot_53_0.png differ diff --git a/_images/07_plot_59_0.png b/_images/07_plot_59_0.png new file mode 100644 index 0000000..c023b6b Binary files /dev/null and b/_images/07_plot_59_0.png differ diff --git a/_images/07_plot_63_0.png b/_images/07_plot_63_0.png new file mode 100644 index 0000000..d049329 Binary files /dev/null and b/_images/07_plot_63_0.png differ diff --git a/_images/07_plot_69_0.png b/_images/07_plot_69_0.png new file mode 100644 index 0000000..d2feb62 Binary files /dev/null and b/_images/07_plot_69_0.png differ diff --git a/_images/07_plot_72_0.png b/_images/07_plot_72_0.png new file mode 100644 index 0000000..72e24cf Binary files /dev/null and b/_images/07_plot_72_0.png differ diff --git a/_sources/01_query.ipynb b/_sources/01_query.ipynb index 7605cde..75aaac9 100644 --- a/_sources/01_query.ipynb +++ b/_sources/01_query.ipynb @@ -1,5 +1,48 @@ { "cells": [ + { + "cell_type": "raw", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "title: \"Basic queries\"\n", + "teaching: 3000\n", + "exercises: 0\n", + "questions:\n", + "- \"How can we select and download the data we want from the Gaia server?\"\n", + "\n", + "objectives:\n", + "- \"Compose a basic query in ADQL/SQL.\"\n", + "- \"Use queries to explore a database and its tables.\"\n", + "- \"Use queries to download data.\"\n", + "- \"Develop, test, and debug a query incrementally.\"\n", + "keypoints:\n", + "- \"If you can't download an entire dataset (or it's not practical) use queries to select the data you need.\"\n", + "\n", + "- \"Read the metadata and the documentation to make sure you understand the tables, their columns, and what they mean.\"\n", + "\n", + "- \"Develop queries incrementally: start with something simple, test it, and add a little bit at a time.\"\n", + "\n", + "- \"Use ADQL features like `TOP` and `COUNT` to test before you run a query that might return a lot of data.\"\n", + "\n", + "- \"If you know your query will return fewer than 3000 rows, you can \n", + "run it synchronously, which might complete faster (but it doesn't seem to make much difference). If it might return more than 3000 rows, you should run it asynchronously.\"\n", + "\n", + "- \"ADQL and SQL are not case-sensitive, so you don't have to \n", + "capitalize the keywords, but you should.\"\n", + "\n", + "- \"ADQL and SQL don't require you to break a query into multiple \n", + "lines, but you should.\"\n", + "\n", + "---\n", + "\n", + "{% include links.md %}\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -90,7 +133,9 @@ { "cell_type": "markdown", "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "source": [ "## Installing libraries\n", @@ -104,7 +149,9 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "outputs": [], "source": [ @@ -133,7 +180,24 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Created TAP+ (v1.2.1) - Connection:\n", + "\tHost: gea.esac.esa.int\n", + "\tUse HTTPS: True\n", + "\tPort: 443\n", + "\tSSL Port: 443\n", + "Created TAP+ (v1.2.1) - Connection:\n", + "\tHost: geadata.esac.esa.int\n", + "\tUse HTTPS: True\n", + "\tPort: 443\n", + "\tSSL Port: 443\n" + ] + } + ], "source": [ "from astroquery.gaia import Gaia" ] @@ -164,7 +228,17 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Retrieving tables... [astroquery.utils.tap.core]\n", + "INFO: Parsing tables... [astroquery.utils.tap.core]\n", + "INFO: Done. [astroquery.utils.tap.core]\n" + ] + } + ], "source": [ "tables = Gaia.load_tables(only_names=True)" ] @@ -180,9 +254,153 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "tags": [] + "tags": [ + "hide-output", + "truncate-output" + ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "external.apassdr9\n", + "external.gaiadr2_geometric_distance\n", + "external.gaiaedr3_distance\n", + "external.galex_ais\n", + "external.ravedr5_com\n", + "external.ravedr5_dr5\n", + "external.ravedr5_gra\n", + "external.ravedr5_on\n", + "external.sdssdr13_photoprimary\n", + "external.skymapperdr1_master\n", + "external.skymapperdr2_master\n", + "external.tmass_xsc\n", + "public.hipparcos\n", + "public.hipparcos_newreduction\n", + "public.hubble_sc\n", + "public.igsl_source\n", + "public.igsl_source_catalog_ids\n", + "public.tycho2\n", + "public.dual\n", + "tap_config.coord_sys\n", + "tap_config.properties\n", + "tap_schema.columns\n", + "tap_schema.key_columns\n", + "tap_schema.keys\n", + "tap_schema.schemas\n", + "tap_schema.tables\n", + "gaiaedr3.gaia_source\n", + "gaiaedr3.agn_cross_id\n", + "gaiaedr3.commanded_scan_law\n", + "gaiaedr3.dr2_neighbourhood\n", + "gaiaedr3.frame_rotator_source\n", + "gaiaedr3.allwise_best_neighbour\n", + "gaiaedr3.allwise_neighbourhood\n", + "gaiaedr3.apassdr9_best_neighbour\n", + "gaiaedr3.apassdr9_join\n", + "gaiaedr3.apassdr9_neighbourhood\n", + "gaiaedr3.gsc23_best_neighbour\n", + "gaiaedr3.gsc23_join\n", + "gaiaedr3.gsc23_neighbourhood\n", + "gaiaedr3.hipparcos2_best_neighbour\n", + "gaiaedr3.hipparcos2_neighbourhood\n", + "gaiaedr3.panstarrs1_best_neighbour\n", + "gaiaedr3.panstarrs1_join\n", + "gaiaedr3.panstarrs1_neighbourhood\n", + "gaiaedr3.ravedr5_best_neighbour\n", + "gaiaedr3.ravedr5_join\n", + "gaiaedr3.ravedr5_neighbourhood\n", + "gaiaedr3.sdssdr13_best_neighbour\n", + "gaiaedr3.sdssdr13_join\n", + "gaiaedr3.sdssdr13_neighbourhood\n", + "gaiaedr3.skymapperdr2_best_neighbour\n", + "gaiaedr3.skymapperdr2_join\n", + "gaiaedr3.skymapperdr2_neighbourhood\n", + "gaiaedr3.tmass_psc_xsc_best_neighbour\n", + "gaiaedr3.tmass_psc_xsc_join\n", + "gaiaedr3.tmass_psc_xsc_neighbourhood\n", + "gaiaedr3.tycho2tdsc_merge_best_neighbour\n", + "gaiaedr3.tycho2tdsc_merge_neighbourhood\n", + "gaiaedr3.urat1_best_neighbour\n", + "gaiaedr3.urat1_neighbourhood\n", + "gaiaedr3.gaia_source_simulation\n", + "gaiaedr3.gaia_universe_model\n", + "gaiaedr3.tycho2tdsc_merge\n", + "gaiadr1.aux_qso_icrf2_match\n", + "gaiadr1.ext_phot_zero_point\n", + "gaiadr1.allwise_best_neighbour\n", + "gaiadr1.allwise_neighbourhood\n", + "gaiadr1.gsc23_best_neighbour\n", + "gaiadr1.gsc23_neighbourhood\n", + "gaiadr1.ppmxl_best_neighbour\n", + "gaiadr1.ppmxl_neighbourhood\n", + "gaiadr1.sdss_dr9_best_neighbour\n", + "gaiadr1.sdss_dr9_neighbourhood\n", + "gaiadr1.tmass_best_neighbour\n", + "gaiadr1.tmass_neighbourhood\n", + "gaiadr1.ucac4_best_neighbour\n", + "gaiadr1.ucac4_neighbourhood\n", + "gaiadr1.urat1_best_neighbour\n", + "gaiadr1.urat1_neighbourhood\n", + "gaiadr1.cepheid\n", + "gaiadr1.phot_variable_time_series_gfov\n", + "gaiadr1.phot_variable_time_series_gfov_statistical_parameters\n", + "gaiadr1.rrlyrae\n", + "gaiadr1.variable_summary\n", + "gaiadr1.allwise_original_valid\n", + "gaiadr1.gsc23_original_valid\n", + "gaiadr1.ppmxl_original_valid\n", + "gaiadr1.sdssdr9_original_valid\n", + "gaiadr1.tmass_original_valid\n", + "gaiadr1.ucac4_original_valid\n", + "gaiadr1.urat1_original_valid\n", + "gaiadr1.gaia_source\n", + "gaiadr1.tgas_source\n", + "gaiadr2.aux_allwise_agn_gdr2_cross_id\n", + "gaiadr2.aux_iers_gdr2_cross_id\n", + "gaiadr2.aux_sso_orbit_residuals\n", + "gaiadr2.aux_sso_orbits\n", + "gaiadr2.dr1_neighbourhood\n", + "gaiadr2.allwise_best_neighbour\n", + "gaiadr2.allwise_neighbourhood\n", + "gaiadr2.apassdr9_best_neighbour\n", + "gaiadr2.apassdr9_neighbourhood\n", + "gaiadr2.gsc23_best_neighbour\n", + "gaiadr2.gsc23_neighbourhood\n", + "gaiadr2.hipparcos2_best_neighbour\n", + "gaiadr2.hipparcos2_neighbourhood\n", + "gaiadr2.panstarrs1_best_neighbour\n", + "gaiadr2.panstarrs1_neighbourhood\n", + "gaiadr2.ppmxl_best_neighbour\n", + "gaiadr2.ppmxl_neighbourhood\n", + "gaiadr2.ravedr5_best_neighbour\n", + "gaiadr2.ravedr5_neighbourhood\n", + "gaiadr2.sdssdr9_best_neighbour\n", + "gaiadr2.sdssdr9_neighbourhood\n", + "gaiadr2.tmass_best_neighbour\n", + "gaiadr2.tmass_neighbourhood\n", + "gaiadr2.tycho2_best_neighbour\n", + "gaiadr2.tycho2_neighbourhood\n", + "gaiadr2.urat1_best_neighbour\n", + "gaiadr2.urat1_neighbourhood\n", + "gaiadr2.sso_observation\n", + "gaiadr2.sso_source\n", + "gaiadr2.vari_cepheid\n", + "gaiadr2.vari_classifier_class_definition\n", + "gaiadr2.vari_classifier_definition\n", + "gaiadr2.vari_classifier_result\n", + "gaiadr2.vari_long_period_variable\n", + "gaiadr2.vari_rotation_modulation\n", + "gaiadr2.vari_rrlyrae\n", + "gaiadr2.vari_short_timescale\n", + "gaiadr2.vari_time_series_statistics\n", + "gaiadr2.panstarrs1_original_valid\n", + "gaiadr2.gaia_source\n", + "gaiadr2.ruwe\n" + ] + } + ], "source": [ "for table in tables:\n", " print(table.name)" @@ -207,7 +425,27 @@ "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Retrieving table 'gaiadr2.gaia_source'\n", + "Parsing table 'gaiadr2.gaia_source'...\n", + "Done.\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "meta = Gaia.load_table('gaiadr2.gaia_source')\n", "meta" @@ -226,7 +464,21 @@ "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TAP Table name: gaiadr2.gaiadr2.gaia_source\n", + "Description: This table has an entry for every Gaia observed source as listed in the\n", + "Main Database accumulating catalogue version from which the catalogue\n", + "release has been generated. It contains the basic source parameters,\n", + "that is only final data (no epoch data) and no spectra (neither final\n", + "nor epoch).\n", + "Num. columns: 96\n" + ] + } + ], "source": [ "print(meta)" ] @@ -244,9 +496,115 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "tags": [] + "tags": [ + "hide-output", + "truncate-output" + ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "solution_id\n", + "designation\n", + "source_id\n", + "random_index\n", + "ref_epoch\n", + "ra\n", + "ra_error\n", + "dec\n", + "dec_error\n", + "parallax\n", + "parallax_error\n", + "parallax_over_error\n", + "pmra\n", + "pmra_error\n", + "pmdec\n", + "pmdec_error\n", + "ra_dec_corr\n", + "ra_parallax_corr\n", + "ra_pmra_corr\n", + "ra_pmdec_corr\n", + "dec_parallax_corr\n", + "dec_pmra_corr\n", + "dec_pmdec_corr\n", + "parallax_pmra_corr\n", + "parallax_pmdec_corr\n", + "pmra_pmdec_corr\n", + "astrometric_n_obs_al\n", + "astrometric_n_obs_ac\n", + "astrometric_n_good_obs_al\n", + "astrometric_n_bad_obs_al\n", + "astrometric_gof_al\n", + "astrometric_chi2_al\n", + "astrometric_excess_noise\n", + "astrometric_excess_noise_sig\n", + "astrometric_params_solved\n", + "astrometric_primary_flag\n", + "astrometric_weight_al\n", + "astrometric_pseudo_colour\n", + "astrometric_pseudo_colour_error\n", + "mean_varpi_factor_al\n", + "astrometric_matched_observations\n", + "visibility_periods_used\n", + "astrometric_sigma5d_max\n", + "frame_rotator_object_type\n", + "matched_observations\n", + "duplicated_source\n", + "phot_g_n_obs\n", + "phot_g_mean_flux\n", + "phot_g_mean_flux_error\n", + "phot_g_mean_flux_over_error\n", + "phot_g_mean_mag\n", + "phot_bp_n_obs\n", + "phot_bp_mean_flux\n", + "phot_bp_mean_flux_error\n", + "phot_bp_mean_flux_over_error\n", + "phot_bp_mean_mag\n", + "phot_rp_n_obs\n", + "phot_rp_mean_flux\n", + "phot_rp_mean_flux_error\n", + "phot_rp_mean_flux_over_error\n", + "phot_rp_mean_mag\n", + "phot_bp_rp_excess_factor\n", + "phot_proc_mode\n", + "bp_rp\n", + "bp_g\n", + "g_rp\n", + "radial_velocity\n", + "radial_velocity_error\n", + "rv_nb_transits\n", + "rv_template_teff\n", + "rv_template_logg\n", + "rv_template_fe_h\n", + "phot_variable_flag\n", + "l\n", + "b\n", + "ecl_lon\n", + "ecl_lat\n", + "priam_flags\n", + "teff_val\n", + "teff_percentile_lower\n", + "teff_percentile_upper\n", + "a_g_val\n", + "a_g_percentile_lower\n", + "a_g_percentile_upper\n", + "e_bp_min_rp_val\n", + "e_bp_min_rp_percentile_lower\n", + "e_bp_min_rp_percentile_upper\n", + "flame_flags\n", + "radius_val\n", + "radius_percentile_lower\n", + "radius_percentile_upper\n", + "lum_val\n", + "lum_percentile_lower\n", + "lum_percentile_upper\n", + "datalink_url\n", + "epoch_photometry_url\n" + ] + } + ], "source": [ "for column in meta.columns:\n", " print(column.name)" @@ -279,9 +637,118 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Retrieving table 'gaiadr2.panstarrs1_original_valid'\n", + "Parsing table 'gaiadr2.panstarrs1_original_valid'...\n", + "Done.\n", + "TAP Table name: gaiadr2.gaiadr2.panstarrs1_original_valid\n", + "Description: The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is\n", + "a system for wide-field astronomical imaging developed and operated by\n", + "the Institute for Astronomy at the University of Hawaii. Pan-STARRS1\n", + "(PS1) is the first part of Pan-STARRS to be completed and is the basis\n", + "for Data Release 1 (DR1). The PS1 survey used a 1.8 meter telescope and\n", + "its 1.4 Gigapixel camera to image the sky in five broadband filters (g,\n", + "r, i, z, y).\n", + "\n", + "The current table contains a filtered subsample of the 10 723 304 629\n", + "entries listed in the original ObjectThin table.\n", + "We used only ObjectThin and MeanObject tables to extract\n", + "panstarrs1OriginalValid table, this means that objects detected only in\n", + "stack images are not included here. The main reason for us to avoid the\n", + "use of objects detected in stack images is that their astrometry is not\n", + "as good as the mean objects astrometry: “The stack positions (raStack,\n", + "decStack) have considerably larger systematic astrometric errors than\n", + "the mean epoch positions (raMean, decMean).” The astrometry for the\n", + "MeanObject positions uses Gaia DR1 as a reference catalog, while the\n", + "stack positions use 2MASS as a reference catalog.\n", + "\n", + "In details, we filtered out all objects where:\n", + "\n", + "- nDetections = 1\n", + "\n", + "- no good quality data in Pan-STARRS, objInfoFlag 33554432 not set\n", + "\n", + "- mean astrometry could not be measured, objInfoFlag 524288 set\n", + "\n", + "- stack position used for mean astrometry, objInfoFlag 1048576 set\n", + "\n", + "- error on all magnitudes equal to 0 or to -999;\n", + "\n", + "- all magnitudes set to -999;\n", + "\n", + "- error on RA or DEC greater than 1 arcsec.\n", + "\n", + "The number of objects in panstarrs1OriginalValid is 2 264 263 282.\n", + "\n", + "The panstarrs1OriginalValid table contains only a subset of the columns\n", + "available in the combined ObjectThin and MeanObject tables. A\n", + "description of the original ObjectThin and MeanObjects tables can be\n", + "found at:\n", + "https://outerspace.stsci.edu/display/PANSTARRS/PS1+Database+object+and+detection+tables\n", + "\n", + "Download:\n", + "http://mastweb.stsci.edu/ps1casjobs/home.aspx\n", + "Documentation:\n", + "https://outerspace.stsci.edu/display/PANSTARRS\n", + "http://pswww.ifa.hawaii.edu/pswww/\n", + "References:\n", + "The Pan-STARRS1 Surveys, Chambers, K.C., et al. 2016, arXiv:1612.05560\n", + "Pan-STARRS Data Processing System, Magnier, E. A., et al. 2016,\n", + "arXiv:1612.05240\n", + "Pan-STARRS Pixel Processing: Detrending, Warping, Stacking, Waters, C.\n", + "Z., et al. 2016, arXiv:1612.05245\n", + "Pan-STARRS Pixel Analysis: Source Detection and Characterization,\n", + "Magnier, E. A., et al. 2016, arXiv:1612.05244\n", + "Pan-STARRS Photometric and Astrometric Calibration, Magnier, E. A., et\n", + "al. 2016, arXiv:1612.05242\n", + "The Pan-STARRS1 Database and Data Products, Flewelling, H. A., et al.\n", + "2016, arXiv:1612.05243\n", + "\n", + "Catalogue curator:\n", + "SSDC - ASI Space Science Data Center\n", + "https://www.ssdc.asi.it/\n", + "Num. columns: 26\n", + "obj_name\n", + "obj_id\n", + "ra\n", + "dec\n", + "ra_error\n", + "dec_error\n", + "epoch_mean\n", + "g_mean_psf_mag\n", + "g_mean_psf_mag_error\n", + "g_flags\n", + "r_mean_psf_mag\n", + "r_mean_psf_mag_error\n", + "r_flags\n", + "i_mean_psf_mag\n", + "i_mean_psf_mag_error\n", + "i_flags\n", + "z_mean_psf_mag\n", + "z_mean_psf_mag_error\n", + "z_flags\n", + "y_mean_psf_mag\n", + "y_mean_psf_mag_error\n", + "y_flags\n", + "n_detections\n", + "zone_id\n", + "obj_info_flag\n", + "quality_flag\n" + ] + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "meta2 = Gaia.load_table('gaiadr2.panstarrs1_original_valid')\n", + "print(meta2)\n", + "\n", + "for column in meta2.columns:\n", + " print(column.name)" ] }, { @@ -342,7 +809,18 @@ "cell_type": "code", "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "job = Gaia.launch_job(query1)\n", "job" @@ -361,7 +839,26 @@ "cell_type": "code", "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " name dtype unit description n_bad\n", + "--------- ------- ---- ------------------------------------------------------------------ -----\n", + "source_id int64 Unique source identifier (unique within a particular Data Release) 0\n", + " ra float64 deg Right ascension 0\n", + " dec float64 deg Declination 0\n", + " parallax float64 mas Parallax 2\n", + "Jobid: None\n", + "Phase: COMPLETED\n", + "Owner: None\n", + "Output file: sync_20210315090602.xml.gz\n", + "Results: None\n" + ] + } + ], "source": [ "print(job)" ] @@ -379,7 +876,18 @@ "cell_type": "code", "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.table.table.Table" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "type(results)" @@ -411,7 +919,50 @@ "cell_type": "code", "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=10\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecparallax
        degdegmas
        int64float64float64float64
        5887983246081387776227.978818386372-53.649969624501031.0493172163332998
        5887971250213117952228.32280834041364-53.662707262037260.29455652682279093
        5887991866047288704228.1582047014091-53.454724911639794-0.5789179941669236
        5887968673232040832228.07420888099884-53.80646128959610.41030970779603076
        5887979844465854720228.42547805195946-53.48882284470035-0.23379683441525864
        5887978607515442688228.23831627636855-53.56328249482688-0.9252161956789068
        5887978298278520704228.26015640396173-53.607284412896476--
        5887995581231772928228.12871598211902-53.373625663608316-0.3325818206439385
        5887982043490374016227.985260087594-53.6834444990555750.02878111976456593
        5887982971205433856227.89884570686218-53.67430215342567--
        " + ], + "text/plain": [ + "\n", + " source_id ra dec parallax \n", + " deg deg mas \n", + " int64 float64 float64 float64 \n", + "------------------- ------------------ ------------------- --------------------\n", + "5887983246081387776 227.978818386372 -53.64996962450103 1.0493172163332998\n", + "5887971250213117952 228.32280834041364 -53.66270726203726 0.29455652682279093\n", + "5887991866047288704 228.1582047014091 -53.454724911639794 -0.5789179941669236\n", + "5887968673232040832 228.07420888099884 -53.8064612895961 0.41030970779603076\n", + "5887979844465854720 228.42547805195946 -53.48882284470035 -0.23379683441525864\n", + "5887978607515442688 228.23831627636855 -53.56328249482688 -0.9252161956789068\n", + "5887978298278520704 228.26015640396173 -53.607284412896476 --\n", + "5887995581231772928 228.12871598211902 -53.373625663608316 -0.3325818206439385\n", + "5887982043490374016 227.985260087594 -53.683444499055575 0.02878111976456593\n", + "5887982971205433856 227.89884570686218 -53.67430215342567 --" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results" ] @@ -446,7 +997,23 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# Let's add\n", + "#\n", + "# radial_velocity : Radial velocity (double, Velocity[km/s] )\n", + "#\n", + "# Spectroscopic radial velocity in the solar barycentric \n", + "# reference frame.\n", + "#\n", + "# The radial velocity provided is the median value of the \n", + "# radial velocity measurements at all epochs.\n", + "\n", + "query = \"\"\"SELECT \n", + "TOP 10\n", + "source_id, ra, dec, parallax, radial_velocity\n", + "FROM gaiadr2.gaia_source\n", + "\"\"\"" ] }, { @@ -501,7 +1068,25 @@ "cell_type": "code", "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "job = Gaia.launch_job_async(query2)\n", "job" @@ -518,7 +1103,50 @@ "cell_type": "code", "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=10\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecparallaxradial_velocity
        degdegmaskm / s
        int64float64float64float64float64
        5895270396817359872213.08433715252883-56.641047010056942.041947005434917--
        5895272561481374080213.2606587905109-56.550444015357150.15693467895110133--
        5895247410183786368213.38479712976664-56.97008551185148-0.19017525742552605--
        5895249226912448000213.41587389088238-56.849596577635786----
        5895261875598904576213.5508930114549-56.61037780154348-0.29471722363529257--
        5895258302187834624213.87631129557286-56.6785372590399060.6468437015289753--
        5895247444506644992213.33215109206796-56.9753477593809950.390215490234287--
        5895259470417635968213.78815034206346-56.645850474515940.953377710788918--
        5895264899260932352213.21521027193236-56.78420864489118----
        5895265925746051584213.17082359534547-56.745408851077540.2986918215101751--
        " + ], + "text/plain": [ + "\n", + " source_id ra ... parallax radial_velocity\n", + " deg ... mas km / s \n", + " int64 float64 ... float64 float64 \n", + "------------------- ------------------ ... -------------------- ---------------\n", + "5895270396817359872 213.08433715252883 ... 2.041947005434917 --\n", + "5895272561481374080 213.2606587905109 ... 0.15693467895110133 --\n", + "5895247410183786368 213.38479712976664 ... -0.19017525742552605 --\n", + "5895249226912448000 213.41587389088238 ... -- --\n", + "5895261875598904576 213.5508930114549 ... -0.29471722363529257 --\n", + "5895258302187834624 213.87631129557286 ... 0.6468437015289753 --\n", + "5895247444506644992 213.33215109206796 ... 0.390215490234287 --\n", + "5895259470417635968 213.78815034206346 ... 0.953377710788918 --\n", + "5895264899260932352 213.21521027193236 ... -- --\n", + "5895265925746051584 213.17082359534547 ... 0.2986918215101751 --" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -561,7 +1189,16 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# In this example, the WHERE clause is in the wrong place\n", + "\n", + "query = \"\"\"SELECT \n", + "TOP 3000\n", + "WHERE parallax < 1\n", + "source_id, ref_epoch, ra, dec, parallax\n", + "FROM gaiadr2.gaia_source\n", + "\"\"\"" ] }, { @@ -616,7 +1253,27 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# Here's a solution using > and < operators\n", + "\n", + "query = \"\"\"SELECT \n", + "TOP 10\n", + "source_id, ref_epoch, ra, dec, parallax\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1 \n", + " AND bp_rp > -0.75 AND bp_rp < 2\n", + "\"\"\"\n", + "\n", + "# And here's a solution using the BETWEEN operator\n", + "\n", + "query = \"\"\"SELECT \n", + "TOP 10\n", + "source_id, ref_epoch, ra, dec, parallax\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1 \n", + " AND bp_rp BETWEEN -0.75 AND 2\n", + "\"\"\"" ] }, { @@ -712,7 +1369,18 @@ "cell_type": "code", "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'SELECT \\nTOP 10 \\nsource_id, ra, dec, pmra, pmdec\\nFROM gaiadr2.gaia_source\\nWHERE parallax < 1\\n AND bp_rp BETWEEN -0.75 AND 2\\n'" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "query3" ] @@ -728,7 +1396,21 @@ "cell_type": "code", "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT \n", + "TOP 10 \n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2\n", + "\n" + ] + } + ], "source": [ "print(query3)" ] @@ -748,7 +1430,27 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "
        \n", + " name dtype unit description \n", + "--------- ------- -------- ------------------------------------------------------------------\n", + "source_id int64 Unique source identifier (unique within a particular Data Release)\n", + " ra float64 deg Right ascension\n", + " dec float64 deg Declination\n", + " pmra float64 mas / yr Proper motion in right ascension direction\n", + " pmdec float64 mas / yr Proper motion in declination direction\n", + "Jobid: None\n", + "Phase: COMPLETED\n", + "Owner: None\n", + "Output file: sync_20210315091929.xml.gz\n", + "Results: None\n" + ] + } + ], "source": [ "job = Gaia.launch_job(query3)\n", "print(job)" @@ -758,7 +1460,50 @@ "cell_type": "code", "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=10\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdec
        degdegmas / yrmas / yr
        int64float64float64float64float64
        5895272561481374080213.2606587905109-56.550444015357150.38944388983017151.2299266281737415
        5895261875598904576213.5508930114549-56.610377801543480.16203641364393007-4.672602679543312
        5895247444506644992213.33215109206796-56.975347759380995-7.474003156859284-3.538080792097856
        5895259470417635968213.78815034206346-56.64585047451594-5.287202255231853-0.8163762113468646
        5895265925746051584213.17082359534547-56.74540885107754-7.880749306158471-4.8585444120179595
        5895260913525974528213.66936020541976-56.66655190442016-4.7820929042428215-1.5566420086447643
        5895264212062283008213.7755742121852-56.51570859067397-6.657690998559842-1.7616494482071872
        5895253457497979136213.30929960610283-56.78849448744587-5.242106718924749-0.18655636353898095
        4143614130253524096269.1749117455479-18.534151399721172.61642745108048261.3244248889980894
        4065443904433108992273.26868565443743-24.421651815402857-1.663096652191022-2.6514745376067683
        " + ], + "text/plain": [ + "\n", + " source_id ra ... pmdec \n", + " deg ... mas / yr \n", + " int64 float64 ... float64 \n", + "------------------- ------------------ ... --------------------\n", + "5895272561481374080 213.2606587905109 ... 1.2299266281737415\n", + "5895261875598904576 213.5508930114549 ... -4.672602679543312\n", + "5895247444506644992 213.33215109206796 ... -3.538080792097856\n", + "5895259470417635968 213.78815034206346 ... -0.8163762113468646\n", + "5895265925746051584 213.17082359534547 ... -4.8585444120179595\n", + "5895260913525974528 213.66936020541976 ... -1.5566420086447643\n", + "5895264212062283008 213.7755742121852 ... -1.7616494482071872\n", + "5895253457497979136 213.30929960610283 ... -0.18655636353898095\n", + "4143614130253524096 269.1749117455479 ... 1.3244248889980894\n", + "4065443904433108992 273.26868565443743 ... -2.6514745376067683" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -790,9 +1535,35 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT \n", + "TOP 10\n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 0.5 AND \n", + "bp_rp BETWEEN -0.75 AND 2\n", + "\n" + ] + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "query_base = \"\"\"SELECT \n", + "TOP 10\n", + "{columns}\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < {max_parallax} AND \n", + "bp_rp BETWEEN -0.75 AND 2\n", + "\"\"\"\n", + "\n", + "query = query_base.format(columns=columns,\n", + " max_parallax=0.5)\n", + "print(query)" ] }, { diff --git a/_sources/02_coords.ipynb b/_sources/02_coords.ipynb index 79dd724..4e96db1 100644 --- a/_sources/02_coords.ipynb +++ b/_sources/02_coords.ipynb @@ -1,5 +1,44 @@ { "cells": [ + { + "cell_type": "raw", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "title: \"Coordinate Transformations\"\n", + "teaching: 3000\n", + "exercises: 0\n", + "questions:\n", + "\n", + "- \"How do we transform celestial coordinates from one frame to another and save results in files?\"\n", + "\n", + "objectives:\n", + "\n", + "- \"Use Python string formatting to compose more complex ADQL queries.\"\n", + "\n", + "- \"Work with coordinates and other quantities that have units.\"\n", + "\n", + "- \"Download the results of a query and store them in a file.\"\n", + "\n", + "keypoints:\n", + "\n", + "- \"For measurements with units, use `Quantity` objects that represent units explicitly and check for errors.\"\n", + "\n", + "- \"Use the `format` function to compose queries; it is often faster and less error-prone.\"\n", + "\n", + "- \"Develop queries incrementally: start with something simple, test it, and add a little bit at a time.\"\n", + "\n", + "- \"Once you have a query working, save the data in a local file. If you shut down the notebook and come back to it later, you can reload the file; you don't have to run the query again.\"\n", + "\n", + "---\n", + "\n", + "{% include links.md %}\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -43,7 +82,9 @@ { "cell_type": "markdown", "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "source": [ "## Installing libraries\n", @@ -57,7 +98,9 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "outputs": [], "source": [ @@ -110,7 +153,1018 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['A',\n", + " 'AA',\n", + " 'AB',\n", + " 'ABflux',\n", + " 'ABmag',\n", + " 'AU',\n", + " 'Angstrom',\n", + " 'B',\n", + " 'Ba',\n", + " 'Barye',\n", + " 'Bi',\n", + " 'Biot',\n", + " 'Bol',\n", + " 'Bq',\n", + " 'C',\n", + " 'Celsius',\n", + " 'Ci',\n", + " 'CompositeUnit',\n", + " 'D',\n", + " 'Da',\n", + " 'Dalton',\n", + " 'Debye',\n", + " 'Decibel',\n", + " 'DecibelUnit',\n", + " 'Dex',\n", + " 'DexUnit',\n", + " 'EA',\n", + " 'EAU',\n", + " 'EB',\n", + " 'EBa',\n", + " 'EC',\n", + " 'ED',\n", + " 'EF',\n", + " 'EG',\n", + " 'EGal',\n", + " 'EH',\n", + " 'EHz',\n", + " 'EJ',\n", + " 'EJy',\n", + " 'EK',\n", + " 'EL',\n", + " 'EN',\n", + " 'EOhm',\n", + " 'EP',\n", + " 'EPa',\n", + " 'ER',\n", + " 'ERy',\n", + " 'ES',\n", + " 'ESt',\n", + " 'ET',\n", + " 'EV',\n", + " 'EW',\n", + " 'EWb',\n", + " 'Ea',\n", + " 'Eadu',\n", + " 'Earcmin',\n", + " 'Earcsec',\n", + " 'Eau',\n", + " 'Eb',\n", + " 'Ebarn',\n", + " 'Ebeam',\n", + " 'Ebin',\n", + " 'Ebit',\n", + " 'Ebyte',\n", + " 'Ecd',\n", + " 'Echan',\n", + " 'Ecount',\n", + " 'Ect',\n", + " 'Ed',\n", + " 'Edeg',\n", + " 'Edyn',\n", + " 'EeV',\n", + " 'Eerg',\n", + " 'Eg',\n", + " 'Eh',\n", + " 'EiB',\n", + " 'Eib',\n", + " 'Eibit',\n", + " 'Eibyte',\n", + " 'Ek',\n", + " 'El',\n", + " 'Elm',\n", + " 'Elx',\n", + " 'Elyr',\n", + " 'Em',\n", + " 'Emag',\n", + " 'Emin',\n", + " 'Emol',\n", + " 'Eohm',\n", + " 'Epc',\n", + " 'Eph',\n", + " 'Ephoton',\n", + " 'Epix',\n", + " 'Epixel',\n", + " 'Erad',\n", + " 'Es',\n", + " 'Esr',\n", + " 'Eu',\n", + " 'Evox',\n", + " 'Evoxel',\n", + " 'Eyr',\n", + " 'F',\n", + " 'Farad',\n", + " 'Fr',\n", + " 'Franklin',\n", + " 'FunctionQuantity',\n", + " 'FunctionUnitBase',\n", + " 'G',\n", + " 'GA',\n", + " 'GAU',\n", + " 'GB',\n", + " 'GBa',\n", + " 'GC',\n", + " 'GD',\n", + " 'GF',\n", + " 'GG',\n", + " 'GGal',\n", + " 'GH',\n", + " 'GHz',\n", + " 'GJ',\n", + " 'GJy',\n", + " 'GK',\n", + " 'GL',\n", + " 'GN',\n", + " 'GOhm',\n", + " 'GP',\n", + " 'GPa',\n", + " 'GR',\n", + " 'GRy',\n", + " 'GS',\n", + " 'GSt',\n", + " 'GT',\n", + " 'GV',\n", + " 'GW',\n", + " 'GWb',\n", + " 'Ga',\n", + " 'Gadu',\n", + " 'Gal',\n", + " 'Garcmin',\n", + " 'Garcsec',\n", + " 'Gau',\n", + " 'Gauss',\n", + " 'Gb',\n", + " 'Gbarn',\n", + " 'Gbeam',\n", + " 'Gbin',\n", + " 'Gbit',\n", + " 'Gbyte',\n", + " 'Gcd',\n", + " 'Gchan',\n", + " 'Gcount',\n", + " 'Gct',\n", + " 'Gd',\n", + " 'Gdeg',\n", + " 'Gdyn',\n", + " 'GeV',\n", + " 'Gerg',\n", + " 'Gg',\n", + " 'Gh',\n", + " 'GiB',\n", + " 'Gib',\n", + " 'Gibit',\n", + " 'Gibyte',\n", + " 'Gk',\n", + " 'Gl',\n", + " 'Glm',\n", + " 'Glx',\n", + " 'Glyr',\n", + " 'Gm',\n", + " 'Gmag',\n", + " 'Gmin',\n", + " 'Gmol',\n", + " 'Gohm',\n", + " 'Gpc',\n", + " 'Gph',\n", + " 'Gphoton',\n", + " 'Gpix',\n", + " 'Gpixel',\n", + " 'Grad',\n", + " 'Gs',\n", + " 'Gsr',\n", + " 'Gu',\n", + " 'Gvox',\n", + " 'Gvoxel',\n", + " 'Gyr',\n", + " 'H',\n", + " 'Henry',\n", + " 'Hertz',\n", + " 'Hz',\n", + " 'IrreducibleUnit',\n", + " 'J',\n", + " 'Jansky',\n", + " 'Joule',\n", + " 'Jy',\n", + " 'K',\n", + " 'Kayser',\n", + " 'Kelvin',\n", + " 'KiB',\n", + " 'Kib',\n", + " 'Kibit',\n", + " 'Kibyte',\n", + " 'L',\n", + " 'L_bol',\n", + " 'L_sun',\n", + " 'LogQuantity',\n", + " 'LogUnit',\n", + " 'Lsun',\n", + " 'MA',\n", + " 'MAU',\n", + " 'MB',\n", + " 'MBa',\n", + " 'MC',\n", + " 'MD',\n", + " 'MF',\n", + " 'MG',\n", + " 'MGal',\n", + " 'MH',\n", + " 'MHz',\n", + " 'MJ',\n", + " 'MJy',\n", + " 'MK',\n", + " 'ML',\n", + " 'MN',\n", + " 'MOhm',\n", + " 'MP',\n", + " 'MPa',\n", + " 'MR',\n", + " 'MRy',\n", + " 'MS',\n", + " 'MSt',\n", + " 'MT',\n", + " 'MV',\n", + " 'MW',\n", + " 'MWb',\n", + " 'M_bol',\n", + " 'M_e',\n", + " 'M_earth',\n", + " 'M_jup',\n", + " 'M_jupiter',\n", + " 'M_p',\n", + " 'M_sun',\n", + " 'Ma',\n", + " 'Madu',\n", + " 'MagUnit',\n", + " 'Magnitude',\n", + " 'Marcmin',\n", + " 'Marcsec',\n", + " 'Mau',\n", + " 'Mb',\n", + " 'Mbarn',\n", + " 'Mbeam',\n", + " 'Mbin',\n", + " 'Mbit',\n", + " 'Mbyte',\n", + " 'Mcd',\n", + " 'Mchan',\n", + " 'Mcount',\n", + " 'Mct',\n", + " 'Md',\n", + " 'Mdeg',\n", + " 'Mdyn',\n", + " 'MeV',\n", + " 'Mearth',\n", + " 'Merg',\n", + " 'Mg',\n", + " 'Mh',\n", + " 'MiB',\n", + " 'Mib',\n", + " 'Mibit',\n", + " 'Mibyte',\n", + " 'Mjup',\n", + " 'Mjupiter',\n", + " 'Mk',\n", + " 'Ml',\n", + " 'Mlm',\n", + " 'Mlx',\n", + " 'Mlyr',\n", + " 'Mm',\n", + " 'Mmag',\n", + " 'Mmin',\n", + " 'Mmol',\n", + " 'Mohm',\n", + " 'Mpc',\n", + " 'Mph',\n", + " 'Mphoton',\n", + " 'Mpix',\n", + " 'Mpixel',\n", + " 'Mrad',\n", + " 'Ms',\n", + " 'Msr',\n", + " 'Msun',\n", + " 'Mu',\n", + " 'Mvox',\n", + " 'Mvoxel',\n", + " 'Myr',\n", + " 'N',\n", + " 'NamedUnit',\n", + " 'Newton',\n", + " 'Ohm',\n", + " 'P',\n", + " 'PA',\n", + " 'PAU',\n", + " 'PB',\n", + " 'PBa',\n", + " 'PC',\n", + " 'PD',\n", + " 'PF',\n", + " 'PG',\n", + " 'PGal',\n", + " 'PH',\n", + " 'PHz',\n", + " 'PJ',\n", + " 'PJy',\n", + " 'PK',\n", + " 'PL',\n", + " 'PN',\n", + " 'POhm',\n", + " 'PP',\n", + " 'PPa',\n", + " 'PR',\n", + " 'PRy',\n", + " 'PS',\n", + " 'PSt',\n", + " 'PT',\n", + " 'PV',\n", + " 'PW',\n", + " 'PWb',\n", + " 'Pa',\n", + " 'Padu',\n", + " 'Parcmin',\n", + " 'Parcsec',\n", + " 'Pascal',\n", + " 'Pau',\n", + " 'Pb',\n", + " 'Pbarn',\n", + " 'Pbeam',\n", + " 'Pbin',\n", + " 'Pbit',\n", + " 'Pbyte',\n", + " 'Pcd',\n", + " 'Pchan',\n", + " 'Pcount',\n", + " 'Pct',\n", + " 'Pd',\n", + " 'Pdeg',\n", + " 'Pdyn',\n", + " 'PeV',\n", + " 'Perg',\n", + " 'Pg',\n", + " 'Ph',\n", + " 'PiB',\n", + " 'Pib',\n", + " 'Pibit',\n", + " 'Pibyte',\n", + " 'Pk',\n", + " 'Pl',\n", + " 'Plm',\n", + " 'Plx',\n", + " 'Plyr',\n", + " 'Pm',\n", + " 'Pmag',\n", + " 'Pmin',\n", + " 'Pmol',\n", + " 'Pohm',\n", + " 'Ppc',\n", + " 'Pph',\n", + " 'Pphoton',\n", + " 'Ppix',\n", + " 'Ppixel',\n", + " 'Prad',\n", + " 'PrefixUnit',\n", + " 'Ps',\n", + " 'Psr',\n", + " 'Pu',\n", + " 'Pvox',\n", + " 'Pvoxel',\n", + " 'Pyr',\n", + " 'Quantity',\n", + " 'QuantityInfo',\n", + " 'QuantityInfoBase',\n", + " 'R',\n", + " 'R_earth',\n", + " 'R_jup',\n", + " 'R_jupiter',\n", + " 'R_sun',\n", + " 'Rayleigh',\n", + " 'Rearth',\n", + " 'Rjup',\n", + " 'Rjupiter',\n", + " 'Rsun',\n", + " 'Ry',\n", + " 'S',\n", + " 'ST',\n", + " 'STflux',\n", + " 'STmag',\n", + " 'Siemens',\n", + " 'SpecificTypeQuantity',\n", + " 'St',\n", + " 'Sun',\n", + " 'T',\n", + " 'TA',\n", + " 'TAU',\n", + " 'TB',\n", + " 'TBa',\n", + " 'TC',\n", + " 'TD',\n", + " 'TF',\n", + " 'TG',\n", + " 'TGal',\n", + " 'TH',\n", + " 'THz',\n", + " 'TJ',\n", + " 'TJy',\n", + " 'TK',\n", + " 'TL',\n", + " 'TN',\n", + " 'TOhm',\n", + " 'TP',\n", + " 'TPa',\n", + " 'TR',\n", + " 'TRy',\n", + " 'TS',\n", + " 'TSt',\n", + " 'TT',\n", + " 'TV',\n", + " 'TW',\n", + " 'TWb',\n", + " 'Ta',\n", + " 'Tadu',\n", + " 'Tarcmin',\n", + " 'Tarcsec',\n", + " 'Tau',\n", + " 'Tb',\n", + " 'Tbarn',\n", + " 'Tbeam',\n", + " 'Tbin',\n", + " 'Tbit',\n", + " 'Tbyte',\n", + " 'Tcd',\n", + " 'Tchan',\n", + " 'Tcount',\n", + " 'Tct',\n", + " 'Td',\n", + " 'Tdeg',\n", + " 'Tdyn',\n", + " 'TeV',\n", + " 'Terg',\n", + " 'Tesla',\n", + " 'Tg',\n", + " 'Th',\n", + " 'TiB',\n", + " 'Tib',\n", + " 'Tibit',\n", + " 'Tibyte',\n", + " 'Tk',\n", + " 'Tl',\n", + " 'Tlm',\n", + " 'Tlx',\n", + " 'Tlyr',\n", + " 'Tm',\n", + " 'Tmag',\n", + " 'Tmin',\n", + " 'Tmol',\n", + " 'Tohm',\n", + " 'Torr',\n", + " 'Tpc',\n", + " 'Tph',\n", + " 'Tphoton',\n", + " 'Tpix',\n", + " 'Tpixel',\n", + " 'Trad',\n", + " 'Ts',\n", + " 'Tsr',\n", + " 'Tu',\n", + " 'Tvox',\n", + " 'Tvoxel',\n", + " 'Tyr',\n", + " 'Unit',\n", + " 'UnitBase',\n", + " 'UnitConversionError',\n", + " 'UnitTypeError',\n", + " 'UnitsError',\n", + " 'UnitsWarning',\n", + " 'UnrecognizedUnit',\n", + " 'V',\n", + " 'Volt',\n", + " 'W',\n", + " 'Watt',\n", + " 'Wb',\n", + " 'Weber',\n", + " 'YA',\n", + " 'YAU',\n", + " 'YB',\n", + " 'YBa',\n", + " 'YC',\n", + " 'YD',\n", + " 'YF',\n", + " 'YG',\n", + " 'YGal',\n", + " 'YH',\n", + " 'YHz',\n", + " 'YJ',\n", + " 'YJy',\n", + " 'YK',\n", + " 'YL',\n", + " 'YN',\n", + " 'YOhm',\n", + " 'YP',\n", + " 'YPa',\n", + " 'YR',\n", + " 'YRy',\n", + " 'YS',\n", + " 'YSt',\n", + " 'YT',\n", + " 'YV',\n", + " 'YW',\n", + " 'YWb',\n", + " 'Ya',\n", + " 'Yadu',\n", + " 'Yarcmin',\n", + " 'Yarcsec',\n", + " 'Yau',\n", + " 'Yb',\n", + " 'Ybarn',\n", + " 'Ybeam',\n", + " 'Ybin',\n", + " 'Ybit',\n", + " 'Ybyte',\n", + " 'Ycd',\n", + " 'Ychan',\n", + " 'Ycount',\n", + " 'Yct',\n", + " 'Yd',\n", + " 'Ydeg',\n", + " 'Ydyn',\n", + " 'YeV',\n", + " 'Yerg',\n", + " 'Yg',\n", + " 'Yh',\n", + " 'Yk',\n", + " 'Yl',\n", + " 'Ylm',\n", + " 'Ylx',\n", + " 'Ylyr',\n", + " 'Ym',\n", + " 'Ymag',\n", + " 'Ymin',\n", + " 'Ymol',\n", + " 'Yohm',\n", + " 'Ypc',\n", + " 'Yph',\n", + " 'Yphoton',\n", + " 'Ypix',\n", + " 'Ypixel',\n", + " 'Yrad',\n", + " 'Ys',\n", + " 'Ysr',\n", + " 'Yu',\n", + " 'Yvox',\n", + " 'Yvoxel',\n", + " 'Yyr',\n", + " 'ZA',\n", + " 'ZAU',\n", + " 'ZB',\n", + " 'ZBa',\n", + " 'ZC',\n", + " 'ZD',\n", + " 'ZF',\n", + " 'ZG',\n", + " 'ZGal',\n", + " 'ZH',\n", + " 'ZHz',\n", + " 'ZJ',\n", + " 'ZJy',\n", + " 'ZK',\n", + " 'ZL',\n", + " 'ZN',\n", + " 'ZOhm',\n", + " 'ZP',\n", + " 'ZPa',\n", + " 'ZR',\n", + " 'ZRy',\n", + " 'ZS',\n", + " 'ZSt',\n", + " 'ZT',\n", + " 'ZV',\n", + " 'ZW',\n", + " 'ZWb',\n", + " 'Za',\n", + " 'Zadu',\n", + " 'Zarcmin',\n", + " 'Zarcsec',\n", + " 'Zau',\n", + " 'Zb',\n", + " 'Zbarn',\n", + " 'Zbeam',\n", + " 'Zbin',\n", + " 'Zbit',\n", + " 'Zbyte',\n", + " 'Zcd',\n", + " 'Zchan',\n", + " 'Zcount',\n", + " 'Zct',\n", + " 'Zd',\n", + " 'Zdeg',\n", + " 'Zdyn',\n", + " 'ZeV',\n", + " 'Zerg',\n", + " 'Zg',\n", + " 'Zh',\n", + " 'Zk',\n", + " 'Zl',\n", + " 'Zlm',\n", + " 'Zlx',\n", + " 'Zlyr',\n", + " 'Zm',\n", + " 'Zmag',\n", + " 'Zmin',\n", + " 'Zmol',\n", + " 'Zohm',\n", + " 'Zpc',\n", + " 'Zph',\n", + " 'Zphoton',\n", + " 'Zpix',\n", + " 'Zpixel',\n", + " 'Zrad',\n", + " 'Zs',\n", + " 'Zsr',\n", + " 'Zu',\n", + " 'Zvox',\n", + " 'Zvoxel',\n", + " 'Zyr',\n", + " '__builtins__',\n", + " '__cached__',\n", + " '__doc__',\n", + " '__file__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__path__',\n", + " '__spec__',\n", + " 'a',\n", + " 'aA',\n", + " 'aAU',\n", + " 'aB',\n", + " 'aBa',\n", + " 'aC',\n", + " 'aD',\n", + " 'aF',\n", + " 'aG',\n", + " 'aGal',\n", + " 'aH',\n", + " 'aHz',\n", + " 'aJ',\n", + " 'aJy',\n", + " 'aK',\n", + " 'aL',\n", + " 'aN',\n", + " 'aOhm',\n", + " 'aP',\n", + " 'aPa',\n", + " 'aR',\n", + " 'aRy',\n", + " 'aS',\n", + " 'aSt',\n", + " 'aT',\n", + " 'aV',\n", + " 'aW',\n", + " 'aWb',\n", + " 'aa',\n", + " 'aadu',\n", + " 'aarcmin',\n", + " 'aarcsec',\n", + " 'aau',\n", + " 'ab',\n", + " 'abA',\n", + " 'abC',\n", + " 'abampere',\n", + " 'abarn',\n", + " 'abcoulomb',\n", + " 'abeam',\n", + " 'abin',\n", + " 'abit',\n", + " 'abyte',\n", + " 'acd',\n", + " 'achan',\n", + " 'acount',\n", + " 'act',\n", + " 'ad',\n", + " 'add_enabled_equivalencies',\n", + " 'add_enabled_units',\n", + " 'adeg',\n", + " 'adu',\n", + " 'adyn',\n", + " 'aeV',\n", + " 'aerg',\n", + " 'ag',\n", + " 'ah',\n", + " 'ak',\n", + " 'al',\n", + " 'allclose',\n", + " 'alm',\n", + " 'alx',\n", + " 'alyr',\n", + " 'am',\n", + " 'amag',\n", + " 'amin',\n", + " 'amol',\n", + " 'amp',\n", + " 'ampere',\n", + " 'angstrom',\n", + " 'annum',\n", + " 'aohm',\n", + " 'apc',\n", + " 'aph',\n", + " 'aphoton',\n", + " 'apix',\n", + " 'apixel',\n", + " 'arad',\n", + " 'arcmin',\n", + " 'arcminute',\n", + " 'arcsec',\n", + " 'arcsecond',\n", + " 'asr',\n", + " 'astronomical_unit',\n", + " 'astrophys',\n", + " 'attoBarye',\n", + " 'attoDa',\n", + " 'attoDalton',\n", + " 'attoDebye',\n", + " 'attoFarad',\n", + " 'attoGauss',\n", + " 'attoHenry',\n", + " 'attoHertz',\n", + " 'attoJansky',\n", + " 'attoJoule',\n", + " 'attoKayser',\n", + " 'attoKelvin',\n", + " 'attoNewton',\n", + " 'attoOhm',\n", + " 'attoPascal',\n", + " 'attoRayleigh',\n", + " 'attoSiemens',\n", + " 'attoTesla',\n", + " 'attoVolt',\n", + " 'attoWatt',\n", + " 'attoWeber',\n", + " 'attoamp',\n", + " 'attoampere',\n", + " 'attoannum',\n", + " 'attoarcminute',\n", + " 'attoarcsecond',\n", + " 'attoastronomical_unit',\n", + " 'attobarn',\n", + " 'attobarye',\n", + " 'attobit',\n", + " 'attobyte',\n", + " 'attocandela',\n", + " 'attocoulomb',\n", + " 'attocount',\n", + " 'attoday',\n", + " 'attodebye',\n", + " 'attodegree',\n", + " 'attodyne',\n", + " 'attoelectronvolt',\n", + " 'attofarad',\n", + " 'attogal',\n", + " 'attogauss',\n", + " 'attogram',\n", + " 'attohenry',\n", + " 'attohertz',\n", + " 'attohour',\n", + " 'attohr',\n", + " 'attojansky',\n", + " 'attojoule',\n", + " 'attokayser',\n", + " 'attolightyear',\n", + " 'attoliter',\n", + " 'attolumen',\n", + " 'attolux',\n", + " 'attometer',\n", + " 'attominute',\n", + " 'attomole',\n", + " 'attonewton',\n", + " 'attoparsec',\n", + " 'attopascal',\n", + " 'attophoton',\n", + " 'attopixel',\n", + " 'attopoise',\n", + " 'attoradian',\n", + " 'attorayleigh',\n", + " 'attorydberg',\n", + " 'attosecond',\n", + " 'attosiemens',\n", + " 'attosteradian',\n", + " 'attostokes',\n", + " 'attotesla',\n", + " 'attovolt',\n", + " 'attovoxel',\n", + " 'attowatt',\n", + " 'attoweber',\n", + " 'attoyear',\n", + " 'au',\n", + " 'avox',\n", + " 'avoxel',\n", + " 'ayr',\n", + " 'b',\n", + " 'bar',\n", + " 'barn',\n", + " 'barye',\n", + " 'beam',\n", + " 'beam_angular_area',\n", + " 'becquerel',\n", + " 'bin',\n", + " 'binary_prefixes',\n", + " 'bit',\n", + " 'bol',\n", + " 'brightness_temperature',\n", + " 'byte',\n", + " 'cA',\n", + " 'cAU',\n", + " 'cB',\n", + " 'cBa',\n", + " 'cC',\n", + " 'cD',\n", + " 'cF',\n", + " 'cG',\n", + " 'cGal',\n", + " 'cH',\n", + " 'cHz',\n", + " 'cJ',\n", + " 'cJy',\n", + " 'cK',\n", + " 'cL',\n", + " 'cN',\n", + " 'cOhm',\n", + " 'cP',\n", + " 'cPa',\n", + " 'cR',\n", + " 'cRy',\n", + " 'cS',\n", + " 'cSt',\n", + " 'cT',\n", + " 'cV',\n", + " 'cW',\n", + " 'cWb',\n", + " 'ca',\n", + " 'cadu',\n", + " 'candela',\n", + " 'carcmin',\n", + " 'carcsec',\n", + " 'cau',\n", + " 'cb',\n", + " 'cbarn',\n", + " 'cbeam',\n", + " 'cbin',\n", + " 'cbit',\n", + " 'cbyte',\n", + " 'ccd',\n", + " 'cchan',\n", + " 'ccount',\n", + " 'cct',\n", + " 'cd',\n", + " 'cdeg',\n", + " 'cdyn',\n", + " 'ceV',\n", + " 'centiBarye',\n", + " 'centiDa',\n", + " 'centiDalton',\n", + " 'centiDebye',\n", + " 'centiFarad',\n", + " 'centiGauss',\n", + " 'centiHenry',\n", + " 'centiHertz',\n", + " 'centiJansky',\n", + " 'centiJoule',\n", + " 'centiKayser',\n", + " 'centiKelvin',\n", + " 'centiNewton',\n", + " 'centiOhm',\n", + " 'centiPascal',\n", + " 'centiRayleigh',\n", + " 'centiSiemens',\n", + " 'centiTesla',\n", + " 'centiVolt',\n", + " 'centiWatt',\n", + " 'centiWeber',\n", + " 'centiamp',\n", + " 'centiampere',\n", + " 'centiannum',\n", + " 'centiarcminute',\n", + " 'centiarcsecond',\n", + " 'centiastronomical_unit',\n", + " 'centibarn',\n", + " 'centibarye',\n", + " 'centibit',\n", + " 'centibyte',\n", + " 'centicandela',\n", + " 'centicoulomb',\n", + " 'centicount',\n", + " 'centiday',\n", + " 'centidebye',\n", + " 'centidegree',\n", + " 'centidyne',\n", + " 'centielectronvolt',\n", + " 'centifarad',\n", + " 'centigal',\n", + " 'centigauss',\n", + " 'centigram',\n", + " 'centihenry',\n", + " 'centihertz',\n", + " 'centihour',\n", + " 'centihr',\n", + " 'centijansky',\n", + " 'centijoule',\n", + " 'centikayser',\n", + " 'centilightyear',\n", + " 'centiliter',\n", + " 'centilumen',\n", + " 'centilux',\n", + " 'centimeter',\n", + " 'centiminute',\n", + " 'centimole',\n", + " 'centinewton',\n", + " 'centiparsec',\n", + " 'centipascal',\n", + " 'centiphoton',\n", + " 'centipixel',\n", + " 'centipoise',\n", + " 'centiradian',\n", + " 'centirayleigh',\n", + " 'centirydberg',\n", + " 'centisecond',\n", + " 'centisiemens',\n", + " 'centisteradian',\n", + " 'centistokes',\n", + " 'centitesla',\n", + " 'centivolt',\n", + " 'centivoxel',\n", + " 'centiwatt',\n", + " 'centiweber',\n", + " 'centiyear',\n", + " 'cerg',\n", + " 'cg',\n", + " 'cgs',\n", + " 'ch',\n", + " 'chan',\n", + " 'ck',\n", + " 'cl',\n", + " 'clm',\n", + " 'clx',\n", + " 'clyr',\n", + " 'cm',\n", + " 'cmag',\n", + " 'cmin',\n", + " 'cmol',\n", + " 'cohm',\n", + " 'core',\n", + " 'coulomb',\n", + " 'count',\n", + " 'cpc',\n", + " 'cph',\n", + " 'cphoton',\n", + " 'cpix',\n", + " 'cpixel',\n", + " 'crad',\n", + " 'cs',\n", + " 'csr',\n", + " 'ct',\n", + " 'cu',\n", + " 'curie',\n", + " 'cvox',\n", + " 'cvoxel',\n", + " 'cy',\n", + " 'cycle',\n", + " 'cyr',\n", + " 'd',\n", + " 'dA',\n", + " 'dAU',\n", + " 'dB',\n", + " 'dBa',\n", + " 'dC',\n", + " 'dD',\n", + " 'dF',\n", + " 'dG',\n", + " 'dGal',\n", + " 'dH',\n", + " 'dHz',\n", + " 'dJ',\n", + " 'dJy',\n", + " 'dK',\n", + " 'dL',\n", + " 'dN',\n", + " 'dOhm',\n", + " 'dP',\n", + " 'dPa',\n", + " 'dR',\n", + " 'dRy',\n", + " 'dS',\n", + " 'dSt',\n", + " ...]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "dir(u)" ] @@ -126,7 +1180,18 @@ "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.units.quantity.Quantity" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "angle = 10 * u.degree\n", "type(angle)" @@ -144,7 +1209,21 @@ "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/latex": [ + "$10 \\; \\mathrm{{}^{\\circ}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "angle" ] @@ -160,7 +1239,21 @@ "cell_type": "code", "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/latex": [ + "$600 \\; \\mathrm{{}^{\\prime}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "angle_arcmin = angle.to(u.arcmin)\n", "angle_arcmin" @@ -177,7 +1270,21 @@ "cell_type": "code", "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/latex": [ + "$10.5 \\; \\mathrm{{}^{\\circ}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "angle + 30 * u.arcmin" ] @@ -215,9 +1322,35 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.0 arcmin\n" + ] + }, + { + "data": { + "text/latex": [ + "$0.083333333 \\; \\mathrm{{}^{\\circ}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "radius = 5 * u.arcmin\n", + "print(radius)\n", + "\n", + "radius.to(u.degree)" ] }, { @@ -268,7 +1401,34 @@ "cell_type": "code", "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Created TAP+ (v1.2.1) - Connection:\n", + "\tHost: gea.esac.esa.int\n", + "\tUse HTTPS: True\n", + "\tPort: 443\n", + "\tSSL Port: 443\n", + "Created TAP+ (v1.2.1) - Connection:\n", + "\tHost: geadata.esac.esa.int\n", + "\tUse HTTPS: True\n", + "\tPort: 443\n", + "\tSSL Port: 443\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from astroquery.gaia import Gaia\n", "\n", @@ -280,7 +1440,48 @@ "cell_type": "code", "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=10\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_id
        int64
        3322773965056065536
        3322773758899157120
        3322774068134271104
        3322773930696320512
        3322774377374425728
        3322773724537891456
        3322773724537891328
        3322773930696321792
        3322773724537890944
        3322773930696322176
        " + ], + "text/plain": [ + "\n", + " source_id \n", + " int64 \n", + "-------------------\n", + "3322773965056065536\n", + "3322773758899157120\n", + "3322774068134271104\n", + "3322773930696320512\n", + "3322774377374425728\n", + "3322773724537891456\n", + "3322773724537891328\n", + "3322773930696321792\n", + "3322773724537890944\n", + "3322773930696322176" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -307,9 +1508,44 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=1\n", + "
        \n", + "\n", + "\n", + "\n", + "
        count
        int64
        594
        " + ], + "text/plain": [ + "\n", + "count\n", + "int64\n", + "-----\n", + " 594" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "query = \"\"\"SELECT \n", + "COUNT(source_id)\n", + "FROM gaiadr2.gaia_source\n", + "WHERE 1=CONTAINS(\n", + " POINT(ra, dec),\n", + " CIRCLE(88.8, 7.4, 0.08333333))\n", + "\"\"\"\n", + "\n", + "job = Gaia.launch_job(query)\n", + "results = job.get_results()\n", + "results" ] }, { @@ -364,7 +1600,19 @@ "cell_type": "code", "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from astropy.coordinates import SkyCoord\n", "\n", @@ -387,7 +1635,19 @@ "cell_type": "code", "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "coord_galactic = coord_icrs.transform_to('galactic')\n", "coord_galactic" @@ -408,7 +1668,18 @@ "cell_type": "code", "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from gala.coordinates import GD1Koposov10\n", "\n", @@ -427,7 +1698,19 @@ "cell_type": "code", "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "coord_gd1 = coord_icrs.transform_to(gd1_frame)\n", "coord_gd1" @@ -464,9 +1747,38 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "origin_gd1 = SkyCoord(0*u.degree, 0*u.degree, frame=gd1_frame)\n", + "\n", + "# OR\n", + "\n", + "origin_gd1 = SkyCoord(phi1=0*u.degree, \n", + " phi2=0*u.degree, \n", + " frame=gd1_frame)\n", + "\n", + "# Note: because ICRS is built into Astropy, \n", + "# we can identify it by string name\n", + "origin_gd1.transform_to('icrs')\n", + "\n", + "# More formally, we could instantiate it\n", + "from astropy.coordinates import ICRS\n", + "icrs_frame = ICRS()\n", + "origin_gd1.transform_to(icrs_frame)" ] }, { @@ -549,7 +1861,19 @@ "cell_type": "code", "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "corners = SkyCoord(phi1=phi1_rect, phi2=phi2_rect, frame=gd1_frame)\n", "corners" @@ -566,7 +1890,21 @@ "cell_type": "code", "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "corners_icrs = corners.transform_to('icrs')\n", "corners_icrs" @@ -603,7 +1941,22 @@ "cell_type": "code", "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['146.275 19.2619',\n", + " '135.422 25.8774',\n", + " '141.603 34.3048',\n", + " '152.817 27.1361',\n", + " '146.275 19.2619']" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "t = corners_icrs.to_string()\n", "t" @@ -620,7 +1973,18 @@ "cell_type": "code", "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'146.275 19.2619 135.422 25.8774 141.603 34.3048 152.817 27.1361 146.275 19.2619'" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s = ' '.join(t)\n", "s" @@ -637,7 +2001,18 @@ "cell_type": "code", "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619'" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s.replace(' ', ', ')" ] @@ -673,7 +2048,18 @@ "cell_type": "code", "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619'" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "point_list = skycoord_to_string(corners_icrs)\n", "point_list" @@ -757,7 +2143,23 @@ "cell_type": "code", "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT\n", + "TOP 10\n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(ra, dec), \n", + " POLYGON(146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619))\n", + "\n" + ] + } + ], "source": [ "query4 = query4_base.format(columns=columns, \n", " point_list=point_list)\n", @@ -777,7 +2179,28 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n", + "
        \n", + " name dtype unit description \n", + "--------- ------- -------- ------------------------------------------------------------------\n", + "source_id int64 Unique source identifier (unique within a particular Data Release)\n", + " ra float64 deg Right ascension\n", + " dec float64 deg Declination\n", + " pmra float64 mas / yr Proper motion in right ascension direction\n", + " pmdec float64 mas / yr Proper motion in declination direction\n", + "Jobid: 1615815873808O\n", + "Phase: COMPLETED\n", + "Owner: None\n", + "Output file: async_20210315094433.vot\n", + "Results: None\n" + ] + } + ], "source": [ "job = Gaia.launch_job_async(query4)\n", "print(job)" @@ -794,7 +2217,50 @@ "cell_type": "code", "execution_count": 33, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=10\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdec
        degdegmas / yrmas / yr
        int64float64float64float64float64
        637987125186749568142.4830193599102321.75771616932985-2.51683846838757662.941813096629439
        638285195917112960142.2545294134634422.4761681711413782.6627020143457996-12.165984395577347
        638073505568978688142.6452855746807422.1669322495307818.30674739454163-7.950659620550862
        638086386175786752142.5773943092603422.227919514013650.9877856720147953-2.584105480335548
        638049655615392384142.5891356447861822.1107831666774180.24443878227817095-4.941079187010136
        638267565075964032141.8176222899961422.375696125322275-3.4131745896607961.8838892877285924
        638028902333511168143.1833980131767722.25124658123697.848511762712128-21.391145547787154
        638085767700610432142.934731946458922.46244080823965-3.6585960944321476-12.486419770278376
        638299863230178304142.2676974582326722.640183776884836-1.81683708922182971.0537342990941316
        637973067758974208142.8955129286901221.612824100339875-8.645166256559063-44.41164172204947
        " + ], + "text/plain": [ + "\n", + " source_id ra ... pmdec \n", + " deg ... mas / yr \n", + " int64 float64 ... float64 \n", + "------------------ ------------------ ... -------------------\n", + "637987125186749568 142.48301935991023 ... 2.941813096629439\n", + "638285195917112960 142.25452941346344 ... -12.165984395577347\n", + "638073505568978688 142.64528557468074 ... -7.950659620550862\n", + "638086386175786752 142.57739430926034 ... -2.584105480335548\n", + "638049655615392384 142.58913564478618 ... -4.941079187010136\n", + "638267565075964032 141.81762228999614 ... 1.8838892877285924\n", + "638028902333511168 143.18339801317677 ... -21.391145547787154\n", + "638085767700610432 142.9347319464589 ... -12.486419770278376\n", + "638299863230178304 142.26769745823267 ... 1.0537342990941316\n", + "637973067758974208 142.89551292869012 ... -44.41164172204947" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -829,7 +2295,22 @@ "cell_type": "code", "execution_count": 35, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT\n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(ra, dec), \n", + " POLYGON(146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619))\n", + "\n" + ] + } + ], "source": [ "query5 = query5_base.format(columns=columns, \n", " point_list=point_list)\n", @@ -842,7 +2323,28 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n", + "
        \n", + " name dtype unit description \n", + "--------- ------- -------- ------------------------------------------------------------------\n", + "source_id int64 Unique source identifier (unique within a particular Data Release)\n", + " ra float64 deg Right ascension\n", + " dec float64 deg Declination\n", + " pmra float64 mas / yr Proper motion in right ascension direction\n", + " pmdec float64 mas / yr Proper motion in declination direction\n", + "Jobid: 1615815886707O\n", + "Phase: COMPLETED\n", + "Owner: None\n", + "Output file: async_20210315094446.vot\n", + "Results: None\n" + ] + } + ], "source": [ "job = Gaia.launch_job_async(query5)\n", "print(job)" @@ -852,7 +2354,18 @@ "cell_type": "code", "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "140339" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "len(results)" @@ -903,7 +2416,18 @@ "cell_type": "code", "execution_count": 41, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "5.36407470703125" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from os.path import getsize\n", "\n", diff --git a/_sources/03_motion.ipynb b/_sources/03_motion.ipynb index 308dbc9..da44587 100644 --- a/_sources/03_motion.ipynb +++ b/_sources/03_motion.ipynb @@ -1,5 +1,49 @@ { "cells": [ + { + "cell_type": "raw", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "title: \"Plotting and Pandas\"\n", + "teaching: 3000\n", + "exercises: 0\n", + "\n", + "questions:\n", + "\n", + "- \"How do we make scatter plots in Matplotlib? How do we store data in a Pandas `DataFrame`?\"\n", + "\n", + "objectives:\n", + "\n", + "- \"Select rows and columns from an Astropy `Table`.\"\n", + "\n", + "- \"Use Matplotlib to make a scatter plot.\"\n", + "\n", + "- \"Use Gala to transform coordinates.\"\n", + "\n", + "- \"Make a Pandas `DataFrame` and use a Boolean `Series` to select rows.\"\n", + "\n", + "- \"Save a `DataFrame` in an HDF5 file.\"\n", + "\n", + "keypoints:\n", + "\n", + "- \"When you make a scatter plot, adjust the size of the markers and their transparency so the figure is not overplotted; otherwise it can misrepresent the data badly.\"\n", + "\n", + "- \"For simple scatter plots in Matplotlib, `plot` is faster than `scatter`.\"\n", + "\n", + "- \"An Astropy `Table` and a Pandas `DataFrame` are similar in many ways and they provide many of the same functions. They have pros and cons, but for many projects, either one would be a reasonable choice.\"\n", + "\n", + "- \"To store data from a Pandas `DataFrame`, a good option is an HDF file, which can contain multiple Datasets.\"\n", + "\n", + "---\n", + "\n", + "{% include links.md %}\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -45,7 +89,9 @@ { "cell_type": "markdown", "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "source": [ "## Installing libraries\n", @@ -59,7 +105,9 @@ "cell_type": "code", "execution_count": 55, "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "outputs": [], "source": [ @@ -136,7 +184,26 @@ "cell_type": "code", "execution_count": 58, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "
        \n", + " name dtype unit description \n", + "--------- ------- -------- ------------------------------------------------------------------\n", + "source_id int64 Unique source identifier (unique within a particular Data Release)\n", + " ra float64 deg Right ascension\n", + " dec float64 deg Declination\n", + " pmra float64 mas / yr Proper motion in right ascension direction\n", + " pmdec float64 mas / yr Proper motion in declination direction\n", + " parallax float64 mas Parallax" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results.info" ] @@ -156,7 +223,18 @@ "cell_type": "code", "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['source_id', 'ra', 'dec', 'pmra', 'pmdec', 'parallax']" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results.colnames" ] @@ -172,7 +250,73 @@ "cell_type": "code", "execution_count": 60, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "<Column name='ra' dtype='float64' unit='deg' description='Right ascension' length=140339>\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        142.48301935991023
        142.25452941346344
        142.64528557468074
        142.57739430926034
        142.58913564478618
        141.81762228999614
        143.18339801317677
        142.9347319464589
        142.26769745823267
        142.89551292869012
        142.2780935768316
        142.06138786534987
        ...
        143.05456487172972
        144.0436496516182
        144.06566578919313
        144.13177563215973
        143.77696341662764
        142.945956347594
        142.97282480557786
        143.4166017695258
        143.64484588686904
        143.41554585481808
        143.6908739159247
        143.7702681295401
        " + ], + "text/plain": [ + "\n", + "142.48301935991023\n", + "142.25452941346344\n", + "142.64528557468074\n", + "142.57739430926034\n", + "142.58913564478618\n", + "141.81762228999614\n", + "143.18339801317677\n", + " 142.9347319464589\n", + "142.26769745823267\n", + "142.89551292869012\n", + " 142.2780935768316\n", + "142.06138786534987\n", + " ...\n", + "143.05456487172972\n", + " 144.0436496516182\n", + "144.06566578919313\n", + "144.13177563215973\n", + "143.77696341662764\n", + " 142.945956347594\n", + "142.97282480557786\n", + " 143.4166017695258\n", + "143.64484588686904\n", + "143.41554585481808\n", + " 143.6908739159247\n", + " 143.7702681295401" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results['ra']" ] @@ -188,7 +332,18 @@ "cell_type": "code", "execution_count": 61, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.table.column.Column" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "type(results['ra'])" ] @@ -204,7 +359,32 @@ "cell_type": "code", "execution_count": 62, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Row index=0\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdecparallax
        degdegmas / yrmas / yrmas
        int64float64float64float64float64float64
        637987125186749568142.4830193599102321.75771616932985-2.51683846838757662.941813096629439-0.2573448962333354
        " + ], + "text/plain": [ + "\n", + " source_id ra dec pmra pmdec parallax \n", + " deg deg mas / yr mas / yr mas \n", + " int64 float64 float64 float64 float64 float64 \n", + "------------------ ------------------ ----------------- ------------------- ----------------- -------------------\n", + "637987125186749568 142.48301935991023 21.75771616932985 -2.5168384683875766 2.941813096629439 -0.2573448962333354" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results[0]" ] @@ -220,7 +400,18 @@ "cell_type": "code", "execution_count": 63, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.table.row.Row" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "type(results[0])" ] @@ -239,7 +430,18 @@ "cell_type": "code", "execution_count": 64, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "142.48301935991023" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results['ra'][0]" ] @@ -255,7 +457,18 @@ "cell_type": "code", "execution_count": 65, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "142.48301935991023" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results[0]['ra']" ] @@ -323,7 +536,20 @@ "cell_type": "code", "execution_count": 67, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAllklEQVR4nO3de3hcd33n8fdHtnyLzUrEDkTKRUm4StmQEBXSDbQ0UtiUh0sXKEs7al3KkiLTFtrwFNLwFFIethQKLWzX4rJcUkaUXrgWaEusTdhCmwQ5iR1kA6E0obVd4lAbktixY/u7f5wzzliRRiNpzpwzM5/X85zHM2fO5avzHH/POb/zuygiMDOzztGVdwBmZtZcTvxmZh3Gid/MrMM48ZuZdRgnfjOzDrMy7wDqsXHjxhgYGMg7DDOzlrJ9+/b7I2LT7PktkfgHBgaYnp7OOwwzs5Yi6d655ruox8yswzjxm5l1GCd+M7MO48RvZtZhnPjNzDqME78VxtDQEJJOTkNDQ3mHZNaWnPgtd5OTk0hi165dp8zftWsXkti4cSOTk5M5RWfWfpz4LVeTk5OMjY3VXOaHP/whY2NjrF+/3hcAswZw4rfcjI6OLpj0qz300EOMjY0hiZUrV/oiYLZEmSV+SWsk3SZph6QZSdfP+v2NkkLSxqxisOIaGhpiampqyesfP36csbExvwcwW4Is7/iPAFdExDOAi4GrJF0GIOls4Erg+xnu3wpqy5YtjynPX6rKe4DR0dGGbM+sE2SW+CPxYPq1O50q4zz+MfA7Vd+tQ2zZsoWJiYmGb3dqagpJrFixgi1btjR8+2btJNMyfkkrJN0J3AfcGBG3SnoxsCcidiyw7tWSpiVN79+/P8swrUmySvrVTpw4wcTEBJIYGBjwewCzOagZg61L6gE+C7we+DDw/Ij4kaR7gOGIuL/W+sPDw+HeOVvb6Ojossr0l6Ovr489e/bksm+zPEnaHhHDs+c3pVZPRBwEbgZeApwH7EiT/lnA7ZKe2Iw4rPkmJydZu3ZtbkkfYO/evScbhfkJwCzbWj2b0jt9JK0FRoE7IuKMiBiIiAHg34BnRsS/ZxWH5adSR//hhx/OO5STxsbG6Orq8gXAOlqWd/xnAjdJ2gl8g6SM/4sZ7s8KZjF19JspIk62B5BEf39/3iGZNVVmI3BFxE7gkgWWGchq/5YvSXmHULdKUdDIyAjbtm3LOxyzzLnlrjXcunXr8g5hSSpVQiW5Sqi1NSd+ayhJHD58OO8wlq1SJdQXAGtHTvzWEJUeNtuNLwDWjpz4bdkW29laK6pcAFavXu0aQdbynPhtWZbb2VqrOXr0KGNjY2zYsMEXAGtZTvy2ZP39/Q3rbK3VPPjggyerhLoYyFqNE78tSX9/P3v37s07jEKYmJigt7c37zDM6ubEb4s2OjrqpD/LwYMHXRXUWoYTvy1Knp2ttYrKi2CPEWBF5cRvdXPSX5xKgzBfAKxonPitLp1We6eRKhcAdw5nReHEbwvq7e3t2No7jVTpHM6jhFnenPitpt7eXg4ePJh3GG2lepQwFwVZHpz4bV5DQ0NO+k1QKQryU4A1ixO/zWl0dNTFO002MTHB0NBQ3mFYB3Dit8fwi9z87Nq162QR0Pr16/0y2DLhxG+nGBoa8p1+QTz00EOMjY35KcAaLssxd9dIuk3SDkkzkq5P579b0rck7ZT02cq4vJY/J/1iqjwFuDqoNUqWd/xHgCsi4hnAxcBVki4DbgQujIiLgO8A12YYg9XJZfrFV6kO6lpAtlyZJf5IPJh+7U6niIivRMSxdP4twFlZxWD1cZl+a6nUAvLdvy1VpmX8klZIuhO4D7gxIm6dtcivAn87z7pXS5qWNL1///4sw+xondy1cqurdAvttgC2WJkm/og4HhEXk9zVP0vShZXfJF0HHAPmvG2JiA9FxHBEDG/atCnLMDtWb2+ve9lsE5WngDVr1vhJwBbUlFo9EXEQuBm4CkDSZuCFQCkiohkx2KncIrc9HTlyhLGxMVcFtZqyrNWzqVJjR9JaYBT4lqSrgDcBL46IQ1nt3+bnFrntr1IVtKuryy2C7TGyvOM/E7hJ0k7gGyRl/F8E/hTYANwo6U5JH8gwBpvFVTY7S0S4RbA9xsqsNhwRO4FL5pj/pKz2abW5ymbnqm4R/IlPfIJSqZR3SJYjt9ztEK6yafBoW4Du7m6/A+hgTvwdYMWKFb7Tt1McO3bsZHVQvwPoPE78bU4SJ06cyDsMKzCPEdx5nPjbmKS8Q7AW4hbBncOJv02tWLEi7xCsRVWKgPwE0L6c+NvQ6Oioi3ds2aampujt7c07DMuAE3+bGR0dde0da5iDBw+erAbqbqHbhxN/G+nt7XXSt8xUqoL6KaD1OfG3iXXr1rkbBmuKylOAnwBalxN/G1i1ahWHDx/OOwzrMJUnALcFaD1O/C1u1apVPPLII3mHYR2u0hbAfQK1Bif+FibJSd8KpdInkIuAis2Jv0W5cZYV2djYmO/+C8yJvwWtW7cu7xDMFlS5++/v7887FJvFib/F9Pf3+0WutZS9e/ciiQ0bNrgIqCCc+FuIx8i1Vvbggw+6HUBBOPG3CNfTt3ZR3RrY/QHlw4m/Bbh4x9pVpUdQtwNoriwHW18j6TZJOyTNSLo+nf94STdKujv91899NWzZssXFO9b2JiYm3BK4ibK84z8CXBERzwAuBq6SdBnwZmAqIp4MTKXfbQ6Tk5NMTEzkHYZZU1RaArsaaPbqTvySTpNUdyfvkXgw/dqdTgG8BLghnX8D8HP1brOTTE5OMjY2lncYZk1XqQa6evVqPwFkZN7EL6lL0i9K+pKk+4BvAfvSYpt3S3ryQhuXtELSncB9wI0RcSvwhIjYB5D+e8Y8614taVrS9P79+5fwp7WuLVu2OOlbxzt69KhrAWWk1h3/TcAFwLXAEyPi7Ig4A3gucAvwTkk1s1NEHI+Ii4GzgGdJurDewCLiQxExHBHDmzZtqne1lrdlyxYX75hVqdQCWrlypZ8AGkQRMfcPUndE1OwIpp5lqpZ9K/AQ8BrgeRGxT9KZwM0R8dRa6w4PD8f09HQ9u2lpQ0ND7Nq1K+8wzAptxYoV3HDDDZRKpbxDKTxJ2yNiePb8Wnf83ZK6qzbwVEm/JemllXm1kr6kTZJ60s9rgVGS4qIvAJvTxTYDn1/MH9KuRkdHnfTN6nD8+PGT3UH7CWBpaiX+vwMGACQ9Cfgn4HzgdZL+oI5tnwncJGkn8A2SMv4vAu8ErpR0N3Bl+r2jTU5OeuQssyUYGxuju7vbF4DFiog5J+Cuqs9vB/53+nlV9W/NmC699NJoV+Pj40FS28mTJ0/LmCTF+Ph43v+lCwWYjjlyaq07/qj6fAVwI0BEHAVO1FjP6uQXuWaNExEnB4TxE0BttRL/Tkl/JOm3gCcBXwGolNvb8rhxlll2xsbG3A9QDbUS/2uA+0nK+Z8fEYfS+YPAH2UcV9tzPX2zbFX6Aerq6nJfQLPMm/gj4nBEvDMiXh8RO6rm/yPwvaZE14YmJyc9epZZE1WKgJz8H1Wr5e4KSb8g6Y2VhleSXijpH4E/bVqEbcTdMJjlp1L+7yKg2kU9HwH+B3A68H5JHyMp4nlXRFzSjODajZO+Wf7cFXTtxD8MXBkR1wIvAH6epMXt55oRWLvxOLlmxdLJNYBqJf6jEXECICIeBr4TEf/enLDay7p16zyQillBjY2NddyNWa3E/zRJO9Pprqrvd6Wtca0Okpz0zQru8OHDHTUc5Moavz29aVG0qRUr6h6+wMwKovIOYHx8nK1bt+YdTiZqdtIGnBUR91ZPwDnUvmAYSfHOiRNu4GzWqiYmJtp2LIBaif9PgAfmmH84/c3m0dvb6+IdszZQGQug3YaDrJX4ByLiMWX5ETFN2munPdbo6CgHDx7MOwwza6DKcJADAwNtUQuoVuJfU+O3tY0OpB2Mjo66e2WzNnbvvfcyNjZGV1dXS18AaiX+b0h6zeyZkl4NbM8upNbkPvXNOkdEMDY2Rn9/f96hLEmtxP8G4FWSbpb0nnT6Kklr3tc3JboW4cHRzTrT3r17W7IRWK1O2n4QEf8FuB64J52uj4ifdEOuR7lPfTOrDAXZKu0Aag22/vhaK0bEf9TcsHQ28GfAE0kGbvlQRLxP0sXAB0jeIRwDtkTEbbW2VeTB1t3TppnNNjg4yMzMTN5hzDvYeq36+NtJRuESp47GVfl+/gL7PAZcExG3S9oAbJd0I/AukieHv5X0gvT78+r+SwrESd/M5lKpBVQulymVSnmH8xi1inrOi4jzq/49v/r7QhuOiH0RcXv6+QFgN9BPctF4XLrYfwL2Lv/PaL52bdhhZo0zNjZWyFxR6+Vuw0gaAC4BbiV5afxuSf9K0s3ztfOsc7WkaUnT+/fvb0aYdRsaGnJdfTOrS6UR2MaNG4vzEniuEdgbOQHrSYqNXpp+fz/wsvTzK4BtC23j0ksvXdzQ8hnq6ekJkqcWT548eVrSVC6Xm5KvgOmYI6dmescvqRv4NDAZEZ9JZ28GKp//CnhWljE0Un9/v+/0zWzZKrWA8hoMpq7EL+k5kl6Vft4k6bw61hHJKF67I+K9VT/tBX46/XwFcPfiQs5Hb28ve/e25OsIMyuoiYmJXPoBWjDxS3or8CYeLYvvBsp1bPty4JeAKyTdmU4vAF4DvEfSDuB/AlcvKfIm8p2+mWWlUgOoqeX/c5X/xKll9HeSVOG8o2rezoXWa+SUZxn/+Ph47uWBnjx56pxpfHy8YfmLZZTxH003EACSTqtjnbbhVrlm1kyVsYCzbAFcT+L/S0kfBHrSTtu2AR/OLKICcQMtM8vL1NRUZr2ALpj4I+KPgL8mqZ3zVOD3IuJ/NTySgnHSN7O8RdoLaKMvAPUOofidJIbYJmmdpA2RtMZtS+vWrcs7BDOzkyoXAKAhXUDUU6vnNSR3/B9MZ/UDn1v2ngvKwyaaWVFdd911DdlOPWX8ryOpmvljgIi4GzijIXsvkMnJSSS52qaZFdb3v//9hmynnsR/JCKOVr5IWklaw6ddTE5OeiAVMyu8c845pyHbqSfxf1XS7wJrJV1J0s3C3zRk7wXhpG9mreAd73hHQ7ZTT+J/E7AfuAv4NeDLwFsasvcCaNUxM82ss/T19TWsb/+atXokdZG00r2QNqy7Pzk56f53zKwl7Nmzp2HbqnnHHxEngB2SGlOwVCAeIN3MWkW5XE/3aPWrpx7/mcCMpNuAhyozI+LFDY2kiTxAupm1glWrVvHRj3604cM31pP4r2/oHnPmpG9mrWBkZIRt27Zlsu0FE39EfDWTPedgdHSUqampvMMwM6tpfHycrVu3Zrb9BRO/pAd4bL39HwHTwDUR8b0sAmu0yclJJ30zK7yskz7UV9TzXpJRsz5J0i//K4EnAt8GPgo8L6vgGsXFO2bWCsrlcsPL8+c0Vyf91RNw6xzzbkn/3bHQ+o2YljMQiwdS8eTJU9GnrAZfZxkDsZyQ9ApJXen0iqrfYr6VJJ0t6SZJuyXNSHp91W+/Ienb6fx31RHDkvlO38yKbHx8vDl3+VXqKeopAe8DtpIk+luAMUlrgV+vsd4xkncAt0vaAGyXdCPwBOAlwEURcURSZh2+uVWumRVZ04p2ZqmnVs/3gBfN8/PXaqy3D9iXfn5A0m6SLp1fA7wzIo6kv9232KDrMTQ05Fa5ZlZYeSV9qK8//qdImpL0zfT7RZIW1VePpAHgEuBW4CnAcyXdKumrkn5innWuljQtaXr//v2L2R2Tk5Ps2rVrUeuYmTVLHsU7p5ir4L96Ar4KPAu4o2reNxdar2rZ9cB24KWVdYH3k9QQehbwL4BqbWOxL3fPPffc3F/WePLkydNc0/j4+OLe0C4Dy3i5uy4ibps171gd6yGpm2Ss3smI+Ew6+9+Az6Rx3QacADbWs716NWqwAjOzRlmzZg3lcjnzOvr1qOfl7v2SLiC5WiHp5aRl97UoGa38I8DuiHhv1U+fA64Abpb0FGAVcP8i467pnHPO4d57723kJs3Mlqynp4cDBw7kHcZJ9Q69+EHgaZL2AG8AxutY73Lgl4ArJN2ZTi8gafR1fvrO4FPA5vSRpGEaNViBmdlyDQ4OFirpQ/21ekYlnQZ0RcQD9Ww4Ir5GUo4/l0z7Qy6VSnz96193HX4zy013dzdHjx5deMEczJv4Jf32PPMBmFV8Uzhbt27l8ssv59WvfjVHjhzJOxwz6yBr167l0KFDeYcxr1pFPRvSaZikaKc/nV4LDGYf2vKVSiUefvhhIoJyuczpp5+ed0hm1uZ6enoKnfQB6qmO+RVgQ9X3DcDfLbReI6fl9NUzW7lcjlWrVuVepcuTJ0/tORUJy6jOeQ5QXVB1FBioY71CKpVKHDlyhIhgfLyed9RmZgtbu3Zt5ea48OpJ/J8AbpP0NklvJWl9e0O2YTXH1q1bT14BR0ZG8g7HzFpUuVwufvFOlQUTf0S8A3gVcAA4CLwqIv4g47iabtu2bScvAoODLfEKw8wKIM8+d5Zq3sQvaX3lc0TcHhHvS6c75lqmnczMzLgoyMwWNDIy0nJJH2rf8X9e0nsk/VRahx8ASedLerWkvweuyj7E/FSKgsrlMitX1tPI2cw6RZaDoWdt3sQfESPAFPBrwIykH0v6IVAmGXpxc0T8dXPCzFepVOKRRx7xE4CZAUnxTqsmfUh7xSy64eHhmJ6ezjuMU/T397u/f7MOU/SGWbNJ2h4Rw7Pn11Orx+awZ88evwcw6yCDg4MtlfRrceJfJr8HMGt/5XKZmZmZvMNoGCf+Bqm8B3CVULP20d3d3ZLVNRdSz9CLl6WDpVe+b5D07GzDan0zMzN+CjBrYatXr+ZjH/tY2yV9qOPlrqQ7gGem/T4gqYuk/4dnNiE+oJgvdxdraGjI4wCbtYgid6m8GMt5uauoujpExAnqG7nLqlQahbkIyKzYurq62iLp11JP4v+epN+U1J1Orwe+l3Vg7apyAai8EDaz4li7di3Hjx/PO4zM1ZP4Xwv8F2APyUDpzwauzjKoTlEqlVwl1Kwg+vr62qa65kLq6aTtvoh4ZUScERFPiIhfjIj7FlpP0tmSbpK0W9JM+qRQ/fsbJYWkjcv5A9pBpUqoewg1y0e5XGbPnj15h9E09dTqeYqkqXRwdCRdJOktdWz7GHBNRDwduAx4naTBdBtnA1cC31966O2n0kOonwDMmmd8fLwta+7UUk9Rz4eBa4FHACJiJ/DKhVaKiH0RcXv6+QFgN8nQjQB/DPwOyYg1Nkt1ozAzy874+Dhbt27NO4ymqyfxr4uI22bNO7aYnUgaAC4BbpX0YmBPROxYYJ2rJU1Lmt6/f/9idtc2Ku8AXBvIrLG6urqIiI5M+lBf4r9f0gWkd+eSXg7sq3cHaZ/9nwbeQHLBuA74vYXWi4gPRcRwRAxv2rSp3t21LY8RYNYYfX19HVFzp5Z6Ev/rgA8CT5O0hySB15V9JHWTJP3JiPgMcAFwHrBD0j3AWcDtkp64+NA7U6UYyBcAs8Xr6+vrqJe486m7W+Z0MJautLy+nuVFMjbvf0TEG+ZZ5h5gOCLur7Wtdmi5m5XJyUk2b97c8XcwZgtptS6VG2G+lrvzJn5Jv11rgxHx3gV2+BzgH4C7gBPp7N+NiC9XLXMPTvwNs2XLFiYmJvIOw6xwBgcH26p3zXotpcuGDek0TFK0059OrwUWfNMYEV+LCEXERRFxcTp9edYyAwslfatfdW2g5IHLrLN1d3cTER2Z9GupNfTi9RFxPbCRpJO2ayLiGuBSkrJ5K6hSqcSJEyf8LsA6Wl9fX9v3ubNU9bzcPQeoPnpHgYFMorGGc6tg60Tr16/3S9wa6kn8nwBuk/Q2SW8FbiV5aWstpNIquFwus2rVqrzDMcvUBz7wgbxDKLR6+up5B/Aq4ABwEHhVRPxBxnFZRkqlEkeOHHGjMGtbndgFw2LVNfRiRNweEe9LpzuyDsqaozJKmF8EWzuQRLlc7tjWuIvhMXc7XOVFcLlcZsWKFXmHY7YkIyMjnDhxwnf6dXLiNyC5ABw7dozx8XE/AVhLKZfLbNu2Le8wWooTv51i69atrgpqLaNcLvsufwmc+G1ebhBmRdbT0+Okv0RO/Lag6gZhfX19eYdjRl9fHwcOHMg7jJblxG+LsmfPHjcGs1xFhBtnLZMTvy1adWOw1atX5x2OdRCPStcYTvy2ZKVSiYcffthdQlhT+EVu46zMOwBrD5XqdJOTk4yNjeUcjbWbescNsfr4jt8aqjJOsKuCWiOMjIw46WfAid8y4SEibbnGx8fdMCsjTvyWqcoFwBcBW4zx8XH3uZOhzBK/pLMl3SRpt6QZSa9P579b0rck7ZT0WUk9WcVgxVLdIMxsPoODg076Gcvyjv8YcE1EPB24DHidpEHgRuDCiLgI+A5wbYYxWAFV3gO4JpDN1tPT42ESmyCzxB8R+yLi9vTzA8BuoD8ivhIRx9LFbsHDOHasSnsAjw1gkLzIdWvc5mhKGb+kAeASktG7qv0q8LfzrHO1pGlJ0/v37884QsvbzMyM3wF0sJGREb/IbaLME7+k9cCngTdExI+r5l9HUhw0Odd6EfGhiBiOiOFNmzZlHaYVQPU7gDVr1uQdjjVJT0+Pk36TZZr4JXWTJP3JiPhM1fzNwAuBUriSrs1SKpU4fPiwB4fpAO5sLR9Z1uoR8BFgd0S8t2r+VcCbgBdHxKGs9m+trzI4TLlc5txzz807HGuglStXUi6X3dlaTpTVDbek5wD/ANwFnEhn/y7wfmA18MN03i0R8dpa2xoeHo7p6elM4rTW0tvby8GDB/MOw5bJD/rNIWl7RAzPnp9ZXz0R8TVgrtE7vpzVPq39VYoFRkdHmZqayjkaWwq/xM+fW+5aS9q2bRvlcpnTTjst71BsEdwitxic+K1llUolHnzwwZNtAdwgrLgqna056ReDE7+1jcpTgMcHLhZ3tlY8TvzWVirjA7s/oGLo6enxXX4BOfFbW6r0B1Qulzn99NPzDqcjdXV1uY5+QTnxW1srlUrcf//9RAR9fX15h9Mx+vr6OH78eN5h2Dyc+K1j7Nmzxy+Bm6Cnp8cNswrOid86TqVXUFcHbby1a9e6eKcFOPFbx6quDupioOXr6enh0CH3wtIKnPjNeLQYyOMCLM3g4KDv9FuIE79ZlZmZGVcFXaRyuexRs1qME7/ZLJWqoO5TZmEjIyOUSqW8w7BFcuI3m0dlYBgXAc3NLXJblxO/WR08NOSjenp63O9Oi3PiN6tT9RNARNDT05N3SLnwS9zW58RvtkQHDhzouBfBnfb3tisnfrNlKJVKHTE2sCTK5bJf5LaJLMfcPVvSTZJ2S5qR9Pp0/uMl3Sjp7vTf3qxiMGuG6rGB27El8ODgICdOnHDSbyNZ3vEfA66JiKcDlwGvkzQIvBmYiognA1Ppd7OWV2kJPD4+TldXezxM9/T0uI5+G8rs7IyIfRFxe/r5AWA30A+8BLghXewG4OeyisEsD1u3buX48eMtXw3U3Sq3r6bclkgaAC4BbgWeEBH7ILk4AGc0IwazPMzMzBARrF27Nu9QFqW7u9vdKrexzBO/pPXAp4E3RMSPF7He1ZKmJU3v378/uwDNmuDQoUMt0xq4p6eHo0eP5h2GZSjTxC+pmyTpT0bEZ9LZP5B0Zvr7mcB9c60bER+KiOGIGN60aVOWYZo1TaUtQFEvAO5srTNkWatHwEeA3RHx3qqfvgBsTj9vBj6fVQxmRVXEC4Bf5HaOLO/4Lwd+CbhC0p3p9ALgncCVku4Grky/m3WkygUg77GBu7u7faffQRQRecewoOHh4Ziens47DLPMjY6OMjU11dR9joyMuLO1NiVpe0QMz57fHpWNzdrEtm3bmtoOoFwuO+l3ICd+s4KpbgeQ5TuA8fFxt8btUE78ZgW2detWyuUyq1atauh2BwcH3a1yB3PiNyu4UqnEkSNHGtYSeGRkxLV3OpwTv1kLqbQEXupYAC7TN3DiN2tJBw4cODkgTL0vgt2tslWszDsAM1ue48ePMzQ0xK5du+b8fe3atRw6dKjJUVmR+Y7frA1UxgROGswn1q9fT7lcdtK3x3ADLjOzNuUGXGZmBjjxm5l1HCd+M7MO48RvZtZhnPjNzDpMS9TqkbQfuLfGIhuB+5sUTiO0UrytFCs43qw53mw1Ot5zI+IxQxi2ROJfiKTpuaosFVUrxdtKsYLjzZrjzVaz4nVRj5lZh3HiNzPrMO2S+D+UdwCL1ErxtlKs4Hiz5niz1ZR426KM38zM6tcud/xmZlYnJ34zsw5TqMQv6aOS7pP0zap5b5e0U9Kdkr4iqS+dPyDpcDr/TkkfmGebj5d0o6S70397c4q3VBXrnZJOSLp4jm2+TdKequVekGW8Vb+9UVJI2lg171pJ35X0bUn/dZ5tNvX4zhevpCslbZd0V/rvFfNssxDHt6jnb414C3n+1tpfnufvYmLN5dytjOJThAn4KeCZwDer5j2u6vNvAh9IPw9UL1djm+8C3px+fjPwh3nEO2u9/wx8b55tvg14Y7OObzr/bODvSRrJbUznDQI7gNXAecA/AyvyPr414r0E6Es/XwjsKfjxLeT5O1+8RT1/59tf3ufvImNt+rlbqDv+iPh/wH/Mmvfjqq+nAYt9G/0S4Ib08w3Azy01vtmWEe8vAH/eqDjqNVe8qT8GfodTY30J8KmIOBIR/wJ8F3jWHOs29fjOF29E3BERe9OvM8AaSasbFUs9Fnl861WI4ztL0c7fueR6/i4m1jzO3UIl/vlIeoekfwVKwO9V/XSepDskfVXSc+dZ/QkRsQ8g/feMjMOtFW/Ff6f2f5xfT4uLPtrIR/u5SHoxyR3Gjlk/9QP/WvX939J5szX1+NaIt9rLgDsi4sg8vxfh+EIBz986j29hzt8a+yvk+cvCx6Yp525LJP6IuC4izgYmgV9PZ+8DzomIS4DfBj4p6XF5xVhtnngBkPRs4FBEPKZcNTUBXABcTPI3vierOCWtA65j7ouT5piXa93fBeKtLDME/CHwa/MsUpTjW7jzt87jW5jzd4H9Fe78ZYFj08xztyUSf5VPklwRSR/hfph+3k5ShveUOdb5gaQzAdJ/72tSrFAVb5VXUuNuKSJ+EBHHI+IE8GHmfjxtlAtIyj93SLoHOAu4XdITSe6Qzq5a9ixg72O20NzjWyteJJ0FfBb45Yj457k2UJTjW9Dzt+bxTRXp/K21v8Kdv7WOTbPP3cInfklPrvr6YuBb6fxNklakn88Hngx8b45NfAHYnH7eDHw+u2jnjzf9rQv4eeBTNdY/s+rrfwPmu7Natoi4KyLOiIiBiBgg+c/yzIj4d5Lj9kpJqyWdR3J8b5tjM007vrXildQDfAm4NiK+Pt82inJ8i3j+LnA+FO78XWB/hTt/54s1l3O3EW+IGzWR3EnsAx4hOeleDXw6/QN3An8D9KfLvozkRcgO4HbgRVXb+T/AcPr5dGAKuDv99/F5xJsu/zzgljm2Ux3vJ4C70vW/AJyZZbyzfr+HqlocJI/9/wx8G/jZIhzf+eIF3gI8BNxZNZ1R1ONb1PN3gfOhcOdvrf3lef4uJtY8zl132WBm1mEKX9RjZmaN5cRvZtZhnPjNzDqME7+ZWYdx4jcz6zBO/NaWJP2JpJ+aY/7zJH0xj5hmk/RxSS9PP3dLemfaS+Q3Jd0m6WfT3+5Je27cmXbvcG7VNq6TNKNHe4R9djr/U7PalJid5MRvLUGJus5XSY8HLouko6wsY1rRwM29HTgTuDAiLgReBGyo+v1nIuIi4GaSet9I+knghSSNrC4CRnm0f5oJko7WzB7Did8KS0mf9bslbSVp5HS2pAlJ0+ld7vXzrPpy4O+qtnOVpG9J+hrw0qr5p6WdXX0j7SztJen8dZL+Mr2L/gtJt0oaTn97UNLvS7oV+ElJY+nd+Z2SPljVGvf5kv5J0u2S/krS+hp/5zrgNcBvRNo5VyTN8/9yjsX/iUc7GzsTuL9qnfvj0V4e/wEYlbSy1jG2zuTEb0X3VODPIuKSiLgXuC4ihoGLgJ+WdNEc61wObAeQtIakX5MXAc8FqvuduQ74vxHxE8DPAO+WdBqwBTiQ3kW/Hbi0ap3TSPpYfzbwQ5KeKi+PiIuB40BJyeAlbwFGI+KZwDRJR2zzeRLw/Ti1S+/5XAV8Lv38FZKL4XckbZX005WFIunP5bvAM+rYpnUYJ34runsj4paq76+QdDtwBzBEMuDGbGcC+9PPTwP+JSLujqSZerlquecDb5Z0J0kRyhrgHOA5pP3RRNIL5c6qdY6TdMsBMEJyUfhGuo0R4HzgsjSur6fzNwPnsjw3SbqPpDjnk2lsD6b7vzr9e/9C0q9UrXMf0LfM/Vob8mOgFd1DlQ9pZ1tvBH4iIg5I+jhJsp7t8Kz58/VLIuBlEfHtU2ZKc3XpW/FwRByvWv+GiLh21vovAm6MiF+osZ1q3wXOkbQhIh6YZ5mfITkWHwd+n/QJIo3lZuBmSXeRXGQ+nq6zhuRYmJ3Cd/zWSh5Hkvx+JOkJwM/Os9xukuITSHpHPU/SBen36mT898BvVBK9pEvS+V8DXpHOGyQZanAuU8DLJZ2RLvv4tMbNLcDlkp6Uzl8naa4ulwGIiEPAR4D3S1qVrnOmpLFZyx0G3gD8crqvp86quXMxyXCJFU8h6QjO7BRO/NYyIhkV6g6SZPZRYL4ubL9E0pMkEfEwSVHIl9KXu9WJ8e1AN7BTyaDYb0/nbwU2SdoJvImkqOdHc8Szi6Qs/yvpsjeS9Ji4H/gV4M/T+beQFDnV8haS4ppdaSyf49Hiqup97iPp+fF1wHrgBkm70v0MkozLSnphPJwub3YK985pbSlN8i+MiINLWHcF0B0RD6dPClPAUyLiaIPDzIyk3wJ+HBEfyTsWKx6X8Vu7uobkRe3BJay7juRlajdJOf54KyX91EGS/tvNHsN3/GZmHcZl/GZmHcaJ38yswzjxm5l1GCd+M7MO48RvZtZh/j9SjTq9FaT//gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = results['ra']\n", "y = results['dec']\n", @@ -372,7 +598,14 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# x = results['ra']\n", + "# y = results['dec']\n", + "# plt.plot(x, y, 'ko', markersize=0.1, alpha=0.1)\n", + "\n", + "# plt.xlabel('ra (degree ICRS)')\n", + "# plt.ylabel('dec (degree ICRS)');" ] }, { @@ -520,7 +753,20 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADKZElEQVR4nO39fZSl2V7XCX73AHlQKo9CxUFuRnCtjJy+lRlwKxOoSoGL0BeUdiGvgrOwuxW7Ha+2iDq9fAHRme6mZ7pFB3sGnEbahnYtRm1GeRUUwcuL0LZZdSEiLzciU8yIuhAR0JxIW04U6kmBZ/448X3O5/mefTKz4qWi6sb5rRUrIs55nr1/+7d/L9/fb+9nP6VpGi1oQQta0IIuHv0fzpuBBS1oQQta0PnQIgAsaEELWtAFpUUAWNCCFrSgC0qLALCgBS1oQReUFgFgQQta0IIuKH34eTPwemhpaal57rnnzpuNBS1oQQt6S9H73ve+g6ZpBvn5WyoAPPfcc3rllVfOm40FLWhBC3pLUSnlg7XPFyWgBS1oQQu6oLQIAAta0IIWdEFpEQAWtKAFLeiC0iIALGhBC1rQBaVFAFjQgha0oAtK5x4ASikfVkr56VLK3z9vXha0oAUt6CLRuQcASX9S0tZ5M7GgBS1oQReNzjUAlFJWJP1uSX/jPPlY0IIWtKCLSOedAfx3kv6spF+fd0Ep5T2llFdKKa8Mh8M3jLHj0Hg8furrRqORxuPxzD1P28bT8OC/8/eT+hmNRnPvm9dnjqf2O/8eDoftvbzW//Na/tTG6/ayHf/kOMwv+5t3ba2/5DPvrbVv/v3/7u5udU4oy8f9zOMt+88x5v3z5rn2f00+T6MfpOQteajpSrYzb57m9ZVzxd9P4vtxuvCkNh7H25uBynm9EKaU8vmSPq9pmj9WSvn3Jf3ppmk+/3H3vPjii81xnwT2ZPX7fY3HY/V6PQ2HQ/X7ffV6vY7i8TPf68/W19e1uro6c0+v19NgMJjpwwri/vb39/Xss89qMBi0n5s3X3/t2rUZZe/1em0bKysrGo1G7d/ua3d3V/1+v+XB9/B+O8rBYND20ev11O/3tbm5qcFg0Mql3+9Lkvr9vh48eKCVlZVWHuTdn5kPj9+8bG9va3l5uSMHy+rg4EDLy8sdmbHNXq/X3mfa3d1txy1phl/KwuO3jK9du9a25XaGw2Hbr/nY3d1Vr9fTtWvX9ODBg45OeO4sZ5P58P39fl8rKyva3Nxs+eO8DgYD7e7utnyRD88XdWA8HnfmgNdRHz22tbU17e7uduba7XA8nl/ySLnTyfF7y5m6zzZ3d3clqdVXE+fHOuy/rTPkcWNjQ1euXOnIxnxQF92/x0t98vej0aiVIQOR77FOpJ7Sjg8ODvQv/+W/1Isvvth+7rlMPXkcH9euXWvlNxwOtba21soodXs4HOratWs6LpVS3tc0zYszn59jAPhvJP1+Sb8q6SMl9SV9Z9M0//G8e04SAIwO6RCsmJw8kyfWRmGHOxgMOkZBp88Mhc5kPB7r4OBAS0tLneszCPlv329+qTx2Ev6OvLrt7e1t3bhxo/3OymYDcfvug8bnsUqacdzp7C0/ytTOkcp+cHCg1dXVGQeRhpF/J1KkQzTPnj/KjGMgr0RsdBaWKefGcvN8c55qusU5oQOl008H576pU3ac1AnL2brBMefnvV5PDx486IAIjlWaZh7ptO1YU9YO/nbcqTN0dil7zqt58fWpU5TfYDDQnTt3dOnSJd26dau1rQQ4krS+vq7l5eWWf84hg5TvefDgQRsckxfKfF7QdLD0vGQQInBKp8/AXvMDGXyp0yeheQHg3EpATdN8TdM0K03TPCfpyyW993HO/6Q0GAxaYRMd01BNNGip60SkrgH5Wiuolcn32akuLS11lNPOywpF9GdlcZvr6+ttezZi8+k+/L0kLS8vt0ifzsHXuK80GJP5X1paav/nmGqOuN/vdxCt+RsMBlpdXW155Rh8byJ/j928pnOijNKYOGd0ehxbv99v0ZYRMufSvNmpJRInGrQuEJUyIBH5Wn+oh3bClpedewZbf8fgSafB75nFcUzD4bCT/TEYGoVTRyjXdIKWba/X6yBmAi3fx1JXOu+0ye3tbUnS5uamrly5otXVVT148GAGifvv3d1d3bhxYyZ7ofzMn4nI23Nivmkzvp/64eDqrIl2QJlQ3rTRDPaeB4IB6mrq3GnTea8BvGFkQTNlrUX48Xjcplo2IN/jSbh27ZpWVla0u7vbfl9D7jnBdBxWSisYkYCV1spw69atjjNkYPH/6ZjSuXg8RNeSOoYuTYNbTaF9397ensbjsR48eNCOhTzVSk4MIHQqHIevoyETlTu4MCtgyu3vOL9O6TlWBnTfm4GUsqyhZAcplp5qiNM8ZADN4Gc5es7Ns2XLUl+iZn/OLIdOhiU5yoR9Wn+oL9Qtjy+RaC0rYXZJHkajkdbW1mYCHnWboINjt3Pc29vr6BbthiDHv5nRjEYjPXjwoP285mwtd19Hefd6vRY40DYYaAmWEgzS51BvTR6nKTP7s6A3RQBomuZHn1T/Pyklinvw4EHHYXASqbSO/kxvOTHp+GkwiegS1bFv9+v+HFysJNvb2zOp5nA41N7eniTp8PCwHZuN3Dyy5mny+DhOol47ESJx83rjxo02CPJaI6JMgY2Y6IjoFO3YOS4bz2AwaMsZKysrnRo4Dd99HhwctGNNFOr6P5EZU33OkeePmZIdBlEuMwS3yWtyvcXE+zK4S2r1M7NJ3sdA7jYy62OAIXLnnNWCG3Xezou8uH/znZmQv2fp0f1avxl4jIDZhvWJpbPV1dVO/+aHwZzB23LwfDx69KiVi508ZcR54meURWaeDH6Z0dL2Uz9cWmPZrNY2beq06dzWAI5DJ1kDkKZGSQOwETDKJpqVuqUOOhwbONM3on4iIbeTSEzqGjPbJlJgbZIBiSiVyJOIl4bMAJToMlGHEa35dgrsMb3//e/Xiy++2I6BqTUDqjRdDExUnU6KBp6B05+zZEN5ZJtePMugm21bLgx0XPh2WyxfsNZOPeA1ljl1x3PLunpmO5yPXLCv/c1sxHwzkKa+0dFRn1lGImiyDmQwq81VBjeidV7jPjKwUJdrmW0SMxoGMy7e5xxSPzwmlvyoC+Rvb2+vXW9gX9RBU2YFtYyCC820L8qL83hcetOtAbzRxIlP1Mb6XL/fb5FiOioqgzR1RK6h5mTxHk6gjczoSJrdAlmrByZKynt8HY3YCJplF2la4yYqTzRJNEZUT0T1rne9ayZb6Pf7Wl9f7xj6aDTS5uamer2etra2OkbDBU0TjZTlKF6bSMtZE43R9d6afGmwrOf6Oqb7lBvnj8HeepDrQnTq5Mv6QPTodozma0afZRPrGAN+ghTzv7W1pa2t6XOXmVEkIrV8/Xk6/NTDfr/fBhnKjr+tT54XjzfRNQEbgVMGCGa41KHUqyyvOEPheNw+AYW/7/V6unXrVsce+D1LrCkz6hplTsAlSWtrazNlWcr9tOnCBAAifCucFYZR20jftX2iY0/w/v5+x6iIlu2kSVlqopJQqSXNLUlkdmDjoWLRKH0NjYQGS8Xlwq2dGYObiYg7jZHjG41GHZRkFG6j93eWvdsluuT4yBvH6e9yx4b7vXPnTie7s3PKdQPPIQO8fzPwmehs0+DJj508x2IerROWpZ1cOr3UH5dsEiFb9omsOT+SdOPGDa2urraLrdSzDCjsOxExszv2QSfsgG3nxuzTwSZLdeY9kTqBChd1s3xKvqhX5J1zldmKeadNmAwwXDryPdR/Bm7KhnNAnlNH0h/Rls+CLkwAILKggnPhxUqeaSYNd319XVevXu0s3Lqe6b+tdO6LaCIf/rFypwOikqSymW8rfc05pYExUNjRUCHddjphOl8iopSrfzgWBiby5Pu4vTGdjBf85s0L+6E82ebNmzc7uy7W19dnsiUiUvdBR0UZ1AJiImL/v7293QnqXHMgwqTjdR90gOTTMmNgyNqzx8576VS8tnDjxo3O2LN8QYTODCwRuHlOPhNNZ8bmazk/HjezQqJm/k2Zu9TjshrXQixfZtOWA8fDOaFcLWfPnX/bZ9CmXCZzn5R/ymZ9fb0zjywtEyia1tbWziQLuDABQJqtIWbtL1PFdJiDwaCDbKUuApDUeZiDkz+vtkrnLk22v5ms2FR+KnaWdFiOSMRjJb9792417acRUz6UGxe1WRM2EaEn1cbttmjQ5t1ZBDMrO69EVg6sDGTj8VhbW1sdp+wH+FgmygyL6M59OBCxvp/OKJEwFyuNWkejUet4sj2Tx85Axow1SxRbW1szZQTLg3NnWbPsxyyWWRGdPGVqPXa785ycgwrl4VKLbWBra6uThac+U+c4lkTlmdX5x8g6A4xlnc9JWDa8jovWeT+DAMuJHh8DMMuG1vfLly+3MqAPoEyoVwSwp0kXahGYaNpEY84toltbW7px40ZHKRNN00lzsY/KLM3W8YhWGJQ82Q8fPtT169c77e7s7Oj27dsdRJxoiAvFNSfFvrhA6v9ZLqEjOTg40OXLl9vtr7mjw/0lYrPz4BOpNd5MuXBeq39mlkXZWdY12acjYCCkPjBoZzZo8hhqC4Vsg+OqBeUsCZqHbNfjY3ZAh00dpAOhIyVKzoyOAKjm9Dheyp1BgFlMlp4eNwfMSN22A2VmMuTX7XEeOGdG5Q4CXmB125QtdZT3cJ7owNkXgQR5ys9r9zOoZSmT7aWuv1668IvAJhpWrcYqTUsfRqDp2KwsRLC58JXOJWuK6dgY5QeDgW7fvt1xwi5pZGptI/G9Rj5EDkSIieK435lySXS2vLw8s8uFjiWPZmAazMVM885toKwVU05sw/f4+qwfky/LkGU6j9dokTXV7e3tGQcuTQ2S6DsXEpmZJQigTLnlkPNvh767u9vy5La49XdeCcTyYEaT5T1fmzuRauUZOk9mILUdMs5U3L5lzoC0s7PT4cltbW9vt7L0AjwX0DlOOnsGKpOzZtpmDXR4QwCzZYOXO3fuVLMd/7hNOm/qQWaUHhPvYVAgYPJ4c96srwRFp00XJgOgMzs8POycP0PkZIQkdRWvRpxcIiESUVeeT+M+iJiIZqiM85Czv09U6K2ARCk0cCoyHRf5TiTs3+aPzs/GZSdOvuk8JLV78hPlsBRA+ROtpfPzvB4eHmppaan9PFEvF1lrQcNt0wHt7e21T3DTGUkTZ5ULshwbHZD5TBlK06CcD6wRFScKTj44pnlZUwYn98P5rWWMucbANYp0TA4IdGRpE57T2voUAYSk6i65zKRyjHTuNftOJJ76xIzE/fF7ZkAZoJjB1LI0tlMDZbT5/F2T5euhC58BuF49GEyOJpDUQaGcEAcC/p8Rnu1Ksw+jSN06qRWSaJPBILMR9lPLFKzcfADHjqTmdFn7TRRTQyXSLCJhUGAdmbtfmKanstaCnP9nsHD/BwcHHUdohJwZUK/XawM6x+MxpsES5XLu05k76/GOmQxoziYYRFxiIOL1uPnkuKQO0KDe1bIY7qTx/7ljjLLx31micf+ea443dSIdNFExAxvn2mOwXFhK8VwbLEjT3S3UGz5bQVBgYOP/md16zvlQIYOnbYZZCkuGdLieD65HpTzIH+ff2QLtyHNJGfs7ZqLzSlxPAqInoQsTADjh/Iw7gNIQer1eu3edSuFrnbZzR4Enm07e3/ncEk8olZKBg/eY0rHmtjAbB3mn07dTYnkmSx02KjuIa9eudZCz1D1TiYFAmgSMvb29Gcdq/kzmLctUXHsxpRGlkybqSufELIU64B8u9vMZAjuwvb09jUYjXbp0qeOUnd4zQ2LbPEqE82aeck99oj06NqJ0Bj7PExEpwYDnkw/tmTcGb8+p+WCt22PNTMztJzo32XFykZkOlAAmQQMzZs45QdW8Mhb1Ku/xNcPhsPPEuo814bg4piwj0hkzK2AZNMGYZZH+xeUd8+NyGechM4fTpgsTAKTZ3QqJqogIPJm+hk6Cn/V6Pb322muSuo+cZxpHFEfHYwNjIKrxnamtx8CjdrlF0MHL480nJe1srZzk2Xzwx/dyBw1rylbQS5cutU6YaJ4Or4Z0GUR8mB3XYNynd06YR67FGHWlQ+XftcBqxMYMZTQateUfPkzGALO3t9fKII82SFnRQRmFUw6cVzu9jY2NTvBlMKP+0kFzHMPhsAUwbtt8cl4yA2I/LmcRYKRjYrvmJxEwj/GgDG1/RNDUb2YOg8FABwcHnfIKgy3tgwGUetDv99vjIKRJlpcbKpjtpj1yPvNaj8tj2d/fb69hILN8OK/j8VhXr15tdYHrQZbhWdCFCgCSOs6ExMBApMyygr+nkY/HY928ebNjkHRQqdBGN3ZE3t9L50Wny5KQA5MpFZb/+3oalu9hHbVWSvJ9NILkK/vzOPnAF/dn2zgYHEzMoNKJ07B3dnbabbg8cM3j8zU0FqLm4XDYLqyy7OTgyHFk7dffmffRaHIujWve3COe6NO/7QQYrDg/vV6v3eoqSTdv3uzoH8sr1g1peqKpt/iaVlZWWv3KkqazgRxvInuW2lg6ST3xGhfBAHWHwZCgyDZhnjK4+F5n25cvX+7onuXFrNn/OxvNLGp1dbXjqJmxHB4eajQazTwZbr5su7UA7LFYP69evToTIAgqM6vxXO/v77d/cyNCDRyelC5UAKitsmfKlzW9LLUw9cu2iURzMdmGmyUk91nLHCS1DoVoZHd3t1Vullnu3bvXCV6sERMB0Qj9HXdz5HgYFB8+fNjyzC2kDBZE95RJBjb39fDhwxZdcqHS/R4cHOjg4EDXr1/vOJ2azK5fv97K1fv3GRBXV1c7KNIOw88M0DjdPxfvHdjScXkeWB6is/D11DFmUMw4PR7uDPLndugMlm7jhRdeUL/f18HBQYen8Xishw8fzgAKllE85xwX9ZD6l4HAmSbr5tRd/21esoTDYMixE5SNx+POAYTUz1w/MQDxsxgZcOhQCeQGg4GWlpY62RR9gfXFc5wO3PqbWWturqCd0e+Yn9u3b88EzHl+56R0YQIAkVciktFopP39/Y6y+O90orUjianMOfmJeiS1hs2jcRkY0knbmZO8kM1Sw+3bt1tnQkUnKpG6aSUDViI7P83KMV29elXS7AKjr6HD4iFsNeX1Q0x+str9MZPq9Xq6fPlyi/xpEJQJMwc7odXV1Y6DNb/5voRer9e+QIfjoqPyQjCdGk+69I9LErnLxQ7I8iHio04S2bM/ApVEgrnQ6gVxlveuXr064wypb8xA/DAjx+8+s2TI9RLznkFqe3u7k9mkzLzW4u+8wG0erEvciUQgQOTNrND3c15rJVQGg1q5hjrn/tO+XbZJHpgBWn6UaQYAIn+WK8/C+UsXKADQCVHwVqzr169XF3wYme2IaWyM/NI0xXa7UvfsIbdLA+Q1doK5J5zomkqdZOdHA7Sj4mJvKiQPNvM6hxEUx8ryg6/PMpWNgLshjOpoGF4Qt6LzyV9fw0Dmz9IwOafMOsiDnTPlzfmi07Wj9tbMwWCgW7dudRyekS8dRmZyWT40imX5i/xTh1JnGeizPJVZI8GLx5MOhCU51sl5EqXvpVyoT3SMDqqSZh60Wlpa6tgN9bbX67XvAPDYud7Cua7tPLKtMKPid5wP/3jsNcDFYMtgbP1NGfo7X5/lTGbknhN/ziyDvod+wzxkSeq06EIFACI7bjXzxPusGE+WFY6GxEBA5UujoRMisjZC4iSzTOC3G5mIAtIImPJa0axIvi8zB6l70JrbNfpJJN/r9dpMhbtNuAXS/bn/2kIr7+eOpMx27LQtz9FopNdee63dLZEBkD/m19876PFaX2NHTCdAp+VFS5ZDamCAaJbBLksM1ie2J6kTrGvOkVtf7YR40qr1wGP2HND5ke+9vb1WRxgcaxmieWAGaAftwMjAyXsIDniEOdE9nTF58jwwk+aRF5YHnSVLdCy3uh/biucmS4CJ2j0P/IwbKXg//YXHyuBg+/H8ZT2fwMUyIrg0cDgLujAPgknqPLhjolO18nkxyPVAqbuLhUir9p2Vze8BJvpIZfTE5wFTRDfcXmZi4KAyMaBxHYJKS2TFcguN3OMjv3TilB/TV8rXgYlI1caWayQek69LRMa2HAwy0OQ82nFxfP1+X5ubm53AyPlmME8kOBwOq2UfjoFzSseamSOdvR8eMy+Wnb9jQLeMyKcdu0/59JEd1IWUAfWBDt/kB91Sz6mb/syL/SyNMBCxfEPH7rY5Vww2NbnW/qauSZPnR27duqXRaPJ+bM9rEjOCDLzWz8x0MkuYx9c84nn/biPXDSTNBE/qxHHowj8Ilum01H0AROrW4e24rfRp9FQEInE6AL9QXZqWWuiUPPFWOCoVa8Vuj/VLoj86KDsFG6Q/J5IkcufY7Vyp9JQT2+OCodFyGiUftMvvuPOCyI5oeTyeHodA55HbNhmwGFz9P2XMF9pQBl5TYQnKdf/RaKT79+/P1OoTNXuOGEzdD8dHsoP03wcHBx2n/dprr7V/55lL1AGDleXl5c4ZU9RHo2zzSz2sIVyWpBjcsxTlnV92wP6OmSERreVAXa5lpET4vo/OmqUT39/v9zulSz7DMe8BOLaVgMXZCcfNZyP8GcdOXeR4pMkbyRh43G7acr/fPV7lSYHluHRhAgCRttTdw20H6QnhtsBaLZSTl8Zhg8vTCKmkDx48aM9CSQeZiD7LS1Ymon8uXrH84TFlHdff09nTsLLumcix3++3u4FYSqNzcTt2oplxMJj5HgZUGjPHniU3OjfK0+3TWa6srHTq1xw3ZWhaXV1tHfzHfMzHdLZ6kmc7SzouGuzOzk4rR8uWAZ3jffToUceJXL9+vZULnRED4traWkcHWeNOZ+d+KXcTUbg/z332LPPxPl9jGdq+qGcEKTnvDAR0jCzjpON0SdCf015zm7DLKA4EBER8YMvbWf1ENx0wj2AnkKF9E8xwPc7z4MMls53MjKg/fHfDadOFKgGxnJIII2vFrP3Z6WQqz9SQZQepuzeeji/Tcl6T/NApUsGYavNz8s2yUjokGhGDDRWWi6j7+/u6cuVKOy7f7/4oF8swyz/JKxXesuI8MU1mfZeokYd92fizZEYDdN9EyJQFyW0xMLOswWyR7XusrEMzm/Pc+H8GTV/LOjsdAgM0+93e3m4X1F0CYoDITJd88zPyT7TPTIEZFXXY31OnCXr4ABpRLoMxeUq5Jm/UmQwMtJO0Ma6TZVmPgYrgxJTjNi/Uw7yHpaS0H/9vUJgHSmYJs7ae97S0KAEBuREZeDHQxp6KYGdI1E10YUdHY3UfdGosm5gft727u6tXXnml48CNPu7du9f+L9UP//LfVniWrdLJJfIkkuOuHWcQkvTMM8/MZBw0UiMrr7FI3RNWiXo9bj/27s8ZVBlkeY+v9/j5snmPy+1lOYYyyv6yNOE5Nh/379/vfMfAxXUVGjXH4AVzBs6UC8flmjq/Y9t0pP1+X0tLS+29N27caBcj/T11Lsdu3aJNcG5zdwrtwO1y8dP3s+zogM5Fdo8z54DXWEcym6P86YQ9RuoqbcrOntdxgTr1OmVPv7C1tdXJLJN3gg36HG+HpbzdNmXsuWbWexZ0YTIAOpNMDYkW/JnURX35nTR7pDMdlCeUkZ2I2U4jEaX7lbrHDTPosF2ip+SDAYrBINvntj0q/bz2E23RaIgc2Vc6nbw+U2fuqc4dF3TidAZ22iZmUJaH5WMZeodG8p1tUBYpg9rfOUb2m+Pu9SbPXPAlMhwnddCf07n5vRXS5NmKS5cudV5MRCdKOdPJZ1mCvBF9EnxI0/dhJDJOJ81Mwm1S1/mbJRjutGLwoZ7mvCaCrwVbZoy56SH1kX1QT3g9ryWvtSzRepqZEuVgX2V7IA/HoQufAVChM11/XC08kaiNlVspjXasdDyTn+iPiiHNbvG0UbAuSyRBJcxSlj93uwcHB9W2mAX4fvJrPllG4UKb2yEaY9+1B+XYdhoTd73QydPJsOzDmispHRyRHzMCZhPXrl3T+vp6ux6T6T8deToQBj32RaNldpLBjDwOh0Ndvny5036iQwbxzCAYOLwIzIyEAbI2Bm75pT5Rb6yfHLeBA3WcfaWN2Wlan/lcCuVku2BZkXpAO3n11Vc7nyXQcebNdSyWA1mG4nz6by7Mcjzp2BnwPPcEE5xzPyjHQM62mUmTv7OgCxMA6FSGw2Hnna2cBJZS0sj9t8+A8TX+jogzERERBQOM23DZgAuLRAN2AAxGdMpWMB9/4N0PLFPQCfget22+vMDnv40wKb/xeFKaSgfZ7/c7i4bmnccj0BCYMREp+/+cs5QzERYzhsxa6IwzK1ldXe289Y0Gx1IOjZ38J/qkTviHW3zzxMjsl+15zP7e2ykJLjifDJCpm5ZDbhTIjIdB2GiV76MlUmVbqePUI8qOgIoOuLZjJu2uBnief/75mTEyQBIw8N7aYrr75NoP59bXW3aWl0FPypx9Uta5eYAycZmKuuV2z4LOLQCUUj6+lPIjpZStUsoHSil/8iz74wQOBoO2bpoOdN7/nHwqHCP5zs5O+xmVlQ+3MLgQ1bvtlZWV9rF6ovFEWtyCR178ROZrr73W1liJpIhue72eDg8P23utzEYg3mXhRUUGkNu3b88sfFGRPQbzTKdC1E8Hz8+l2Z1MmaXYUdtohsNhe5T0cDhsn9SlAdO4ue5TO2TP7XBOPU6Ol5/T8N0HjTl3O9UyrHRyvsalA+8ooh7U9I7OlIEjA09t/ti355P9cBw8XjkDGO3FY6ztUOJ9/D7LeAmwuNieWSrBEsdCp81swPc6W6EuZn2fPCeo4PwxG8psOTMAzmXOBYPradK5rQGUUt4m6W1N0/xUKeWypPdJ+uKmaTbn3XPSXUBEHvkQUiJQG5qVixNBx8eUvqaAnMh8ETXTRv/v19vVTpWslSR8zauvvqq3ve1tHWdRM3T3s7e31x69MB5P0lI7/oODA126dKnjHAaDgdbX13Xr1q12L32WVFZWVrSxsaGrV6/OpOLmh5lLLQXO7Zycm35/ul5h8pg8pzTSfIhqPB63b/myjPnwH4MRHRYzghwPd3hwvs1bOrFEhkaB1jmWejhnlhfLMHT0lglr2ia3Z8Bjnq0DiXCzRJfOiePjIjsDJzPPzAJ8ncdOR8ezeWhTdLK+fh6f/k2w4HtShg8ePNCjR490+fLlmaDLOWN/NdvlOgkDvPujj2BgZDtp65RbBvvXS/PWAN40i8CllO+R9E1N0/zQvGtO46XwUr32ORgMWsRYS+up0G4rFZIpsa/h5LI9f3d4eNg+tUiDsrNLR5AOz+2yj36/r5dffrlNj4k+iU7nLWw+bn0hjUHqPnmbhuJ+/H86xHQQ2RfbcWBj3/ybT65ypwoX3fOQNt/PYJF13yy1pSMxj9mnnZG3aXI9hgCDu8jYdjp16h/1mLJjGzWds66TF5P5SAdGWaTMqQ+1791vzWlmQKRuUv9raJpbPDM4DQaD9t4MXll2ze22XFDnte6/lgkSwdcyLPLmcTHYu1xGlG9Z0J5Srq+H3tQBoJTynKQfl/SJTdOM4rv3SHqPJL397W//lA9+8IPH7ifRJh2j1EWftVosFZjGR2WuIQVJM0boXR9ENkzXHz582L5nwDwwCKUTIy8mK3gipRraowzssDyuDDTsI5F8r9fT1taWLl++XEWlGQzZB+VDp0ZHlM7ORMPLnVUMmg64P/ETP6GXXnppZr6J2mq7YzivGfjJD7Mi30MdyiBKvWS2yMyAjsjjJaLkfFNveI5MBoR0xmzX/NJJUvbMyny+Vepy8kcwkzxRtzKLyuCYfFLnqdecKwZQltAoq9Qx6pSDOU+ZnSdTBoTMhsgn9YCVh5q+nUUAOPdF4FLKM5L+nqQ/lc5fkpqm+ZamaV5smubFk6RANmRPjCcnkZ8nMw0ua/hErU4BpW5dmAhB6p7F4kPfzBcdRL/fb49dJvqVpm/9yjIIebFxbG1tdeqpVqB8yIztStNdJbnIRyXnLg9mL7u7uzMH2hHRj8fTJy9pWESYXqDPTIB9UrY0ZDsFojrOu5/ufeGFFzpOx2sQTLn9Ox/Qsf4MBoPO6Z7pIDPzocOgM6AD81oPQQeDux1yAg/zxkVm3++2qKMs0XFdynL0u6uJjM1f6hPvJ8/83DrL9yUz4FDe7KfXm65FMQuy/Ckb/+bxHLQxon4GbT6oZ13kfDNI2jZqa0N5HwETx+cxJpjjOg83fZzE8T+JzjUAlFI+QhPn//9tmuY7z7IvK6URC6MqHXamtPycSumJ29jYaNv3pCU6YRmCRpUlqXmZgxWB2Yg0PbHSDiydlc+H8QtCrLTr6+vt4jH7pCM2z76epY1+vz+DKp+UWfi6REhclHW/XnRO5354eNgGNmYsvpaP9HsB/HHlCfLpfvyOWDprolnOPYOeP+dYGNhzQdTt0WlwLCxxUA7cUED5ZlmMOmhnZ8fCrNC2kGUhP1nsefVZSQxWDgrWrczCzKOvoQ3w4Tq3yYVZ8vjw4cOOLbFNt0HHyjedWR7MPBg4fD/XMjiPBB219mhDlnMG/HT+NTvg+ozXuQi+zorOcxdQkfQ/StpqmuYbzro/RmoqQzrlzAb8kxPqH++GsYEZFUrd5wiouIl4/Zk0fWqSDoh1WDqzzc3NGTSWZ6CMRiNdvny5U2q5detW2y8zHaNPGsRwONSNGzdaQ3AQ4Ng8HjpHOrY8CdPozSmv5ZfZBlGiNM1Mbty40fLI4Jg7NThv3D1DmdOhDofD9hBA30tD9L0cH42e8smdVwQbDB78zkHL37l9Zkx0hETB1O8aOrXjZ2mBgYbn3pjMF1G6ZemgkOU5onAuaLNfSXr++ec7fbmdfr+v9fX1TgB0KZQgJJG5PydwcLvMJqXulkq3kSVKt2/9NC8J4DxX7C+vYXChzpoX7qIiTwkiz4LOMwN4l6TfL+mzSynrRz+fd1adWXmc6vNzTkaiTisA9/rSATBQ+LNEhLW0z8QAZOOSui8FGY/H1WNkWb7Iz/y/XwVo4/L4mfaSb5YJyBsdFh3tyspK5+XXNZREeTONNz8cp4MUr81gYMfNUgmzojToXDx2Ozk3dFC+h+3zDKHk3eQ5rKXvDBrmkXPl+XX5hcjSmYnnkUGYyJK8HBwczHxm/pI3Z4TD4bBzTEdmyWkrmbWOx2P983/+zzslSmanLjUSZTMAS+oAlgQangf+b/32KyNJCbzcj+9l5spr3Dd3FyUfHrfnzXxQh0ibm5vVTJHyZUnYPxk8T5PeFIvAT0snPQoihZiTzvcFMOrv7e3p1q1bnV1CTOmsKHy8230xrWd66H7Jn9StQ6ZjIiLgsQdGTw4SNKYa2ktEQcfK3Qhp5CaOkWg3d1BkZpXBJa9LQ6QxmrfhcPKO4OXl5c4CZ84tF/kYPFMn3B8NLZ0ceWOgl9SZc8qHGVvOMXeL0AFRrkSBLCmY33T61ClmC7X78n/uhmN2bGfLMgh1KAM89cX2xDUDyidlSoDkfmryT/va3t5uXxeaJTXrXQbAeZkmQQZtNdcfskTL+aqNNRd0aYs1J7+zs6Pr16+331vPTkJv6l1AT0snCQC5q4OpqTR7jkg6B18jdY3Av60oTB9ZO5Zm0Ug6tlrqR97YZzrwGv/D4fRFJxwL0YpLD4lenKrSwdGp2GkQ7dL4eaInx5sOkYEznXEGssyK9vb2Ovu3LWvyXcu8MrhYL2h4lK3vJ9rOM2Tct7/jXFIGucXWY2SGxnq8+09HlnpXI7djOXEOKTPKidlSrUTq63ItIm3FusiSEecgF2K9k4jHVeRbsKxT7Md90Ua4vZZzRqSd2V/NxlNP6KgzIDFwuQRGXg1EHFBz22+OJ+XF6sBx6E27C+iNokR3eeIkyzp0PDkxNRRNo6cjdtrLEk2e88FrE4GlY6cS2wnbePJIgNzFRAfKBWAGDCN6K14+5MQdO8w+yL+phrycJbCMwzII6+F0SHRA5m8wGLROjfPgcdAp0kg9jszC+v2+bt682Sk9ZL02S2LUAwbdWt3W9XqPO7Mq3+snbhMAsGxBWTPTSR4tUx9dkiUJy+zg4KATgKgPKVeOnxkAMw/LTpoChJwDyotB2N/5+Inc9OASZoKJWrawtrbWyj2zdsvNGwZyXNYbgrhauZTzaZvs9Xqddbx+v687d+50Mj8fr1Ir7ziAUMY1AHAadGECgDSb8jNVNtEpsk6eCNxEVCxNA0uiOPftyE8Hnek8ETDRNQ3ETwy7T79IxD8PHz7UYDBon/aVpu9DIMJzXzZOLl4SvdFgLQfz6F1Gvofydq3a8lhdXe1kX5Yb+fHfNrI8PdU7JRio7cQYLDKw1xb3aw+G+fM8HsLjMb90iLkgzTllum8+TAwG/f7kaGc6F47bawOj0Whm4ZDAggGCSDznU5oEEJfTcv64QMySH++nHdSyao+DzpByZrAZj8et42RbnE/bWgbSBDx08rQ3zg+BC+VEPU8Q5P58FDnJ9s3/zdPNmzfb+3u9XlsqZTbo/y3fWiA+bbowJSCp+zCO/2cJxI4lF1ulbu2UkZwIyMpqhGqiAVBBEl2TD6eQeXhblhY8Jm59u3Pnjq5fv95xIAx2Htfh4WFbP+W1bj/T08xA8r28/p5rEkTaTJ8pV8si6/W9Xvc4baJIBmWWm7itlLyzLJSO1eOvPXmaxsk5NtFRErmy/k0ZUl657sQMi2CgtljJHTgmbiekjBM115wKwQ9Lkv6O93F8DHZZuiCxLMLrUo8IfjKbYumNsuT/nLP8nNkGHT/Hl7pvMDhvcZ+yZL8MNtQft8FA6vnMMmVm78elC18CssD39vbaFJXIy4ei1SI4Fd3KwBIBr3V77pNKzYhOx0Tn7Hbs0KjspKwRm0ajUXsWD50V0QmzA/JOozg4OOjsqCEi6fWmNXCmqGlE/sxpODMRGq+dE52K5UsZun1mRjk/Kysr7Xt1x+NxeygdjZlI0DIbDodaW1vrnOeSP3aMWZbY2Nho98Tv7u62yNQo3VnMaDRqS2Dm35kGHXlmpO6Lzo4ZmPvgtkvqnwPb/v5+57ssoVC3iMp5TW2uzaOP1a5lYgYp5MnEnUHux/rNXXvUH26ZpXxoF5QN9cRyZxCah7SzvMVAR/9Rc/xE/Cby7falyTMVDBR7e3szdncWdGECgIW7urraQRj+znuaLeh80pWovpaiGaWlI5emDpFOls7LTiedE/vl50x7zQ+Nw07P3+We9CtXrnTQPGXkz11SmleDrC2eOzDQsPLpXbeZwdNtpqIzINMRWBbuj09/emF4NBq1h51ZLiwbsCT06quvtsZpw2MZimNkUHTAXVpaatdWPB6jeM/fYDBoH86jrLln3m+A8zgt41q5wYGFPFOHuDA5HA717LPPts+OuF33wdIedTVlwbIh2+71eu3DY9ZD2ofbq60BUH8ZOClLz7PBBA9zzEzaRNv0/35/suVNnasFRF/v75kZ0JZ5D+eOvPV6Pf3CL/zCDL+j0ah9et7X+ZkXy/2s6MIEADrPrEfSUbOEwXooFz2ZUrodloeMcIgSmJoPh0Pt7+93nKA0u4PCv6kwTBXdn/926cBnDEnTJz0zHSWCNn92KJLaEpLHy+cgjPYoB55hwkBpOdqxMThyPYJ77D0PvNZzwieROV9EjSy9+PfKykp7PhEN1/8///zznR0cJvfPQJDlkPv371eRIYkOk3NJ3bLcGaw5R8x87IgcdNKJcfwcC1+j6fG7D64rsIySmUmuTxAouRR5eHg48/S79YGOnEEiM0f36Ws9/syKWLrMQEZHTPlRv9wPwUFmiC5dmQ8GWfNMIMJxusQ1HA710ksvdfhIYlZjneb8njZduABgohLRIdXQlh2TH+Sg4503kUTsdAp2ltevX29Tfxo1Ub8Dhu/r9/u6d+9eR0mM6LijhvXptbW1DiK3QaRDspFx6yZlwixiPB63B2IxgDCtzgBz5cqV1llzTrhbwu1I01IKZWO50Hk5EHHu3Of29nbblue89puI17LgTijKp7Zj5G1ve1vnf+oDs0pJ2tjYaJ0a3yxHfpjZcM4oTz98R9mRL39HJ8XSGPXc/RA9s7xE/ghyUrcpw1u3bs0chMc+iaDZdiL6RL+1oEj+cw68ruc+E6VbPlwj4lxsbm5qe3u7E3B8r/t0G8zWqbd+7ajlS/2zjnP3Hcfvs6YWAeAUyAjSkZrGl8GAUZ7Ik59T+aRuGl07PVHqKj6RT78/2frG3QWM/L7O5RuPhw4vMxIGJyJfoq7d3V1tbGx0eOd9TPsT+Sb64WI45WS0xYU0Bg6ieJZnaEy9Xk+vvvpqy5P55w6WDN6PHj3S/v5+x6Gbsg7PoE70yMVXGyTnnZ9tbW1pc3NTOzs71SxzNJoca+DPHEQpHxMPBGO5xGN1psBAy2BA/fCPD8Iz75RbDdXTWTMLok5aLpwTt02nRaft6zMAZZsMCGkL0rSePh6P279rwI7BoZZBuMzja7mRYG1trfPOBN/DLJfBKDNYgzSOiWU3z5H541oOX1V6VnThdgFJ3Z0nqWw0WBpEoipOMJWKjt2Ox/f1+5MXsVy6dKn6gJXUfWAtMxEqIZ2m0Us6DFNmIGyfiNwKKE0c0E/+5E/qne9854yMrPybm5udUzfNl9uiITKIJG+cC9/Ph3lypwvlwTpuot95uz2Gw2G7w8rXMHvy+MxD7gap8ZO7bJwRcawcox0qr2GwoyPl51maZAAgMMgg68/pxDzfWTfnHCVqZp/ZF+VvXeAc8ZAzjmlra6s9bC4z59Q9lj9pH1xzIsKuyZMlQpZY6MjTDhmI0iewPLm2tiZJnZ1N3mDA7Ib90AdkhmZdzXl6vXThdwFJ3d0ndGRMu/w/dyEQ4TDK56Kxr3db+TCHEasnnk7SxHRb6m6t5P8+liKRNJXfxuZ2adT+nQYvTRcv3/nOd7ZjpLJakbl4zX7oIHyUr9Td3peGvr+/P4PKB4NBW8Iyv/5hTd5ZCh0DHY+ktlTk8fE7yodzxSwk2+Pcc278fR49Yf7o/OnMGUDMJ4NNBlQie17jIGadYZ+eQy7QZiZg3swzkSllvLKyMlMXNy8sWbiPfPqVpT6+1J67gwh20gFTH7gGxAzUbW5vb8+UPF3WSfDCrMGf+bd3KxEAJuB48OCB1tfXdXh4OFPqYWbhfnMH1Gg06mzioI2dBV2YAEAkZYfPmj6fMpS6St3v92fevevffArQlJNmx5A1ViuwNA0gtd01rK+PRqN2W5+NeTAYtNtbGaR6vZ7u3r3bjss/DEBE5nR+5sHpMZ2PnUGiIQbSRPzuywbK82dGo5Fu377dMXS3weBDJ2N59Ho9PXr0qIMQ6QTMgxfG6cjYPo2a8jAfns+UT61cQqfktlzay1IL28z5SEcmTdYQ3D7n0+1w1wr13jrm69bX16uZKp2fg4EDsh2Z2yL48f90dNzymHpN52g+ElS4TYIqZkwO6gykXMi3nHyaLcknynKslqf5ScRu8py4TQdC68yNGzfad45bR+1jMrCYdnZ22jm/fPlyq0vcSnwWdGFKQGm0dviJrqTJBG9sbLR1VqaHRCKZjj8ubaWRsX7IM1AGg0F7oBrRpY00yxpZorLB8kEyptfS7KFsiUZTHpYVEVw6ajp+OrLMYvx9yonO0u3xOpYMOI7d3V0dHh52EKT7sLx9cNxgMGhLVuaJJUGWbPy/vyPqzxJVlnNYYvB8pXznOd6aLPkd5cugzABE0GDembllBkbUmxkidYS8UG58Sps75SgLt9nv97W1taVLly51zvnJ7MBy4LhZkuEcU6doH8xC0t6pQ8wCaLP+PvUiAwLng+XeLEtS3tkfqQY2fP2iBHQCIlpjqcFEBz8ej/Xss892rmME5g4gSZ0tjnZMjPw0vpqB00D5onZ/bmWi8fpz8mwerPDj8bhFE1L3pRx0yP7OY2M5IX9z1wLTe5YkMkVmwODYjOxYF6bhuAxEtMT2+v1+52E2j4fG6BfA25ApLxognb6dC4MBnX+WIjh/Hpvlw0BY07fMDBmEPce1DI0I3G3nehPvTTlnCSidaDpgf8cyBvn3ribroDRdyCb69n53ovrUGcon5452xUx0PJ7uKKPjzIcOM1BS3rQPzl1moeyb/HNBl1mo+2TA930M/BmQ521uOE26MAGAk+CJsPA9mRndDw4OOo6N6T1REPfME4VYoYhK3CdLB7UdE3RO7t+lD/Ps304t+bfb8VjdFxemcqxEYHRCe3t7rWK6fR6m5/GZb/ZPA0rHwQzAsiM6TnmkA6bzJr9ZQvE11IN0/Kz3c0eLeXWgo/MnYiTqlqZnQrHUxcyQwSMNnFlBZnk5Dywj+V7rwsbGRpuBcFwsIyay9XUEKam7ROOUkctsLL9l0DXvlil1g8DJesFg7blPsJFBrpZlEWyxDGgyr1zXcJuUAdE79YJjtBw9Z9RjBgH6EQYbtmF5nRVdmABAQ5Jmj25IVOwHh4gsrdw0ONaRWae3ESYiTz7cv3my48p+uBjtezKlZZZDg6HS8c1PNjI/PMaD6hgQWUNNNEXDNgJMp0QZmmjIDCpS9wldy7NmXJYvr6FzJRr0fTS6g4OD9r3Jdj6j0ey+bc4bnUZ+noGOWdq8QGDkTPRHpE+HStTP+j/1zw7p2rVrunr1auvomUn1+/3O2o6/Yykug6v1xy9d4RxTptSf8XjcObTQc8IAw75YGqWsqZc8XdeBiPJiP1lOIUDL4Gq5ZRsMZtTDDPD5EJ3bzOd2MjNI22C24//P7UngUsqnlVL+WinlbillWEr5uVLKD5RSvrKU8pvOjKszIk4EU3um1ERDdgw07ETrmUVI0/p0GgqvzxeZ8LcdeaI6BxIGGaJDbjWzgvl682IDMp90pn5IiT9WQO9qYVpKpZUmD//UnH1NgYnsMnCl4dGp0nEkOnS7w+Gw41Q5j0yxV1dX2z3eHofvJxgYj8dtcPMxvnT6XAwkYswshf1Y5uPxuOWB+klnTNRqMhr1jhEGbZavGAz9m7zQsVnmXvMhsvYY6CTnBXgi5wQztUwuHW8G/SzTcJy0SbefD/6x3dRjt50HF+acsYJA8llOOSZeR3lwbNQ538u1EAaJN3wRuJTyDyTtS/oeSa9I+iVJHynpHZLeLekLJH1D0zTfeyacVeiki8BZj6WQedYIlUnqLnyxrsp0O69jzZKKbKJBsG3fQ8XIdJvGwLSUwY3O8eDgoD2GeTwety+JIRGZmj8apa+x7KRu2ipJe3t7nQVsjm9/f1/Xr1/vlAVYOzeaY0aTO1w8X3QI3m/t6x1Y6UD58Fmm2g4OrMHW9ISG2OtNtq0+88wz7fyko/C1XLj0WKh76TQ5tzVeeJ3nmpQbGxiscqGa9XHzS7DiPs03kTKdb20Xke/zJgTKrt/vt6e+mphxeRy5gE3doax2d3d1cHDQ6rQDGPmm/PKhzny2I/WCdu35ph3k37TVBGkMgB6n+8ux0/65oH4cet1vBCulLDVNc/CERp94zWnSSQMADTKRWTpXK4aViIoodc9FqSHU/F7qOvIaH74+nSL7rTl5GiwzFRo5aTAYdB5UoUN0ejsej1vjzTHReTJzGY1GHRTse1K26QAzAJon75DKI7o5vtrcsQ06fDogy5pB19fYyXCHi8eSpSY6BgZl809Hw/Em2mSbdkhcH+C8cNHdcmR5hA7Y/CSfHE+/P3kRuxfUufOFbUnTB5zosKk/bp+Bmdek3mYgo255LNThtBvOqeWWOs01vyyxJB/UI8+1gQXnno6cPJIvloko65q8yIsDNfUjs5nXS697F9DTOPY30vmfBnGinFpL3TSYaSnT9HQmRPqJtNKBZ83RipKOl6WHfn+6d5wIxgrBExPtFMyvx5hOMo3GbdZKH5KqO2z8O4OLjT1LH3k/EQ/TZdbKfb0dmhF8ImQaI/uwvDjOXDthFsOsgrVgjzFr0zzziLV11nY9P4ksWc5zm0zvfdYQsw4CEo/Bc+7v3A93orh/vnOAAZkyWFpaaseRNWjW07lOQ/lzbsbjcVuOTF2grdDpsm4+Gk0P5BuPxzMH2LE9Zly5C4d9pk5Z7tQXBnjymcibc5J2liUgBivfmyCC1zEbyIByFnSsReBSyvtPm5E3ghi1ubDmiaCSeeLpqJg+ZgmHzlmaLgDagBKZ0hlK3UfZ6dD5aLvvMdImkqNh8tosCdQU2v+vra2154/QCCi3REvkn0Zgo+ITu5QVUTDRdyLjWsnEmUHyz3SdazsOIkSHvD53ZTBT82P41CHqAB2xUTqPPCDv5pUOaV4ZL50dHWOvN91Jkw6LfJq32m6oWknRn9MhcpycM/Jaq+EzOKQeEPjkwrNlyODnE23dNtehMhNLfaXtcvxG2dztI013b1GOzCBqu3jSNrjbimWkLP14LFl649/87CzocSWg3zPvHknf3DTNyV5Rcww6aQmIJQ0rtqSZlzUzlTTt7e21tUymsdLsm8aMMmuTl4aXtViiEAaj4XCohw8fti8tz+zBPHJR02SF2tra0tLSUmdsWY5gmsx2amUaGrj7sQz50JWv95htHCyVWBYcT5acmGXlZ7kuw7HQoJgN0fEl0p9Xg2ew4r5zqZtxOEhnu7mJwJ/7/lwH4bqN31nhIE5dor7wXss0y3Ueo9uprSu45p5vSvM9zNYYKH0tv885cPvss9/vt3pjPSIvtLsEOllu4vpcBoma3qYuDYfDdjcYM38GJR5JXgtQuVaQwSLLw2kjniPawnHpOA+C/c+SvlCTxV7+fL4mi8FvKer1erp8+XInorMeL82+8ME0Ho/bLaFWbEduaWooboMTbgcvdcsbJjp/O8T9/f1Oyi5NFMRPJlsxuLum1+t10ngb3MHBtErnx99tNNvb2zOKnTJLo6HT4efj8fTUQzo/lmN8vcfjtryTwrLmGNk/ZUbD9Hil6dkqWZ/2WOkMLIfaLqV0Vh67iU6GWwD5UnfWyS0DOljPT6L9dA79fl+XLl1q9Ww0GrVnLDFYMZOV1Flk5cmZ/t888R6WLjxHtRNq7fg++MEPtnNNx2peGWAyU2bJbDgcanNzsy0dcWdNBhbOn9uhw7QDp1wyC3d2z3klGLOcifaZeThIOQPy5wQpnHdmweRnXgbjOfJ4zmor6OMygPdJ+oqmaX6m8t3PN03z8WfC0WPopKeBJjrM76yQNSfH3y+//LJeeOGFFvESvUpTNOnJIwpLtJtR3ujbE54oiA6J12XNkcrv6/v96WIfjZUGxR01bndra6sNgMk3S2Gp5BwbkSQVntlYom0bp9Hv9vZ2m4URETJT4r10uEThzAQz3c/MgPK0zIkAEyhkQPUY6EBZ1iN6ZW24tnZDHU69yfLDvMDOzMb8pIwsO7dBXea97ptZaiJ06jV3sySipz5ZL72zJzcHEFSkE+cOM3/GnWEes/ny0Sv83t/lvFI23FlW8xmULeXEzIuVBsqNsuTcncUuoMdlAH9K0ryDqL/k2Jx0mfpdpZT7pZR/UUr56tNo83FkwUqzC78WLs8VN5LMSfb2v9wORyXwCYSJPrj/PxE2++HfRhB0llYg1kvdDq/NxWw7Pn/GmqY0RStEYDZCIjYahdvi08F0IGkELHH5MxonjXcwGLSZzerqqu7du9dZvLNDYL90aLXym88OorEx2yKSNP/cGUR5ca5Sz8bjSdkx0SD74LMi/X6/s9uJDiXLgm6DDoTBIRfWCRRYfpOmIGN9fb26MJr76l0e5JqK23Q258+5GO15oWNjkDo8POzI0xk79dfyt7zcjufHqNmy5LwxKFsOzoqJwHnqp3XD73xO4OF5SOTPTJfgg8GSc8fx5KJ9r9fTzs6OzoLO7TC4UsqHSfrnkn6npF1JL0v6fU3TbM675zS2gY5GozbNtODzKc3avVR4IjUasZWKjjFLSisrK3rve9+rF198se3TvBEJkoiyzQ9T53SEtVTTjt4KnnVdOhY6xe3tbd26davjFMi3x89MKJGcNLtdlk6MgSGNg2On8fl7Xuv2arxQbjYyaeqYcv3BgcjycKnHc205Uubc4cMgmTphHt3/7u5u5yG+1Dci6tFo1L5Tgk7V/bt8QaDDdQU6dt+7u9s9VI+L8UTtbtPPlTA4Uj+om5w/ypYZJ+9NG7PsmTVl1kbdv3v3rt72tre1QW1zc7OjB7RF2m5WB8zDtWvXOltazYtlyjFJ3ZIusxHLhA+cZdbOtuibaov4r5de93MARze9W9JXSXr+6KMtSd/UNM2PHouLbtufJum/aJrmPzj6/2skqWma/2bePScJAEThdMqccGn2JRIsifC7VNi7d+/queeem/lO0ozyeoEpU04uXPlaSR2nQ6QtTQzg3r17unnzZjWtd/9c1CWSzDoreWFwYICigZDPdHa5AEenSvmkQ7ZTpHOjXGqOgLJNdMlgbz4YdIj+swTHMkjWYakj1A+WTPjkaQZmPtVtvbTDzLFmNuXx0bkxyKYjy0wnM9O0A8qNwc58ue6ferWzs6Nnnnmm5SvPsaGdUZ5sx46biHp7e7tzqqsDXS1YmriZgbpOfjPbdv8/8zM/o3e/+92dUqjboV0xEFD/0q4yYFB/OUf+nG05SOcOpddDr7sEVEr53ZK+VdL3SfoPJf1Hkn5A0reWUj7vWFx0aVnSz+P/3aPPko/3lFJeKaW8Qufxeonos9/vd85DZ8QlKvLnVsZ05FS4z/iMz+iUSEh2allTNVkBiOi8zZOLo1micP/PPvts53uXScwL+0tUxlKHFczoOVGr+/ZvGsXe3l6Lbtwmx0e5sITl61577bX2+jQajjvLUOkQ7eiI6KgDTu8fPHjQeV7C2ZH5zyM3iCD7/X7rWFjuMH8eI49U4Hfkm2VIB4rc1cLaOq/LMdMx1bJG6iB12Hxwfj2GDBYu8VBfzZ80eVWlX+JjOZN/jsltew6sJy6B0I6Wl5db3tfW1jrlRsqUTpW7dGhntF3LxPPlPt797nfPZHc5H14cN69uw3KkvtKO3D8dPPnmMRwZmE6bHrcG8GckfXHTNN/WNM1G0zTrTdN8q6QvlvTnTqHvUvlsJh1pmuZbmqZ5sWmaF0+yCGKnboXxsbSZqtZS0yzxSFMnxskdjUad8oO/406TLFf4szRiGiYRYu5L9/3+vt/v6+rVqzO7avw/a/tMRcmXx0HeEulwR1OvN9mBxJ1QdmIMCP6sJoOrV6+2BsXMyzJ3qYvOOhFroi86BTrH4XDYvmybwS6dsPXBPxl4E52PRiNtbGy082IEavI9lkGuV/R6kzp41s1zQZUBamNjQ+vr660uM4PIslst8DO4U18YcLj+w7Gn7P2Z56rX6819o1tmY6zxE4hI3be5WTczA03H7rmmA009SV4za/P1nh/Lwt9z9w/tlBkg7SVLnQxwBDQZsPLa06THBYCPa5pmIz9smuaupN9yCn3vSuJOohVNzh46EyLy5sRL3YfCiJLyh4okzT7FSVRMhEYHw1KBlSzTfS48s8YvTQzARzcTCVuJt7a2Osbiw8toLFZcnt5JZ0qHT2M1MiGSy7T0wYMHba2cSPxxCMc8JBqWZp8M9m+27YW/g4ODmZ1GlBXbTWfkdtOR2oFxncMvfWewcB8+74jZgWXLrZjUFfJ248aNGYeVGRhLglevXm2f2LYc6PApVzo7j8+Agk832+Eya2S5JgOrF3/prIjqibJ9j3Vke3t7prQ2Go306quvtrx7fMzCzFcN3Zt32zt1zHKhDGgflhnbtJ0QjDgo0q7MC49Z4bwxW/FcEJRmVs2M9DwCwK8c87unpZcl/XullKullEuSvlzSmR0sRydCVGVlSUflPczS7AtgpO5WObZBZ86njE25T12a7qIhsrHicleI+V1dXe1kKOTPD4Kl0vR6vXaPuvn3y2cSDblN807D8lhZW/Xnu7u7evToUesMLIdEjGlsDGRG5+bRjomlFbfn+42mndXREXmXB4938BxwBxWDMuWWKLLX6+n27dudIM1MkoGFCNBzzyzKpQ7rDPeW89mCdMb8nLJL3ba86YBz54l5IXDwG+QODg6qZSPP4byMyG16m6zlYt7o6LwlmQ/V9Xo9Pf/8822bzAboHNk/M1v/z/YsM88p52UwGLTHNjOr83xZHiznMbC4LY+T6x+WG/+mX2G2kxkMZU3QdZr0uABwrZTyvZWf75O0etKOm6b5VUl/XNIParK4/B1N03zgpO3OIzsXRmEaIyeIJRCmp0R0w+Gw8xCPFYLOj7sjmAryIZ7xeFqrzHqyHQHLCEQUtfSWiihNjXk4HHYOduNxBt4maENkBsQ+Wbrhd3TI3lNNZ0P0Y7mkstMZmV/OT46d9/qzrJ9TRjzH3vPpv6kjDMCeE/KTiJHZXqJcfu81Dzs/85S1/ix/1JzYeNzdXkq+sqSZiJZjdZ/WE29OMDkbIRK1HrgNBk6WRPyb8rKucc5ocywhZlD2D2XNMqttirrv+eC4WeJxn9vb23r22WdnMoa8z3PHeabOMMCNRtP3+TJgua2Dg4NO8Gd2mJkJ5/+06XEPgn3W425smubHzoSjx9BpPAjGMpCRY054rzfZ/ui6NuvBVBJf43s4edI0FaRTo/EQvdMh21hoOEaLh4eHnYeyaCBO54mO6IizhEWjTkOhcdI5M0OgAzByZ7CjkfEUSSo4S2ZWdO/4MHGejJy5lZf8mN/cQcF+vLWPtVwGDf7ORXPPFTOgnEs6VwbHxxl0ZlN0LkS6nk87Dsr52rVr7Q4ZlhOpRySCHAYOzqnniA6azoy8S5qRA+fBjs+oPwMAd1NxDvy9eTTPpNRJ80W7Y7abmS2BHW2LfFGubD95T9sh7+lDLDsCR4MFyoHjOg4daxvom41O630APKwrkZoVwYoqdZ9W5UMa0tQ58fybdJQMMkxDvRWURkYlz1TW97I9KhSVLR07jYFlBdaTM7vwuCgv9p/3MID6XhpJZgK+nwEm91wTkdFYt7a2OqeVZkbHeXU7DKwODD7vhXIij24/eckgTQPOkpkdEIFEtpkI33yTV9bZzSODGx2tZchSknWLoMZt2LnXdM0yYDAhf2kftbKlf/PJWwbfdIp0jrQJZteUJfUldZ5Ag7bOIFkDCQRN83QxM/CcB9+bGzfS+adNZaZp+R+XjrMN9ItKKV+J//9ZKWX76OfLjs3JOZInmGm9f9OQe71ex7nQmLw9k0iJaT77otK5Ld/rOjcdATMTOlwrtJ/UTEfqdogW6ajcRq/Xa8sOzIDMLw0/a7sui6Ui07EYvUtT4+ax1Rw/jZVjzPSayJyL0JcvX+4EcPOc4x4Oh3rw4IHu3r07MwecP9ZZc4MA28vSoNv04rMdi+ePZQAiVI6P7bAsxZIG5eR5oBMmWZfs1HKPPQOV1H15EdcImLWZr1rg92+XkBgUfI/r7l6T8RjX1tZaB8w54zwkyMlyYQZlE+0kAQL1imWYlAFLOjl3uTBuHjY2Nlres2RFu85FZfPCDQ4ZeE6bHlcC+klJX940zc8f/b8u6XMkfZSkb2ua5nPOhKPH0GmdBSTNGgJLE1ZYlm/oWD1RNEAqKI3N9xNx8X8bJ3cHEZ3TuK1MfmqTCl9DIoPBoPPy78PDw87CLxVdmo+giOwsF5asaIx0ptxXTXkyKBF9UlYMnuaJ5yPZsRIJ0riZjVGGROvZN3WA5TuiYjq3DLaJ3Jnt1dJ+lioSXfq3xz2vjMSshU6EwdHXM9vMMsj29nb7NjcGMv5P3a+Vg2oZFNFwTU6p57yfmUzqNjOr2j0157+7u9vqcGb/Unf7pufm3r177SGMOUfUyywTpU66H9pLzlOif9okwdBx6DhnAV2y8z+in2ia5mHTND+nSRB4y5GFnmiZOzpIdOacHC8As1Rh9MB2jYD9naTOZNqwaLy52yWd4GAwaFEUkZXJ/dNxONA4q2H92m1bgd0/UTAzAzvVfr/fbrEkuvI7ammErM8S7RBR2fA8BvK3t7en8XjcLuRaXrWyRQ0pcs5rWY/nynNE1O7xpw6QX2YP5sUonaCDDp+lPffhMfGezCwZfNyW/9/Y2JhBi1ka9A91XJq8z9ntuX8HXIIS6xLnydcQrVNuzCYJPtw/sytmQ7UFeLfJffXUeeoc5UN98PX37t3r8MLx+Zrr16+3WS13M9EvcCz+7X65sJ3giltvM1D4N20wM73ToMcFgI/mP03T/HH8+4a/C+A0iMpqVMq6aCKFLGvQWft0SipwonFPNh0Vswxp9oQ/Ki4nPY9/IBIl8k1ElIjbfXAxmk7HTotBKksrdkq3bt3qZB79fr9TmsmASPRp3vh3Okr/ds3Y/RNJ+17Oj8ljcbmNxkfHOBgMOidG2hGnYefxFDUkzqyGhmxe3J4f3jI5q7pz5067NkSZsBySOmK6fv1657rUA9bRk+fRaDRTAmG5wjxSPzyWDMDzMoEER7RD6mQGb+plyoXj59zwmtQN7/y5fv16h1fzaL/gcfncowROme2Tb+oa12g8TrZvXRuPp8eW17KJBKinQY8LAP+slPKH88NSyh+RdOfUOTljSlRIZWH6RoWzAl2+fLlaK7506VJbYskUPxEOTyMk8jdvrDFm+k3DN49UJPaTY0slynUJE1Eb0VcGMyN8BwKOPUs3KS86av/O7CmDA/uf5+ATYabz8j1Eklx4YyaVi91u06UKtpcOmPJmZmn+/bvX67XlFhr2YDDQ1atXNRwOtb+/30F/Xnvyb/JOBG0QQLBw586dDv+Ui8duO2CA4fwzm0kk7nYorwyMe3t7bf/cgNHv99uH7ZjN0Mkya2H/bMNy4v1cdJe6e/GdRTNTNu8MYltbWx29s3z5MCNlmZlOZob+m1k3+11eXu4ACMuXwew06XFrAB8r6bsljSX91NHHnyKpp8kREf/bmXD0GDrpLiAqPHdUsIbHyadiEW3bgeUDT0TOXCxlzVWaPVKWJQrvPkrFJNK/d++eLl261G5B5U4et5fjoHLWHBeVllkN+c7gwnstF2ZSHiuzjXR4vqYWmBmEfX/Kj4iVAbLX62l/f19Xrlzp9Efkz2AzD2VxHBw35cP5rZUYOXfMEqhzvpeBPdE7ywg5Do7NGayDcm1OpNk3kGWwZ7vUwdRjSe0agvknfwxGubhJGRPwUA8MErjNmfNmntfX17W6utppY29vr7UTzoP9QNqm+SBP1O38Pm2EesN1P9/P7Z1sJzcDcHwsWR6XjvNS+F9qmubTJX2dpFePfv6rpmk+7Tyc/0nJwt7Y2NBgMOgckWAhsy7LdYFEpk7Z6ERYOjARHWd5yM7BfPl712Kl2Xfdup8rV65oaWmpY/Bu08HNhsIfX0MFS0eWGYg0e5oplZ/ZS20xz+sEvpYZDa+T1M4J0Z+Vnw6VjoGGx6xnZWVFV65c6WQ/lhN31jDLYDscP+eNT+9mKs8nRRkE6Gh7vemOoX5/+rRpZqh0Bgyi/oyINAON5SWpo9NEnnZaDJ5GtyQ7scwqPCa37YyG2bRr+pxXyjaRPXWEaJ7828YI4PydXxbk8fT7/Q5fbnM4HLYPWKazZ5nMxOCXcvYcMLDQtpmxOAvzWClv+gX6HG4AOAt6XAlIktQ0zXubpvnGo5/3ngkXbwB5kq9cuSJp+oSs1EUeVKDcysWUkIeluX06Rk/avBSVBk9k6AVIkxdAmfLbcJkeWymtjDYQlnKotGl4VDgaRa/XfUyf8jLf3G1DZGc5m3+/npIIl+UbPyCUJTPOYQZm88Ptph4vx8XgTHlZlv7c9/MICN8vdY9BdvvSJHhxXPfu3WvH6l1LrHVT1iaW1JjB5Zg8r5xTflfLuKhv3L5IOdcyrFzQJeImEQjxml5v+mIXIn8HRjrcWmZhohP0uJnlJEjyOJl5mfy0OwOIx8AyFcuCHjsDXC0ToN5J0ubmZntv2k9en8HIlPNzmvTEAPChRomkJLWKlM6r1+vp/v37HYPiKaJU5nRc6dil7rG+dBZcEMs01w5U6pZK3A8dFZVqNBrpgx/84FxnyvaYtnPrZm1B2QGJB4+x3MUzZZgGG41l2u/acBo903XW+f0dA8dwONSjR486ab37oOxocI/LACy/NM5M0f23a7fs8+rVq50A56zRusD/rSO5bZVIkwvI1CsidDorOtSUBUFJLYh4fLmgS4TLLCCzTcvMjjiDVQbfDIJ0kHTglGfObWZMbpslsK2trXZeE2nzXgbODGYEP5RvZszMwMgj/QH1u9+f7qoj4PQYakHxNOhCBQAK1sq+t7fXQQwZ2V944YWO4GlYfGpVmqJlE42UztLK4tQ4DZLPBqSh+IeZBPuTpsr4rne9S6PRqF04pEIbmdAhEmmaZ7btNLuGpk1cXGPdmoZpWUmTAMeXyc9zBixhZPml3+9X3/FLmTNo5vxIswd9OdNgP3Zk73vf+zpImgGUCJgBMDcXpKOh48yAw9INg63ln86KVMsisgRDGWcASt10kCXv1k/ykH/zwcfkg/OT5dUMtuaLxL65bsYAJal9oUxmC27b/eUiNWVJHakhdvNhIMUMkuCKgd1HkzgDdgbIMlKClNOipwoApZTfWkr5HUd//4ZSyuUz4eaMKcs1vV6vfd2hkQoNkA6JCm0DYK3dn6cT4EImSzKS2oeyWBNkn8w8mJ5Sga9duzZzBDQDWY7JbXvnRabPNGj/722wPk002yMa9/+se3tcvpdoid8TgTLNJl8m9sl2er1eezAYX9jh+/1/ba2Gi7DsLxdLP/3TP73jyF1Tdls0XJcSBoNB58VCKcd0SAxO5pe1dV/Lsfi9teadz5+YUrasQw8Gg84DcKn7dnxun7yYMms0n6kbvpeAJ3duUW+YEZoYNAkwGLATEFBunGu2kTxyLrh+QvCUlYNcu2JQ5xoQ5yHHdXh4qLOmJwaAo62gf1fSXz/6aEWT3UFvSdrd3dUP/dAPtcJfX19vV+etEJyY0Wg0c457ol4i0XnpKx0gSxp00Fm/lbqHYPFxeToMrmdk2koiL5ubm63ikWcrPD+7deuW+v2+Ll26NDcwEslyoYvlrXRyRN00CP7N9qVuUGQ2Zfm4f5/lwsBgPuiQKCs763QIzGgyk2JA6ff72tvb6wRQy8hzW6vvU6ZcUPQ4s0yXu2x8muuNGzc6GQJl6LYyAGeZi4HR5Fq9AwxPreXDWgx8HkMGkhpvCZISYacDte5wLnwPM1ffQyef5T33XyuZZbCh3GhPBBgs1THDcunUMmMJlfzQ/i5dutSRyVnQ02QAXynpXZJGktQ0zc9K+tgz4eYMyYbS7/f1mZ/5ma0yGIV7IjOF946DdNQkKgGRONNSOgSWAjJgMMiQJ6fGGSDMZxo+DYElFBq6P2NKT6Xt9SaH4tkBZBrPJ4HpOOhoMpWmQ6YjdN+JUOmEzSsXbZktsZ/19fVOwGQ5iG2b7FCIRhPd1vgjHwzGln/WrLkwmWsVzN64s4vIlVkiswwej8Gs1H3l8QfuP52e76Gj9XfcZZN6yHstE/bj7zL7YxDxPLFun2CK/DNoWgfyO869x5+VAPLHwE4Un2OjU3db1BfPpf/22qHtnu2zPERZrK2tzfB82vQ0AWDcNM0j/1NK+XBVXt34Zqd0bHSgktpz0GvIS5o94TEdfm1XDmv/bM/OdDQateUbotTkg8h1e3u7it7Ic683fWDITsjHBJhXonUiSyr0cDh9yUo6zfF4rKWlpXaM+XaxlAuRfTovIrg0es8d72edl7wyeC4vL3cO7nM5iGU0ZgKZdaQ82D6Pw6AepNNjcKKjSkfGe5kBUB61OfA82NHwnQfkj5kl0XSCDuqRx5jIlvLw7+SVQY/6TOBEu+JnWQYiOHC7BCpsl58zS0+b4VhYuuP4M/PKbKbf73ce5rPMbKfMrNMXZOmOwYrzKqnznu2zoCceB11K+XpJ/0rSH5D0VZL+mKTNpmm+9kw4egyd9DA4rs4TfdOBzENnvlaaKsje3l5n3z4NiSllbbHYPEiTBVnX8m/dulXdbULHaLQxHo87i84kIudEg+lYMwXnOGtZEctSvDblI3WDDeXMvikLjtf9cQ4kaWdnp32M38HUMmHWZXlxtw3nlO26Zlxbe0gHxzHaQbKdLFPx+QjujElnbvlz7jkfXHeoBW3KiIGa6Dn7o77k9TkPbKcGVMwjS1QmL/B6zl12JV90ntS35IEZIfsgODAvzNyzTb93gnLM7ITj5NxznnPdhN8x80rbc38esyl3dnneT5IFHOcwONNXSxpKer+kPyLpByT9hWNzck5EZaFTo8N3KkYjYX0uf1++fLlTeslat+/lQyvs3/d66+fy8vLMcwC+3vfyOGI6kZqTn4cyqaiJ1OalzkQovp8KyhIMMwsGIiI0lnOIehkcaTSWZb/fbx/wkqYPOuXCavLKefN1/M1siUZLh8MshLwyOOSWx8yEspxoHliu4jgycFlXeSqrkSx5dJucq5zfecGHiJ/XcVdSyjfLmX7jFfXXY2IJj0jdmZrUBWucnwyC1ON8srfXm2wIcAbAIDUej1sET15oJ5x3Bnhm5NRbX8Mf7sDzWmKWB/kiJcugpm9nQU/zINivS/p2SX+haZova5rmf2jeSm+ROSKiZ2n6bl5OrCfR6ITRl47Vjo31OiJOLnxK3RMd6fj9N5EQMw+pe/jZaDRqH0RilsDdHka/vNeGQ0O2UuWZJrmdMTMCy5L8WoF9TQ2VcgHV/TCtN7Ffj8Oy9bz4M2YQ5Iuonwdt5e6W7JvGVnOA3inkLbTUHzoAZgzWhxw/naV1bjyePEBGXaQeUk9/9md/tpMJ5BzR6daAAB1nysH8mLx/PgMiETIz6MFgcmKtF6dZ96accjcQeWfA8nz7u7zObWfW3utNSqF5zHUi6VyUJ1BhPxw7sxTLIf0D58yZqgEPeXTgcnv5HgbuhjpteppdQF8oaV3SPzz6/1Yp5XvPhJszJAs7Sz6eAE4I625ZF85ap3/Xjib293zJeUZ2KhpRn9RVdqMGP8JOA6ktptJg6OytvET/RHzmh7s71tfXOwHJv/lDw6YcKA+p+4Rt1os5Vhtvr9fTo0ePOs7Fxp4IsZZB0DHVMgP+ZqrNrIiOvNfrdV5HSSDANpgRUH/cHufIY5YmT6p7HqXuC8SZcX3iJ35iBxXSOXHeKdOs17MPzhtlJklLS0ud9hi4CApyR1Cu71AnLbcMDhxP6hI/X1lZ0fr6emdOTVxoZ6ZptO0+XSLi3GR2k9kPg0/qWmYDDMDkn7vVOHcMigRpHP9p09OUgP5vkm5rsg6gpmnWJT13JtycITF9o2OX1Cqi1EUVVlKmxlQYTqrUrX+6XaMgp6FGent7e53SB2uZTD1ZTzbaZn/mywrntlK5fF2OnbV8BxjzYHnw4S4GgnSgvCZRC53+xsZGJ+3PMgfbG41G7QFfDKxcf/B9aTjpHDj/mc2wNMW5T0RIR0qZEq1l1pgBPlF/9pnAwE6MTpXBkzJMh+PA4cDme4hETVyo5O9Eu7yHGSNtjfNLnUxHSwCS8mEAIShy8HT9PjNcZkXkxbxxfM7mPA8EV+6P+mVZ+j7qVeovwaN1030wwHGcrBQwIJxnAPjVpml++Ux6fwPJE+MarKSZcoIkbWxstBNjlGFFypofFS5r0LxmZWVFS0tLnaeOpdnDz0wsJVGR6ICY8rLkYz45Ji6CWumJVCwfBjWPtVYOczq7srKiu3fvdoyEfFBpWRK5fv16x8Fk8HJg5ANPaRBs0397rJ4H/+9x5vxJavdjMyAkUs66cq/XzRr5nXdDMUNjgHE/Hp+/9xhZzsltglmqMXHRkMEmgx2DI2VUAzgZkFPWlg8zOdsMF70pO2aKlIUReoIwE8FABm5uoczvPXccR37mdy8w4FonLCM6cLfvLJA8+gUztF2CklpQop+gfjNY1+b8tOhpdgH9j5L+sSaLwV8q6U9I+oimaf7omXE1h07rOGipq3T9fl/379/X888/31EUqWvIRLVuK1fspWkd/uHDh7p69WpHCbL8wpoiHQ9RJ42Gxsdxue18gTsXlbNezHZ9LR0Ix8cSl5XYMmFbNXnXUBiDG1NxOgW+XNyGm2ULypDzyyBBAzMvdrYuz7m0xt0qbLeG8NhflgHJY+oh5U0HwFrw9vZ2e4wxET/nh+PkZ6xzU2+oy9S7DKwGNMxARqNRu1WaGygY/BjcGBDo8LMkSH1yGzyp02O0LjIwZEDytdvb27p8+fLMJoncYVQr99C2rCes/3Oe2Qb7OTg40OXLl9txpl6mXnHrLj/jGM3PcWneLqCnCQC/UdLXSvrco49+UNJ/3TTNvz02N8ekk24DlbpOjmg30+OM+kR/rAf2epMD0ngOeW1bl9G0+6XyUXn8PVGVNDFKI/dcRLJyS9MnWt1vGg+NlEbIwEOnnqUN8+L7cjGXtXfymI7Uznde0KDDdd8u1XF85odGm8GHDoLf7+3ttQuEnFfzQiOkE6NB8/MMChxLIm/2yeBv2XDB23LKIEQdcx+5eF0LzNT/1OV592YgZz/WzQQJRO2UP/nI4J1zRrmmzhJNM0uhk6cNsF0HuSzHcHzWK/Kxvb3deSDO1yegyXJpyi2zwQR69hkMPrWntJ+WjrUNtJTyYZK+t2mar22a5qWjn79wHs7/NIn1xtzCSCfOV+RZiUi+x6dc1hRX6qbwaZAsCXHtgemmlcVlF5ZL+ARrlk/8vRUwDy+jo7axDgYD3b9/X9IUydkB8Ulgy0XqIlkaIo2cSs6ttjSClIEXgbkon8HB88QU3pRbankvnf/u7m6LOi3XNF4Gw9QF/13bqUJZM1BnkOIeeeoP9cb3udTg4zyczVAuHC+dJIMYHRjXBDKAkV/LizqQqL6G3pnNUkZ0fFm6JC+1NY/HBSxvueSce4zm2fpLu0knnGDNryelLRFUEjByTYXzTD3j2ggDSOrRSdD/4+ixAaBpml+T9K9LKb/pNDstpfzlUsq9UsrdUsp3lVJ+82m2XyOmln7EmigqUbgnhxPt6/w/jY4oxP9zG5iJiMgKkciK/+/s7HRqm0RDaUCSOg6fzocG0+/32wPT6LyuXbumnZ0dPffccx1nTafOIMAUmYZrBWYQ293dbTMYGiYXVc0zHb2DJw0xkVyu6Rip+cA7Pu3seVpdXW0DRNbrybMdHg2UwYG/c9GYesH3FRCl+nsivqwXmwc7qatXr7b/J1/UI88NebEzcrDx/bkdOLMD2gidEZ2rr895pry4DuM2aXMObLXymZ03dcx/Ux84F3Tu1jOu13Gcifgtuyxf0i7cJ3mg7XkO19fXZ/j2vPqztHPO/1kFgKcpAX2HpE+V9EOSfsWfN03zJ47daSmfK+m9TdP8ainlLx219+eedN9J1wCkqZOQprt/OOG8lmWYTD2l7vEAiQwzMPAeOgr3xadbPfnMQMwXUc/W1paWlpZmSggZGMgbEb//53Y880THT8fO8hDTZAfLtbW1mS2oVGoSnT1RNssEzNIyC6Bj4zx73CyhSOqUKdy/ZTevPJZZojMSypA6Q7RHGZE/ZkaJcK2jlCvRaI43yeOmg8qyBAM626Lupi2Ykg/qP23I7fi6BAd5L2VJQJB6Rt7MM8fD7IP6IE3sxQje7aRtcF3Q921ubmptba0D3jJQuC+W79L23W/aaY2H5DFl+3rpJE8Cf7+kvyjpxyW9Dz/HpqZp/lHTNL969O//qskJo2dORMRELDQMOv90it53zEO36CjoJJj65uQ6baQCXb9+fQYF566ORGd2/ly4TGdKFOZyDhcaacyWC43NCEqaPjzH7Mn3GxVZ8f0dH/IhYmYgYp2Tv9025ZoothaMPa8MtDZMzpnlz1KZ+x+Nui/3IUrjvbWyisn8MyCyrMBgQV2rZW2+3zIlejT6JDpl/wQEzvw4r+6XT5lTDmkXme2aUq6cn8w4awvJdHScN4+BfZgsB4+P6J5Oend3t3X+HCMDCO3Yc2I94q6vGh/MIqi7tGfOSYIpghrqBnfgnQU9MQM4ayqlfJ+k/7lpmm+f8/17JL1Hkt7+9rd/ygc/+MFj9WNFSxRMRbUiEbW6bMSAwB0S0uyCjhX50aNHnQUjIovt7e32XQR2iEQM6fjNp/lJ46uhzppS+VoaXyJ0ZwVEvySOl31ntkFHwVLH4eFh51WRGVQ8tlwfcdvkj04uERPbu3//vl566aVO0LdheneLkTfJvCcqTOefRD3LDKbf73eyt5Sh582UGQgdJZ0YZcA2Uz/I73A4bNd4shSXmYfllpsB5smhpheZrfFa6neieIOXHCNLYwzoLKUyuFD3k+e0EQYQ2iNlyDZTL8wnMzrz6h+fJ8ZqQC2TMU/HpZPsAnq/Zk///GVJr2iyG+jhnPt+WNLHVb762qZpvufomq+V9KKk3/M0x0ucpARENFMTbtY/TZ5gPkWbyua22MbLL7/cvk3M7VGhMtMwT6wV86nFVLqakpEXl5DMb37HsdHppJLR+ZmvGmrb2dnR7du3Z5CtyQtlbn9nZ6d96jUDE1Ewy2C1erN5zMPG0tFkQPDfvo/Oj4770aNHM0/CMqjmjqmUUeqS9YBPzVonmb2kE7Yjy9MhCQ6y1EKHy+yGpbN0TgQ8PG/I/HGrKrMZtplAhEGIWfC8QO5xeq69PsX+GVRMtEmWCudltJklpKxqICznkvZtG6Sjp76RGMD9f9pBLgafRQnoaU8D/TVJf+vooy+XVDQJAp/RNM0XHJOhr5D0RyV9TtM0//pp7jlpAEjHxYmnk85SiyeCCISINp01F0ZtuFQOp5QPHz7U9evXWx5TgX1aodRNOVlKSaXxtanc/Nz3EkXZMIiy2Tb5y4yGTtPGy7OWMqMwpbHQqbkdKn+t/jtv+x2dfg2N1Rx0jpeBWpqm93SIqWOeJ+6UmZchuA8GsOQrM9YagOj1pgunOX73wbWnXPfh3FE/aBuZ5VL/WAKjHtoBWy4Mavyc8iNf1GHqZq2ObpnzeRKWBR1kyRezhVx0pr5wjFk64lwyyOaGAPoMzl2t9JS6x+dTjksnCQA/2TTNu2qflVLe3zTNO4/BzO+S9A2SPqtpmqcubp3Gg2AUOpVI6i70+vMs+Xgie73pwzr9fr99+MSHtdFYa46AEZ3n4+QDIGkkrEtubW3p8uXLLT90tInEqaTSbK2Siupxp7LzOxqe+aUDt8LSwbN8QOU2GjS/RKI5FxmETB6/vyOq97V8QIhHdNO5WBZEqYm4XY5Io0707bY4Vs4j5cexMQjzoD06gQwc/iwz0ywVerxZ7srshXy571rJpzYP1CcGZc8pr8t7Uic5jyyF5XjZVjpY2hqzk7TptFV/vrGxoZs3b3bKoebJmzcyUPsaPhvBzRrpe2q+yXpF+zkunWQR+JlSym9DQ7clPXP076/Wb3kifZOky5J+qJSyXkr55mO289Rkoedj3jVHJnWPY/DCqBXZk+NXJY7H4/bFKTUUlEjS/+fCUToE/07n6M+Wl5c7aSozFBoS+yKaSudQQyfplBwYakg3DScVnciOTtqGxTo5nwJOOSbCl6ZGzEVsBjFJ7Rx5t1JuKeR5O77fATWdX6Ln1B2P32NyCYO8+sdvlhoOhx2wwVKIZe8588KvHU8GfF5H3WX/DKZ0srQXzlsGQeoNnZ7vpx31er3OWoOvddDmj+81ABiNRp1SFftIHaVMOI7kk4GE341Gk9el8kC5mzdvzgCh/f19jUYjXb16tR2DiWNP0ETfw6NgWErkXLH0eRb0NBnAS5K+VVOnfyjp/yzpA5J+d9M033Fm3AWd9ElgTjLrzIkkcuGLqaBRiRUtywE8YiKRponXMmXNVJYT7+AlqUWF3K3gLIRPJJs/Omgae23rYwZFIhIiJcuJjpEGSoeVbbPUYdlS1m4vy3HmxxlCDdUxSPm7ra2tNliy5p7j5Ng9XhOddqb/DES+/8GDBx2nT1l6bLVyB51ebklkW8lXBmrqDWVtx+in13lPBpm9vb22BCnNOrRadsnPiYC5U4eAhmU9Bpj8n/clIDFPXE+w/Kk7JMuEfiDtnpmCr+UGBsplPJ48oPfss892bE2avJHMO5AY5FziTX/Auc2S53Hp2BlA0zQvH5V5bkn6pKZpXmia5k7TNL/yRjr/0yAjekkdx2tFtNJ6cnOxySiGykuFd82aSuNtl3SkNLZEIeathsRZV0/DltR5Rd329nZnwU7q7ruXuk9Ep3FTDjZIIzYiL3/H9DbRHBFo1kF92B5lYUSb47T8MjC4zQweHjPLZDwM0G35xNZEvTRiPkxG4zdlUGU75IXz53t8UmzucsmFffJFebhtzwN1zAGZQEGaHvHs+WbQIzDIdQUiVeqtv+Nc0ZkRhVuWvoaBkbZo3ctx1wLQ4eFhez3tlG1TN8gjMyh+l/30+/12Vx/HxUzBGSj59KmlnhOPnZsL2BZ1hRnQWdDTvA/gtxwdCPd3mqb5V6WUtVLKHzoTbs6Q6BSk2eMgiAjSGIg0uJ+ZxmG0Y+W2kvR6Pa2vr8+cK0ODSIeyvr4+12kkAqfSUmFXV1dnFrZYWvBvI8JaWYAOmYuIVGQfR0CU71KMx0/+SeYzkbhlZTnSqZkfl3Jc0kveWeLi/1ly8PdeaGNb5oklmkSr1hmv/fjdCXwfsa87ODjoZEHm68aNG52ynPXKQZVj4lgYZDhOjo9z4fvorDMg+8Razk2vN33Fpnch1UpF/p/tZcbgebNMHHitX3mKLWXMQMOgRV4JXHKO/RlLrbkTietBDCB27G6HcqOtSt23mdG+WGrc3t7uZBYZXDPgnhU9TQnoH0j6Nk22b948ein8Tx9n8fekdBpPAtMRMcpSKXwdkbyVvrYLhQd3GdHw+lREOmU6idx5QyfDujODE+9zWu972DfbyOwjU/JEnWkM/tzoiX+bfNbOxsaGrl+/3jEYy4Db+2o7UjJgmFfOFfmUujug8qAvO0Buc9zf39czzzzTfubSQQZmzovJhmuHkVsea04xA6EXeumMe71e56llOv/MNDL4Ji+UO2VP3ePnBEXcqsr2eOKs703ddHsM6JkFJ/CpZRUp93zKOUtIHFvN1jiuWl/zbIH2l2sgJJd16FfMex5EST+R22H9HcebPur10EkWgZeOSj2/LklHT/D+2rE5OSfypOZiDJVS6r5z179rQcJPYTLld23ekzvvYQ7zkU7YE05D5nV5Jo55ffXVVzUej1sUxC2nbEuaIBmfL0SkQmMiSt7b22vRC2vrNHSukbi/1dVVDYdD3b59u3UoicCt/DY6o/lEsr6GC4Fui+NKh+tsjYaVC78OTgwO/psI0z9cuGQmlHV6ggv/z0Xu3ADA6/iKTwZFB9rcKZbIlM4kM4R0JO7b43J7LM14bJYdsxrKwX2QnyxrcbzWpwzSJIIg8j4vI/J3dNy0M5Y3nWmz3MiMyfaY2WXqFAPnL/7iL85kGBwvZWVZcIu0D7Hjtmdms6dNTxMAfqWU8qyOHgYrpXyqJs8AvOWIKNG/rZSZRtPhU0E8ETRCpsdEHokg3FaiGjoLP08wHA7bOr77yKBgBeLhbe9///s7zyRYwaRpanr79u12/EQ8DHSW1fLycuu4WCKhYtIYuE4hqVOiGY+nh8m5DRqRTzulbKRuXduyZP/p0IyouGOKziDnkkZoyu/5OcdHtDgeTxacOdfUNTpMOhnqC4ONdYpOPFG+5ywDXDp/tp1O2w4n55ROl4BhXimEwS0dX25YyHJUDf2bT/dLAJLgi/z4e8uPekFHyqMhuIa1ubnZsR3zWduYkQH10z/90ztAhrrCOacs3JbXC/3d3t5ex94TTJ4GPU0J6JMlfaOkT5T0M5IGkr6saZq7p87NE+iku4AyBWV0T+TJnT5ExtJUWTwxRKLp9DNFz8+k7lniTPlMvp7bEz2ODE40BhOdBIMgUVeiqzxtkvdQ8Rk4ff/6+nq7G4kI34HJvO7v7+v69ettJuMjGcyT+/EP0Tn7YwCivIjqMvBubW215bJE/hxPjt/zlSWXWhDiu6CpJxwb9czOpxbw0oG7XfM6b96o5x4DFxQZkMgXkTrLP4lEU6dcQkvkzow4x2NUTRmzFOg5chu5ey4DdNoDs2HqsPshP7SLRPmZ+dAmPOeWpWWY5yuxXfPo/on6HbiYzaVdvx46yS6gn5L0WZI+XdIfkfQJ5+H8T0o07lz1z0mu7dnO+h8zBSq7FdClk3x0XdKMYrPdfGLWEz8YDLS1tdWOx8iQhpQOi2NnW+bVyIrtWD40MDsklnDcbq83eRjG9w2Hw3Zrm8fgskU6oitXrrR821mSJzoFoi8jKS4gegzMCrKMYRlI0x1TnjOuXxhZ1+4z+X/W79mXnWCW9OjEM9uZ95RyHqOR5TYSHbyvYeA1cnZA5qaFWuBhkGcZw5SOMR2s5zc3JLCNzOJ4DQO+dZIZbcqV2UsGTDphPvNBXmn3eS/LdDmXll8CPWah/KwGWPy3NN11Zjugfp4mzQ0ApZTf4x9JXyjpeUnvkPQFR5+9pSjreNLE0A8ODma21m1ubnZSME+u1E3BbWy59a7f7+vSpUvtfXR8w+FQ6+vrGg6H7bnp3ILoPhIxjEajdttYZgFEgkSavo8OlRkDnyfgE5e8jzz5Wv/vfq9cuTKzOEt58BwlOiwGPdZVidyJ5rlzgkEjZeUfy93jztIGr2epwp/TEVp+lAl54amNNNYMHH7ntPWCvPChM4ITX+txsJTAzJSoOYGKnWZmcZYJnZuJpTPqAfWNfDIzol5Sp2kHnCdfw1IX7YkZF+VKu+FCtNsfDodtWY5ALf1BLiSTL/KTO8GoT7SZdOhZwmE1gePL9R0GlrOguSWgUsq3Hf35sZqg//ce/f9uST/aNM0bHgRO4zA4pvFMv6VpCi1NnxPwvfNqndxRQuVzG1QIKjCdIVEZ2892M6VlO1Qu3u/26cS4O4a7lmrn3FsuplpQGI2mT+6m4SfyydIEUZPbIsLP7aRZz69lcHQSdGiUScooy2ecM/5PZ8oxJhKm3FhWpO7xXjoVllxY62abnst0ZD62gHz4b/PgwEP9tzyY8bIUSblwTmuoOfXZ17nsRr5Tr3LXi+93WYS78Kh7tAe3RbutvWfY9pVZD8/wSkduHcgqAcdNIOVxZsaWwIBzRBtM+zkuve4SUNM0/0nTNP+JJou/a03TfGnTNF8q6ROOzcU5E5F6OgALfmVlRY8ePWodfNZUmaJTSbgTxn3NQ4Q1RcxJJyrl30SdWS6goiXP5mttba2DsE12CERpiZKzZGSFp1ORuuf9J/JjUKLzJ3p1O4l8HJwz6HHRze0QvRGxW250tLyOY85Ax/n3GFmeYBs7Ozszc2tdYNAh0OBcEa26XGHZMxNIBOqXCtXGQYeSu6Hcj/k1H0T1dMaUlflhQE5UPxwO20VXAiOWFD0/BDz+nGVJgqG1tbWZ2rtly/Isnwr2dVxLoD24/JKHEfpeO3n2wQVm69fBwUFHf3gMTQa/mv4T3KSunhY9zS6g55qm+QX8/79pUgp6S1EK3MpKZ+qFl8uXL7fKzvqpFc/3HRwcdJQs69xM3zI1r5VC6MjpGDIFN1HpaPSs1ecxC1RmGjENLktFNmCicbdHGdKQ/J0DTo2XzGToqDwO3pM1afPHsg2RKd8Lyzl3m/w7S2qWIeeOjjgdUQYMH3VNUECH5v+56GuHwzYzi+R7judlLRzDvDmmTM3ztWvXOlmWA1RmmDwnx20wuNlJcveO9co8JAhhsOG4OI5E6lk28TiokybvqnP/1GffxzUFB9iUFwEXZTgejzubGPr9frvORPkmgEy9tSy4ZiOpfcDwtOlpAsCPllJ+sJTyB4+OcP5+ST9y6pycMVm4u7u7unfvnqSJoPf29trvXYu2YhBF21iJVny4GI02tzayf9Y9qdxEXqwlU/nNuynrjVRU828Ewv4ZxNwO02U68CwvJB/8zvzQEdD5WGYcT7aR2QLfXkbjILJ2u0/aUppZAK9LB8o2GQx8DR2idYRBhWUI83VwcKBHjx61fXisLl941xC/I7BwewQG5C8zopoTZiBLeRLNMzMjAqZ+Uab+noAgg3EeveLxMcujHdWyIo+VulUDPln+9DW3bt2a0TeW7waDgfb29mY2KyRqZxu2qQyUDD60QWY4vjZl48/6/X77Xutbt27NtHca9FRvBCulfImkzzz698ebpvmuM+HmCXQaawAszdCZcNJ9vdQ9qZNGw2t8n+uMdKgs45jcHh1lKi3RkTR5n+mtW7c6NeHRaNS+WMVExc31g1TmTJ0zy/F3dDBMRbMOzMBi51pDUIm8/JvtEr3SmWbgY5vcjmvKe+hkcgzkge1znikDtkP5JE+8l7JnDT7HlEGy9qS576XeUbd4P3ni2kqOzfqXO1XSdh63TkHbShBg8sGFBBAM7FwbyfWIRPecN4+XDp5yo4yybEid95gT5HBcfsfwxsZG+2wNx29esh2OhyVe6haBKAP4cel1rwGUUor/bprmu5qm+b8c/XxX7Zo3O7F80Ov19PDhw45DIOrx9VzYNFGp7MA9eY7Wvt8KvbW11ekrHSf7qNWFc/HMpQ1JunnzZtsmjcIoMBEzDZtlGPPkg9Ho5MxHnq5IhWZW4PHXshjKq+Zws47rzzh3dKpSfa+0EV0aI3mwYyWqp0H6nkSw3iVmXlhn5rjoSNMhs5yWqDlr4Fm3d3u+jrxRbhw3ddZyYXDlDiejT/JgvfPflJv1jcE+27Vu+W+XWelQyRcDgceUwTuBHNeduAaRoCjbTdkTxNhOcmFbmpSKpcnT5Nx1xOCTZTgGUql7ogD7TqoF0dOgx5WAfqSU8lWllLfzw1LKpVLKZ5dS/qakrzgTrs6Itre3WyMyaqZhEunSMdpREKVIU4PPmjkdgDRRFDoUKh3TRp4P7ut2d3fbEwizJECUT+c1Ho87QYTIzG2zZu/vHHwsI57vk0afTtP9UIkZBP2/KTMiExfNvcBslMs1DAaPTNHdpo3NWy8zcLkP9s+H8kajkba2tjqOiQ5rNBp1ngOooe5ch2BAtE75+tQNOjbrJvmwfvBeOh3rBs9cYjaVQYV/U36mLFFRll4/8PfUIc89ARV1kONxm8yCuWutVv7J4M2gzN1WPGKD4Ojw8LCTuXMM4/G4cz6UfYIXkDnndOSWLcvJRPSUL8tyBDWm1K3TpMcFgN+lyZk/f7uUsl9K2Syl7Ej6WUm/T9JfbZrmfzoTrs6AxuOxLl261CqIlcVoR5q8pzZrpw8ePOgs5BGp29Cs/LUUjVsriV5scD6XZzwet28XI3piWcglFSqpHTZLNb4nFy3TQIi6/T0XIt3/3bt3OyUy7lRhVuPvmQlx7J4HytFjIx/8zGNw9iHVyzYZTPnZlStXOvurc67oGEwe2/Lycht8/JnLCfv7+x3H4/uI4hPRs1zInSXpDM3PnTt3ZjJCZikOVMwS/Bmdr+XJh+PoZDnnfNDM/TC4eEyes1rt2//zKAYGVjpPZlzJM3UunSBlS1Tv9R+3af6448c0Ho87DwXmOAgAmSEQhHHenB1aTiwv1TaIMCAnX7QB6v9p0tOuAXyEpCVJ/6Zpmn91Jpw8BZ3GC2FyklkGoJIR6eX6AJ1zlilImc7SaN0OtzZmqkiHzTaynMXrrJiZahLhWxY1RJxIKzMky4jHHNC5+X8i6XTYNEwHNcswt9KyZMF5sWEkQqwRgxUdQAYR6wSDu6+l07WciczYZiLEx23h45wyWDNokg8GeffPOjnRP0tjLOtln1kGTPn4+jzmgY6XZTX+Tdn5WsrIASQdKbOW5I3zleNg7dwvAqrJ2XyZd+s059Of8fkDBgLqS/ZBPfe1zFT4AGnqF+eaMj5JEDjJaaBqmubfNU3zC+fp/E+DNjY2ZsoFrNmtr69Lmj2gS+oag9Q9q54LN7yHqM1IlvXarO2an0yJ/X0iNaaO7idrpP6dfNKgiNoYyMwvEbMRMHckmRi8jMLYlg2gtvidKIv88fjhXq/XziO3LboPrkXQeWW2QP49NzWZ0EGY93kLqP6xXtBxEK1yvmjsRPCcM8uNW1ZZKiAST+fveeE8EqhwnST1joFoNBp19tybCEByRw8dNfXUZDBCPfE9uQaVTp/8Z/D1PPlIEn/vI0ss5wxStYxbmmQU29vbLa+cQ5csKbfMujP7I//+3lkos/HRaNTuUsyHD0+LnioDeLPQSTMAIg5pOum56m80xaME8oC2rOft7k7eM0ul8hkudBB5X27V87X9fl/r6+udV8kROdTSVfJHZOZ72W86Xdb6rbDuh6+0o0FaloPBoLOf3UTHW0PetSDs1xDu7Ozo0qVL7dnqNQRNp01+c7yWMR1foj86Ljq5mrGmk3R/LOvU5otyTjSe2RZ1hvzyu9raBGWYTpi88Tv2xXYYqPw/y34cFzMJtkkHW8ukU3cp18wcMnOmbtdARc5dbgjILbK5Q8p2zSyV8s85on1n1k4+ahkI26HMKWcCxddL8zKADz92i28xSgXjOT/+ngpAI8m011RzhonoqJT8jm1kZmCFd22ShuX+aCBMvRnQ0gg2NjZ09erVGR7MJxcUeT7P0tJSBx0SodjxcX0iHa3vTeOiw3G7N27caOv2mYV5fpiZuC3u+U+0lbXXRJK1MkPKjsGFvOc6iOcpT8Sk06ATIlocjSbvnOWebwazPLrEDoxHiPd6vfbMqAy+zLaodxyP2/WYSZmt1rJj2g4zEZb7WDKiHDg/KduUewYf2jLvIdDxGMw710vIg/nl/f7tV5hy3NQTPl1MPTdfBB0JMtLvcH7od06TnqoE9KFAKUS/p9OGMxqNOgu2plyNp6PNp1RTQT3hNcXiZ48ePdJ4PO7sAvJ343F33zWJaDKvz/R2NBq1Z8TQCfk+t+N01LJgcLBCznO2HHfKxPz4/3zgjURHzB8GKPNtp8R2OKe1rIPG7u8YwMm/gQLlxDGzVOGSDZ0YT3elEzOPBAkOgOSf/TJT8udcTOWGAPOc/Jh/zovnjvLP9Ri34XnjrjgGGwIVlgr7/b42NzfbthhkiW7pbDnHJCJx6p2DWvJMnacuZrAhb9ZzAxxp4twNUNg2yzZ8ToOZBUuYCUj8O0t9nK83PACUUj6+lPJ3Sin/pJTy548Wgv3dd58JN2dIOfl+z6uJqZuVm04hU9XBYKC1tbX289rZJ1I3XTcyODg4aP8eDoe6dOmS+v3Jk8VppCYe4DUej2fKDTVk6/6JuPr9vjY2Njpykab7uN0H32nb6013OuX+at9v50TkRj5onDYK80djyaBGJ5FlGrfrz+jUOTbOH7/j4jIXUWmIy8vLHWfN/tOR07HmllnfW3Na0iQ7o8NIVM7ATj2mszAvDDi504do1A6O+sNgk8GrljWyPUntMegMDC+//LIkte9Npt4QKNEpMxNjwHW/nnvqnOvlJsqLwZvBInWL88gsKefdY7e/oHyYmWf2YjnQ0bsd8+egQ1mkbp8WPS4D+FZJPyrpqyS9TdKPHb0ZTJJ+65lwc4aUyOLy5cttZGYtmwiX6IBIIpGmjSnLH55ALwh6Ev1Ql9R9GIvb4tKwzL8dSy7y+ZpMPROtSpMHV2g8flCNSNQZkVEb+8i1FBsxjdrEQMFXZqYDodFT2d3u/fv3O3VfOusMtpQZHU6v12sX+tOgmGmxFGiHzBJOBi2+19jE0gLr9LVAKU2fS/F4MmgZXfrvGm+cQ+pjOnG2y2Btvvi8DINbzVlzY8FoNHnBfSL/F154oZMREUzRaVomDPoZSBMVm5fd3V3dunWrA1I8l9aF2liZiWTZhzrl9phx+m+CFdpKBlSPlU9100aoYzXweRb0uAAwaJrmm5umWW+a5qsk/X8k/Xgp5ZqOXg/5ViJOejrXNDgiIhqvKZWIzsNKSQeZ6HVekKghIRue1F309DV0OlQejo3GlO2Mx9MzUrI04GDItiRV5eR2a8gnEbLl8vLLL3ccpdtkXdz/v/DCC5293b42jdyOMhG32/G2QI6HAcsy4oNTRNK1erTb964RIme2RX5qjodlrHTSzKCYWVF/KFt/Zr79N2vnCYrc1/LycgcZ23GzLfaVAZ1BhoGHepJ6mGOlc04+zZeDw/r6+sx2Yt7nsRDJkz8GIYIKAgnqQNK8DIqy8ngInvgUsO0z56wWtE+THhcAPqKU8pH+p2mab5f0JyX9oCYZwYmplPKnSylNKWXpNNp7EtFJM2r7MzouaZou5qSvr6930AkdPM8d57Y4qbtjiIqff3Mh2pTIkEi55jSJ2ohg/HIMXsu1DCIblkKswFzUy1SfzolBzbxI3f3yn/EZn9F+xrES1Vr5adzmLddnGNhp1B6Xv/P8J2Km3GygdPiuBdOxeCzsg4GFAIIOgqUbO08GM+4Oocz8m/Lmb95PHrKUQV48XsuLSJt9O7BaF62r1N10rp7L1LkHDx7oF37hFzpzxkBGe+HaB0sjHg/XTcgzM0C2SVDE0thoNHm4j/pKuVM3art9MjuhjP0dF/L5lHJmlaSz2gIqPT4A/A1Jv40fNE3zw5J+rybvBj4RlVI+XtLvlPRzJ23raYjK5TdLZU2VTsiTUUs9V1dXWyWgAkjS4eFhB9FKXYfB+qUNYm9vr9OOUTcXoegcSEQ43ufs9omEpImiXb58uZM5GOUzvZWmaw61Uk2WiuiQiHQtXxqMx89jEBhoc0GbSN4OgLLKReQMGnZWtYXy/D+vofzo/NhfPvDmax1QcvswHQKdlj+zLFdWVmaeI3BpynNJ3fR9uQ5AmadT8/XpBKnrKSM6L5ZaON8cJ0t0zHBXVlb00ksvzfCTfVInHcQ475xv6pavz0wqg5RRuD+7efNmm81RrxnA6JD9N+fCpWSPuZY1eIwEicPhsNVvl2Bp32dB5/YcQCnl70r6OknfI+nFpmkOnnDLiZ4DoLJIk4lbX19v1wKoSERTvMcGnenhvPok65Q+F5/fD4dDHR4etjuSWMrwbxooUTTRKtt0wMi030S0TX5Zc/RnNuqs6dPpWD552iJRU6JvGgTTXWYVJjon8kqHkWOibNLR+X86Rcqe42QWtLe3126v9JiIjllaSflSHpQf9YdtZMBwnww2HL95cQkqS3zZJ/Ul9ZTIms6TNX3f9973vlcvvvhiR77b29u6detWtcyT81pb68h5TNtjsO71uiehUlfZtrcp87mc2lk+BHzJM4MX5cbNA5mN1Zw/5zvLkw481smsDMwLJE9DxzkN9M8e/f7GUsr/O3+OzcmkzS+UtNc0zcZTXPueUsorpZRXOFnHIR754EPWsi7IkhCNLxfbOJHSrNOnoVBZ0mH5oLd0oG5T0owhJOoz/76HCISlDrdjOXL3AvlP50qnTKdmHvIoBo6Df1MWpqwV+3wdX8/thixV5OdpcHS4lF1mOf1+d80gHaI/87sf6HDToVJ2SebDQdm7R/wdg03qDnkfj8dtGW84nLy3mtkJy5LmncEt15g4B84EPcbxeNzJBMnjeDzWO9/5zrZN87a6utrKdXt7eyYDozwSNPl9G5SN+z04OJgBFdRB6oIBkNvhgX0ZPB08GGBr+jMvqDJD5TylLfs7yp8Zk30AN11QF97wDKCU8gVN03zf0UtgZqhpmr/52IZL+WFJH1f56msl/XlJn9s0zS+XUl7VG5ABsCzAskrNwEgWPlFH7kf3/TRyIrp0fER85M8KRQdU23M/Go109+5dPf/88x3EmzxQudwHxyV1jwJw24PB5Mle7m5x/7x+HjK1PMzb41AvZezAXFN6ypqyqF2XfdaMmGUFtk+e8jydxwXDnNPkQ+oiTOqMx5HrAka3bHs4HHYWPBk8OKYECDXgQP5qDmY0mrzW0IcUUoacqyxTsPRC/fQYa2VF6iizN97H9QHyQb5MOd579+7p2WefrZYvuQbIrJo6wHb9He2GGz/YVsqTPsEBNsuLmX3U1hleL83LAN7wElAp5Z2S/rGkf3300YqkfUm3m6b5xcfde5olIKJ01krpMNKxmqz8RldcpMo0ngth5oMGlxPuvslLOl86EhtU7kCy8zAPHrPUrblTUWuBiegqeaplChwTg2cuZNH5UX5Uci6OpUGQfxo6f1gyoBNm/5QZA0Q6KN+bupHlOX/PrIjAg+2lc/a8sPbLWntur+SY6aBZ7qDT9Fh9VETN2UjTzOjVV1/VCy+80HFcnq9cM8nva2WdLI+l/mQg4P0M3FzU5nVup1ZKS11Jnaed8kEt2hoD/+7urg4ODtqn9WvgIMtL/DttiDZa0783vASEG99RSvmWUso/KqW81z/HZaRpmvc3TfOxTdM81zTNc5J2JX3yk5z/SYmGQufBh75SYWjwdMqZDXABkwHGn7F/tp9ppe+lY5Fm9zxT4XgUtQ2PvzkWt83Mxwbgh8OIsDJwkEde2+v1OgvVRME8/oGLniyXZND1Z1R4Gyl3ndDg2DYXCD3nbsPPY3Bs5o9BgCU7Lq5bhnkEOB08nb95ZVB1+zx6m0iec8WA4l1IdlS+ln8zY8yMwJ8b0TOo0/Gsra1pMBi0i7QEJS5R0Mn6Xh+Yxvmj3dA26NxcKmIg8Lh4L0uAdKgeR2bo5o87ogiU6Nh9hLmDbm4ucGBgsPD5WDUZJ3hhoOE4LAOOk7pD2z8LemIGUErZkPTNkt6nyfsBJElN07zvVBh4g0pATresKNyuSSdMxZW6OwfoeKTunu50SkQjVO48eyUj/3g87izm1RCFlZHppMfo76ncRJb5NKbl4j5rC9zzFjh9bw1d2yiJBrMu6s9ZUktEyDGSzzxnhg4ha85E7KkTRsN7e3taXV3tyJrB278t+yzNZHpPPfFY3SYDU+od94Kn46Qcc7snx0THn4GF4CH5yjlKPSKfm5ubM8+IMGjXyh0EMQmWEhxxPJw7O2bz5nlgJs52uLBNoOHrU8fMe61c5zZTFp4rv7kv9YQlUgYoAlHqCfWV2fdJ6CTHQf9q0zT/fdM0d5qmeZ9/TsQN6CgTeKLzPylZ4KzxMdXjZHPCpNk95AcHBzOo2OjA9/GJ4jQwqWt4dASJGEwsMdTq5OatVrowmmXAo6HkfnqiKW5DJDK5c+dOazyUVaIWonIiWyt+rb7p/nm9fxs5M2OzsfV6vfZIBY87nUzKeHV1Vf1+v1PntiPhdkKPx28I85jNey5yck4sF5a7RqNR+/IQf5/OiHPKuU8EaVmRH6LodGK5EJyLu5QXnZC/y3df15w6dSqznFpWnMGOb1JjecsbHAyUmBlyzpkBUx8YMBlY/F2Wc2mHnJMEiePxuH3IkLZiu6P8eDS37+WzOCTq5FnQ43YBfUwp5WMkfV8p5Y+VUt7mz44+f0tRTmI63pxcohU61dFo8rh71jxzLWA8nr47Np0Dd7CYBoOBrl27VkVNVmg7HhpFoj1mLB53psa8dnt7ewad1ZSRQWU8HuuZZ56ZyRSkqfNOdEUeOQeJGrMsxoDC4JoozA7n+vXrbVtS9zwY88oSnq9l5mGejd7scNbW1lqEZ1lQznSw5DuN3MiVZRg+dMbsiaUK8z/vdFryk5+zbTpqgoyarXhc1B0if2a4qT8ppwxEHBeR7tbWVmeM7odBi3PrzQrWAzpuZigMirQL6wP7YMChHVoWPj7FvNEOiOAZvGronjaTgMiycjtnQY/LAN4n6RVN3vv7ZyT9L0ef+fO3FFmgiSyonDQGGjQNyH+7ltzr9do9/nZ8jta5n9r32vhrNXY6f/PX7/c7r6ak0bBdKhtTTlIuiPqoZ/ZDhFYLVDa0RHCsvWcJxn0TffM7G6DbodM2kkrnxj6JpJlRMJugPH0/Ax/5Mm+Hh4dtxkVEyXtYL06Z5flFvp+LuXZiRO85HvLObIqBK9dXOEbKlvNIYJBZmMdF3qgL7pMBgQGKAcR8kVceRsc2/VwMHSbnmTZrvvwwJcENM7UMrL6GIIp+wN9n2c7264dB2afLd+abY+O2bOoL5yqBjR9Sy/WI06S5AaBpmqtN06we/c6f1TPh5ozJk0cnS+eSyIdpK5XO13OXCdFcOt6awg6Hw06t3/0mUrKS5qJjbk/z/fMWXKXuQmQ6Pio3kUyOYXNzs4NsiU74YI2PtiZfdDqsm7t9yiCzHSIzGkWi8Kx3E6FKswd2mW+Wvug8/fBXlpOybMe5ob5kpsG58z1eBKWsiVCJwCmLHL/fC0BehsNhC3qIPInaWYumvDzG2uK6x+H2arqYAcMy5TuYuYbEAJvZQmaOptFopDt37mh5eVmHh4ftdVyjsa1ZZtQ924HHRb1gtul5JUChHvtazl2W1TxGBsssb5ofAsUMkqdJT7ML6CNLKf95KeU7Syl/r5Typ3hG0FuJWNdOFEVF899ra2udrXeM1FZCb7erLcbRAVhJ2I4p65+1ExCtOPmSeSuLFY7ZA5FP7dhg/01HY/6s0OT3wYMHWltbk9Qtm1iW5Ne19ZoxcCcE73G7doh2pERALIVl6SZlwu8YaFwzHo1GnbJMZkcMcMwcfL11imDBJTU65pxn1p1Ho1HnyGl/lhsUstRn4rgpM2nqsNNhMsvI50zsLKmTdFLWT86r9ZL2RBsg+k5+0rllBsWAR53ldTdv3lSvN93dJKl9Qx0dM2VCOzHPDGgsyTiAmr/UJQOfzFqoswwMWf+nrjl4cZwEEadNT7ML6DskHUr69qOPfp+kj26a5veeCUePodN4KbzUPfqgVsNnKkdFqzlJokJTGoD/54M9NUedaJY/WQPlTgIqd/JJB8ESQ46LfNMoiZypsBxbZk6p3LyWTopKTnTG9jwuIk3ulJHUcUR88pMGSdTHHVTJI5+f8P/eV8+XcpNnlgko30Tx6bipPzV98mc1tJ8BiX3mnEvdXVMEG6m3NcRtfcvFzLt37+qll16qBnGOLzMg3++5MI85j7WA4v+Tf9qzx8tsJr8nUf9zw4eJ40jH7u9rR0JwDq3Lvjf58bXWd26hJnA4Dp1kF9DzTdP8oaZpfuTo5z2S3nFsTs6RbKxUTKLbrK/SuNNR9nqT1D0VRaof5ev7pO654k6JEzF6wo0IrBBcoGV20uv12kVk/88nDNOReDcFlZMojWOh88pgYTnxyIBEjenI08mYDzoAtm/Hk/VT8ktEnkZvw2Yw4PMfzN6IFi3TXq/XOcuJbTFTYkllPJ7W/FmOo+xSDm43DT2DTaJ+ZgXMmtxXZnk5lzUnnbqeO2J2d3fbc/45p9RbOsfU5/F4PBNs2QYDqmWQdsW1Hc6zKRE0eeAPM3y2l/zXfjjnm5ubLQ/uKwEe9TNlnEHfL5yiDZ02PU0A+OlSyqf6n1LKb5P0k2fCzRtAWe6w46ehMIUjovDE2vB5bnoiazu0g4ODTpZBxXKfuRiWjoaIiEozGo1mUCmVi6l61h7JN5WMPNgZJPEeOp5er9caAftJZ5ApfM3w+ZMoOXdc8T6PI4PJYDDolCmIhDNtH41GunfvXuehMzo6Zgycb+qK/2aWQodG2abusD8uftI5peOnDkjdsiL7pJOj7AwuWJ6hPmX5Krd5pv5wbjwOtmsAQsRseWUw83j8PcEA5UUnyWCRwZB6aPszHyxpGnRRT0ejyTEsNQRPoMIybuoPdy153nk67lk5+xo9TQloS9Lzmh7b/HZJW5J+XVLTNM0LZ8oh6DSOgkjnl2l51oGJvCTNKG3WmmkoVpg0ykSA5JGKYeWkk0lDYluuRdbKLr4mt76RB8rF8shSTvLNsdccgLMUOs+UezrRbJ+olfxliY7k8aV82W46Xq4NJQrnOBnMuPDNAM2zpliOqBm3HQ0XcamfKRNTlrhYYszFcAYc8znvJE3LKo+6tnNMJE2wRPvJ+fL/HIufcOaDiFLX+WcWx7kkH7mpIe3p4OCgfdiPwMjt1IKv5chraMOp9zU9ZTDMnXwMzhxL6pr7Py6dpAT0uyRdlfRZRz9XJX2epM+X9AXH5ugNphRsOqvRaNQ5qEqaVVbXltmmpBbN+DMbD9vPVJA8pdH43nT+vi93JtCp87oMBESPuSPI4810M9N7LqQzc+CWO/Znnmo7rSgb8sCglYbAMfloBAYX9u/FZBqgA1pmRJ4/L4ByDokgOceZObh9L6Tmbg7Pl/mjnMmjyW1ZLnmtr7GT4vqS5cf76cgtN2YSHjPBDsnZV5YTCXgoG46XTjlPL+V4aw6wplvmx2PkdW7LmzV8nx/Uchs+1oKALnXccnBf80AjHX+uxdG5kyfqD3WCgagW+E+Tzu19AMehk2YAVHSfwy91FYm1RaZxnsCdnZ3OO3VpAFJ3sc1Kmcc2ZAZiJMIaN43z0aNH7XZEIqREd0QtdOZGeuQjjZj3c1xU7HQg5j3TcMvOMvH/pgw+mTW4Lcowg+B4PHkBztWrVzvlDrfjtojw2G6tvJDGmnpDJ0e9chu+lzpAuVCO3D1i3bNc2Fb2xz4pG88zHS+z0sxEqTMpb8uQck0nawdb4yltwwFxHvhioEz5+1qe5Z/IXpo68XmHDmZgZdBKXbPeMHgxsBG0Ue8sT+s659NznHpQ04/a7xzX66WTZAAfEpQLL0tLSxqNRtrb22uFPBgMWgTIkgR3P1y9erVtgzV6OhupW/NLZJLIz0jTikQEMhgMtLy83P6/srLSbsXk2Ky4/O3veOY5UTIdAoMHx0Dq9/vtcwB2CHSQrqly7DYILk7T+Fl7TeeTiM8yd7vPPvusxuPJ+fjkh4Eyx2qZ0kllkNvd3W2zCxoqdSLRovtidsWAyYytVmZku/6cO6SsJ5QPx+WAwvERSDAQUA9Z0vH11hf2aSIadzvUZTpJ/2Zpi9e6fWaxtAm352tqzxpkYKIzp81Tlrn5wvdTVuaJMrRcreeUHbO1Xq+nw8PDjh2xHQYU+hCu7ZhYojsLujABgJPJVNmvSKw5mbw/nRQfV7cSZfroazPKu3+foJhZgdStCzIF5SmSuQbBIwWMrEajycMy5ImOgIjH9xCpEtX7jCMaJA3HMslnGVhvrjleGr/UfUCIC8ssH3gxzS9r4TynQbEeb57dH+en1+seJ5BgIMsy5J3vDLYeDYfD9gElzmmicvdNVGinlDrMOaSMGUjzOwYB9+eSjp0syzIEBJZfbmFmYKtlEAwC1p/cyUbnlvpuHXWmxMMc3X8tI/F4LLMMrgyk6YjzJFcCB+7m8pqFbdHAzHZz69atVs+ojwz2BCvMvBl8GLjOgi5MCUiaKlielZ6KLtWPLUgnZdTFUwCl7mJNlg5y8ZWLf3QoRIDXrl3TxsaGrl692kn7zUum876XPBAlzUPhLDsRsXusNLz9/f323J10oPO29/n/zDTYP9viQ2/kI8dKlJi7fzz+HAP5NQ/mzzLJdN/E0gGJTtH35hPbGTTIY5bgWBqk/vie7e3t6gFk6ZSzlESnS3TLo825HpaBMMs0lh//Zx+eE5YgmaFSNm7D92R5hcGnVirKgJhEHgm4CEZSFzMDtM/IUu9wOHnXgt8RkMEwS2Dsi+tGHitP700w8HrpwpeATOPxdBFqfX29gzYYjT3R0uxiLeuNu7u77c4C1uXpYNIB8clCaXYRikjLBvPMM890eKQymv979+51nJeJj5Sn0XKMXgB8+PBhx/DcHhcHn3322Zn7uC2PyIrjl2afk7DsfA2Rnz/nllbPGdN8j89BYzyevkDelDs6MhDSUE1M0fkZkbb1iujOnzO41x7eo3yz3JBlAzrz8XjcOb6a2WCvN80sGYh5LWWQpSvzTdl43O6b46bzr5XymB2ap3SA1AuWWhzUszSZ8+/sKwMR+aDMOYfp9JnJM+A4SKb+UP6ek+Q1Aw/t3TrD3XIGfvYzZ5UBXKgAkEjo1q1bHSeV+76lrmOgkVIpEj34PhqD+0/nTCfEdNaKmMGBCko0eO3aNd28eXOmTalbKmAJI3nw+sfVq1erJ25S6ekgclcDg0Wm2KS8hnJiQPGYzUMi43ScDJAcA+fGDoN9Uh5Z685UnPNiGVBfWGKzbrCERFDBsg95yczDxHo3nSd1Z3l5eWaBns6YusngRdRNp8t+cwOCnSLth2UdgwR/RxlwvcSfMXNgeww2HL9Bk+XvkzrZN3Up78+SDHW2Nlf8fzgc6t69e1UdIJhjVpJgjOsYdvjW67t371YzmdOiCxMA7OCzRp7ILU823N3d7RyZTNTgax6XaiYSpnPx93QaVJB0pkSWmVKORiP9yI/8SFsrdTtEMlT0Wl08U25pUmYg774mjSlRJRfX2T+JC2/S7JZF/0050gmw/mpiRuB2WXP2+J1aUz8oU/Zt4yRvXgthm3QMa2trHV7cJueWusOMwmNnJui+6QjJD3WHbToTYPCnfKmvzIjZj69lMJWmD1HyJUOexwyevN+6xzFwvLyPiJsAiddTHqPRqD3hlqjac8aMlOVDjpXrFCxVsSToNg280g/4bz5LwWDGbCrnkHbwwgsvnKj08yS6MAHAlLXFTIGpTK693bhxo4ME7HQyreT3pEyvpWkK6tINDcKGaiWzo3Tw8C6VdJJvf/vbW+dGPjJDIXJ2LdPf+14r7urqamcfNI3WxuM2iPS8MEukTMWW1B6p7Xb9op1Ed77Hxp87iug0bOj+XlLrjOk8pO7xu2m8uUc8M6rhcHpIWI7RciC6NErkWFhHZmZHVG3i+BiQ3J71xNTr9XTv3j0tLS116st8WJD8Smp3mxEcOKNiIKZDr6Fa6oI0DfS+h+Utlm4c0Pnqy7W1tQ5AYfBicOQaHu2P/FKODJIeA9dBmJmMRrPveOZaje2IQYC2xkzC/HFnHrPN1He3ndWE06ILEwAs9ET8NXSdu1s4kengrXRUSkZyOiy3z+NwjSBYksjaZDop7sLhk4X+nDtoUjnpMIkYMx2lc/DfteyEBp3pOdv1df7bMqUxeUHTfJj/nEfO2byH5WrBOP8mCODnRGQsdxCJMSPgHGV672Bx8+bNTvZF/cr5JXpmWYZjymBW05Xr16+3DoZj4mF5pETG5j/nLTM6ypFZimWRD9QxmNMm/R0DOIFQomTLmXL157TbzGhSP8wLZURgKE3BCgEQ/6ZsKDPKlNesr693xl3TReoCdeo06cIEAKm7sycdFIMBERVrq9wemKkslT7T/XnKb9RjRXV/KysrrZHSWbKd/DxRMB2ngwLHRSdPdMHMhrynsXlBjw6eabb5yKCQab8dkomIzm3QOTDweM64gJzBdjwet8E1AziDj/u2TIjELecskVFHnJUxEHDRlzxRxgQk5NG8J7Kk7vk6HmSYpTi3k3Pv79OpEBAQ7bpv2gP1iDqdwZEOnWNJtO7DDGtol3rv+zheypGO1ruwMojt7Oy0PBPEJAL3mN0G3ytAnR0MBp2yJ+c21/ZGo+mrSKkXzIL4IGEeR3+adKECwDwHKU2NaDwez9SMpdnteiZGaE4wg00aVT4OTsfje7k4SIRiB0unZT6Jlqhwvo6Bz21TOXO7XgYHGiudqR0SkRMDJEsIbsd9+rgGOjiiYjtWGiTHkqUF7rAyH/OeDpW6O1KoB+bdwdNBgc6bPNpoacwMTHQmGZzNU5YK87mCdEr+zsdVs7Tne3IXEx0mkbJ/GHBSz3u9aXnGgZV93bt3byZjcZ/klzZCgMDgldcTjTsg19BygjG+dIl9Xb9+vRPY/XfqOcdD+dFB+3M6dd/r9ggAM1PjGDlvbjfXgk6TLlQAoAMhgpS6tUF/znNRiNDcFlNLKxBr6u6PZRqjkkQpPDzMCpc1T2nqWKwMeZQt69EZ5IxKa3JxPZYBi1lJOjs67JqRMm1nNkPFX1lZ0fLy8gxaNRlx+eEy32OH4r7SWGhMdCxp4OaFZQMG5/F43Hn3q/lOmfM7ypoyZLnDTooOkojavPGpdGniYJn1UW6JcM2n5cUFVQZRBiCiW/4wG2PwY8AZj8dtmSt3qVnvCLB8DXml/m5sbHRk4R8CE36XmRQzYx4jwaBDnWEgoFwza8mMnhmhbZ22a+fP9jwfJo8/A1vay1nQhQoAnFw7PKbqdixpiJ4ATmoqnr8nmpa6ZQIGC6JsKuD9+/dnFDBTYi9A+nsqPksLiVTtVKTZXSdMb80vH8Tigh6Nns7Mip/1SiJfjoeP4qdTTsNyELATdDDwOLe2tjrOeN62PxpTIjHKRZJ2dnZ0+fLlmXN9fJ35ZdDwWJkBUj7UCVOW5e7cudM5HtjOq7bNlwEpkSR1Qpo+Uet7E+1zx4rHSADD92Az2zP/3NhAdG29c9/Xrl3T1tZWJ8sy/xwrA4759T0EZDWnnbrNUk8to6LO0V4shyxr+TqW93gcNAMO55lOnnPIHU3kIQPaadOFCQB04CY6ByqQnSuPMjZxx4ykmWDhtqwoVtCs5eaxCObthRdemHHq7ocOj4jVfUvdl5VI3Z0SfGDLY8gfZi253mEimvV2SKJFOruUeSJ8j4eBg8aWh8hduXKl47BMfgAnswMassmGORwOtbm52ZEhnZ8XUcmrx0gDJyLkwzsMxG4/gxJlYjnfvHmzWuIgoqRuZenHfLl8xRIM6+Hm1c7b8s8dK9wd47YZFFmyzODh+WfmPBwOOzuOeLRJlh0JzrjewqzabVBGWXqk06W+Uf4p79Fo1GaAnpsMJBk0GNgzMLlN+ghmB5RfrQSc/J0GnVsAKKV8VSnlfinlA6WUr38j+qRzmCdgX+Pr+Hg2oz3RBh2Oydv++PSjFYepNndB0AHXkAnr7kSR5KWWVpNPj8PKaScvdYOkFZSlFwYKPthDHtLp2QAyO7IBEeGZWGLhFlST76FxMfsYjUadN3hlGs855lyMRqP2LW92NDXn6rEzuPj+PNiPGQZ5zaBKOVIPuNWUTjrH73tqiN7f53bOzB6YpZnct+efiJ2Bi/cyGLBkZ1m6LTt+Ok2WhniMRo6T21mzf4/V23+tU3wgLJ2+x5kZqAMV5Z2OmLZFh0695PxQByhPypz2n4HlNOlcAkAp5d2SvkjSC03TfIKkv/JG9Mu6JB0CkWfNKRFpUNmkrtMcjyc14/F4rEuXLrVGS+NLROz27RipwMlvZgWm5IEo1QrIvrL+nGMlWmRa7usZOKjgrHH7WrdJgyfSq6XbicwYEFjbJf9pgJxby8T/ky87bbezvLzcfp+nWNq5O2hwTn3twcFBZyttZngMKKx513b7sDRop3fnzp1WV6hfiSjdVz7rkOUHZhos99SCFGv4ng+PM7cjey54H/swEGJgzaw1Syic6xri95ywZOP++UMbY+nQYM198KdW+swATlk42Lht7xCiPbE9Uj6LYF7Pgs7lMLijF81/S9M0P/x67jvp+wDybyvdvXv32nPl/X0tXUxHxRQwswmnyTR8bi+0othArVD+npOfTsu/E8VI3Swh00aimNqJiCai/3nnthA51XiY53hTrv4uyxluc3t7u91dQUSbKIzOlPNBslzJF2Vu49zc3Ow4ebbPe0w59gxS6XRZBmIbBBX+jge0cR55T6L8dOrmYZ58OLcEHplhJJ8MblmSlNQeZkZZDIfddwO4ndQNBq3sP+eCpVoG3kTeyXsCo5qepIy5sM45TNnXQBFlT0CVQduf01ZPeh7Qm+0wuHdI+u2llH9WSvmxUspLZ91hRlkjmfF43Dp/KiknJdMxT5qkjhJI05plomGiNE8ylYVlESpMOrxaIDO/RGE5VhpWrR2Wh0yJqmspcBoBx+XPmL0Q/fjzRDzSFDHduHFjpo4tdQOw2/OWUo6Thk+jJ6/p0PNZBrdFNJiILPvIjM1zYCfBz6w3vt8o1k6ttmbj7/15AhHzlPJJ55NAwc6tdiwyswKiev7NjQ6SOgvHzA6SN+og+0vnnU7b8qFOsTyZtkBZWk99jfXcY88slUCOwdz9MNhRT8yXy5nexLG+vt7RMdoNx0MdPG06swBQSvnhUsrPVH6+SNKHS/poSZ8q6c9I+o5SSpnTzntKKa+UUl45SRpUQ+4HBwcd5JNC9/WefCpiGgCdJI3Fxs56PAMIjd7f8YGYROeJ7qnAzCZ8rRWRjoVOiA6ZKJqBjlmN1A04HgMN08aTiIYOhHyurKx0Uno7/pw7f+97jLCcbvO9AHREdAY11E2euACapaLRaNRuT6zVnGn4lm2W5tg3nR9LOgQIbodjN3+13WqJnO2UxuPJ6aGcA5YYqbPM1hKpE4HTLmg3XDPLxdK0Gx5pQhtilszszN95flmyMn9cpPd4zBcfOszdWX6JC0uABH9p09YJlgI5T/7b/RMc9vt9LS8vt99njZ++grp42nReJaB/KOm/bZrmR4/+fyDpU5umeayHP+n7ALzXnrXMVKx5ZQ+iBP/PjKH2sAYRvIn30QDdbzpSIoJ57TK9tJKnYyCCptHSaWXA4bjsbB48eNB5I1kqe2YDdCikx5VRGBRZDqjd78DKoJ1jpJOm43XmMY//NEIi/AQNlDV5Zt+1+WU7NZlK0ywl68Zum+UdO8Hkzfzt7u6280cUWwM9XIxldrq7uzvzfmzOcYIl983ymK/z38zEaBOZsbgtlp2oB3SYWb5NkGO+advuP8tZBF6cA2YRRPtum3PFtqwTzKoft6id/LxeerOVgL5b0mdLUinlHZIuSTo4yw5pmJ4oR3h+n+UJopNabZuZRTpYGruRgoOMPyNqIY8sZaRTpSHmNjIeP0uHbt4yW7EC5+Pm29vbnXWLmuFbic0TnYB5o5PgriWWWSijzAwoAzp6GwNro1ma828eyWAkJk0OiWP6TSdM4rqB5ZoP97mvnHeXI7iFl9d7Tkz8jDI13+5/b2+vvX5eubDWBx8MS/30fOYGhAySOV/9/mTdhHbDa6mD/szPc9AhMzjwPuteOnLbI7cs15xvLXAwsOTzD1w8p0wZ4OgnuPBM23ffzFDID0EnHwRlBpTzeNp0XgHgWyWtllJ+RtLfkfQVzRmnIlZkLn5Ks2emUOmowL6fDi7vIbLY2trqOBU7s52dnU4aSqLTTGNOxSJK9/dENU6/fcQvjY3jyPq+r/MTukx3s3adWYj7tsPLrCnLVo9DtHZGNBiPndsws006EZY0MhDZiWc7KcsacjOvntta9sK+eJ0dLNtM4+Znnh/OU7/f77x1irLv9SYHjbF8lO17LpmlZImCR2JQ79wm5WQw5b7yKBXK0g7v9u3b7Ti5U8m8EYxRJzjX+/v7HT6oq9YfBjLqUwK8HI/bYWnQ/ZsXgjbfl2scbI86aNl4p5ezso2NjY6unZXjN51LAGia5lHTNP9x0zSf2DTNJzdN896z7tM1ayuq0RSR0DxkZmdBxJRokRPW6/V06dIlSers4+73+7p06VJ1ccnKSpScKNb9Eklyxwnrpr5veXl5Zt96ZjEmKiqdIdNpBgvzQwfPlDuDho3iwYMHHUR3//79TkCjo6kFZWYaiYBpvJmBZLbCMVEP8vhr3pdbK1MHWG+mLrkdZi/eLpi6Zr6yZMKx0qnleUZ+0RHlzv95fY6jFnzs7CifLElw/vwMxnjc3fpLfvK91nSwBDXug9e43evXr3fKZ9QxBzNmrXTclj/1lfpnORhw+J7agryBEm1F6r7lLoMp5cYAc/Pmzbk6exZ0YZ4EppLQsGywGXHTAfKM/VQQoykaicsLefLj5cuX2/ZrdUueW2IywjJZYch77kCQpsdOW0HdPuVBxaTzZDbgz1kKscLSkdKYMpUlGrJMfP1LL700g+Js5ObH/TPg+Ie7J5huZ32Xjtff+7Oc32wz67n8YaBJWfmz1D+3u7+/P5MVeHcItxGzPzozb6lkUCSfHjtLi0TA5I1rFB6zg0CCIgblLGlan/f29jq2YbkMBoNO+TXLp/1+9z0B/iG65vsNEiAYUVs+4/G481InE3WNJVdXCqyr3PXF8VDHKRsCHz8pb77ZBn1MBuP0M4sAcEIiWraSUulMtV0RVDC3ZaWsoSc6O0Z7aerEWHunk01Dzlpg/i+pk52QH9fZme7bIJhJ0NnSuRC1cnwcbzoboy9/7zFR9vwslZ48MKgRKbJE5OvZfwYvItja3BBRp1EywM1b73BWkA6GmRCDvD8fDAbtcROUwa1btzrySATPnTXpsKUpauS2Ro/bDjNLjcyGaRsZhHwtA8nOzk67xZT83rhxo3Mt5c9+siRKGfla7/byuAgW6JAzI/SYeOhgZv5cP/D3lBPX2cbjycuCKHfzyKyD80Wg4O+YBbs/lvlot27nLOjCBACpu40tMwArQC5EEWnSsfj/g4PJ2jXTU7dHVJJpH9unkrNmnAicfbAdl7Wk7qP0djp2CDWUSCPM2q7bs+wox5oTtkxYGsj6ewYRjp2oh3xyOyGRPbONLKtlkKYTpYy5kJ5Oik4vHa/b4b10ICYbeWZ6tTKg5VkLbHSu1gWeS8X5JMgYj7trJulIWBfPXS/+PuctA/zt27fbNYkMLvv7+50yF7NI6gAzUv5vXbNDZGbc6/XaEmuWWglcqDtcPOe85VPJzOr4RLyrAdkP9TFLbDxllzaeWSLnM8FDAsnTonPZBnpcOuk20Kzf5SFmRCe1I525p5qBgOmhjTi35vX7kxMrfbaI+aAT4+eZdZCYZueWuTw/hWWgLPcQRbGMYNkQFSdKN9GpWcb5PIKvGY8nqTidRSIljo99cAw0LKIk38utoZkZ0fHnVkbKhPyRL8qqlrlk0OYYeK3niqCCxDYoPxOfivZYiSDJZ8qU8765udkGWM89daI2Rzn+dOpE4QlmuLMogyBBGZ9+ZVbu/mr8Ja+Ud66nuA8CHPJmO6a+uHSZpVtmCMzy+NRwlkPTB5D35Md8cDfW66U32zbQN5zoiF2XI6KUusZplEZUwYkjymaKx62i6Tx9YiVLAHldOg46HStlDSUTObEUYEReQ/RpHG6Li2U0eNbUa2UqIikiT2m6GH7r1q3WedGw6cQZOGyQ6fwdpCjfXMCj487sjnNPh1l7nwBLIwYDRMZEe3R+fEMY55gyNV+ca86z9cnlAyJW6qH/rjkY82Pdo8PmMc2cWwb/zEKom+ZRUiegUXbUO/NkJ1o7Qpm8ZHZg/vKguwwEGXjyPdmZdXITBp/Kpu5w3SuDoPmzXOc5fWYS1nPaia/jXJ9k//+T6MJlAFmnNKUhE+lL3QAizZZTsg0qmKSZQOE2/Jv95M4OtnFwcNAiaPfJeiodKQ2G46QcEmkmGuO4yHsi4xwnsyDKnAEy12QYkDgWyzMDpq/1vKTxZQCuyZ5jptOwzJIP/6YTpRx4Xw3p2bnSIWZJibpG3txfrfyTpZEaGk/nk1mMx1UrNzBoZbmLaJpyTXnl/HNOE30zW0jdIk+ULa/hd7TzDMaWJcchdZ+gpnx8bz47kLx5zAQKlF9mZrzXxKwjQdLrpUUGACVMx8X/jeJppJ4won4rx927dzslChuBDdSng7I/Iw0iHkkzqIjtWsn54nQ6m9rOgty6msaTRkKnQ+RCp84xZOBi2p+pr9R11nkv+XtcCYn8pfPLA+58Dk0iVN+f46GsEilnZiZpZisjs6GawaYz8d+1DJT8OJtIgOJ76Gg4n85cuC+fOsN5yAXMmkOjHmbAzgfMxuOx9vb2ZrJGBrTMEBjUmPnUgFmiZ8rffXHtgcGddpEgZWVlpc2K2BbbZzaVDwQmjxw/s530O2zXxKMovEnjtOnCBACTFYNGzScsOTl2yNyxY8fnyfULXFgy8v+7u7udnRBWDqavpl6vuxBFpESFy5o/dxZQ+dwmnSTbsYJS0S2fdNDS7NEKUnd/c7btvznOfDisZrS1nSi1Ekn+zrl78OBBZxcUnQ5lnsaXvBPVWt52uD5vnmg6A6v7YcDhd5St1zQ4DwYQPI+fffh+1vDJv+9l377Hu1m4jsLAS13ObMelEgZKlgnH47GWlpZaZ87vLcdaaYcInsGR5M+2trZ07dq1dmHXY6F8+XClecjsjfZAP8Dxp94wkFqOlpMBXm7vzSBtni1PjtXf+x6+3+I06cKUgGoOjM6ntmhL5OrvcwHKZ6vQCeWxxUQDqaCZkiafGxsb7QusE3HVgkQied5H/mz0NlCWJKj0iQZtvDzzPdNg92MnTD7cH9clEskzqCQ6JrFvzvO9e/faB2rYhoMLgzh5y3HTyRG5Wi8cqC27efwQffrH2xrdN+fDY+UBgjWZcL449wzMWZLh53RwtoHctcSyVW51nZfl8PtaBjCvlDMvWyWf3JZquaQes322w4yaoMNjN/kY69SFHAN5HQ6HM++PqMmDc0z5OmDQnukr6HuOQxe+BFRzIDQ+Ol+i015venqfND3e1vfzHbv9fl937txp+7NSSlP0y3Rc6iow+TQ/N2/e7CAhOw+3SSSSaWWiCBoagwZLW+ybxkoU6+BDg6NTYapLJ+xMi6l+GiCNM3e+mHdu+fO46BSuX7/e4Ztb+phWU6YsRWQgS3Sc6Ho8npRoDg4Oqujc7XNuubOD/DMj426uBArsJ8sVLE2w75Sx2/CmCM9nghFfk05zZ2enI5ssXXH8mUGwLMN5tGyztMLgxS2hBBHMGGm//D51JY+hoE1zbNY58kKb4xlc4/HsS3OYkTC4MkNN3qSpv6llQqdBFy4DqG3NosCpdJn6JqpKx5pIV1I1oidf/p1OORfMjDC4WOg2c0skHfLe3p6WlpY6/BAN1ZC2r3G/ySu/oxLPQ8S1mi8XZGngRMmJ4skH70+HTrlTFrnFk9d7TLWsJZ26KVEl5Ued4JxkYGW7BhF+QIxlg5ouEQC4zZpeWjZ+2U3qP+eHfOZuNzrrDJYcQ80WTAnGcrGX401HSZlTN3IceV2CHOtg8k3wkfZnp8+t1vMCDb+jXnJ+6Ieoi/Q/5PUkNC8D+PATtfoWokS7juo2jkRonDgij1TsrJVTGZnaZelH0sxEMy3PLWepLFROSR3UQsXb3d1tt59SBuksfW8tUKbDc7pLftNJM2U1H+7bbfh/X09jyh0//p5tpOFxPAym3EZXCzAMVJSz20tnw/443/OcErMJ7nCqtSup83QwAwYds/fv09lJ3QVZ8sjSDnWEcqZO0dm5DQaSROm1AJ2On3xQJhnM/Ld5YvvM5nJtg6Ur88h7s/Tka6h/bseB0G0wgGRwyEDItREG2szSs/Sa+sxrzyoLuDAlICrQaDR5sQfRiSc4J5OTcnBw0HEARAZZr+v1ei3SyjIClZB1YJdVnFImMmC/fmlMBgyWD3yu0Lw+s5xBZ9XvT1/W4eu59S1LDpn1MMV3O5aDv2MmYdnwu/F4UlrJ3TqeQ5aSWJ9mycM8vPzyy51radAsHVDW5om/a7ttrDN0br6HmYCdMw05s03LrxZ4s3RBh8cgwoCW6N2ytf6YmDV4M4JPkk30nEGC88jjGtg+g4nHwyzQ7fke98mNA85yeZZUbezMuByocgcaZWP+Ur9YwiRwyMBWK/swaLtvb9jg+Jl1+V6W71IPTpsuTACQuoZx9erVFn0wvcvIy/9v3LjRcQCvvfZaJxX09XYw0myN39ckP7yWaJnXE9GMRtOD43wtHYikme1sdPIZFIx6+L2dKo/6tcPjNVZyolBfm5kEd2VQ3pmOE6X3ej1tbW21vNJJsQ0as+fEn73wwguSpm8SM/GwrpwjGyCDa2Z+GUQYGP1OBc+XF8Y5PpaQiCCJVmtImfJlNpHO0WPJbK3Wdx4Fsby83LZDZ0V9ZPuUPTNs6jptzURe6dS5e8d9+DNmUkTrKW+ieAYqOvLM6i0TZmAM7LXs2TZI5E+b5RxyTDXA53lIcHYWgeBCBQAiJjoMOjbWs33eOPdI0wFcvXq187Rnps1UOhOjei29pINPVMntqlK9Lmil8t/MIqyAaay+No/ezWDDwOXrsoxmOdIx1hxnpuLmJxXd13oNg9eRF7+QxHyxnZoTSHRNYqbCEgKdALMaonL2v7q6OoMm6QTpoPlb6jolz4c/p5NlO5SX9YptZSmM99FZbm5uziBmt8v1AwISyodonsFsPB5rbW2tHUsCIH9OwMGg0+tNzvJx9sd26VjNSwY4yp+yIajzvcwocts454VBgKDKOpQ2SsBTswPLmmNm+6dNFyYAEH0ywqbxEB0988wznV0RPMLWq/MsPVhBDg8PO20x2EhTpGDFokOlkrHMkbXdzFKIzLNWmOe28z7ez7Y5VgahzBxyJ1KtHEKHVEPCHrt5IfrKMlwtaPf700O2mPaTTyIpIsVEVSkT9k3nbWK24/9Z7qqVTzwOomp/l47an+exF9Sb7IN9cZ3DwYgOzzbB4y3S6fv+ROkZwCznRMiWGxeYGQRyFwzlaHlYTjdu3OjMR5bcsqRjfjPocF5ZojWgycyIQY/rIgQbtWDELJ1jJCCpyTB17/79+zoLulC7gGrOmEGAUZ3lFzo9KxMRiJGOpE45IR+UmTfhbpcIuOaccsullbG2HdT3+hoaBMdk42ZppIbc6UyJerj7yHJLHulYMt3251xf4PgzkNCBmOd0fCkPriEkEvTfKTP+zXFzfYGBM1FalnAYzKl3zEpy7PP00zLlOP09efeBd9TDDBo5N0TleWAev6ejczBjDZxOVeo6Xo7FvLCkk2CAY/LnqU/UUcuGWRO/y3GaB48jdyX5es/h1taWlpaWZnQqbaXWTo4jgRz1IzemnGQn0IV/DkCqG3buy0/UKE0N3+iASDORGBEBa37SrPK5b+7QcH/sm86W4zA6oqIbdfB+osd5zpxoPDMIG9r29ra2t7fb+5wVEdExgGUpKhE9gyHXTSxrG2QtMDo40En4MX7yzHRfms00sq5e0xFnNO6D4/C8p7FmMOMurX5/+g5d/vj6DB6cL86JiY6Gc5yHAFInWeLh0RusX1O3OCaOk4HLbfs6Lghbbu4nM6AMdLQHPhBHXtw/y7C5Uy8DiPskPyxhcb+/2/JcX7t2TQ8ePNDS0tLMveaL2TzLfgz41D/bU2YSBBWUxWnThQkAFrCVzC+w4CRmNGYt384l77Hx8HRR31NTWu6O8G8/SUyjpHElSqspBJUlX9zutmmAmQnxWvNPniXpxo0bnaMt6Ijdp8fH9RLWxolEMzNy3w4GNGqOx0iMDs4IzYGD129tbXWcAYMIgx4NOHmi4yJS83zzmYWsr2dAYRmSx4swmLl0QIfgttKppS64xEaEXZOLfzOQ8nwjgx0621qgzzY9Ts+zn3qulQpTp5npeez5whjaGTMr2p7vZy2dvJsPtpNgiYDObXL3ndtimce8ZTbnv7OEydd3Wg9y8ZunhZ42XZgAkEZz48aNDrKolXGIjOxgGMUzqkvTdJGBJJ0UHUStdDMP7fj6TCW544h90onV0kciL46D2Q7PTJ9XyqEjp0M0L5QNx0QZUh551C/7Y4BxmyxZ0ZG4/dXV1RkHnlkV++K8cO6Td8675WWZGgETIfseggOfJ5SZBxdb6TxTv2qLn5ubm62TZXbEoJ2O330kOKG87AA9B3S0lB2RNDMPj516aXnaFnMnmintjEDA/1Mu1E/aGDOstGVeS8efgYXo3JkBA34G69QdlsoYpDlOBsMsp50mXZgA4Mlj7Z7IItGwNJ0gTkAiQv/t74h4iRLsGPjwig2D/3vi+bShlYiOmGiTjns8HmtjY6NjuLXAQMeUhkVnwkVuBpoMKrmTQuoe/sbtimwjERMdSTp/zxnRGSlLaBko7RRpeFxHoIOiU6YjZaZA52e9omMcDAadM2U4J3Z4LEFm2SydIXniuLin3w7JOkNd4TV8HoGZWQKN3PJLpzZvSyhLd7wu+ed88ygKbhOeN27zRudOXe/1pm/rS+DBM3vo8KmL/j8zwhowYWnWc2gZcK3BuuMNFpkhuP3U47TR06QLEwDSsRGdeZLpsIiEer1J/ZuT43ZqqFbqlpxoPNIE9VHR0jh4KqTbNlKUZh/xTwR//fr1mV0jdG654OrvWYLKtHt3d3dmkS/ryDZ21kHdx9raWmceailtIqvk0bLJF2gk0rM8GSAyyNEo2a/HUAvw5JMOlMabLx/Pp2Uz2GS2V1t0zf3jdFDW41rg4LjMdwIZZgopx9ydxnFy91WtpJbzn/KsIfRer6f19fXWkXNcLGGS/0TozAJu3LjRCQr+zfnNjNHzlds0e72e7t27N6NHWcKTpu8SqGX7vt8BInUvA3DK6LTpQu4CSlRhsrHRqToA5EKUKet6bLOW/tMw/ffh4aEuX77cIjM6KCIRpoUeU/KRzioVNsfNIMTxEaHYqTOd93c+WyYDINNl7rmeR5QhDYEGmAaZu3vy9EzOaTrDzNrS2IjSM0NJveFcpKPPHVYOnETdWcIy32734OCgfam5v5sXwLlBwZ87myTv1FHPn4GHP8syCIESZZ1zxUzbYzJSdsBgaZFlDwZ7ri3V9J6ZHJ02x8eAyWwyfQG/z7+pd+aR+kEdp16wL8ogSzo1QOR7vX5DcHocuvC7gOh8qRRUIpZu6FiY0tYQhZWXjsHG6AVIOlT+DAYDra6utmjK/fs3FSjr+Ow3dz+Y2AbLNBxbzTH4yVt/xlKAr7diMqh4/YDOgg6dip7jNFkWNmqpW1clqsqgk5kVM7ksl3GuU9bmoxZQWfrIYEV9MqKnU/G9doSWFWVBBy+p3ftORMmFXTrn5Juy9XUpP/NsmZtP8sBMhAvUtfIMHfnBwUEn+LmtBFNc5+Bak2VsOeeuPfPEsZrvnZ2dmbnj7jLaJHUp550BnCCBG0D4XeqV5WF78Zh4XQJHZiT59Ppp0rkEgFLKrVLK/1pKWS+lvFJKuX3WfVqAOzs7nfJPzRFy8pl6pZNI1GoikvLj9KzFSpOJ5XbNNG6WDujcqSRuR+oik0RARoHmlRnQ3t7ezI6MXq+n1dXVGefv8obbzfes+jd3MyS6S9mmbOwAmX2Qr/y7hsYcdDk3DMx5L51GLTPIuee8jEaj9oUkDtI1xMrgnY6QW0TdB8tEdCYsN7j27/G6XW5lpEO3zuTCLPljWSQzW88V+fV93MbLcd+4cUMk6jv1lOss5GNra6uDmPO4ilpmYL6vXLkyoyvuh2fy9Hq9zpgYJC078kd79DzSoef6ArcQpxwYYC13r1Ew6z4rOq8M4Osl/ZdN09yS9H89+v/Mqdfr6fr1653Jk7ppIhf36IB4LSM7J9+TRkRGBU9n8ujRow5q8o/7tAIYLbrtPCudBppByWUat53jvnz5cofnWiDxPbdu3Zrpz32Z6IRq2/Pcnnlyn+kgnYFwHMzGEjE5iK2srLTlEjtSLl7TSdGhMxuks2EdmvNkGaysrLS7jKwDvqe2jTD54jh8nZ0pg5+zBvNMJLy8vNwZDxEx54Zo14uuXC+gHD3WzMyynOLxDYfDVi/9t/s0oGHpMNfWmIlY50ejkZaWljrBgjz7HtooZUndyyyEgZ/8+7tE5emELSPOr+/zOLmr0HpFHcgxm1/Lke8l/pDKACQ1kuxVf5Ok/bPukIiIgpe6W91ScUyJtIl2GRCo3CwdmfyZSz+JcGkQLFtQSeYdXpYO1+RdIe6fiNiUax/c28wyg502AxzvsYJzoZvXsD/LMdvb3d3V8vLyzJx5bG6PcmVQolMwv76GzoRBlX14zEbSdLy584VBkKULBnDrA2VBuZKfNHjyxLJaLlJST4kuKQfugLL8uOhMXU4dyYyI2QTLg+aPz8VwHSTH40yT4+MumrQ3BiFuY/XY+T0DIbNSt5MZFseZgT7nlzrG4O85sw1kEDWfliFBTAZ66nXO82nReQWAPyXpL5dSfl7SX5H0NfMuLKW856hM9Eptq+HTUk52Iiv/nweiGSnlrpgkTrSdeNYmTf479z4Ph8M2ZU7Fy/SYyIFtU1Hdh38z2zAqoTNhv7U1DzqOLMWMRqPOg3JZG/dv8uB+iPg8B5aHKWvWDFaZFTEwsA3fR/6Yqteu43xRZzIrSD2oZZWZGWbf6SAzmFGXGPD8nfnr9/u6d+9e5wA/3ru3t6f9/f2OXtKp+djz1CsGK84vUT0D3Ly5ysyxNg4Sg6d5TKfIQCB1n8q3LNfX19vPuHXT7TuQOfsiOZibP2bURO+clyyB8u/km6CO5SRmpGdBZ7YLqJTyw5I+rvLV10r6HEk/1jTN3yul/J8kvadpmt/xpDZPsgvoLKmGxGqf8fN538+73/+zNvy4+9Lw06hMiZqyJinNolDutpiHoshDOjXyX3N6ieik7i4nO9I0rMfJex6x3MH/zXcN3VGeT5r3RM387nFye5q5r5UTar/NP51TbihIXrMNOsCUX+oW+bVsGSzIh7/PNY+UbU0mlGPydBx9qI2/Nr7k4UkO+kk6+EbQvF1A57INtJTyy5J+c9M0TSmlSPrlpmmeeNjFmzUALGhBC1rQm5nebNtA9yV91tHfny3pZ8+JjwUtaEELurB0Xu8E/sOS/l+llA+X9G8lveec+FjQgha0oAtL5xIAmqb5CUmfch59L2hBC1rQgiZ0YZ4EXtCCFrSgBXVpEQAWtKAFLeiC0iIALGhBC1rQBaVFAFjQgha0oAtKiwCwoAUtaEEXlN5S7wMopQwlffC8+TgGLUk6OG8m3kC6aOOVFmO+KPRWHfNvbZpm5lHut1QAeKtSKeWV2lN4H6p00cYrLcZ8UehDbcyLEtCCFrSgBV1QWgSABS1oQQu6oLQIAG8Mfct5M/AG00Ubr7QY80WhD6kxL9YAFrSgBS3ogtIiA1jQgha0oAtKiwCwoAUtaEEXlBYB4IyolPJflFL2SinrRz+fF9+/vZTyWinlT58Xj6dN88ZcSvmdpZT3lVLef/T7s8+b19Oix81zKeVrSin/opRyv5TyH5wnn2dBpZQ/XUppSilLR/9/RCnlbx7N81YpZe6rXt+qlGM++uyFUso/LaV84GjsH3mePL4eOq/3AVwU+qtN0/yVed9J+gdvJDNvENXGfCDpC5qm2S+lfKKkH5S0/MazdmY0M+ZSypqkL5f0CZKuSPrhUso7mqb5tfNg8LSplPLxkn6npJ/Dx79XUq9pmneWUn6jpM1Syt9umubV8+DxtKk25qN3mny7pN/fNM1GKeVZSf/unFh83bTIAM6BSilfLGlb0gfOmZU3hJqm+emmafaP/v2ApI8spZzvS1LPnr5I0t9pmmbcNM2OpH8h6fY583Sa9Fcl/VlJ3EXSSPqoI6f4GyQ9kjSq3PtWpdqYP1fS3aZpNiSpaZqHb6UgvwgAZ0t/vJRyt5TyraWUj5akUspHSfpzkv7L82XtzGhmzEFfKumnm6YZV757q1JtzMuSfh7X7OpDJOsppXyhpD07PdDflfQrkn5BE5T8V5qm+ZdvNH9nQY8Z8zskNaWUHyyl/FQp5c+eA3vHpkUJ6ARUSvlhSR9X+eprJf33kr5OE7TwdZL+n5L+U00c/19tmua1Usobxeqp0THH7Hs/QdJf0gQ1vWXomGOuTe5bZs/1E8b851Wfw9uSfk2TktdHS/onpZQfbppm+8wYPUU65pg/XNJnSHpJ0r+W9I+PXsD+j8+M0VOkRQA4ATVN8zue5rpSyv8g6e8f/fvbJH1ZKeXrJf1mSb9eSvm3TdN809lwebp0zDGrlLIi6bsk/YGmaR6cEXtnQscc866kj8fXK5L2Z256k9K8MZdS3inpqqSNIwCzIumnSim3Jf2Hkv5h0zT/TtIvlVJ+UtKLmpQ73/R0zDHvSvqxpmkOjq79AUmfLOktEQAWJaAzolLK2/Dvl0j6GUlqmua3N03zXNM0z0n67yT9P94qzv9JNG/MpZTfLOn7JX1N0zQ/eQ6snRnNG7Ok75X05aWUXinlqqR/T9KdN5q/06amad7fNM3HQod3JX1y0zS/qEnZ57PLhD5K0qdKuneO7J4KPWHMPyjphVLKbzxa+/gsSZvnyO7rokUGcHb09aWUW5qk/a9K+iPnys0bQ/PG/Mcl/R8l/cVSyl88+uxzm6b5pTecw9On6pibpvlAKeU7NHEGvyrpK99Ki4PHpL8m6ds0CYJF0rc1TXP3fFk6W2qa5n8vpXyDpJc10YEfaJrm+8+ZraemxVEQC1rQghZ0QWlRAlrQgha0oAtKiwCwoAUtaEEXlBYBYEELWtCCLigtAsCCFrSgBV1QWgSABS1oQQu6oLQIAAt6y1Ap5VWewojPv7CU8tVHf3/m0SP5v1pK+bLHtPUbSik/Vkr5sMp3/9Pj7n0jqZTyW0opf6uUsn10kuo/LaV8ydF3/34p5ZdLKT99dOLoj5dSPh/3VmVRShmUUv7heYxnQW8uWgSABb3lqWma722a5r89+vfnJP1BSX/rCbf9p5K+8yz35h89GHSS+4uk75b0403TrDZN8ymanDC6gsv+SdM0n9Q0zfOS/oSkbyqlfM7Rd1VZNE0zlPQLpZR3nYS/Bb31aREAFvSmolLKc6WUe0fnyt8tpfzdo6OFTV91hGrfX0q5fnTPHyylfJMkNU3z6tHDR7/+hK7+I0nfc3R/KaV8Uylls5Ty/ZI+Fvx8ylGm8L6jA7/edvT5S0f8/dNSyl8upfip5z9YSvn/lVK+T9I/KqV81NEhcS8fIfUvOrruw47ue/mondqDgp8t6VHTNN/sD5qm+WDTNN9YG1DTNOuS/itNHrx7kiy++0gGC7rAtAgAC3oz0vOSvqVpmhc0OU74j+G7g6ZpPlmTQ9iO9TKdUsolSas4p/5Ljvp8p6Q/LOnTj677CEnfKOnLjtD3t0r6vx/d822S/mjTNJ+myQFopE+T9BVN03y2JgeJvbdpmpckvVvSXz46JuEPSfrlo89fkvSHj46MIH2CpJ96ncP7KUnXn+K6VyT99tfZ9oI+xGgRABb0ZqSfx5lB367JaYum7zz6/T5Jzx2z/SVJ/wr/f6akv900za8dvbfgvUefPy/pEyX9UCllXdJfkLRydLbR5aZp/pej67Lc9EM4BvlzJX310f0/KukjJb396PM/cPT5P5P0rCbnBc2lUspfK6VslFJeftxlj2sD9EuanNq5oAtMi7OAFvRmpDyfhP/7PQK/puPr77/RxBE/rk9p4kw/cITypx/W33NA+pVo40ubprkfbRRJX9U0zQ8+pp0PaPL+hAmDTfOVR4vgrzzmnk+StPUE/qTJ+P/NU1y3oA9hWmQAC3oz0ttLKXa6v0/ST5xm403T/O+SPqxM393645qc3PlhRzX+dx99fl/SwLyUyTtvP+Ho/sNSyqceXfflj+nuBzVZtyhHbXwSPv/PjspMKqW846g0RHqvJm9P+8/w2W/UHCqlvCDpL2pyKNuT6B2anly6oAtKiwCwoDcjbUn6ilLKXUkfo0m9/6noaHF2V5P30/71Usq8127+I01LS98l6Wclvf+orx+TpKZpHkn6Mkl/qZSyIWldR+sDmtTwv6WU8k81Qfm/PKefr5P0EZLuHi0Uf93R539Dk5NCf+ro87+uyGiayUmNXyzps0opO6WUO5L+piZvlDP9dm8D1cTx/wm/jOQJsni3Jkd0L+gC0+I00AW9qaiU8pykv980zSeecT+fJOk/b5rm9x/z/meapnnt6O+vlvS2pmn+5GnyeJZUSvlxSV90lM0s6ILSYg1gQReSmqb56VLKj5RSPuyYzwL87lLK12hiQx/UZL/9W4JKKQNJ37Bw/gtaZAALWtCCFnRBabEGsKAFLWhBF5QWAWBBC1rQgi4oLQLAgha0oAVdUFoEgAUtaEELuqC0CAALWtCCFnRB6f8P8u7YRu0iWqAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = skycoord_gd1.phi1\n", "y = skycoord_gd1.phi2\n", @@ -550,7 +796,18 @@ "cell_type": "code", "execution_count": 74, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.table.table.Table" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "type(results)" ] @@ -566,7 +823,18 @@ "cell_type": "code", "execution_count": 75, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.coordinates.sky_coordinate.SkyCoord" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "type(skycoord_gd1)" ] @@ -610,7 +878,18 @@ "cell_type": "code", "execution_count": 77, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(140339, 6)" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results_df.shape" ] @@ -626,7 +905,100 @@ "cell_type": "code", "execution_count": 78, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        source_idradecpmrapmdecparallax
        0637987125186749568142.48301921.757716-2.5168382.941813-0.257345
        1638285195917112960142.25452922.4761682.662702-12.1659840.422728
        2638073505568978688142.64528622.16693218.306747-7.9506600.103640
        3638086386175786752142.57739422.2279200.987786-2.584105-0.857327
        4638049655615392384142.58913622.1107830.244439-4.9410790.099625
        \n", + "
        " + ], + "text/plain": [ + " source_id ra dec pmra pmdec parallax\n", + "0 637987125186749568 142.483019 21.757716 -2.516838 2.941813 -0.257345\n", + "1 638285195917112960 142.254529 22.476168 2.662702 -12.165984 0.422728\n", + "2 638073505568978688 142.645286 22.166932 18.306747 -7.950660 0.103640\n", + "3 638086386175786752 142.577394 22.227920 0.987786 -2.584105 -0.857327\n", + "4 638049655615392384 142.589136 22.110783 0.244439 -4.941079 0.099625" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results_df.head()" ] @@ -649,7 +1021,18 @@ "cell_type": "code", "execution_count": 79, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(140339, 8)" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results_df['phi1'] = skycoord_gd1.phi1\n", "results_df['phi2'] = skycoord_gd1.phi2\n", @@ -667,7 +1050,18 @@ "cell_type": "code", "execution_count": 80, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(140339, 10)" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results_df['pm_phi1'] = skycoord_gd1.pm_phi1_cosphi2\n", "results_df['pm_phi2'] = skycoord_gd1.pm_phi2\n", @@ -697,7 +1091,186 @@ "cell_type": "code", "execution_count": 81, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        source_idradecpmrapmdecparallaxphi1phi2pm_phi1pm_phi2
        count1.403390e+05140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000140339.000000
        mean6.792399e+17143.82312226.780285-2.484404-6.1007770.179492-50.091158-1.803301-0.8689631.409208
        std3.792177e+163.6978503.0525925.9139397.2020470.7595902.8923443.4443986.6577146.518615
        min6.214900e+17135.42569919.286617-106.755260-138.065163-15.287602-54.999989-8.029159-115.275637-161.150142
        25%6.443517e+17140.96796624.592490-5.038789-8.341561-0.035981-52.602952-4.750426-2.948723-1.107128
        50%6.888060e+17143.73440926.746261-1.834943-4.6895960.362708-50.147362-1.6715020.5850371.987149
        75%6.976579e+17146.60735028.9905000.452893-1.9378090.657637-47.5932791.1605143.0017684.628965
        max7.974418e+17152.77739334.285481104.31992320.9810700.999957-44.9999854.01460939.80247179.275199
        \n", + "
        " + ], + "text/plain": [ + " source_id ra dec pmra \\\n", + "count 1.403390e+05 140339.000000 140339.000000 140339.000000 \n", + "mean 6.792399e+17 143.823122 26.780285 -2.484404 \n", + "std 3.792177e+16 3.697850 3.052592 5.913939 \n", + "min 6.214900e+17 135.425699 19.286617 -106.755260 \n", + "25% 6.443517e+17 140.967966 24.592490 -5.038789 \n", + "50% 6.888060e+17 143.734409 26.746261 -1.834943 \n", + "75% 6.976579e+17 146.607350 28.990500 0.452893 \n", + "max 7.974418e+17 152.777393 34.285481 104.319923 \n", + "\n", + " pmdec parallax phi1 phi2 \\\n", + "count 140339.000000 140339.000000 140339.000000 140339.000000 \n", + "mean -6.100777 0.179492 -50.091158 -1.803301 \n", + "std 7.202047 0.759590 2.892344 3.444398 \n", + "min -138.065163 -15.287602 -54.999989 -8.029159 \n", + "25% -8.341561 -0.035981 -52.602952 -4.750426 \n", + "50% -4.689596 0.362708 -50.147362 -1.671502 \n", + "75% -1.937809 0.657637 -47.593279 1.160514 \n", + "max 20.981070 0.999957 -44.999985 4.014609 \n", + "\n", + " pm_phi1 pm_phi2 \n", + "count 140339.000000 140339.000000 \n", + "mean -0.868963 1.409208 \n", + "std 6.657714 6.518615 \n", + "min -115.275637 -161.150142 \n", + "25% -2.948723 -1.107128 \n", + "50% 0.585037 1.987149 \n", + "75% 3.001768 4.628965 \n", + "max 39.802471 79.275199 " + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results_df.describe()" ] @@ -725,7 +1298,17 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# The most noticeable issue is that some of the\n", + "# parallax values are negative, which is non-physical.\n", + "\n", + "# The reason is that parallax measurements are less accurate\n", + "# for stars that are far away.\n", + "\n", + "# Fortunately, we don't use the parallax measurements in\n", + "# the analysis (one of the reasons we used constant distance\n", + "# for reflex correction).\n" ] }, { @@ -759,7 +1342,20 @@ "cell_type": "code", "execution_count": 83, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEGCAYAAACZ0MnKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDtElEQVR4nO2de3wcV33ovz8/JEVey7Ii2ZYty5Kc+B07cZwHCeTRpCE8SlIoFErLq7209AEtty1w6eu2pS1QCqVcuE0vj0AJFCgU+oAS2kDecezYSew4dmzLD9mSLVm2Hpatta3f/WNm1kfjmd1ZaXe1kn7fz2c/u3Nm5pzfzO6e3/we5xxRVQzDMAwjCTMmWgDDMAxj8mBKwzAMw0iMKQ3DMAwjMaY0DMMwjMSY0jAMwzASM2uiBSg29fX12tLSMtFiGIZhTCq2bt3ao6oN4fIprzRaWlrYsmXLRIthGIYxqRCRg1Hl5p4yDMMwEmNKwzAMw0iMKQ3DMAwjMaY0DMMwjMSY0jAMwzASY0rDMAzDSIwpDcMwDCMxpjQMwzCMxJjSMErG8PDwRItgGMY4MaVhlIzKysqJFsEwjHGScxoREZkBbAAWA2eAnap6rNiCGYZhGOVHrNIQkeXAB4A7gZeAbqAKWCEiQ8DfA/er6kgpBDUMwzAmnmyWxp8DnwN+VUMLiYvIAuAXgF8C7i+eeIZhGEY5Eas0VPUtWfYdBz5VDIEMwzCM8iVnIFxEqkXkD0XkH/ztK0XktcUXzTAMwyg3kmRPfREYBl7mb3fgua4MwzCMaUYSpbFcVT8GnANQ1TOAFFUqwzAMoyxJojTSInIZoJDJqrJRWoZhGNOQJMu9/jHwA2CpiHwVuBl4RzGFMgzDMMqTnEpDVR8UkWeAG/HcUu9T1Z6iS2YUlOHhYRuRbRjGuEk6jcgSYCZQAdwiIq8vnkhGMTCFYRhGIUgyjcgXgPXATiAY/a3At4sol2EYhlGGJIlp3Kiqa4ouiWEYhlH2JHFPPSEipjQMwzCMRJbG/XiKowsv1VYAVdX1RZXMMAzDKDuSKI0v4E1M+DwXYxqGYRjGNCSJ0jikqt8ruiSGYRhG2ZNEabwoIg8A/4ozElxVLXvKMAxjmpFEaVyGpyzucsos5dYwDGMakmRE+DtLIUgYETkADAAXgPOquklE6oB/AlqAA8CbVPXkRMhnGIXCRusbk4kkg/uqgF8G1uIt9wqAqr6riHIF3B6asuSDwH+p6l+JyAf97Q+UQA7DKBqmMIzJRJJxGl8BFgGvBH4CNOFZABPBPVxcXvZ+4N4JksMwpjXDwzbR9XQlidK4QlX/EDitqvcDrwGuKq5YgBc3+aGIbBWRd/tlC1W1E8B/XxB1ooi8W0S2iMiW7u7uEohqGKWjHDpss46mL0kC4ef891Misg7owospFJubVfWoiCwAHhSRF5OeqKr3AfcBbNq0SYsloGFMBNZhGxNJEkvjPhGZD/wB8D3gBeCjRZUKUNWj/vtx4DvA9cAxEWkE8N+PF1sOwzAM4yJZlYaIzAD6VfWkqj6sqm2qukBV/76YQonIHBGZG3zGS/fdgae03u4f9nbgu8WUwyg85eBaMcaOfX9GVveUqo6IyG8C3yiRPAELge+ICHgyPqCqPxCRp4FviMgvA4eAN5ZYLmOcmGtlcmPfn5EkpvGgiPwu3viI00GhqvYWSyhV3Q9siCg/AdxRrHYNI8DGThhGNEmURjAe4zecMgXaCi+OYZQHk1lhmMIzikms0hCRN6rqN4E7/Cd/wyhrrLP0sHtgFJNsgfAP+e/fKoUghjFerLMsDBbsNrKRzT11QkQeAlpF5JKp0VX1dcUTyzCMicKUr5GNbErjNcBGvGlEPlEacQyjdJg7a+Kwez95iVUaqpoGnhSRm1TV5uIwphxTrdMqVUdciHam2r2fTuQcEW4Kw8iG+b/HRj73LemxheiIg7aytTlZOnz7bRaHJNOIGEYsk6UDGSvF6njyuW+lvMdBWxP1vRbyfk/13+ZEYUrDmJIUqvOZih1P+N5ku1e57mOhlepUvN9TjTEpDRH5o0ILYkwfSuE2KKSrZjISJXtQFtybJMoj130c732ezPd4ujJWS+NXCiqFMa2YLE+T+cg5ns5vPE/6ccdHyR4uC7ui3P1uu0lkSBILiWKy/BaMi8QqDRHpj3kNAItLKKNhlA1xneJ4Or9s5+aruAr15O/WU1lZyfDwcKLgeJzycMv7+/vHJaMxsWSzNE4BV6pqTeg1F+gsjXhGPpipX3ySdMrF+h5yWSSFUBhxdVRWVmatP1AESdxZNTU1l1xLcP5YLRajdGRTGl8GlsXse6AIshjjxEz9ixQqpTXOTVOolNR85HSf5sPnJenQo9qMsgiSlIX3B4ogLEdwbpxrLKxs3Pd8Avb5YAppfMQqDVX9A1XdHLPvA8UTyTDG/8fOp9NJ6h6K+zwWooLS+YzHyNW+W1dNTQ0wuoPu7u7OfHY79uDlyuOWhesOHxe+rig5o2SLqz/buWPFHq7GR66V+2aJyM+IyO/5r9eKSJLp1A1jTET51LNlAmUj7um20OT7ZB4lSxJFkA9RdQUd9PDwMA0NDaNkDDrt/v7+SyyDOAUXHO8qpahjADo6OjLl4fhH2BKKUzjhexTI6hJnKRmFI1sgfDGwE/ifeIHvJcDvATv9fYZRcJJk/cSVFYrxZgCNRQGMpaMba2cY7njd7ZqamowCcS2SoGN3j6+srKShoWFUvUFHHnZLNTU1Zc6Ncq25+/r7+0cpBFcRRCm2sPLLdn3G+MlmafwF8DlVvU1Vf0dVf1tVbwX+D/CXpRHPMLJTDD/3WDuZ8XT0US6hsdQVftLOFXsJd+Ku2wqgoaFhlGyBUnHp7u4eVUegYMJxjvA1xskfBMtd5eXWEZbBjY+Erz+wgnLdiySYxeKRTWncqKqfCheq6qeBG4smkWHkQT6+/Wz74urJN9aQ5BjXHZNLUcS5cODSDtGNWcS5baLK3Q45kM/NZgqURVje7u7ujJIJ3gPXV2ClDA8PZ47r7++no6PjEkuho6ODmpoauru7qampoaOj4xK3VlimqOt0s7Lc+xEQFaTPB7NYPLIpjTNZ9g0VWhDDKAZRHai7LyDOPRTnahqPVeF29mE54uQNnxNuJ/x0Hq7PDXKH2w469kA5BG25nXdwjOtCcuUKlETQ6btP/UG7R44coaGhgf7+/owSCdoM6tu3b98oRTMwMJBpN2ijsrIyI1vUfQmODZTIWBIgou6x4ZEtqD1PRF4fUS5A/C/YMIpMOFCbi7BySBIjSTLeIEoud1826yXsx4+rL5fsbiA6Sj630892TWGFEygP19IJtoP2XnjhhUxbwbWELammpqaMkqmoqMjsO3DgANddd13GynBjFQA9PT20tbVl6unu7s7ERRoaGjLKJ5A1uMZAAbkuqziFm8/vyKyMi4iqRu8Q+WK2E1X1nUWRqMBs2rRJt2zZMtFiTGny7cSnE1EB22yKwFUobqcdzkoKOuiOjo5MMDqqHjegHWRMuW4ht1MPK7uwxdLR0THqCT5K/iNHjtDW1sZzzz1HS0sL4CkAgHQ6TUVFBS+++CK1tbUsWrSIdDpNV1cXzc3N9Pb2Mjg4yNq1a+ns7CSVSgFQUVFBb28vLS0tmWvt6Ohg+fLlbN68mQ0bNoxyv7nyhbPEgmux32xuRGSrqm4Kl2dbhGlSKAVj4imXP1+2jiDfTiLc6YbJ9gQb127SmEfw7srg7ne3m5qaRskUDm4HHamb5RQoELcsiCm457pKJtgHF5VN+Dpda6KxsZGenh7S6TSHDx9m9erV9Pb2kkql6Ovro6+vj9OnT7N06VJSqRSPPvooa9asoaenh4MHDzI4OAhAY2Mj27dvZ+HChTz00EO0trZSV1fHk08+ycGDB1mxYkXGWgkrWdfqyKa4jfyIVRoi0gS0qOqj/vb7gZS/+wFV3VsC+QwjMdk6gqggaLayXB19WGHEKRf3OFfRhLOC4trPJkPYKnEVhqsEgjYDZeFmMbkuMjcYHXS4wStQEu65brwg6MB7enoyZYcOHaKnp4d58+bR1dXF4OAgR44cob+/n8svv5zHH3+c1tZWANrb2xkYGOCaa67hscceA2D+/Pmk02kOHTrEnDlz6Onpobq6mj179rBx40aeeuopXnjhBerr6wG444476O/vZ2BggCVLlmTuk2tlhe+FkT/Z3FNfA76qqv/mb+8G7gOqgVWq+taSSTkOpqJ7ykzraMZyX5LEDYpFOAso7Fpx/fJxAfmA8CC7bAPuwqmwUUHesPII5AniDgMDA3R1dXHttddmyg4dOsS6desybb700kts27aNqqoqmpubefjhh1m0aBEAVVVV7N69mzNnzlBbW8vAwECmE9+9ezcNDQ309fWxdOlSWltb6e7u5sCBA1y4cIFXvOIV/PjHP2b9+vXU1dVRXV0NQHV1NbfccgsPP/wwV199NQMDA8ydOzejRMJWWK57Ot2Jc09lUxrPqOpGZ3ubql7jf35EVV9RNGkLyFRUGobHWDv4cGftdp656htr0DpsZQREucCyxT7CYyDcOtzPYZdNcK4bK3FdOHAxbTaQM9h39OhRFi9ePKqdo0ePkk6naW9v56abbuLEiRP09vaSTqdZu3YtO3fu5Ny5c5w7d47Zs2dnFEZXVxf19fW0t7dz5swZBgcHOXv2LFVVVaTTaVKpFKlUit7eXk6dOkVjYyOHDx9mxowZNDc3c/z4cY4fP87GjV7XlEqlSKfTbNiwgcOHD1NbW8s111xDc3Mzhw4doq6uLqN0li9fPkpxJgmWT2fGojReUNU1znadqvZG7StnTGlkZyKtlslgMcX5wJMqD8gv/gGXuk7Cbiu3c3frDge7o0ZDu+6sQLagPBxMDurr7++ns7MTgJaWFvbs2UM6naauro5UKsWTTz5JS0sLx48fz7TT19dHdXU1e/fu5dixY6TTacBzOW3fvp2RkRHS6TTNzc08/fTTzJs3j+7ubs6ePcu8efOoqKigr6+Pqqoqzpw5w9mzZ5k1axYjIyMArF+/ngMHDiAiNDY20tjYyJVXXsnZs2dZu3YtQ0NDNDY2snz5cpYsWZK5rqhYTNR3Mxl+m8Um70A4MCAiK1R1D4CjMFYBg8UR0yg24T/DRP4xJqLtpMHyqJiDS77l2eRxO2q4OArbHccQTocN2mloaMgEpsNxjaD+4L2pqWnUmId9+/Zl6nvxxRcZHBxk2bJlnDhxguHhYdLpdCZGEMQRduzYkclq2r9/P7Nnz2bevHkcP348o1jmzZtHf38/jzzyCCtXriSdTmesioMHDzI0NJRRRAcOHGBgYCDj8urr6+PChQucOnWKqqoqhoaih4T993//N4sWLWJkZCSjlI4cOUJVVRX9/f1UV1dz8uRJ9uzZwx133EFFRQX19fXs2rWL1atXFzRpYrqRzdK4G/g08BHgGb/4WuB/Ae9T1e+XRMJxYpaGUWjigugQP34jWyaWuz9sVYTL4tpzx0YE1kjUDLJBULu7uzszFiJQTk1NTTz22GOsWLEiY6Vs376d1atXs3fvXs6dO8ecOXPo7u7OWBJDQ0MMDAxw/vx5Zs2axdmzZzl16hSpVIoXX3yRVatWceLECZ599lk2bNjAvn376Ojo4MSJE8yYMYNjx46N6TsIE7i1KioquOKKK2hra6O6uppUKsXGjRtZvnw59fX1HD16NKNAAmvOVdhRDw75ujCnCnm7p/yT1gG/D6z1i3YAH1fVHUWRsgiY0pgehNNTk7qOkhAViM5VVzgtNS5O4RJ2HYVld2WJWsgoTlkMDw+Pcnn19/fT09MzqhOtqKigoaGB9vZ2AHbs2MG8efOYM2dOpv5FixYxODhIe3s7DQ0NbNu2jVmzZnHq1CnOnz/P2bNn2b9/P3V1dcycOZOlS5fy6KOPcv78eYaGhqiurubo0aOcP3+eI0eOUFdXVzClETBv3jxOnz5NU1MTtbW1LFu2jDe/+c3U1tZSV1eXURjhAYHZlPp0ZUxKYypgSsMoNHGWQzjADVwSeI46N9tYgqjMJveYKDdaOFjuptZWVlbS3t7OqlWrRk0dEoy03r17N42NjRw8eDATh0ilUhw7dozOzk7WrFnDSy+9lAlyNzc388ILL2SCztu3b89kSO3YsYORkREGBwcZGRnh3LlziAj9/f1cuHCBgYGB8X8ZWVi2bBnz589n1apVrF+/ntbWVtra2kin06xfvz5SQVtA/CJjiWkYRlmSa4BWsdNoo8ZSZBunEZUtFa4vSoGE3SKuqyqsZILMqIaGhkzHt2/fvkx8xB353draGqmYnnjiCTZu3MjRo0czsqVSKdrb2xkaGuLcuXMcOXKE2bNnc+jQIU6dOsUPfvADWltbWbBgAY8++ijpdJrjx4+zYMECuru7GRkZ4cyZM1RXV9PZ2cmFCxfGd/Pz4ODBg/T19VFbW8u8efO44YYb2LFjBy0tLRmFEdyzMFEPAIZH1kWYyhERuVtEdovIXhH54ETLY5SeXPn1URlDYyHuKT/qmFzyhBVM8Aqfmy2Tp7KycpSLKSCYvM8NdMPFEd3BBIKB6ypwY7nB897eXpqbmzN1plIpTp06xbFjx7jppps4d+5cZpQ3kBlQd/fddwPw4osvZmSvrq5m165d9PX1ce7cOXp7e+no6Cipwgg4deoUg4ODdHV1ceDAgUycI1CgYbemm00WTiowPHKt3DdTRH6nVMLkQkRm4q3n8SpgDfAWEZkUqb/TnWL98Yr5hw67i7IdEzV1uUvYUsgWtwjX7cYmAtzZYoMpQYaHh1m+fPmo8RgNDQ00NTXR0NCQ2VdZWZkZsxB0jNdddx1Lliyhp6cnE1BetWoVAI8//jjXX389Q0NDzJs3j76+Ps6ePcuFCxfo6upizpw5vOY1r8konZGRERYuXEhTUxOzZs2iqqoq160uGtXV1QwODnLixAl+8pOf0NfXx/79+9m+fXvm/nR3d7N///6syQamOC6SVWmo6gXgnhLJkoTrgb2qul9V08DXKS/5jBjKzcRP2gkkdW3lUjDh7KbwceGsqSg5wyOzg8F77pQh4WOCp+mOjo7MgL+Ojg727duXGe/h1h1MGjg4OEg6nebqq69m5cqV7Nixg1tvvZWhoSFWr17N4OAgc+bMob29naamJrZu3Up3dzfV1dUcP36cnp4eRkZGmDlzJmfPns15/4rF0NAQ58+fZ9myZVRUVPDcc89lruHxxx/PxHVWr159SYxjPKnpU1nJJHFPPSYinxGRV4jIxuBVdMmiWQIcdrY7/LJRiMi7RWSLiGxx/xjG1COJNZDtvDDhJ/q4p8/we9gqCNcVxBbCisE9P+jk3ZXwXEUQxCWCegK3lDv3lDsOIygLnqjdcR7Lly/P7HPbXbZsWWYcRjqd5uDBg+zevZvFixfzwAMPMHv2bLZt25axKlpbW9m8eTO9vb0cPnyYkZERqqurGRkZ4eTJk7HjLEpFdXU19fX1VFRUUFNTQ0tLC7Nnz86MXncHQ7ouq6j1xyH576zcHpIKSRKlcRNeyu2fAp/wX39dTKGyIBFll6R/qep9qrpJVTfZpGSlpdBPWNnqG8+fOonLKdu+qGylqHEWYasirJDC+f9uZx8Q3naViNtGMAYjUCZBDCOQKzznVOCaCWQJgujBNOTgxTZaW1upqKhgyZIl1NfXc80114yyTFKpFPPmzWP+/PmsXLmSBQsWUFdXR1VVFSKj/7KzZ8+OvbeFpKWlhYULF7Jq1SpuueUWrrrqKvr7+1m0aFFGaaRSqVGj3sOKFaa2xTBWkiiNO1X19tDrp4ouWTQdwFJnuwk4GnOsMQFE+d/HW1+YqAByVGeetN5s2U1hiyKqnmwTAMZZJFHB8Kisr/ASp+6xwfFuim2wzkQgl7sSXkNDA0eOHGF4eJh9+/ZlrAvX4njiiSdYuXIlw8PDmQFzx44dI5VKZWaYPX36NLNmzcpkTbW1tdHd3c2SJUu4cOEC58+fz0wiWF9fT11dHXPmzLlEgRSLYIbbJUuWsHDhwkwgvLm5mXnz5tHW1sbatWszY1PclQTdBaHi0qCnO0lSbveKyLeAL6jqrmILlIOngStFpBU4ArwZ+IWJFckIiBozkPScfMh1fFyd4Y497FKKch3FKaOousIdS1THEzzxR6XURqXnum6rwLJwFU7gegoUR3iNjIDgmLlz545SNsHT9XPPPcfKlStZtGgRu3fvJp1OZwbzzZ8/n23bto2yEhobGxkaGqK2tpYdO3ZkLBy33Z6eHioqKmhpaWHGjBkcOHCAU6dOMX/+fE6ePJn1OxwrVVVVzJ8/nw0bNnDhwgVuvvnmjNzLli0D4PLLL2dgYIDGxsbMIlbuXFzu/QyI+k1MV5JYGuuBPcDnReRJP14wISNgVPU88JvAfwK7gG+o6s6JkGWqMh4LIc7/n885hSCuzmyBzajgdDg+kauusMIMWw1hd1XU5yhLpKamJhPPcBVUoHzcNTGCVxAXCbvOgkwqGB1nqaur48iRI1x++eWA18FWVlYyODjIyZMnueGGG7j11luZO3cu586dY2hoiK1bt1JTU5PJskqlUtx111309/dz6tQpKioqqK6uJp1OM2vWLGbNmsX8+fOZMWMGM2YUNtu/traW1tbWTPwilUrR1tbGwMAAQ0NDzJ49m1Qqxbp16+js7KS+vj5zP8JZadkUw3RXGJDniHARuQX4GlALfAv4s3JfjMlGhE9PivVEGFVvnOsil0vDVQJR7rIoCwUuTmEePBFHrcEBjBrw5/rqg/NdBRTEN8Lrb+zdu5crrrgiM9bCtSja29uZNWsWPT09mdTa9vZ2BgcHaWxspLOzkyNHjtDa2sqxY8c4fvw4p0+fZnh4mFmzZnH69Gn6+voyI8/HSiqVoqqqirq6Ourr6xkZGeF1r3tdZruvr49169YxODiYsZ6uv/76TMzHTSRw76d7z6cjY55GxB8b8RrgnUAL8BXgq8ArgL9Q1RUFl7aAmNKYmoxVKbgd5VjSKOPcFFH1ximYONdZeF+U+yv8Ht7vpuK69bojoIOJCoFRc1UFx/X29tLe3s7tt9/OU089xdKlSxkcHMzM3dTV1cXJkydZunQpmzdv5uqrr+aJJ57g/PnzVFVV0dPTQ2dnJ4ODg8ycOZOurq7MlOY1NTWcOnUqM3J8eHg4M8I8lUoxc+ZM+vr6mDlzJhUVFVy4cIELFy4wY8aMzNoc586dY+7cuYgI9fX1VFVVUVFRQW1tLWvWrMlMY7JhwwaGhoZoampi5cqVsd+LawGGlW6cQp4OjGcakZeAh/AmKnzcKf+Wb3kY04BCPLkX8uk/V8wi13m5OvOoupK4t3LVG3dclFzu+hhufeEFndy1sIM64tYLD1xTwTGuLN3d3QwODtLS0kIqlaKyspKFCxcC3mSFgdWxaNEi0uk0XV1dDAwM8OCDD5JKpTh79ixdXV2sWbOGVCpFT08PJ0+epLm5OTM9+okTJ6iurs5MJvj0008zc+ZM1qxZw+nTpxkaGmLhwoVcdtllDA8Ps2zZMvbv358Z7Q4wc+ZMFixYwMjICDNmzKCmpoabbrqJffv2sXr1aurr6zMutOuuu46DBw/S3t5OKpUa5X6KUsQu7sSPxkWyTY3+FuCHwLCqTtr1M8zSMMZL0ifNJIonzu0R7rzD7hL3OPcJOLwyX3glviDIG1xDMB+V665yrZRAsezfv5+2tjaGh4c5cuRIZmnXrVu3ZsZx9Pb20tfXl1k0CeChhx5i6dKlNDc3s3PnzsxAwePHj7N+/Xo6Ojqoqqpi165dXHbZZaRSKc6cOUNjYyMvvfQS8+bNy6wtXltbS21tLf39/dTX15NOp0mn05w6dYoFCxawatUqOjs7ueyyy1i3bh2nTp2iubmZxsZG9u3bx4YNG0ilUlx++eWXrFYYdW/jvrPpylgsjWXAN4HZIvJfwPeBzTrVp8U1isZk/UNGBcnhUndVQLbOKC67zG3DnV8q6Nxg9DKsYXlciyM4JtgOlEcQk3DrDU/c99BDD2XqDp7sgxX2jhw5QjqdpqWlheFhLyV337597Ny5k1e96lUMDg6ycuVKZs+ezX/8x3+wbNkyGhsbOXnyJFVVVRw8eJCFCxdy+PBh7rnnHvbv38/KlSt54oknGBgYyMQb7r33Xnbs2MHMmTNJp9O0trZSWVnJwMAAZ86c4dWvfjWXX345O3fu5F3vehePPPIIixYtoq2tLTPbbk9PD3V1dZkFl8Kxo3DsJqkFaiSLacwF7gTuxpvGYxfwA+A/VbWwk+EXAbM0pibjiU0krSOu84fcM+zGZUWFj3WtjvA06knlduvZt28flZWVo1b/CyuZYCyHO7DPVSLDw8MMDg6yePHiTKrvli1bqKury4ykDtbmPn78OLW1tYCnZFpbW9m5cyfV1dX09PRklmm99dZbOXzYm8yhs7OTM2fOsGfPHtra2qiqquLs2bMMDg6yfPlyjh07xsGDB1myZAmzZs1icHCQWbNm8bKXvYxt27YBsGLFChYuXEh7eztXXXUVzzzzDDfeeCMAg4ODmbTaIHYTjvkkVRLTef3wgq2n4U8Q+CrgLlV9ZYHkKxoToTQm89NJsWWfzPcmCVHup3AnHzzlBhZAuOMPzgne4wYPhuMVUcdVVlZmsp3c9NLA6giWfG1qahrlknJldxd+AkYplq6uLq644goOHTrE6dOnAW8d8AMHDtDS0pJxJwW0t7ezdu1aOjs76e3tpbW1FfAUybx58zKB7urq6sz4iqGhITo6Ojh//jw333wzdXV1dHV1cerUKWpra2lubqarq4sVK1awZ8+eTMA+mJQxLvAd/n7C3+NU/p0mIU5p5EyWFpGbRWSO//kXgV8BvjUZFMZEMZl/bMWWvVzvTXgwV5Q7Kglu5+qWBe9uZxQM1guIytQJn+vW6SqjqGkv3MypYBXB8JxKy5cvz6Th1tfXZ+5D+H6cOHFi1KJNhw4dYnBwkObmZp577jmuvPJKZs+ezcKFC0mlUqxYsYLjx49TUVHBuXPnAG8sxQ033EBdXR0Ad9xxB01NTfT19bF69Wo2btyYGVPR1NTE0NAQy5cvp6GhgTe96U284Q1vYNOmTezbt4+6ujra2toyddXV1fHMM8+waNEilixZcslSrm4MyFXS7j2O+s7G+juYyiQZYfM5YEhENuAt/XoQ+HJRpZom2A+yfIjr6MO4nU02gmOiRha7T7rh44JO3j3WbdO1VqLadMcYBGXB2IpgHEZwve44jvA9CD4HU6sH8gRK56abbmLFihXMnTuXBQsWsHPnTpqbmzOB51QqRVNTE4sWLcrUEQz4S6fT3HnnnWzevJmOjg5e85rXZJacnT17NkuWLCGVSnH77bdnUn2Hh4fp6uqiv7+fq6++mq6uLioqKli8eDEAbW1tbNy4cdRiU262mHtNSf93btzDuEgSpXHeD37fA/ytqv4tMLe4Yk0P7AdZfuRaFyMukB11HHCJmyr8OTgu/GQMXBJzcP3y7nZUYNytK4hxhOMcbofqrmcetOlaJYsXL85YUcPDF0ecV1ZWsmjRIpqbmzOjscELnq9cuZLe3l4qKioYHBxkwYIFNDY2cvPNNzMwMMDLX/5ywFsW9qqrrsoE2VesWJGZM6ujo4PW1lZqamqoq6tjz549ADQ3NzN37lyOHj2aGZjo3o9g/i1XeYYttXDsIsx0jWXkIonSGBCRDwG/CPy7P9ivNFNVGkYM47HSojKPCt1mlEUSla0TxlUe4Rmaw1lA7vQh7jHBLLduaq3rznIVRNg9FhwXxEFcxdPT05OZ0iRQIMGsuEHAOTgnlUqxdetWgEyKbjDorqOjg3Q6zdy5c1m/fj3r1q2jsrKSioqKTObTDTfcQGWltzhUe3t7Zv/NN9886l6lUqlRSjRIMXYtN1fpuisbuiRZFMvwSDK47+fxJgX8ZVXtEpFm4OPFFcsoBRMd7Mun/ahgZqHaCneccSTp9HPJFxcUD38Oxz8ChRFOxw3aci0QdwI+15UVKAL3PDcFNYh9uIMKA/dVZWVlZrLDsKssSMEN2m5vb2fVqlWjFNrixYszS8Wm0+nM2Ak3UB9eyja4hsDlFGR8hZe1dSdtDE8SGf7O4tYDzxbXMEaT09JQ1S5V/RtVfcTfPqSqFtOYAkz0n6KQ7ce5IaLaGm+72c535Yg7N5zxFFYYrgJwzwuPAnf3uwMCo1xigUIIOtwg+O2moYbHgQRunu7ubrq7uzPLxQbyBO339PRk7vvw8DCtra309/dz4sQJgIwSC1Jq0+n0KJda0OEHdboJAuGsskCZBeeEM8LC50Upj3y+T+NSkmRP3SgiT4vIoIikReSCiPSVQjjDCMjnyX4iO4FwJxUQ5aqKslxcd1I40ylKIYYXZHLrCGIPUSv3Be9RWURuKnAQW3CnHwkUTHB8fX09R48eHWXV1NTUsHjx4kxsob+/n5aWFvr7+9mwYcOotgMLIDjOXePDjaO49y5Kca5Zs2ZU4oCrgIN7GX5l+46MaJK4pz6Dt27FN4FNwNuAK4splGGMlVwKI9z55EPYtRRVbxIXWLaAbLZzwh0iXMyCCrtkwsrC3RcEjgNF4MY43GwqdzLDsNyuxRFYF5WVlRlrxFV4rmIIu5ACd5PrTnP3ubPQunJEZXq5980ti3ugiIs5GdlJNKm9P/35TFW9oKpfBG4rqlTGlCefp7xcT4D5PCG6nVIhyae+uPbDT7/hTjeqLfeJO8i2Ck8/Eq4j+Bw80buZUO4aG258xO3gAxkCF5drJQRWiXuee22uC66hoSFjHbjnhufVcgPb7rtrOQX1h6cHiWOi43mTmSSWxpCIVADbReRjQCcwp7hiGVOd8B822x846qm+UO6ofDuPOCsjShGErY8ouaP87rnaizrOXTcjm1IK1+O6fsLWg3uO23kH9YdXEwynvgYyuGuRhzv6oD1X5mA1Pfda3TqjLLBc9y/uN+PuD5fH1TndSWJp/BIwE2/FvNN4a3S/oZhCGUY2CvlHTlJXuHNLUkdUB+d2XnGdUjjGkMSF4k46GH6yd5/I3anQXVdXUG9gGQQKwf0cvgeukgqyn1wrIDzliBvsDk857rqbwvNvRd2zqGB8+H5GDaoM32e3POq7MoURTZLsqYOqekZV+1X1f6vq+8t9tT5jchHlkikn4jqcfM4Jnxfu7OI6wrgJE93tKD99VKcXngbd7ZTdTrajo+OSmEF4HY5g1lw36ypQCIFlEY6BuGNQ3PvgKrOgPtclFVyHG8AP4x7vHhPX8ZtCGDtJsqdeKyLbRKRXRPpFZEBEsg+bNYw8KJSrKQlxHX7S8qhMp2znxFkK4YC2e93hzjLX+VHuq2C/qyjcdzfe4H5256lyr8FVYMGxwTTrUZ25Gx8Jy+3ijgMJu8TigvBRZVEKNomLzsifJO6pTwFvBy5X1RpVnauqNr7emDBydSDZiHL5BOVxx8dtJzknmx89eMqOcqWEg9jhz1HKJs4d5g6Ei7Oawm6kgPDCTq7bK8ot5l6fq/xcayJI443q6MMyhpMD4o7LpcijzsmGKZd4kiiNw8AOW3zJKAfiAtdxnUE+CiJJ29nqdcvjOv1w++5Tf9hNEz4+CCYnuY6wVRElm6u4wu25cgXKxJXXJcqVFNQRbLvnBym2UW61uGsJK71Cu52SxI4MjyRK4/eB/xCRD4nI+4NXsQUzypuJehLL9888lnhEkrpydVpR05znkiHbLKxBx51LftfFEw4eB9tRnX42ZRwOmgfnuNaEW0eu646yTuIoZOedSzGN5/zpRBKl8RFgCKjCm902eBnTmGI8iZXiT1nKmEmcTz2uY41LKXXPyTXzarhzd60GV3Fkc/GF4ya5Mq7C54VHmgd1ha0Z1+WV7X5lu9ZSYtaHR5JxGnWqelfRJTGmNHFPsi4T+afM1nHlQzZF4bqBop7CsymQbHENt+1wQDkqxhF1btjKiWo7rPDirjkc5A8IX39ckDyJRZdrXyGON6JJYmn8SERMaRjjohwUQjbCT/iFrhuyZwNlC7iH5YuSNcp6iOqM484N3uOC0OFZdePajYrJ5IqtZLvuicTcUdEkURq/AfxARM5Yyq1RCpL8WfP5QxezIxpr3e552YLmLvlkErkKI846yJaJ5dYT7vCj3F9hObK56eKUaJScE0k5KbByIsngvrmqOkNVL7OUW6MUlDJAmiT/v9iE4wJR65WHB+OFyRbIjtqXKygcdw9cqyTKynDrCMuftG2jvIlVGiLSku1E8WjKdowx8ZTTk1s5kiu2UKgUzlz73XbiZm11l38NE5W+6iqiuPbCnXlUBx9nxYSD49niOVFpuXHyh6/DKC+yWRofF5F/FpG3ichaEVkgIs0i8lMi8mfAY8DqEslpjJFyjyWUG4VSElGdeJI6wse6CiBIuY2rLyr7KUoetyzsxoJLR3Znu644C8itz021TaJMkyYlTMbf11RAso3ZE5E1wFuBm4FGvNTbXcB/AN9S1bOlEHI8bNq0Sbds2TLRYhhTmCSZYeOpN+icw2tjRLXvZihlS+vNV4axlI2lbqN8EJGtqropXJ415VZVXwA+XDSpjMRM9j/YZJM/m7xjdWHFPUHn6twrKysvmSrcJcpaGK+s4dlmcxHEYnKNI4mS25hcJFqEyZh4xvIUV04UK5012/HZAtq56i5GJk9cWm+SdN9srqtwXa4SinIJJQn0u+MpcqXyhs9J2kbS/fkQjucYhafslIaI/ImIHBGR7f7r1c6+D4nIXhHZLSKvnEg5y52p8BQ33sFb4w1oZwvs5sNYOrC4MRbZ5AunzsZZNmHF4iqkuLhEsO2O4o5LGw63GadkclleYyEufdgoHElGhE8En1TVv3YL/PjKm4G1wGK8QYcrVPVCsYSYbC4VIznjHV+Rj18/Lu01aXvjOTff46I+h7OlXLnC5dlkzaX08pXbmBiSrKcxO6KsvjjiZOUe4OuqOqyq7cBe4PpiNjjVfrxT0WSfKDdINrdNVHvj+S3lysQaixsviEFkOyaJXLkUQVJ3UbF/m1Pxtz9RZBuncbuIdABHReSHoXEbPyyyXL8pIs+JyBdEZL5ftgRvmvaADr/MSEihlGA5/QHzcUEV+iEgW6A83/aS3NNsloxbh1tXtqk6kqTAJpUzl9VQ6u+m1PVPJ7JZGh8DXqmqDcB9wIMicqO/T8bTqIj8SER2RLzuAT4HLAeuBjqBT2RpMzJfWETeLSJbRGRLeA0CIztJnzDLQY6JIkkQPd96kmYoJdnvHheVzTSe79hVULnGixSScv49TDeyxTQqVHUngKp+S0R2Ad8WkQ8S01knRVXvTHKciPwD8G/+Zgew1NndBByNqf8+PEXHpk2bbPGoPCiXJ7KJliMf3/xYKdU15pt2Gw6SZ7NuoijGdU3072EyUqyYbDZL45yILAo2fAVyB/DHwJUFl8RHRBqdzZ8Fdvifvwe8WUQqRaTVl2FzseQwpjeFzOiZCJJYMdkUQrbOptRprZPt3pcLxVK02SyNDwILga6gQFU7ROQ2vJlvi8XHRORqPGvmAPCrfts7ReQbwAvAeeA3ipk5ZRguk+1JN0re8GjxJCnF2ayMUt2TJO1YpmPpyDqNyFTAphExyoHxTN+R69yo8RRx6cDWuRpJyXsaERH5hqq+SUSeZ3QMQwBV1fVFkNMoMtZp5KYY92g8AxXzzTwq9FiRKMrtd1Ru8kxlsrmn3ue/v7YUghilwf5YuZmq92g81xVOIy63e1Ru8kxlYpWGqnb67wdLJ45hTG0m2xPxWMacGFObJCPCXy8iL4lIny33ahjjI24epkJRqkkWSymDUV4kmbDwY8DrVHWeLfdqBFjHMD4K4SoqdL1J28hFsRWjMbEkURrHVHVX0SUxyppc8ywZpSNq3qukJD0vyTiN8dQxWTDFdynZsqde73/cIiL/BPwLkLmDqvrt4opmlBPl1AHkk46ab32ThfHO0jsRbU9GptO1JiVb9tTPOJ+HgLucbQVMaRSYydh5TQT5pKPmIukgN8MwPLJlT72zlIIY9lQzERRqfilTMsZ0IUn2VJuI/KuIdIvIcRH5rj/3k2EYPoWweLJt53u+YRSLJIHwB4BvAI14K+Z9E/h6MYUyjOlGtlHdphCMciKJ0hBV/Yqqnvdf/8g4p0Y3DCM5STKZzDVmlIoka4Q/5K+h8XU8ZfHzwL+LSB2AqvYWUT7DMLJgysIoNUmUxs/7778aKn8XnhJpK6hEhmGMCqz39/ePaWS2YRSDnEpDVS3obUwrxjONeaHItWTrRGKZYtObJDENw5hWjGca83yZjEFuUxjTG1MaxriYjJ1eOTHVO2D7fUw9TGkY42Kqd3oTwVTqaO33MfVIEghHRJYAy9zjVfXhYgllGNMZ62iNcian0hCRj+JlUL0AXPCLFTClUWQs4GjkQ75riRvGWEhiadwLrFTVqWMzTxLsD54d6wRHk+9a4oYxFpLENPYDs4stiGHki3WChlF6klgaQ8B2EfkvRq+n8d6iSWUYRoaxWFRmhRnFIonS+J7/Msoc6yimJmP5Tu13YBSLJCPC7xeRCmCFX7RbVc8VVyxjLFhHYbjYQ4RRDJJkT90G3A8cAARYKiJvt5RbwyhvTGEYxSCJe+oTwF2quhtARFYAXwOuLaZghmGUD2a1GAFJsqdmBwoDQFX3YNlUhjGtMIVhBCSxNLaIyOeBr/jbbwW2Fk8kwzAMo1xJojTeA/wG8F68mMbDwGeLKZRhGIZRniTJnhoG/sZ/GYZhGNOYWKUhIt9Q1TeJyPNErAmuquuLKplhGIZRdmQLhL/Pf38t8DMRrzEjIm8UkZ0iMiIim0L7PiQie0Vkt4i80im/VkSe9/d9WkRkPDIYRrlS6KnRp9JU68bEE6s0VLXT//jrqnrQfQG/Ps52dwCvJzRTroisAd4MrAXuBj4rIjP93Z8D3g1c6b/uHqcMhlGWFHPpWMMYL0lSbn86ouxV42lUVXe5abwO9wBfV9VhVW0H9gLXi0gjUKOqT6iqAl/Gm33XMAzDKCHZYhrvwbMo2kTkOWfXXOCxIsmzBHjS2e7wy875n8PlhmEYRgnJlj31APB94C+BDzrlA6ram6tiEfkRsChi14dV9btxp0WUaZbyuLbfjefKorm5OYekhmEYRlJilYaq9gF9wFtEZAPwCn/XI0BOpaGqd45Bng5gqbPdBBz1y5siyuPavg+4D2DTpk2xysUwDMPIj5wxDRF5L/BVYIH/+kcR+a0iyfM94M0iUikirXgB781+UH5ARG70s6beBsRZK4ZhGEaRSDIi/FeAG1T1NGTWDH8C+LuxNioiP+uf3wD8u4hsV9VXqupOEfkG3nrk54HfUNVgXfL3AF8CLsNzm31/rO0bhmEYYyOJ0hDggrN9gegYQ2JU9TvAd2L2fQT4SET5FmDdeNo1DMMwxkcSpfFF4CkRCTr5e4HPF00iwzAMo2xJMvfU34jIj4GX41kY71TVbcUWzDAMwyg/klgaAO14MYZZgIjIRlV9pnhiGYZhGOVIkuVe/wx4B7CPi2MjFPip4ollGIZhlCNJLI03ActVNV1sYQzDMIzyJsncUzuA2iLLYRiGYUwCklgafwlsE5EdQGaOZVV9XdGkMgzDMMqSJErjfuCjwPPASHHFMQzDMMqZJEqjR1U/XXRJDMMwjLInidLYKiJ/iTcvlOuespRbwzCMaUYSpXGN/36jU2Ypt4ZhGNOQJCPCby+FIIZhGEb5kyTl1jAMwzAAUxqGYRhGHmRVGiIyQ0RuKpUwhmEYRnmTVWmo6gjwiRLJYhiGYZQ5SdxTPxSRN/jLrBqGYRjTmCQpt+8H5gAXROQM3poaqqo1RZXMMAzDKDuSpNzOLYUghmEYRvmT0z0lHr8oIn/oby8VkeuLL5phGIZRbiSJaXwWeBnwC/72IPB/iiaRYRiGUbYkiWncoKobRWQbgKqeFJGKIstlGIZhlCFJLI1zIjITf6lXEWnApkg3DMOYliRRGp8GvgMsFJGPAI8Cf1FUqQzDMIyyJEn21FdFZCtwh190r6ruKq5YhmEYRjmSJKYBUA0ELqrLiieOYRiGUc4kSbn9I7wlX+uAeuCLIvIHxRbMMAzDKD+SWBpvAa5R1bMAIvJXwDPAnxdTMMMwDKP8SBIIPwBUOduVwL6iSGMYhmGUNUksjWFgp4g8iBfT+GngURH5NICqvreI8hlGToaHh6msrJxoMQxjWpBEaXzHfwX8uDiiGMbYMIVhGKUjScrt/f4I8BV+0W5VPVdcsQzDMIxyJKfSEJHb8LKnDuBNi75URN6uqg8XVTLDMAyj7EgSCP8EcJeq3qqqtwCvBD45nkZF5I0islNERkRkk1PeIiJnRGS7//q/zr5rReR5EdkrIp+2RaEMwzBKTxKlMVtVdwcbqroHmD3OdncArweirJV9qnq1//o1p/xzwLuBK/3X3eOUwTAMw8iTJIHwrSLyeeAr/vZbga3jaTSYhiSpsSAijUCNqj7hb38ZuBf4/njkMAzDMPIjiaXxa8BO4L3A+4AX/LJi0Soi20TkJyLyCr9sCdDhHNPhl0UiIu8WkS0isqW7u7uIohqGYUwvsloaIjID2Kqq64C/yadiEfkRsChi14dV9bsxp3UCzap6QkSuBf5FRNbiBeDDaFzbqnofcB/Apk2bYo8zDMMw8iOr0lDVERF5VkSaVfVQPhWr6p35CqOqw3iDCVHVrSKyDy/VtwNocg5tAo7mW79hGIYxPpLENBrxRoRvBk4Hhar6ukIL4y/w1KuqF0SkDS/gvV9Ve0VkQERuBJ4C3gb8XaHbNwzDMLKTRGn870I3KiI/i9fpNwD/LiLbVfWVwC3An4rIeeAC8Guq2uuf9h7gS3hTs38fC4IbhmGUHFGNdvmLSBVewPsK4Hng86p6voSyFYRNmzbpli1bJloMwzCMSYWIbFXVTeHybNlT9wOb8BTGq/AG+RmGYRjTmGzuqTWqehWAP05jc2lEMgzDMMqVbJZGZlLCyeiWMgzDMApPNktjg4j0+58FuMzfFkBVtabo0hnGJMTW9zCmMrFKQ1VnllIQw5gqmMIwpjJJphExDMMwDMCUhmEYhpEHpjQMwzCMxJjSMAzDMBJjSsMwDMNIjCkNwzAMIzGmNAzDMIzEmNIwDMMwEhM7y+1UQUS6gYMRu+qBnhKLkxSTbWyUs2xQ3vKZbGOjnGWD8cm3TFUbwoVTXmnEISJboqb9LQdMtrFRzrJBectnso2NcpYNiiOfuacMwzCMxJjSMAzDMBIznZXGfRMtQBZMtrFRzrJBectnso2NcpYNiiDftI1pGIZhGPkznS0NwzAMI09MaRiGYRiJmfJKQ0TeKCI7RWRERDY55T8tIltF5Hn//aecfdf65XtF5NMiIqWUzd/3Ib/93SLyylLLFiHr1SLypIhsF5EtInJ9LllLiYj8lt/+ThH5WDnJ5svxuyKiIlJfLrKJyMdF5EUReU5EviMiteUimyPH3b4Me0XkgxMlhy/LUhF5SER2+b+z9/nldSLyoIi85L/Pn0AZZ4rINhH5t6LJpqpT+gWsBlYCPwY2OeXXAIv9z+uAI86+zcDL8Ja2/T7wqhLLtgZ4FqgEWoF9wMxSyhYh6w+DtoBXAz/OJWsJv+PbgR8Blf72gnKRzZdjKfCfeINM68tFNuAuYJb/+aPAR8tFNl+OmX7bbUCFL9OaUsvhyNMIbPQ/zwX2+PfqY8AH/fIPBvdxgmR8P/AA8G/+dsFlm/KWhqruUtXdEeXbVPWov7kTqBKRShFpBGpU9Qn17vSXgXtLKRtwD/B1VR1W1XZgL3B9KWWLEhcI1oWfBwT3LlLWEskU8B7gr1R1GEBVj5eRbACfBH4f7x4GTLhsqvpDVT3vbz4JNJWLbD7XA3tVdb+qpoGv+7JNCKraqarP+J8HgF3AEl+m+/3D7qd0/8lRiEgT8Brg/znFBZdtyiuNhLwB2OZ3OkuADmdfh19WSpYAhyNkmEjZfhv4uIgcBv4a+JBfHidrKVkBvEJEnhKRn4jIdeUim4i8Ds+KfTa0a8JlC/EuPMsVyke2cpHjEkSkBc9b8RSwUFU7wVMswIIJEutTeA8nI05ZwWWbNd4KygER+RGwKGLXh1X1uznOXYtnmt8VFEUcNua85DHKFidDQWW7pNEssgJ3AL+jqv8sIm8CPg/cWWyZEso2C5gP3AhcB3xDRNrKRLb/xcXf1qjTIspKKlvw+xORDwPnga+WUrYElIscoxCRFPDPwG+ran+JwopZEZHXAsdVdauI3FbMtqaE0lDVO8dynm/OfQd4m6ru84s7uGim438+Gj63yLJ14PnBwzIUVLYw2WQVkS8D7/M3v8lFEzhO1oKSQ7b3AN/2XXabRWQEb6K2CZVNRK7Ciwk863csTcAzfhLBhN83X8a3A68F7vDvH6WSLQHlIkcGEZmNpzC+qqrf9ouPiUijqnb6LuTj8TUUjZuB14nIq4EqoEZE/rEosk1UwKbULy4NNtfiBdbeEHHs03hPrUGw+dUllm0towOR+7kYCC+pbI5Mu4Db/M93AFtzyVrC7/bXgD/1P6/Ac2lIOcgWkvMAFwPhEy4bcDfwAtAQKp9w2Xw5Zvltt3IxEL52Ar8/wYsjfipU/nFGB5s/NlEy+jLcxsVAeMFlm7ALK+EN/Fm8J5Zh4Bjwn375HwCnge3OK8i62QTswMvc+Az+yPlSyebv+7Df/m6cDKlSyRYh68uBrf4f9yng2lyylvA7rgD+0b8vzwA/VS6yheTMKI1ykA0vwH3Y+f3/33KRzZHj1XhZSvvwXGoT+f29HM899pxzz14NXA78F/CS/143wXK6SqPgstk0IoZhGEZiLHvKMAzDSIwpDcMwDCMxpjQMwzCMxJjSMAzDMBJjSsMwDMNIjCmNaYiIXPBnq90hIt8UkeqJlmksiEitiPy6s71YRL5V5Da/JCI/F1GeaVtELvdnQx0Ukc/kqO9b/uj1ouHPWPvWcZx/t4hs9mfE3S4i/yQizf6+L4lIu4g8KyJ7ROTLIrLEOfcjInJYRAaz1F8pIj/y6/75scqZLyLydRG5slTtTRVMaUxPzqjq1aq6DkjjDY7LICIzi9VwgeuuBTJKQ1WPquolHXopCLV9FvhD4HezneNPYTNTVfcXWby78GYpzomIzAptrwP+Dni7qq5S1avxphtpcQ77PVXdgDdj8zbgIRGp8Pf9K7knO7wGmO3/Jv8p1H7RfovA5/DmajLywJSG8QhwhYjc5j8dPwA8LyJVIvJF8dbu2CYitwOIyDtE5Lsi8gN/nYM/DioSkV/0n0i3i8jfB394/4n7T0XkKbxp3XHO+bGIfFJEHhZvnYLrROTb/vz/f+4c937fMtohIr/tF/8VsNxv7+Mi0iIiO/zjs8n/bV/+l8RZeyMk1wER+ah/PZtF5Apn9y0i8riI7A+sDrdtVT2tqo/iKY9svBXIzD/m36ePire+y49E5Hr//uwXb+LDoJ1HROQZ/3WTX97o38PAgnyFX16DN/jxrG8RzA7K/Wuc7bfxFyLyEy5OFRPwAeAvVHVXUKCq31PVh8MXox6fBLqAV/llT6o/YV7MfV6ANzDzal/25b5cfyQijwJvFJH/ISJP+9bMP4tvGftWzuf83+1+EblVRL7g/46+5LRxl4g84d+vb4o3dxR4v/07w4rSyMFEjly018S8gEH/fRZep/UevFGkp4FWf9//BL7of14FHMKb0+YdQCfeSNPL8EZhb8JbG+Rf8Z4YAT6LN6cXeKNo3xQjy4+5uI7D+/DmFmrEm8Kiw2/nWuB5YA6QwpvK/hq8p90dTl2Z7Rzy78eb3r0Kb42LpRFyHcAfgQy8jYsjbL+EN/fWDLy1FPaG23bqeAfwmSzfw0+Aq5xt5eKaJd/Bsw5mAxuA7X55NVDlf74S2OJcbyDvTGCu//n1XJxi5YvAvf7ndwOfcL6Dz8bI+AywIcs1fAn4uVDZp4APRP3mYuq4Lbi/zr3/fWf7cufznwO/5bT9dbzpPe4B+oGr/O9mK3A13hxkDwNz/HM+APyRU9+DOLMb2Cv3yzTs9OQyEdnuf34Eb8bam4DN6q2fAN6UCX8HoKovishBvHmdAB5U1RMAIvJt/9jzeJ370+JNzncZFydHu4A3yVsc3/Pfnwd2qv9kKiL78SaseznwHVU97bT5Cue8KLLJ/1+q2ufX9QKwjNFTcAd8zXn/pFP+L6o6ArwgIguzyJCLRqDb2U4DP/A/Pw8Mq+o5EXmei+6g2cBnRORqvPsaXNPTwBd8S+JfVHW7X343nrIAb5LJ3wf+BXgn8D+ctke5haIQkWBKimrgPlX967hDc9WVAFeedb7VWYv30PCfzr5/VVX179ExVX3el3Un3j1rwlPuj/m/ywrgCef848BiPCVjJMCUxvTkjHq+6Qz+H+q0W5Tl/PDcM8G07fer6ocijj+rqhey1Dfsv484n4PtWTlkiSPbOW4bF4j/H2jMZ/f88XSQZ/CsnYBz6j/+4twLVR1xXCi/gzdP2Qa8J+qz/jEPi8gteIvwfEVEPq6qX8aLJ7zHP+Yx3711K14sZYfTtvvdu+wENgLP+g8KV4vI7+J13nFcg6dcxoMrz5fwLKRnReQdeJZJQK7fzgW8h5y3xLRThfc9GAmxmIYRx8N4PndEZAXQjDd5HcBPi7f28GV4K4E9htdJ/Jzvow7WJl5WQFnuFZFqEZmDN9HjI8AA3rKb+cqflJ933p/IduAY2QVckfOo0cwDOn1L55fwXFH49/q4qv4DnuW4UbxA+4shhf1lPMvpiyTjY8CHRWS1UxaZbSce78WzoH4QdcwYmQt0+lZUvllgTwI3BzEp/ze0wtm/Ak8xGgkxpWHE8Vlgpm/2/xPwDvWXUwUeBb6CN8vnP6vqFlV9AW/m4B+KyHN4vuLGQgii3hKbX8JbH/0p4P+pt1zvCTy3ww4R+Xge8ielUrzg/fvwnvATIyIHgL8B3iEiHSKyJuKwf2f0U3MSPgu8XUSexOvwgify24DtIrINbyXKv8ULRoc776/iLVj1NRLgu3veB3xZvJTbx/DiVw84h31cRJ7Fm432OuB29ZZnRUQ+JiIdQLV/H/4kz+sFLxPtKbzf1Iv5nKiq3Xixpa/5v8sn8WJc+K7FM5olUG9cis1ya+SF7x7YpKq/OdGyFBO/09+kqj1FbOMy4CHg5hzuu7HW/yBeMkKnU/ZzwD2q+kuFbm+yISK/A/Sr6ucnWpbJhMU0DGOCUNUz4qUsL8HL7ip0/T/tbovI3+FZH68udFuTlFN4FrORB2ZpGIZhGImxmIZhGIaRGFMahmEYRmJMaRiGYRiJMaVhGIZhJMaUhmEYhpGY/w8Djx586ws4MwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = results_df['pm_phi1']\n", "y = results_df['pm_phi2']\n", @@ -781,7 +1377,20 @@ "cell_type": "code", "execution_count": 84, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADvB0lEQVR4nOz9aZSdV3oehj5ft1inTVYdNgtVZE2YqoiRJIAmAFIc1G51W7Iky5Kvc3NtZXlObkceMjgrK3ZuYsc3juNBcWLrxnEsL9tXnuLIsX0t24ojubvdFJtsEgAFAiDmqsJQE1ADyFMFWqfQre/+OPVsPOepd3/nAOwBlPGuddY55/v28O537/2OeyjKssRDeAgP4SE8hIdwr/CJ7zYCD+EhPISH8BA+nvBQgDyEh/AQHsJDuC94KEAewkN4CA/hIdwXPBQgD+EhPISH8BDuCx4KkIfwEB7CQ3gI9wUPBchDeAgP4SE8hPuC76oAKYribxZFcbMoijPyrL8oil8qiuLSxvcTmbw/VBTFhaIoLhdF8ce/c1g/hIfwEB7CQwC++xbI/xfAD9mzPw7gS2VZ7gLwpY3/bVAUxScB/BUAPwxgP4CfKIpi/7cX1YfwEB7CQ3gICt9VAVKW5WsAVuzxjwP42Y3fPwvgtwVZXwBwuSzLqbIs1wH8g418D+EhPISH8BC+Q/A9320EAniqLMt5ACjLcr4oiieDNKMArsv/GQAvRoUVRfFFAF8EgMcee+zw3r17UZYliqJIafw/4Zvf/CY++clP3lcjcmXeS56ofqbplNb/3ys+Xs83v/lNfOITLX3j137t1zbhpfXxdAPNr8/uFQcvU+uL+lJB6/61X/s1fOITn2jDvxv8qk5rIG0A4BOf+MSm/HyX68dObc61PypD++qTn/xkqjvCzctTGhFX9rmPs+iZ05O/SXPFq4rmZVmmdN7X3/jGN1I9ORpFNGU+rZNl5MZVFf3ZLu/T9fV19PT0hOPlXnmBQ6d2Rv15LzTqVOeJEyeWyrIc9DQPogDpBiIKhLO8LMufAfAzAHDkyJHy+PHjYYHNZhMAUKvV2p7xv/72fLk8VcB091JuFX7dQqPRSL/r9XpXOPnzTjgTV8c3V4e2bXFxEYODd8cp/zcajYSvp+mGFk4/0qFWq6VnWi7TN5tN1Ov1VD7xUHy87GaziUajsQnHKC1xYT05+jWbTSwuLmJsbGwTblqOl83/mkfrAoCZmRmMjY1tovXi4mJqe7PZxODgYGobaTE4OJjtT6bTspz+0Rj0dlX1hfZfRGvmzeVzWns/6/uItp3Gs6eJnnt5UT1eX6d33fKlTnOaaT71qU9djd59t2MgEdwoimIYADa+bwZpZgBslf9jAOY6FVylSUYDUf9HzJzPlSnnQAdzrg5NGz13RkDGk6uP4EKDbXW8WWduIvh3hLPiR4EQtSvH5JTpKhNWRuaM2+tuNBqJNs1mEzMzM204KBP0PnYmzGfKiBRf/6101jq1XB0LxIOM2Nul7SMD50eZMf8rk84JSx/LFEqkNXEkzev1elu7+X9sbKytzTMzM2200r7U/nNaOJDmOnYiWqrA1bHsdfi49L6JxpGmUbpp+7TOaDxHAj2aw55PcYtoo2NA0+bo6WMlKq9K+ap6V3y3D1MsimIHgH9eluWzG/9/CsByWZZ/bmN1VX9Zlv+F5fkeABcBfAHALIBjAP69sizfq6qLFki3Wn8OvENymvxHgSot/l7rvB+LIVf/vWg2Ee7aBmVmqvHlNMFoEqgwiZh6pJFVabC59ijNXYOloNO81LhZprchohXB8YnyR5oz30d0m5mZabMWHLwf2MYqDTX3jPUqXbyOSEmJ+l3Tal2On79Tq0fzurDIMWzSkxaZKzdV8zMHnfjC/Vgf98trOlk/3u9FUZwoy/KIl/PdXsb7vwF4E8CeoihmiqL49wH8OQA/UBTFJQA/sPEfRVGMFEXxCwBQluU3APwRAP8XgHMAfq6T8FDoNInuBT6K8MhZD8qgdOC7FhyV4ZMA6NyuaILqs6iOqB6vs6ped9e4Jqlt9fKZN7JEXDuLtHVlUK4Rel3UqiPaMI0ySWrOyvz423FUiCazWhaaP2Kquf7ic3V96diKxqtr1pHF4O3SutSqUvr7b3cDOnN3fBYXFzdZH2rZKB6RpaHvc33PumllsRwtSy2jHO2iPnY8FBYXFyvnjI6vKuHVbb1RPVp/xBMi+K5bIN9JOHz4cHnixInKNDkNuxvp343w6MYauB/ND9isxVfhkPPRd4un15nTFO8F3LJqNtv9/rVabVOcQvFxqyLys0cTyZmICyami6yZXLlattJa+5VpPD9xcAuJbVdmEmnYagWoph3V6ZaHxj2cjvq/0WikfnEBq7EqrSuHa8Two/HkykbUD5EAdZpH/eT0zI3nqKzIiqmas94vOfhW8Jx7eV815z/1qU89eBbIdxq4oiA3kIC8b/6jCIaq8v25a5LdDE5CZA1Fv1U7dFCN0uMXUd2sU2MrVWV6naox+cSkdq/1ehurNHCdGK4pR7jqc2qhEc6ON9vo9aqbxfHQ/GppaPmunbubzF0qFLiR8FBcFB9tO+twC0W1dZap8Q+1RpxmzKsxHm2v97kuKFBaTU5OhhpyLk6i9Na55G1zOmj9Wo+Xq23x/ozGsdNPY1WKq0I3imOOF+RwUaiyrLupA/i3TIDQ2oq0PoWclppjJEyjgVvN6wOjSoB5vd2mz2lEVc+AzRPAg6Xd1tstLT29MzjXZFWLj9oRTfBo9Uy9XsfMzEwbTcl8lClF2l202srxAu5q3DlrAkASAnSLRK4LHUs52kVacMTYo3yad3FxMdGBY0Db5ILRx0tOeETCgfXot6fTucZy3drxdjsNnTl7v8/MzLTl0f734DlxdSvM0+sz5QORhp8TFu4SVOhGiWU6p2Nujnaa353mNvBvmQDx9c85i6FbSRxp4zrAcgwtEgyuBXk9EV6dyozA8+gEiJhnrq3E0zVCZz7OgH3QusYX4R8JCX0eMW1lYgRnrrVaLa3QUmbBMiJGqt8q/Or1+iarTv30TOsMyX34ygQVT6ezM3V+zp49G7bdV48pXr7STcuNLEvFaXFxcRPurEPdQVrWxMREqk/HiAsyplH3Hxk/y4vckzMzM204sd+Zl/8j5U7x1zYpcMxEiqbiFfEH1pezyqN54HMx4huRxcE+iqwpQk5gafqHFkgGIquiGynv6XOSOmLAzgCjgRppBt3imhOKnZ5FA7EKcoJKmZD+dndOTlt0PLQs5lPNyrU81fD4XJk+cSE+ZCYep2CdajkQV9VGNe7kwHo86Bpp3Rog9rL0OZmj0kddW2TOfOf9qIsIHHdN74JO6cn6ubJL80VWuLbd+0LfccUTae19rMJE2xjFhaIxpXkjF67n0XZpmZGVp0Kram650PZ6XbBEwqNKkYzaUfW7Kj7YDfxbGUTXiXCvAgP4aIGrqO4cPt0Mnm7K7+adl181UDUNJ4X+9vSeh/+9jiiI7lAliL0sx1OZQVV6LdNxUa06WnasoMtIo/Z40Fpxc2btVoM+0//OeD0gTjxcEPJbBYAydG2DtjcqQ+npNFaBrH2j7dIlxyqkfcGG1pVTuvheV4R5H0Z9EzF1HzfK7H0saDk5Sz3S8L2Mqvn47YBcPQ/kMt7vNNCF5Z0KxBp+TiLnmG9OA9E0OavBmbfWcy+aQc7szAmEiMnn6nSG4OZx5KpTJlAluJieOEUMyNPn6OKBU2UuVeZ8xGS9XvXBu1XFZ5OTkwBaTJIxBmX+Siv9rwzZyxwbG2vTdj0ormWqS41tpqtJaed9pkJBFy943EOFjNOT9Tgt+WxwcDC1JdKwFxcXMTEx0VZXFGfwcr1ttOi0fOLEdxG9NQ3xUTppPdqfXk4kYCNB732toNaft9nrcrgXnqF13SvP6XiUSVEUnwBwEMAIgH8D4L2yLG/cE3YPELgmmdPO7lXiO2PtlCZ653VGQqWT1q5ptc4cY4y0HSAfYHOcvE1V9TizrSo3Clw7eB+6VucTFti8FDaHK9Mqo4/qc4aggkB99NE4U/AJrEeKuFXisQqWR8avWq62TS0ip4fi5Ku/XLuOaKd5o3FLUIYcafR+bE007j2d0o7p+V6fa/9UKUtavx7fEikf2teaN1IKdWxGY1zLprBVmnrdOSXH03UDPt+7zZ+1QIqimCiK4mcAXEZrM99PAPhDAH6pKIqvF0Xx+zeEy8cKcgPHB1GUrpNUdo3KJ5uavC4EogHmzD9iwpHwUM0/an80yPS5athRfq0np/3ou4ixR+3UvL5CKqpDQfcceBsjxqLPvX5+3L8faaCsw2nlDN9ppbTWQL4LQw1Sa3uU+UTt4ZhiPGFwcLAtjkPwlT/uLvIFAD62XJBqu9X64sePS9GPCjeN0Xg8Jppn7iqMhIoy7lwfqpBR8LHFOrxu/R2NryolKjeGtH59F5WVm/cOVbysE59TyMZANnaJ/1UAv1xaoo0Tcv89ALfKsvzZKP+DCJ2OMnG4VytEIeeX7VRXpFlGA9Hzap57rZO/fTJ0ykvIDe4IP9cuvc3ODL0uIO9vdhxUCHjAWJmka7dOe09Xq9Vw9uxZ7N+/vw3HqMwoVuJ0i8qIFIhcgFjpFuVThktaKCN3S4t1kU5M521QfF0hUuGbG8Msh/XrCisuBojGvbZX06ggj+JcPsaj8eWCOBqb2naFnDKUS+P0jmIznpe43A9UzdlOcM8xkLIsf6Isy9dceGy8u1mW5V/6OAkPhahT9XfUUapNdyOh75URd9LsfYJWMc5u6oyCxt34ZbWMiD4OXo+Can1Mk3NJED/XNL0NBE2rVoBri+oLV+1U00a+bp5e62kVZ6aNlqfqe8+juLqrqVarpRiI7juJ8FAaqd9ftdScVRwJcdW8Cdo21fA9RqMr0Uhr7s8gzmNjY8lKogWiZXi/M3+k4ZM+LMfbocIqGluRNRAxfi1T32v8ItfXPl6Z1+vV9DmlyWnkfaP1RbhH3oaIDg4dXVBFUTxaFMWfKIrir2/831UUxY92yvdxgmji5NJ0EgwRg6hi9l5X5Iv0weFaaCez1YWCTtroHSe3v8+tOvH2uiboTMo1WG+jxigixpxrs7tiIgGnGrtqkRpn4G/f5ezaKRmzT3JlSnwW4c1vlqH9qjRUOjSbzU37GJRJsZ98WenY2FibX39xcTExYO9bZ9b6WwWE4qUxID/E0Jkz26hH1Gj/qctN+0zxrNXuLvt1pYv1+TxxV6oKZRU6LEPLjpQMxc0FQ5Vy42OZdTtNHVxQaf9E8yFywXp52keRktCJ33UTw/hbAJoAXtr4PwPgv+si368LiJi/dkiVpRAx2Vw5uXf8nSsjql8Hgpbl9eUGFIC0EkbLzQW2Xfv1Sdat0M1pQj4htX0uEJwBqwYa0UMnrj5T4UK8lFmwXRMTE23M3rXmSJPXVVS0OAYHBxPTV0anuEQ7uImHMsKIwamgo4tJd8Vr8F37zBUAFUI5jZYCanJycpNQ9zHFb44ft1S0TgqNSAmJ3GhKf+0HPncBpIxU26vxJNap48LHXqSYKH1cILLeyMJwhUPHWjSPc/woN68iPkN8OlkfQHcCZKIsy78A4A4AlGX5bxBf6PSxgxwDjQZ5lN7fR1DF+KPy7hUiIRRNmKqJ67+1PGWoUZtc+/N0GgzXMqNjP3wCqbYZ0VGZNZmgtle1UNVGVeg4PfS9fxQn1faVubim7a6Yer2erAG/p0RxnZmZadPcIyautFE6NxqtZb8ahObSWRWKzeZdK2tycjLr8lChASAdBaJ954LT+0PrJs00OK5MXcera93+Xxm0ClbSTpmtjgdaG+oi9LGsfebPI/eoWwNOo9wY03c5hZNKh/aHj82Ip7iilZur0Zli3bjhuxEg60VR/AZs3PhXFMUEWhbJxx68oyKNitBJuOTS5/5HA8eZfU7AuLtBJ6/X54PM26LM2vMQnPl6+bn2AJs3jPlzlh8xikg46kRwZqP1R+W4RqWalmrnxMe1S02vfnr1tSsTVhcJ26lCiwzN+6PZvHvJk/r5lfEpTt7/zowBtAkr0qJWu7tznZYUGaYzUYWJiYlN+0SUZsRBBYaOL7XMNS4T4Z1T4FwJ0Oe6BySKF6ow8bHgWr7Pi6o56e/Z924duULi9CGOOp50dz6f61ircjmRpvrfaUur8V6h4070oih+AMB/DWA/gF8E8AqA31eW5b++59q+y1B1pa2CaiKdLIyI0eX+e/pcGbk6Iw3Jwf28Xl43bcrh1g3OjpsyCM/Pb/ep52hE0HblGJHikKMXGZ+nUaHE937tq+LoLiWWq8yVk153WEfCQdul9SiuThd1/WgaPQqf7jEKDKVZxMTJlKJVbN5HPr6cYRIvZ3JOc35rTEiVF2eyKmiY3+Maioe6A7WPfF45fSKlyce0XyDmdFU6RXPE+zYSWm5FsH/0nea/F97VKV9uFVZXR5kURbEFwPei5br6elmWSx0zPYBw5MiR8mtf+1qWsLlJGqXTgXcvDLkbiBhgjokTIgsh0iSdweaEXNS2SNOvwtvfRROoShAA+T5xpsePMrmcMI3o4PeBO3N11w8ZPHGJmJDT2APNrmnzdyR0ozGhTND7RNujeDMAr+XpabVer49BvSzLY0SkhwfRlTaqRSstJiYmQi2edaoW7f2tY4DuP1+I4fSikIr2pWhbovHiQl2PXlG6+LiOhISPL++bTnNO8cn91/EQ5a0qm2k+6n0gowA+CaAHwGeLovjtXeZ74MA1zNw7fx9ppd0IG80f/SaoP7gT4+azSBPib/eTOvPU9D5wIs1S8agSmpEg4nOPOfC3tk8nOP9HtKvyS2vb/VuZl5bpVkWub50RMo8KHXWFuDB0X7syMx9fpJkzMD9eg2UT3MVB5svyiKe+d6ancQ6Pb3hdWv6xY8fCADJjOt5OCjUtW/Hih4KG+Hv/RwJOx76PO13lxXawX/WwxKqAtZalSgWPslFa5YSBL15wK8OfKa73AqpMOA6uiEVpctDNMt6/CeBvAvh3APzWjc/Hehmvd5A+1/dRHkKOqevv3KCLOkRXxDjktJMIqoRN9F8FpjNyb4fXWzWIfdB7O5SZax5nLlXt1snNuqJnLFeZt8c2Ii3T8VatNaKhLpX1VTVRMJ/f6nJRARed4suynBm4UFBXGd/7CiYXQOqa0lOKFxcX0zHxdCsRB2XCi4uLePXVVzeNYzLKaMkzBYPSSOkXHd/uMQNdkOEWWTQOc0wyigFECpr2JeskbWlNMZ+PFdI0smZ0TFQJDXWPKlRZLtq/3QiKbgVUNxbI95ZleaQsy99bluXv3/j8ga5Kv08oimJPURQn5dMoiuI/tTSfK4riA0nzJ++1Hu0sIA6E5cC1XP/tTNfr6gYiKyiyCnJ1VYFuLIvqixi2M3VNlxuYGqD28p2h5iaT00+1RcXLmatrgM6InGFrHqZ1hstYggbfWb62U9/pCi3VBNUiYTptkwohjZf4Jjhl+NpXTMt0DKRHtzwq3Z1ZKV4KqgQoo9O2uSAhU/VFFNoedbO5BdJstuI4GgR3S0KBwob1EA9XXFTITU5ObhoH0dxTUFx9LPB9BJ3K1Hp1Lnl7cnNHacznOV7kSpFBuPK2myD63wDwF8uyPFuZ8NsERVF8EsAsgBfLsrwqzz8H4D8vy7Jra0hjILkB0UnD93RMGwUiNa0zyU6Qw6Nb/Lopr9tJUfU8amsOP2rVziCq8qrvuMqPq/houmhC+ATX5anqGvFgsVopZM5qkUQLAFS71voZlFfBV6vVMDk52SZo3O2juGiZyuwUD6bzU4E94Et8NHDutNLfQPvqPM2vwPIigarMrtFov3UwirNEZTrNdUED61S8ovnk1pTHwThmfY5HePh4ZJ16XEzkynOIBIKPYR8POQUzGpf3wodqtdpHOs79ZwG8WRTFhaIoThVFcbooilNd5PtWwRcATKrw+FaAd0g0SbspQ7U4haiz77XTcsw10nCqylI8OCD18EGmibSySJOqqt9xdpeSX8ajdXubnYFU+XFVY9QDE5vNZluQ2PHSAKseNujancYDVLuO3ItMy3u8HU/SQRmqMjuPHUQxB/aluuW0PcSZ+JBBEw8XktS+6/V6wlutCX67K8kZlwpEto14+a5vxdmtOxfWPneUubM9VADYj/V6PTxTK7IKdBwoc45W3fF35HaO3ErEy8eAWwNqjSoOHl9zN100vrSPva0+n/2ZpuvEr7oRIH8TwO8G8EO4G//4rV3k+1bB7wTwv2XevVQUxbtFUfyfRVE8001hrkUBsfnZbTkEH3jRYK0wDzeV7elyHRkJmeh9xDA8jQeGo/J9MrtfNUqjv1Wg+AT2yefMN0eHqF4VNtFVtr6T2jVd9de7YCOTUubhloEKS73Lg4xOtU8y7kg5IJ6ks29Oc0aubdC1/R7/0LiB9uXMzAwmJiYSjr45j0zV548KvUgAanxBx4zj6IoE6eXvlC4sn2lUsDr+vrHV3bKkJQPhKnR1/GhapXk0VrT/nWFTUOsYZNnel1UKXySQdJ67xel8ISeQtL4IuhEg18qy/PmyLKfLsrzKTxf5PjIURdED4McA/MPg9TsAtpdleRDA/wfA/y9TxheLojheFMVx19YIVf9zktnTVTH4KknO8l37j/CIyu4EPtEVJ4L78n3g+OCMvnOMXf3brq0xn7p5VNt1PJXpOb3U9cT3/oxpPS6imqdPbOKSa7cHXtk+XYnjkJvU+tuFHMsZGxvbpKm7cFBG6u5CvfKWOPJ9s9lMwsOXwermPA/Qk36qRDHeovEK5nV3kfcj87qVqEzR55S6vFxT1z7QTZC+GdJp74KZ9blbstFotG3U9HFCQca0vmfH54QqQy7gIuVNwXmSC7joXcSjulFege5iIP8LgE8D+GfA3R3oZVn+48qM3wIoiuLHAfzhsix/sIu0VwAcqdqj0u1GQkLE+CPmHuVjmqr06qLx+qIOjXCpSqMDMYdDNIhy6SPrQtuiDFnzRO69qvxMQ0ZDhkacPCiqbgbFURkgQfP7RHd6qGWgfnFtA98pw3VgfMDb7neKU9tWZqsWAy0fx5X0U/ycuaigVMGllk2tVkubJX1cqjbL/87YVctXi4F1OuN0enle9r0KAv12PJXeepabMn6tX+nk9QLAyZMncejQoU2LBHRzpW9mZH3OvFXY6Lh1d5TzABcimjZapKDlRM8VvMwq/vFR9oH8BrQExw/iO7+M9yeQcV8VRTFUbNxRWxTFC2i1ZbmqsLIs2wZ8DnIWgE70KL2Cmqa5DtSJlNMytLwqLULz5hhk5D7Swd5J2EQQpdd2OyPSyUhQt4KWyYnsK4yidL43ghNTtWXXWJXOqmFPTk62CS2tUzVb1xLdiiGOkfDgc+0bF7a6gkoFGfPz49Ya0+lpu8o8dVx4XIP0PHbsWEhv1aCZl2mmpqay7jRlnFq/9hVpooJHBZ/GnpReKqA0sK1zg4HwyOXIelUwAcDo6Gh6xvpVYESr2bTdkQWgtPE9IEqTiNd4eT4+c3yI9Pf6lbZVPOcjWSDfLSiK4lEA1wGMl2X5wcaznwSAsiz/16Io/giAPwjgG2hdtfuflWX5RlWZeqFUt5px9C7S2qM0Oc02qidnCXid/B25P6ra0UkwRHV6XoK30fPozlzP7+ldI3bBq3jnNM7IQvDfugpGmaq6k/xIEmXYXpcKK9WWgfYzkFg20H5gnQato/iZWgs5OjO/W2C6I1yZLMvXILgya2doOQuZfeH1MK8ffxJZksynK6S0/IjuKjhcOVJ8mV/pwg1+OQtLac+ylKZeZzSGIktTLRqvS12CSq9o/kUCpdOqxNz3/cB9H2VSFMWnAPz7AJ4B8Ck+/3bvBfl2wJEjR8ovf/nLIRMiOHPTDu7UCVUCpAqiwaMD0C0V155zuPuA64RTtzi7MFJG0Q1umkd/RyZ9jonptzJ0d+FE7Vc8mV9XRbFt0QR1gUbQ8iKhoOUqHsr0a7W7y3ip0Y+OjrYJG10912jcvbnPz2JymrONvEnRVwa5u8npryucdGyRBmTMLIOxGnf3RHtYItqwbq/v3LlzGB0dzSoD2na1Rik8FA8vQ2mmgk+tNPaVW9KsJxrDfB/F3iJLmPX7eIvGofdzNN5zilknhVihKIpfKcvyeX/ejQvr7wAYAvCbAXwVwBiA1S7yPZDQrXYNbL7VLkofQcS4qvLVapuPNMgxch8oEbPoxrpyfHxA5vBVTSgn0Bw31ybdglLXiZZLoDaZEwisU2mhLgzX+pRxk/aKt/vKFxcX02oi15Y1LqDjRXH3QDE/ZLDqh1c3y/j4+CbaapBYLQCvQ3EintwlTSEVCTunGSGyKsi0yaBZhjJqVwbULakbFFXwa19qfzUaDRw6dCiV55swdeWcB9p1d7gzaP4nnVQZYt16HL6OeR2rPgcVb6Zxd6fT3MvWceljOppv/j4aO9G80OcZ+LXoYTcC5OmyLP8EgNsbV9j+FgDPdZHvgQRnzN0IFH0WMeaoDp3Qrmk5OMPUgelBspwgy2n8yij9XfQ/J/wiHCMNMsLNNTLVXJ1pu4uCTFknnpbjGjN/+2QhXmS8kaWnE1QFhTNxF6LKyBW3nCbKtLoJTVeYqXXgzKZKcEdLVLnSypcOa3vVlaYxI+I2NTWVmCvzqaDTvmg0Gjh79myioW62dEue70kLXTqsfbi8vLxJmYs0c9ahQsmZozJVlq+xJndPaprIUtE+Jfg44LcKL6Wxl+n9qPEeLdeFiI55nUc+fxUX1hvNZ1f8IuhGgNzZ+H6/KIpnATwOYEcX+R5I0AEKxHdEOOSYgHZQVX3R70518FkHrWCTsOIzHWDRIHIcfUJGwkcHmA4+datoXhdE7rJRmihz0WCkpgE2nwvm+GiaKtorzZw5UNvU9mqQVTXLRuPuEk6nl7aH9XgdfKd18mRaFYY65lQAaJsjWkQHA6qbRDVttk33ZdTrdYyPj4euFabVuEO9Xsf+/fvb+oFMUd1XWh7bvn///k0WIgBs2bIl5dfNkWNjY223HjLvqVOnUv3aP463rjxjfuLK+nVVHBclKH4+x1TZ0TqUHuoOc2HHuaHzMbJqXXjRStbxoODCoUoBdV5QxYO6ESA/UxTFE2jdCfLzAM4C+PNd5HvggKuw1K8dxUNUKyDkmKy+cybmflKvg8A06iN1iDqxU3pnZC7w3Cfr5UTlKm2iZZERLVSD0rZqOnfB6ESNcHMco7apphcJG9cGWY4y+ohxa/n6cebjoK4ydYu59aV4KJ1dqKuLhVYMy4mEogaUXRlwV40ySGeUKtB0w6bio0yT+XTzJZn21NRUKosWiO4k93HL+omD7jRn/cPDw4kOLEtX2ak1W6UA0Vqlq5FxHRWYPq4iS4a46Nghzmy7u8ojRS6nYJG2vumxSoHyseTjXfPl5h7QQYAURfEJAI2yLG+VZflaWZbjZVk+WZblX6vK96BCURSbAoQOLiQUcoTMubWijo7e+SDSuiKtkv+rhJQyeZ0QzOtuEc2jZfjAVv+sM2gXWi50dcJF/lhvhzNsluE4Rruqa7VaW9xCy6a/noyc32RMvopKtUMVgtT4ND8nMZmW0khjFYODg9i/f38b7er1ehvOyvjYHpZNvFRbXV9fbxMYTidn9joOmP7s2bOb3IUXLlxoU7roFtM+pftIn6llxlVQ2o/NZnNTQFy1d9KZmxGV7qSbuqnYLo3BKH46ZzTmEe3hiZgvXXfqdmOfqcBX4cN8Ot51M6f2J9vhypS+c+VE5xDr8nc5gaJlah6dQ1XCA+ggQMqy/DUAf6SyhI8ZKLEiV4dqDQo5Ju2+/G7qzpmEOStDGY9qTtoGL5/Po127bnG40FQ3gprrbrEouKbvWr6nUVw5wbUsgm8g1AHP8sgwXIPnN/PwSHIPfBNHtTwIuhLLBRHrjbQ4rUeZNpmH4qt52V/cCKcMUYWMCiW61/r6+kIrQV0zSlO2gX1LAaqaOwDs2LEDwF3BwXfKkN315P0+OTmZmLXSVgWrKwI6BnWV2eDgIM6fP98m6BR/Fbq6NFutFxXKKojPnz/fNt58HrB+Bu1VIKqQixQoHQsuJMhLovkcjWv+9r6N5kfEVyLB4cLJ4L5P4/0TaO2z+N8B3ObzsixXKjM+gOA70ausjW5BB7tqUjnTzxnbvdQdlekMqKpOxTPKr3mjjXS5+qPn+j/SgvR/pClFWtO90NktFacRmbEyT9Vqc75pFSJkPNRAyfh1dZVbgCpc/EpbFdQexHUryBlXvV5PwWuWpyunlNmrlRIxMg3uc9ms0tgZvbuafIFA5J4kbhSAKryXlpbaNvE5g1ZlyscJaU53E99F7kw9EdndgXq6sCqaauno+FC6EFwRpftLrSDFz9sVKbj6P+Ifzo/8uX/7fNI26Zz5KDvR/wCAPwzgNQAnNj7dnwfyAMP9Cg7XxlXjz5XpjFa1FU3jv3XCV5WXExzOYDsNSv5WyyXCM4qfeNqoPYqrDuIIf3UJqHbkloimV1+z0jpydWgMR7VMpXmVQK7X62lJ7NjYWLIudG+GCzkyT98voDTQE3mVqbmGz7KAduakx3iwL4kr8y4tLaX/ZOTK2IkrhUeOGaumrm1Wq1ktFAqWycnJtr0Yqt339fVtGissx12OLhRIP7Z7bGxs045/tQgBYHZ2ts264qozpa8LYCoNLNeVgcgqoOWigkLHiApX5o8YPsv0peUqqDsJDwedk86bNn6HFkhWgBRF8e9u/PxCWZY77TOey/dxgxzDi/5rHnURuBaU04qrmH0urWs/ylQi3CNGzd/KiBUX146juqPyHC9d3eaD1QWu183JooxUhXJOK1Omz7TuMtOymJcTmkDmS2EQuRI05sEyNOhMfFxY6bcrBLq8Vutzq0HvCSG+vg+CzOfkyZNtDIyMd//+/Ym5jo+Pp3aqFuq4sYz19fVNDEzbqn3KNmrQWYXi6upqwpn1XLlypc0VpW4lpZHHNxqNRqrDxwJ/+53vfEeacbMmnw8MDLS5RZVBs090zxJw95DGyCpj/bRsfE6zr9y957EoVQZIX5alAszHrfMnfeZWkgraHP9TqLJA/suN7/+jYykfU9DOAeJAtRNRtUCHnIDISX4tJyd0nBkB7RsctSwvU9ugSxB9kLkw8fK83JxgiISQa/wRo1WtxxmB5leNje904qt2533C377sNKKhxyZU044Ep44Jd+eoQNMVWqrhqmaqwkmVFDJjvatcGay2ZXx8fBPzUFx13wrdPaSxBuoV99HR0U1LUlUAKX21v3VcsM20MNiewcFB7NixI232O336NJaXl1Oe/fv3b3L31Go1zM3NtcUAlF46Zvg9PT3d9l+Fg2v4av0qk1fBqbjoKi8XtKQr0/tYZP/qOFSrWZ/rGNW+jY408Xzu+iWOevqxjhvjR2GsIxsDKYrilwB8D4BDAH7Z35dl+WNZjB9Q0BsJFSJtvtN/IF7lEP2+H+g2f4SLDph7TR9ZG0B8pIjiGdEraoMLjag+98v6GVPOhAnOsFi2MxanjzJfD5i7oFHhOTMzg/37928qW9N5fIWgLieNGUTHZGi5bA+fMc+xY8cwPDycGJEzQM3HNrlAcNqSRsQxYmoUQGyn3t2hdFRGq7TU/tZnbBsFp7qlaI0pnZ0+qjgpfnTlsa/1vSsA3t8qHDg2IgWH45QLB3Qu+NjOKUr8zfKiftE+cCEdBeQ99uKxjtycBe7jLKyNuzieR+sok//A35dl+dUw4wMM93qcO9B9kDpH/HsRBLl0LpgIfBatFIpwjtoQCT2dkJy0mj6yMKroVCVkvS33khaID7BTHF0T9Inlk5h5faUW6Qy0x0+UOTGv/leGQGavm+C8z52BqLBzoeBapwo2ZSjKMFhedIYWBbUfcEjGe+7cOYyPjyehrgxJ6cwgOJk1YzIzMzNYW1tDb29v2ixJHCI6KkNXpthoNLC0tITx8fE25js7O4vR0dH0TIXX7Owsenp6Ur06rhR/0l3PzlJc9BQD9h/pV6/X8fbbb+PgwYNtFkvUt5GAUoUlEtauxPGdH16qEHkwdAzlyvZn93ylbVmW62VZfh3Ay2VZftU/uXwfd1BGBeT9/jmGpmXkhILnj8qI3kVaN3B36SfTOnMH4vs2HF8fzOoqU/+/l5MTHi6Iot8uaHK0i8qOArbONDW24fWp8FBmFVlu6jLjt05yxUG1SXXHkTFR8yVe7kpjfc1mMwV0VcskI1OXQ6PRwNTUFIC7QXgNACtQeES7rLkb3K2GyclJ7Nu3L7nL3MKr1e7uJenr68Ps7GybAPU+cQVFx5uOMdecWa/ujudYoECp1+tYWlpqs540rkF6+QZO7XcdL6QL8fUAurZl79696ToAT0PaaUzH56Xi5cqQWqca/9GDQH0O6XjSsj2tWrWuJDqvUui4Cqssy8VOaX49QcS09HmVpZDTuhWUESrTAzavDVfwdzrgqjo7Mo1zbdPfih+ANi0/1z63fPy5alie1gcyJ5muHMpp6ypAo4mkMQIXQCxncHAQb7/9dhu+xFNXK6n/W/HV3zoZlVaKqwovD8STGTebTezbt2+TUCcjUB92rVZrW72kjIJpCMeOHWuzath+uqCUcSlTB+4qK+qzZx5139ASUIbbbDbR09ODK1eubLKuuCrr5MmTKcYzNzeHer2O119/vY3xK3NXQTUzM4PV1VXUajUMDAwka4+CdGpqqs2SY34dF6zDn9HaUAar+1p0zHPXvwpApo8UGo7FaF64O04tFB0njjfHls5nFeLRfNI25947dLOM99c1VElXTRNp6VGayGT0/G4h6LdKfzerI3xdW/aJQJw8r/vDo7J1MKugcgvEy4isC2e80XEhTK8xAd+1y/SsT9fxKw0VP+5kVvyU1ny+d+/eTZovJ6kLWRUyWp5bOupmcktDmaEyJhVsrm3SDabtI/PMtY+uI5Z34MCBlG91dRWLi4u4cOHCprGpK+O0z65cudJWt1oJaimx7ezD1dVV9PX1YceOHW1MWN2Qa2trKd/BgwcxMzOD4eHhTXgRp4GBAQCtvSM+n0gr4trT05P6hPXv27cvlXXu3LlQOWNfRHPz3LlzqUyPd+lYUkGh5atAUFpGfELHofMhFQ787+NE69UxGCld/N8JHtgLpb4dcPjw4fLEiRObtOdIm+5kQRCicrop358rE9XAmWuD0buoDA4SZVBRG5neB2MOd603yusTR8v0FVCRoI1opGWotpXbve54umCO6MX/zgRUqyZ4gFgnNSckN8dRwx0YGEiTWoUOhQMFoTJllq9apu+s9niHMm5vc61Wa7Po1CWyuLiYNkFqW3T8eJxNmSvpNDU1hfHxcZw/fx49PT3o6+tLMQiuDlO81A3IPj1//jxGRkbaBBPQEkA9PT1tzPLChQvYsWMH5ubmMDIykoLsPLZeg/D8Zn/pkSxshyoBusnR8dRx59Y9y9LNuLq5UceTzgkVqjqGPR6l49CFjD6vmvtM52l8XjNfURTvlGV52Mu4LwFSFMWfLMvyv73njN9liHai55ilB5VynZB7F8UcvIM6lavla55oAgPtwXQfmBFDqGpPVF+O8eoz/s7V00nwKa6s0wPfhIieLM/z5wLtGmBWWrp2GFkZPrG1XmUCGmwlnlNTU+jr69t0lIgyzUjr9X7IMRWnjQpGXU5M95XvcdGxw3IjOqhGrc/W19fT0l/tL8V/dnYWa2trGB4eRrPZTHmUIWtA+eLFi9i+fXvbzvXV1dVUho4fflTYe0xI+6vRaGB9fT0F2ul2W1hYwHPPPRcqZVqurj5TPGZnZ5OV48LBY2jq9tKFBZ3mj/Z5TpnUMRXxNleuHO45iN4BNq3K+rhATqPluxxD0s7Sclzz0Inpmq/W63m1bi/PGYKauDoQfGOc5lcmF+Hgdav7Sxkf87ompmUorvrtzETbrLtudYBHk0PxVzy1fnUlaTBbrQTm070PfMYP61Dfua75135m8JbtZf6JiYm2I8ObzWby0bsmThxmZ2fDuI3Sxf+rbz0ql+no7nH/Pf/7fhrVslXjPXXqVNvYZPyBu8mZb//+/RgcHEzvic++ffuwY8cOzM/PA7jrjgJaAvbUqVNoNu8eyrh9+3bUarXkNgJaAXsKIO0LutPYVjLjxcXFtp3mOsbHx8exvr6erLGxsTE899xzbeNKxz4FAr+V2XP8MIbl/EBdktq/Og/UzatuTQW3QKIDK13gaxlah84vX2CQg6plvLnbRAoAv6Esy+/JlvqAgt6JHlkAEQOLIGfmVaVxQaADzbUBzxf573M4O9PR3659e5rIKoi03Kr0kfWgPmdneMzrGm5EA8c/V5b3oV6t6lq9CyKtR1dKabu1fT7BGLdR+rnwB+4GZf28KjLds2fPJo2ULi7SkpOby1YJHgsZGxtLLiX2BceI0sfxU7caV3bxSBMycLrkoh3UbJcyPbWSFU8u611ZWcGBAwdSGjJkCmQA6OnpSem0fwYHB/GP/tE/wr59+1J7tJ+Xl5exd+/etnLdWhoYGGjLw3IIkaLIvpmYmMC5c+ewvr6OgwcPtqXTVVLOJyLGrELNwQPmbvGQ1nzvSpePxZzVEc2P+9kHcg3A0bIsbwTvrpdluTXM+C2CoiiuoHV17jcBfMORL4qiAPCXAfwIgA8B/L6yLN+pKpMxEIUqRs/3ObNOmXbUWSzXzVAXHrnBVSWgHLccc43K0XZ6WqWF4qrvI3ppWq8zisdwAvig5vvIBaaaleLVydUT4erCRN0xyhRVg4+WMjudaJ247zuigbaJoO4kZwbE033c9Xpr/8HevXtTPRqcVoY/PT2NkZGR1B4yT2rRBA1sEwddfkwGXqu1bgzs7e1NgkOtN1pltC7YB1euXMGOHTtCP/6VK1dw4MCBNjoMDg7i3XffxcjISNpnokJRhevg4CCmp6fR09PT1u4tW7Zgfn4+nS68tLSEnp6eRFMVeuxftpkCWZk7+yByfxLYFj4n7RqNRlIAdK5wPLI/OH74zl3TpKkqIux/F1A5ftKJDwH3d5ji3wawPfPu71fk+1bC95dleShCHMAPA9i18fkigL/aqbCWzNkMStjIXQNsXq2gGpznYT4+cw2W4MxEy/b0VWak15uzRFS7Is45kzgHusxTB7EyDS1L69M2qFtJ8dO0/s4FTeQmzMUJcnh6X9dqd90dLnR0kikjVyCzI156TIhrl+p2IpPwmILShGm4fJQMpdlsYsuWLSmtuqIWFxfTybb1eh1btmxpe0/Nm3U3Gq39JOvr6wDaL3xSRjM1NZXcUjt37kztptUwODiYVn6tra2l+kgDrohiW+fn51N7ea8J8bxy5QoWFxdTYH1tbQ2Li4s4f/58covp+Dpx4gS2bNmS6qjX6xgZGUGtVkNvby+azSaWlpbSiq9arYaVlZXUPi63XVpa2nSBFNAK5rNffdGB7pMBkFackS7nz59PY4j7Vri8WBUTlk+a0jXlK7GIr/cRgE3CUBUwHmND+mhfuDu4iidUbST8r8uyfDvz7o9lS/zOwY8D+NtlC74O4NNFUQzfSwGRSafghFSGEjF/LZf5tZ5cR7iAUQHguOi3aywOygQVn1xb3YKglqn5PLCnm8DIhLxcFxaudUb4K+NWv7DWqTTLvfNYCBmwMvPIWiMTcXzI1PxsMV3R431NumhfkUl4+1m3uq9oLVBgaP31ej0tP1VNVDerTU9Pb9LStSwfIz09PWmjXk9PD2ZnZxMupNno6GjSoJmfAojPiGdvby8AtDHBLVu2tI1hXV01NDSUBH2tVsOePXva9o709vZibW0NO3fuRE9PT4p1AK1DH4eGhjA/P4+VlZXUvrGxMczNzaWDE0dHR7Fjx440JugWi7T72dlZLC8vp+XLPT09bct3VYGs1+tp2fjg4GDbKq7R0dEkBFVQ6J4ZFYZVTFznpPIZtURcwVIFKLdznekiJSaCylVYRVF8D1qa/t6NR+cA/MuyLL+RzfQtgqIopgHcQusQr79WluXP2Pt/DuDPlWX5+sb/LwH4Y2VZHrd0X0TLQsG2bdsOX716dZOpph0VgTIWz6eaifvplQHkysjVlYvD6POq+ImXyec+MPmtwTU+d/8tB6Yu54x8rpG1QHCLKjdQ/bkGdqM4RmQNKB5kwu6PBzYHjdVF5GVrTEeDkmrx+aT1MUArg8xUGTAArKysoLe3NwWiAbStPGK9ijvLV1fb/Px82+okpVez2cT8/Dz6+/vb2kn6nDt3Dn19fYnR6GnAjUYD09PTAIDe3t427Z8uH9Jveno67edgfTo2fMkxaTg3N5diI8RR6bm6upreLSwsYNeuXan/JiYm8OUvfxm7d+/GlStXUpr+/n709PSk5bS0stbX17FlyxbUarXkblP8SFOdL4Tz58+jt7c3rSDT/lFmrH3EvuRzdfupsFBFVQWMun+1T9WCcAXN55OXo3m1P/n8npfxFkUxAuArAOYB/ApawfPPABhCy7U0F2b8FkFRFCNlWc4VRfEkgF8C8B+VZfmavP8XAP6sCZD/oizLE3GJ8VlYzuwi5p8D7xh95h2ieXL1RLjkcHUNg+k7CZic1hEJVIIKGGWo2kag/RpXD65qe1xQRALHtUB9HtEo8qUrU89NDJbvLjZg854L72+1rnw3vDMKfe55/LBI3+tD98fAwEBbOyl8KExWV1exb9++dAkU+0SZj9JudnY27V4nXkr7paWlJESU4TJuoHGjZrOJq1evplVLOkbYVp5HpSuXVHAwoE1rhDjV63UcP34czz33XNvCAd20yPb39PRgbW0NW7Zsads3srq6mjR9bmjUsTw/P489e/akdms+upoajdZSX+5tuXDhAoaHh9uE+OLiIpaXl5PLjP2qu/VpAbCfXQFxXsL/Sm/foKrj2ZVapqEgjPY1RVa44nM/MZD/HsBfLcvyc2VZ/tGyLP/Tsix/I4C/AuDPVuT7lgAFVFmWNwH8EwAvWJIZABrIHwNwT0Itx7AjhsOBHmnwBNUYCFGMwRmda/7OAFVrUM3ImafjzIFZ5boi0C8KtPtOlVEyv7ZJtVbFyz/aHsXZtXKng1oCqnkrU1YmxrL4m/TwSa79wba7RakT3RUDd1to3Vou26pMnKCHF/L8qvPnzyfBo0CGp/eD6xJMLp0FkJj0hQsX0sZBpTs/XJ21urq6SROdm5tLjPLUqVNteDAtr39lP2zfvr3taBCtt9lsxTZ0TNKl1Wg0cOLECdTrdfT19aWd6+vr67h48SIWFxdT2fv27Wur48yZM7h06VLKSwE0Pz+fYjDNZjPtSWk2W0uol5eXk2Cr1WrYsWNHcsFxOW+tVkNPT09i/oODg8mCqdfrGB4eTv2o4+yFF17Y5IZWhs64Ta3W7iL2eeoKFwUmx7COEf0dKb78r/uh3DWs4z9S6iKoEiDfW5blX/KHZVn+NIDvrSz1I0JRFI8VRdHH3wB+EMAZS/bzAH5P0YLvBfBBWZbz91OfMoYcwTyNTw7XAKogEkYefPNyyMg9VqHpVBBxMnh8BYgHqjJo1ww1n7fby/O6dGCrNqwCK9J+vUzV5hQXp70LO9VSWbaudNJAogphx9vppYsJtC28WIh9FQUoyYzUgmCfHTx4cJM1pYqJW5/8MBDL3dcnT55Mx7srnajxrq6utrkj2e88W4pxi0ajkdxUuqJpdXU1Be6vXLmSGDGtk1rt7g76er2Oubk57Ny5EwDSvo96vRWonp+fx65du1Jauk57enpw5MiR1HbGHsbHW/fZra6uJvcR4zwUonv27MHw8HByu9HlBrRWX42MjCSLigcvAkgBfFogahXWajUsLCykPtB9L2ToU1NT6c6W5eXlNFZ0rNESmpuba1sqrWk5tmjJcuzrmNMlybrSz60YnU8+b5xXqfu2G6gSIP+m4t2HXZV+//AUgNeLongXwNsA/kVZlv+yKIqfLIriJzfS/AKAKQCXAfx1AH/oXiogUV0Y5KwCzRdpF15OVZ2umQN3T1B1QaTWhGrUEW46SHxToeKnjDwSQq71uyWgg88Hm1o8yoy17fV6PWmZaokoTV3DVmHlg5ztUcHqLhQ+Zz5dpqs01diCMg6lF4WQ0lePR/eJrIxAl4Vq4J37QrRO1RK13Srgp6am0GjcDVyzfDJyji0yOzI6BpMnJyfTjni/TErHhX5TELB8au9zc3NYW1tLK7co1MiwT58+jWazmRj73NwcBgYGsGfPHszPz7eNd9KGzJj1r6+vpw2GAwMD6O3txbZt2xLta7Ua9u3bl+h2/PhxXLhwASsrK1hbW0uxCgBplVZfX1/aXMjlxu6eGxxsHdOye/fuZHlR2Kh7l/nHxsbQ29ub3I8UAuy/2dnZpCyMjo62HTjpSppboxyfqtCpoqTzXBUstWCU1rm+zgkZhaoYyBSA/zx6BeAvlGW5+ZS7Bxy6uQ/ENdpuIDI3Cd4ZVXlzvkjV0N20zFkjhKhMx9MtHdYX4ab1aOBdBWs06CIBEdGGzFq/9Z3i7Rq+CgqNM7hVFbUXaD8Sxhm1ptV3GgeJYl3UqJV21F51Ca3SxxkAf2t7yNRUa6fwIKM8cOBAykPN3fv3zTffxPPPP58EHNOxb6enp7Fz5862tgJIQW5VahqNRtrox7YwiA20GO6+ffswOTmJ9fX19Onp6UkB87W1Nbz88sttjDOyDmlVXLhwAYcPH8a5c+fwAz/wAzh+/Dh6e3uTdVSrtfapXL9+Hfv27cPY2BhOnTqVcFpZWcHw8HBacFCv19MRKzt27Ggbc4yBaAzo/PnzWF9fT+4sxl38Yi8tx/c/uSLH/lHFhQpLbi6wLnWlOe/Qsal1q6LFvD6ecxsJq3aTfxXAb828ey3z/GMFzkyUaGQi7t/2wLAzpYhxRs81r+LiHeoafk4g+YDQALDioeADWDX6nCDU30yng10FDusnM/DAn2vyrvH4JPL/zKNuD20rmW002bRfFHctV/3WatXxndPa2wxgkzXBeIeu3nKLVAWSrv6h1aLl0+VE8KAsmQG1XLUums0mnnnmmVTezMzMJg384MGDOHbsWDrBl0KCzBUATp8+nVxevb29ba5JChMGpjX/0tIStmzZkvqBjHhmZiatRGMsggF9xj/Y5pdffhmDg4NYWVnBqVOnsHv37jQmSPve3l5s3bo19V9/fz/W1tYwMjKClZWVtvjdzMwM+vr6MDAwkNxu/Ga/LS8vpzHM1V06d2ZnZ9vuKG822wPzdFn5nSa6EEMVIhU4euYW5xTr0dWE7E/ilVPsdKzo70CBCzfR/Vt1Gi+vtAU6L9ntFnIavv7379z7Ts8iXCMNg+/YTj0VlKAanacno1CGqYzbBQjzOT34n9+qlbllEGn9i4uL6VgQL1+1Uf1WM96ttZxlxUmi7XErgLgqLX3y8Z1qgu4eU1+1ClVletpHxIuuMTIMLh/lDXsqkN3lwf64ePFi0s4BtO1Sd7cncaaloXRjW4G7S47Hx8fTAZHElxYG9z6wTrq7KCDIWLVelkvQjYdcRUUYHBxMbqXe3t5NNNCyKTjI0HVVFccD26nLoGnFDQwM4MqVK21HzOsc8F3yaqmqdg/cXTVHRs9FAizPL4tSLwDHuscKXel0PCKFLALnLfd8mGJRFGNFUbwq//+zoij+5Mbn6Vy+jwNEVoKbknwevVcNOLIOvOzI9VKFWyQwVCPWQe5uE33HMnz3qgsATa/au25G07Zy4KlvmvX7RFQ/PLUmnQT0dbNM9cP75HEXleKt7XJtixvz1A2gbWGZWg8nGj+69JT5VZhFglVdO8RjcfHuEe8q8Hjon/YTBRc3ranFuHfv3sTUlBbT09PYv39/ukFPhd0rr7yC9fV1rK6uAgDefffdtnE3PT2d2sj+2LlzZ3gnC/PQFcSVWorLwsJCEgJXr17Fe++9h2PHjqFWq6VrX7kbfHV1NTF4nq7L+AytolOnTqXTd0m7+fn5JCx6enqwsLCQxhhdeaQZ/1+8eDHhz/fKaNfX19OKq/n5eQwOto5R6evrwzvvvJNiNuxjxm90/NFSoWBzq4h1c39Ns9mK6bAtVLh8rs/Ozm5S7IB2j4kLC3efqtuUY0xBhYfM/1BWVAXRfwrAp+X/fwjgNlob+/7fFfkeaKiyLnJaqDMpNwUjoaNlusulCgftaE8fWRqqfSpeGnyNzGLmdXxUq1LzmM9Us3Ftn2mUAetA9AAe63D6K/4szwWGC3tdnaVM3k14pye1y0jIq79d6R+50Lx/dBy5P5qrmdRNwLKWlpbQbDbxzjvvJCGqGjLbxSMxyFyJf29vb7pSdWVlBSdOnEjvjh07ljbTAcDIyAj6+vra2k0hfurUqSTsKKQoLM+fP5+YPpnyjh07cOjQIUxPT6e27dq1K7Wtv78fL730EoCW201dQWp1rK+vY2VlpW2lVqPRWua7d+/etHKKjG/Pnj0AWocy6sbCRqORjjOhAO7p6cGBAwcwNDSU+gBoKTdvvPFGantPT086zmXPnj04d+5cOgLlpZdeQrPZRH9/f1oKvL6+nuYVj22p1+sprqNjjgKT7ruVlRVcuHABQMvaY1+dOXMmjbWlpaU0Dg8dOtS2/NYtBRUaap07j9Lxp0qQvtdxBeDXEEBVEP2dsiyfl/+/UpblZzZ+/3JZlt8XZnyAwS+UcuaZ0/wJqmEAnS9rUsagnaXlOlP0dFW4aTnKjKK6OMiiYDiATZaBM2htr5YZCR+nD5+5cNaBr3Rwl5tbM0or/VYGH7m5XMiy3S6U1PrgO11yq8JKaaP1Ek9qtm61qWBkfqc9L2EifegCo8vDLSN3ZfEdd5VHFidx0IuZeCij0vbSpUsYGhpK+1Hoqmk2m7h48SJu3bqFF198MdHs0qVLePnllxMteJcH3ULAXSuXbiSemnv+/Hmsra1h+/btWF5expYtW7C8vIyenp60UXBhYQHPPPNM2+bB9fV19Pb2YmFhAdu2bUvxCQBtGwy1LUDLOhoaGgKAdPzJgQMHcPz4cfT392NgYABLS0tYWVnBc889hwsXLiRc6KZjTIeXaQGtRQMUaEeOHEmXbK2srGBoaAgrKytp8+Lc3FyKN/X29rZtptTx6h4PZ/ZuYUTpdL65IuR8geP88ccfD3eiV1kgn7L/X5DfWyryfSxAGQUhYtBqcZC4qtlG+bxz9Jn+zlkyygij8ji5c1qICyDV7JUJO9Pke8VDNXn64R1/paHHItwlRKCp7cxfmT3xVGYYafu5OBTrdN++0o/pfMUP2xAFpbUMdSe49aWCRPuX5VAw6Tg4d+5ccoGon5+uCxV42uavfe1rbQKPAqfZbLbtunbaUVBxRdXOnTvbxh1/b9u2DSsrK7h69eomK7e3tzf57v32RPYHhcGePXtw8uRJLC8vY2ZmBgsLC0l4rKysgKske3p6UjnLy8tYWFhoO7qemyXX1tZw7do1XLhwAf39/RgfH8euXbswODiYzsyilUYr4vu///vbjivZvn07Ll++DABJEJ0/fz4F22l13bp1C6dPn8aePXswMjKC0dFR7N27N43BtbU1NJtNjIyMpFVcg4OD2L59exIqtP4A4OjRo+nel5GRESwuLrYdt8Lxvrq62iYUXFnUfuI89fHu40/HsPM3zxd5PghVFshbAH53WZYX7fletA4x9J3hDzzkrrStgqq07mv3d87UIguEkCuD7yJLJWdJVbVBhY3joLhwQ5qW4Xl80EXM2pmpu4tcCFKTjqwypRMZJIPInawRn3iuael/Bi9Vw1dXk5ajtODzSJvz/FqnrqaJXJfEY2ZmJsU2KGSazWY6WJC4LywsYGhoKOWnNUAL5tixY+nQQQaVneYqNOl7Z7Cdd3jUanePCDlx4gR27dqVlifTQiE9mGd9fb3NWqBGDiAF+Gu11g5zusBYJ4C0AIBxHF7MxaPe33nnnbQvhGdk0Xrp6+vD1atXkzBbW1vD0NAQFhYWsHv37jYFRxc7NJvNVMba2loSAjt37sTs7Gw6S+vSpUvYtm1boqEv9WbsZffu3claaTabaak0Fx4QqEBQyXj77bcTfbSffP5MTk62uV1V8VQFUuet8yrnGZ/61Kd+RT1ShCoL5L8B8M+Lovi9RVE8t/H5fWjtAP9vKvI9sMDj3COt35lpZMr5exUeHGzubnGGq2n5LIePa43OiNy3qZq1t4vf0XHszWZz07JD1SQjTUdx1MGrg1UZJjV5t0pcOOpgVpqqxRNNUD5nUF4tq0gjIz0V1C3E/25tqaXhQkKfExYXF9PCAD1RlycPaDm6/NX7nsLy5MmTbf0F3PW7M21/fz8mJiYwPz+P5eVlbNu2LaU/duwY9uzZk1w9ZIZq4SnNXCut1+s4ePBg21EfX/rSl5LA6uvrQ6PRSMKGtAFa7iG6fbZv355wpyAhLlyhRSFx+fLlJHiuXr2aYifnz5/H0tJSinEwbsDNgnRf8WBKCoHV1VWMjIxgaGgoxSq4iIGgrjfuur927VoSeL29vZiensbKykrac0LBxbGyuLiYXF9XrlzBrVu3sHv37rTh8vz583jzzTfT0ud6vXViL+up1Vp7WJrNJl5//fW08MBd08SbwkPnbjSHnT9EyqQrR2jFvjdBp9N4nwXwXwB4ZuPRGQA/VZalHyvysYDcYYqESFg4k8xZHJ3AJboKk1wsxZmwLseL8I0sE9ei1Q2i8QHm96CzglsOwOZVTC5ovB7X/iO6uBByRh0tS1Ya6KTQ8qJ4SNUEc1qwbhXmaqVxRY3irLchqnVD8M1fwN2zlWh1uJDWA/FOnTqVAsnEVfuDy6DZHj0qA0DS3vXypWaz2XYqLRUKv4BKtfL+/v4UBKcbRscGd3JTSFB49fb24vz583j00Ufxuc99rm057rlz5/DII4/gzp072LdvH06cOIHBwUG8//77OHDgQKrv1q1beOKJJ3Dr1i1s3do6Ho+CiWVRs6f109/fnywHoGWlAXdddbzQanBwMB2aCAAnT55MdTBoT+HW39+fdulPT08na4X100o8depUel6r1XDy5Ek89thj2LVrV7L2eFw+rZBI2YrGrfatCxgvw8dMzlW1YYHc+53oZVmeKcvy95RleXjj83s/rsKDoBo0EMc4XKiQ4JHWGpXp0pzlROD+6Kh+1bijna06eHLlO5Pm/8iyUXw0nz7TOJDjQYuD7qiTJ0+2adQOir/ioXtEnOHnJouWw+e0LJSZMy/fET+mV5cSBaIKQaZRi4TA35OTk5iYmGhb7sw2MJ5EYaJBetLVz0fTeriBkIzNGQhx5FEg9LXTEmTfT05OYmRkBAMDA3jnnXfAGztpSdAKaDabSbPnvRhkjDt27MDCwgJ27NiB7du3p5VUjUYDFy9exNWrV9vGI/d+rKysYHR0FOPj4+lejzNnzuDChQuo1Wo4dOgQnn76aXzwwQdYW1vD4cOHU3zg2rVrWFlZwezsLJ544gkAwFNPPQWg5eYiwyY9BgYGMDAwgP7+fvT396eDF2ml9ff3p/0uw8PDWQvssccew5YtW7Bly5bUft550tPTA7rIe3t7kwVEWn3pS1/C4uJiEh4LCwu4evUqnnjiCfT29qZVXQsLC6kPfNxw/KmVE/W/pvWYpFvlatXoeK/iK4RKAfLrEaoYtjNLBR9ICq4B5PJ5ek8XxRg8T1VAy60PL6MKJ7cOPGinq4RYhp77pO802D42NoZDhw6lMh1XMmZ1ayneZHgqCMncgfY4kU8uWnf81vgKcY5o6osU3KoA7p6kC7QC37p4gO+ptdOHre4xCljdWcx2qMWjlhbbwD0KzWYTq6uraf/G0tJSOvOKeKrAVMZAa0jrGxoawrZt25LgIJ3W19dTDKTZvHvQIOMYFy9exCuvvJLwITC2wSAyl9dSWweQjnhfX1/H8vIyduzYkY4yqdVqKT7BPR60YHp6erC0tIRHH30UN2/ebHu+urqKy5cvJ5peunQpCbOJiYnkCmOQvKenBzt37sT6+no6WJFCj8Ky2WzFcXbt2oU33nijTegcPXo0CcWhoSFcvHgxrSyjNXbu3DmMjY1hfn4eCwsLyXqhEOrv709H0L/88stJEHFpL9By7anA0I2prsDo3FULg+PTl89HyocpluFO9H/rBIhCZM4B8emrmiYneHLaukKVRI/qinDO4a2atFtVzryAuz55HXC+qciFo2vvzlzJkD2O4e4gtzSU8QNoEyoE15rcPFfBpZNHcdfgsAoItT78vzJy3WRHfMbHx9uEgLrISGfXaL1vms27cQ0VVN4f3Ii3vr6Oubk5HDp0KPngx8fH07JftoEb/NQV4hYTrSDelV6vt/aqHDt2LLl8WF+j0Uh3XYyOjqJeb90geO7cuaTp9/T0YHh4GDdu3EixjJ07dyahwWNQ+J/BbKC1X+S9997DyspKioVwP8WtW7cwPT2N9957Dz09Pbhz5w62bt2KsbGxdNru2toaJicnUzyCzPnUqVNp4x6tNgbZ19bWMD09nSyT2dnZFFxfX1/HjRs3cO3atUQftWxOnz6N5eVl7N69G7VaDe+8805a+fXee+/h1KlTWFhYwNatW5OV0t/fjxs3bmBlZQXXr1/Htm3bsLa2huXl5bSnhPUfPHgwCTEG0Nl/Oucia1qVzsXFxU1jyfmU8xR6PTbg3gVIURSfLIrij1al+bhBZD1UQfQ+5xbib+3IqO7ImukkOLpZPRTh5fipQFB3Bp9FATj/jsxbx0s1XU1Tq9Vw9uzZNjeKD3Rl5MzjZ0fpAYWsi4JImTy1dhUuTge6ilyIqiDhGVRA+xHwKqj0LC7dr6FtoStJL5FiG3R/Cd1e6uKie6XRaCSBcPbsWQwODqZjwdm+paWl5FZS2s/OzibaLCwsYHV1FW+88Uab5UmG9elPfzrFDvbu3Yu9e/em48wXFxfx5ptv4uLFi2kTH9uyvr6Oq1ev4sUXX0zWxeJi607zEydO4MyZM+lGwYGBgVRHb28vrl27hqGhIdy4cQMjIyPJ1XXr1i088sgjAForr2ZmZrB9+3ZMTU3hxo0bGBwcxI0bNzA9PZ0s3vfeey8JwEcffTRZHDom5+fnk3Xj47i/vx9DQ0N47LHHMDQ0hCtXruD06dPYsWNHauPOnTuxtraG119/Hc1mEzt27EB/fz/m5uaSUATu7kO5fv06ZmZmcOfOHfT09ODixYu4fPlyCswvLCygVqsli2pmZiaddqzjj3NC45kcTzqf1QJXqFJytQ6Z4/ceRAeAoij+dVmWn6tM9DEBDaLnmFund/wPxEwc6C4oFQkXd7u4FVGFQ25VUKd6mNddLEwbBeGj9ttga3uusQN3U3kex8mXuEYC17X5yKrQ3wRtswohjTMRJ3+mZbBetVjoXjh58iQOHTqEs2fPpgA00wN3Yx/KHNheXU5MIC31bCbiwVNkuTmtVqulYO7u3btTGY1GI+Gi9dLtwsuYnn322URPXa5Lxshd7MzXbDbbAssMUnPVlC791b0fc3Nz2L17N2ZmZnD06FFcvXoVvb29mJqawp07d/DBBx9geHgYExMTKVZD99WdO3ewc+dO3LhxA0899RSGh4fRbLY2T965cyfdKwIgLW++cOECBgcH02ZCChG6ofbu3Zs2EfI928N7Sy5fvpzaCSAtiWbwfmVlBdu2bUvxILqq6PbTJcRra2t45pnWOiXShpsdiZOeDqxjzOdAbo66Z0LnqKbT+ajz6r6C6BvwtaIo/ueiKL6vKIrn+eki3wMNOebvv3P/lZmxHN+MphCZiwRlqpHG4J2upqgLq5wQ1LSKg7tpHE91zehqIrVASA+PL/C3Wjo6ASJ3jp6Npbi5peUBeWfgrJ+/GTtQbY3lqbalk5L/9Uww7Vs+YxyDwldXy+lBhdxsRxx4xpRaUcyvwleFIGk5OTnZtimt2Wxi3759KTbCz5YtW7B9+/ZU9sWLF1Gr1dLS32azidOnT6Neby0hXV5exoEDB9IJs9SIGQd59tlnk/XDC5MoPDS2wSA185IJrq6u4tq1a2kFFwD84A/+IHbs2NEmPNbW1vDII4/g8ccfx9NPP43HHnssCZs7d+7gzp07+PSnP41HHnkEa2tr6aDI5eVlXLt2Dfv27cOjjz6alg6TSa+srODll1/Gs88+2zZ+rl+/nlxMPM6E7Tpw4AC2b9+Onp6eJPSef/75hP/s7Gw6kmT79u24fv06gLsrzSg09uzZkwTNzZs3Uz8MDQ3h2LFjOHnyZNqMePjwYezbtw8AUtCd41GtZl/6rfNOY4K+UETB52yG/93zWViEl9FaxvvfAviLG5//oYt8DyTkiJd7r6ArFCIG74Gpqvr0ua9mUmYbrQbRILIH3r1NxFmZpAsBFSxahqYF0MZI3dpyYaPuHR+46gJTV5a6m3THtQfq6dphzMCX9boQVAsEuGueq9DTfRU6EfW6WRdcnMhk6Np/atGwzFqtdSWt0o6uLOLBw/tc0M3MzLRtmhwcHEy3H2r/jIyMtNGT9ZLZ8zgRMqparRU85xlc3J+wZcuWtrGnNxTWarXkeqJFQSa5srKCa9euJWuE94H09PRgZGQEb731VmKivBCq0WjgypUr6RiPM2fO4MqVK3jqqacwNDSE3t5enD59GpcuXcL169fx4YcfYnh4GFevXsWHH7butvvCF76AhYUFXL9+PVkFH3zwAT788MNkAayuribriYLt0qVL6O3txZ07d5Kgu3z5crJkvv71r2Nqaiq1kct+6eYDWhsKe3p6MDo6iqtXrya8gfalvrOzszhx4kRaAHDs2DFcu3YNCwsLeOSRRzA/P58EN4+EV8tofn6+zSLl2FQFRI+00XHK+ajeBIfIIyDz797OwkoJiuKTZVl+szLRxwTowsr5/RRcSFS5gyJw7Txi9Hyfc1G5yyWqO1q5lGuLWz9en5u/mo9MkkxMmaPSIUenyKR2AeVuO21/rVZL9avAIN7Mp3R2rcwDi5pGz7hSgeLCHUCbS05xZxxE6/e2Au0bA1me0lvroUDVq2mJ57vvvostW7akd8ePH0/BXEKtVsPx48exffv2tmPQef6Tuu+4K31ubi4deQ4gMTHekcGd69o2njvFc6gImg+468aiW4ha/7Vr1/D0008nN5PuyGaMgkx5fX0d165dwwcffIDBwUHcvn0bjz32GC5fvozHH38cH3zwAT7/+c+37XCnEOE5VH19fVhdXW3brT4yMoIrV66gt7cXAwMDuHjxYjqzipdOXbx4Ec8//zxGR0dT4J7tOH/+PJ588kmsra2lfTRsC+MbjMPcunULS0tL2LVrV9r3AbRiWq+++mpyhZF2FOBUHvxMNvUY6JhSAeMLXThOtCwfs0xzz8e5C1wuiuKniqLY10XajwVUCQ8lcC5Y7P/1Owoeu0uFzyJXC8ty5qX1utBQjYPWhuKnuLiLxpm4/tYd2cDdwaiWgjJp1VhdA/K2Ky4sh8xMd9grjuwTvzhKte1IWHm/+AoxF6xnz55N5eqVqtG4ccuQVpr2qcZlWDf3h6jl4xbO/v370Ww20zJg5iV9eB4Uz8+im4P7KLi8d2hoqG0/B3B39zpPxV1fX0/nOq2traVd3WTeemovl6levnwZ9Xrr2PTnnnuu7fDCer2e/P9Mv7KykvY+3LhxI1kmr7/+ehuDXVlZwfnz5/HWW29hYWEBX/7yl3Hz5k2srKykXeeMffT09ODQoUNYX1/H448/jp07d2L//v1pqaxuIKRL6fTp0zh27FhaEcWTf2mVkDa0lHp7e3Hp0iX09/dj9+7dGBgYSJYELRJeCwwAzz//PHbs2JHiGisrK1hZWcHt27fTsuEnnngC3/d934e1tTU8/vjjmJ2dTUulCRRi3J8CoG2xBMcWLRH2J9PpPiWNq6qngH2lc075kozv+3ZhHQBwEcDfKIri60VRfLEoivxmhG8BFEWxtSiKrxRFca4oiveKovhPgjSfK4rig6IoTm58/mSncjtZW87oVMt0gaDfynQjRhnVwd/R8yifl6uMX/3vxJvuERdUGsfQj2q2WkeEB5+728gD4IpjJBCIi/r11X2jVoW23TdPVVliuvM6ssIUdwoZWllR4NwtL7Z3dnZ2kxXkWrrm4aoutbDoDuImQeJKfzfp02g00uVNPOEVaC3DHRwcxJ49e5L7g3hRG2edDPCSQeq93BrwBYAjR47g5MmTAFruGh6H/vTTT6PRaGDv3r2Ynp7Gs88+i+vXr6NWqyWL48iRltK6traG27dvJ2vmiSeewMDAANbW1vD5z38+xT0WFhYwPT2NJ598Mq26euGFFzA2Noa1tbW0j2NiYgL9/f04e/YsvvrVr+LOnTt4/PHH0xJdxhZ0l/jTTz+N/v5+jI6O4sCBAzh37lxaqruwsIDTp0+nI1YajUYSOKOjo9i1a1fbJVca01FriXtJKJi4jLi/vz/tYGd/nTt3DvPz81haWsLg4CBGR0fx6KOPoq+vDz09PXjrrbewffv2tHKM45zCih4DjnG97ZJ9rXt9dM54oN1Xb/lcxf26sNoSF8VnAfxvaN0T8n8A+NNlWV7uuoDu6xkGMFyW5TtFUfQBOAHgt5VleVbSfA7Af16W5Y92W27uTvTI7dIpTaTl5vJpOmV4zrSjurQzo6V43eIdlRkJCWXGZNZqCTkObtGQQUUms2rjjjfrdZeRC4Zarf2gR28XP4yRqBamgs8FHOufmppK+xuU9ouLi8kiiPpEg5SREtFsth9r4v2gR8xouzR2o+4moH2hgdOMTE3PuqrVanjjjTeSAGg2m22HEvK/nmNF9w3Qcnutra1h27ZtyfpZXFxsu+VPXS9XrlxJ7hugxdSPHDmSXGrvvfdeclvRGlhYWMClS5fSjvann34aly9fxvz8PB5//HEcPXo0WQMA0iGG77//Pp588skUb1hZWcGuXbtSHTwWhbhfu3Yt7TG5du0annnmmbaDFnk2V63WOmrks5/9LKanp9MRK1zaS1cYrR3mGx4eTnVfu3YtjfNnn30WZ86cweXLl/HII49g+/bt6O/vx5kzZzAwMIAPP/wwWYK8kItuL7bXxwLHsl6VHCm3riD7SkydYw737cLa2AvyY0VR/BMAfxmtIPo4gH8G4Bc65b8fKMtyvizLdzZ+rwI4B2C0Ote9g7tvqiBieJEmq+V62coMgfZdwo5XVTl8l8M7cuNEZeXSqJDwWAHboWl5x7NbO6qFqxvH6ch0zgj1Tmdl8hoPYNnElTjpooFIUHpbacLzjgvdN+J+ZZ+ESleWp3tLlJaDg4OYm5truyWS1hddXKz7woULKQ+Zw+DgYLIOms3WeVTBmn0MDAy0uVWI08svv4y+vj4sLS3h6tWrGB0dxejoaFu8Q/FmzEJ3XtPNcuLEicTYmJ9LX5vNu3siACQrYGZmBmtra5ifn0/xBQaMuQdk+/bteP/99xPjvHPnDnbt2pUufgLuXj517NixJDxu3ryZjjjp6enBe++9B6B1GCNXqDHf3NwcduzYgbW1NXz44YdYXV1NwoMuu8uXL6NWq+HFF1/Ea6+9lgTT1q1bcfv2bSwsLODkyZPJyhgaGkrWBt1iusdl27ZtKfi+f/9+PPPMM7h9+zampqawe/du9Pf348knn0zuNy4guHz5Mg4ePJjGns9PHTe6KVfnkrqseOGYKnharitcG3B/d6IXRTEF4CsA/kZZlm/Yu58uy/I/rizgI0JRFDsAvAbg2bIsG/L8cwD+EYAZAHNoWSPvBfm/COCLALBt27bDPKKgk+CILI6cS4rQSRB5kPSj1KV1qrYaMXz9rwPGhYIH5fToDy0/WhTgmnCk4UcWSKS1exk5rZyBaLWUNL0up1ULSLV9lqeuPealVqdCQp95cLtWq6VLoJSuWodadEqDs2fPptVedCXxsqR6vZ4sKqDFrLkiSNtMvzxPfNXjPbStANI+BmrMuj+FDJhuJZajz3lUO4HzihYAA+3c/c1ltwyaLyws4Omnn04BcT2C/fbt23jkkUewtLSEkZGR5G5joJ1uKe79AFqM+ubNm2knPt1wk5OTKQ0A7NmzB6+99hqeeuqp5E7jyqe5uTmcOXMGv/E3/kbUarV0ki6tLgpLuscoFNmPtDh4vH6z2bpZkDR7++238cILL7Ttjv/0pz+d8NCj54HWCQe6GZUKjI5pXebtY1ljHhoo1znGb50jGi/h+MxZIFX3gfwEgF8E0CzLci1M9G2Goih6AXwVwJ8py/If27s6gF8ry3KtKIofAfCXy7LcVVVezoWlEGnlzpzvJ3836Qg581PfRcJC00TWD4WCMjxfoeXWSMTUHb+ofs+jmpAyUOKlQXBPx7RqAegqJp0I/PZJpBNCGTnfURicO3cO4+PjiZETF1oMKqgUfPKy3XRbsTxOel2+DNzdS0IauHZIK48bBVUYKD6Dg4M4e/YsarXW0e1Hjx5NNOGKKOLJMriyCkD6TQHkK7B4bAoZLt02AJKGT1fU6dOn8dxzzyU3DC0nxhIYhK7Vakkzf++997BrV2sa9/b24ld+5VdSXOL27duYmJjAO++8g927dycGznL1ZkKeqkvX2KlTp9KhjZOTkzh06FBy31EwECe9s+TmzZs4evQoVldXMTk5icceeyzRhZtENe+pU6cwNjaWjpCfn59vE8TEdfv27W2uN+5TUTch3X/qovIVV+7SVCtE57gqTRzPvpQ38rKw7Pu5D2Q7gH8I4P8siuJPFUXxYsELNb4DUBTFI2hZGH/PhQcAlGXZoGAry/IXADxSFMWAp+sGcsxbGagzN9e+PT+faz6X+Ori0XqqyiI4c9XfvgKKzNj3JCijVcGk2nlkSSi4+0TTuyXidCSDjoLvig9xUt+uWkuKpwoFtpvvudhA61F6NpvNJDx0UygtAxd+fE9660oYPucFUDxMT5k33VIqeADgwoULaDbv7jFh+bzjgi4f9q0uA3799deTy+vVV19FrVZrOxiR917Mzs6mo9PX1tZw5coVNBoN7Ny5MzFz7vXge7pjiKtaJtevX2+70wMAXnrppTam+c477yRtnHDp0iW89dZbKd1v+S2/JeG0sLCA7du349lnn02usIWFhbQJUI9S7+3txfDwcIprMC8vz6IgXVlZwVNPPZWOOaHQ27FjR5vwuHjxYqrz6tWrGBgYwBNPPJFWYq2treHVV19FT08Ppqen054Y3flO4QG0C6f+/n5cvXo1nSxMgcF0zz//PFZWVjAyMpIWP+giD50v+h9Assh1DvnY5bjT+aJWR6Qk4iPsA+kD8JsA/BCAF9CKR/xLAP9XWZY3KjPfJ2wIqp8FsFKW5X+aSTME4EZZlmVRFC+gFdTfXlY0KLcPJHKTdONWqtK4HSJ3DvNGbo0cbkwTaf+RpeTCzQWW/o60aj5XF5e3SZfWunuL+aJ6VdP2tG4daZs8QO9CLmqr097L1Da7O4zlEDcKGGp70aortk/X4atLgQKCNB0cHExxEKU5mZKWz/wadF9aWkqMSy0NoMUwuDlQacMloQCSS+jFF19sow2POKEFolo+3S6Dg4M4deoU+vv7cfny5bYLophej/N4//338eqrr+IXf/EX016JqampxEyBljVz5cqVFKeg4JmZmcGTTz7ZJpgYS9HVY1wOzONCKAzoBqvX6+kcr97eXgwNDaVg99DQUJvra8eOHajX6zh+/Dhu3bqFp556KsVnrl+/js9+9rN47bXXsG/fvra6dHUWaQ+0GPprr72GO3fupID5+fPncfTo0bQfhZdOHTlyZJOlwKXbvNEwGsvOwyIXFpC/c8d5W1EU93wnOoBWELssy39SluV/WJblZwD8dwAGAfztTnk/ArwC4HcD+Lws0/2Roih+siiKn9xI838HcKYoincB/DSA31klPBSqTLXIEoiECdO4ZaLvPX20ikq1AD7TAeOMPic8tCyvv6qNbh24BUOgCczgsG600yWAqr2zzZElxzp0/bkKBaWXr4gi89S25LQp7y93+6i1wj0ftAqiDX7adrrQlHasnzRTYbi8vNzm4qLQrdXad8KroKjX6zh37lzbgoJ33323zXprNpvp6BAyewa16/U63njjjbYNh9rPDLZzaW2j0cClS5fQbDZx4sSJtO+Cm9lGR0eTgNi1axcuXbqEf/pP/2nS3LnKac+ePelsqD179iSXzO3bt7F37140m008//zzyYoYHx/H+vo6Xn75ZQwNDbUJw97eXrz//vuYmZnB3r17k1ACgPfffx99fX1pJRiZNnd+8yBGCiHGUC5evJhO9NV4BgXDoUOHkuBrNlubNIeGhpIVArSsoYmJCZw+fRpbt25t23XOOA/vDaEVuLq6isXFRezbtw979+7F6OgoVlZWsHfv3nQmV7PZxMGDB9O+Hp3nHKtra2ub9idF/MFdxDofOD4iF7ZbIfgIhym+AuBkWZa3i6L4XQCeRyvecLUy4wMIR44cKb/2ta9tEgYuwXNWhIOn8+Czr2qIlrU6c43Kj/DxFT6qaSgTc3dQJw2c6dQV5NoJy1U8I6vHtX4tN9cOLUPrJA6MVejVnV53tFNcNyvyme6sJ3g96sqqOhSSezQovFRQsH5dSUWBoZsP/awxlj09PY2RkZFNzIR0IaN85ZVX2gL+pAe1YgbTWVe9Xk93iQPA66+/jgMHDiTG+eyzz6ad2WSw165dS4JDgUFmMk7uDqfVcOfOHfzQD/0QTp8+nc6bGhsbw40bLSfG1q1bcf36dTz22GO4fft2YshAyyKghs6jR/RQQgC4efMmnnzySQCts6keffRRbN26dVPsgfGZZ555pk1RmZubS0t/efgjcHf1GK2ZWq2WGD2tivn5edy4cSMd2b62tpbu9lhZWUkxnOXlZezcuTO5vChwqZwBd48+8ZVWGr9QxYrjzS0Mt7Yjz4fOUXfrajwF+AgWCIC/CuDDoigOonW97VV8e62PbysokfhfmW2Upqosz6euKHVDKLNRDdkZKsFxVEbk9RPIuCIrxP2byki9Tfo8EjLOPF07yrWHdfqZWo4b8zNmEblv1C1Gpqlaubpg1JXDtH6SqQazOUn5rRNWNyZq23W5LJ9NTk62aYB6JHytVkvnT2lAG2gxQO0fujlYn8Y06vV6cgMdO3ZsUx/W6/W0e3plZQWrq6vp/otarZaWA3Np8djYGLZs2ZLOa1pfX09LYHmhEpfg0trgESGMW+zatSsFm2/cuIG9e/diz5496WTg/v5+jI+Pp/0lExMTWF9fx8TEBG7fvo19+/aht7cXt2/fThbB+Pg4Tp482RZLuHDhQnI/cfUVADz33HP47Gc/m/aX3LhxIx2Dwvs3fu7nfg6XL19O8Z2pqSncvn0bV69eTTvmt2zZktx1PCJmfn4+bdJsNpt47733Eo0oFOgWZAC/2WymQyLffPNNbNmyBf39/di1a1caeysrK6jX62lV15UrV9osCM5rWr0cnxxjyov0oMVIUVQLnqDWu44dtcQj6EaAfGPDNfTjaFkefxlAXxf5HlhQhuyaLrD57g0FzefPnflqmZ4n8llqmkhjiAaDMwvFP8It0nC97W45eX4VgC48VSDwP9NwwPvmPqeZB+bJxNVy0NiIWwdqdXAS6aRhuSpQ1CJwV5r+1gMN+U7rVeGjR5AwsK2raPQOcgqhpaUljI+PJ2HseA8ODqZNf7VaDefOnUv+cjJk4sdVRktLS2g0GkkL5xLgs2fPJqsEaPn6z58/j/n5+bSDfPfu3ZicnExBXZ5GqyufqNn39PRg27ZtWF1dxe3btwEgxQVomfBwQ7bniSeeSG6na9euYevWrYkRP/LIIynvhQsXUlrGVniQ4rlz55Kravv27bh27Rpee+215DZ76qmn0hldExMTeOutt/B93/d9yVro7e3F3r17MTExgZ6e1q2CL730Ek6ePJkE2MWLF9vGDdBSZp555pm0V+PAgQPo6enBq6++iqtXryYBPTg4mATDM888g9XV1bY50Gi0jqGZm5tL4294eBirq6ttd9qr+5TzQscsP+paVaVOFTUPxEcLg1TZxEe4kXC1KIr/EsDvAvAviqL4JIBHusj3QINr0Ll3QDsD4X/No7+jzWb6X7VpLZsdDWCT1HehAmw+wVfrdgHAvL65LkcLz6fMnvjxO2eFaVodtBzcTh9l8i4EvJ06gfnOg8+0xtRiIW20/R630gmnVkmz2UxnEDmNZmZm0ofvdEMX2+XuB8WX+zx4WZJaTWrt8IZB4sdjL7jvQF1Y6+ut2+14t3Zvby9eeOGFxJzIPLnfYmlpCVu2bMGePXuwuLiIhYWFdI5VT08Pzpw5k5bkLiwstJ3bxH0l9Xod165dwyOPPJJWQ1Eg9PT0pCPW6YaiBaN3iFNo3LlzB0DLrcNj2y9dutQWwL9+/TrOnj2b9qG88cYb6O3txWOPPbZpFzzQElLbt29PdbJ837l/+vRp/OiP/mjaPMnltHv27ElHvXNsjoyM4KWXXkr5m83W+WP1eh1btmzB9PR02rHOMTM7O9s2himIdR7p+WPa5xHvohLF8akr/XQeqQLjCqkLGbXSkVmF1Y0A+R0AmgD+/bIsF9DaEf5TXeT7WEDOklDQjnLLxDVVX+nAjtD/kRWhWqwGpnOMzi0IYPPZVGyLmsH6TMvN4ePMVjUTD74pA4vo5fnVwuB7NZt9wqg1oVqV01WXxJKWei4YQQWFWy+RIB0dHd2kXKgWuH///rbJp33FNMRdJyfbTOGqfa9LgnnOlcalBgdb94xwtdT8/Dzq9datgrx6lcxkZGQEb7/9dttmtVqthvHx8XR67NWrV3H69Om0BPXWrVsAkHZZ09J55pln2q6cfemll3Dt2jW89dZbePrpp9tWYS0tLWF4eBhDQ0P48MMP06ophYWFhRQPef/99wGg7Th37uEYHh5OR3ycOHECTz31FHbt2oVdu3bhww8/xKOPPopbt25hcXExCQbuiK/Vaqk87kdhAJ348IDGI0eO4N133wXQEj579+5NAqCnpyedgdVsNtO5X3RvXrp0qc3aZKyECwV046YqnEePHk3WIoA2Zcvdw6rUeaCcaXW+qULjSo3OQVcI/bdDN6uwFsqy/B/Lsvzljf/XyrL82MZAHFzDduGhEDHtSHt3IAPwciJLwAWEl+GMLRIAyjxdO9c0+i7ycypzdobJMjhQc/5WzeuChO1xa0v9/xF9fMMd61BasFzWxYC7L5lWizCaNLVarY2xk260Spif8RGuVOPVtVrP4uIi5ubm2ug0NTWVJngkVDSAStrVandP2uUzxkJ4hS0PUqQV0mg0kqWxZcsWDA4OoqendUHS1NRUusODDO7AgQPo7e1NLiVq0ysrK8k9A9zV3ql1T0xMpB3x3Geye/durK6upuPOuWfj2rVruHHjBhYWFvD++++nwxM//elPpzYASHeg02LYtm0bbty4gfHxcdy4cQNPPvkk1tfXsXPnzra+evnll9PR6uvrrbs/Lly4gPX19XRvyMLCAq5du5aWKDcaDVy7dg1TU1NYWVlBrdZyQ83MzGBlZSUJWqAlWLhpUBk1LSkdvxw7o6OjiZ4R0+YpBsoL+JtCSecEx4nzFFUAda4pqOLkfCRSdCPo5iys7y2K4lhRFGtFUawXRfHNoig+6FjyAwhlWWYlqxM3Yraqkbu7QMvJCQE+i5ijpve6lakwX5VwiBi+a9/uZlIBxfLczcLAtbuwNADnmpHSSNMpDm5Ou9BRvNyKcguQjNrvI1fBoRqa0sdM9iQUqVmq0CCeXKni2h4ZgU7uWq2WlrDyw3gG6/BlzefOnWtb3UWLaufOnVhaWmrTYNVS4coqpadaHadPn0ZfX19yRfX392N5eTktoZ2amkobCbn7nBcebd++PfnteX/50tJSKu+RRx7B0NBQYq50H3GV1Pr6Ot577z0888wzeOKJJwC0tHOm5U50ur4+85nPJLcWDz/cunUrtm7disceewwA0kopAMl9tri4iNu3bych19/fj8OHDyfB2NPTg7Nnz+Lzn/88vvd7vxfr6+tYXV1Ff39/EhLNZjNZXlxNVavV0uZDjXXNz89jdnYWIyMjKZakyg77VmNYFPCqgHBc6XJy1sFydH5wfOhYUKuEH7X+dR6q69Wt+k5KdTfLeI8D+J1o7Uo/AuD3ANhVluX/qzLjAwjRMt4I1FcNxPtAOpXBcpwZ5vIpk9F8yjw9rwe8mUaZMt+5m0jzRILIlwOrBhwF6/ntcRigFeTkda4cyMq8I6uAuHCCqJBjOr0z3JfNqhbnwj/33NvGb70kim1zK0oFpG4w1HgW7wBx7ZLt4K2Dujs9cvupRaXCBgBOnTqFPXv2JNyXl5eTC2V5eRl79+5N1giP2uBd5HRt6V3nPKeKPnoAKR9wd5mr7kDnoYi6LJersm7duoUXX3wx3XMB3N3r4UtuaQ2dPXsWw8PDeOqpp1Kamzdv4tFHH207xZcWlsZSnn766YSn1gfctXAWFhYAIB2myPRcucUNl3r+mI5Vrgaji5N9Mjs7i76+vuRCZR5V1tgPzWb7NQIMnnPs8DIwtVZ1n5GCWiE6zvWduq6ct0WehI9yoRQ2jmz/ZFmW3yzL8m8B+Fw3+R5UUA1Q/0dpgM2MuxvhEXWCQmQyaj4XJF428zjubsoCm81ctSK8bv7m8R05q0gtMD7zwDXL4nlBzgw1NqNt0XiFalZunruQjwS2WxWRpabaoe7JqNVqbb5s5tF6/PRTxVMtEgoW4qn9QqHB2xZJf9bHq2sbjQZWV1cTTVTIHD9+HFNTU9izZw/efPPNVLceuLhly5YkJHmXxYEDB3DgwIF0cCPdWufOnUvHqQOtIDmXtzabd+8M4S7yvr6+tCGRwfOtW7di165deOqppxLz3rdvH15//fW05PfMmTNpKSzbzlgI4xUvvPBCsjRYL60MHoV+586ddE/5hQsXMDU1leq8fLl14wRdVlwRRhy4NHhiYiItSabVQQsBQNrbwcuf6KIDWse+6H6OZrOZbn8EkFbhcaxwhRwPy9Q5oQoL59Po6GhbbE/nkyuMHDc+Zl0JYqyNdM8puBvtv+9VWB8WRdED4GRRFH+hKIo/CuCxLvI9kKCTXb+V4NqhzkBd0DjkhI4/i1xPTKNaQK4+r0fxVQbqGggZr1sWDuqe0oA1NWZgs5Dhbw12a7vIRJlWLQq2VzV64qEmOJ9puWTQej6WCxsNPJOJ001AQcFJxefeNnUvqWWhbVP8Jycn2ywO9UtrzCi6j13dZV/72tdQr9exsLCQjpsHkA7445EXfX19aDQaiekzDbVVfgAkBnnq1Kmk1esxIhMTE2lnNwXLzZs3245nZ/pHH320bfOdHpRYr9fTqqubN2+mNAyoP/vss8lFNT4+jpWVFTz22GO4detWYvRnzpxps1Ju376djhNZWFjA7t278dRTT2FychK3bt3Cj//4j2Pv3r24desWzp07l24GpKuuVqu1nVFF99aXv/xl1Ot1PPvss+jr68PKykpyZY2Ojqa7Uth+3ud+4MAB1Gq1dIglxwUFhlqrHDv79u1DvV5PVgc3mep+Il/Ioh9auPzW9FFc0BUuHW/uFlb+IWnveyf6dgA30Vq6+0cBPA7gf/l2XCT17YZuTuN1yEl3fZ+zNtwlknMjuQUQPdPf7l4ig8hpEKyTA0RNXxc2mj/CS39rG9yVorg6bVQ4ern6nr/V3aUTgu1SYaHaveKkN7Nx0uhkUUtH8yttiY8uHyb9dSISP7XK2EaWpzTkvhYeP8JzrFTg8bgPurtqtdZpuwyas22rq6vpfu3IV764uJhWFfF8rMHBQXBecLc10DpEkCfb0u3DDYO8+Kinpwfnzp3DU089heHhYdTr9bRhEEC6AfD06dMAWjvGuTFST731i5P0HnMG2fUMrO3bt+ONN97AnTt30uGG3A3PfRncl8Kd4V/96lcxMDCQ3F60KLgX5tKlSzh8+HCi1eTkZLqLXRmzj0nG2+bm5tpWvmkMkP81CK9z+Ny5czh06FDbpWO6+3z//v1tLludpzqXlX+oUHBrXedoznrWeXbPx7n/eoTDhw+XJ06cABAza30e+fcjhlfluiAoM3AG751cZYayLMdLB1DUHsUhV7bWq9aA1qN0ydEhFz9yxu5WhuLuAkfxUDrpJNZ2+JEjURs0n1s9tVr70SQqtNkm1wo1aEmmQkZPzZTMXdupZ1zNzs5i3759bZf90MWljMXrYxt4HD199XoabF9fHy5duoRt27a1WXq1Wuv62YMHD+Ldd99N8ZL33nuvjamT2VObbzabicEz5sH4CTV1Lm/V2AbjDHrgIYC2gw9174buE+Gz4eFhnDx5Eo899lg6e+rGjRvYt29fEkAUkMT75ZdfxuLiYqIJBUNPT+tmxQsXLqS27ty5Mwla/lbh0Ww20zLegwcPblJ+VElzq5rvdG5yzGlcQ/Pp2Oa4oOKhS761jMgT4taFK5D8zSN+VOH51Kc+dX8CpCiKHwXwp9E63v170PKFlWVZdl7j9YDBZz7zmfJXfuVXKtNEhFfiKiP0d1E5Xla3dUWCzMurslQ8bWSausBSt5Xj5kzTy/OJEgXaWV4kaHUDoVsgfK+mupabc7fpZNWy6Spw3Ny6UlfZzMxM25W2FBJ+fhUZu7si6N5isFwZAV2C6kOnRcKLm2q1WtJemc8D/rVa694QHhNOGvAsrH379uErX/kKhoaGMDo6moK/9NWvrq5ifHy8TfPlnRp6j4X672u1WgqokwFPTU1h7969bXs96NZivsHBQbz55ptp78YzzzyTluvSQuBeDQqRqakpPPLII+mMLdapZ31RkyeDV9yHh4fRbDbxy7/8y/jMZz7T9oxCBACGh4dTfw4ODqZ759lePXqG32rRan+40sP+bjZbQXMuMHFLQYUDx5wLfo9Rav4cz2E9aglzDEVeDJafEyDdxED+EoDfC2BLWZb1siz7Po7CAwA++clPAqjeJOOahBPU/fEuWPS5WygO1Bj8WWR6utWh/njHW5mcDj7XmoH2JXzqTyV4vMEHKmnizFffKR19ZznLcyHDPBorUC1L6eft42TQwxa1Hmpvbj1oUNJ3jrOsc+fOhUJG2+jLnd9+++1UtzJn3SXP8icmJlKdXHVD4UHXFH3fxEdxZyD7jTfeQKPRSKuJFhYW8O6772LXrl1YX1/H4uIihoeHE1PkCiwdU3Rbcc8EA+wUOCdOnMDg4GBa0vr1r38dO3fuxKc//el0Hwc3IDIA/9Zbb+HcuXOYnp5OZ1jxHK8PPvigbZPf9evX21Z48YDE999/P+FTq9WwtraGt956Ky0hplsKQLKeeCYVALz44oupbcvLy7h8+TIWFxexY8cO3LhxA8vLy+lOFI41BuApPPmc40/noy8K0XGqy8vZX5yHWo7G81ge+12tV9bBMarzMRJkBD/uRPmM5uWzHHQjQK4DONPtUekPMrAJ6q5w8KBTlSTXzssFgB10sgNoW3GhTE4Fl5uxALLMXrUT5qG2HAFNVdVmFR8v1xk90+U0F50MKlzJYDl4VaPWezH0CHIXgCw7Rye3bnTSebyEk5O0dQZA0Hs2Iq2Q9dMn3mg0sHfv3rZTAur1ettJv1qWMqJarYY33ngDzWYzMX0+n5ycRLN5d+PZ6upqwmvfvn04fPgwFhYWsHPnToyNjWHbtm1pDwovP9LxsXPnzhS/WF1dTfGY3t5ePPHEE2kPxPXr15MLas+ePXjjjTfw9NNPo9lsYvfu3VhcXMS2bdvSEti1tTW888472LZtG3p7e/Hiiy8CQNqUyDTj4+PpCPj19dZNgFwVRYFCK4T7S3p7e1Gv19HT04MXX3wx3TvOZbl0S+kdJsDdZcMM9LOcRqORTvDlZVxcBt3b24tXXnkFAwMDOH/+/CblRpmuKlnKA3hYpY4RZfrqdtVxpxeLqWKlwkQXcOg403nnrmX+1zmU82TkoBsX1lG0XFhfBZBKLMvyf+xY+gMGfqGUfgN5t1X0n89cgHigvKpsZzxanjNFvtdn3tlqDUWBa4K3XRlzrr3uMqJvPsJL2+4BfrfYdCGAW1suyBR/t64iHLVfWA6Do5y8dBXQvUSc/RIn73tnGuou4zNaDa+99homJibaLAjt69ykpebqsQ/1k3PDH8udmZlJR3PQVTU9PQ2gFRegxXn16tXkctKLn7jK6vLly3jppZfQaDSSdbK2toYdO3bg4sWL2L17N86cOZOOJdm+fXsqk/8paG7cuIFDhw6h2Wwma+XKlSvJOmJgngcZXrt2DXfu3MFjjz2G999/H0ePHsV7772HoaGhtj0t169fB9BSggYGBvDOO+/g+eefT3tM9OZDusJYp7ug2VfT09Ntlz/RrchxtLq6muJUZN7alzr2aY26Mqgr/NQ60eP+dRwyn44NH/v6LKewaZs9v/MRn9MfZR/InwHwIYBPoXUKLz8fS/DO1M5XUFdJFIdgGmoOqnFEjK9KmrsgUi1bXSHO0HNlqOads2oUlBk6Y1NtSn/rRjb/aB0MJCtoADiKKbmVprEPtk9jJhE9gPaj3/V7YmIixQjYDgoW5lNLRdvlO8Y5WZ0hNRp3DzF88cUXsW/fvjYctZ06Ydn/7rJzN2CtVku+eeL4r//1v8bKygp27tyJbdu2YWBgACdOnEBvb2/bHpDV1VVs3749BaR7e3sxMDCA3t7e1J6XXnopCZ4tW7Yk4Xfx4sWEJ+tgXIQB6/7+/nRvB9DaB8Rlvuvr61haWkpHrNPVpTGS3t7edA4WXVJsw6VLl3Dy5Mm01Jj3hiwtLaG/vx+NRiMJwVqtdfhkvV7HgQMH0jH16+vr6UiZwcHBdIzJ7Owsdu7c2WaJzszMJLfV8vIyRkdHsbi4mKw0nVdjY2NtV8pGAXSOAeUtbonwnZ+J5kJKrVpX/qKjiXTc6aIAfe6WqUC4D6SrneiR5Pk4QtWVtgquoVdp9g6RVRBZJl53pE24wIgC9zmcXJNQZug4ETQo7AzdhS5/5+rn80iD9uCvWxEacOTE0yCla+M64aLzpFS45TQ6t8aIh7sUXKiQCblQdHqrUOfGQceRVp0yilqtdX85g+numnTBQtcZVwdxs5uukKJ1wtsL6e/nhVEMTHPvxtGjR1NcgdYCl8E2m81k8ZBxj4yMoNFopOW9dBVpn33pS1/Ck08+iZs3b2JsbCwF6HlZk+5s505t3XvCZb5A62ysEydO4NFHH03HtTPOQRwvX76Mp59+OrnCKDy1X9fX19v22ei41wUMuh+E/c+4miqUPsZ8rHN+VHkUdA5Fiqzn4djQulS5Ves9smoiHgN8tAul/lVRFD/YRbqPDVS5hXLfzjg8f86KccHA39HFRBFEWr0yjsgsdcaoprYy15zloMLJ26fWkA5C9/9qWhdiirvGPoD2e8dZT2SBMD+ZpgsY1qft13c8d8gFjGpo+l61PaWF0tqZO9vGs7lYrt49ov01MTGBd999F+fPn8epU6dSP1B4aJ3UMtWKo2bNc6BqtbvnX127di2Vt3v3bgwODqb7SGZmZtIejm3btgEAPve5z6G3txevvvoqgLvHoQNo2xcyODiYrIedO3cmpn7t2rW0rPbtt9/G/Pw8lpaWcO3aNczOzqZDFcfHx9NVsqurq5iZmcHCwkI6o2thYQHLy8sphrF9+/bUpqGhIczNzeHUqVP4/u//fhw6dAjXrl3D933f9wFoua14fwlv/mNMhCutrl27lmIAAwMDuHDhQptVSeHAOkk3dU/rqQCcm9HiD44jnV86/32s+riP5puPcx0nOuedh3he51OeBpmNhN0IkD8M4F8WRfFviqJoFEWxWhTFZn/BtxiKovihoiguFEVxuSiKPx68L4qi+OmN96eKoni+U5mRtaXMOxIMCi5s9HeO6UadFmntqgF7p0f46aCMGKa/c7zVnGZeNZmB9qBbJFC1Dp1QzKvCIdKKcoKL7iTVrp1Z+yR02qr14BOIzNuD5VGfsYyzZ8+mZ757XRkB7wyhNcTf9G8rXiyT+Y8dO4adO3diZGQER48exezsbHIjsU2+6GJmZiYF2AcGBrBz507UajVcvHgRk5OTyTXFQDdX/SwuLqZ9GkBr34fGcfTekfn5+XQuFl1AXLG1uNi6N+TmzZt47bXXsGvXrrRzvF6vY2hoCC+88EJbEJsxkqmpKaytraFWu+uOGx8fx/PPP5/ocvv27TbB9N577+HGjRuYmprCV77yFQwMDCR3JGM19Xo90YTHu/T19WF6ehoLCwvpnvOlpSXs2rWrzZI8cOBA27jUXeXO2P0YG+2X/fv3t8X3VNjk5qeOLwoJn6PsE1ewIsWO/x0/nTOuWOZifrjfo0w2lu1+oizL3/CdWsa7cWnVXwHwwwD2A/iJoij2W7IfBrBr4/NFtK7e7VTupmeRBpmDnJUA3GXI0SYeHySudTONM9LoXfSfeSKhxPSR1qzakZat7XGBEQnKSMPROrVdfOZr3N1yUF+yluOalt7YxjYR9EytiBbK0LV8ZShRGk5Y4qBnXY2Pj7e50pQmbqEQdzJAXuS0tLSULpfi4YdkKIuLi7h69WrCiRoxmTOfHzlyJK22oiZdq9XSnRYUAouLi/jCF76Ap59+OrWBQeTe3t50f7euWlpfX8fIyEgSMkNDQ3jyySfx1FNPpRN9e3t7ceXKlZS2t7c3LQfmiq6xsbF0JtenP/3pNk0baFkxjz32GC5cuIBdu3ZhZmYGzz//PLZu3YpXX30Vr7zyCp5++ukUe+HpwI1G66Tgw4cP4+jRo7hw4QLm5+exZcsWHDlyJC0eYN2kB4UF3X7sQz2ah3OCFiyVA1Ui2AaPy7EvTp482TbudTzzmVofLItWtoLPDXeDa3q3hqJy3KPBsnGvFkhRFDty7zbeF0VRjFWl+QjwAoDLZVlOlWW5DuAfoHWlrsKPA/jbZQu+DuDTRVEMVxWas0CiAKwznBxzZxoVClEnaNpcoN1dMBEDdWareXWQRwNY20sceV6TaiKRX1ZNZzIujRMQB48XsDzXbDRdJGB8Qin9tE9ckCneDIJqn7h1wf0gakF5eWTyLnBnZ2fb2qf4UED6/gAVBBoMZzljY2NtF1c1m80UxCUwWKz4cjkvbzNsNBrJn3/mzBk0m01cuXIlnaTb09OD0dHRRJe1tbUU6K7XW1eqUigxyE3Gz2Wve/fuTZv0uGtdr4llLKPZbGJ4eBgvvvhiOouKrqU7d+60nZTb09OD+fl5PPvss+kZr+r9whe+gKWlpXRvBwVkf38/du7cmawLLuPV8cT4zPHjx9OKLF5BC7SWZ/OOeg2kO/CeF44Zv4mSq/p0f466rahk0IKt1VonFXBsqdIzNTXVtnRb26RjNBI+LlAihTOagw6RhaRQZYH8VFEU/6goit9TFMUzRVE8WRTFtqIoPl8UxZ8G8DUA+ypLv38YRWv/CWFm49m9pkFRFF8siuJ4URTHOUAcckFgoHrPCBAHsSKGpmndH68DkumcMWo6Z/TOhPUTCSNtrx6IyDKi4C/r93gFGaRquk5PDSyyferK0fKjQJ/3C/Pr0t9I0AFoOx7dTXUKBu0zbb9bHyq8gNYdFmybKxq6Coa3zCn9VWsdGRlJQnlxcRGnT59uq4eCgG1lUJljQPeA0DVHnLifo1arYceOHZssQPbBzp07056R06dPY3l5Od2gp+OHQXi6zNS1tbKyki6J4gVPvGOD7eEdGrz5b2JiItVx8eJF9PX1JYExPDyc7inh+OEBi7VaLQm9lZUVTE9Ppx3rN2/eTNff6k76+fl5PPfccwCQhJAKCh5w6EqWjm3GjfRaZXVVsbx9+9pZI/vDl75zjPKZHsA4Pj6e8up88LkT8SgXNATlUa4kapoqoaKQFSBlWf67AP4EgD1ouZN+GcA/BfAfALgA4PNlWf5SxxruDyJ/m5sP3aRBWZY/U5blkbIsj6jP20Gf+QGA7t/X367R+jPN43WrlqAdqz78SDhx8GgQ1oURy/eAtlsSilfkdtGydKLoKiI+c/y0Lg3qeVpltooTP8TLBWq0Ykw1NtZN5qOMPhJ0TmvvN53A2hYVDNRQKZjHxsbSURUshxYHhaAL++eee64thuQ4eGyKcQBaM+zvubk5DAwMYGhoKN1gqHk10Mv3PAZ9ZGQEMzMzbUtia7VasjYuXbqEWq11XPxLL72UTrrlkSnDw8P40pe+hJGRkSRY6vV6WvH12muvpT0fdHn19/fj6tWrKc5z6dIlXL9+HSMjI7hw4UISGocPH0atVsPhw4fTicE8pp3HuGzZsgWHDx9OVhFva+QOfB8vc3NzqNVqOHfuXJs1qfOJlkKzefe0ZB3rPEWg2Wymi8B0HOk45W9VoFwRpNBSq9LngOeN+ISOUR/jkUvMx/tG2nuPgZRlebYsy/+qLMvPlWW5pyzLz5Rl+e+VZfl3y7L81aq8HxFmAGyV/2MA5u4jzSZwRh51iMYxfCWRpu1k3rn2n3uvDDLCLbJcVOg4w1ehocd5eNnqquJvBq9zZRIX3xzoQlAnlgslMk5l5toOt6ZU4/JVWj7JlT5qPUQrWbxdLogpZNRF4S4LAOngRABJa6Twoq9chRnjGj7pVUgTB8LS0tImq0FpfvbsWfzSL/0S1tbWUtuoZff19WHLli1YXl7GxYsXsWPHjlQXGczIyEiqe2RkJB1RwjrIYNfW1tDX15dWa62uruLChQtJMNASYUCa18n29vbitddeS8H0F198EX19fUmI6Ca/Y8eOYXl5Oe0HaTRaezuuXLmS9rMoDSi4eBJuf39/wnt9fT25kNgGflZXV9P5Zuwzvf+D+zr4ThdM6PgjLjp29MwyV2SYRhm6jmNn6pxrer4an/u4J+SUWVVCOI8VB1fgpIz7XoX13YBjAHYVRbFz4y6S3wng5y3NzwP4PRuxmO8F8EFZlvOdClYC8b+CS2plSJrG81SBDz6X7u5vjcxRgg4y73gVbIqzat4szyeB3/vt9RJ/N3eZX3F2fJx2ql25daexmYiG2i6P3ajgIE6+nFLpGwlC7RNOfN7ZUK/X0yZEppmdnW0LbhInChl1EepzpiUOPB6DeDEewjRra2ttljEPZdR+mpiYwNDQUHKF+bHhW7Zswe7du5NgI35M02i0zs5qNBr4yle+gp6eHszNzaU7xJeWltDb25sskWaztaqL96frHg3e9b6+vo7Dhw9jfX0dn/3sZwEg1XH16tW0xJaxFOYZGRnBgQMHkjC4fPlyshxoMQHAG2+8kawXHoa4traGCxcuJJcYXZgUbGwvBSxp02g00h0mHAuR21bnkM4r9qGObZ0DLIsfPte4h57OrEqIzi0VMEyjY9gtFXXF5XiXK6UB3PeFUt9xKMvyGwD+CID/C8A5AD9XluV7RVH8ZFEUP7mR7BcATAG4DOCvA/hDXZS7ScsH4tgFwbVnfZ+T/rl02pGRpZFj0M7I9Zu/tS5q+CxbB5cycB90/K2uMbUUWBcHba5+t5LU0lKhFZjJ6VtjF9oOLU/T+zd/69p8Zd7aPmXoTnMVxs6wAaQd5spYNMahS3kXFxexsrLSxkiazVbgtbe3d5PAazababczNXDSjv1ExsSjUvQ4DNajMRiWRzxmZmbSaipq+hREjCmMjo5iYmIiHW/ebDaxsLCQNHoGtHkPO60Q1+gXFxfR39+PHTt2JGHz7LPPArh71Eiz2cT27duxtLSEU6dOYWFhAY1GA0NDQ2g2m1heXsaFCxfabkakINQDFOnOYv8PDg6mlVwaH9P+VTcvgE2MW8eqCn/2N+850bmph3ayr92tpEI8OvtNV/lF57T56iy12CNepQJKx3s0lyTN/V0o9esJ9D6QKnD3gDP0CKLOcI03KsvrcAESCZQIV6/HhYY+V42cE0M1bmXyKvT4LBKqrM/dX57GLQl3RzhdIq1I85KxR/ssvB/YDo+HsB5nvED7kSUqwNx68Xesy4UWYxXctayxLLdSCbOzsyl4S1zYF3RTkikxFgAAO3bsaLvk6M0330wMnKuZaEXR5aLKjl6UxN3lPNhQLR2uomJZk5OTOHToEK5evdp2HtX169exdevWtIuc+I2MjKT28u5v/e1KDr95fArrnp6eTvWpy1ZdnyyLePNCrdwYZp/6TnCW4cvINa32lY9hHZs67/jt9fv807ESlac46pjO8aKcAszn932ce1EUjwTPBjrlexCB+0ByWqsyE0LOuojyVQkHN3n9ndbnJqhr3Qqa3q2AyEJS60PL0KC4Dmhvf2Qm67fHGtTSAPInf6rbQHFUQeiCgWk8mK7HXPtEdDoR1OV16tSpNppq+Yony9VNj6wfuLsqZ2lpKeGqCxDUBddotI7+oCBjMB5AWvbJulkfhQdP5p2YmEhB46NHj6LZbKKnpycFyF966SUMDw8nH/3gYOsOjL6+vnQ2VKPRwDvvvJNcUI1GI60S45W6XM6ru91VEG3duhXNZhOvvPJKOk13y5Yt2LdvX2LwXHn1wgsvJMuCGwGXl5cxPz+P8fFxLC8vtx1Xs7S0hLW1NczPz7dtTuQqLLqPSGsdm7y3hAKFcSGmm56ebhs7KuCVcasbkWWrVajjhvX5OIuEggsPXR5OcPeXj8VoXul3DiKeoe9yULUP5PuLopgBMFcUxS/avpBfrMTmAYfIrNNvFwiREIk02+iZlqfPnbHpb7UAtD79VtdODldNq/gpA1PGxLTKKBUflu+mvrdJcWA5rlVFA1XbRebqx42odqe0cQ0wJ/w0iMlylDkMDg5iz549mywTWhMANjEG1jU7O9s2wfWIDKZrNBpp/wiZDAWNCgr+np2dbcNDrRgKH+76bjZbMQk9N2t0dBQjIyNYWlpqs6bm5uZQr9fTKivCwsICnnnmGYyOjqYlsrVaDdPT03jllVfQbLaW8nK5MHB3WfH4+Hg6bJExGx4fQnxXVlZw+fJlbN++Hc1mE6+//nraf8JAPk/SPX78ONbX15MbCGjt16CrjLGPWq3Wtjue/QAgCY1arZau/2U/0O3E/qOlprv9c+NNLVTmoRWYUyRZd/RO5w/HJmnsY9h5gCuQVbEMVciid1qH87MIqiyQvwDgN5dlOQjgZwD80kawGsgEVD4OkCOsQkQ0Z0aRKRgxyMis9HIjQcMJp//dzxl1ck5jV4bD9NzwpKuEOGF89y2/ldkq09Z4BctW/JhP/co+YfQZy2cQWkGZtFslLK/ZbG7aie7WhNJFy1Cfs+PP8r1/6vU6Dh06tKldao0AwP79+9OmNabx40m0L+jC4UVWSkemo7BRjZt9yCNLRkdHsbCwgLGxsaR9U8jwf61Ww+7du9v6dnh4ON1cSMtnfHw8BbG5yZFWC+9b37JlC86cOZOW387NzWFpaSnt7SAwrsKVaXNzc1hbW0un/DI471bBjh070g70Wq2W7hIBkI5l570h7uKdnZ1NluPU1FRbn1Gg6ynSVEh0TuhG0EgIRMqL/3YL1/MzXuOuXbVWfCxrGkI0v9Qiz+HYSXgAFTGQoijeLcvyoPx/BsA/BvDHAfyJsiw7nj31oEEuBhJpqZ1MPmWOkcZRJUxyv90PqrjlOlMFlAsix08HHRlUtPdDmaW7pLwet1Cq6BrRzt9FK6uiOjghXENjeR701Odap05C18C03fytCwEobLVMFdjaLp507H1EP3qVlaULAVwI8750xoAodLmKbWxsDFNTUxgfH2+zWrVs4lGr1VJeavSME9TrdZw+fTpdFMWTfJVGEd1XVlbSjYB6ICIvaqrVWndx9PX1YXBwEMePH0/xFQDpJGL2OdPTLVavt/beMO5Tq9XSycFuWVOQAUiuNL6nIOSiCFcoXEi4VcE55eNJae2xPw3c69ilMhApSZEymosf5t5rn0UKKL91Ht7PfSB3iqIY4p+yLN8D8AUA/w1a50997CA6Cwto9/9VCQ8dDNRAndlEzCxXp/7WwRdZJI6Hv48GVm6gqwXhzEkFSo6pOt1U843amMur4O4gpvHYCCeqC0adDM4cI82QmrfSn2XReuEkZoxB8eEGL/7Wya4+c37rUuBarZZiHJqWK6TUbaeuEdaxtraGer21pJjBeAa85+fn02+2lcLj4sWLqNfr6XRbjRXQCpqcnMTY2Bj6+vpQr9dTgHt6ejqd4su4A2nGTYUu7Gu1WjrmfX19HTt27MBzzz2H9957Lx2zzrs4arXW3R27d+9O9FlcXMTo6ChmZ2cxOzuL+fn5ZJXt3bs3uaf27dvXttqKR7Sou7Ber6eFAxxnukeqr6+vbYc/x4/SSMeazg9VIHQMetyE5ar1qONT57WOTRdEyqvYFp9bmieyOlx5i3hbNE8dqiyQ3wRgsSzLd+35pwH84bIs/0xlyQ8g0AKp0pwjyyBi6p0I64w30sBdu/c6CVX4aJlkBEB8f4jXQwamg0otE9atA9YFH0EFoL/TsiPa6YBXZq/+ZJ1kUTq1plTjc61YcXR3XA53TmhaEbqyxfOoQGCfMA8ZiWt5ire2Q/FzgcT7KdiO9fX1xPTZVtY9PT2d4gZ8f+HChXSkOd1pPFpE66/X6zhx4gSeffZZNBqNZJE0m3cPZKRAUeas/cqVYMrwWP/y8jJeeOEFvP7668kqYDvU+tBVU04zCo6I0ZKedBX6Um3X8klP9iWtO51DVCp0H5Nq7GpZRMKhylqoAk/rfMCV35wyHPGjSGnVNPd8H0hZlv/KhcfG8/c/jsIDaFkgykiAu4xUoapTlXEBm48CcMabEwgRI47SRNaNMlLFwYWHMjiPE/hAVkHB/6r954SXMnRvq1sdXl9EN+Zx4eHlsN9YP7Vu1fbUZeP1a7BeGZvHQzpZZh6PoXbp+3CqbnCky8QFGctVQULf/OjoaNs5V9wD0mg00r6P/fvvHmDt2if3TwAths1APK0qFViHDx9OO+G5cokHF3IDal9fHxYWFlK8ggLgnXfeQU9PDy5cuIB6vY6rV6+2zZne3t50wyA/q6urySrg2WCMrYyNjaUgea1WS/eFcOUcQeNYtDZ1zNMioTDSwHWtdvdYErU0VWHx06JdY1fBr2PVrQMV9joXfO54PC5SIrsVQj5/9Zvl+NzBvd5IWBTFz5Vl+f8oiuI02jeRFADKsiwPdMT2AQPeSKgQdUQOcpo/EHdeFdON8kQMOHIj5bT7KNgWpdF3alXMzMy03YjH99SMlbG4lus4RFaHWg6Rxq/tVXcP3/G9xxM8juOry5QZ6rp8tRCUebtA1z7JCeFoDwqAdGe50oVMy/tJLT/WRXy5Eklp6DSi8OC+DO6nYDm1WmsJ8Pz8PPr7+zdZS7Xa3RgBT+vV9r755pvpXvLV1VWsra3hwIEDbdYAb+ujVbRv3762zZE65s6cOYNt27Ylq0f3mwBINwTS+uARK34Mjo4NCnG1FrQv1W2ljJ3pdA6cP38evb29yf1IC18tILcO1XWolqpallq3lxFZKOq+rLIoojHq8ysa215W9Px+biT8Tza+fxTAb5UP/39sQRlAlfBQJpdL69aElq/5VDvK1ZljXG4ZdGqXp+NvFUYA2gY8TXwd2MyjzNq/yeAU38jyiOinLp1IiwPuWgiRwHJBwzS6M1c1KU5U9Wf7+UK621zxjgQe8dM9NPoNoO2KVOKh9I0sGlosZFR6rItrsxqzGRsbw8DAAI4ePZrcQFwiq8F+HtXeaDTS3d4MIo+MjCR31/T0NBqNRlpx9fTTT7e5mYaHhzEzM4OrV68m3ADgrbfeSmm+9rWvJdynp6fbaPnss89icHAQ7777LprNu7vW19fXMTEx0RaTYL2MRwFI+1hUeDSbzXRkCQUB+0MF9OTkZKKrzrv9+/cnOh08eBD79+/fdCyNMnRXzrQsFVYEFRZukftJDQRdlq7gCk+kFFYptjl+loGHO9H1TnSgu9gC0L0vseq5C5KIqXZTXpU1k/sdgbu0XOD4IIysI3+n/zW+4kw+SqdlupYObHYb8JkLjKp2aD/qO7Vo1IpRGkfWnWqMKqh8crKdQLvA1YBso9HAhQsXcODAZsNeGYWPIcddd7jT57+8vIydO3emmML09HRaNqtLSNVt2Gw202onWgXO9Ah66dTa2hr27NnTtnuemjvLYP3a5ydOnMC2bdvSvPBd6M3m3VhKdEe8B7RJG51nOaatVosuTFCFg1aSjjUXIjqmfJ4SV41TRnMosm59LDAPQa1fFyraVgf3GFSle/zxx+97J/pvL4riUlEUH3wnr7T9dkFEYNf8PX1VR3qeyEzU3zohlLEpBP7HTbhGz3IWDP9TC1VNB9gcm1CGr7hGmnOubp24rj15GR6M1jr5cUuBeXVTHxmCTkbV6JTRKx66lJWrrzSP09xddtpOaovUlNVaYFo/HoVphoeHU381my0Xisa3mFbPTqJ7hfiTwWmanp4enDhxIp0UTIHAzYUAcO7cudR/s7OzmJubQ19fXzqjq16vY3V1Na2OYhsWFxfR29uLHTt2YHx8PG3C7OvrQ6PRWgXFgxc59ngTIvdgNBoN7Nq1K/UVV4HpXoy5ubl0UyJdZBwb3GyprjIdOxyPrF/7WRUIXRLNMaExLtJHx6uueHOBFQkDjYW5khFZE6SP8xvlDe4hiNofQZWQ6STICN0cpvgXAPxYWZaPf6eutP12ghLVGbQPFKb3Z1qOMumcYGLZEZPkfy1bzVwvh3jkhI7X7Zqyt8fL1nqdBvrc26aDPKKbvo+C21qvluECKJpIZJyah++ceStOuuCBz3Tyab16rIQu63WXGOskA9cYCwW405GCSK2jxcXFtpNhVejrXeq0ImZmZlJQmIFtlj0+Pp6ueqXgAO661xYXF7G+vp6WEff09KQd2qx/aWkJo6Ojab8G20PmdeXKFRw/frzNnVertXbh9/X1YXZ2NgmEgYGBdGwJTzNeXl5OtCMjfvfdd1M9Bw8e3OQSYvvo+lIt/N1330100/HES+VU2KtyMjY2llxqwN39Owpsh7ucNKbk9erYjyz2yIpVZU8FYSfB4OPceRTxcF7l89f44yejuroRIDfKsjzXRboHHuiu886LwDUAf1YFyswjodPJzHTNWTueoJqOu2acgSouOlhzAlDpQ6bD1UWOp5bpApF51R1Axsy2uRXA/LqU1CeWtsstOdXGPDai9NHltSxLXUG0EIgjV+V4sFytoKgv9+/fj7Nnz24SVoTz58+nG/tUGKkFoQKQexP0KBHi3tfX1+bbbzTuHkU/Pj6e2klLhCuj6vW719OyTg1Ec3c4mb0KidOnTwMAjh49iiNHjrSdZLC6uto2ns6fP4+JiYm0mmttbS0JMQbmaenwmVpXbBP7n3s89u7dm3aXM+3evXuTVQEAp06dSntE2C4/M41j4eDBg+m/LipRJl+r1dosUQLHhu4N0jHhlol+s4/VLafuXc4FV56UPjklVhVeFx7OIzzvBnwTAVSdhfXbi6L47QCOF0XxvxdF8RN8tvH81wVEQiFnmUTMmGXkBkfO2skBy3WNvgrnKPDm6RRH1671meKh7/SqTZ00ytSjc3siLYcfX3XECaGuIdWCvR/4LrIsIk1LBR1xJaNm8FwZlpZLvHR5KNN7XreweIeI409GNzo6mgSC9uXq6mrCg+OBTI/HXLAv2CZaIJ4PuLtrn3l4NhT/69Je7bODBw+iv78/bfjTtuzevTul5R3eZNq8b6PRaCSr5uTJk6kNL7zwQhoTDOI3m80UOwFa8RW269y5c7h27RqA1gotbpBsNpvpQEf2qa7UajabOHr0aLIcVdmi607HiAopjV1wzPE7N76Vpj6OVNkjeJwmcmFz/HteChhdjaZ1ReBKZu65zm3cx30gXHVVB/AhgB9E+0qsjx3oTnRl9M6o3fpwYRCBpnFGYR0RDjx9r4xRB5fX5f91cOkkcGEX5VXTWge+ay0Rg1EhoPVH8QO1CDSIy3e64oSfXDyBoLTSWIcydKWlWzJkippGYwssQwUuGRXT6vEi2v96Hanm1zRq2WhfkpHqHRb0z6tFp4KHp+rqM/W7s13aXtKHd3g0m60VUX6qMAU+hSldYYz5MOj97rvvYm1tDWNjY+nUXLadl0YBwMmTJ1N9evkVrYt6/e5O+PPnz2N0dBS7du1Cs9lMVhTxIp3oztPxxjZyEQYD2bVaDYcOHUpjS60n0ttjXJFSRzozrqJ5iZvS2a2AKqVTBRmBSpIqD1qnzwuO3248KRGP2vh+uAor2gcSQaQlAPFqqIi5V/3351XpO1kxES78r8xSTW9vVyRYonJydSkufOd+W500kZDjBDt79my6YlTTe52+nt41J9317Ti7xqUMWwUKGZKuHiIj9TK0Pcos+K1Lj4G71o5bUCr4fNe0u/t074um0yXOLFvdZ4wt6CGDfKf04O51lkPG7G3zcUcc2LfcF0K6zczMpLtAWA531bM83rZYq909J4tCUYUm2+6uUWWsY2NjOHv2bNvVtDonmFYtUbWoO80rHY+uYChN3G2rChnzuVvZ508EnfhI7lvjhp3KAnBfZ2Ex43hRFP+sKIrFoihuFkXxT4ui2Nkp34MOKpkdci4rtxqiMqPBw9+R9uLgloq/0++oPNeUIiar+OQGprc1Sh8xz0j4+qTVvRaKr+6cZplqeagWHk0ybXNkBTrNlNZupegEU81NT0hlfmVirENXUHkQnW1gWnWT6K5o0sZdF9S01SWl/nJajydPnmxz5bBcBuddO9V+5s2DrJtHd6hyoMKLls/y8nJyUfFQQ5ZLvHknOwUC3U+0TlgHA/dqIXKM8aNMkPWSHrVaLQmPyKJmWwcHB9NJw8znS22ZVumpZSo9dWMlx6MrcNHcY92RRe+QU+C07Nw3x6RDB/5y31fa/n0APwdgGMAIgH8I4B90ke+BhkjzdMgx85wgiDQA7biI+UadpZNEJ7UOgBxT17qjcrU9EQ7RIOwkCFXrzlkyHnzUfLmyOYk1uO3t128VAs7U3TWRE3auzWpwUlftkCGqRsxnzWYzXZTkfceyWa4efULGpcFZpYnHSLSfNS3HNJm39rdvgqPgYeBax4haErVa+x6TZrPlZmKQmXdpcLd4rdZabcX7RDR+xKNWGo1GCtwvLi6mpb/Ej4F/4s78uheDO/RpRRB/lq/uTY1HsB9ZJvuUS4t1PKiQVytIx5DSPXJ7MS3pTly9nznOonnWyZ2ufefP9dvnM7/9eU65VOhGgBRlWf6dsiy/sfH5u8j4w74VUBTFTxVFcb4oilNFUfyTjcMbo3RXiqI4XRTFyaIoOvulDCIXlULUgcoIqjrSn+fSqPWT00bc1HUGH1kKuXSRFq5tYxnRR8vJtU1dCPrcjw/R3/pM86nQUYZALV2ZvLpVVMNSAagBZme6ythdAKoFoK4spmMevWxKtVNVUNgOZYgTExMJJ2UQwF0ByvrOnTuX2jI7O5vuM1eBrFYPg93aPhfebAcvY2o2m0mYTE1NtQWmWS/LYBCbdFahOzc3h8HB1mVSFB4U4Pv27Us4jI+PJ2uD+E5NTbUxbdLFXXGkEfEj7bgKzfcI6VjWHelnz55Nafbt25foSJed05b97sJCn7uC58qSnmCQUyyd8avVm+M/UVnuZYkURs8bCJn7i4EURfHnALyPltVRAvgdAGoA/goAlGW5UlnAPUJRFD8I4MtlWX6jKIo/v1HHHwvSXQFwpCzLpW7L1hiIdkBOY4/e58DTRB3s9XQj4aNy3XTPxQq8Lp1ImtcFDN/7yhOdRJ1iRP6ccK800rZGAlfb7JNZcfXNk9oe1+rVNaRMxIWBuyMUJ9ZH/NlWpbfuStY+VOaZi2Xp/8hNqUKObfV+YIxHheLi4mLbibtMS4H87rvvpns8tH4dKx5PUkEQafBA694Pbh6kVaHxk1qtlo6aJ+45ZunuS+KqezqUPnx/9uzZts2LUT9ofyozV0Gn88XHsZZJeqsgd4EczanomdOU4zgCtcy74UfNZhOf+tSn7vksLMLvAPAfAvgKgH8N4A8C+AMATgC4Z82/E5Rl+YtlWX5j4+/XAYxVpb9fcEZa9TwnXDxNpGFrvojpRR+vy5cCKsPjfxceUb0uKDhInYHr5Pf3zug8ny/LVb9/JLjUnx3RIifslOZavwtCdWVEwlPdXZpHhUCEg05OjZvo5FTLxXef04WiwB3Symi13yKh4vlZty+RVtqpNdVsNnHs2LH0bGVlBQcPHkz40UXFvuQ5VUpPHUekgd6pTny5MIDavQoPuqvYh4ODg+kQymbz7uZC/mbb6/V6OrNL41aktbvrCHzHZxSmPjZYnp5HxvLYN15HxENcESDddBzp+HUGH6WJ5rFaoDl+4mOa9eT420baj98qrKIo/hmA/33DbebvpgHcQqthf60sy5/JlPFFAF8EgK1btx6+du1aaHF0a2F0azloHkLkc9e0kVbbqb5O6VwLjIQZ/7v2roJK8c61oxtcvQ7X5pTZO02U4Wsab4trb85Y9BvYHAdTzRpoLTela8Mva1JBqzSgtqz10E+v8S0AbfhFfVTVj/remdTMzAyWl5dx8ODBNuFCPFTguzZPRsQlyqzfLRyumNKjVhQ/WjQ8+0otuitXrqTrbVXoKg4qPHXllW7yoyUXWdN8r/R1a9TprM/caiJtfUwpzVRA5+amCwLFJ9f/fFY1PqJyIw+FjiUHx7fZbOJTn/rU/a3C+nZAURT/qiiKM8HnxyXNfwXgGwD+XqaYVzau1f1hAH+4KIrPRonKsvyZsiyPlGV55MknnwSwebJEHeW/vXMcIo0w0kKYVt0xkVsowsOZkeLl2oYPMsXfzWXH1+tx100OOglWt8AiE9snJX/7BNYJq0yQaYlrbjWV+6PdglEacY+CCw8Xsmq5eB9727V+vXtC8XMaOKNSAaB9r23o7e1N6RUfFZb88M4PxUVjO8oQmY6BdeLHADnbMTg4iN7e3rbDConbnj172qwAp6VaNGoZkmYUBLrPhTizPn2vY4xWkNI2moc+HvjOLQefr64IKO6q2Dg/8Tma4yvR3HDQ+eLlsy3OW7ysqvkOAN9T+fbbBGVZ/qaq90VR/F60Nit+ocyYSGVZzm183yyK4p8AeAHAa53qrtIG/H9O2kearw8El+4RcyJEWkDkR3UNXuvpxkqpaqtCpI1GOObiCqr9OP08vQ5c1dz4jum1LncZqLuH732CKQ5RUFVxoaVBl4bHGFiOMlW/uc61VldUCExDZsx0Hu8gnD9/Pq14Ig4eE9NxEo1VX13F9g0MDLRtaPQ9Lxrr4HvuD2FdPT09bctvVeDppV/aH14XrQnW5wyT32TCLEvHh/erxwx1Xw77T8eajt+c0uX8weNdbokQPK1a4VpPZGVr21lWpARGymCVkMnxj05K4XfFAqmCoih+CMAfQ+sAxw8zaR4riqKPv9HaJX+mm/IjwkbvNU2O8Ezj7yONILIECNG6b7colHnpZOnU8ZGVoQM8oofj58KRaaKBr2vjXZPXepThExfX2LX9Ljy0jcowlUExfWS+EwelvTI7FX6qdXoe/ldtWa0R7qKnJaT5c4qAC1JlJDynqdls3VPudNNyKVzn5ubSzm618Li5zrVjteL0yBZ+s37V9JX23EFPLb9eb51vpSvjdDWdMz2loZ5FpfPRg/Y+3l3h8gu52J+kH8/oUoGufe8xMuKvtNI56cqeKyuaRi0sHbeRxejKqipIOrciZTMCn9fuHu1kgXQlQIqiGC2K4uWiKD7LTzf57hP+ZwB9AH5pY4nu/7qBw0hRFL+wkeYpAK8XRfEugLcB/IuyLP9ltxVUEdY7nc/8v2pwhEiodOoAYLM57FpLJy22E0QmcJXA8Hxeb6TVKDPwQKJaDzrRdZD7BjXSQF0RTOcanuKojE7L1jK1LRpsrNVqbRpkNFmVUeh/Zzr6nO+0DlUGlIF7/+h+EW0HgHTUuloU+uGzvXv3YmBgoK0depSJus6UlkoPHv3Ouubn59ssNO0rtvP06dMpzaFDh9qYqDNU9uvs7OwmIaDCSd9RQKlAcpwYC9q/f/8mwa+Bd+b3vokUORVa+tvTK019PPl80XGlSpjPGX/Gtuozn38OET/I/e/Eb7pZxvvn0VqJdRZ3T2Qsy7L8scqMDyD4Ml5ORg+AEiLG2o1Ud4gEUG5gabqcG4wQ4Z6zmlxgKENzBu+B0BzeuXoj2jpEQciIYWv7CCoMVHOPAtNOLyA+aQBoP7qb7XerSLVNnfg5Wjr9nTFoXEXr8Z3Tyng0juBt9tgJmS7xVMGq/Vqvtw4r3Ldv3ybXm7oXid/s7GxbWjJkd6lRwHFRgQtLTc9j6jUgzj6gteRuPq3bV4ypYNTjY/jfx4fSRRURChhtU6S8qICl4PI9Otr3Pt6dbjoeFL8qhe9eeZPWVSVwPsoy3t8GYE9Zlj9SluVv3fh87ISHg04wIB8LyFkQuefuTmA5VWVFg0IZk9epGri3xzUPHRzOQCONU5m24qbMhIxMtS1nSM5YAGyyHrxNOTq4JaFatjIBnYi6nt+tReIf9Y0yY3VnqHWhjMvr9WCzxgx4XIa2lYxGLQh3OyrNlcF4AJ1lKg7aTrfydA40m3d3rnu8IBpb4+Pjbctp5+bmkhtI6+a3Hk9PHNT6I9PlcTash4F9ZcCMvej4iFZKOe6q4atwcoGkbVf3pYLPT+Kg88ePX3G6KzjddQxFypmOC50jik+O30R1VwmejXehpdGNAJkC8EhXmHxMoRvJ7cw7EggR84vyR8xBB7qCa4meptNA0bQeFCW4wIh86s5E3GzX9vA92+XWDX9HlocLJGUCuk7fhYbmyQlrZya5PuFkjiwVunxc0yfoHRN69EetdvdOERcUymj4ntqrMjEGlblz2l1Pyjh1hZG7bnh3BnHgbwby3dWncQBt89jYWMJ9586dqV6m4yVR2u8qxHhxEy95ihgjT91lvsiiZTs0HftscXExWS1sC2mu4yTaMxPdgqljkkLD+8DzKA0V14h/+LMoTulzxMeufmu59yJUIvwi6EaAfAjgZFEUf60oip/mp2ssHmCoMt2c6K6du5bIciJt1jtcB4L7071sD7j6IPAAXO6boK6ZaICoZuWDUOtSumhdOuC1vR6c9MnAb8VPtTK3GtQn7rgoI4riSQqaXjVA+sSdTq5xan+qddJsNtMRJU4z11Q1j7pjtG4KD27uI47adhXU2i8ek9m3b19qq3679cRyJycn21xAvqdEx4cKXu5m1zFFIdVsNjEyMoJarZY2DM7OzrbdtujtUeGs7Y8sasVfTzbW9ADadr7zfSQ8tUw9aNE1f1dMFFRZyrk6FaL8kbDIldGJP+XAleSq9N3EQH5v9Lwsy5+tzPgAwpEjR8ovf/nLlSZbpFXqJIjS5Xz9VQKqKo2W50wgEkDKPJ35R4KgE0732o5Ik4osJ4cIXxVS0Z4Q989HuNAtpIw50sh0r4MyBU5wF14UaK7lRrTWmIA+U1eL+syB9mWyqrCoZeHvlDGq4FB3DfM4PTWtuwdV29f+ZR4ePUK86TZkfqWfMnY9Ip95VfiowqPvchYfhawKc+1/1qsKmbu/FD89ggZot9pVQXHmGrnMcnVVzSPtc02fG+/dwLeCBxRFEcZAutqJXhRFDwBePXahLMs7Xdf8AAGD6JFkz0EVo/K8OeHDdLn39zowqvK4kMnVl/vWdD5ZcpM4ElicPCrsdAKqUHGGF/ngHccIf8dNfe8KLoSUXop3zlpxRcItLz73o1D0LKcIJ+6pcJciGa/TSBmWCjTFR91OFBTNZrNthzq1ag0sR5oqhZFuzGRfU0BRcKowIYNXa0VxYX0+brU8DWSzX7W9LqRUcLv7ywWi9qMHsV1hixQjzesbVylYVMC40IoUMI9/djuPc3V24lOd4KPcB/I5AJfQOjzxfwFw8du8jPc7AtGgJXjHRSZclSYBbD7plXmicnJ1R/X6IM6Vp2l8AvgA1rK1TA9eenoNNCs+OniZR4OR3mZ1RUUTOGqTCg0PTCv++j+K7ZDRM38UyHTc2HYX0ro3gG3WMcbTZpWRaN+o5u+Mi24YfR8Fy114KCMmrcfGxvDCCy8AQNv1tL5jm3Wz/Ro3UPeRHsjIcpTm3vc6/uiOU2uB+J89e7atfWyHrubSZbxKK2Xujo/SPtqPov9zAk7HrOPvY5R9oWPKQWkSKRCaTuvx70hQeX05vqXjzZ/loJsYyF8E8INlWf7Gsiw/C+A3A/ifusj3wEJE0Jy0d4bdiaAE10iZ/14hlycSJJFllRuAUR1RecqoPI8yBI+DAPHRLMrEcwM1slqY1/tAJ3BkMWhaar3uJvG4i9LWNX/V8niftgsfn7xuoahwZd16jzeBGq1rw+6uYVqmIVAbp3asd2ecPXs2MV/io1o0/0fjTOskE/a2My/jQNx0qC4zve+FeVUh0TszarVaCvCTdrpHSBm408zjgdoOjdlEbmL2u9LC6aJzLOIjPg/9vysRmj9SMhz8mSsu3UKkJFYpyUB3AuSRsiwv8E9Zlhfx62BVVtRZUZpOZSjkBoT7rrvBIycUgPaJ4JpOVT4dVK65dxrcrNeZN9NGgzaaZK5dMZ2b7MpI+F8nurqTtE1av/ufWU80uViW9hXLcCalwWj+V3oC8flayvy8bo2XOMNzXHVMKa095qL05v4RZc4+9qIYhPezrgzz9vq41N+sm7RzF5tbQT6Oms3WjZW0Lur1u3e7aP5oLGlblC6uNETjm3TRcaZ1eVvV6o3KjhQgtSodfG5WueEUXNh3AzkBVQXdCJDjRVH8jaIoPrfx+etoHeX+sQVlbP5coZPpl5POqknlOt21/ui5D1Y+j1wcOsi8Hh8YUQBY0+fMbQ9KR5aNT1QXaDkGqnn5391Bil/OZeATVoWNa/3OILWuHEP0NtB14iuTlEER3C/PtNF4bDabbfd1aD+yXg1+O731GY8xYX1Mx7JVYLnQcWVCaaV0dOFMpqtHiPg4Uhor846EcL1ex8mTJwG0LA+6txwvtyL92xUop5m3l+9JCx3fZPx+3IuPZwoWn7dq2Wj7qwSx0kfTunu2W/B5GM3pKuhGgPxBAO8B+I8B/Cdo7Uj/yXvE84GCSLvOTeJuhYaDB4m93miye32Rtq7l6YTV9uTKdvxcU4uYdTRoc8I3cjEpI3PQtfdeT9Q2ZwKKs04+Tli+jzRpTes0c5dT1C/KuFXzVKVBNV0XAnq0BhmUu/f0RkIPyOuO+YimtHZqtVrbwYaOH9uu9OKNgGTyANr2d+R87FwSq0KR5SoD1riDx2fUutm/fz9qtbv7MQ4dOpTq8f5QIUa3oyoaShsVStoO0kIFQMTAFSLL2AUTy3Eliy40FcLRmM8pvF6W1pFL723wunLvcvBA3wfyrQYu4/VJp4Mgx9y7hZzm000+zZ8TZo6f41hVbw4Xbz8/UUA7l4//ibsyBa/fV4oAm7Vd1SajejWdM1fVMKPArQqZaLWYautu+WgdVe4B1Vzd/eFHXuh3JLy8D5TG3gfKjJyOXpe/zwFxdovDtV53J+o40mPhdSzkVuu5lahHoagg0rYqE3WGSmvOj7hROk9OTmL//v2bFCdvd9T3Or6U9tGRKUzjfe19wzZ5mfcLjuO9lJVbxpu1QIqi+LmN79Mb95O3fe4d/QcDoo534QG0xws0bbfgVkdUhpqqriHm8ugEjXDMWQeRJUFwS0Q1R8VTy1M3jZaj9MsxX03P91EQ2E1+DfpqWme4xI1MOmq7jgPdSKYQ4ct2uWXB9M5A6bNXhqmuHaexluHCyoUbtXNvn1oLANoCxR4c9zIj5qhaNbB5Ax/prMFrZYYaf+F/pSnzqMuSuLz99ttoNBpt7VS3pFpTes1ts9lsGy/79+9P5UT0ZV/pWNWPWxBqzajF4RaDX5GrY8uPR1FrwudPZCH4vO7En3S8Od9w/AK4txsJi6IYLstyviiK7WFpZXm1EtsHEHJ3okfgmkaUvhuJHjHaHJN3TUTf6XdO881pQUB8eGEnUCbj7WbZ+lvX6UexEE+vE1W1ddUuc/m97AjnyPpxOqs2zzZogNknnQr9yM2lk10ZXTSONF10qGKVkqBMXMeHbtJjWrbVrUVdRaWWIevTfSlu8RFyzJv5VaN2fBX4XPtd6aPCEMCmdDnLTccl26x97/PErd5I2HRS2px3aD7HTf/n6ovq+FZDJ55wz/tAyrKc3/j5h8qyvKofAH/oI2P8XYJI0yPoRPRJ3y3D9f/KBN26yEn83ADNMVFPF7l+XHh00ljcXRO9d1zVL+/164RkfheEqq35IYn+2/vD2+4M20Gf625t1UK9bA3cKrOKdoPzfeSecSHjbdf6VTun0FALS3FULd2156jPFQf3x/tmSs2v7fP+Ypv9rhEycnVV6tygtaD00jbqCjUfO9p2xdfnns9nPtO+dGFJ2tMFxzblGL3W7bR2j0NOGfJ5kxNQSl/HQf/7WIrmRNVcr4Jugug/EDz74Xuq5QGCTtZAtJohEh7acUwTMf7cigp/FjFbTxe5eRScKSlj83RRPq0v8qOz3c4YlSZM30lzopXhWqumdz+9lh1NCmqY0aSKJqtOWI8LRBNXb8qL+igC9psGoCNLQye71u/B1UgQRPE7/ajVwPcax3BBoG4mpxNx1PJz8S534/K0Xu8H1qu/WbbGOZQGSk/iGzFajbH4fFIcc3OF+PhRN4q7/9ZnLtB9jCudI8jxo0jgedu1r7WObpTQbqEqBvIHi6I4DWCPxT+mAXxsYyBVoJqVCwi+J1BziSDS7iOmmjPnmSanTenE6YQjn2naiEEqc+C3P4vSaT3OlKoEl2thES01aKlt4KTwwa57NpTGUd1KV9f89b3Wr/3gZ0yxP7wOF4zKvJzhRkxSmbNetqT4Oj2dYZI2xJcav1oa7NNIkDOfxkhcYWo0GpicnEy0UUGpH12amxu/Tm89p4tWjFs8GpfSctRl5f2u40OFlPeJgvd/J4j61edoNKe8vm4gms+RUI2e53DvBFUWyN8H8FsB/PzGNz+Hy7L8XR1L/phAjslFWmI3EA2Q6Lemr6rDtWnVmJnfJ03EyCKt2bX63ATSICwZSZXw07zRcxegUZCe4K4K/dZJnLMIlFl7IN/b7Cu29DtatttoNNp2eiuz0ziOMl7VwNl2jxm5kOR/XhWrzNXPhOK3Ms/ImvHjPVyg8zddN77iKTqzS2NHqmB5QF/bDSCdzut9oq4q7Tu9W8QVKh8nSotovPmcYp8qqNAn5GKUkUDMMesqYeJlEyKh66D4VimYUfnaFksbyopuD1M8COD7Nv7+clmW73bM9ACCBtEVlIiRmRlBN2k0nX8rKENWbSQ3+KoGRaRhVNUdtSUK4ucYb2RZOY6cyJFWxHL8EEXFWQWAC2HX7iMmGNWpQWRnNDqJonpzmmnUBv3WspQBKwPTezzIUKamptKudz73tnqdyniBuwdLknFzuarGJFhepBy4cqJ96XR216MejzIxMdG2JFfLUBeka+WkOfPrrYzedrVQ9Fl0AKOOHRUw3SqQWgfL0PTaDp/jufkYjXMFV3xyfCga+1X1Vr3/KIcp/scA/h6AJzc+f7coiv+oU777haIo/lRRFLMb96GfLIriRzLpfqgoigtFUVwuiuKP32s9VZqCD4oIogHu6as6SjUEHwg6EB1fZdw+AaqEThV4el+t4/Urzlx906215paC5nEXigoPZ2wRvSM6Ks787dq4P2MZyvAVN76n4FPrjBvpFA++15VKUUBXLRlePlWv19MGOm+LunbYVzoutZ8UR7UC1CpSPFSoanvcTajjIIpFqCXGesj8tY+8T3yl19jY2KbDFAlqfajwcDcjf6tw1rFDXPwIHKVNBE5jf654RnVGCkmV5RHRP5pzLtwjvHTsOF5WbrG55d0F0f8DAC+WZfkny7L8kwC+F8D/s4t8HwX+p7IsD218fsFfFkXxSbROB/5hAPsB/ERRFPu7LTzSVB06SXdC5Dv1MiIh4VpfhFukTUfahDNafR75VauYsP+PNDFtgx+X7hsCtRxlSKqpAu0H5+XwZdnKOJXG2t7cpIz8/D6plXm6UuH/yczIjPVebsdTV1rxuVos2n8eR9J87qLyBQkUPB6QV+uEwkqFoNPPYwu6T0Ppqf2nwt7Hnse0WIfSih+OO3dheYDf54takMqgWYa23/ue4Ixex2Auj9KXq/U8j/adP3c6dfNM8eoG34gf6JjxPBEdHLoRIAWAb8r/byIjjb6D8AKAy2VZTpVluQ7gHwD48W4z5zRVh05WiJfnTN/fA/mzoHL+W6atElI60SJmWMUEPY+3x4WbB1A9eJw7Dp3vHFctRxmJ15ejJ9NFzEQFq+IAbHbxuDaXE5y+ZJd5tTxVKiJXiTM7vlPXiTNabbv681mma9iKt35rOb5xz/HUdqpwcK1ZLSvS1l2ErI8CwF15ufgEy9f26ootFd4qINmHSk+PRwHtx/IrzZU2OeERvWs2m5vuddff3r+RAPAVYZESqH3j9PLy9Fk0d3L8xSyq+74T/W8BeGvDtfSnAHwdwN/oIt9HgT+yseLrbxZF8UTwfhTAdfk/s/FsExRF8cWiKI4XRXE8t3IiYvpVPvucQOkkrYHNFosPaNbBtLmynTFoALUKp9yA69SeaPCRqbjmrO2qYmbOdNTNoZNXmb8LBwV3QRE8AKz4kXlqsFjr9V3XxI3vlS46ZlQARVZPhD8ZV66vlRF7Pn7TlcT/OpZUodAP26ft1LyqJKhwJSP38660vS5YFZdmc/P1sBQq2iZedsXfip8eUuhWm86FXAxN+0n7UnF0BZAf1uMMPxr33vc6NjyP90EuHtINv3G8ojKiuZ1L79BRgJRl+T8C+P0AVgDcAvD7y7L8Sx1LroCiKP5VURRngs+PA/irACYAHAIwj9Z9JJuKiFDN4P8zZVkeKcvyiK9Br5LYznByaSMi5/Jpfh1UuQGi2puX51aFTk6fQLmB7VpcTggBmzU1BZ24igfrcOvIGWuk9TId80faXpRPGYJuQnNNy/FjGj3cj1o0f7ubSJml46R4Vgkv7RPWr++U7tqH2sdKQ7bFhZsvn1W6aUwkeu+uMF81RcGlO9e9v7VPnGlpP6oQnpmZSTTXS6Rygo3BesXL6aX9om1kG/R9NMZU0fFxpuAxhUhJVeEbWSuRNeZzsxu+FJUdpat6loNuV2E9AWArgO/hs7Is3+m6lvuEoih2APjnZVk+a89fAvCnyrL8zRv//8sNnP5sVXlHjhwpv/a1rwHIS+9IS9HByP8eBI3SRhpHt3lyoMy6k3Bx0PJ1g1UVblXPcnTwA/JydFDGlFsAoFaCC03tEy/DhVrUH9oGL0/r0fI1tqB9oHgyvedXJhAJReLmfn9vX5Q+igtU0T6C6D3L9QA3mR8F68TERBt+3m6PO3i/ar95fu93vleBqy4ztVgdJ+8vn9M5hqrjXOlV9V9pGrkIc2M9N4+dT/gcjPCOyonK7AQfZRXWn0Zr4+BPo2UN/EUA/0PHGu8TiqIYlr//NwBngmTHAOwqimLnxn3tvxOt/SodwZmlS/moM1yTcteSaxssSzVe19hy5UcMRcFXX6gGHGkpOU0k8pl3Ch46OLNQHL0+BxeAkctHy47KdG05muSRBurMjf896E0LQNsVuXI0wKt+94heykyJv7ZXffM+HrS9ZNxketqfioMLNGrZFAQec1L6+9jxwyxJJwqPiD668IHtUxoQX6Uf33sMQ9uidFDhwTqiY3VUeFRp6JFSVcWMnbHrR8dOri+1jKiNms/naKTsaluqlMlce+4JyrKs/AC4AKCnU7pv1QfA3wFwGi2h9fMAhjeejwD4BUn3IwAuApgE8F91U/bhw4fLsizLX/3VXy3vB6J8ubL4nN8ffPBB+Lzbevlx0HKryvzggw/a3v/qr/5qypsr03HI/fc2sWxNc/PmzWy7IvA2e9naJn68DqX9zZs3U76bN2+21et94/V5H3raDz74INXh+Ry/qnGgbYjq0vKVvvrb61Saef1el34rbS9fvrwJJ62X30p/pQfL4ydqf/SOZXg/KP5Oex93pFtU/vXr1zfRKRoD0X+nfY43dCozmhdM1808VBxy5XTzrBMAOF4GPLWbIPoZAJ/+aGKqeyjL8neXZflcWZYHyrL8sXLjUMeyLOfKsvwRSfcLZVnuLstyoizLP9Nt+d2YbDmt27USfZYzfVXD1vQ5TSYHkXXi5bj1o2VGy/RydNByImtA2+XuHF8U4K4G5om0PP+do1FES63DLT9qpBpIda1S8eE7tSy0Pj7naiLm1XsvnI587/3P9JHbJWoHwX+7lq6WjVs3ET2jviGOeg+H4qyWhdNP3XSKI+tiHMXpoXhr+igGp1aKtk2Ps/dxoeAXU0V95rTSPmH6Ki1frR4vH4ivXWa6yKWWs2yjuu8lfRVU8aWOMZCiKI4A+KdoCZJUUlmWP3ZPWDwAkNuJfi/QjQByyK3oisrNDdyqgV2FX67cnJnu8QJ9r79zMaAotlK1os1dRs68qujg5ZFp6Y5wj1swj+ZX/3RURy6PL6UFNp+V5PTUcpxGOddXTtgxbXShlr5TJuXl+sq1XJt1fHRK5/GOqL5ce5SuuTGhSko0VqPx7q48j3U6zXxVWkQ/H7teVk7hrIqzVv3Opa+CbtJFPMLn1z1fKCXwswD+PIA/h7sxkGhl1McCIk3En/u3/tbBEvkoo/8et4hAGYwvC4w0mAh/X8YYaXiOm06sXOxCJ0Q0MbS+iFlpHtfifIBHk041a5+IWqbGAzRPxCwUotiJB3dZp/eD04Oa8uDgYLgaStuTsyKicac4KhNmXbSGFE/m9ePIle46ZvS4eKe1jmEd/5qXeLJsF4j6zmnCclx4RPOGMY9cOb4UOhLOLuiVZi6MWUbEN3xMaLsjPqJ1O411XkTgc6cb6CZdpNwF8/C+94EslWX502VZfqUsy6/y00W+BxKqNEwnZI7p8nlu1YYzS68/+q3/q45t5wSPcOrGTebvqhhrBFG9UX25SZLTFvV9rm2qPWoduXJ9SbHjyLqilUC5ZdzRii4+d0ZF5s4yNW20QkjBlwczXyTcAbS56LQ9uuxUhYMzbKUJ63AB7UxZl8163VXKlS6/ZXoG6FXoMT3rVddZVCZ/q7Bln0QHJGrbFBdC5IKLlDqWEe3P0fHldXcD0fzI8QW2IffuXur1unPQjQA5URTFny2K4qWiKJ7n554weYAgx0xyhMppQfouB84QnfE48+hUlpYZaWWOW6d2dYJo8juDcWbjdeuE9jIi7U8ZkDIiLY8MxwV1Tpj7Vav+HogZluMcxW40DX3qyvyVUTpN2W7dae0r+lhehLczdMXN948wT05h0DiCCh8Fj00Am4/QV6vI26yr1NxFpCc+q+DVca+bCB1/PTzRLSe+V5qzDD2Kx/cARXTPufB05Rfza7luVWle/R0pnzklQyFSaj1/N9aIK02C032fhfUZtM6/+u/xHVjG+92CHHFzGp++69QxORNROzgXrOZ3VG+nOiNmV3WBTZV1EJWlTC8a5C6gnRH7pVSR1eCxFp34Oc3MmXDOMtPjKjxOou1VWuas0Qi0DGWQTg+d9JHVlBPk7qtXhp1TjrQtUXDZ269KkO841/J9Sa4rDq40OG6u+bMenxfROGQaKhXq4lNB6v3oAjuy3CIvQ44xR1ZQN3PVy861s9v83eaLlK6ccMP9urDKsvz+4PP5rjB8ACHHpD1NNGhyWm50REqO+efSuXvCGViVOakDlpPCNQlCVUDV/zuD1jQeO3FcvVzXJiNh5Vp05Mbhb2cEOumqBF+knWr5ZFq0ciKau2vHXRQRuLLgbfb+1nx+Twnz6bf2AxmfCwDtU79LJWqLx0ScnjmLLGKCKixJV1+84Exd26HPIwUhR6eqM8J8HObiUDlFSPu1U5xN+9YtMx+rPja9n6ogJwA8XxSbux/oaif6rxfotAorJ727lerO7HL5olUY3YAyzZyF0QmnbtK69uj1R2U7Y4ncH4Ro4EYavgvGiK4RLRyXqonigkgtEWcSVWVG+Hv6KlpGeFe1XXGOBDzbUsUIGceIFl+4O8atTS9L37tl47RUAeEryKra32y2X1EbMWwfM952f+Y0zKWp1WptuEbzqmo+Ko07jWlvT9S/98v4u+Vx3r773on+6w1c6itEA0ifexm5/Ln/BB/gqsV0g2ukqUbpImZTlZ7luR81CszltNIcXq4Ze7napkg7jPD08l2gaVDbNXD/7TiodaDvlFnm3COkD99FriulceQ60wC146V5nPFpu4iDW0yOs4Iyc7Uw3EWl5XGVlwsetQ6UUat15NaSptPy2QbGLCKXnWvuEW2UZto/OeVE6RDt41HIafzs79yYdgHu9PP+z83nbqBKeLiA6kZIVQqQoig+URTFy/eM5QMMVQMAyAsHfX8/0r9KYHGC5qySKG83ArBKU3LGwm9lhBFjjXCvwqOKXtreyH8ctdV/RwPdVxrxd0Qf/3jb2DfuFtSgcyRkVAv3lVERDSOrx+9a0XrUx66WgcZQIlcW6aPCVRUHLVOFnOOtDHtwcDCdmMvyldG5e9WtC35Hx7fUarW2xQlKLwend2T1ujBzZqxlKy1zSksOBy9T3/u9KlXzy8v19uh7T98tdOKJVVApQMqy/DV8jPd8RJBjxt45OehE5E5ac67+nM8T2Dyxc/U4w3bXiefx5cL67UzWJ4YyV63P8e9ED+Ktgita0aW/I0tCy1DmlBO0rF9jAfpby/U9B2RSub7QwLYy2pxgi1wa0bcel870zuwiDZr/GWT2+0QITncVMlF/MA8Z4v79+1MeHwuRwFIXmtItspqIt7ZR54WfWcbvaIGHjx0f495m7a9OjNkVErVi+F4tGT6LwONU98KXXBB3Az7XusnfjQvrF4ui+HeKovhuXyL1LYGIsJH2CXw0qR5BZCp62c4c9b3mj3CLNKwc3jkNp5Mg9YEcrSDSMjRI7HUp3gqdVrBEloMLPzICF8zODKr80er+IuOOGL+202mnDJHap6bxgDH/R0uPfemr0kLrVJwjumobdKwoA2fb1XryILa7lbQOF1Du2tL6vQ9IC1/m7fR3ekf/ozkQLTBQWrqyFNHS30fgdWrbuwFfpdiNEOtWEe4mfTf5uxEg/xmAfwhgvSiKRlEUq0VRbLYfPwbwzW9+M/su0mj9fRVBc3kiyDFmfueEhKcheIBO31cJD2+rT6hu8I7o4ozRmW3E8KMJ6u87CV/FJ3KPeTucgbIct0S8PzrRx2lKN0+0lNfzsC5luHqybCeGouVNTk5uslpybiLmYaCYloX2lbvtnM6OS05piPpR20Jc3eJQfCPhGo353PjKxbf4PxLMrnh4Ohc43VgWncAFnH57W6P/EXQj8ALc728fSFmWfWVZfqIsy0fKsqxv/L/3JUQPAHzyk5/MvnPm3Mlk9AEcMe2IyXt+T5fTcKPJwcnm2k1uIkT16keDplVCIddGZRK5VVxVAs3LjspSLRloFw4e04nqdaGpmrZeQBW1W+kcadFO9wgXfa+MLWJ0Tgd/7wKFTJ/vxsbGkouI7Yy0WsU1ElxafiQIWEb03hUAp4O2LxqLHseIlvB6O/Q7CrSTPlq/Wlk5RSFqg6fV934kkdPYhWY3imtuDhGqBLq2o9PvAO5vH0jRgt9VFMWf2Pi/tSiKFzrle5AhNwgi0AkSvYs6rMrCyP2Pyu70LNIAvWxntFWadG51WMTIXTjymWuXUV258iMaKf5VzDj675qs786uWl2mK388fqE4qzvH6e6xCrUw1GpU+mqaCJg+woeWjrclGu9Vexa0LRHT9V3fHmz2OZN7RlDBwTQeJ2A6uraifnTrSoVGzgJhGm+Dx6uiFYNKu8hK8d30DjmlNer7KkVV3+fqcHxz0I0Fo9DNabx/FcCvAfh8WZb7Nm4n/MWyLI/eU00PAHwrTuP9VkAkZHJMNFqxwnTKbFyDjZ553bl8WkcO507lVpXhGqw/6waqhLoKELUQ9H20dNaZTy5mEDEQfZ/7rxBplb6XItfOSJGIBJi3qVartZ3O6/saXClgubk0EY21fMfF6UgceKqA91uuTqZxOubSu5B2Okb9GSmHEQ4eqO80Jr8Vz3MrNnP5vhXwUfaBvFiW5R8G8KsAUJblLQA932L8vqPQyQzUdPeaxjX8SAN3U5nPIohcIzmh0UnTc5xzaVzLiayXSNPzsjsxUG+Dlxlp8J6f4Es8OckcN2Ukrlk7U+L+BtVCc+2M2qXvXYMlLtoGt0SUPpEG7GNBP75/gOWrCytyURHc2vDAOcvT+lhm1DbHXQPwLmA0ndal76N4jJejR6H4IoXcuGDduXiT04Dpc0oF30dl5eZ8pFzo85xg69bauFcrowq6ESB3iqL4JDZ8YEVRDKJlkXxsQSdeFTE9TSQsqiS+DiwfFJ20G4Jrlp0gN5hzjD032JWBRQFDbZM/q8I3EqSRoFGm5BM66jdlDsosfElm1aosj7XUarV0mVKkuXrMxctxAZtjWNF48LEXCR3toxzTiYLhOQXGx4V+1MXjNMi5T5rNzUfEa179HwW1I8UlilFEygyFpY6jCD8d19FYzCmAXoY+j8Z/pGR0A53mUw4ioRzh8lGFSTcC5KcB/BMATxVF8WcAvI7WwYofe+ikJUfpq/5rmd2UE2mzPhlzQbFOeEdWRqTB55i3MzvHyydWNNFymmUOj07tcibuAXSnFf9XMThXAqK+86WpxDFyi3kw1IWKWw/RGNTyI8bo6aoEisdFNK+6qdRt5Hg6VO1p0LapleDxM6dd1AequHiMwnFzBef/396VBu1WFOfn8YIfoCAqFcVdVFTUgICWu1gKAZISNLjFBWKVlEYjmhiXYJByK5UoSVTcUBCjQJTFfUEKRYmgXLxwWWURI0LAWBURgleFzo+Zgf6a7pk577denKfqrfcsMz09PTO9zJkzJ3LcvHK8NtJ8WdnbNozGxhTMqshb+Xp10azoWYX1WQBvRDIaVwPYV0Q+v6BSKyB5PMl1+XclyXVBuitJrs/pFvRgo0fINYXpeVT63x7ba5GHPKVTeYrbq0dUrs5rlZbHl1X4lpYedHYwe962Pa/J1yoV68F7ClzTLZ5xLSIo/5HnbKOV8txCK+YIWibWC56bm7/9vBdd6AiittpNGzRPFvq9EsuvN2VmDZRnvLx+qJ8T2MUEVul7bWe3dPGmkKK20nx5fdEee9dqxhTw36/R55oPy7M+jxwdWyfg9rstWJl547EHUw1Z715YWwBYk9NvPqmEiRCRF4jITiKyE4ATAJxYSf6MnPZ2D3dq8DzqCJFHY70QTTvqpN7g6uXD6xi2bMuzl7/8ewrCeqGeMfOMRYsHT4HVEK0C0opRK42aYdSKspzrh9SRh2kjDKv0S1r9oaKSpkbbo6uPy/2tttpq3jdPCvSyXC/y0G1o3wny4PVLjy8tV5untFlkhLUM7LMnzYfmVRucUmcbKVjjYNvZ/utpTk/+NWgZ2rp6EUjkJOg09rw1rW0dTc/J8IyXzWv5toZsCnqW8R6C9FnbewDYBsBRJN86qZQZkN98fz6AYxebtvZeNaZaaZs+yh8pNqBv3XaEaGlhRE93WvuQ0ONlCu0obeTpRbKzCtbS0m1nPWfP0/TKtuvw7fRSOfa8c6sIomcDtlydR0cY2ju3tMsDZqtctBy0crbpPCVl73nGUxufSIaaX288WaUW8VGiCz31p42BfffGGrTI2fEcHk+O3tjUPGma+hmbp8y1Adfw9IUXgdg0nrz0tZqj2GMIbL+fGn0AfRHIiwA8TkQOFZG3IX1c6sWTS5qOpwK4VkQuDe4L0jYra0keuBgFtoQeeTc6f6sxdOe2dC1Ne1x7PqK9c0vXdrbIM7b/Xv5ap7W8WHnVOqj1VD3aXjm16MerSzn33hkAbr+Lbm3waqVRa1NN2ypeW441CJ6BLNf0w/HIg9flRx66twS4ZYjt1JguP+rPdvoKmP+1vpLeU8DRfV2mjVwj50nLxOs/9pmXJz8vwtBprFG36XXZNcPipas5BgsxBtHYrtHqMSBXAthMlwPg8om8zQPJb5M83/nto5K9CPXo48kisjOAvQC8muTTgrIOJHk2ybOnbCHgQXdUoN5IkSHQ5z3egvbMWs9Hap5gZES8c60Q9L2ad+11Yo9mZIS9h6NaWXkrZCIFWWuXMuVkFVehY1+G07zrsqwcbJ3n5uZ/5zsywlqpRjQ1D/qa3ohQ82aNozU4Nf49Y+ApdLv0OepL+qNc3nbo9vlGzWlpjTerqHXeUlZtzEV93KPnyderf82g1RD1M1terxM1KzyDrtHzIuHJAB4H4BQkr393pJVY1wGAiLx2QRz6ZW4C4BcAdhGRqzrSHwrgBhGpfmq390XCyLtopY+UWyu/pqPz9vLpKcJeGh4d7x0KwP/qWjTQW3xF9+xzmKgu+nrtZctWXSN6ngIvNCMa9uNImpY1AB7/ngdd82RtvWxbaGWslzVPkZM9Luf6OZJOo2XgvRBo+1DtZUZPzjXF2jMOvBcdrVxa8oig28Djd8qYrJVb46WX/6k6YiEvEp4E4B8BnAbgOwAOBvB1AGvzbynwLAAXR8aD5F1IblmOAewB4PwW0ZaxtIMQ6JuysQqilV/D27J5qndS84CifF5kUP6jF/C8ZySeVxSVZe97abxnDi14zwe056/p99IrStLziHVZpQyrUO18eVHglh/NfzRlpssqSriU6b38Z2Wh21XXxZblRRHW0FkZ6fRaBp7S954PtB4cWyNqx1ikoKM62r3ALDynwWsz77y0cxSx1PLW+InGuzd+ov5t8/QYQwN3M8WuT9qSvDOA7fPpJSLy+2amBYDk0QDOFJGPqmv3AXCkiOxNcjskwwYAmwD4nIi8q0VXRyBTLbDGQqx8T96F8NYL25FafLWMVq2u1nv3jFGvVxVt4+CVWbbJsEteozq3aNs8USRSyxsZaAtr1Gv3e3j10PK8a/251n9qMqp55Pa5jSenmpHwIpwoXU0GU2Vh0duPPBmsVswcgZDcDcClAD4M4AgAP4meNywWROQAbTzytatFZO98fIWI7Jh/j+oxHjnf5Ibz5pijgT+r8bCwnn8UOfQiqoPnZbb4shGW5Tm6pgem9l7tevbWm8ZWCdnVOzqdXk5rX3jzFJqNEqzMdJ0s/61lrJ48NB9Wcelj/e/1qejlxcghKP/eclhbl6ifFdp2Y8PIMBblbuuu5acNvH1gbfmPdjCIjG0kD7u0V8OucowWqHg0LTwZLYXx6I2Wanmn5Ol5BrIWwF+JyCX5fHsAx4rILk3qqwyzbqZoveYpHsrUaMJ7BgD0eZw1/q0X2KITPQfpKcfmnYXvSMYFU3my554B8SKjFh1Ls/AW8WoHeCnP8749fj2+dJmRp2359epaDIddYNByumpRguVTw0YCXr9vKdue8lpyi2hGbey156xRaQuLQaen77ZA8hxP5/c8A9m0GA8AEJGfANi0I9+qQ/RBqV5vKzr38te8nhoPrfX0EY+e5xzxoiOPiBf7UNfy6Xkrln4kA1u2Pq6tlNMRkObDWwlUyogGjo0GitfreZm1PZK8+nnlWZ5KeZYHG9lECs7SKmk9w2ihyy7pygotazy8b1po/jza0XWrtOySaU8xl+tepNMqz963dWiNTc8Ye7rAiyxr5U5BzYmalUbvPYPZvgcCYC3JT5LcLf8+gaV7eL6kuNOd5lfXTp/UEC2hrSmSKY3tdcJIIWoFrDt4yecNbq1ko8Fnr0cPzT2vpddbtbxGHnlPxy58RCuLPB69bTC88vU9zZNnmLwyPUOnvf4oSvEMmU3vGVK9XLaU4zkJ+pqnwK0johcBeHLTsiu0o/5n28uTkeZf37NLlq38rBOhjZTl2ToEVk6e4bAy9I49WG+/tvNEy5GtRQvaqWihN0LsodVjQF4J4AIArwVwEIAL87WNDvaz7p4XqtHbGF5eTb/WIbxO43Veq5z0dRspeAbRDlpPAXjesse7NVR2kPYq/1rdWoMtMhCWtj3WU0bWk/cUWYFWUKVsrWx73jGKlJ4uq6TxtkWvybV8l9wqZVtOq8+XbVRqhlJft0uPdR08g2Dr2qqXvleeadnozD4/0Tx4z1Ii463rV+D1wRq/Xlnl3BriKG0rqorutXRYKyqdUl5B1YCQvBOAtSLyARF5rog8R0QOF5HZY7IVRq+lrVn7mhfQk96LGmoRiOdF6uPebVl6+bO82Xx6VZNVyi3YqK8m456oz5ON9SCLMbIKxyobTcN6sDYasbx7xtde18pd86k94lrf8Ay6V1fNm+csRPfKfd2ONQUavbPjOSf6WBtGPTXlRQReniiy0LxbWXp9zYs07Hm0RY0t26Op622dLp23R1Fb1JydiL+oXRaCqgERkVsAnEvyAYtS2grDLhioNeBiCzvyeHq8Aq+T9ngjugzdiXvqY/m13qS9V14IA24zMNYr13kjr79Wp55jq3w8z8+jq+lo4xK9E1PyWEVjadntO3Q9vekhHd3U6lp4sf+6rJpzovmLYA2ex7/XT1pl62hBr47TsrbG3XrYrWlLOwYiA6HlFslIwzMOU/pubdXXFNTa2PKn/y1PLd5b93umsLYFcAHJU0l+qfw68q06kOyKHmoPpDWi+fQabXt9ilL34JVZ846989pSZW8g6+slvX6JrihGPW9t5517vS9PeXkRkS7bU/Aln13tpKeyPC/R49F63Z6X7aVpef5W0RRa3ty/3q7Eoxu1ectT9RS4pm0NoY0So7y27EjxerKpnXvt4BkJS9/rh9549NquNWVr296iFdVo1Pp6a+zoNFHaFo3W/Z5lvE/3rovId6sZVyF22WUXWbs2fv7vhbmt+608U2Hp1ej38hvRbOXveWkP6OvItS0rovrU5G0H+xSZaZ49pVHjrSa76FpEU6exkV1Ew0ZuUV1aiOTo8Ro5OtrgerJptbHXFrb8mrzttiTRS4HlPJp+9Lbo6e2HEWr9s0Vjoe24FJj8IiHJzUi+DsDzADwCwBki8t3yWzJOlxD2IbrFLA1gO5qHKdFFD71yzyqSyAPzPKSeAeC90WvptGjMUm6kSKKQ3VNAnocbKSwgXpHXo+S8OkSbJHppCz0bCVplbelFysc71ueR0rHeuUfHKuXST+bm5m737/HgRTq6bUv6sull1Ic3bJj/fffIAJd8teeE3lRcxHOUJirXHtdo1PpnOY/kOcXg9FzrRW0K69MAdgWwHmnH2/fPXModAD3KoBUmeh2gBespaX7sfduZamVFdL379lqPobQemH4r3MunFYpVUiWfZ1Bs2dYARQZJ09RKsFz3ZO3V1VMIuh4t6HSt7S8KvA9NWR5aUZhW2JFSKtCeu16A0Fu/krfGp26HDRs23LqqTPPntWXNSYrqo/NYx8TC9rGWgY76So/j0ROZ9ThsNR5r43oW1AzIDiLyEhH5GID9kL7PsVHDm66rKXVPOdQaJ3o4ZjvArBbfe3hdQ01ZR+n0/ZoS9c4LHe95R2tg1YyPN4gjY+ApFqtMegZV66G75rlmTMqxXR1kn7Pp+trVTVbRlw9N2TItn9G7JN4KtFpd9HltqsfmjyIXW09Ny0YiVpZRf7A8e3x4suoZk7buUb/2FLw1kD1jv1Z/wP8Cok7XilJrqOg3d/qmZkBu3TBRRP4wiYtVimgKqxZKtqy5vuZN+UTKzqPX4svy1tM5ejusd+51RD0gorK8lwFrA2tu7vafnS1pvEFbC9utZ+21X8szrw1efd0zThFdu5rLvnmty4+mYrxlzdapsAsKCuyb3JY3L+rrUaqRMfYiSS+ysWOkZ6xYmds8+rsnLechKicy7r1t3surRU+kUnups9Co6a1eGLqT30TfkeT1+fcbAH9ajkkufB3aKkGvR+pd97b6KPA6m+2ctU4Sbc/RG8F4ZUTl2kFe48+jV65Pia5qfFnvtFe5WUXUE31Ynrw2q7WTve957tqztrBR3tzc3Lzlz94b1sB8JWLfKPcMYVkuq2Xs9S0rh5bi9pyslqftjYPo3RNtYKyjEY1b+70Pm8bmty+J2rq26hLx0yMDe1zTJz3XbPRao+lhasQSGhARWSMiW+XfliKyiTrum6zdSNAyAuXYprUeoe5MNeXbE4F4Gxm2PO9ZI5oa3an0vAFqj235Hg0beUReV4+37KUr8rJ7PUVK1aufR7+W3nrbNtrQy59tNKKVrMej1097DWYrAvDGQTHykRLXfHj92PJs5eDJC/Cniaf0e8/gRzK2so36e2R0IiPkyaxlIFrOXO1aRHMx0PMeyB0KUwQYeereNc97rZXd8mwLzd6Xjjwl4pUfDXDvWo9H5aXzBlRE0/IQ8RvRqXn3tk7A7ad87MP9Hs9tiqHVq7u8/uF57FpxXX/99fPe/O+NDPR5KyqIogjNiy1LG3mvjVo7V9t62nu6vTQ/9vmNR9ci6sc2v90SpTaevDbTx55MvGNvHHrpbPpaW9b47I1wevXkH5UBEZHJXnZBZBx66Hneb09a65nZNBF9rXwiXvXgKGlriqhc6+nkEbTym2IAvDLn5ubmRQ+RorKDtaZIa4oiUrCt6M2To/cimm2PgrI3lTX0Lbnp+njGq6bg9PkU776kj6IE206eUxGVW+sfLVlEdfP6vFePVuRh09QMpk0zVR9Nzddyai3d6BwzPES/w4FkM1Ss3dPHU7YjsN5vzbvRHcTzVHSa6Lzw5hkfb8690KiF2VZhekrUpq95SVZhtjwq737ZFiLaM8uee7LtmSZoef0ePHnV8nqyjCIBqzC9dtNy9fqtpW150R5/rX5e3aKIxVNmXru2VqFpaFm0HIOeHQZKeh1FRfRqddDXe5X+rM5tjYee9J15Z97O/Q6FqVFE5FnUXrKb0pi9iqh23Xrz3rOZVnneAKzl8wat9TJ7lEVkJKMyLbxdWDV/VsnWvNGWc6HLKFNLrbTRfXus00cb7k1xdCJHxK588trcM5heGs1jTx/zopPIwEZRp02rabRkZF9wtPTsOLK8R/XrjXxaEfBCMaveacmthj86A7JUaCkM73pPo0XeS+TBe+k8I+iF/N6mfr382emSWtroXi3imiUK6Cm7Fq2VfJHhar0TYWGNazFEtgy70kgrHfuGu6fwa1Fbue9FwzqPLiOKWm3daue2XNtfCv+1lY2aTlSW59TMQq823mqovQsWRWGLgRbdFt9T9JfGihgQks8jeQHJW0juau69heRlJC8h+WdB/nuQPIXkpfn/7ovNY0t4tfDfU/qRJ7tQHj3Pu8ZvjVZvWsBfFdXy4At6PqpT8zZ76uLlr02BtMqM8gPxcm7b5l5kWOsrNoooNFqKotY3Ix6t9x05HREdux2ITWe3bY9k6q0+jOoZ8eLx7qWJovOp4zIy/vpej3LvjQKmRgs98vTQk2elIpDzATwXwOn6IskdALwQwKMA7AngCJJrnPxvBnCqiDwMwKn5vInWxpEatTDcHnudsDUd00LvYLfoneqIvM5eD1On16uEPH4salt22CmlVh2nKJBouqTX24w832g6M5JjZDginr26emVYI9Va+qxpTTFkEawxLn0DwLxt2wvtyFD1ePuWp6WaFirwZFaL+kuaqM/M+qGqki5yFBYih1nyrogBEZGL9HfWFfYBcJyIbBCRnwK4DMDjg3SfzsefBrBvT7n2TXTrgdRQ8wq9DtxjMHqVoL02NSSP8molHYXXNe+85hVHK3FaHxAqaHnauj4LVR5R/p6poMK751179LWMa06KZ0Rm8SK1gbfKPXIm9PTWLN5ugZ7ma22B3toGqFWmbivbJhGd3umkQt++3FqLulvOT7Sle6sverxHDlNP9FMrowebTM6xtLgvgDPV+VX5msW9ROQaABCRa0j+SUSQ5IEADsynN5K8eLGYRVraJsF5sVY27NkGwP/MQHtK2T10W/kLn1E9dL5yX1vomlym8l3L78mzlr5Guwe6vncCcAvmy9SmvSXg09IR1OVCRa+U68Hei9o7gsfnFPlYXnTeWp/QstJpSj6b/p4On15aW5YHe9+2x5Q+asfLYo33CFF7T0GLRwJ4oHdjyQwIyW8DuLdz62AR+WKUzbk2a+dNmUU+DuDjC6GxmCB5trev/mrD4HNxMfhcXAw+Fw8L4XHJDIiIPGuGbFcBuL86vx+Aq51015LcNkcf2wK4bhYeBwYGBgZmx2pbxvslAC8kOUfywQAeBuCHQbr98/H+AKKIZmBgYGBgibBSy3ifQ/IqAE8E8FWS3wQAEbkAwH8AuBDANwC8WkRuznmOVEt+3wNgd5KXAtg9n28sWDXTaQ0MPhcXg8/FxeBz8TAzj81vog8MDAwMDHhYbVNYAwMDAwMbCYYBGRgYGBiYCcOALAE2hq1anDKPJ7ku/64kuS5IdyXJ9Tnd2UvNl1P+oSR/oXjdO0i3Z5bxZSS7dipYZD4PI3kxyfNInkRy6yDdssuzJRsm/Fu+fx7JnZeDL8PD/UmeRvKiPJYOctLsRvLXqi8cstx8Zj6qbbhK5PlwJad1+euyrzNppstTRMZvkX8AHgng4QC+A2BXdX0HAOcCmAPwYACXA1jj5H8fgDfn4zcDeO8y8/9+AIcE964EsM0KyvZQAG9opFmTZbsdgDtnme+wzHzuAWCTfPzeqA2XW549sgGwN4CvI72X9QQAZ61AO28LYOd8vCWAnzh87gbgK8vN29Q2XA3ydPrAfwN44ELlOSKQJYCs0FYtiwGm/V6eD+DY5SpzCfB4AJeJyBUi8jsAxyHJdNkgIt8SkT/k0zOR3mlaDeiRzT4AjpGEMwFsnd+3WjaIyDUick4+/g2Ai+DvSrExYMXlafBMAJeLyM8WSmgYkOXFfQH8XJ13bdUCINyqZQnwVADXisilwX0B8C2Sa/M2MSuB1+SpgE8F03u9cl4uvBzJA/Ww3PLskc2qkh/JBwF4LICznNtPJHkuya+TfNTycnYrWm24quSJtGFt5CBOkudq2wtrowFXyVYtU9DJ84tQjz6eLCJXM+0/dgrJi0Xk9Er6ReUTwEcAvANJbu9Amm57uSXh5F10OffIk+TBAP4A4LMBmSWXp0GPbFa0n2qQvCuAEwC8TkTsjovnIE3D3JCfhZ2M9PLxcqPVhqtJnncG8GwAb3FuT5bnMCAzQjbCrVpaPJPcBGmb/V0qNK7O/9eRPAlpSmRRFV6vbEl+AsBXnFu9cl4QOuS5P4C/APBMyZPMDo0ll6dBj2yWRX4tkNwUyXh8VkROtPe1QRGRr5E8guQ2ItKzeeGioaMNV4U8M/YCcI6IXGtvzCLPMYW1vFjtW7U8C8DFInKVd5PkXUhuWY6RHhSfv0y8FR703PFzgvJ/BOBhJB+cPa4XIsl02UByTwBvAvBsEfm/IM1KyLNHNl8C8LK8eugJAH5dplSXC/lZ3CcBXCQiHwjS3DunA8nHI+mzXy0fl91tuOLyVAhnGGaS50quBrij/pAU21UANgC4FsA31b2DkVbBXAJgL3X9SOQVW0hbVZ8K4NL8f49l4vtoAK801+4D4Gv5eDukVTvnArgAaapmuWX7GQDrAZyHNDC3tXzm872RVu5cvkJ8XoY0770u/z66WuTpyQbAK0vbI025fDjfXw+1knAZ5fcUpGme85QM9zZ8vibL7VykhQpPWgE+3TZcbfLMfGyBZBDupq4tSJ5jK5OBgYGBgZkwprAGBgYGBmbCMCADAwMDAzNhGJCBgYGBgZkwDMjAwMDAwEwYBmRgYGBgYCYMA/JHDpI35503zyf5eZJbrDRPs4Dk1iT/Rp3fh+QXlrjMo0nu51y/tWyS92TaVfYGkh9q0PsCye2Wit9cxltIvngB+fck+UOmnYbXMe3i/IB872iSP81bYfyE5DEk76vyvovkz0neUKE/R/LbmfYLZuVzKkgeR3Il3mLfqDEMyMBNIrKTiDwawO+Q1oXfCpJrlqrgRaa9NYBbDYiIXC0it1PuywFT9m8B/BOAN9Ty5H2H1ojIFUvM3h4AvtWTMO9MoM8fDeCDAPYXkUeIyE5IW7Q8SCX7BxHZEWk36h8DOC2/sAgAX4a/eajGYwFsmvvk8ab8JeuLSFvkvHEJ6d8hMQzIgMb3ADyU6bsAp5H8HID1JDcjeRTTNw9+TPIZAEDyAJJfJPkNpu9LvK0QIvmS7KmuI/mxMvizJ/52kmcBeKIunOR3SB5O8nSm70A8juSJTN9FeadK93c5Yjqft33T4D0AHpLLO4zkg0ien9PX+D8x838pyfd5QmH63sN7c31+SPKh6vbTSP4nyStKNKLLFpEbReT7SIakhhdD7TiQ5fRepg36vk3y8Vk+V5B8tirneyTPyb8n5evbZhmWyPKp+fpWSFu4/zZHCpuW67mOm+Yy3k3yuwDsNzjeBODdInJRuSAiXxJn7y5JOBxp2/C98rUzpfIGNtNeUv8OYKfM+0MyX4eQ/D6A55F8Bckf5SjnBOaIOUc/H8n99gqST2fabPMikkerMvYg+YMsr88z7bUFpL7/LGs0BxpYiTcix2/1/ADckP83QVJgr0L6LsCNAB6c7/09gKPy8SMA/BeAzQAcAOAapDfnN0fawmFXpO+hfBnJkwSAIwC8LB8LgOcHvHwH+bsZSMrraqTvQswhvdl/T6R9utYDuAuAuyK9OftYJC/4fEXr1vMG/1cAuFs+/xmA+zt8XYnb3jB+GfI3E5De3P88kiO2A9I26fPKVjQOAPChSjt8F8Bj1Lkg71QA4CSkqGFTADsCWJevbwFgs3z8MABnq/oWftcA2DIfPxfA2/PxUQD2zccHAni/aoMjAh7PAbBjpQ5HA9jPXPsXAG/y+lxAYzeob1Jk2b9Rnd9THb8TwN+qso9Deut7HwDXA3hMbpu1AHYCsA3SHlV3yXneBPXdGwCnANhlpcfkxvQb1nZgc9729cHvIe0/9CQAP5T0zRIgbSvxQQAQkYtJ/gzA9vneKSLyKwAgeWJO+wckRf8jpq11NsdtG0LejLRBXoSyL9N6ABdI9lhJXoG0Id1TAJwkIjeqMp+K+l5XNf5PFZFfZ1oXAngg5m+9XXCs+j9cXT9ZRG4BcCHJe1V4aGFbAL9U578D8I18vB7ABhH5Pcn1uG3KaFMAHyK5E5JcS51+BOBTOcI4WUTW5et7IhkOIG2d80akHVf/GsArVNnzpo48kCzb7WwB4OMi8s9R0hatDmh+Hp2j0a2RHIhvqntfFhHJMrpWRNZnXi9Aktn9kAz9Gblf3hnAD1T+65C2mlm7CDz/UWAYkIGbJM1l34o8uG7Ulyr57V44ktN/WkS8LaN/KyI3V+htyP+3qONyvkmDlwi1PLqMmxGPCQmOdf6FKMubkKKggt9LdouhZCEit6hpltcj7bW2I5Kn/duc5nSSTwPw5wA+Q/IwETkG6fnDq3KaM/IU2NORnr3oDQB122tcAGBnAOdmp2Enkm9AUuQRHotkaBYCzc/RSJHTuSQPQIpYClp952Ykh+dFQTmbIbXDQCfGM5CBHpyONEcPktsDeADSZpAAsDvTN9w3R/py4hlICmO/PKeNfP+Bi8jLviS3YNr99DlIkdNvkD59OpX/XrxA/f+glnBGXATgoc1U83E3ANfkCOilSNNVyLK+TkQ+gRRR7sz0kP5iY7yPQYqojkIf3gfgYJKPVNfcVXtMeC1SZPUNL82M2BLANTm6mrqa7EwATy7PsHIf2l7d3x7JSA50YhiQgR4cAWBNnho4HsABIlI8vO8j7ZC7DsAJInK2iFwI4K1IX2k7D2lueVE+4SnpM6dHI22DfxaAI0Xkx9kjPiM/ND5sAv+9mGN68H8QkuffDZJXAvgAgANIXkVyByfZVzHfm+7BEQD2J3kmkvIrnvpuANaR/DGAvwTwr0gPsq0i/yyAu6Pz88V5SuggAMcwLeM9A+l51+dUssNInou02+/jADxD0qdzQfJ9JK8CsEWWw6ET6wukFW1nIfWpi6dkFJFfIj2LOjb3yzORnokhTz/eJCu3zfpGibEb78DMyFMIu4rIa1aal6VENgC7yhJ+qChHcKchfd2uNsU3K/1TkBYyXKOu7QdgHxF56WKXt7GB5OsBXC8in1xpXjYmjGcgAwOrACJyE9My6PsirRJbbPq763OSH0SKSvZe7LI2UvwvUiQ9MAEjAhkYGBgYmAnjGcjAwMDAwEwYBmRgYGBgYCYMAzIwMDAwMBOGARkYGBgYmAnDgAwMDAwMzIT/Bzgmuy+NXaEaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = results_df['pm_phi1']\n", "y = results_df['pm_phi2']\n", @@ -823,7 +1432,18 @@ "cell_type": "code", "execution_count": 85, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.series.Series" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "phi2 = results_df['phi2']\n", "type(phi2)" @@ -842,7 +1462,18 @@ "cell_type": "code", "execution_count": 86, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.series.Series" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "phi2_min = -1.0 * u.degree\n", "phi2_max = 1.0 * u.degree\n", @@ -862,7 +1493,23 @@ "cell_type": "code", "execution_count": 87, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + "Name: phi2, dtype: bool" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mask.head()" ] @@ -904,7 +1551,18 @@ "cell_type": "code", "execution_count": 89, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "25084" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mask.sum()" ] @@ -920,7 +1578,18 @@ "cell_type": "code", "execution_count": 90, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "centerline_df = results_df[mask]\n", "type(centerline_df)" @@ -940,7 +1609,18 @@ "cell_type": "code", "execution_count": 91, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "25084" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "len(centerline_df)" ] @@ -956,7 +1636,18 @@ "cell_type": "code", "execution_count": 92, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.1787386257562046" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "len(centerline_df) / len(results_df)" ] @@ -1010,7 +1701,20 @@ "cell_type": "code", "execution_count": 94, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e1xU57kv/l11ZgVwFERUFERucr8ooAIqQWIttWxjrfVYk+M22e6kP/tLT87J2Wm796eXtKenp+l2n7TumqTxl2RbYymllFpCiFFEREC5KBe5XweVUWACOgy6ZpL1+2N83rzzsmYYjG3Tc3w+Hz7AWu99ve/zvM9dUlUVD+EhPISH8BAewmzhc3/tATyEh/AQHsJD+NuEhwTkITyEh/AQHsJ9wUMC8hAewkN4CA/hvuAhAXkID+EhPISHcF/wkIA8hIfwEB7CQ7gveEhAHsJDeAgP4SHcF/xVCYgkSW9KknRTkqRW7pm/JEkfSJLUfe/3Ahd1cyVJ6pQkqUeSpG//5Ub9EB7CQ3gIDwH463MgbwPIFZ59G8BpVVVXAjh9738nkCRpDoBfAvgigDgAX5MkKe7PO9SH8BAewkN4CDz8VQmIqqqVAMzC48cB/Me9v/8DwHaNqmsB9Kiq2qeqqgIg/169h/AQHsJDeAh/IdD9tQegAUtUVR0GAFVVhyVJWqxRJgjAEPf/VQDrtBqTJOkZAM8AwNy5c1Ojo6NhtVrh4+MDSZKgqiqsViu8vb3xuc99Qk/pOZX7S4Oqqk79iv+LZbXmdL9jd9eXJ+ME4La+WEarP3dz+Pjjj/G5z31u2rdTVRWTk5MAgLlz52q2OTk5iY8//hjz5s2b1RxnWk+xjM1mg06nc/kN3a2TWE6SJHz88ceYnJyEwWBwWUcco91ux8TEBBYsWABJktjecDcmKgNg2p4Sx05/T01Nwdvbm73XGt/HH3+Mqakp1h59Q3EOqqriww8/xIIFC6adR63vKfY3096lPqjM5OQkVFVl68qvAZX5+OOPYbVaWTlxbVz142otXJXX+j6e1vk059+TPhsaGkZVVV2kWfmv+QMgFEAr9/+48P5DjTpfBXCE+/8/Azg0U18pKSmqqqrq3bt3VR5u376tXrhwYdpz8X9XwJfztM5M7fHjEf/3pF9PxvQgxqrVpjh2d2Vczc1V3du3b6tvvfWWevv2bc0y1KYruH37ttv1mM1azWa/eLpHtNbj7t276pkzZ9RXX31VvX37Npu7u7FTO2NjY+xvV/vcXb/id9Rqi/7mx+VuLHwbWiB+W1flPTkXWm3zdW7fvq2eP39+2tjF/Tk2NuZUjt652qOu1vlBgdb31vrtaVszAYB6VQt/az38S/5oEJBOAEvv/b0UQKdGnQwA73P/fwfAd2bqKyYm5oEjU63N5upgzLbdmf6fCVFrlZvp+YMA/nC66sMdstH6rVXXU6JDz92t2d27d9Xz58+rVVVVHq3JTOsnIl/aF56su9YFhxA1EdCxsTGX8xL759uc7SWExn3+/PlpbfDfkC+jNR5CwLS+Y2NjM66fiOi1vt1s9rWr88m37WpuWuW09suDxAGu4O7du2pVVZXTN+H7ni3x8KTO3xIB+RmAb9/7+9sAXtaoowPQByAMgAygCUD8TH0RB/KggV/8v8TtQ+zXE2SmBX/uTe7qILlCePxt8H5uzHx9VwfLHXHTQrqzQfR8HRG58AjTXbsiYhwbG1PfeOMNp3WktrQQn6u5uerLE2I2NjY2I6IkpOaKOPMEVKuu1pqIz2mP3O9+13rH7wd+XK44ZH5Mrr7jn/NSJo7hQfTtSZ3PJAEB8BsAwwBscOgx/gHAQjisr7rv/fa/V3YZgFKu7lYAXQB6AfyLJ/09aAJyPxt4tm172tZMyE6r/F+CzfbkHSHckydPqhUVFZo3QVeIiYCIR2lpqXry5ElNsQT/t7tbokgEPCW0IqESiRU/F1ciGZGA0roQIhfn4+oG7m5u4jzdAXE8w8PDmu9EwuDpmeDHX1VVpVZUVGgSKf6mffv2bUZMHwSidEUwxLLuxvTnBK0LoitO7M8Nn0kC8pf+cSfCmi2IN64HCVobm57PVGe2ROTPUfZ+wJUs2hOOhJ6PjY2pFRUVamlp6TQRiSsEJoJIBLTk++5AC0FXVFRoik3EGzvtKR5B0vPh4WH1u9/9rpPoin+vhfC0xuLuZu0K3K0lzYP/TjO16QmnQW2Lz8+cOeMWububvzt9yWxu8+L3eVDgbrz8NxMvIn8JIvKQgKifjgPROqQiwptNW56WEW9qnt7qHwRo3YAeVJtaz7UON83Z0xs3L/IRx38/RIDa9FQkxM+FiJoogqIyvLhNSyEtjp+4AH4+58+fV8+cOTPtRuxKDCOWod+u9pY4p5lEfzwxcFWOuEyt78FfBnhjCXE8fFkt8ZM7rsITDsYdwfk0BiCu3rlar5nanQ0u+TTwkICoKlJTU+9r8QiRuTuks2lrtkpUevaXYJsJPLlNzubWRu88OZSetueqjDvENFsiQN/elTiMb5/KuVPIukPyYltaimt346S6WgRTC8nzREgUHWqNr6qqSv3ggw8056NFrLXaIoI6PDzsZAwgluHnogU8gRYvGaJuRVTGv/HGG4yTcYWwxXXlYaa9oLXPeeMHV4Tiz3G2PcE3nsBDAvIpCIiqupYX38+HuR8ke7993Q94cmN3dWPypJ6r57Pd7O7KaSHPmYiTiFSrqqqY9ZCIIMV5kxzf3T7x9JbJl59pnjzwt3Z3c+O5HXonckI8gubb57kpXpnPc+Misea5Avq5e9chlhMtt4aHh53Gx78X14Keu/s+/DwJRGW+q79dcVuuxKjieougxYE8KATvDh5E2w8JiPrns8L6tHA/t+7Ztjlb8ETcozXuT2OF5gr5uurLVT+isrWiooIhd1f1qW8RqbpSdmuNx9Uzvi93YgxX8/bkQkGIlEf4WmX4cRGBcDU+LdEWtU/Eanh4WL19+/Y0JbiI0IlwEPdBBPfMmTPsO4kiKRLPeaID05ozjV/89nw5cU201mqmdSfuwhPDhft5/1kAVwTkrx0L6y8KVqsViqJ4XH42Ze8XFEXB5cuXYbFY2DNZlj/VOKhNvt5s593W1jZjHX6c1Kcsy1i1atW0OXg6ZnfvaDyKorjtR5ZlrFy5kr1TVRU2m21aGaqvKArq6+tRU1ODpqYm1r7BYMCqVauY97GiKGwMdXV1TusjyzLrz2KxsDbr6upgsViwatUqAEBbWxvMZvO07+MKZFlGXFwcGyeBxWKZ1oaqfuIpLa4bzYnKy7KMyMhInDhxQnN8dXV1ABze7Hx7PT09MJvN6OjoQG5uLvr6+tDQ0IDU1FSsWbPGadziOgPAihUr0NfXh+TkZGRkZCAtLQ0NDQ2oq6tjYzIYDFAUBWlpacjMzHT6DuI3p70qnh9FUdDQ0IDY2FjHTVkA+j78Oonrzv+mchaLhT3j93xubq7Tc1pnre8kwkxnRaz758BL99vm/1UExMfHx2PEpoWEPQVP6vAHOS4uziXCVhSFISut9/zBIRAP7Wzn4g45u2qDryMiO1fgiiCIdcV3RHBdfUtZlpGRkcHGkpaWBr1er1mO+k5KSkJGRgbWrFnjtG7833V1daivr4fFYoEkSYxQ8GCxWFBYWAiLxYK0tDTExsaiqKiItRUXF4eenh5ERkZOQ06u1ogQJM1bURQ0NTUxwkKQnJw8bU0iIyMBgI2b5qAoCvz9/bFt2zb09PSw9YiLi0Nzc7MT4eDXKy4uDi0tLax+TEwMdDod69fVPquurkZzczMSExORlpYGg8HAvo9er0dycjIsFguKiopgNBrZGvJ987/570NjFi9M3d3d0+rw74mw0P5yB4qioKamBvn5+WxcVE9RFJSUlKCmpoYRX1rv5uZmxMW5j/Pq7qxoXZ7uFy952sdsYEYCIknS5yRJWi1J0pckScqRJGnJfY3yMwCziQv1aW/SrhC+WAYADAbDNGQgjlvrJsMjK63xf5q5uDp07jYafwOfaUPyhIDK8gRCi4jQb5Hg0lrzay7OX1VVp/LiGNra2mac65o1a5CUlISenh6Eh4ejqKgINTU1Tv0aDAYnpGwwGJyIBX3rlpYWRgxcrRdPWKkezVuSpGnEraGhwenme/r0aRQVFcFisUBVVciyzOZAdf39/aftDUmSkJqaClmWodM5h8ujcklJSQCAnp4exMbGOn0bLZBlGeHh4SgpKZnGuaWlpQEA2tvbERQUhKGhIeTk5KC9vZ0hYhGIg6C157kMRVFgMBiwe/du+Pv7Iy0tzeliQkRZJLgz7e2MjAzs3r2bcUj0nPpKTU1FT08PkpOTp/Xpqu2Z8IV4ebpfvOQOPlWbWnKtex8jAsCv4PD4fh/AMQCFAJoB1AJ4CsDnXNX/LP58GiX6bMATXYCWEtZVWXe+CPdjRuwKZqv3cCUfno0jm9azmWTc/DNeVl5RUTFN6Upl6d3t27edfAlEGThvcUXvtPwgeMWzlp7ClaUO1Xv11VfVDz74gOkOtHw/tKzgXP3m9RWk93n11VfV4eHhabJ+V3uNlNYnT56c5oPBj583G+YNDvi/XenHtPw4RCU7KdLpf61vQvMgXQzvH+PO0s+VDsqV/k1LT+JqDbX0KFr70VUfM+GLT6ts/zR1MVslOhxe4lkAJI13iwE8D+DvXdX/LP48CAIyGxvy2fgdzGSi+yAVba6Qh2hWOVMbnip3PanDv+fXjVeIu2qHP9gi8ebbpHd8e64IDY+Y33jjjWmxp9z5p7hCVvy4eQQtjlPLf2Em82dShvPvtEx6tfYav2bDw8PTCJsIWsRO/J9vWyQSfDu8EyIRPlpv/pmWoyJv7iuui9g/lXNl3qxlTk1rJRJH0TLP1TeieWuNSQu09pKrec32vSdnz93zWROQ/xN/Pi0BEW3I3cFsEf6DJBAz9eMKGYnxmsT3Ws940DrIWsjQ3UHR8j/54IMPZuxbrO/KB4LKaCEOMY4WPefNc0WzVVfrxfs0uCImPGLTeqeFdPg6NNaxsTH1u9/9rlO4EZ6guOKg+PkRYiSrJWrflTc0IXh3vkJEaPn2xXaoH/45PSPLJv6b8KbCPGHXAr5/kYhofX/+YkD1xf3gThogfi+eOPIXDlfnj37fD6fhST13RMKV0yc9v28CAsAHwHcBvHHv/5UA8maq91n8uR8CooUYHjSy/0sRD4KZbmBaiGGm+D+uTBl55CwiDk85mNlGyHU3P76ciEhF0ZarW6n4W6t9fh1FBM5Hph0eHnYyOebFNq7CjA8PD6uHDh1SX331VYZAebHP2NiY+q1vfYs5/bm6+VdUVLDwL6L5Lj8PcT3IH0Ss52q9RMQrrr0rzouIlBbyvXv3rvrHP/5R0/dGvCxoEQX+Pf83v09d7XlxXVwBP8eZnELdEWJP4X6Ih9Z7rW/5aQjIbwG8iHsRcwF4A7g8U73P4o9IQDxZ1AfxYV21rdXHgwZ3m1Vro7hDwjON0Z24w5WPgKtxzjQHd7epmYgAX45HbCIy0qrjri/6zesIxPdEaIeHhxkh+eCDD9SxsTH1gw8+UA8dOqSeOXPG6YbPExeq8+677zo53YlzoTapT368RNROnjypFhYWMl8LKit61Ivzv3v3LtOtaK2Hlpc3X58XT2kRLJEb4jkIfh1fffVVpq/RCgujNW4iClr+LyKn6GqfaRE9VzDT2fEUt3hy/tzVnW3cPrGsKwLiiRlvhKqqL8MRMReqqk4B+Mun6HvA4Inpmpb56P2az4kmhrzl0YO2qtDqh4D3KwDgZHpL70XfB7KRn8k8l/dBAD6xElMUxaWPAFmfiL4wPIimm7wpqpblEr0TTYvpPQH5ffDrQWaYopmwaC1D46isrJxm7mu32xETEzNtrrRG27ZtQ29vLzo6OpCUlISUlBS0t7cDAMLDw5mllyzLCAwMRHNzM86ePYtjx46hpaUFMTExmDt3LrOgojnTt1UUBenp6ejp6WGmpGTpBXzyzaempvDHP/4RwcHBzFS4vr4eU1NTmvuSvld1dbWTNRVvkaQoCuuX/6a8dVhBQQFee+01nD17FqdPn3byvQEcvictLS2IjY1Famoqswijb0JWVk8++SQeffRRyLIMq9WKpqYmNj/+u/HfIDk5GcHBwcy0mtaPzG3Jwor8YMRzqWUZ5+rsUjs1NTUu3/N4wBWIe55fT0/BEwtUEU94Ap4QEEWSJG8A6r2BRAC461Hrn2HwFHG7cojyBHhkwyNysa37MRX2pIzWmMlklUcoIrgyAfbERJkfn8FgwM6dO136CPDEScuW39XYyBQVgBMhIUTg6iCI34H8D3hiWVxcjLGxMYbUxHWgeQBAbGwsBgYGYDabWf3a2lpcvnwZjY2NTgeeH4O/v7/THMj0Mz09nRG7uLg4WCwWHDlyBMHBwXj00Uexa9cuZGRkwGAwOJnXNjc3Y3JyEhaLBbW1tTh48CAsFgtDbo4LJJz2QltbGzZs2ICXX34ZISEhzNRYkiTmM8MTRX7vZmZmMnNW0QTZYDBgx44d8Pf3Z2bHvP8JAGzfvh0GgwHR0dG4du0aYmNjnc5CamoqbDYbGhsbUVtbi6amJpjNZuTn5zMCT0SE6nl7ezuZ5Yom4gAYgSwtLcWCBQtYWdozoikz/82oPvVN54HMql2ZkkdEREwzhRb3lCc4aM2aNU6mwbNxFCZT6ZmIlLtLnEvQYkv4HwCfB3AWwAiAdwAMAMieqd5n8WcmHYinLJ6n8k9ehjpb9tMdy+sJ23w/poyejsvdGLTEflpiMr68qk43QyVwpaykefDiFj5lqlh+pr/pfwqzoZV7Q2tMfFDA27dvq6WlpeqhQ4eYiIqvz4sS7t6dnm+ExDIffPABE8nw43GVsInEb6STGB4edrIm42X7fB1e3EUKaXH9xH0sKpW1FOGijoOe8yIfqqMVeuXuXYfhRGlpqZM4j0RtWlGwtcYt/qaxkt5JVOqL7Yn1yFRcS+lP60+5aOj5TIp+8Vt6CuJcH4QY3JVI7u7dT6FEVx1EZCGALwHIAxDgSZ3P4o87AqKF6NyVm438k/52B3w5cUO4M1OcqV+t9j8NuGtH69CKv13JqHlZP49kXMUYEtt2Ff7bk+8kjkO0RtMyKOD7GRsbY8jlzJkzDIET8hDjO4nrIY737t27TvWoXVcxnWgMvA6HEK84Zr5P+r+iokIdHBx0qzug7/Hqq69qKt3JEIB0I6JOQUS6vCKe/4ZEHCoqKpx0Q/z4tRTurizCXF1GXFmmae0Jngjzxgq8Rd7JkyfZ+Lu7u1lddwE2qcxM+9OT8/9pz7Wrdmh8ABrUT0FAkgBsA7CDfjyp91n78YQD8eSDzhYZz9SmFlHiD4a7QG0iuFJ+/jlvKFp9uPvf3U1R/NvTeWuV5dfV07a1uDPxb63AgbwSl0eS1KanlxMqT1wH356rtaAxkfKavxHzY+GV0jz3RpkgtSy+eHNg6odHovT8zJkzand3t/r000+r3d3dToSYd/YjYsYrsnkiVFpa6mSJRtzC4ODgtD1EyFvLVFrLfFY00+bLu8sxznO4PPdDY+A5vO7ubnXfvn1OuVvEfaiFpF3tC544i/hpNnjI1X72tLwrDsSTUCZvAngTwFcA/N29n7zZCcr+dsATueRsdRcztcm/F5W+pEcQFdRaQDJZUbEn6jGATwL+8XXvp22+Dz6MhbsQDKLyXOybb9/VvLWUiaQApR/RIICXiVssFiZTF+coysPFvylwID83iu8EfKLr6enpYbJ68buKc+Fl0E1NTbh16xYaGxuZMteVvJ1AVVWkpaVBURxxshITE6HT6ZiCvb29HcnJyew58ImcX5Zl2Gw2J52HLMsICQlBQUEBKisr2TqlpqbCaDQiMjLSaa3S0tJgNpvxne98B2azmSmkaf358C4kz+cV1rIsY8eOHfD29kZzczNTePf29mLLli0oLy9nSm8aZ1NTE6xWK9rb213GFpuamnJ61tDQwMKj8OFwaEy0N2hd+CCONF5+nfLz8wGAhWO5du0a0/FQWTobvD5I3PNa+jIaw8qVKwE44okBcNLFicYKWiDqLj0NM8TrclyBJ0r0dFVV01RV/XtVVZ+69/O0B/XuGyRJipYk6TL3c0uSpOeFMtmSJE1wZb73afr01CJCq54n4EmbrpTaIhJ11aeIMEWgOZJCko/j5KlFmquxEOLiD4Ko8BMJB+B8GLT61yJyPLIVA81RVF1e2QmAWSMRopFlGUFBQWhsbHTqYyarGkLk9L/Yj4h0ZrJco8i8tBYGgwHJycnw9vZmSn5a25CQEACYNkfAQQxo/lNTUzAYDIzIpaWlsXY6OjqY4QAh8dTUVOj1eoY8aW37+voQEhICq9WKgoICtl9WrVo1LYYWzTsyMpKtYX19PZsff8GgOjU1NWhoaMDU1BQsFgv8/f2RmZnJYnXJsgy73Y7AwEAnYwyC5ORkZGVlITk5mcXNMpvNzFqLogbT/5mZmUhNTWXzFveeoig4duwYjh07xi5Y/CVBJB6KojjtJ8BhmLFx40Y0Nzc7fR9+P2gp6FV1esRggoyMDABwmotoCUZRlLX2rHh58+SC7MneBe6FKXFbQJL+PwAHVVVtc1vwzwSSJM0BcA3AOlVVB7nn2QD+u6qqHnNDaWlpKlmCiOAJtdWqc/ny5Qdmhqu1UR9En3wdAOxw8VYsYp+eEFJxLFprKG5AcRzu+hPHLfbl6jeBSDwmJycxd+5cdlusrKxET08PnnzySQBAQ0MD9Hr9NIsVapMfC0F9fb1TeS0k09TUBEmSprVLZs7btm2Dv7//tLnzfUxMTODatWvYsWOHk9UY3XRramqgqiqLopuVlcXGHBcXh4aGBrS0tCAiIgKPPfaY05qRdZIkSdDpdIzA8OOPiIiALMs4ceLENI5Y/E719fVISkpCTU0NBgcHkZeXh97eXtjtduh0OmbSXV9fj5iYGDQ2NmJgYAC7d++GLMusLSKImZmZUJRPLOzS0tLQ3NwMVVWdLK/MZjOKi4sBAFu3bsWJEydw584drFmzBomJiZBlGW1tbaxtnjOl5zyCvnz5MiIjI9HT08OQNBHHmpoadHd3M4szcR+7wyd8GX6uWhwO/762thbe3t5OEaMJzGbztG/jDlfM9nw/8sgjDaqqpk0rpCXX4n/giIc1AaATjkCKLQCaZ6r3oH4AbAFwXuN5NoCS2bTF60BEGeL96ggelPKKb+/ThCTwpI6nOhl3CkmxXa3f7nQ7no7fE9ktybfd6WZEBTK94x0dReWwVn13bYryaTHOk9b68BZM7tb07l2HhRjvpKelkCeFvpbC/IMPPmBhYcRv42p9VNVZ4UyyfS1jBfpNeoexsTGWcIrX5VA5/m+xDK0fKdIvXLigDg4OOq0n6R54vQxZv5HV1NjYmDo2NsaU/8PDw9O8//n1E63iXOkuaH7is5n0ElprzH8LrRhrWnvQ1TdwNR7x2WyiO6iq+qkcCd8E8J8B5OIT/cffeVDvQcFuOAI7akGGJElNkiS9J0lSvKcNKorDGUrL4Wy28CA4D7E9T3UwPMwkhnKlE5lpDK7ERXxZsYzotMY7XM2kA9Bq3928CdR7nLTouMaz+vzNjt7R8zVr1jAfC34+JHqh2y/tFy2Ztigq4GX9dNOvqamZlpeDD8kvriF/U2xpaUFHRwcbB82ZX5v29nbY7XbU1taisrKSzVeWZaSnp8Pb25vVEfUUNG5RlEX5S2isJpMJhYWFTv4vzc3NMJvNLEy6xWLB8ePHkZ+fj2PHjjmtOemfSExE61hTU+N0JmNjY6HT6dDR0YGQkBCUl5czp0fAIRZKSkrC5OQkSkpKEBISgr6+PjQ3N6O5uZmtPYXUj46ORnFxMQoLCxEUFAQA09Z4amqKhcWn70w3enH/kdiMvgefQEzLT4MXsfLrwe8bEkWK4xL3sFYqB+KatM6T+MzT1BYz4TdPRFjlqqrmeNTbAwZJkmQA1wHEq6p6Q3g3H8DHqqpaJEnaCuDnqqqu1GjjGQDPAEBISEjq4OAg+5BJSUkeKac/DXjCKn7W+3InCyYwm83w9/d3KS/WEj/x72YiMASu+qcDUlhYiNzcXBiNRqfDD3wiylJVFbGxsdPERjxQWRJ3nT17FrIsMxEMIcLm5mbYbDaWwEocL79+NTU1aG9vx5NPPumkO+DX7vLlywgJCWFjI9GG2WxGS0sLEhMTYTAY2Jrx4goak6IouHDhAgYHB7Fr1y6mlCYlMeknVEEERO/q6uogSRI7HyaTCUajESEhIXjllVfw4osvAnA4QJLYqqamhom/AIeCe2pqCikpKU4iISpfWVnJnP8URUFRURFWrFjBcmqQ6IjWgtaJxEm0JgaDgYnCxLUg4hQXF4empiY2Nl58JUJlZSV0Oh3S0tKYdz/tAa09xz/n/xdFWbwoqqmpSVMMJY6dwJXY12KxTMtNwp8NEs3RZYdvw9UZcoU/JEm6bxHWYQDHAXwNf2EzXgCPAzjpYdkBzOCjQiKsmUQpDwruVzT2acbmaV0t1tbTelpOaTOZGrsTF4o2+WI9PqLrTOIw3nRUy4yYnNdcha7nxUruTED5uYviBspPQs5wJC4RHe74+VE7g4OD6htvvKG+++67TnnH6ZmWOIXMS3lT3Q8++ID5ZJDoRlw73n/l5MmT6qFDh5zEQ/SbXytqRxwDtcebB7vbY7QWvM+PKDLjnTTFNigCMR9Xi74773ipJY7i9xH9z5v98v4xWv47noIo0tRaB0/rusIlNDZXIqmZRGoEM/lLwYUIyxMO5C2Nx6r6Z7bEutd3PoD3VVWdNgZJkgIB3FBVVZUkaS0cya5WqG4mlJaWplZXV6Ours7lDeDTwExU/X4U07Pt35O6WhyBqAx2V5fWD3COZ8UrJd1xdp5wIGIZ+s3fuMRbuNi+uN78uOhWHRkZyW77pEzu6OhATEyMk2mueNsk8RZ/O+TXhdZUkiTGNdB7uhlTvdOnT8PHxwcTExO4efMmsrOzcerUKTz55JNQFEfoE+JAeA6IxpGfn49ly5Zh7ty5TFlMt2dSUtOc0tPT2RqScn7jxo1QFAUFBQWMOyKOgsZL/VVXV6Onp4eFMqExAEB+fj5CQ0Oh1+uncWRat2otrpO4OuJ+iOvQ2tPEgfC3++bmZlitVuj1ethsNjZf/hvSXqfvKYqaePNi+p5aOEPcX1pnfbY3fVflxP0nlnP1zhPgz6Crc3vfHMhf6weOMPJjAHy5Z18H8PV7f/+/AK4AaIIjQ2LmTG2mpqY6Of3MBLO5cczEbXjyfjb9urptuKvrqo/ZKNX4fkTFn6rO3vFRbE/rbyojrp+o5NSaG/9MbH9wcJCNlecEROWoWJ+fI39DFJXaInfC5xDhb/ivvvoq4zzIYY482sWIBFpOkfScnAlFj22KvEucCMHw8LD66quvOt3S+Ru36ChI73mOgI8A4CoUCu+xTZyRyCHyt34x347InWhxcXx/t2/fZgYHpaWl0/aRq/1BXKNWu1oKaneOsjNx1O6cQt3tPU/KzxY8aQOfwpHQS5Kkb0iSdFiSpDfp534o3WxAVVWrqqoLVVWd4J69pqrqa/f+/ndVVeNVVU1WVTVdVdVqD9pEW1ubU05oV+BKqetOSe3q5j+Tol7saybuQWts9MzT+YjK6dlwZFqKP4LZOD66ao/+BpyVnPz60U2RV2bzayM6VvH1FcVhv28ymbBt2zY2VpoHObyJQH4MYpBIMg3ng93V19ezgIw0ft7/gLgXAEwfk5eXB5PJBEVREBMTg7KyMoSEhDjpWxoaGthceYUz+XNIksSUwLyC/NFHH0V0dDQOHz4Ms9kMRXH4hERGRjrNkZwr6YyQQr21tRWnT59GQ0MDOjo6WBs9PT3Ytm0bADAFP3+rp3U3GAyIiYlBa2srXn75ZTQ2NjIOxGKxMN8LvV7PgkyKimeTyYSXX34ZR44cgclkmqZopm9eU1ODkpISBAcHo6qqivmiuAsgCjiiANMcaOzUblNT0zTlt2i+zu9P4oh4oP+npqamBeuk96J/D98X3wb9TYp7WitPwB3e8LQNAk9EWL8D0AFgD4AfAngCQLuqqv9lVj19BoBEWJ4iSi0W9dP4YMxEGGYj3gK0lXquxAau2OnZjuPTsOTu6rgSe7maB7+mdMDJ14IXEYnjIpHPypUrkZqaOs2fgdoTxWkUkltVVWRmZgL4RAxDCloSN1E/AFBbWwudTofMzEyXSlhFcXhI63Q6xMbGoqOjA6qqIiIighkDtLW1ITIykinEk5KSWL+kKKXouDU1NZg7dy4jAry4yGw2IzAwkM0pMTER7e3tTFR17tw5DA4OYsWKFQAAnU4HWZYxMTEBo9GInTt3AgDKysqciG99fT2sViu8vb0RGxvL2qRvRmA2m9HY2IiEhAQEBgayZwUFBdi6dSsMBgM6OjowOTkJWXZ4/ZeXl8PHxwdZWVkwm81obW1lim4SN5nNZpSVlSE3Nxd9fX1MqU4OiqJISWvPWiwWlJeXIzc31+nb19XVISIiAn19fUy0xrcjivvoWxUVFTHfFq39oqUAr6urm2bgwYveVFV1uuxpKdvdnXUtfMQr413hKlciLE/MeCNVVf0ugElVVf8DjqCKiR7U+0zCbBCdWNYVF+GOamvdVETwFAGLt3RX4+Vv4WIeAXfgirOh3664svvV1VA7WiaJWgfLldk1eV0TB8B7GfNtUdndu3czk13qn+9L9KhXFAU6nQ7R0dGsT34MycnJOHfuHA4ePMhu5hQmo7W1FXa7nd3kRaDbH3md+/v7M8/xwMBAdntfdc/7OzMzk8nv16xZM40Lo7GFh4czc9e4uDhm1tvb2zvN9JNMR9va2rBu3Tps374dOp0Ovb29kCQJqamp2LBhA+Mg+vr6kJuby3KYEEHLyspixIPmzHODRGATEhJQVlYGi8XCzIQ3b96M119/HVVVVQgPD4ckSbDZbLBYLDh37hxsNhsURUFgYCDS09Nht9shyzJMJhMqKytRUlKCDRs2wGg0MuJx+fJlJyRNY6Bx0bei5xaLBdXV1TCZTKy8xWKB3W5HX18fMyHmuR9FUZwiBvDOhpGRkZom7bGxsU56KD7/TGxsLHp6epxMpKl+WlraNOLBnz3iVsXzpcXN8G3wIWnEdzOBJwTEdu/3uCRJCQB8AYR6UO8zBzNxW56AFvHQQqpiHVcf1ZP6Wv1rIXm+DG1WQqyAc8gGd/XE2xd/CNyF+tBq01U/fDui2EtcExKx8Up+kSBrEVVebCESEf72RcSLylCuDp6gxMbGMuTEt0WxqubPn4/nnnvOSYQhyzK8vLyQkJCA+vp65vtAc1QUhRE6UazKH2oeUdD/+fn5rA0iIg0NDWhoaIDVakVvb69TbDISy8XGxrK2ibugdY2MjERHRwd6e3uRmpqKffv2MY/2np4epKSkwMfHB0lJSfD392ciP0JCRAySk5MZd0cxs3i/EqPRyG75TU1NiIyMRGRkJJ566ikYjUa0trbCZrNBr9fDYDBg06ZNWLdunZPYp6enByaTCa+88gqsViuys7Nx8+ZNxqXRNwDAkDSF8FEUhwjz6NGjqKmpgdlsRn19PTo7O7Fq1SqcPHmSEbcTJ04gMTERMTExKC8vh8FgQFlZGfOL4UXixHnIsozm5mbExMSgpKTEKdwJJdQigkGXBQpFQqbLJ06cYGV4iYN4SaT8KKdPn8ahQ4dgNpunXVrF/c/vM3eXYqGetuOIlmJEdVZm7wewAA6P9D4ANwE8O1O9z+LP/eRE9wTcmStq/c0rFrXqe9LfTAo7UREomgPOZLZHdfh8JvdjKKCloJ9JKcj/Ft+5Ulq6Gs9M5qSq+onymM/PwbfN53c4c+YMC9NOimsqR5FT+RDlYuRWKkvh3kmRXVpayhTXWl7vWvXFcVJIcd4UVauu1tj4CLm8oYm7vSrOjcKdU3u8STVfnn9O0YHp7z/+8Y/q8PAwi8rLK/RpXcmr/vZtR/6V0tJSlkeF9zLn9wy/bnfvOjzqv/Wtb7Ew9mQEwOeCuXv3rpPBABldDA4OsvnyZsS80QJ9AzGcOxlNaHmR8+ssmi5rnRfRIEMrt4rWfncFWoYBBHARzt2tDkSSpM8B2KmqaoHLQn9D4C4W1v2COz0J4CyX5Mvzjmr3oxvhdQauxsDH7+F1Au7kwFQfmO4Q5YkeRWssotkkP36+vDsZLMma1Xs6CJ4DuXwvZpHoMSzGB6Ibu6gf4dcLwDQZtzhuRXEooG0227TxUD2tNeNjLvFrdfr0aXh7eyMpKckpLhQvYlMUh7NdaGgo0tPT2ThpHUkRTWa4Iqeq1T//XagfMvclHYarby/usZCQELS0tGBwcBA7duxAY2Mj04dQ6l66odMtu7W1FSkpKbhw4QJ8fHwwMjKCgYEBhIWFoa6uDs8//7yT/qKurg7JycnMSTErK4vd0mkdaCyk5xHNU/k9EBgYiJCQECeTbNpHiqI4OZ2SSIy83a1WK1RVxdTUFIxGI6Kjo/Hoo4+ytvl2qG1REa7l+MhzDVp4w9V5E7+NuM+16nv6DLhPHYiqqh/DYS77EDTAFXsoWhPxH5ZCScvyJ6lGZ9M+PedDUbvS1fBWOPw4xN/UJv0W9Q38OGZL7Eg+DnwiQuPT6vIWJK7YaR4oWCCPqElhWVlZ6dRee3s7cnNznQIOijnQCeiZKDriLxy07iR6SE1NZYH+zGYzampqnAgNiWzq6+thMpkYMad1IQQyf/58phD28fFBXl6e055pampCR0cH8vLyoNfr0dDQgNraWnYJofFSalgtUR71T6IXwCF9oG9gsVjQ0tKC8fFxdHR0ICIiYtq3FUWg9K0iIyNRVlaG1NRURvh8fHymBWWMi4tjoddbW1tx6tQpmM1mXLt2DWFhYUz3oNfrsXfvXly6dAlnz55lIinS+ZBHOYVLqaysZEEU4+LiYDQa2T4LCQlha0VQX1+PyMhI9PX1sfArVLejowPV1dVoaGhAUlISYmNjceLECTb+wMBAJCUlwdvbG4mJibh+/TrTPdB3pdA3tN9orfg15MWm/Nniw+eIoiYt8bB4Pun8NjQ0sDa08Igr3CL2w39vLfDECuu7AKYA/BbAJD1XVXV67ODPOGhxIDMhxZlgNvUVxRGDixAQ4FoB7eoGzL93V382IN54tNr2hHhocQ/8LZCe8/9TSBlXVlM8EDJOS0ubVl5UDANwso4BHE5wvHMgjY8P3SHOX6xDIcJpzCEhISguLobFYoGXlxf27NnDlMjk1FdbW4uBgQEWSVfrdkm6DIvF4hQVmAcam8ViQVFREYtyS+FIeKLKz4/Kb9myBX19fejp6cGOHTugKAo6OzthtVrh4+PDfkdHR6OkpAQrV65kVlp8yBOyBiKFLyFH8ZZP5cvKynDz5k1s2bIF/f39SE1NZWtpMpmYMyfpHfLz8zE1NYWRkRFkZ2cjJyfHSRlusVhw9OhR7Nixg3GYnZ2dzHmRCPrBgwexcOFC3Lx5E1u3bmWc25EjR7B7924UFhYiISHByZqL2uetyOg56TV4roicGQkorApxcqRvE7kh3tKP5yIpOjMfssXV+aIQOPSePwtiuJTZcCA8t0RnY/369Y2qqqZCAE8ISL/GY1VV1XC3FT+DkJqaqjY0NLD/3YlM/lzgCeIXP6I7xDxbk+KZCJanoFXelSkuLzrhDwzfzkze61SWCI6WmKi+vp6FbOeV0tS+K5Ehz/JHRkaioMAhsd21axdaWloAOHIy0C2dxFaEaCIiIhhRobE0NzdDkiQnvwZ3Xu2FhYXMRJaU9nzMK748IS6KGUUEy2azsfhSBMT1nDt3Dr6+vkhKSoKiKGhpaUF7eztWrFgBvV6PlJQUtLe3MxNSUsbW1NQwi6jHHnvM6Zvysbn4dSYPfL1ej/DwcJSUlCA7OxsVFRUICgqCXq+HqqrsO4mWUpWVlbBarVi1ahWGhobYWtTV1cFut2N8fBxnz55FdnY2ACAnJ2ea2K6+vh7j4+NISUlha08E/+DBg3juueemmeXy4l5ac9oT7e3tGBsbw/Xr17Fr1y5GRPgIDsTlkjm2SFz5iwJdXEiBLp4NLQ98/syZzWa88sorTmI+fo98mouxKA4D4DKcu0sCIknSV1VV/Z0kSeGqqvbd10g+Y/Dn4EA8gfvpQ/yIM/09Uz/iDeh+QBRpaYnnXOl0eELBBymkZ55wIDyiF4krvadbIn/4+LkD7rMcEnImERNxHIQISQchyzJDaJTwh2765GNC8xM5DZ7z4m+h1CbvR0EcSWdnJ0JCQuDj4+MUjoTqAp/ckJubm9Ha2spClxAnRdZTxJXQuHg/Fj73BRHTzZs346233sJTTz3Fsg1SfpHo6GhMTU1h/vz5SEpKQnt7O27dusXCoxBR4olETU0N7HY7Nm7cOI2roTkXFBRg165dAMC4DIKGhgaEhYXh8uXLTP/Ah07hv2dTUxPsdjtSU1PZep07d47pnDo6Opj/iihyI4JDfiWNjY2YmJhAYGAg48j48DQ8AeC/S35+Pnbs2AFZltlFgYhzamqqJtco+oPwxIeAD8Kp5SOitbe1wJ0+leB+dCDfufe70E2Zv3m4H+IhyghnKjsbM12tcfEISDRv5ftx5+9BclVedzIbEGW1WsjeHTfL38zpMJCOoLm5ecZMgHxmO96skSckgMNWnrLliXMHMM1kl5fx0hh7enqc/g4PD4fRaMSOHTuQlZXFEASFgKdx9/T0IC8vjyEF3jeDfAz4MOa1tbXMjJTakCQJsiwzPwriZJYvX46uri5cvnyZeZpTu9QPzT0tLY2ZG9M8JElCS0sLczQkU1LySyA9S0hIiJPuLDIyEiEhIXjqqadQVVXFlMOpqanYs2cPoqOjUV1djbGxMbS3t2P58uXo7e1lxGNqagqyLLNvJ8sOv5POzk4nPVFSUhJDyrIsY9myZejo6IDBYGAmvyQ90Ol0MBgMMBqN2LZtGyMKNTU1qKmpYalfDQYD0+WUl5fj+PHjqK+vx7p169g6x8TEsCjC/DkjAtrX18fW0WazYWRkBBEREWwsRHjz8/Nx+vRpFBQUsD1F+o/Q0FC0t7dDluVp5uqk3+H3uqIosNvtaG9vZ/9XVlYyb30CIi6yLGv6iPDtaXmr00WCQvPPhEO0wB0BGZMk6QyAMEmSTog/HvfwfxjwiJRHgq7AFbK9H+Db0vrIqqq6/fjkL3A/YxHnIY6BEKq7tmmjZ2ZmOin2VVV1Szyqq6tRVFTklPea/wY8ceSBvg0hWTrAhNBI3CIeLt4IIjIy0ik0PH9A+Vs8jaGvr48hDrLnJwV2Wloadu/ezZC8Xq/HyMgIUwQrisI4OEoxa7fbkZKSgsceewzx8fGIj49HYqLDj5fCpQQGBrIQJYDjOyckJOD69eswm81oaGhAYmIi9Ho9ACAxMRErVqxASUkJTCYTenp6EBsbi/DwcJSVlTGCpigKy6t+48YNrF27lt14KedGf38/Dhw4gMDAQCxYsAD9/f3MyS85OZl9W37vJCQkQKfTMa6K0uVSmJb6+noYjUYEBwdDURQ2JnJcJBGd3W6Hv78/EhMTMTg4iKCgICQmJkKSJOZvUlJSgkWLFuH69etYunSpE4fc0NCACxcuOOXgoL1Cehnar7IsY/78+di1axcMBgO6u7uZAl6WZezevRsbN25khgzAJ5eBrKwsdjZ4DoJEeARk0NDc3IzU1FSmgwEchgWUFdLV2RIvmrwPlJhnhN7Jssx0LoqizGjYI4I7EZYMIAXAr+HwBXECVVXPzqqnzwA8KDNens3zVPzyIEFLhOTJWFzVE8t4wgLTreZBRDWeScRHG14M70A3P7L8EdshpMPnthD75G9qZLbJH1xe9MWLziorK3HmzBm88MILTmIGvm0y++zt7dUMT0GiGj8/P8yfP58hG2qHxESJiYlITU1FQ0MD0/FkZGSwfmTZ4ZFNZrGy7HBkCw8Px8WLF3H9+nWWtpei9CYlJcFkMsFsNiMkJAQdHR2QZYcHO4lsiINISUlBVVUV/vCHP+Cll15ipq+0ZpmZmTCZTHjppZfwne98B9euXWMiPDItJiUx9R8cHIzAwEAmoktNTUVjYyOb//vvv4+RkRE2bll2mDtv3LiRcWBXrlzB3r17AQBnzpxBbW0tNm7cCL1ejytXruD69etYt24dPvzwQ2zevBkVFRXYsWMHE9Pxuif6RjROPtcJ9c+bnpP+S+u78ntLjFDNc7u8+bCoexFDi/Dta+1jrTPDj5m/7PD7mvYPP2b+N8GsRViqqiqqqlKU27Pij6t6/zcAv7CiieynAXfcg3jb1+qTRA7uxuKOg3HFUbkSw3ma1UwEsX1P1o5uSHwdWZYRGhqqyRUpisNXIzk5WTNxmNgneRQT8SCRGB1ePkSFLDuy+z333HPsRk7sPxFxRXGYffr7+2NqaoqJ7mhs9fX1MBgMyMrKwvj4OOx2OwthUVjokBqTNziJyVJTUzF37lzYbDaYzWbU1tay9gCgtLQUR48eRW1tLaxWKwCH5dnWrVud1mzx4sVQFAVHjx6FwWBg+crJakhRFJY/Xa/Xo729HWvXrsVLL70Ek8kEi8WC2tpadnu3WCwIDAzE97//fYSEhCA1NZWtAQVrVBRHvC+73Q4fHx+Ul5fDaDSioKCAtTEwMMAI0/DwMLy8vJxu1deuXWNcUWJiIqKionDhwgUcP34cer0e6enp0Ov1WL16NeLj4/Hoo4/i0UcfRWRkJAIDAxn3R9+0tbWV7UW73Y6WlhZUVlaivb2dIXLKkmg2m1nWRYqLNjU1hfb2dqeQKGRFdvr0afbNiVCZTCZUV1czsSVv4kvSAQDM414U1yqKc/ZKdxIQIh4k3mxoaGBRE3j8wZvr8/14KnafMZSJqqojM7byNwyeyvvclRMR1/2Ow9VH03qnhXQp9ILWhqI23PVFYhge2dFzkWCROGq2c9QKHTITaPVPdSlFKy9SpHc2myMKD6/34UVVxEUBzilD+YNL9XnHMEKGFFeKF6dRhNumpiandSQRAvWrqiqMRiPeeecdbN26Fbm5udi1axcCAwOZVRGJR2hesiwjLCwMqqoiPz8fpaWlLJTFpUuXkJ2djd27d7PUtbIs47HHHoPBYGAhPBYvXowf//jHUBQF+/fvR2VlJZYvXw4ATCxFYpWOjg6kpqYiIiICxcXF8Pf3R1xcHBTFEeOrt7cXYWFhKCgoQGVlJbq6uhiHQWFRbDYbQ4jj4+OYmJjAz372M6xatQqnTp3CsmXLkJCQgPLycmRnZ6O5uRktLS3w8/NDQUEBmpqaUFhYCEVRGAGIjY1FZ2cnZNmRITIkJAR6vR4+Pj7o7OxEa2srs/Lq7OyEqqpOugb6fhMTE7h+/TpaW1uRmpqK1NRUJ30IEauYmBjmI9PY2IiWlhY0NjZCp9MhIiICRUVFjCiQHows3khslZOTg87OTkxNTcFqtaKxsRFjY2NON/6mpiZGZHmg/WUwGJwCWPKiW/EsKYpzXC6K18UTCkBbbynuf3fgSSys/2PBU0o7UzktmeNswZ1+YybdB4EYU8pVGzPpZVxtKi3wdL48EuT1EK4Iprv+CfEriqLJMVBZivXEW2nxebeBT7gorUsAcRRxcXHo6elxUvoCYFY7RHwo0KG/vz+L3WWxOEKUR0dHs9tgW1sbIiIiUFFRgdWrVzPC1NjYCKPRiNdff51ZO/GIwGKx4MiRI4iOjsbevXsZZxEbG4vBwUGmVyD9Q09PD4tJtXKlI9vz1atXkZeXB4PBAH9/f9jtdnR1dcFqtTLluyzLSExMZIiss7MTd+7cYSKrc+fOISEhATt37mQIPSUlhZksk3gnPDwc8+fPZ4rmixcvIjY2FqtXr4a/vz9WrFgBX19f+Pv7Y9u2bbh58yYL3rhr1y689NJLaGpqQk5ODovlRdyRqqpIT09HdHQ0fH19AQCrV6/G6tWrkZCQAD8/PyQkJCAjIwOPPvookpKSmI6Fkk75+voiNzfXKekUzZl0EfSNbTYbZFlGSkoK9u3bh5SUFPatd+zYwVLxEtcp+g6dPHmSea8DgNVqRUVFBWpraxkRIaMM3p9F3L8iJy7qNfl3/KVI9H+iPe9OBO3J2f6/moDMhEj5cu6Uz9TO/YizxJu+O+5AZFm1bh3uTHRFDkJrLG1tbU43FXfgyfrxMl8qS5taiyi6Y8v59ux2OxMBiMSRnvGhOGhNdTqdk/ksKVV54kBlrVYrioqKADiLGSjcupbMmP/bYrHg0KFDGB4eZsEN+ci62dnZmDt3Lo4fP46ysjK8//77uHLlCtatW4fW1lbU19czCzVas/3792NoaIgpyg8fPgzA4bOSlZXFotbSWAnxkk6C/DOIK9i5cycSEhJQXV3NwqofOXIEFy5cYHUTExORkJDAdCQXL15EaGgoOjs7UVtby4gUKdwLCgowNjaGvr4+plfw9/fHs88+iw8//BBRUVEoLS2F1WplEY4NBgOCg4NZW8QlLFq0CIGBgYyrs1gsLJS7oig4cuQIfH19MTg4iNbWVgQFBaGvr48ZBPCyf1LCE2FLSUlBVlYWZFlmIkGac3JyMiOmAFiGw/b2dmauTRGOOzo62B4BPrnMAGD6lLy8PGzcuBFz586Fj48P1q5d6+TcSHuWfvj9yEsPRGJBZ5bnwEkZL55V8QyJz8XynuCyGR0JNStJ0vdUVf3hrCv+lWE2SnReLkgf5n50HTwC1Xqn1a7YN/+ObrBa8a1makvrf1fzFn+7K+vqmdaYtMYj+o+IxgD8WHjlH7+ursbJ19GKvUW/+ZwaopiLV5LS+AjEb0GIj26RRqMRJ0+exI4dO5wcviorK3Hq1CmsWbMGPj4+8PHxQVhYGOuLfDp4nwKtlLFkeUVOhQUFBVixYoWT0x8AxnVRhNgtW7agtLQUd+7cwd69e1FVVYXc3FwnPx0iRJT6lnwnLBYLrl69iuHhYQwPD2Pfvn1O36myshJ6vR6JiYlOznS8gyRF0g0PD8fOnTtx8eJF/O53v8OePXvY2MvKyuDj48OcHKempigoKrsomUwmnDx5EtnZ2eju7sbZs2exZs0abNq0iYkUKX9LZWUlUlJSmBd/X18f0z9RpOWEhAQYDAY0NDQwJTkRX7Jmo7WWZUc0YcrbQnG+eHEnH/+Lj45MHuv+/v6aZ4QMMDo7O6HX651C1NN68nuOV9aTbsOV0yzfH+/NLpbjv6krJfr9EhCjqqohs674VwZPCYiniG8mYkIhBXhnM3cIV3w2E1HQGhMBvec3Eo+YtcYizp93KBM3mdbYtKzAeOsTftPz60oeuWIQQ3ENqLxWHzNZn/Hrwvdrt9uZ5zCfDCo/Px+LFy+Gr6+vE8KiNaXxieFPysvLmdWTeKgBZ8dHo9GIGzduMNNP0h+Q6Iv3nKfvxxNOup0WFRUxAtXT04OysjLs2bPHKRwGOUQSYSDkQVZsJSUlzJpNtA4CwMLEDw4OIiYmBjExMSguLsayZcuQk5PjlBCLl9HTd6cAiOSwJ8sOq6qVK1fixo0bGBsbY7GmaG4FBQUICQmBn58fgoODIcsOR7yYmBim4yAHP0VRkJCQAEVxmP0CDk6jq6uL6U7Ice/cuXPM0fHNN9+E3W7HypUrsWnTJpawi+c+iPDxibd4AmY0GhESEsKICJ+ZkYgEfU8KAXP8+HHodDpmFixeEnlRHTlo8taB5IgKwImQeHq+AYdo7fDhw8ybnX9PBI4uAK480V2KsCRJuuXi5zaAZa7q/S2ClrhIFK+IiFoUM2mJk9ra2hAbG8tYe1eiKbEesaGu2Ejx9s33X19fj+rqaqcbND8eQgju5Ju8SC4yMlJTMU9lqG2xfb5PMt/kAxnyfVM4B55t5+fIiwbENeH75RGWuC7kZMbPg2TOpC/gFft5eXkwGo2YnJycZkGVlJSEtLQ0doDJh+HcuXOorq5mzob83iGdDVklWSwWVFRUYPny5UyuTQRJURRcuHABly9fRm1tLc6ePTttH5rNZhw7dgyNjY3MEs1isaCsrIz5YVAuDiIeMTExTuORZZk55ZGnNK0nAHaBkGWHBdhjjz2GXbt2ITMzE4GBgdi+fTsCAgLY2JYsWcICD/LfoKGhAbGxsSzhFFkz6fV6nDp1CrLs8JRvampCbW0tysrK0N7ejs2bN2Pz5s0IDg7G4cOHcfHiRYSEhCAqKooRj56eHoSGhuLUqVM4ePAguru7sWfPHqanAIDi4mK0tbUxP6nBwUEnp0QAGB4eZt8gPDzc6ZuQFR35nzQ3NzP/orKyMvj7+6Ovr49dtJKSkpCZmelE3AwGA3P28/f3x759+7B9+3YmVqO9Z7FY2HclvZTBYJimq6O5UNBEYLqlIH82Raivr0dvby8OHDjgkgPp6OiY0W/MnR+IEcAaVVVvaLwbUlV1uctWHwBIkjQA4DaAjwDYReonOVb05wC2ArAC2KeqaqO7Nl2FMnElnhJvv+7ETJ5wCnzIAFfg6qY+Ux2eteVDhYghu2cS+WjNj+citMRPWr4TPAHm64miKDGsiVYMIHFMYugFHiorK1kKWRoLhd6g+rxohZ9jfX09pqamcO3aNafAf3QgTSYTu3XPnz+fHWpVVRmnYDKZUF5ejm3btrH4WIADidpsNrS2tiI6Ohre3t64desWAgICGCLkb/uXLl1CWFgY1q1bh+LiYmzfvp2lbCXLIrvdjqioKPj7+zPrKRKzkLiDbsRWq5UZFSQlJbHytbW1SElJYR7vYmgNnoNITk5mPhsAWKgPCsh47do15OXlAQBKSkpYwMZjx44hPj4e69atQ0dHB0ZHR9HX14fdu3fj1KlTaG9vx1e/+lXU1tZiwYIFuHTpEnbv3o2ioiIcOHAAHR0dGBsbAwD09/dDp9M5+f6QB/yVK1fg7e2N8PBw+Pv7o76+HuHh4bBYLHjxxRfxn//zf8aXvvQlNieK+UUc2tWrV1nUgZCQEJa2t6GhAZIkMX0FxfoixXltbS2WLl2KRYsWsVAyMTExuHjxIs6dO4fvfOc7bN/zwRXr6uowNTWFhIQElngqLS0NtbW17BmlxOXPEH3X5uZmdHR0MG5X63zyAUVFLgdwH9aHziTg2g/EHQH5HwBOqKp6UePdT1VV/ZZmxQcE9whImqqqoy7ebwXwHBwEZB2An6uqus5dm65EWO6QqcjOiwvuSpyk1cdMehSREHgSs0qrfxFpA845MzwRvYmssDsiSWXEMQGf5OQg80N+jACcnBF5wsIjMR74HB/8d+Ej40ZGRjLlKE90AEeOcspTIbLtlG8kODgYVVVV2LZtm5Ofx7Fjx+Dn54fx8XEmeuCJGU+MSEQDOMK1U0gNEsHwwQvF0BYxMTEsR0ZYWBgjZCTWABxKcYvFgldeeQX79+/HjRs3pkXl1foe4ndraGiAqqq4desWdDod7HY7MyOmuVCfYWFhKC0txYoVK5gvRm9vL3M2pHaJyNpsNvT392NgYAChoaGMiNTW1uLUqVPYv38/3nnnHTzxxBMICQlh8587dy5UVUVISAgTPY2Pj6O/v5+FdImKisLw8DDCw8Nht9uxdu1aRgi+973v4e/+7u/Q3d0NPz8/PPnkkywagI+PDxTFERokMzOTRQmmefn4+DCRpdFohMFgwIULF5hJ+Pz585mzpclkQklJCfLy8rB06VJER0ejpaUFV65cYescHh6OtWvXorCwEIODg/jCF77ArL54x0oSmRE3RsE6ZdnhFGqz2ZwiS/PfUeR2CUhsRmI08dyRaH0mfKAoyuyDKf61wQMC8jqAClVVf3Pv/04A2aqqDrtq0x0BAVyLk0RPZJHzEMMuu5PDe/KxAO0IvFpltcqRDD8yMpKFYaDNToH+tIgT3zeZkIpBCWeSq2qJ+uiWqnUT0kJ2ruYvhpng6/PvRCJJ46CoqnykVH7M/G07IiJiWlIiyveRmJjI5Np8+G1+vGazGUePHoVOp0Nubi4qKipYeHQan8lkQl9fH2w2m5OneUpKCi5duoT4+HgcPnwYBw4cgMlkYh7jJNYwmUz49a9/DW9vb+zcuZPJ4AsKChAbG4vExES0tLRAURSW7EiWZRapVpZlhvgLCgpgMBhQUlKCPXv2wNvbG3a7Hb29vYiOjkZiYiKba2dnJ65cucLCqly6dAkAWB71FStWYOXKlXj99dexYcMGrFu3Dori0NXs3bsXsizj/fffh7e3NxISEtDZ2Yne3l7s2rULZ86cQWFhIX70ox8hJCSEfRfi4KKioli05KCgIMiyjLKyMsybNw+f//znsXr1albnxIkTyM3NZUrs119/HRs3bkROTg7bZ2azGTdv3sTo6CjWrl3rxDX+5Cc/wZIlSwCAxcFau3YtLBYLIzp+fn7YsmULADiF8ae1lmWHop18bfz9/Z0MNuhiQ9+FfE5SU1PR1NTklGaAv6yIXD6fJoK/jNHcaa/Thc1isbC9NNN5vHz5MtatW6cZzl0nPuBBkiQdgC8CiLn3qB1Amaqqdte1HhioAE5KkqQCeF1V1V8J74MADHH/X733zImASJL0DIBnALANyQOxkpIkTVtMWZadLGxEhCa+B7QzEPLPXd0GRb2GOxEO/7cWR2AwGBjrS5uJggHKsqwpHuOJEY2TDiC14QrIWIBfQ9rsvCOTmPebn6/4TGsNSYzCs+tUxp0JtSzL7CDxvhv0XfgLgCzLDHESkaJ2H3300WntUpRYURzW0dGB+Ph4BAUF4ebNmywXCL9mdHul4IOKoqCrqwvNzc0YGxvDypUrERAQAIPBwLirRYsWOdX/8pe/jKtXrzJ9lcFgwKJFi5CYmIjm5mZMTU1hcHAQiYmJKCsrw86dOxEeHs6cOcmia/v27WhtbcVXv/pVrF27Fq2trVAUBSEhIcjIyIDJZMLVq1ehKAoyMjJgt9tht9tx8eJFtLW1wcvLC7t372YisPr6euTk5DBldWtrK7q7u9HY2IiEhAQMDQ3BaDQiJSUFdrudcWg6nQ6+vr7o6urCtWvX2KWDzH1bWloQFRUFAOjr60NgYCDmzZuH/fv3o6enBwcPHsSzzz6LkpISLF++HKdOnYKiKHjnnXeYoyDtnbfffhuDg4N49tlncfGiQ9Bis9mYUcIXvvAFJiKkNScT4cDAQGzduhX9/f1M8Z6cnMy4BsoemZKSgqmpKUagd+3axcRPlDdEVVUkJyfDZrMxUSKAaQEeKR5cZmamJi4SUxhQGZ7QkENrT0/PtPOodSGl+nDg42ngTom+DMAVAC/AoTQPAvBPAK7ce/fnhvWqqqbAQcC+IUlSljhEjTrTJqmq6q9UVU1TVTWNDh8P9OFdhSHnP4DWex4ZcYsN4JMPAjjbiPPImMqICJpH2oRcqBz/tyx/YsrJP+dv4TQuf39/l4hWRNrk9UpZ2yjooFaYE/Id4YlHfn6+U7Y3rUROIojzEp/RwXK3ZlpAB0Y05eUvAKTAB8AC2YlrTu2Top8U4xRhl1+PpKQkJCYm4p133sHExARbl7q6OtTU1EBRFISGhsLf3x/Jyclob29HamoqduzYgYyMDDz11FMYGBgAAOb97Ofnh9raWpw7dw6KomDZsmW4efMmYmJiUFtbi4KCAhiNRvzhD3+AxWKBJElYvXo1nnzySQQGBmLbtm0AwKLY+vn5ITo6GgCYLwN5c4+OjqK7u5t9/6NHj2Lbtm1466232H67du0a+vr6YLfbsXz5cnR2djKPbwrXDoAh00WLFiEqKgotLS3YvXs3srOzIcsyrl27hqCgILS0tECWZTz++OPIyspCamoqkpOTWXKoqqoqKIoCvV6PtWvXIiEhAYGBgdi/fz8iIyPh4+MDX19fNDU1wWg0IjY2FkuXLkVlZSWeffZZZGZmoquri0Ui3rlzJxPX2e12XLlyBUNDQ8jLy4O/vz+ioqJw8uRJdhkKDAxETEwMW5OTJ08iLCwMMTExzHLu0KFDUBQFeXl5sNlsaGlpYcEjt27dipaWFrS0tGBychItLS2IiYlhmRYTExORmZmJxMRENDQ0ML8XEnPt3r2bSRTE/c2H6xGlAfxvOodkJCOeHx5/zXSuAPeOhP8TwKuqqmarqvpfVVV9XlXVRwH8EsBP3NR7IKCq6vV7v28C+AOAtUKRqwB4RX4wgOuz7YcOvKt3hFRmaoNHaDwS5ImPFsfg6qNRm7xjG68boHYosQxFUKXnPKJ3JSYS/6Z65IFNyJYseGJjY6eFTaA+RYJFt2EtKw5F0Q4b7W59DAYDywIION/4eUKrtY7iLYzWFXCOH0acF1kuNTc3Mwc2frzUFkVbJeQnWs4ZDAa88MIL2LhxI2pra3H8+HF2025ubmbRcRVFwdTUFC5cuMCQEp9UKSoqCrIsIzAwEM899xwAoKWlhVkikZJ8xYoVDEmYzWaMjo6ipKQEiqIweXhzczPLGb59+3YYjUZGbBISEmC1WlmujeDgYERHRyMwMBAHDhwAAKxbtw6VlZU4d+4cfvWrXzGRka+vL8LCwjA1NcU4MILQ0FDU19ejqqoK5eXlOH36NOOKASA7OxtHjx5lvibr1q2DLDsyOVJASV9fX9hsNkRHR2NwcBCdnZ1IT0/H4sWLceTIEZjNZqSkpMDLyws2mw3r169HZWUlZFnGihUrWJif8PBwbN26FSUlJbh06RIURUFpaSlWrlyJ+Ph4REdHM11KaWkpDAYDi2NF86J9sHjxYhQVFeHgwYMwGo3o6+tjY29tbcWVK1dgtVohyzK8vLyYR3tiYiIyMjKYY6KiKEy3x69dREQEE0Hyl0ISWVG9Y8eOMSMR/mJDP1rg7rLlzkJTBHcEJF1V1VfEh6qq/gJA+vTiDw4kSZorSdI8+hvAFgCtQrETAPZKDkgHMOFO/6EFIkIQQQuhabUhms+JLKDYphaIH41HnGStRN7DPEHw9/d3MsUjIsDH+OfbpmB9Wu9I/m+1WtlNMjMzk9mhuzLr0/qfrKD42z0/P1eh57UIHc8VaZkpXr58meUL4Q+NSKjIO5eP90X+BsQVtLW1ITAwECUlJbBarTAYDCwsCX0nGhNxXN7e3izmExGmmpoa5Ofns3FScENZlpGRkYHMzEymCC8oKGDZBEnUFRERAR8fHxYnKjo6milDSSRF+hTy+p6YmEBpaSnWr1+Pb3/72ygrK0N2djY6OjpYZsHg4GCUlJTg9OnT6O3tRUhICNMvnDp1Cq+++ioURcGBAwcwf/58AA7RDYXniIyMxLFjxzBnzhwcOHAAo6Oj6OjoQEBAAIqKivDBBx/gwoULsFgsjAgTp7Bv3z4EBQXhwIED7PZbVVWF/v5+rFmzBmvXrkVaWhoLKtnT04OwsDCEhYXBy8sLZ8+exaVLl7B161a2dr/4xS8wODiIixcvQlEc4e8bGhqwZs0a7Nq1C6tXr8bExAReeukljI6OQq/Xw9/fH1u2bIFOp4Ofnx+2b9+OjRs3MiJVX1+PlpYWZm03Pj6OwsJClJeXIykpiVmxAWBh3CsqKhAcHIyAgAC2f8lE2GAw4Mknn2SXMSIKPj4+iIiIQHNzM9rb25GTk8PWOTo6Gn19fZicnERMTIyTtzm1Yzab0djYyAJYAo6LCeWS4bld/qy4Ig50/meT8sGdFdYlVVVXz/bdgwBJksLh4DoAh57muKqqP5Yk6esAoKrqa/fMeP8dQC4cZrxPqarq1kuQV6ITcnGXxctT0NJruHvuqg1gZucfQnLijVpErLw5LLVLZSnLmlZedt4Hg3/nanw0x5nWQBRLUYgHVxZnoiMd1eNltMQl8d75AJw8qSk3NOBs0kzOi7Ls8JzmLWPIjNLf319z7CKR4+fIO3XRelVWVqKnpwdZWVn48MMPmT8B+SIoiuIUwqOwsBC5ubnsG1ksFly4cAHl5eV44YUXmJL1xIkTyMnJweHDh5GQkIDR0VEsX74cX/jCF9DT04NTp07h61//uhMXSSavlM61qqoK169fx+bNm1FcXMzES4qioL+/HxaLBX5+foxgUbKt4eFhrFu3Ds3NzVi8eDGuX78Oq9XKDBxefvllLFu2DFFRUfD29mYKfT6Cc2hoKEpKSrB06VIWfXf79u0AgN7eXgwNDeHq1au4fv069u/fj/b2dgwNDeHOnTtMZ3Dq1Cns3r0bo6Oj8PX1hdVqRUBAAEZHR6HT6dDQ0IA5c+bg7t27SEpKYiFJ+vr6kJCQgNDQUNy4cQNTU1PMn2Tr1q2QZRmdnZ2Ijo5GcXEx0tPT8bvf/Q7PPfccOjs7MTExgXPnzuGFF15g+4bK02WO/G8yMzOZqHPx4sXYsGGDUzri2NhYKIrDATInJwcAmHf9qVOnEBkZiZSUFGaaTQYdkiShtbUVCQkJzOqQ56xdnSFXlzTCiVri/Psx4+0D8N+1XgF4WVXVCM2Kn2EQrbBmQtqegDvE6cr0lwcRCbrjeFwRC9HjnTaDiJj5m4eYy4MXv/GiHHcWWPx4Zho7ESZF+STvBiFSysmg5e0tynxpHMRlUT2ey6AUpry1C7/W9De9500dzWYzfvKTnyAnJwePPfaYE4epZcJNlxCaC68n4S1fFixYgOrqagQFBUGn07GYVKSDMBqNrDy/1jTX2tpatLa2Yu/evcx6htaUTG1v3bqFoaEh1mZvby927tzJ8nsoikOZTRAVFYXDhw9j//79uHr1KsbGxtDf349du3bh5MmTyMzMRGVlJbZu3cp8TYKDg1FXV4ehoSHs3r0bnZ2dGBkZQU9PDyYnJ2Gz2fDiiy/CZDJhYGAAkiSht7eXie7WrVuHM2fOYGhoCOHh4Whra2Me2YBDX6LT6bBu3TpcuHABAQEBLCikj48PgoKCcOjQITz22GPQ6/WYmJiYRmR+85vfYMGCBXjmmWdQUFCAp556iokAa2trGRe5detWvPXWW3j22WeZ93pAQABMJhMAR+KrlJQUWCwWmEwm+Pv7IyQkBNXV1czPA3DEydLr9Wxtly9fjk2bNqGx0eGWRpcTk8mExsZG5k9iMBhQWVkJwKF78vPzw1tvvYW7d+8iMzMTAQEBiIqKQn9/PxTF2ZKOzjddJugMkG9JVtYnKmN351c0IHKFz+6HgLyl+eIeqKr6lLv3n0V4UAmlCNxRbGDmEBuEBHNzc52y3mn14wrR80REdCCcycFP62bPl+VNDbX8Qtz95seuKA4fClJ08sEMaeyu4lS529QiQRDjWFF9cU7UN5Uj+Tj5lpw+fRo+Pj5OcY/IvFOLiNA+aG1tZXGh+P7NZjOLv2QwGFBbWwudTofg4GCcOnUKdrudEUIxthZ9y/DwcACfpDE1mUy4fPkys/BqaWmBzWZjDoNz585FUFAQBgYGmA/DBx98gPXr1zMTXV9fX0xMTGDDhg1oaWlhdTMyMmCxODL6BQYGor+/H4mJiaiqqkJzczPbK+np6YiKisLBgwexYMECfPjhhyxHysGDB5kJLwAW/n7r1q04dOgQUlNTMX/+fBYNOD4+Hnq9HvX19Vi0aBHKy8vxxS9+EQsXLmQ3ezIHphzjdXV18PHxYfMeHR3FggULmLNidHQ0li5diqGhIVy+fBn/83/+TxgMBpbbHABOnTrFwtsDYHqRuXPnIioqCidOOJKvbtu2je0Rcpy02Ww4ffo0li5dimeeeQaAI3/7qVOnsH37dly9ehXR0dHMn+fKlSt49913ERwcDIPBgD179jCRU0pKCosq0N3dDQC4cuUK04FRPDUyFSaRJ1kV0j5WlE9C2/Cha1xZXmqdEy2QJEnTjPcz6wfy54C0tDSV7KV5mI2oSaznLiufyOFoIVlic7WQE9XR8olwdaMQETDgfBv2VATFP+cRL89xiARPHCv9HxkZyTLr8YpA8bcWxzYTJ0cInLgREhl1dHQgIiKC5cWgg0Qxm8jKSgwcSG2SiI33DqdcEVrjoEi2u3btYuIiXoRIcZgU5RPP6fLycuTk5KCrqws2m43lkCAg4l1TU4POzk4Ajsi4YWFh+Od//mf4+fnh7//+79lczGYzWltbGWdTWFgIu92O6OhorF69Gvn5+cwfYWRkBJs3b0Z/fz9Txre0tCA6OpolmIqOjkZrayvLlU6c48qVK5luJSkpCUePHkVeXh7a2tqQm5sLwEHgDAaD0xoQx3Tu3DkmSoqPj0dXVxcAx43/7bffZk6EXl5eWL9+PROnKYqCzs5OLFy4ELLsiIv1pS99CUuWLMGtW7dgs9lw7tw5ZGRkYPPmzWwNTSYTmpqaWNiVsLAwFBcX486dOxgaGsI//dM/oaysjMWzCgkJwYYNG5gZtF6vR1RUFA4dOoSNGzdi1apVOHnyJLZs2YLLly+jra0N+/btAwC88sor+MpXvoLY2FiUl5cjLi4OXV1dqKysRHJyMrq6urBq1SrMnTsXWVlZMJvN6OzsRFBQEF5//XWkp6ezQJCFhYVYunQpFi5cyPADrSHF5+JNjOkM0Dmvq6tjPk9iPDt3ER+0YNYZCSVJCpYkaQP3/3+TJOl7934iZ+zxMwiqqnpsRusJyLLrePrUrvg/r+wFHBtczAnO36K1FPmuCJ5486UfV2bIvHLblWKc6hPS5BX7vGJPHCu1SSHF6TZP46+urnayGKGyWm26S5pDJo68KIvyR/v4+CAtLc0pIKGiKE4xjSYnJ53mS32QwQDd3sikVBwHLyrkQ0pQYinqNzExEfX19SgqKsKSJUtgMpmQm5uLkJAQJCQksCCFAPD222/j/fffh8lkQnNzMxITE7Fv3z7s2bMHGRkZCAkJwQ9+8AOkpaXh5z//OYxGIxTF4QE+MTGB1NRUJm5Zv349VFWFv78/8vLy0N/fj+HhYWRlZaGiogKSJDEvaFVV0dnZiYiICFitVrS2tsJms2Hnzp3Q6/UsX4ePjw9k+RMrtOjoaHR3d7Mc7JWVlThx4gRaWlrYGphMJrS3t7O0sykpKejt7cWJEycQFRXFcsDrdDro9Xp8/PHH+PWvf423334bR48eha+vLxITExEQEIAbN25Ar9fjS1/6EiwWC4KCglBXV4fx8XHYbDbU1dXBbDajuLgYJSUl+N//+38zLqCzsxMlJSUAgMjISKxcuZIZeuj1epaXBABu3bqFjRs3MjHSE088AaPRiK6uLmRnZ2NoaAhxcXEYGhrCsWPH0NraitWrV6OpqYmZ+b7yyitISUnB/v37MXfuXFgsFqxbtw4pKSmMmxoaGsKpU6cQHx+P2tpaVFVV4eLFi9i2bRv6+/uZZVt1dTWKiorYHqZ4XXR+6AzQJS0iIoIRDz7WG3HcfPbS+8F/gHsrrJ8B8OP+fxbAJBy+Fi/dV29/ZZAkyaWZ6Gw5kJn0J2K7PDIVw5GLuoiamhqGWMU+3BE8V5vAFYGjXBPuuCeqLxJE3v9FHCuvw+BtznniQpufV6pSGXGOWr4r9I6suajdtrY2JCYm4rHHHkNGRsY0573BwUE2zqSkJHaoeZNpOmiK4nCmDAkJYYdSFBvW19ejsrKSeanLssws18jkk2TVaWlpyM7ORkVFBTNkIOUrmT1Tu7/97W/x9ttvY2RkBCUlJYwjAhy3x2vXrmF8fByRkZHsBr9o0SLU1tbCbDbDYrHg/fffx7e+9S28++67LBKBTqfDtm3bMD4+jh07diAhIQHt7e1oaGhggRxbW1vR2dmJyclJDA4OwmAwID4+Ht/85jeRmJiIvr4+NDY2OlnS2Ww2bN68mZmghoSEsEuD0WjE9773PSxYsIDpCfz9/bFnzx7ExMTgypUrGB0dxfHjxxEXF4dHH30Uer2e5f04deoUvvnNb+IXv/gFLl68yCyd5s+fj82bN2N8fBxf+cpXcPbsWWRkZGDNmjWorKyEn58fent7MTw8jJUrV6Kvrw87d+7E/v378fTTT2P58uXYtWsX9Ho95syZA5vNBn9/f+zevZvd6I1GIw4fPoxz587h1KlTWLp0KSYmJnDq1CnG2SxatAjx8fGIiorCkiVLWGTkwMBAfO5zn4PZbEZFRQV8fHzw3HPPsX1lNpvZWmZlZWHlypV49tlnYbVama/K9evXMTY2htdffx0xMTHIy8tzyj9ClzHaf/xeJ66KMkmSOToRGz6ag5ZZvSfgzhM9WlXVEu5/q6qqBwFAkqRzs+7pMwDiTZ/gfoiHlljJXbs8MnV12yfg02pqtclHnhX1GO7iSIngaj205kf98n3SGLRyo2shdiI45ClvMBg09UfkcS7Om9dz0Pgouivpe0SFPq8s7+joQF5eHhsT71tCIjJSqtPtmoIikn6C5kBhvCniqjhWRVGYnF1RFHR3dyM6OhoVFRVYvHixk+Jfp9MxD26LxYJnnnmGEQkKi0GiFbPZzAIVRkdH48KFC9Dr9TCbzZg/fz7S0tJw4sQJ7Nu3Dz/60Y+Yf5C/vz+8vLywefNmBAYGYmjIEcSBcoP09/dDlmUmztLr9UzkZrFY8K1vfQvR0dEICAhAdHQ00tPTYbFY0NjYiKamJly9epXpMuLj41FQUICcnBy2H//u7/6OiZMo5Ao56xUVFWFsbAwdHR3IysrCd7/7XaSkpDDO52c/+xmuXLmC8fFxrF+/HufPn0d/fz9GR0fR1dWF0NBQ2O12xMfHY+HChbh+/Tq2bt2Kzs5O2O12zJkzB7Iso6OjA3a7nSmYIyIiWGDKBQsWoKurC76+vggKCsK1a9fw+OOPIzIyEs8//zwuXbqEpqYm2Gw2jI+PIysrC6Wlpejv78fHH3+MFStWoKioiOUTARwOqStXrkRFRQXbd2fOnEFdXR3279+PkJAQfPOb3wTguBRERESgtbUVJpMJX/7ylxESEoLs7Gx4e3tj8+bNTH+mqipqa2uRnp7OxGze3t5OZ5McgXt6epgDMelDtfADr8qY6XLMgzsOxEv4n89Qs3DGlj+DYLVapylZ7wdmy7XwN+qZ6hBH4k7eTyy3ePMn5Mc/dzUeV+I3eic66pH+4NixY8wTmfrVCgHDh2jn/WQI3FmmUVpRnguhGyHvrAeAhWSguYhiNDGEfGdnJwvtLnJINK6kpCSkpqayEBV0uKhdyqMQGBgIg8HAzFSpD7KaOnv2LCN6u3fvRmBgIHbs2MFk8USkSK9iNpvx8ssv48KFC7hx4wYSExPR2NiIzs5OFsqksLCQxYBqbW3F0NAQFi1ahMOHD2Nqagrz5s1j62UwGHDt2jUWOyorKwtVVVWwWCysz8WLF6O/v58RfErTSn4FHR0dTmKqn/3sZ7hx4wYLpTI5OYm4uDhs2LAB8fHx7LuRuJbEOcPDw2htbcW2bdvwv/7X/8Lp06dhNBpRWlqKBQsWYO7cuYiPj0dMTAx2794Nm82GzMxM2Gw2nD9/HqOjo1i4cCEuXLiAJUuWIC0tDc899xzi4+PR09PDwnysWrUK27dvh7+/P8bGxtDY2IigoCD09/dj8+bN0Ov1MBqNePvtt3Hs2DFMTEzAaDSioKAAk5OTWLRoEX74wx9idHQUAQEBsFgsCAwMxLp166DT6TA6OoqtW7fi+vXrWLVqFfbt24eIiAi0t7fj2rVrTqH1BwcHIcsyVq5cCYPBgDNnzuD8+fNITEzEtWvXYDKZcOTIERQXFyMwMJAZQkRHRzM9CF3yDAYDampqWDTngYEBKIojQRjpzsiZkM6Mv7+/01mgsykCjwuIq54JhxC440BuS5IUpapqFwCoqmoGAEmSYgBo5xv9jIOPjw8A7UB9niB3HmbLtcyG4MzEFRDyJERLQDd6kTMRWVvxhs5zM6ISHPjEeolupJ4EYeO5LVeb2BUnR2HHCfHTGHlTX2pPJHS8fwe/RiRaojFQOlxxvYlAx8XFscNLxJDWnZw3yUqJ3lPYeJ1Oh/T0dKSkpExz8PT392f+GJR+ls/Ut3nzZqSkpLAxEcIgHQvfll6vR0hICHp6epCRkYENGzYwQlRWVoYNGzYgLCwMr776KoxGI7NeItFaTEwMrl+/jg0bHKrON998k/mN1NbWsm+hKAo2bNiAXbt2obGxEVu3bkV7ezu2bNmCK1euQFEUjI6OIjMzk3ljU3RcMqteunQpqqqqmBPf6tWrUVxcDJ1Oh6amJiQlJWF8fBwWiwVhYWHIzc1lN2fKJd7d3Q1fX19cu3YNc+fORXd3NzZu3IiVK1cyef5Pf/pTrFy5EmFhYaiurkZqairGxsbg6+uL9vZ2+Pn54b333sOqVatw9epVmM1mnDt3Dv/yL/8CRVEQGBjIQpwoyicWTcSdUtKqgYEBZGZm4p133kFKSgp8fHzw1FNP4dSpU/D390d7ezuWLVuG0tJSbN++HWazGXV1dUhNTcWSJUtgtVrh7++PvXv34uTJk6iurobJZEJ0dDQUxZEPprOzE0ajES+++KITp28wGJwssojYE5dLJuF0oSIRlZbPG51bXlIgWkm6A3ccyPcBlEiS9PeSJCXe+9kHhwf492ds+TMIdOMTEZaWp7QI98u5iLqD+wUeodLYydNVBDFHMn+Lp4i1hISOHTuGsrIy5OfnOyFkMYQKJRZ69NFHnYKwEdLmPV7pOS/q4uNp8YRESydFVkUUUiQ/P5+FpaC2Xa0r5UrnY1PV1tayPmkevIhM1PeQOIsIkZbokb/d8fogvV7Pbve8jJk8041GI3p6ehAREcFCmdy6dYspRyk3B5/ECgBD6MAnFl/R0dGw2WxMGU5hMfz9/REfH4/vf//7UBQF6enpLGYUmQRLksQU/dQmKe4bGhpw+fJl2Gw2xMTEoLCwEJOTk6iursbWrVthMBiY+W1nZyckScLSpUvR2dmJW7duob29HbLssLb64x//iKCgIExNTeHkyZMwmUwwmUwwm83w8vJihHdoaIh5s5PX/qlTp3DmzBkYjUasXr0aZrMZ7777LiYmJmC1WvHBBx/AaDTilVdewdy5cxEXFwcfHx/k5eUhPj4ey5Ytw4IFCxAdHY2cnBxs3rwZvr6+eP7555GXl4fg4GCMj4/ji1/8IqxWK27duoULFy4wyz0AWLFiBfP6bmtrw2uvvYZvf/vbTJ/57LPPYtOmTejt7UVPTw+7sMTGxiInJweLFi1Ca2srTp48id27dyM0NBRRUVEYHBxET08PKisrERAQgJqaGixfvhzx8fGMI8zLy8PnP/95pjNJSEhAeHg4W9/k5GR22ZJlGTt27GDuAOKZomRWIvHgdX50HvmwRDOBSwKiqmoZgB1wiK7evvezCcAOVVXf86j1zyi4unG6WjRCkp4qmkSEdD9KerEdGiePfPk8Gq7642//FNuJEI0sO2JWzZ8/n92y+JsIZbQT2xTHQVkX+bHyYUVMJhOLQyRuYnH8BPRNyHqIjxtFm16L+KSmpiI2NpaFfZEkiSnsaT0AB0Km4JBaRJb/TQeM+heJF4mtyCGRJ3Q0royMDGzZsgUnT55ESEgIent7mX8GhTCRZZnpX8icd/Xq1UxMU1JSgn//939Hfn4+7ty5A8CRSS87Oxs5OTksLMbp06fxm9/8huW+IK7D398foaGhMBgMLJxKQkICjh8/ju7ubqxfvx7+/v5ITEyEl5cXE93Z7XasW7eOpYZVFEdEXkJoNpsNw8PDmJqagtFoxPLly9HY2IjVq1fj29/+NgwGA8LCwvCLX/wCgYGBmJiYwLe+9S0UFxcjLi4OV69exaVLl9DT04Px8XFMTEwgPz8ff/rTn1BZWcn0Rb29vTAYDJgzZw7Gx8cxf/58NDY2oqOjg3EmTz31FNra2vCLX/wCd+7cgdVqhbe3N8xmM15//XWUlZWxb3jx4kX4+fnB29sbDQ0NqKysZFGlyXcnNTUVSUlJaG1txe3bt9He3o7x8XG8+uqrOHjwIM6fPw+z2YyQkBD4+voyn5qioiLmOJiQkIAtW7awDJRdXV1YtGgRjhw5Ai8vL3h7e8NgMGBqagpXrlzBnTt3YLfbUVZWBqvVitLSUhYV++bNm1i+fPm0i9Dly5edxLFi0FOey6C9ORuxtyv4v84PxJOEUlr/E8xECFyJZWYLWu1oidlc9Sc+58U7tbW1TgmXtOZFfbnqk57xOg4tr/eamhp0d3cjOzsbZrNZk/vjw7Rr9S96pfNJpcQ6JDKx2WxMWSqK5xRFwdtvv+1kiUJcF2Xc48OadHR0MG9p8n0g/QkAFqokJCQEc+fOBQBmgcRHAKYAibm5uWxeaWlpLDugLH+SEwIAC1Vy9epV+Pn54ciRI1AUBS+++CILs1JZWclEXvn5+SySrMlkQmVlJcrKypCQkMD0FC0tLU5+MOSZTRkPY2JimH8CmfF2dnYiPDwcOTk5zLpnw4YNKCsrw9TUFCRJYibM7777LubPn493330XQUFBGBwcxLx58/DUU0/h2rVrmJqawtTUFEpKShAaGopVq1ahu7sbBoMBCxcuxNmzZxEaGoo9e/bgypUrCAgIwL/927/hK1/5CuLi4tDe3o5Lly6xAIi7du1iXu9eXl7w9fUFAExMTGDOnDkYGRnBN77xDYyMjCAoKAhtbW3o6+vDli1bcOLECQwMDCAwMBB+fn7Izs7GxMQE0z3x36qyshJtbW3IzMzEe+857s+qqjLT51WrViEvLw+HDh3CCy+8AH9/f3R2drJ4V1VVVTh69CgLu7J582YUFhZieHgY8+fPx6lTpxAQEICvfOUrsFgsyM3NRX9/P+x2O/R6PVOYBwcHw2QyTctRxO9Hk8nEQve78qkSo0wQiI7RdHZcORK6zQfyfxq4IpYzIV5XiFwLufKipk8DrsQ77sqJYiPRiooSyQwMDCA9PX2anJMnJnw9HkT9ikg8eJkqAGRkZDghU7EtsiLhiZrYrxizy9/fnzkNimOiOVKuaX4svE4FcOgXvL29WZ3a2loWNoPqent7Y8+ePWx9Cel2dHQgMTERqamp0Ov1LBQHEQFynOS5ktbWVuh0OqbgprHxKWZJGarX61k8rNHRUSiKI8Bhd3c3S3RlNpuh0+lYX0FBQejr64Msy+jr68PChQvxz//8z2hsbERfXx98fHxYGA3A4QczMjICnU6HgYEBFvaEnNuIg1u/fj1+//vfs6RKmzdvRkVFBSIiIhAfH4+ioiJmYfXee+/hxRdfZMTB29sb69evR3l5Oe7cuYOoqCioqoq7d+9ixYoV0Ov1+PDDD1FWVoZ9+/YhMDDQaY+Mjo4iMjKShbafO3cuVq1aheDgYEbAurq6kJWVhcrKSsTFxWHNmjUoKSlBYGAgRkZGUFpaCsBhahwXF4f333+fcSsnTpyATqfDli1bcPHiReYISVwu5UYh/UN1dTVu3LiB8PBwFkkgOjqaKdj37t2L8vJyhISEoK6uDufOncOmTZsQHR2N1NRUFuuqsbER+/btYxyuyWRCYGAgIx5VVVXYsGEDbty4geXLl0NRFJbhkQ+cSCFqiCCQlR5FPRDPraiX5M+VoijTrLE4J+TZ5QP5PxEomYo70FpckXjwPgNie/QxRRaSf+8peEqEeEInckui7qanp4dtLlFEJvqfaI2d74OXmWq9pzK8voDWjt6lpaUhJSXFySmKZ7Mpgq4oFgI+OeQUfp76psRR/PqRDJv8Kfbs2YOsrCynQItECHhivGbNGia2OXHiBGJiYpCeno6EhARmekviOwp7QUH7ZFmG1Wpl+o2EhARs27YNzc3NsFgsTjc9igILOC46lLSIcnRPTU1hYGAAer0eFosFR44cwcGDBxEcHAxVVdHY2Ai9Xs9yct+6dQtNTU1oa2vDu+++y3wniGNUFAV+fn5oampCdnY2dDod/P39ERwcjOLiYlitVkxNTaGhoQG///3vsXv3bixcuBDLli1DSEgIU4TT+E0mE6qqqhh3dOvWLfzzP/8zHnnkETQ0NCAgIADx8fHQ6XQICAjA888/j7a2NlitVpjNZoSGhsLLywteXl6YmprCm2++idbWVlitVsydOxd+fn6oqKjAjRs3cPXqVaSmpiI4OBjh4eEYGRnBj3/8YwCOHCWkTM7OzsY3vvENlg9FVVUMDAxg06ZNjEuIi4tDVFQUenp6WL55CnVSXl6OiooKVFVVIT4+Hk8//TS2bt2KpKQk5ObmYs6cORgYGMDKlSsRFxeH8fFx/PKXv8T4+Dhu3boFAFi2bBnrNz4+HrLscKr805/+hPPnz+Nf//Vf8frrr7Ox7tu3DyEhIcjNzcWpU6ewZMkSvPLKKzh69CjCwsKYtVxzczPGx8fR0tLCLA0VRUFJSQmCgoKmEQ/i4l1dDOkZL2IWcJ9W/iX3BESSpDmSJP1Xd2X+loD3RHeHyN0hbi0qzrdHHIgrz2lPvd5nK4/U4lhE3Q2NjXJAaI3Flf8JgZZFlTh3V5uTXxtecWcwOHJy8OMlIsMTfXovmgaTtRQRM/pNugnyvCWHwFWrVjEREI1VkiQmuuKTZ9H8Ojo6kJubi97eXsiyzMRpPJHZtm0bZFlGT08PYmJiYDAYkJCQwLJDAg6up76+HsePH2cOf21tbYiOjmYKWBLxkKNZeHg41q1bB71ez26IRMAGBgYQHh4OvV4Pq9UKi8XCRHhjY2NYu3Yttm/fjvnz52NiYgKFhYUICQnB+++/j7feeguxsbGora1l3s60TitWrMDw8DAMBgP27t0Lq9WK4OBgGI1Gprh+6aWX8PbbbzOT3g0bNuD69esoLi5GcnIynnnmGYSGhiIrKwsmkwkrV66ELMuw2Wyorq7G4sWLkZSUhIiICPzd3/0dfHx8EBwczKLMLliwAFNTU7Db7bh06RLGx8dx4cIFXLt2Df/xH//Bgg96eXlh7969sNvtCA4OZrGxjh07hh/+8Id4//33cfToUdY3pRI+ePAg2traMDExgYKCAphMJpZSeNWqVUhKSsLSpUvx3nvv4Y033kBVVRWOHDmCDRs2sPwl2dnZWLBgAXx9fVmdvLw8FnDSy8vLKcT7+++/jx/84AewWq0ICQnBxx9/jMnJSQwPD6Ozs5OZ58uyzPRcy5Ytw/Lly5lXOoXK8fPzY8nP6BxReHnRCMNV+gQ6V/w55Z9x59tbq65bAqKq6kcAHndX5m8JyBMdmJ5/wxW4QvqkRCWkxlshuXMY1JI7zpbQuKqr1R/lsqB3PIIVkb0rqy5xTFp/WywWp1u+K6B+ySuWL9vc3IzY2FinxFH0N/XFW9KRGMiVYr66uhr5+fkAHMHwKOSHuE4Wi4URIeKKIiIinPq12WwwGAxOTpO0BpRbhbgoCh1hMplw+PBhpucBHHswKioKS5cuRXFxMRoaGhAZGYnOzk5mXjt//nzmeEa6EYPBwNK6tre3s/Dt9fX1OHHiBBYtWoSKigr86Ec/YomZnnvuORgMBgwPD6OtrQ3d3d3sO509e5ZZKm3evJmZuNvtdkRFRSE/Px/btm3D3r17cfPmTQwPD6OkpAR37tzBwMAA1q5dy3KfkyUXrRcRLJp3QUEBenp6UFxcDMBhGKDT6bBy5UqUlpbCy8sLa9asYV7ZoaGhyMvLQ21tLYsH9Y1vfIOFpenu7oa3tzciIyPx0UcfISQkBIsWLWI39K6uLgwNDWHXrl346le/ik2bNiEpKQm/+tWvMDY2Bp1Ohx/+8IeIi4tjllsbNmzAW2+9hVOnTsFisTBrLQD493//dyxZsgQhISH46KOPIMsybt++jcLCQub3QWHfh4eH0dvbi4yMDERGRmLhwoU4fvw47ty5A5vNBr1ejy9+8YtYv349izYcHh6O7du3Y9GiRSgsLMTU1BQ71yUlJQgLC8PChQsRHR3NfD78/f2drCF5PzMRv8iyQ9lOhiWuzrWrZ/f6uKN1nmdUokuS9GMAvgB+C0coEwCAqqqNLit9RkHMB+KpiMgV0uFDT1DeCU/aFGSLbv1SxL75urzs012/Wm0AzjkxZFlmgR1dRRfWyjFC829oaEB3dzfy8vKc7NC1xsLPjTgJMlOl+FV8+1THXVh1fh2pLtXTitjLv8/Pz2c3ZdKRFBYWYtu2bYwjURSFJcmicRHh+Jd/+Rf8+Mc/hsFgYH4gERER8Pf3Z74fRCjr6+sZp0E5HmgODQ0NzOeDX8/i4mKm5Cb/CBp7Y2MjbDYbfHx84OPjg3/7t3/Dl770JYyPjyMmJoZFjQUcJsZdXV24c+cOs5YKCwuDxWLBokWLsGnTJhw/fpxxUjS2c+fOMUX6hg0bIMsyampqWKDBwcFBZGVlMX3C008/zUQ1DQ0NOHPmDP7hH/6BJUei+YWFheHEiRPYtm0b/P39GYE/evQoE2v29PRgYmICTzzxBMu+WFRUhDt37iAlJQX9/f3IyMjAwMAA9u7dixMnTmDlypXw8fHBypUr8Yc//AFLly5FU1MTdu3ahfPnz8NoNCIpKQk5OTm4fPky3nvvPaiqis9//vOIjY1Fd3c3+vv7sXz5cgwNDWHv3r2oqqpCV1cXLBYLUlJSEBcXx0KNdHV1se9kMBhw584dFrSyoaEBVVVV+NGPfsRidFHgx+3bt+N3v/sd5syZgwULFqCnpwcpKSnYvXs3bt68ieDgYFy5cgU6nQ6JiYnTzib5dpAPEX9GtPKA1NTUsHQPPP7Swm/8M0VR8Mgjj7SrquqsxIRnBOSMxmNVVdUctxU/g/CgwrkTEtdSHvNlAGgSAbG8K2LGEwuxbdoslJ7U3Vj5iMH82CmhEYVOoXg6fE4RUfczU1RcHkGLwBMaCmVCYiKKHKplg+6ub5Lv8rcxcb78vMmElncO5JXa/Fi1bnMAphEZRXE4oBmNRgwNDWH58uUoLS1FbGwsMjIynA42jaehoQEZGRlsvJT7+/Dhw3jxxReZQyB5ID/66KPMOCAiIoIRExojEeCAgACMjIywECiHDh3C3LlzERAQgJ07dzJdDuXZMJvN+NrXvobi4mI8++yzqKurYwEPr1+/jhUrVgAAI1Jk2VZTUwOr1YqNGzcyQvanP/0JixYtQkpKCux2O06fPo25c+eivb0d69evx9atW1FZWYnY2FgW6ZcSQV24cAHV1dXIzMyETqeDTqdDXFwcxsbGUFxcjPnz52NqagoGgwEjIyNISUnBV77yFbz00ktYtmwZ9u3bhwULFuB73/setm7dinnz5uHkyZOYmpqCn58f9u/fj7i4OOaDQmlxg4ODmf/G3r17UVBQwIgS5QV58sknWSiTyclJfPjhhwgNDYVOp0NgYCCzALt58yZaW1uZZdiSJUswODiIpUuX4sMPP8Tt27fR1dWFr3/963jzzTfR09MDX19f5OTkoKKiAgsWLMBjjz2GO3fuYNGiRcyiDACz9tqzZw8LkEjnp6CgANu3b2dJwvhzxZ9f2meK4nCQpDPoCXwaK6zN90RZDwHO9tM81yHKDilRC4lg3JnjuuIeRJEXX5+IB5nr8WMQbxdirCpqkxAYlevt7WVKZNFjneasZdlBYxVYXqdyAFhUWz4BDvVBCJ0Ohrg+xFloESdKJ0sKcV5vwhOekJAQZj5KbZLoSbQQ4+uKNz4yOc7JyWEcmclkwksvvYQXXngBQ0NDiIyMZEicvlV9fT0zYqDos7IsM2W11WqFn58fW8uSkhKW5xwAc+Dr7e3Fhg0bUFhYCJ1Oh61bt8Jms7HbKsnOJUliyZJyc3NZWBLaLwEBAbBarRgfH8ezzz6LoaEh+Pr6Ij09HRs2bIDZbMbAwABz7COvdFmWGfewbt06GAwGpKenO+WyABzBHXU6Hf7pn/4Jw8PDKC0tRVhYGBITE3HmzBkWwXft2rXw8vLCD37wA9hsNgQFBaGsrAxxcXGor6/HSy+9hPfeew+PP/44Ll68iIGBAURGRiIwMBBPPfUUrFYrfv3rX2PZsmX4r//1v6KhoQEpKSloaWlBbGws1qxZg/7+fhiNRhQVFeHatWvMGm3u3LnYuXMni9ALAEuXLsX8+fPh5eXFHC6tVitWrlyJ7u5urFq1ioV+7+7uZqKw1157DePj40hISMDAwAAuXLiAqakpxMbG4vbt2/hP/+k/wWAw4MqVKwgLC2PftK2tDR999BGWLVsGi8WCnJwclJeXs2/Bn2Pax0QAZFmG3W53yvZIPkmK4ghNQ+eJxFh2u52dAVdnSgM0OQ1POJB+AIUA3lRVtX2mXj7L8Gk5EFH0pGUzzb8HPrmtipZKs/ET4ZE5MD3Zkyw7+zjwuTH4sjPd5ClnhVhPa9zi//yNnMQfWqIlWhO+X3pGEWN5cZI4PvJh0OLIeFEVz10QgWhoaJiWk4T8Ljo6OlhoEWqb8lJTCAhFcSjlKRggL35RFIfDJG9m2dDQAFVVERMTw26HZrMZV69eRXh4ODo7O5Gamso4qIaGBjQ0NGDPnj1O/ila3C2JwqKiolBaWoply5ZBr9dj5cqVLC0rZRUcHBxkjpgpKSlOITAsFgsTkVEfR48exfLly1nAvqGhIdjtdmzfvh3Xrl2DoijM4S01NRWSJGF0dJRxE/zNubm5GVevXkVwcDAzCMjLy8NPfvITfPnLXwYAFrE3KioKmZmZmJiYwMTEBK5cuYLS0lL84z/+I9rb2/Hss8/ipZdeQmBgICMCFN7lyJEjuHr1Kh5//HHmDW82m/Hoo48iOTkZxcXF8PLyQkhICCIjIxEZGQmTycQCLra2tiI8PBw+Pj4ssVZ7ezu8vLywZcsWvPXWW2wtAgIC8OabbyI1NRVTU1PYtGkTbDYbfvWrXyExMREvvPACSktLkZ6ejrfeegvPPfccS8a1f/9+lJeXw8/PD+Pj4ygqKkJKSgq8vb0xd+5c5ObmYnJyEmNjY0zPV1VVBR8fH+h0OrZX7XY7y3RIATPr6+tZpkvK70L+UOIFlwfxXGtdAB955JHZ5QPhIAlAF4D/T5KkWkmSnpEkab4H9e4bJElaLknSGUmS2iVJuiJJ0n/RKJMtSdKEJEmX7/18b6Z2P63TJM8RkLJV66ZM73k5P//heGSqBaJCiw8/Qn0QgiZkSP0aDAbmQMSXpfFpWYjRpqE0sDRGnsjwffD/8++3bduGlpYW5Ofns4x51BYvXqK+6Tcp041GI/Ly8uDt/YnBBxEH4JMwIVobnFd4k6EAEY+QkBAoiuLkgU8wOTnJYogRMiTOgZD+mjVrYDab0dDQgJKSEhZJlhwRiZgaDAZ2A6exkNWMzWaDxWLByZMnMTo6itbWVrS3tzOrKVKSX716FT/96U9x5MgR1k5DQwPOnj07zTqNQpRERkaytKpXr17Frl274O/vj7S0NLz88svTOAiSzwNAZ2cnAgICUFhYiOPHj7O1Jp+R9evXY/fu3bhz5w5KSkowOjqKxMRELF++HGlpaUhMTMTExASKioqgqip+//vfo66uDn19fVi1ahUiIyPxyCOP4Atf+AIeeeQRXL16FWVlZQgICEBMTAyzUFq2bBnMZjOee+45/Pa3v0VzczM+/vhjbN68GSMjI1iwYAEARxpeo9GI7OxsREVFobW1FY2NjQgODkZMTAzi4+MxNDSE5uZm7N69G93d3Th8+DDu3LmDnJwc6HQ6HD16FD09PThx4gTsdjsmJycZwVy5ciVz4COT4+bmZuTk5GDNmjXYu3cvsrKyEBQUhImJCaSnp8PHxwd6vR579uzB8PAwLl68iO3btyMwMBDLly9HfX09SktLMT4+jhMnTjCi0NTUhC9/+cvw8/NjVnj5+flYsGAB+vr68PLLL+PQoUP4zW9+A6vVivDwcBQXF2NqagopKSlsP9C+zszMREZGBkvPnJiYyIIu8kD7XzyftI9F3HCv3OzNeAFAVdXbqqq+oapqJoAX4YiDNSxJ0n/8GRNL2QG8oKpqLIB0AN+QJGm6jAE4p6rqqns/P5ypUa2w47OFmURP4jNRDEUfqLq62gk5EogfkZA+bRJ6plWOQET8fNt83CaxP94yS+vGojXf+vp6GI1G1NfXsxAZfEwesR4pkOkWrSgKU/KuWrUKgYGBjMMQ42cRO0716YdCtABg1nAWiwVFRUUIDAxESUkJGhsb4efnh8LCQqb8VhQFg4ODjKiQkyVxdbw8+eDBg4iOjmYhX0R9DxGVvLw81jeF2Sbi1NfXh7y8PAQEBCA9PR3bt29n1lfEmXz+859HTk4OoqOjmXGGzWaDLMsIDg5GQUEBysvLYbVa2T5ISUmBr6+vUxDGt99+G7W1tXjxxRfxhS98AVlZWQgODsbBgwfxyiuvYHh4GGazGTabDYsWLcLOnTuZB3x0dDRDxBQB2WQyISAgAGfPnmVRZZctW4bW1laoqoro6GgMDw/DbrfjkUceYSE7RkdHsWbNGlitVmzevBn//b//d+zbtw//+I//iKKiIhZaJSUlBU8//TSee+45ZGdno7m52Ulv1Nvbi9dffx0rVqxAQkICurq62E394sWLePfdd5GdnY3AwEBs374dixcvRl9fHwBg7969mDNnDsrLy5GQkIBVq1Yx4rFixQq8//77sNvt2LhxI2RZxvXr16HX67FkyRJUVVXhzTffhK+vLw4ePIgzZ87g8uXL8Pb2xpIlS+Dl5cUiBmdnZ2PHjh0wmUy4ePEi8vPzERYWBl9fX/zrv/4rfvCDH0Cn0+Hq1atYtGgRPvroI0xMTKCjo4M5sO7duxfj4+PIy8tjzpg/+tGPkJOTg/7+fixbtoxZzJEOa2pqCkVFRU4m62S8QfuVP3N8RGv+rIuXRNrbq9w4Es6oA5EkaQ6ALwF4CkAogIMA3gGwEUApgKiZ2pgtqKo6DGD43t+3JUlqBxAEoO1B9/UgYCYZoviBSO6elJQ0La2k+BHpGcn1+efu2E6tMWpZb1E7VIZ/DkwX04kwMjKCEydOOFko8URKFNfxsn/iCFVVdcrnTsj8xIkTyM3NZXJi3pO8oaEBNpsN6enpsNlsaG9vZxY0iYmJaG9vR1BQEAIDA7F7924oisLMKRsaGiBJErKyspyU+WVlZcjOzsbJkyexbNkypzl/9NFHUBRHOHjKRx0REcHEWUVFRSw8BuAwG+7r62NEjwiWLMvMM91oNLKAiCTeSUpKQk1NDex2OxNFEpdTW1uLZcuWobm5GX5+foiPj0dpaSkiIyOZrJyIQGJiInx9fXHz5k2Mj48jPDwcVVVVeO6552A2m/Haa6+hoqICW7duRU5ODmTZ4SNx7Ngx9p0oD3tbWxvL2z06OgpJkrB48WI2V7vdjo8++ggjIyNIT0/Hjh07MDIygtTUVISGhrJwKuQbATi4od27dyMkJIStQXFxMWw2G8LCwrB06VIkJydjzpw5MBqNmJycxPr161m0WL1ej87OToyMjGDp0qVMdEch1AMDA3H27FnMmTMH7e3tLHJxV1cXM7E+cOAAGhsbWY6NzZs3o66uDtnZ2YiLi0NZWRn+4R/+AYAj5hjlVo+IiEBISAjz4N+1axf6+vpYtODMzEyWOAsABgcHsW7dOuYw2dPTg+XLl+ORRx5BamoqPvjgA8ybNw8rVqxAeXk5li5disnJSZYnvr+/H4GBgbDZbCx3jMFgYLHVduzYwUSTkiQx60FFcSQyE3WdWhZaPP4R8YU73OKJCKsbDl+Qn6mqulpV1X9TVfWGqqqFAMo8qP+pQJKkUACrAVzQeJ0hSVKTJEnvSZIU76L+M5Ik1UuSVD8yMvLAx+eK7XMFhGApMJ0r812xDoW7IETE+6HwQR5d9c2LnAgZA5+IlHh2FvjErlx0QBL/XrRoEQ4cOMBEEXxbIvdFyLO5uRkAWN6TzMxMTXHgtm3bmOMeGS1QjonR0VGWoY+y0FE2OYqkO3/+fNaWv78/9u3bh69//etITU1lPhu8rmbbtm2IjIxEXl4e/Pz82HODwYD169ejv7+fpcCNiIhg4iyDwcByTkRERCA6OtrJUZHETrdu3cLx48dZtjlSxKakpCAmJgbFxcVMnh0fH487d+6w7HOKorA0u6RopRspEeVjx47h6NGjLAXsT3/6U9y6dQsxMTEwGo3MBLiiosJJLMgTd/LPoDSzer2eeVVfv34deXl5MJlMTExKVlq3bt1CREQEduzYgerqaoyPjzOd1tjYGN566y3cuXMHO3bswI4dO7B06VJUV1fDbDbDx8cHNpuNBT+8c+cO/P39UV5ejnfffReyLOO//Jf/gpiYGCQlJbFQMiMjI8jIyMDevXsxb948WCwWdHd3w2azITExEStWrMCjjz6Ka9euITAwEGvXrkVCQgITTQ0ODmJ0dBQ7d+7Es88+i/7+fvz2t7/FzZs3UVZWhhs3buAnP/kJfv3rX8NqtWLr1q0sDW9kZCRyc3Ph5eXFOE/SDZEj4I4dO6DX67F9+3ZUVVXhwIEDaGpqwp07d1BXV4fOzk688cYbSE9Px7PPPouenh7cuXMH3d3dsNvtWL16NUJDQzE4OMj2EJk6K4qCq1evstww/v7+WLNmDfMRoT1Dvj90JsWzZrFYpkXSFs+uO3DJgUiS9DUAJwEkqaqq6Rmmquo33bb+KUGSJAOA3wN4XlXVW8LrRgArVFW1SJK0FUAxgJUaY/wVgF8BDiW6p33PdKun91psnyeUm9dL8G26qsvf2EXETM/dKcn5vvi6vGMelVGUT8K6i7kweIV4W1sbk7cSwuTb59u7fPkyiwQ8NTXl9E6cK+9pzosd7XY7M2Ntb2/H9u3bNa3CaIxklaVlEEBcACnnW1paWJgSyjTIB6r78MMPsX79enR2drLvR+IXRVGYgxc/J8rNkp+fjy1btuDmzZvYuXMnAEcspIGBAeTl5THuiURf4eHhzKKKAjc2NDQwXcnzzz/PUs5SrnB/f3/s2rWLxUIaHBzEwoULWV6OyMhIdvOkzILp6elMP6QoCrKyspCQkIBLly6hoKCAIdqamhoEBwcjKioKXV1dMBqNLCVtVVUVUlNTWZiO3t5ebNmyBcePH2fxqNasWYNbt25hYGAAra2taGtrg5eXFzZs2IDW1lYsW7YMLS0tGB8fR3d3N1paWrBw4UKWtz04OBglJSV46qmnUF9fD5vNhjlz5iAjI4PlEPnoo4/g5eWFqKgoeHt7w2q1snl3dnaywImJiYkAHBxQfHw8Vq9eDQAoLi5GfHw8li5disbGRjz99NMwGo1Mf0NJvgYHB7Fp0ybcuXMHR48eRWZmJoxGI15//XUsXboUNpsNZ8+exebNm3H+/HmcOHGCBbK8desWdDodfHx8mAXlrVu3MH/+fJSVleHmzZv42te+hrNnz8Jms+Htt9/G2NgYnnjiCfT29iIlJQVRUVEsoCdlw6R8MrIsO/lK0UWVd2zmxbWAQ8LQ0dHBjGdEfMEbAGmBSyssSZK+DWALAD2A0wDeA3BR/QuF75UkSQ+gBMD7qqr+mwflBwCkqao66qqMp1ZYMxEBT97PRLnd9e2qLv/O1d+i+e1M7dP/PPERnSJF3YvYFx/dk8qJ7fO5SNrb252QO7+56ZmWlRmvnxGdAsl0UXRCdLUm4jxqa2uh1+uZ34bYNgAnboU4PxJDkpEDiQiIgADA6dOn4ePjwyzAKGIwZTGkCMAkuiIRGYVRJ6I7MTGBkZER7Nq1i4V9j46ORmdnJ4sg29HRgaVLl2LTpk24cOEC1q1bh5aWFkxMTOD69evYvn07Ll68iHfeeYfpqwoKCnD9+nXs378fIyMjmJycRF9fH3Jzc1FSUoLbt28jLi6OpbOtqqpiUWr/x//4H1i/fj18fX2hqiokScKyZctw4sQJ1NbWIjg4GPv370dZWRmGh4fx3HPPoaysDDk5OfjlL3+Jjz5yeAjs3LkTv/rVr/D8889j8eLF+MMf/oBbt27ho48+go+PD0JDQ1ko+KamJsyfPx9hYWG4ffs26uvrYbVakZWVhdzcXFgsFhw6dAjLly9HdXU1kpKS8KUvfQnnz5/H8uXLMTU1hbq6OixatAheXl548skn0draioSEBFy8eBEnT55EaGgowsLC0N/fD4PBgKysLFRXV+PChQv4xje+gbfeegsLFixAYGAgurq6cPv2bXzjG9+ALMsYGBhAVFQUSkpKWJDE6OhoXLlyBT09PU4+JKOjo9ixYwdaW1sxNTXFLN42b96Mqqoq+Pn5MUdPHx8fDA4OYsWKFYxr0+v1zAue/GvIkVfrLNJFjjI40h7VssokMfLOnTsxb948TSssT8x45wHYDCAXwFoA7XCIrt5XVfWG28r3CZLj2vkfAMyqqj7vokwggBuqqqqSJK2Fw9R4hTsCNxszXlcIWuv9/QKPvLV+u6t3PwTMk3rAzObJrsYMTEf+PGERRUaEnKkfXkdD5cgpkMrz4ySdDfkL8PGsPF0Tce5026cbmaJ8YhbNczB1dXXMEzsxMREtLS1oaWkBAMbJ0BqQwyaJtoBPfHVqamqgqirjVgCgoKAAW7duRVdXF+NCLBYLurq6AMAp73ZDQwNaWloQHR3NOLu+vj7s3r0bly5dYuKttrY27Nq1C0NDQ4iNjcWFCxcQHx+Pzs5ONDU1YWJiAjdv3sSmTZuQmZnJrPjef/99ZmUEOHxu3nvvPeTm5iI9PR1vvvkmgoODATgst27duoWTJ0/ie9/7Hvu+lZWVsFgsCA4OxpYtW9DY2IioqCi88sorePzxx/Hzn/8cixcvxp07d5CWloZ9+/bBZDLh29/+NkJDQzFv3jzMmTMHMTExsNvtuHjxIrZu3Yrz589jZGQEvr6+6O/vh9VqRVpaGvOJMZlMMBgcucApPW5bWxt0Oh0yMzNRWVmJgYEBPP7449Dr9QwhBwQEYHR0lK21xWJBfn4+ysvLsX79emYA4OXlhcLCQnzzm99EXV0dTCYTxsfH8dhjj8Fut2PevHmoq6vDli1bsHbtWgBgIffJ7yQ6Ohrr1q1DR0cHwsPDcenSJVitVjQ2NuKJJ57Ahx9+iCVLluDUqVOIjIxEQkIC04lRNF7aRxT1msSqvOe5eA74c6eF28iPjSQMkiTdHwGZVsFhDfVFAFtUVf3CrCp73scGAOcAtAD4+N7jfwYQAgCqqr4mSdL/C+D/gcNiawrAf1NVtdpdu/fjB+IO6bpDSjOxfvyNn7/Fu7vNu+p7JmKnVW+2YxcJhJhPQIsr4f0ueB8Ovp3m5mbmZ0FA622xWKaFbyBOgxSK5L1O/hyiUQI/fiJM7tamuroaly9fRnR0NObPn88S9oj1iCshbo1XktMPf+NTFIdX+IYNG7Bu3TpmINDX14fg4GD09/ez0CWE+AEwC7Xy8nLk5ORg5cqVOHToEHJzc5nVEN0WS0pKkJ2djZKSEkRHR6O3txfh4eEIDQ3F0aNHsX//fly7dg0ZGRmwWCyM4EVHR+P8+fM4evQoFi5cCG9vb2zcuBF6vR51dXV4/vnnGUEh89e0tDSkp6ejuLgYNTU1uHnzJiIiIhAQEICFCxfi8ccfx4ULF1iYk8nJSTQ0NGDFihWYmJiAr68vW6+JiQkkJSVhcHAQ8fHxCAwMhNlsxqFDh1i62w8//BCBgYGYO3cudDodTpw4AW9vb3zta1+D3W5HZWUlgoKCEBERwQjL5s2bYTA4wsynpaUhISEBb7/9Nu7cucOU1CaTCc888wwTNQYEBKC9vR1PPPEERkZGMD4+jvb2dty5c4fFtpo/fz4WLFiAkydPor6+HlNTU/D390dgYCCCgoJQXl6OLVu2YHx8HDabDV/96ldRVVXFzNzJ/4b2KIllW1paIMuykxl5cHAwi27g7+8/7UIm4gqe05/J25y4aC0jGfG83DcBkSRpPYDLqqpOSpL0JIAUAD9XVXXQbcXPINyvI6ErDkS8ldNz/tZKyMRdu+5u8yIyFJG7OI6ZOAWtOuL43Tkb8sAjSbFPUurGxsYiNTWV5bsQORD+b74fWkOyKKHnYkgQ8QCJ7dH/dNvkD5TWdyV/DzrIPEHiiYS4fiSWIs6F2uXjhxmNRty4cYPlH6FbJx+WhJTD5BtAuT4uXbqEdevW4cyZM3jnnXfwxBNPICAggIncamtrERoaihs3buDWrVvYuHEjLBYLWltb0dPTw/JlkMUWcWwUe8tiseDs2bPQ6XS4fPkyJiYmsGzZMuzcuRMhISE4e/YsFi1ahH/7t39DaGgo9u/fD1mW8corr2Dbtm3Q6/V45ZVXsGnTJnR2diItLQ3Dw8Pw8vLC5cuX0dPTg+9+97sYHh5mznPbtm1DeXk5xsfHYTAYsGTJEly7do35ely/fh1tbW348pe/jEceeQQDAwNYsWIFGhsbERERgWvXruFrX/saXnvtNdy6dQvZ2dkYHR1FWFgYbDYbC1Gi0+lw4MABWCwWHD9+HKGhoUhLS0NJSQnsdjuefPJJnD9/nuVMT0xMRH9/P3JycvDmm2/i2rVr8PHxwXe+8x22VuR8SQh76dKluHDhApYuXYqGhgYsXryYWbHNnz8fMTExLNxNf38/07npdDrY7XZYrVYYjUbs3LkTvb29jKD09vZi0aJF+PDDD7F7926233hDGNrv4iXS1SWWP8cUPsYdfpNl1wmlPLHCehWAVZKkZDj8QAYBHPWg3t8saCFKrXeEQMgKihZdlmWmLBUttLTa1foty9q528kun2+Dt+fmCQlZX4ih22VZdrLC4q246B0fuZOfG/0W++fnKssOS7Mnn3wSGRkZMBgMTGnNW4SIa8sD7xBZX1+P6upqNDc3s3GTCamI3PlxKIpDQW6xWFjaWDpQZrNZ03qup6cHGRkZTBTGmw5XVlYiPz8fFovFac1l2ZHWV1VVNDQ0MMs2ao84kKqqKixfvtyJQ/H392ecCK3TyMgI021cuXIFLS0tTBQ1NDSEpKQklg/bbDbj3LlzKCwsRElJCSIiIlgq297eXiQkJCAyMpKFaE9ISIAsO8JfREdHIz8/H0eOHMGRI0cwNDSE5ORkLFmyBF//+teZmSolijpy5Ai+9rWv4erVqygoKEBjYyNiYmLw2muvYXh4GP/0T/+EuLg4PPXUUxgZGcG8efNw9uxZrLoX5vztt99GT08PduzYgZUrV6K8vBy5ubnw8/NjcaMocVRubi4WL16M7du3Y3h4GHfu3GHWcE899RQWLVqEpqYmZg6vqioGBweh0+mwfv165oFPJrsmkwmvvPIKurq6cPr0aciyjKioKISFhaGiogK//e1vAQDr1q3D0aNHsXbtWnZhWbduHSMeDQ0NuHjxIlPel5WVwWw24/e//z1LFmWz2ZCXl4ecnBzMnz+fhRoxGo04fPgwgoKCkJCQgPT0dCQlJSElJQV9fX0s3cCtW7dQXFyMxMRE7Nq1Cz4+PsjOzoYsO2Ke1dfXIyQkBE1NTTh37hyOHTvmZElFe8sV8aipqWHl+fAnfBn+XN+D+04oZb+nV3gcDs7j5wDmeVDvbxJ4ROnqnYgEtayj6HZ8v9kJtW7HPFLlgS/HExKyvuCtMKht8jgXw70T8A5/vIkvWbaIt30tgseHFikqKkJlZSUjAiLHQ23xiJ3EJklJScz8kKxLeG97klHX1NQA+CTzoKI47OBra2uRnJzspH8gJaK4djQH8v5ubm6GyWRiora8vDynHOs0B8oBkpGR4RThOC4uDj09PZBlGTk5OTh58iQzRSbfntbWVtYe2feTJ/Hq1auRmpoKnU6Hzs5O+Pn5wWAwoKSkBMuXL0dJSQkmJiYgyw7fB5pPc3Mzc7IjD/SGhgZmKkxOaABYuuE7d+6gra2NRRLW6XQspe3evXtx+/Zt/O53v0NfXx8CAgIgSRKCg4Px3/7bfwMAVFVVYfHixbh+/TqWLl2KqakpPProozCZTGhvb2cxpWJiYpiRAF22/Pz8kJycjPXr1wMABgYGsGTJEuh0OvT19eH999/HunXrcPz4cRw5cgQjIyOwWCwICAhAVVUVRkZGIMsytmzZgt7eXly5cgWKosDb2xvp6eksoGNmZiZGRkYYx9jf34+rV69i69atSE1NhdFoxHPPPYfr16+jrKwMkZGRLMrBuXPnmH7i6tWrKC4uxo0bN3Dp0iUkJCTg+vXrGBkZwbPPPosbN25AlmWWd/7KlSu4dOkS/Pz8WGgXwHERom9P38nb2xuLFi1Cb28vI1Kvv/46i05869YtdHZ2IjY2FvPnz8euXbum+XoQnuKBv2QRzqJLCF1MxfPo7gIMeEZAbkuS9B0ATwJ4955jod6Den+ToIUIxXc8Qpbl6Vm8xLKeAn/jd/XhPCVG/DhEYiQSOpHDotwVVFa0fioqKtK8wbtig2VZxu7du5Genj7Nm5wfC1l9kFc5lSFixz/j15XMFekQ8TlJKKMff3hkWWYmuK7Wjf4ODw9HSUkJgoODMXfuXJbFrq2tjSFgWXZ4opeVlTGRBm+5RTe5vr4+ZrefnJzMxE90iwYcFluHDx/Gn/70JzQ2NjIdUmZmJsLCwlBeXo41a9awDII7duzA8uXL8fWvf51lqEtNTUV4eDja2tpQUVHB0p52dHSwuEiLFi3CW2+9hfHxcYyOjuLAgQNITExEX18fFEXBxYsXER4ezhTtHR0dmJycRFZWFn72s58xBDg2NoaKigq0tbVhdHQUv/vd73D58mXodDps2LCBKf5Xr16N9evXY2BgAD/+8Y9hNpsRHByMQ4cO4eLFi+js7MSKFSswNjaGrq4uXL16FVVVVairq8Njjz2G7373uzAajejq6kJKSgrGx8exZ88e9PX1ob+/H4sWLcKqVatQWVmJJUuWwNfXl6XT9fLywm9/+1vYbDaMjo6yII8UOywgIADj4+Pw9fXFq6++yhTcubm5yMnJYWltP/jgA6xYsQKTk5M4cOAAtm/fzhwHg4ODkZ6ejl27diEwMNApoCc5FcqyzDIp/uQnP4HFYmGOopTrpbGxkWVZjIiIwNDQEB577DE89dRTzHiA9EdkIEAXI14CIIYsUhSHYry5uRmJiYlMbBUbGwuj0chExVoSDXc4xxMdSCCAPQDqVFU9J0lSCIBsVVX/5sRYDyqcuwgzKa49bUM0aZ1JLunJmHilNo8w3Sn5eUQrmsASC8zL+unmQhtQaxy0gSmSrStzY0K8Yp8AmELalaKcb4Nk/GT3T166ZLaoZd0lzp/g7Nmz7PDTmhmNRpSXlztxhOQESERB9D2pqalhARv9/PyQlJSEpqYmTE1NISsri2Ug9PPzY6HI16xZw/K2A2Cio/Xr1+MLX/gCC6ZHMb+ov9deew0WiwWJiYnYtGkTALCgfB0dHYiIiMCKFStQWlrKPJ4BYGJiAna7HRcuXMCyZcsQHx8PRVEwd+5cjIyMMDFRfHw8rFYrzp8/j/Xr17NcIwDg5eUFi8UCLy8vlmGwv78fZrMZra2tyMnJgZeXF9LT0zE8PIwVK1agqKgIc+bMwVe/+lXU19fj4sWLiIuLQ2ZmJnMYLSkpQU9PD77//e/jj3/8I1Ooh4eHY2JiAr/+9a+RlZWF4eFhtLe3IyoqCjExMXjiiSeYPq2npwdWqxUREREYGRnB1NQU3njjDSQnJ2PevHnM437VqlU4efIktmzZgqKiImbu/PTTT6OqqgpWqxVXr14F4ODMKbcLWeelpKQwKynKIEjnQ1EUdv54Sz2KcBweHg5ZlpGVlcUU3VNTU1i9ejUzMCDjEn7/iopvEYfQ+6amJiQnJzOumueYtc4u4FqJ7kksLNM97/Nz9/43/i0SD2B2wRRFEYUrcOXJOVvgb/quCJInNwIaL7GwZJHB30a0dCkiJ0HjEMVwsuxQLhOXYrFY8Pbbb+MnP/kJzp49y4iJOB7AIRajfOCiEpCvwwePFNeHEPNMayBJEmw2G1paWthNjT9wsbGxTpwe/0MiO1qHjIwMlq2RDv/JkyeRk5PjdFirqqpw7NgxtLS0ICQkhO0L+p6pqalISEiA0WhEcHAw417T09NhsVhw+PBhBAcHY3x8HMuXL8e8efOQkpLCOFyLxYLAwEAsXrwYAFBbW8uU8ZTnpKGhgQWmpHwWx48fx/Hjx7FhwwakpKQgIiICNpsN169fh8ViQXx8PPO16Ovrw/DwMJ5//nk8/fTT8PHxwdy5c5Gens6IGHlJe3t7Izs7G8nJycjJycHTTz+NVatW4a233sKHH36I8PBwrF27Fj4+Pti+fTseeeQRljgqNjYWP//5zzE2NoZf/vKX6OjowIULF5g5bHJyMk6fPo2CggKcPHmS6RV++tOfor29HV/72tdgMpmY9d2dO3fw5JNPIjo6Gt7e3vjpT3/KnDQvX76MyclJ/PKXv0RzczPKyspw4MABnD17Fnq9Hm1tbejv78fNmzfx5JNPwsfHB/39/SyA47Vr11huFoLCwkKmgE9PT2dEbsmSJUxvVF9fj8LCQoyNjaG1tRXnzp2D2Wxm4WIKCwthNBrR0NCA8fFxXLlyBSEhIWy9aQ+Gh4ejvLwcra2t7HtTyBpeVMWfa97KiwdZlpnzcFpaGttbvDSBPweiGEwET2JhpQM4BCAWgAxgDgCLqqq+/3977x5X1XXmjX/XFE4ET5SiRryhXBSQmwIqGlGj1BjrWIdaa1PHmrxOnde3mUmbNGl6f2f6TjvpL9O0tknbpJPWmoQ61iGOIQYvQVABuchNLoKgQJQoUtEj6IHO/v2xz7NcZ7H25Rzwkg7P53M+cPZZ973W86znblrxPoTe3l5b3IJ40wfU1lBUzsyTk8rY4U5EZE3JhkRiQn/tcjo0XroFi+MnHQJ9N3K0o3ZEoOifpCNxOp14/PHHAYAr+USHPNFMV5TTkr+HaM5LZrjEZRChoPWXA0GarSOFVKfwL2T9RQiHAvnRQaVcH/PmzRvUB4VGEXMsTJ8+HR0dHdwD3+Vy4cSJE9i+fTtXth4+fBgxMTFcOU25GMjRLjExEampqfx9b9++HaGhoXA6ndA0DY888ghHWhQWZOXKlTz/SUBAAFJSUtDb24uWlhZERUWhoaEBoaGhePbZZ1FZWYnly5dzayy3280DDF64cAFxcXHcMiszMxM5OTn485//jISEBK5PSUxMRElJCVwuF15//XV+awZ0Qh8WFoZ/+qd/wmc/+1n09fVhz549GD9+PBwOPRjmW2+9hQsXLqCnpwdXrlzBsmXLsHjxYh7aY+LEiejs7MTNmzdx7do1hISEIDg4GHPnzsUjjzzCjTz6+voQHByMrq4uXL16FS0tLZg8eTIuXLiA3NxcNDc3IzAwEJcuXUJ/fz+Kioowe/Zs/OAHP4DD4UB+fj4mTZqERx99lL/zX//617h58yZ+8pOfAAAefvhhhIaGoqOjA8HBwXwvJycnIzs7G1u3bkVoaCgWL16Muro6bNmyBWFhYXC73TzEzM6dO5GVlYWdO3fC6XRi3bp1OHToEPr6+lBVVYXe3l4eUYAcNSdMmIDW1lYAerRhcjAlPU1vby9SUlK8coMQByKfHXLwJAdA0eqRzhGJS0VcInL7VE5yKfAvGi+AnwP4AvSYWEEAtgL4hY169x0EBQUNQpAqsCsHJCXZpk2blCavVgp5VZ8A0NTUxG+6KisqMyAkSf8T5yGKgug7ReaUuQwSN5F1FpWj9kh+L4praKM2NzdzMQ0FvhN9PIDbslqxX7dbz2pHBI82L4BBHId8WyJQRRklXYCoPHQ6ncjKyuL7weFwcMsmsQ/Z2o1ClTgcDixdupTHJ6PYR4sWLUJoaCi/UDz99NNoaWnhxHbevHlITU3F4sWLERsby4lcU1MTmpubcfbsWW5oQGKFEydOoKCgADk5OXjooYfQ2tqK+Ph4jBo1inNFJMZpbGwEYwydnZ1oaWlBW1sburu7cfbsWfT39yM7OxtTp07FihUrEBcXh/3792Py5MmoqKiAw+FAZmYmFi5ciLlz5/L9W1JSgoMHDwIAtm/fjqeffhqbN28GALS2tiIoKAhf+9rXkJGRgatXr2LdunX43ve+h0984hN47733MDAwgPnz5/OwKqTcnj9/Pt5++23s3bsXq1evRlZWFpqbmzFp0iQ0NTVhx44d/AJSWFiIP/7xj+jp6UF/fz9u3LiBEydOYM2aNcjIyMCUKVPQ3d2NJUuW8FhQf/7zn3Hw4EE0NTXhxIkTmDBhgpcZclBQEL7//e9j3rx5OHr0KI4cOcL32JUrV/Dyyy8jISEBgYGBGDNmDObMmcMjNQO6mI72X1FREcrLy+F0OrF9+3bMmTMHW7duxfjx4xEaGorVq1fj5s2b2LZtG8aNG8cvXKGhoVi2bBkee+wxZGVlYfPmzTyDI+2XxMRENDY2oqKigp/VtLQ0TgRoDDU1NYiOjkZLSwvq6+t5EFI6y8DtS5toKSjub8ILxP1LF0+/E0qVaZqWxhir1jQtyfPshCe8+8cKSAfiiy7BH5A5GF91GWL4DgoTrpJnGnE8sq6BNgfJPglxi1n8ZNGZuLlOnDjBWV5CLKS4o7JEEMLDw+FwOPiYCcQMjaKIjPrr7u7msmZRvgvc9oyXxymuo9t92/cG0DmP3t5enDt3DllZWV4B5kRiSs+IO6BkPA7HbR8Tmpv8PkXxlNut+72sW7cOtbW1CA4O5kidogMnJydzr3RK9APo+pQf/vCHeOGFF3Du3Dn09PRg3rx5aG9vR19fn9fNUwxhAujcUWFhITfdnTJlCt544w1s27YNdXV1aGtrw+OPPw6Xy4WXX34Z4eHhWLZsGbZv347vfOc7nFgAelKmjRs3oqCgAAMDA1i/fj1qa2tRWVmJsLAwXL16lUcZvnbtGnJzczFhwgSuVHY6nXj99ddx6dIl7kPicDj4bbikpATt7e04evQoUlNTce3aNcyePRsnT57ErFmz8B//8R8ciQ4MDGDcuHE4ffo053pCQ0PR19eHffv2ISIiAqNGjUJYWBg6OjqQl5eHH/3oRzh48CBqamrw1FNPYf/+/fibv/kbvPzyy3jwwQfxV3+l35e/853vcM/1xsZGOJ1OXL16FZs2beKK7K6uLm6CS5eAgYEBvg+Li4sREhKCxx9/HNXV1ejr60N8fDw6Ojo4N0Bj6+3txaxZsxAWFoaysjJMnToVeXl5+OQnP4n9+/fj61//OrKzs/H000/zsyHrBUl8Se+K8Bjp+cTwQOJ+pT0j6v7IX0kUvwL6pckoy+lQHAkLoIcyeR1AJ/Qw61s0TUs2rXgfgqhE90W05A+RoZdiVNdOu2J8J3lDmcW7ErkKQoy02QhpqQiGmEtcbo/KFxQUoKCgAM8995wXUqZQCtXV1WhububpNkUEDwxWjov9k2JRzmlOBFE1Z7KECg0N9QoQR8SOblLiO3G5bmcpJK92EkGSJRhlVqQxEyEXY3ARUaTDScp2TdMQGRmJ3NxchIeHY8mSJdyRktaJAuIRsezu7kZoaCh2796NnJwcTJw4Ec8//zwPCS+Oo6SkBAEBAaiqqkJERAQuX76M1atX4/Tp06iqqkJ7ezuWL1+OwMBAtLS0YPPmzWhubkZoaCg+/PBDjB07Frt378b58+fx2GOP4erVq+jr68OyZcugaRrCwsJQW1uLkJAQxMbGoru7G9/5znd4EEYKZX7t2jV0dHSgp6cHf/rTn7B161a8+eabiI+Px8SJE7FgwQIen2v58uX45S9/yRHr1q1b8dOf/hSPPfYYCgoKcO3aNUycOBEXLlzAmDFjEBISgiVLlqC/vx/5+fkICwvDggUL0NXVhd/97nd45pln8M4774AxhieffBI//elPkZCQgIGBAa5Hmj9/Purq6rgV24kTeqCK8ePHIyEhAY2Njejq6sIHH3yA9PR0Hr4kLCyMp/vt7+/Hww8/zM1pH3/8cbjdutd6ZGQkVq1ahe7ubvz+97/HpUuXkJGRgeDgYKSkpHBHUUo9vG7dOrjdbh5VgPYRORiGhYUNMqQhkJ176fJCl0LAO1qCSBTkenT+6bt4RsW00pIjod8ZCf8Wut7jKwBuAJgG4LM26t3XYEcPYiaCsgN2nAitRGkUyoJAJXKSleGi/0dycjJHjiTyEBXiIoi+H/SX+qObDIlqRNmqy6WH0abfyNubdDCAjvxE8ZK4tiQmE8O8i2OksO+yjoZk7C+++CK3gCovL+fKxr1793rNpbS0FAUFBXjrrbf4IUlKSkJAQICXfmjVqlWoqalBWVkZysvLER0djYaGBnR2dnIlJY1LFmstXLgQaWlpaGlpwfTp0zF69GjOvVEK1ZqaGp4HncR9YWFhXFfx6KOPIiIigis8aRz0zj/88EOEhISgra0N7e3tyMzMRHt7O/r7++F0OvF3f/d3aG9vR0BAAOdUoqOj0dHRgcDAQHz729/Ghg0b8K1vfQsulwsLFixAR0cH3n77bYSFhfGAfrGxsaivr0doaCi+8IUvYMOGDXj88ccxduxYDAwMgDGGTZs2Ydy4cdxv4otf/CJcLhd6e3tRUlKC3t5eLF68GEeOHMFnP/tZOJ1OrreZO3cuHnzwQXzqU5/C888/j7i4OC5e27ZtG7cMc7vd+PDDD7nJ7caNG3Hw4EFMmDAB//3f/43GxkZcu3YNkyZNwqhRoxAUFITm5mb84Q9/QFpaGsLDwwHoycaam5tRWVmJkydPIiYmBg8//DAcDgfGjBmDyMhITJw4EeXl5Rg/fjzq6uqQnZ2N48eP48CBA4iKigIAbuIsO2w+88wzmD9/PneG1DSNpxFYt24dcnJysG/fPh6Kf+/evVxKcOTIEbhcLh5lgSIDkCGGbJZLFyPSrZF+jnCBKH4XCYt85sUzKeINUaRuBj7Hwvo4gx0zXlnhBAz2RLcrSiIw40JkUZYZV0DlxRsFWV6QHbfYnhzM0Gg8NNajR49i4cKFXlFzSexEGx0Av02Lsbvohi63SxFrVURLnCtxW9SXCkTLEjHYGwAvJ0EKhlhYWIgxY8Z4rR8pOrdu3TroViYGSNQ0DUlJSdyvoqioCKNHj0ZkZCTCwsIGvT+aG61RcXExzxBI8ZieeeYZZGVl4eGHH0ZDQwMXRdXU1GDp0qUA9Cxzly9fRk9PD08rS3LrpUuXwuHQ41G9/vrrmDdvHubNm4fOzk5ER0ejpqYGERER3IN948aNqK2t5fm+KRR7UlISZs6ciatXr2JgYAB/+tOfsGzZMq50d7vdePnll7F161YuUnO73di/fz9eeukluN16cq5Dhw7hmWeewbPPPosnnniC62LIxLWnpwcfffQRdxikECK/+93vuGf3W2+9hXPnziEhIQEpKSn42c9+xqPKFhYWYsKECXC73ejq6sKaNWtQV1eHuLg4MMa4sQWZVG/YsAFBQUEICQnBlClTsGfPHowaNQobN25ESUkJD5t/+fJlnDp1ChEREXjyySf5/jp27Bi/sF2+fBkTJkwAAMTFxfGkUMeOHcPbb7+Nz3zmMzwkvtvt5hwliXHpQiDuMYo/RsYktO/IFJuiLjc3N2Py5MloaWlBREQEQkJCBoXIkfEEfWTluZH4XDyvIlGScQbtb79zojPG1jDGTjHGuhlj1xhj1xljcm6OvwigxQVuWyXICE9W4Mpchsy5WHEhMvGQy8u3cfFGQdwG2bfTuAFvToXqAt5hPqgcKYzPn9fDm5G5bHJysldGPeIiCMmLllEy8RDXg25HRo6HNA/KwSGOj37v7u7m3uZut9vLg17Wb5CCn4IhiuvncDi4AlQch8Ohm/YGBARwRysA/BY8evRonphJvOWR02NpaSk30SwsLERtbS3Pe93W1sZNiZOTk3mu9dTUVFRUVODw4cPo7u5GQUEBdu7ciYiICH6LJqTT2NjI1+XSpUtYsmQJHnnkEbS2tnLORNM0tLa2gjGGadOmwel0YtasWQB0ncu6deswefJkOJ1OTJgwAUePHgUArFmzBk6nEydOnMDOnbqF/qJFi7B//350dHRgz549uHHjBndIzM3NxapVq7BgwQIEBATgqaeeQnx8PJYtW8bNh51OJ48k63A4sHnzZly6dAmVlZVYsWIFjhw5gtLSUty8eRNTp07F8uXLcfLkSaxZswYJCQncMIPWefLkyZg0aRI6Ojpw/fp1dHd344033sClS5fw29/+FitXrsT48eMxevRoJCYmIiwsDBEREXxfHDt2DDNnzkR8fDwOHz7M935JSQk6OztRUVGBAwcO4Pjx40hOTsaGDRt4QrLvfe97PLRPYGAg1q9fj/Hjx6O/vx/l5eUoLy/nZ2L27NnceIEcSumMORwO7jBIe/K3v/0tXC49/WxcXByWLFnCw5fMmjWLm6OT7owIkXyOyRpUzEYohigS93p4eDhPe0vlSktLvcz+aYxWJvN2RFgvA/gSgHGapo3RNO1BTdPG2Kh334HIbamQurhgqkWTET6AQdZLIgGSxS6qfsXfxP7FtlTlRYRMmQ0JyONUNIMlpCfeLEQiQ9n85I0jEy/gtmmsEVdBf0mkRYheHCNtXvJoF/USopc7cWENDQ3IyspCamoqt85yu91eIRjIcozGpNLnAODKUhHcbje/AdbX13OlPjmApaWlITQ0lPvUuFwuXobyUgP6bXXu3LncA/6Tn/wkvve976G7uxsbN27EoUOH0NXVxS1tHA4Htm7dirCwMKSnp2PFihUIDQ3FwoULuUI+MTGRO5cBQFpaGtdlUcY5ilpLvialpaV4//33sW/fPkycOBHHjx9HVVUVbt26hT/+8Y/Yu3cvQkND0draioqKCjQ2NmLp0qWYNGkSGhoaEB0djYGBAVy9ehVLly5FdXU1AgMDceLECbhcLrzzzjtoamriCu+qqiq8+eabWLVqFVauXInCwkI8/PDDWLt2LSc827dvR3x8PB588EGEh4ejpqYGH374IU87S8EPAZ0Ta2xs5JFzW1tb8eqrr+LKlSs4cOAAcnNzkZqaipUrV2LdunXYsGED0tPTERAQwIlyYWEhj2KbkZGB8ePH83hax48fR11dHQoLC/H0009j8uTJ+Ou//musX78ehw4dAqBfGigY6MyZM3Hq1CmcP38eycnJPHFVREQEzp49y/c0EREyR6+urkZVVRXCwsJQXFyMl19+Gd3d3Xxvd3R0cKJAYU0cDgcCAwORkpKCS5cuYdasWTzMCcWEEy8ubrebSwrEi5yYaI7+kshNDFJK/iDi2KmsKDZTgR0C0g6g9m4lkrqTQH4gRmaxdhZMROBlZWVeQQeBwZyLioMhZG7Wv4pYiXVUvxPBodu5qIcgc1OxrkzgHA4HD1xYXl5umCq3t7dXOSZxfrS+osiJfidu4vDhwzwmFY3F7XbjlVde4XJrh0MP+0E3PHHeDofDKyZWXFycl/UWrYnIbe3Zs2eQ/oXGnpycjLFjxyIuLg5nz54dFO7E7XZzj++qqirU1NRgwoQJOHXqFBoaGnjk3MbGRgQGBvKYUo8++igPlhgVFcX7INHH/v37uXguNTUVVVVVPGjfoUOH0N3dzTkfeifFxcWorq7GypUr0djYiM7OTpSXl6O4uBhOpxNbt25FUFAQYmNjuaiL/Cs++9nPIikpCZs3b8asWbP4rX3u3LkoKytDZ2cnXn/9dcyaNQtr1qyBy+VCZmYm1q5di8rKSsybNw9jx47F8uXLsWfPHqxatQpf/vKXuX/Ehx9+iLVr12LevHl45ZVXsHLlSqSlpXGLpNLSUowdOxaXL1/G5MmT8bnPfQ5ut57Vcf/+/aDU06tWrUJzczOKiopw48YN/PnPf0ZQUBCcTie++c1vYuXKlWhpafES76SlpeHGjRs8MVdwcDBPmxsREYFdu3bhypUryMzMxLhx45CcnIwlS5bwnOO/+MUv8NFHH8HtdiMyMhJvvvkmpk6dijFjxiA4OBhLlizBr371K7z88ss87EpUVBTfW+RwSHs0KSkJcXFxOHLkCGbNmoUVK1bwS53D4cBzzz3H9+/atWs5x076k6ysLO5YSXOMjIzk3CkRXOKUCegCRWdAPJOMMS42Ey9cAAbhBCtLVTtWWPMA/DOAowBu0XM7WQLvN0hNTdWOHj06KLSHLE80WzARRGQu6zOoHbk98dYvZ9Cz0puIfZDYRwSj8CQiAlXpKVSWHzRueibqHMQ8A1Rf9laX11Q2xaWDJs+DCDzpc0RLMkC/VZF4Sdb3kC6I5NGiHJj+krUTEQ9ywiLZsbzuslyYPIHJDr+8vJzrS2i9Tpw4wRHY2bNncfPmTcyZM4dzDW63myvQZ8yYwc0mW1paeGgJajsiIgLt7e3o7OzEww8/jIqKCqSkpGDPnj0IDw9HYGAgbty4gZKSEiQnJ6OrqwuRkZFoaWnhjobkNZ2Zmcn1O2fOnEFMTAzOnz/Pk1cBwI0bNzB37lxuUl1ZWYn8/Hw8/fTTPEYV5bvo6OjA+fPn8dd//ddYsmQJ3n//fR7apKmpCVu2bMHx48cRFhaGqKgonDx5kids+ulPf4qJEydiwoQJmD59Ov7whz9wESIZG2zYsAGvvfYaPve5z+HixYtYuHAhEhISUF9fjwkTJnB9RW9vL499FRUVhZdeegmpqano6OhAZmYmz/Mxa9YsvPfee9A0DcuWLUNwcDDmz5+PiooKHjaEUgIHBARgy5YtaG5uxrFjx/D444/D4XBwHYfb7caZM2cQGBiIiIgItLS0cBEn7RPRWZUuH6KEQcQDRPQ+/PBDHjVahZNIVxIXF4eGhga43W4sWrSIt2d26RT3M6Ant5o8eTIyMzMNdSVWVlh2CEgeABe8kztB07T/a1rxPoTU1FTt1VdfHaRAGi6fEBFZEfIz8vAGwM1TVUppo/EQ4lNlyVPNg56L9t0qp0faWOLmVo2byslxtSi6rGxyrCKk4lipTWpfNhoQiY0YxkH0jaHxiArs4OBgTrBoPmRNRc/Lyspw48YNrtQUCaJsLUYHnzIIEhET50hjF+dM8a1IvEBzee+999De3s4zCY4dO5ZnLKQ5kZ9Od3c3XnrpJYwbNw7t7e149NFHoWkaHA4HGhsbERMTg5kzZyInJwcREREIDAxEcHAwJk+ejB/96EdYuXIlD6LY2NiICRMmcKWwy+VCY2Mjl+MTob5x4wZCQkJ4yPaHH34YOTk5mDBhAhd3VFRUcGX/3LlzsWvXLkydOhVpaWn45je/iQ0bNmDChAmYMmUKDhw4gIaGBkydOhVJSUm4cOECqqurMX/+fAQEBOCtt97C/Pnzec4Legc/+tGPEB0djRkzZqCjowN1dXV48MEHsWTJErS3t8PpdKKmpgYrVqzA4sWL4XDoWRQDAwPR29uLq1evcg7D7daDRNItnKzvGhsbERkZiUuXLiErKwsAeJbHF198EZMnT8amTZu8/DBoHzz00EM4cuQIAGDLli18P5eVlSEyMpIniSKnUQBeSmp618XFxQB0T3TivlVnn3LCi1Ed5DMkEx4jxTidJ1U0brE+MIRYWABCNU3L0jTte5qm/V/62Kh33wFjzEvGB3jrHYYKsr5AZXpKYiZRRk/IwEhvIvdBoUhk8zxVPZpfW1sb905VtUkK4EOHDnnl3ZBvLyqOQYw1ZSSyk8cl62JE9lomVqTwa25uxtSpU/l3+p1ydAC3OQKyziorK0NZWRmXR4viN3IYrKqq4nNzu92DYpKJhguUYlYce3V1Nbq7u7m/DYk1i4uLkZeXh8jISB4W/qWXXkJnZycuX76M9evXIzU1FWPHjkVPTw8XZZElWVRUFBwOPUz7M888g/Xr12PmzJno7+/H6NGjMXfuXMTExPD9c+HCBfT396OlpYXnAVm7di3P252dnY3W1lZ8//vfR3l5OY4dO4Z9+/bhww8/5M5/Z86cwX/+53+iuLgY58+fx6lTp3D9+nXU1tZiyZIl3Gu9uroaCQkJGDNmDM6ePYvjx4+jvb0d586d46Kb0aNHIyIiAvv37+e6kdmzZ6Ovrw9Xr17FokWLcPXqVQQHB2PevHmIjo7G/v37kZOTA4fDgdbWVmRmZmLmzJlc13Hr1i1s2rQJjzzyCMLCwpCbm4sxY8YgMDAQJSUlKCgoQGtrK6qrq9HQ0IAJEyagoKAAR44cwZ49exAYGIiBgQEcPXqUR3yIjIxEUFAQ1qxZg4aGBo7wSVy0bt06HmlZ3McPPfQQ3nzzTS/vctKPUcQDh8OB3t5eFBcXc491UUlN+zwgIAC9vb3Iy8szjD/lduthdIgYUX1RHCv/LxvT0NlzOHTjEzoDKrG96tIrgx0CcogxttJGuY8FqJC6ld6DwJcy4uYgIGQkfhcJiaqOEciIWlWPNpJoHSLOQRRt1dfXY/r06fzw0y2KrItoM4ohEMQNK4q7ZOIsB3IU6xByJpEicWIUCJCIJSmwOzs7vRSADsdtS6jq6mpcvXoVjDGupKYD4mHDeWImUsynpqZyWXFRURFef/11HpBQpSdLTk5GRUUFJzQ1NTW4fPkysrOzuUiFkvQQUjpz5gwaGhoA6PGWwsLCkJWVBYdDN8lNTEzE2LFjsWzZMtTX16OwsBCnTp1CTk4OJyg1NTU4dOgQ1qxZg4sXL/JAkQBw5swZnD59motlBgYGeOyrkJAQpKSkICUlBQDQ1dWFmJgYTJ8+HYGBgRg7diyOHz+OpKQkHDt2DGFhYQgODsamTZtw5swZ7rh4/PhxXLhwAdu2bYPTqSf5amxsRGpqKtavX8/rjBo1CidOnODrVllZiePHj0M0n6e4TytXrsT69euxfPlyJCcnc18MQBdL9fX14dSpUzhy5Ajy8vIQHh6Or3/96ygpKUFJSQm6urowfvx4zJs3D/Hx8Th//jz6+vowdepU3Lp1C7W1tYiKisK6devQ1dWF8PBwxMfHc65k06ZNCAkJQVBQEPr6+uBw6H5XZWVlOHLkCBoaGvD4448jPDx80IWtv78fJ06cwBe/+EX09PQA0NMbh4eHcwtGp9OJ1NRUBAcHo7+/H319fejt7UV9fT1/r7SH09LSMH78eM4Byb5dJKIlPRjpwkScIltdihdSAPw8E9DlTJWaQezbc+n1OxbW/wFwgDHWdzfNeBljqxhjjYyxZsbYNxS/M8bYzzy/VzPGUuy2rULqVkhbRJZGv9uNWaUyZzWrI/8m3zTkuDZURoxnJSqpSbQimu7FxcUhIyODj4c2dXJyMurr6/mtnJAjlZOJsZzhUCTYoihJjtFFNzen04nw8HC88sor3MucxFMkQxb1OA7HbcdGyuZHEWwpzDnpQ8RMg7JiHgASExMxatQonoOD1quyspJHV+3u7sahQ4d4JFwaA+kbyGJLvBgEBQVh9erVaGlp4VxTTU2NlwFBT08P8vPzMXHiRAQGBmLz5s3YsGEDJ+QDAwPcv2DSpElYsGAB50KmTZuG4OBgLF68GGPGjEF8fDxPFNTc3Izq6mo4nU7e5gMPPICSkhJcuXIFZ8+e5Sbg4eHhGDduHGbOnInRo0fjU5/6FBYtWoSwsDBcvnwZnZ2daG1tRXNzMz766CNERESgpqYGJ0+exP79+/G73/0O48ePxwcffIAPPvgA06dPx/Lly7F+/Xp0dHRwR9H4+HjMmjULLpeex72zsxNtbW1gjGH+/PmYOnUqCgsL0dbWhkOHDoExhv3796OoqAjHjh3D9evX8eGHH+JnP/sZJkyYgNmzZ6OjowNLlixBa2srzp49iwceeADTpk3Dm2++CbfbjXXr1iE4OBjt7e1YvXo1N2deuHAhYmJikJ+fz/OvTJ06FSUlJTxiMiUqE9/3kiVLsHHjRkRHRyMuLg4Oh57l8ezZs/wyROcuMTERgYGBaGtrAwBERUWhrKwMu3bt4nscABet7tq1i5v30v5zOBxeOTvokide3uicUew6EcS4dLTfxcuZEQ4UCJR/sbDuBXiSVp0B8CkAHQBKAXxB07Q6ocxqAE8BWA1gAfRsiQvM2h1qPhBRJig/p2iudPOwagcYbJJrpABTJb4Xka/8u8ghyHWys7MxZcoUnD9/HtOnT+e5s9va2hAdHc2Vp6RjEJ2fZP2Hqn0CWe8hj1ulRxH1LqKyG1CHZJBlvdQOWZi89NJL2LZtG5cpUx4FysMxMDDAI5+qfGYAXSczbdo05OXlYcqUKRg7diy/Je/fv59zEgC8xlZZWYnQ0FDk5+dj0aJFcLlcCA8PR21tLXe4I/FUd3c3du/ezfOWu1wubNq0id/wCwsLERAQAMYYZs2ahW9/+9t48cUX4XQ6UVxcjEOHDvE4SqKD6d69e7FmzRq43bqpN7VDHuJjxoxBXFwcrl+/js7OTsTHxyMjIwOdnZ344Q9/iGeeeQahoaE4efIkent7cfLkSaSkpODdd9/Fpz/9aaxbtw6FhYUAgI8++gidnZ1Yv349/vSnP+HXv/41srKykJGRgfLych4yZPHixVi2bBl27dqFgIAAhISEwOVyYdKkSTy4ZXFxMVpaWjBr1iw4nU6efvenP/0p1q9fjylTpmD69On49re/jWeffRZ1dXU8019PTw8eeOABLupcuXIlrl69ivj4eAA68RIV3rNnz0ZZWRkqKyuxceNGNDY2oqmpCcuWLeMe5ZQ/xUjBLe5hQubihYf2ltutBwwNCgpCXFwcKioqEBgYiMTERB4+p76+HlFRUfzdi3uRnHJpr6nwhtvt5voZugQanUU7QPV81oEwxmaYNezhAKb6PCJ7MB9As6ZpLZqmuQFkQ0+pK8JnAOzUdCgGEMIYm2TVsB0xlFE5M72EaEut4gZkEM15VTd5EWR7bqpDL1cmHmVlZVzeSt8pYuyaNWuwYsUKbNiwAYGBgSgsLMT+/fsRHh7OzQYp3WlRURHeeustrjcg5yiVvFXW7xhxbCLHIf4m3vgBcOJBbRI7biTrFTkeWpfFixejtbWVc1x79+7F1atXAej+Gj09Pdi9ezfKy8sRHh7O/UtovdxuNwYGBtDe3o6srCysWLGCcy1k5ivrUGiOYWFheP311wEAb7zxBsLCwnhU3CtXrmDHjh38Bkriw8uXL3NLrVOnTqGmpoY7eEZERPAshGKomPT0dDz99NMAgJdeeonvKafTiZkzZ8LlcuHZZ5/F/v37cfToUUREROCBBx7AtWvXEBAQgIyMDGRmZiIgIIArlUNDQ/G//tf/QkFBAX7729+ipaUFy5YtQ2ZmJjIzM5GcnMwVymfPnkVPTw9PofvSSy/hjTfe4CIyt9uNiIgIPPLII5g6dSp3BB01ahScTifnjgDd72LWrFkYNWoUZs2ahRkzZmBgYADjx4/H6dOnMXfuXLhcLvT09ODSpUt44YUXUFdXh5UrV8LhcHBHQjLNzcrKwkMPPYSzZ8/ywIl79+5FcXExj15LHOPGjRsRFhaG1NRUbNy4EaGhoWhubkZKSgq2bNmCFStW8ECfYs57+v/o0aPYvXs3CgsLUVBQ4JUymfau0+lEcHAwT69MfiuiTpMxxtMZU/5zEY+Ul5d7+WGReErcewsXLvTyv6LnRmCEr6ykLoC5COvHjLE/MsY2M8biGWMPMcbCGWPLGWP/DOA49BwhdwKmQPc/IejwPPO1DBhjX2aMlTHGysgT1oqI2BFXySDqAMS6qu8q3YDMjYjPybLHrF0RSNFGsa+IdSWRAd2UyKRzzZo1aGxs5Ga+JNtPTExEbGwsAgMDubw0Ojp60OYVkbw4D1EZLYOK25IV4iJhFbkt4LYDp1iGOCbyzyFPabdbN6Fcs2YNHA49XlZFRQUuXLiAdevW8VzYxIGQ6I5EHHQxAMDjDiUnJyM9PZ2LLmhs5CTW3t7O13zixIlcbEZ6hyeeeIK3OW/ePCxYsABut5tb9MTHx3MnxunTp/PEREQ0ysvLUVBQgMLCQjQ2NqKxsRGLFy9Gd3c3d/ZLTEzE6dOnuZMZOSx+/vOfxz/90z/hySefhMNx25Jr4cKF6O7uxg9+8APs2LGDIzjiBEJCQrj4JD09nYsNw8LCsHnzZrS0tGDs2LFYsWIFtm7dismTJ+M3v/kNXnjhBbhcLmzZsgUzZ85EaGgoVq1ahcbGRoSHh6O0tBTHjx/HlClTcObMGcyZM4d7e5P3eU9PDyZOnIiEhAScPHkSV65cQXl5OR566CE4HA4cPnwYJ0+exNSpUzFz5kzk5uaiq6sLkyZN4kYeWVlZnPgS4W5ra0NhYSHPFU/WUMR1iFydKNalvUYi3dGjR2PdunUYM2YM0tPTOadCZ0M8myLHKuo/qX1AtwJrbm7mxiD0G8Vak7lkUWwsEg0rXCeL3UW8Yke8byrCYozNBvBFAA8DmASgF0A9gFwAezRNu2k6Oj+BMfY5AI9qmrbV8/1vAczXNO0pocy7AH6oadoxz/fDAJ7TNK3cqN20tDSNQpNbsXRm4irZBNWqrihukn0XjPw25PqiCEdsD7id6lUUxZDegEQ15KB27do1BAcHIzAwEA899BDy8/OxZs0a7Nq1C8nJyVz+n52dzU0qKeIn9asyIRbHS4Rg5syZ3HNcnLMcRp7aoJSvZHKqWhc5Mq94aIqKihAQEODldCWKzBwOB69Pz0Rzbrfb7eVLQgdVNoMkoHdCviQVFRVobm7mugvqv7u7G+3t7YiLi0N1dTUPGx8REcHDf5NtPwCUlJQgODiYmwt3dnbia1/7GqZMmYJnnnkGHR0duHDhAhwOB4+263Q6ebrX+Ph4L+Xp5MmTkZeXh9bWVowZMwY3b97EM888g7Nnz+LatWvo7+9HUFAQFi5cyMONnzlzBgkJCdi7dy9WrlyJ6OhouFwuPkfKgUNhWtxuN37961/jo48+wiOPPAKHw4E//OEPeOyxxxAQEMARK0F9fT1aW1uxb98+rF69GvPnz8f58+fR2NiINWvW4NChQ5gwYQKampowMDCAixcvYsOGDfjhD3+IhQsXYtu2bZxQJycn48iRI4iOjkZubi5GjRqF9evXw+3WnVI3btyIrq4uLupzu93YsWMHnnjiCezcuRPjx49HfHw84uPj8corr3DnPuKUKclbfX09NmzYgOLiYtTV1SEgIABZWVkIDw/3MoF3u908fD/tA9JHyWb6RiJa8RJl5BIgngsqK7dnFP3aCq/IfRiJsEwzEnp0Dt8yK3OHoAN61F+CqQAu+FFmEKgQuVE5o+eyPbVc1ui7fFtW5SoXy9OLlOvJ/ZLuYubMmTzdLN2aKVonAK+4UJ2dnTznM6DLsD/66CMcPnwYTz/9NL+pUT0xG59oBWW0RmJYFHHsYkwfOapwYGAgl/uqNjFxY9Sm2+3m6UFJJCcGYxRvVXSQRB8TObe606lH4nU4HLhx44bhOMXbmdvt5pZjCQkJ6OnpQU1NDdxuN7fVz83NxeTJk7n+xeHQFZ1nzpzhcY4GBgY40gkODvZah7CwMHzhC19AcnIyOjs7uXx/zpw5XOzU2dmJ3NxchISEIDo6GlevXkVCQgJPrxsTE4Nx48bh1KlTPPOew+HAW2+9BZfLxcPfV1ZWoq+vD7NmzcK+fftw+fJl/PM//zPWr1/Pkytt2LABbrcbbW1teOGFFxAbG4sHH3yQK8cZY1i8eDEA3ex5YGAA7777Lurq6jBjxgx0dXVh3bp1mDhxIjo6OtDR0YGuri709fUhKCgITU1NmDx5Mhfdbty4kVu5bdq0iZsTt7W1ITMzk+vwbty4gZs3b3KOqbu7GyEhIejp6cGsWbPQ39/P38HEiRMRHh6O5557jq9zTU0N9+8R9y4AHtUYAM8PcvPmTe6ASsExe3t7uX6RziFx73RuVGeZDEton4lpHGgMorhK3ov0P7VHfcihkcT9boVXJPDbCuteQCmAmYyxCMaYA8BGAPukMvsAbPboYtIB9GiadtGqYSvWzIrlA7w3lxkXY1SX/tINQQxtYiSiUr10ApKLL1y4kMtRxXpyyGe3280T2rS2tqKhoQHbtm3D1KlTMW/ePB7bh8qSeS1jzEsGq9JHEJdAaySO3e1282CFZLorhlgRAzeqxHOi7we1v2nTJqxbtw6hoaFeUX9pHCTyEtdMjgtG/ZEXckFBAc6ePeu1V2T9C1nI7NmzBwC42K+0tBRTpkzxyk8eHR2NsWPHck5DFFUQgg0ODsa0adPgcNz2C3K7daOH7u5uXLx4EefOncPs2bMRFhaG7du3Y9q0aTw/xSuvvIKBgQGsWLECU6dO5flMzp8/D5fLheDgYEyaNAlbt27Fo48+yo0Uli9fzi3IAD2k/+nTp5GdnY2QkBBMmDABmZmZ6O/vx/vvv88NCF588UVUVlbiscceQ3JyMmJiYhAcHIxz587hD3/4A7q7u7F8+XKekTAiIgJTp05FR0cHD+S4Y8cOrF27FiEhIZg4cSI++clPcmup4OBg9PX14dKlSwCAnp4eTJ48GV1dXTh9+jSqq6sREhKCX/3qV/j973+P8ePH4/jx4zwg6Pvvv49/+Zd/QUBAACIiInDkyBHEx8eDMQaXy8UDapIuqaGhgZvj7t69m4siAd28Oycnhzt6btmyBVu2bEF6ejpPI0yRlceOHYsNGzZgxYoVnMsWdRyiL4lIHChEDom1Zb0nnQdRPyefPRE3iJwz9Wl1YbbAZ0pR1X1JQDRNG4Cef+R96CKz3ZqmnWaM/T1j7O89xXIBtABoBvAagO022vWS78kgIgc7ILODvgIhUXrJ4uYwe6GqZyJHQDdikm8SEYmNjeUcwJo1axAWFoaYmBgMDAzgo48+QmxsLMaOHYuoqCguY6fxiGaw4o0F8M5v7na7vUx9xfWpq6tDVFQUd+QkwiT7wVCbIjGg+FmUk0O0Xd+/fz+6u7tRVVXFlbTErdAtjg5UUVERdu3axX0VxDkQIc7MzOQiGpGtJ3PO6OhorjgnxOB0OrF06VI899xziI6OxqZNmxATE4P9+/cjISHBi7jTOwwODkZiYiKCg4MxZcoUvP766+ju7uYXAIfDgenTpwPQb8CiD0tHRwdXxoaGhuK5557Dl7/8ZUyaNAmxsbHIy8vjsbLa2tqQmJiInp4e7Ny5E++++y6ee+451NXV4Y033uCpWhsaGhAfH4/MzEzU1tby8ClVVVVoaGjARx99xPfTokWLEBgYyJMwZWRkYMWKFVi/fj2fd1tbG/ddiI+P52FMAgMDcejQIbS3t8PtdmPt2rW4ceMGVq1ahQ8//BAxMTFISEjA1atXsWzZMh5o8ty5cwgICMD06dO5I+K2bdswd+5crFy5EosXL0ZUVBTmzJmD1tZWdHV1ITMzE+Hh4Vi7di1aW1tx48YNnuhLjAUVGxuLCxcuIDAwEJMnT+YKbLfbjcTERJ4uli4ObW1tPPjlokWLuB6NoiTQ3hXxDe098cJI5chPixT7Yhwrt9vNz4N8XuSzJ54ZCrsimszLZ1J1SfUFl92XZrx3CkgHAhiLqGRzUsBYH0JANwMjU1srkHUaRiIco7oEYpgDQtD0e1lZGXp6enD27FlERUUhICAAqampXHwSHx+P1tZWLvIICAjA6NGjuderLBYSxyh6u4pIVx6nLLZTsc3yM1pbt1u3iCI5uji3goICLFmyxCtOlcz9yB65dACN5kPti+FJsrOzuSUOrbPchrhGRUVFuHr1KkJCQrg4i/QuhIhqampw48YNOBx6vozw8HC89957XAwk6lUAcDNPIlryGhcUFPDYS263biVFfgrZ2dlYuXIlQkNDeVa8zs5O1NXVYcyYMYiNjUVjYyOP0eV0OrFnzx5cvXoVWVlZcLvd6O3t5al6Y2JiUFFRgerqanzlK1/hzm61tbWYMWMGkpKS8Kc//QkPPPAABgYGcPjwYbhcLjz//PM4dOgQQkJCUFBQwNMQ9/f382RWc+bMQUJCAn9Pv/3tbxEbG4sZM2Zw7unMmTOoq6vDrFmzsHjxYvz7v/87AgICsHXrVnR3d+PIkSMYGBjgptaFhYXIyMiA263nej9y5AjS09PxyCOPcJEXoCuwz549i3Xr1qGlpQVut5sbNBQXFw9KkyzvbyPc0d3d7ZUPRNShkQiRxF5iHdKdkD6T9p14XlRRxOVzqQL5rBqJsvwOZcIYC1Q8G29V734GMwsro/AjVlRZJsQye2kE4m8iUrPihKjdoqIiLgKi7Hq0kUXCFBsbi6CgIKxfvx79/f04ffo0uru7cfr0adTW1mLv3r2IiYnBqlWrcOHCBTDGOPEQQ6bTjV2OmyVuUhGpUlm6uZI4iMrJG1X1LC0tDWlpaUhJSeE5SagsoHt800GjsCEnTpzghEcco8PhGGTHTw6VJMbatWsX94QXOQYy7yRrGJpnaWkpioqKuNiD3h2FHNE0DW63Hop79+7daGtrQ3Z2NgoLC7mHcmVlJXeqO3jwIHbu3ImSkhKkpKRwA4mamhq0t7cjJyeHm2jLn+bmZhQUFKCiogI5OTm4cuUKD7pHCl+HQ3duJB8SALhy5QpaWlowZcoUNDc349y5c3A6nRg/fjw0TcMvfvELvPnmm3jooYewZ88e9PT0oLGxETNmzODcCoUsWb16NbZs2QLGGNrb25GdnY2mpibExMTg+eefx9WrVzFnzhxkZWXhu9/9LubPn4/AwECUlpZi5cqVPKxHfn4+19EkJiZi1qxZOHToEMLDw9Ha2oqTJ0+isbERdXV1PMYY6fT27duH6upqLFu2DA0NDThy5AiOHj3Kz0RGRgYyMjLQ2tqKnTt34vDhw8jOzkZOTg5SU1N57CuKD0ZRAYKDg7FmzRqvgJy0d4DB1oXiBaa5udkrcjCVJdzhcHg76tL7pPefnJzMLStV50XGU4TL5NBDcn1Ve3bBzA/kEcZYB4ALjLE8yS8kz3YP9xnY0V0YITQjQkDiElU9wJhgiXJ6mZDIZr7i7yJxEq2OiPUViSBZRJWXl/PNeebMGbhceo7nsLAwfOpTn8LNmzdx/Phx5OfnIzMzE0FBQbw/UWk+e/Zsr7AKso5AHp94C5Jv/TRXIk7y+ovtkBhFjOlDZSdOnMjnQk5iixYt8gpjIh4yUYRAtzrxfd28eZMjDLoZiiEgxJuew6GHke/v7+cpdCloo6ZpSE9P55xpbGwsoqKi0NHRgWXLluHixYuYMWMGLl++jGnTdHsQp9OJT33qU/jCF76AjIwMOBwObkbd29uL8vJyrF69mt9ii4qK+CXC4XBg3bp1GD16NFJSUrBu3ToEBQVh6tSp2L17Nw/BAuiEMT09HRs2bEBAQABKS0u5Vd7q1au5Jzul0l2+fDm2bdvG593f34/e3l5cuHABGzZsgNPpxIwZM1BeXs4txAA9wOAXvvAFfOlLX8KmTZt4qBlS8O/Zswd79uzBggULsH37dq7w7+/vx549e9DV1YWGhgZERETgzJkzPNhjX18f2traeNbAAwcOID09HTt37oTL5cKqVavw2GOPITw8HLGxsRg3bhz3l8nOzobb7cbixYsRHx+PhIQELFiwAHPmzMG6dev4WaL3kZ6ejujoaNTW1nIHRDKXLigoQFVVFRdrqi598hmQ95EokhId/+i81dfXo6ysTIlnxHaM8JR4LlVRK1Rg59IMmIiwGGOlALZ4dA/rAfwQwN9qmlbMGDuladpcy9bvMxiKJ7qRuAUYTMVVbKERwTJqQ6xn1LeZqEt8Toi+u7sbjY2NKC0tRUREBJKTk7Fjxw7cunULjDEeN+jDDz/kcZ2am5sRFxeHxMREfpMlZCiz8LLoCVB7kIvPRJNfowijRGRoPmL97u5uvPzyyzzj3Y0bN3jqWTH6sMgJqswoxXUmXxfyDamqquIWQnFxcYM4GBoPAZn1il7v165d457MbrcbjY2N6Onp4VF4Gxsb0dXVhUcffRTl5eXo7e1FRkaGV92VK1fyoIaiiI3GBICHkgd0JE+iJlrHBQv0YA27d+/Ghg0b+E2axDeNjY1ITExETU0NNE1DX18fZs6cif379+Pq1au4du0aNm/ejPz8fMTExCAoKAiRkZFcSb1jxw584xvfQFhYGF588UVs3rwZR44cwc2bN3mIlJSUFDQ3NyM0NBS/+tWvkJqaikWLFnErsrFjx/LovrNmzcL8+fOxf/9+TJkyBXPnzkVLSwsuXLiAt99+GykpKfj85z+P1tZWXLt2DU1NTZg5cyaKi4vxxBNPIDo62uv9ENc3ZswYrmsSucmysjI0NzcP8jgnDotM2ykcv2g5eODAAR7RV04ZQGJVMdq0EZAoMjAw0Cv9rVWEC/kcArdTP4sRqI2i78rt2BFhmRGQKk3TkoXv8QD2AvgGgO9ommY79tT9AsMRygSA12bTNM1rQ6h0KL72YUUQrOrS2MSNQlzD8uXLUVtbi7a2Nqxbtw6nTp1Cf38/oqOjceHCBfT29iI4OJjHdRKRrqw/IBB1BlbEVLVGInEgbowx5nWwxUMhHkoiIqRXEMVqFLbf5XJ52fHLBED8n+YiEzn6nXI8iL4q4g2PLNRkc+KqqipMnDgRYWFhPJyM6H/hcrnw4osvcrPS3bt3e2VO7Ozs5AmZAgICsGjRIjgcuvkucV1OpxMFBQWYNWsWWltb0d/f75Uzo6mpCU6nntTK7XZzZA4AFRUVOHToENcfkDK3u7sbe/bsgdOph29/6KGHEBcXh/r6emzfrtutUJj2vLw8LvZKSUlBXl4eOjo6sHTpUhw+fBijRo1CfHw8R7jV1dV46KGHcODAAdy8eRNjx47FkSNHkJSUhKeeegoulwstLS1IS0tDZ2cnTp8+zbky2pMXLlxASEgIpk6dipdeeglLlixBcHAwSkpKcPPmTWzfvp3riw4fPoyDBw/iU5/6FI/7JqdSoP1IHCRx95WVlQgLC+O5QER/Iqqza9curF69Gp2dndx3hN4/5bwnHZVKfyWe1V27diE8PByZmZkA9IuBnHHQCOQ9DQwWK/uKm/zRgfQzxsLoi6ZppwGsAPA9ADN96v1jCioWTrR2oPAl4stSsap22qXnRnoTO8SDLJBUfTideu70zs5Onnf57Nmz3Fv7xIkTmDFjBgoLC9Hb28vFHcTOE/ImnxICWZwlg4qgyLbwIkInfQfJemkMRLxI1iwia9Hpi75T0EVC3jExMVy0RGvjcrm8TCIpdIvL5fISy1FaUgDIysryEu9RXcrimJSUhKSkJB5ynnQ/EydOxBtvvAGXy4WNGzdi7ty5aGtrw8DAAEc0AFBbWwvgdhRh6oPCwqekpPCbc3d3N3JyctDW1oa33noLnZ2daGhoQG5uLhITE7FkyRJkZGR4KafXrl2LwMBAMMZQWVmJV155BTt37kRCQgISEhJw6dIlhIeH87S+tbW1uHr1Kq5evYp/+Id/QFZWFurr67m+qKGhAVevXuVhcFauXImGhgaUlJSgubkZJ06cwKuvvsqd7lJTU7F7926+bhTpFtBzkDz//PPcF4MIIxHu9957D0eOHOHc4ZtvvomBgQFOPEnEk5GRgUceeQRbt25Fbm4udu/ezfUXS5cuxdy5czkCp0uWKDKm8CZxcXHcSis6OhpHjhzh+1wkHrTP4+LiEBYWxs8KmayPHj2av8eGhgauvxL3kCgycjqd2LBhA0JCQvjvtbW1fB5WoBKTiX3I4ikjkZcdMCMg3wAwUXygaVoHgGUAfmS7h/scVMiansvIXNafyDdxUR9g1p+RfFGlNzEjNuL/LpeL5zcQORECMUwJHTaS/Y8ePZorWDMyMjB//nw0NDSgqKjISz9DXtQikI27mexVnrvIKYjzJOJAuhyxPMWpovWlWD+0Vt3d3V4m0aJ/DUVJTU9P57dNMvu9du0aX/vExEQAuie4+E7S0tIQFRWFffv2cSRF8yktLUV5eTnPiU4El0RnFEQvPz+fp7sFgLNnzyI2NhYLFixAf38/nE4nvv3tbyM9PZ17wROBA4AZM2agsbGROylSPKcJEyags7MTLpcLra2tWL9+vReX5Xa7ceHCBcyfP5+vh6ZpXp7wV69eRXt7O/Ly8njsqCtXrmDPnj3o7OzEqFGjMG3aNDQ1NeH111/HrVu3kJCQgHPnziEyMhJnzpxBcXExXzeaV3p6Ol544QWEhIRg3bp16Ozs9MqbQjo5p1OP2xUWFsbDzTscemj1iooKdHd3IzIyEosWLUJbWxvef/99/OpXv+KImdL4PvXUU2hv16MbLVy4EOHh4diwYQPn5IjzkU2MyaQ7PDycG2C43bqFXG1tLedKRXEo+S+JHuOidRSFu3E4bkfOpT0mBkmks6ry7SLi5nQ68fjjj3uZlttB8jLHQWfHzEjIBD/55kioadohTdOqFM+vapr2/yxH/zEAunWqFEtGyNyKE7Dzu6wIVtWX7bvlcYtjKisrQ319PTdXrKurQ2xsLL9REZfQ1tbGESuF1na5XDygW1tbGy5dugSHw8F9F0iJTIiULLOob/pNNgYQx0hKcofD4RXKneYprgshPZGbEze9qBehT1hYGHbs2AG3283LEzEBwONZ0WGkpGJRUVHcYRDQD+3atWvx4YcfDlrztrY2bkwgErt58+YhNTUVQUFBnADRb6WlpaiurobDoQexnDRpEvr7+zkRIpNkItZ08ejv7+e3bspTkZ6ezkOPL1y4EEFBQYiJicGkSZO4E2lMTAzPlXH48GF0d3dzh7t3330XmzdvRmtrKw+lMm/ePMyYMQOdnZ34zW9+g9WrVyM0NBTTpk1DYGAgwsLCUFVVhYiICIwbNw5z585FSkoKxo0bh5SUFPT29sLh0EPZT548GUePHuWxvAhu3LiBhx9+GE6nE6GhoXj99dcxfvx4ztnQ/m1qauKWc5S3PjExEbW1tXjppZdQV1fHrQgnTZqEbdu2YfHixejr68OhQ4fQ2dmJ9vZ2XLt2DdXV1dznhzgp8r+gHC2UVwbQub5f//rXyMnJ4VGSHQ4HpkyZwkPUiBZ9dBYopI6KKyDLu+zsbK/cHeQPRGdP9PsywgVut26NJYqnrZTh4uVLbk916RV/k4mZp5/bbLcAZjqQ3ZqmbWCM1cDbC5Hp66MlGY7+PgVZByLKMq24BkJoQ9Vt0AYQ/QjkcqTIJftvs3hZIsKWEay4MTs7O3HgwAGsWrWKR1Lt7OzEkSNHsHbtWrjdbnzrW9/CCy+8wMOfOxy64l3MF15aWoq+vj4eiFG8YVEded2ys7N5bmhRxEd6BtJX0Hwpc2BKSoppDneC0tJSXLt2DRkZGcrYP/L7E9vatWuX182uqKgIiYmJXjGyZO6KFNdiuPmCggIEBQVx7kQeMynW6+vrOXdFynm32819boqLi7mOQ3x/lZV6WuKXX34ZW7duRWhoqJfPi9vtRmFhIV577TUkJyfj8uXL+PSnP80VxmT0UFRUhJ6eHh6WZNq0aXC5XPjFL36Br371q/x2/tBDD2HLli1wu/VQKhQH6/3338cTTzyB0NBQ7NixA0899RQqKioQEhKCkJAQHDlyBJMmTcL48bqlf0REBPbu3YvW1lZMmjQJM2bMwLhx43DlyhVUVlbyuFMiojt27BgPKdPZ2Ynjx4+jv78fXV1dPG1sXV0dwsLCuKiQCGhjYyPnrNxuPdsgBVZMT0/3UkyTroP8UdatW8fPRnd3N77xjW/g29/+NlpbW5GYmIicnBxuUCIqySlWnCodgRg1Qd4TVnhAPktGeg2juv7qY1VtMsYqNE1LlcuaibD+0fN3DYC/Fj70/WML4gsQI62albej25DbF7+LuhPRX0MGuomLxMOonHjLEFlvFTIPCwvD2rVreVZCt9vNnclCQ0MRFhaG733vewgPD/fibpqbm70S2VBEWbKcISsjsT9xfck2n3I9EBst3nTk+UZGRqK5uZmHMwe8g8sRB0ee4fPmzcOKFSu8dDXiGpF+gjIXiqIyUVHtdrvR1NTkRXTEm57o0EhZ5eh3CtNNbYncWFVVFb+tE4GpqqpCVFQUgoKCsGTJEq5IP3fuHI/AKuqGaK2cTid+9atfcWsi8sh3OByYO3cupk6dis997nOYMWMGZs6ciQsXLiAyMpLv8cTERLS1tSEwMJDnOWlubsYDDzzA148UzydPnuQpVpubm5GQkICMjAycOHECTqeT5wtxOBwICQlBc3MzJk2ahMuXLyMmJgaJiYno7OxEVlYWlixZglGjRmH8+PGIiIiAy+XC9u3bOSKmVLn0vlwuPWNfbW0t2tvb0dHRwbkD4iIp/8hXvvIVpKamoqWlBV1dXcjLy0NsbCySkpLQ3t6OzMxMrtgXIyns3bsXXV1dOHHiBNatW+dl9BAaGorPf/7zCA0NxdmzZ7mOIyYmZlAWP8aY136m2Ffd3d2ceIiGGLQ3RX8iI3wh7mWz8y/WlZPI+QImIizfQplQXClN086rPj6N6j4BTdO4YlN8kQQqRC2LUqzA6OWLxMfpdPIbi0qeKToAmbxQL+QrKl1VY6J2SSbvdOqBAzs7O/kYyHlOzI0h63RIZEH/OxwOrhchcZW4qV0uF44cOcK9oWUgZC7Ot62tDRs2bEBiYiJPb0th3uk273LpaXhVHILsV8MYQ39/P09zK3MoNF6n08lTilJWN5LTu91uznGRSIzaJmQgrlNvby/PjZ6cnAxN07xiiPX19Xl5ibvdbuTk5GDZsmVobGzkSFR8//X19UhNTcVTTz3F842//vrr3DmQRHBOpxMBAQE4d+4cJk+ejL179+KXv/wlKBJ1YmIiUlJS0NHRgaysLKxatQrPPfccjycWFhbG09SSSWp0dDTa2towf/58Liol5F9cXIzvfve72LlzJwBg9erVqK2tRX19PXf6GzduHDZv3sydAckj3uVyobCwEP/1X/+FwsJCNDQ0cCV6VVUVAgMDsXHjRsyZM4fnShH3MsVtczpvZ6Rcs2YNnE4n6uvr0dfXhw8//JBHSBYzX27cuBHLly/n5UnMSyK0jIwMOJ1ObpGWmprK14b6r6+v99Jx0FjWrl2L6upqHuJfDr9jJLYiMOIa5Muo7C8GDHZqtuvTAdjzkxPBjid6FmOsiTHWczdT2t4pEDkJcVGNELV4a7YDRjJEowRKwGCEZ9WeCNSOqHQTQbyllJaWorCwkCcyotg74i3X7dZjS4nP5U0vEj8AnJsimb+o56DDJCaIErkJKqtab/LCbWlp4cmbAHBETkRTtASj34Hb/i8LFy7EkiVLvELI01gAeCnf6+vruR8GIQdA3zcih0HPyEpI3k+BgYGIiori3Bn5ppSXl6OsrAyBgYE8vHtRURFcLhcGBgbQ1NTE84ETwaH1oEi9tDZOpxNPP/00F7u43W5uPhsZGYn09HQsXrwYkZGRGBgY4HOhtL5i0MaWlhYcPnwYO3fuxC9/+UucPHmS53F3ufSslGFhYdi/fz8qKiq8LP5CQkLwox/9CP/2b/+GcePGobKyEg0NDZg2bRoaGxuhaRrnqvbt24fr16+jtLQUu3btQmFhITRN46l4iTtvaGhAXFwcHytdWkS9msPhQF9fH7dqoj1BZzU5ORkpKSm8bl1dHUJDQ70CDJaXl2P//v1wu93cSpHEZ1QuKCgILpeLOwrSpQMAN0RRnVsaT2hoKE8dSxc4OgeyAps4CPqualfEB7JSnM6nmU7DqG2xD7tgGQuLMdYM4K81Tau33ep9CnI+EJKliyIMXxZPBrP6Rr8R4pXNgYdzbKJMlBygUlJS+CEhZzlySCsqKhoU5wnwDl8vy2SpfTo4RvVEuSz9ZqXnIcIgihjEMRBCUeX2kPOWyHMAbnvDq8SFcjnxfRFibWpq4pkcaV7k0EcpSwFw5zzRR6SoqAg3btxASEgIIiMjUVJSgtGjRyMgIIB7PYvjJZ1dUVERRo8ezRFmUVERmpqasHHjRrhcLu5ASGKdwsJCPPXUU8jLy0N0dDQWLVqE7u5utLS0QNM0xMXFobi4GH19fWhvb0dkZCQPFX/16lWeW54U/xS/CdCtoMgvhoJdhoeHcz3ZrFmzkJ+fj4ceeogr/3Nzc5Geno7e3l6EhITgH/7hH5CZmcmDCq5fv55brJEvC/VN4qc1a9bg1KlT0DQNKSkpaGtrQ1hYGM6cOcNTAAN6IMqamhrExMTg9ddf506nNH56jxRDjuJR0cUvOjqaczMBAQG8HnA7V47oB0X7TNZjEnHo7+/nhFGuQ2dR1qmI+14+H/KZkXGH6lyJfmJ2cIvPjoRCxeOapj1sWuhjAiol+lAIhgh2XpxZXZUozYygqOrZ7YtktKQYB3Ql8Llz57zyeJghXFlEpyorO1upxt3Z2YmwsDCv38S5082PvGnlw+R2u3kiKdnDl4iC1bqqkvVQ+xRjS5Qll5WVITY2lnNIALg4RrSwKS8v55FpZ8yYAQDcC5vaIySelJQEl8uFl19+mesgRGdJkUCL86M8E+KNs6ysDJcvX8bly5e5uIm4QRqjy3U7ZzqN+Ze//CXmzJmDWbNm4fTp01iwYAE++OADFBQU4NatW4iOjsaTTz7phUwHBgY4UnW79SCFmqbxZFTU38qVK3HixAne3/vvv4+Kigo89dRTcDqdOHLkCObMmYOWlhZcu3YNy5cvR1FRESZMmICuri709/cjICCAJ0QjonLmzBkAwKhRo7B27Vrk5ubi5s2bfB9Tqt3S0lJs3boVTqeTh18X9SFkTEHrR+suX2LKy8uhaRoYYwgICEBcXNyg3OfiRYSIkKhcJ0MKFfIXEbq4n1TnywjfWOEFOlNixF8rvOWPJ3qW59+lAMIA5AC4Rb9rmrbXsLf7FIbqiS6DnRuB2XMVqCwnVJYcdgmWvCnFfkTkKt7yxf9lToMOFzm/ibG4AG/kXFRUhMDAQMPQCRSG5Omnn+YiLtG7H7jNoYjzF+cOYJAlnUzojA6cKEqTx05WT/v37+dhLejWRrfUuLg41NTUICAgAFFRUTz0iXjbTEpK4mOgmyX1VVBQwCPtOp1OlJaWorW1FdOmTeN9zJo1C4GBgZg7dy4fC/mJ0Bzq6+t51kmaa3l5Oc+7QrfhmpoaAOBRmClSMKBbS7300kt46qmn0NTUhCNHjmDbtm04dOgQVq9eDQDcK1zcMxTduaGhAWVlZdznZPz48bhx4wZKSkp4NsLY2Fi0tLSgv78fmqZh6tSpCA8PR1lZGSIjI9HW1obw8HDk5OQgMzMT2dnZOHr0KL70pS9x580333wTKSkpSEpKQltbG6KiojB37lzOQZC1GGMMwcHBnICnpaVh79692L59Ow/XQibWsbGxXlFyyWhAfJfElcsg7jGRONDeJbEwnSuRYxFBhUvkvS+WkXGCfJ5lUHE6MkdvBv54opPV1RjoqWxXwtsS6380qHQmRsTDTIklPqfbiqhwJ/m+eKOhvswUbWLfsmIbwKCbOUW5pTAKZDdvJDvVNA2pqak8W6EYbJDGJ+dvltcgNDSU3wrpd9G7n+YoWiPJc3c4vC3p6LCTElpWOFI75BtAwQjlsc+ePXuQ7kVce1KeE/E4cODAoNwLSUlJqK6u5hZGcXFxKC8vR3FxMfe/IV2Tw+FAVFQU6uvrERERwf1t6urqcPDgQZw6dQpTpkyB2+3mPgZlZWVwOp08mGNxcTEoXQH59tBcKGw8QU9PD0JCQhAREQFA94XQNI3rbNLS0nDu3DlMnz4dTqcTnZ2dPJ9McXExiouLkZOTw31pYmNjkZaWhq1bt6Krqws3btzAzJkzUVZWhunTp3PlfFJSEhITExEbG4v8/Hy4XC5cvXoVLS0tXFk9efJkHDhwAHFxcfjiF7+IgIAAFBQUIDw8HJMmTUJSUhIWL16MLVu2YMWKFdwSrLCwELW1tdxx1O12cw/5OXPm4Omnn4bT6URgYCBfczKtpvUmn6qwsDAvo4empqZBSFv8SybBZFBCe5TeIREP0pnI517UM4p7sKqqysuPBBiME2QdoAxi+yq8MRQpzP+4fCB3kgPxpRy9fDlmlaqsKJ+3CoamYnVpg5vZhIv9kvmh6pZEt2ox5aaKY5E5FwBeXAPVy87ORnR0NA//IeosqC7N32zO4qE8ceIEj6VFfYnrQjd0t9uN1NRUU5GCKAdX5RohpEI6GPE2Ghoais7OTuTk5GDDhg2oqalBT08PWlpaMHfuXMTExMDpdKK8vJyPlWJe0a2Y9CeEIM+fP+/FsSQnJ/O5MMYG+TnQOykuLkZ/fz8yMjLQ3d2NV155BVu3buU+FzTWvXv3enEDgYGBGDt2LCIjI3kO9aCgICQlJaGmpoZzM6Tbqa6uRmdnJ7q6urB8+XLU1dVh8eLFvL2GhgbU1tYiKioK/f39mD9/PnJycrBu3To0NDTg2rVr0DSNI+LW1lbcvHmTi/mmTZuGhx9+2Es3BOiOnrm5uZgwYQLGjRvnJYIS47iJMdLo/Yr6HFo3inlGcaso5pgY/UCMlUbtqvapvD+B2+de3J/iGVFdWkRQSRDscCD0v6/i9qHkA4lkjP0XY+wyY+wSY+wdxliErV7/wsHu4qs2FN0IZAKuuq2LMlWxvHhjEevLVhnUhtmGEW835PUqj8PhuB1uWlTAUawokdMRPXdFU11x7mRKuWjRIm6pIhOPo0eP4sUXX8TRo0cH3bDE9qlvADxDnHxbJCRChgQLFy5EaGioV550eU2cTiePDRUbG4uysjI+N5pnUVGRV6RiEs21tbWhsbGRm9nS+4uJiUFERARycnK42IOs5M6cOcPzqqempvKMgw6HnsGQdC4A+LhJUU/e6kTQXnzxRRw+fJj7jJw9exbd3d3Izc3FvHnzuG8QJU0KDQ1FQEAA5s+fj8cffxxBQUEIDg7mxCMuLg5BQUFIS0tDaGgoVwSLoTmuXLmCrq4ufPKTn8QPfvAD3Lx5E42NjQgNDcWBAwcQGxvLLbJaWlpQUVHBubCOjg7k5+ejvr4eTU1NaG1tRUREBL9gZGVlYezYsZxbEfdsbm4uMjMz8ac//YkHHaQLD4Var66uRnh4OM+ICegEhcSMtI8oM2V6ejrf142NjZyDo71E5uSiI6y8P+X9JO4DmTMw4g5UZ1YW11pZiRpx8EZjVYDfOdHfArAbwCQAkwH8B4BsG/U+NqBaPKtnZgtu9TJE0YzRzVc27yPkKCI7szAsRv1ajVs2c5ZZa+C27wa1SWInkUiJSXLEzSq3L97YVIdg4cKFeO6557Bw4UIuClARJplAyiEmiNDRPMjCyGjN6ZnL5UJOTg4PKcIYQ2xsLKqqqlBYWMh1DyI35nQ6sXXrVh49l5BAYmIiLl68CEAPm37z5k2cPn2a31zJXwQAD3kCeJsjp6SkYO/evThw4ABfh8jISOzfv98r+qvT6cSSJUswd+5cnD17FvHx8YiKisLp06cxefJkjB07loez6e/v50QxKioK+fn5/N0lJiaipaWFcwQkuqO9Qn3FxsaipKQEpaWlWLt2LVasWIHPfvaz6OrqQldXF/Lz8zmnQ0EeExISMHr0aCQkJODYsWM4cOAANm/ejC1btiA5ORnx8fEIDg7mGRHDwsIQFBTExU7yhYLEVcQVlJeXc1PkefPmITIyEi0tLV6RFii/DaV/Jc92emeiH5Do70R7nPZ3aGjoIM5BZapL/dI5Hoo4yUo8LpaTgd6heJYsxOy+hTLhBRgr0TRtgfSsWNO0dNOKfgJj7MfQ9SxuAGcBPKFp2lVFuXMArgP4M4ABFXslg0qEpWLn6JlsUSGKYMwsIGRRjT8gi7JUIiGjMCxGbK/RXM36oe9GJry+jl/8a8ZGu91ur1wGhJyJCIjsv6o+IQVRzCCaZ1I92axYRNpUX7TKoTV3u93YvXs3oqOjkZ6ezudEodpJgUumqMQZiN7J3d3dOHv2rJcRQkFBAZ/DkiVL4Hbr5sgUggbQxTU7duxARkYG2trakJCQ4GUaTErziooKzJgxA/v370d8fDzXDURFRfFw5nR7rqioQGBgIFpaWvDzn/8cX//61zFp0iSvfBRVVVW4cuUKli9f7sXZ0WWmt7cX8fHxCA0N5elzz5w5wzkkh8MxyFKJdAcXLlzAwMAAJk2axN8PGQGQz5JoCXf48GGMHTt2kCmuCKmpqXC7b2f1e+uttxAeHo4LFy5wH5Pi4mJ88MEH3BqM5kSm2gQFBQVoaGjA+vXrvcZidHbkPa8qa2bCbtSmP7+rzhmdJdFgxUxE/MADD/gcyoTgA8bYNxhjMxhj0xljzwF4lzEWyhizDk7vOxwEkOCJtXUGwAsmZR/RNG2OHeIBDPbQBNTsnMNx28FNFI2IilsjxEe/2b0diCDfUghEZbZ48zYiHkbB1mhsYlmjMRJSIKWqaIZottHEw6K64YiIRx6LDMnJyV76HqfTiaSkJDDGUF5ejvLychQUFChFeeRBTE565AgIgDsuihyXTDjLysr44U5LS+M32bi4ONTV1cHp1MOgpKen8zAyDoceNJHMTM+ePesVfdXt1r3JiQi2tLR45Zvo7u5GQEAAEhISuHMmRQw4cOAAv3GHhYXxqMkxMTHcC57mQOKVyko9XPvUqVORmpqKjIwMPP744xgzZozXOyAxWExMDMLCwpCSkoJly5Z5iaacTicmTpyIwsJCFBYWDgqc2dvbi7Nnz3Kz2pCQEJw5cwbp6elc1EXESuQEm5ubMXXqVJSVlWHMmDGc0MTExHBRU0NDg5exAVl/kSis0hPKhQw7UlNTOXdAHuMOh27wsHjxYmzatIkHNUxPT8czzzwDh8OBPXv28P0jKsMdDgdSUlJ4kjBV/nHaM0ZnWMWFqLzIxbNgB4fIUgWjMy+PlZxgRYMVIzwgShxksENAPg9gG4APAOQD+N8AngRQDmD4NNIe0DQtT9M0ihleDGDqcLUtsqMiqG7qohmfSDiM6sigip1lJT5SeaTLFhYi4lVFAhVFSkZ9ixFAVZwX3QxFE10iHi+//DLPXiePX4zIKxIywDg0g8zm04e82uU+SOa+cOFCJCYm4ty5c0oxgdvt5lFp3e7b3tzinMW1FNeY3r+4piSzFhEItUce8W63HoYlNTUV6enpSE5O5p7tNLZ58+bxW7Mo5ouOjsb+/fvR19eHxsZGDAwMcBm7GD6DxnfhwgWcOnWKr+nRo0d5hAGnUw93/+STT2Lp0qUICQlBTU0NqqqquNUWWc6RaK+npwenTp3C3Llz8fnPfx5ut5tbi1VWVqKzsxOHDh3iucQpBhqJioKDg7F+/XoEBgbydK+UK53eoyzepPcSFhaG7du3IzMzkxPCxsZGru+pra3l+Wncbj3MOlkzie9QvJyInBGZ61LQTOqD5u5wOLxivgHwilVHhJ+cb43OPu0RGYwunCq9pHzZMpJyyOVJtCuePyN8Q8RL3ONGxIrKwiAWFjRNu28/AP4LwCaD31oBVEAnZF82aePL0AldWXh4uHbr1i2tpKREu3XrlmYGVr9bgVxf7FfV9vXr17Vjx44Z/ia3eevWLe369euGbcplxXLHjx83nB+1+9prr2lXrlwZ9PuVK1dM68r9qsYll1HN5/r1615l6Td5zvLaiOWPHz+unT9/XjlWGagd1XdxLOI7oj6OHTvG14rKivM4duzYoLmVlJRoV65c4XOS+5HXQ1y7W7duaVeuXNGOHTumXbx4Ubt+/bp28OBBLTc3V8vPz/cqn5+fr125coW3La6j2NZPfvITbdu2bVpubq52/vx57atf/ar21a9+Vbt48SLv6+DBg9r169d5n8ePH+e/Xb9+nY8jLy9Py83N1ZqamrTnn39ey83N5WMoKSnh9V977TXt/PnzWn5+vvbaa69p169f165cuaIdPHhQO3jwoPbBBx9oV65c0XJzc3nftE55eXle86T1PH78uNfc8vPz+Xca65UrV7Q33nhDO3/+PH+fVEZ856ozo9r74n4wOsO+4BOzsjL+kt8pvYtjx47xtTDCd2Y4Q+4PQLmmwK92OJBhB8bYIcZYreLzGaHMtwAMAHjToJmHNT2t7mMA/g9jbImqkKZpv9Y0LU3TtLTx48ebip8I7Mj4/QFRfyLfIlSxlghIhi/eNIhtFzP1UZvyjVy+dYsWVDJQmRkzZihDe5Bjmlld+bt4k5PzhoiiLtncUrxdUTRdMYYYrYHYDomCiEVvb2/nayaCfEOT50rtUiA8EiPSOyKdSlJSEpKTk9Hc3MxFZYB39FzRwIDmRnMR44bReoliI2qHLL7ee+89FBQUcE4iJyeH589esGCB1+0e0IM6lpeXe1kMiZxxZWUlnE49iGRwcDDvd/Xq1dzprqamBsnJyViyZAlcLheee+45blHV3NzMA0JWVVVx5f+CBQt4Sta5c+di9+7dKC4uRlhYGDcAmDJlCvLy8hATE8Nzxe/evRsAkJCQAMYYqqureUgUEn05HHoSNHqHIhfidru9MjwSJ3HixAns3r0b165d42JBCvIJ6JZ5FM2a2hHXic6MihsQOQbKFmlUxg4YnU36TdRF0hkQjXLoL4k2zcTt4l4xE8nD12i8dxI0TcvUNC1B8XkHABhjX4LurPhFjU7E4DYueP5eAvCfAOZb9UsiLDtKJ7svW1VOFSSN5IhGBIw2gKpt0VRQRFAABiEsEREbidzEzWc0z6CgIC8ELtY1C2svI2axDYfDwTe2uHlJ1yLKlkXLKkCPI0XZ+MQy8mGTQ8NTylgxda1ofiuKrUQxGmWba25uxqpVq7wIBCkgRTGKmMhKRDTiZYTGSo59JF4RLwHiBYHq0judOnUqjh075pUlj3QDpGcQ3y2ZnzLGeIh8Gp+YqtXh0JNyPffcc5g7dy6am5uRkpKCjz76CL29vVyfAOiWTo8++ig6Ozv5vCnKcXJyMsaOHcv1FwB4Tpfp06dD0zR0dHTwYIUZGRnIyspCY2MjKioqUFNTg+joaMyaNQttbW1ITEzEokWLsGTJEixdutTLB4cCU4rvdd++fYiNjfXSdRJxj42NxYYNGzB27FgA4GJBCkGjecKTuN16LpAXX3zRS4RndgERRWiU8VK+jFhdWuW2zXST4n4SL4byb+L//vQl96eCe0JAzIAxtgrA8wDWaprWa1BmNGPsQfofupd87XCNwc7Lpg2k4iYIKaheNH0Xy8tKKrFt8dYomgrKSFRs207oebNNTYieEKJ4INxuNw9TrloTFYchtqG6xQUGBnopk+XD53DoFjmkYBV/E7kO+TbmcDi4roQsTcrKylBVVcURjXirFddDzPEgpgImziEpKYlbKJFviGglRushRq0V9VmUL1u81IhZFGn/EOGdPXs2wsPD8cILL2Djxo08VwoFGKRxU3BFIkqjRo1CQkKCV5gVQpgUS6u7uxulpaWora3Fnj17uKNdXFwcxowZw8O30Dq3t7cjKiqKvxuaAwAkJSWhpaWFm8fu27cPnZ2dGDNmDBYuXMgdJHft2oXi4mI4HA4e2iQ1NRUpKSnIzc3lvjciAiPiXVRUhOzsbPT09HiFhiGCQClzS0tL4XA4EB4ejgMHDvD1ETk8GmNSUhJiYmJ4RIbMzEy+tnIWTdI1UAZFMUy70Y1fxbkYgdElTYVvxIuK3YuvXeJmp01bBIQxNoUxtogxtoQ+dur5CT8H8CCAg4yxSsbYLz1jmMwYy/WUmQjgGGOsCsBJAO9qmnZgqB2rkLlVOdXiizc2Km8E8k1abps2pByXSqwv9kEEx6xPq00m9iMeCKonIgx5LDKHIbehqkOstiiKkIkQeYyrjAZErkNcE5rLvn37eFtkYBAaGsrzqsvlaUw0Z8oN393djd27d3MRGfUl3ozF26/b7eZ56mkdKKkXWdD19vYOImIAeN727Oxs3h+109jYiFOnTmH37t3o7OzkhgRFRUX8WXV1Nerr67Fhwwaez4NMYnfv3o2oqCjuvEnvjUKf07ybm5s5gq6qqkJ0dDROnjyJ2tpaTJ8+3Uu843a7efgbGmdzczMWL16MI0eOYNq0aXA4HJxzW716NQIDA73eo8vl8nq/oiEBrY3b7UZMTAwA8ORopaWlKCoq8hq3y+XiHEVbWxtWrVqFkpIS7N6922uMDoeDp7alNAbkQwMA2dnZnDMSL2lpaWlYtGgRYmNjceDAAS8HTzuXT1lCAcCLG1adYatLn92LrxER8qdNO34g/wrdEqsOus8FoKe0XWta8T4EO6FMrFg2ArPQAWIbdFvRPPbWZqIfsgtX3dKpHdH/QVXXLPkVESgqowptQm2ZPaf+zWSnVIdAZrGN1ou+q0LcFxQUIDg42DDvCaAOD08IyCyEtculJzYaO3Ysv6U6HN4pfBMTE7F7925s2rQJwGBvYHGuYruqcoQws7OzsWbNGoSGhnqtO4nayCOd6u/du5cnvXK5XMjLy8OaNWt42llxDtQvmInJZwAAP9tJREFUhXrPyspCRUUFKisrOQJ0u3XflY0bN/IbuThet/u2ToHClkyYMAEnT57EqlWruE+Ey+XCW2+9hdjYWB5OhUSAYWFhyMvL4/03NDTwchTUMDIyEi+//DI+8YlPYNu2beju7uYXAgo1QlaAmZmZ3CKKiKIYZobSC4th1js7O5Gbm4vp06cjIyODB8OkCAKUdIzC0ovzB2AYrZnKEPesOjdme57OVXR0tFcoH7t4yG65odYZSjj3RgBJmqbdMi34MQB/YmGpFltE2HLoDaPNQuytGZjFqyKkapQnALBG0kTI5PwFduYsP6fxmIVZJ+RLh1mMQyTPS/SwV81DnL9IYOUxkYhNJj4AvOrLfR49ehTvvfcetm/fjkOHDgEAjzklz0tEFsBtxz05h72MjGm9yOmPbsIUtp0QItXds2cPli9fjtbWVt5GX18fli9f7uV1Tj4NJEKjWFYiR0ZrUFZWxsOl0/oUFBRwxKm6/Ljdtx03aW07OzvR2dk5KMaUuK+KiooQExOD0NBQnDhxgnMq1D75c1y5cgWLFy9GSUkJ5s6dy4khEYf6+noe+bi3txcZGRleYxRDidA7od8ojtUrr7yCjRs3Ijo62oso0vjEeGviZUQk6OK4VZcw1Z5VERWjc0Um2HaRu1V8u+EEv2NhAWgBEGhZ6i8QjGSAJDaR5aJm8kIzhyH638gunPqUw4UAtxX24thUQGy3GLnWrKxqHnJ52dFPXAOHQ7dYCgoK4omqxFARIoj+OWJ9GQjhi8puWfEN3HYCozbpOUUOdrsHh6VITU1FZGQkwsLCsGnTJmzYsIE7DwLwijgssvaiCE2UlRN3QUSC3h8pWSnxktvtRm1tLd566y2uRyFnzVWrVuH06dPQNI3rSy5cuAC3243+/n7ExMQgNTWVi3nKy8t5Eipyoty1axfvnyzTLl265LV2ZH0lryeJ5xYtWgSH43Y4erfbjSNHjnCxjaijI4Te3d2NmpoaPse0tDSUl5dzERJF8x09ejROnDiBkpISnm2REGN3dzf27dvHw8W73W4sWLCAc5NHjx7lGTBFgwvi7iiNbEtLCzZu3IiTJ0/ythMTE9Hf34/9+/ejs7OTizlVjsMyURWtBY3KyPtE3I+qc+V26z5GKgdgFYjj8IcDGS6ww4H8EUAygMPwzgfyD8M2irsE/oiwzNg9q7LypjISO8nsr3yLVzkFiuyvGBrCjAuxC6qbk+pmqhLLqURD4m1N5kCM1kl+Jq8PcBtR0Nwp5IjIgbjd3rkciAsRs76JymWZYyDlOyFVIhRi5F3VuN1u3XRUzCpIY6YkVeHh4QgLC/Py7i8uLsahQ4ewdOlSPnYxbS0R37feegsDAwOIjIxEcHAwUlJSuHiN1kW8sYv7Q45sQOOVw/aIN2wAXiFdiDCKll1ULywsDJ2dnQgPD0djYyO3ECM9DfV37do1XL58GatXr+brWV9fz+ONhYaG8qjGRCABcGMKSth19uxZztnJe83pdPIoAaJYTxQT0jslE3Uxqq5q79Ea7dmzhzsfyhypmRTBSJRNbVtJKlTnxi7Y5YpkMOJA7DjzfUn1sap3P35SU1MHOcqonGbsOP3YcUSUnfzkOipHQCunP5UjkfjczHFINQajscljIgcp2anNClR1rByYVO9BtQYqRztN83YClNdQHAM5l4ltyHVp7vn5+Vp+fr528eJF7Y033vByAjRywLp48SJ3yLx16xZ3hpOdCGVnQnLeo/407bYDZ35+vnbs2DHt/PnzWk5OjrZjxw4tLy9Pu379uvbBBx/wft944w3t4sWL2sGDB7lzGbVPcyKHOnFOomOm/K5ERznR2ZQc+KjvV1991cuxUtw7VFd0fiQHP3J6FJ0T5Xdz8OBBbceOHdqVK1e0Dz74YJDjoGo/i7+La63aN6ITnuqM0TjJ6VF0DpX3qmpfGzkkqhxHVW1YgWrMRmV8AQBlmj+OhJqm/Q7A29A9vssBvOV59hcHKpZTBVbiKgLZvl+uowqTIotHZIWxPEa5npkYTB43fTeydRefkUWLKGJS3bBU6yR+l818VWupeg+qNRDFFvScWHuRS5HXkPovLS1FQ0MDj84qmtmKc0xOTkZiYiJP0kSKToo5JYodxJASDQ0N3CHT5XLhgw8+gNvt5uIe0XdETDpEfhEA+C2cwsNTAquOjg6EhITg8ccfx9KlS+FwOLhSPCcnh0e+JRFidXU1t+oiCyWaC4V1r6mp4b/T+xffq8PhbbJLaXp3796NGzduwOVy8YROIjdGZrX0nomTCAwMRGBgICoqKhAXFwe3Ww9TUlFRwdsQ94HT6eSWYoAetp90R8Tx0XhlkRONX1xrcS+TyBEYLJoV/8bFxXHzbxofgEF7TuULRnuR1lb87cSJE4PM/+3iGQL5PHd3dyvDIw2rvkRFVcQPgGUAzgM4CqAAegiRJVb17sePFQfiC1iFGxBvMWa3gTsNRhyL+Lvqr9H/Rjca+Xanqkc3byNuxw5XJ4PMQcgchgzXr1/n4T6IA3nttde0gwcPet2O5VAkx48f1y5evOjFNdBcxBvsG2+8obwR01jNuCfxhk43cPr9/PnznFuQOR+RQzx//rz26quvGnIcxKWoQnfQR2xXxSHRTfqDDz7gnA9xISIXQb+LXAtxLtSOyKXl5+drp0+f9uKYqE+xb3rn58+f533m5eVxzkTm2qlfs/1269YtPg/5vYjvmdbCjPtVcTpWHDWFhVHtV7PvqraoHL2j4cA7MOBA7BCQcgAxwvdZMIiLcr9/hkpA7L4IKyTmS39GG8YXouTLuK02uvy/WMfoUBHIyEhsi0QDvtQlhE0HTzy4FKNKdVDffffdQYhdJPYigpYRBvVPhEc89OL7Mnv3qr0hizPFsYhIQfUeaF7nz5/XvvOd7/D4X2J9OU5Ufn6+FzF57bXXuGhGFqHK4jaR+IpjEInQT37yE+2HP/yhF1GiNsR61P6tW7e0PXv2aFu2bNGampq82qO4VTRGIjw0VyJYNH7xvd+6dUt79913vYiW0T4XLwa03gcPHtSef/55HntLfmfyd9qPKgJlBkbiK/n90wXFqIzZHhsKDIWAVNt59nH4yAREtehGYPSizMpZIWTVM3HjHzx4kG988XdCjlb6DjtzksFoc1oRCtVNzOiGphqzLCuX64p6A/nQynMyOjyE9OQ1ldfCqA35/7y8vEGEh5CHkRyd/peRnEy05HqqMdFeoHdCwRXleRDxIIJBY8/NzfV6L6p3Jesv6DdaRwqMSDoi4nR+/OMfa1/96le1pqYmJTdHbeXm5nJCcfz4ca2pqUnLz8/XDh48yHUpYhBEkVhdvHhRy8vL01599VVOPOS5EHG8ePHioP0srz+tlaybMuKa5UuKqr4dfKH63+iZFQciz2e4YCgE5N8B/MYjyloG4DUAb1jVux8/IgExQlL+ImOjcqobhR0kTUhGxdaqELZRGbNInGZjIVCx/lb15Nu66uCqkLPVd7P5iuVETkZ8LiJbo37omUwAVGXlGygpo8WbrrgeMkJXiWlU4yExkYikqZwojpMJFondREU+tUcIWp6DOAZZ+S7vzXfeeUd79dVXefRcaosIAondZC6N+rt48aL27LPPau+8845XRF/a96IBgDhPit5L6yjOjYiSKLqROSUao+oSpFKyq/43I0KqvWrnDJqdZbPvRmMcThgKAXkAwNcA7IUetPCrAB6wqnc/flJTU00XebgXXdWmEatqtens3E7E52ah4+WxyAhV1Y6qX6NDpdJ1yAeUZNcq5GfWt9m8aU6iuEKsoxJpiWGv5T7ksuKNUyUqEcUfqjnfuqXL2V999VWuy1Cti0xMRAslea+IiFIeb15eHtcPyIRAJVoSESuNReSoVISXLLeIA5DFOFRHxRnl5+drb7/9Nrc2k0VI4p4SLwWiqEzeC1euXOEh5OX9SKHkiQjbuc2L7158H6qUCHbOowziehtdfKz0KVZ9DAf4TUD+kj4pKSlDNpPzBewiYCuEL7cjHgyzOuL/RvO0YrXtHgrxuyyqULUni0dkZKzqW563ERBiUREMGUhEYlfcQG2LBFDVvtH7IUQhE1iRwMh5HIwIFo1DJjhUngiAiKRIsS2Ol9om0ZGs5yFzYLF9cS7Xr1/3EucRZ3Ds2DGtqalJO3/+vPbkk09yIkHIm0xym5qauDmybCQgEjDx/RNnpbr8UB0iWjR/qpOXlzeIs1ddGMT/VWtvtk/sPBN/Ey8+MqgIq9E4hwJm9X0mIAB2e/7WAKiWP0b17uePyIGIt63hICJDRcAq+bcIRqIEO4TECJlbjdEKzG5gVodMVZ7+Wt2wVIdM1bbZnDXtNrciys+tDro4BjtIwYhoicpQ+R2qCOitW4PFVUQc6H/iOEjcJcrjqazInck329OnT3v5cNy6dYsniKLntJdIxETPRUJG3EFTU5P26U9/WnvnnXe08+fP83ETMaIxHzx4UPvJT37CE0dRe++88472/PPPc/2F+N7EdsRzIHI8RLTEtaSxyZcf0YhDtQftEgU7Fxyjdsz2tbxn/O3LbAxmbflDQCZ5/k5XfYzq3c8fIiAiUrWLjMS/qt/9eZEqpGm2KVUiJ/rdrA07yNzOOI2eWRGS4eiPnvtC9O2MW1Yeq9ZXri8TJ9XtlRC50R5Tidjk38R2iXugZ3l5eV7mryKSF8Uh9D+VFdsW1/LixYva3/7t32q///3vvW7bxDWIhEbMUCjfikWifOuWblYs63pEAxBR1CUaONB8ST9itKdloi6eAVFspnr38vtQccFG5c3OvNHetDq3VqDituycQzuXI6vfh6ID+Vc7zz4OH1GEZRepysjb7gbzFaw2oop9VZW3IkZ2+xbbUyFLldWQ/N3qcPhKaKwQvNmcVWujasuISIu/0wVEvoyIB5YIhxHBk9dGRsCUnpaQLXEVovxfFl2J3+XUuyQaErkIIgZU5+2339Y++OADL+/3b37zm/ymT22RtZdR+lZRV6Paj2Jb8tqodEiqMycTJaP3bLbe8u9me8fIMs4KxLmquE47nKzVeOiZfE7pfYuRE/zFU0MhIBWKZx97EZYvoNo4/ugNfCkrI2YV+2rWpt2bjdnhkOXmZrc9cYx2xmlEhKzA6EBZ6V3kUCya5p+psdEcxZu9yjDB7IIgr6Xo0yAScVIA79ixw+t3s3W6det2+BNZvyDP59VXX9Wampq8HBFl6y3iPIwsBEXOQjYBNlpTo/chz4PGLlu72dUziv4dokGEWRtm58IK5LJGlxW7hEs1P/G7kc7PLgdi1oc/Iqz/7dF/3JD0H60AdhnVu58/d8MT3VdkaIcQibdLX/owu6nLf+mjUhbKpqNGNzAVB2I1PrtlzdZIvKkbIQEjfYjRpcAIIamQFq2bUeQBoxsj/SUrKWpHFqdo2m2PeyIuoqJablf+LhMPEUQi9e6772q5ubnaT37yE044yClR5MwIGasIpUg8RDGaPGcjbtVonxORI98o2apLJuri3OkSRPVEKzR5zVSE11fE70tZX/e9WXmj/eVL++JzcdxGzuNmBGQsgBnQ42CJ+o9Qozr3+2c4CYgZ2H3JVmXpd7MbllH7RkhLPKiqw2tl0mqHQBghBLPxmv1udRMTPazt/qaaoxHnZEYA5HEa1ZGJsqh7+OY3v8kVxSIRoo+MvFWEn76LxF6cq2iSq7r1E2GiAIf5+fnanj17tE9/+tPcGVC8SYse6qo9Jo5d9o155513vHQy8prKY6c2iDDJug3inkS/FvniQDoWcR1lZ1xxz9Lv4hxVhMYMfClrB8zOgarcUDgc+p3+AqjXfCEgXoX0cO5f8XyS7dS5Hz/+EBCrl2WHlRXb8oUYiL/b3bBGt2gV4lchRCOxjoy07GxOX25qRm2oogDLZYyIzK1bt81ixfqkZ5B1BiKykdfKipsTx2L0XWxXvIGfPn16kDyckJ8ccVYm8CKSFKPYimMjwpKfn+8V1kMkHjKBoo8YFkVcK1mEJorFVGtHcyWCSR7nsh+LCqGLRE8kpuIa0HxkIioTEvmZfLmQibX4HlUcnxHYRfa+gt325LEPtT2fORBeAPgHALUA/snzqQHwlFU9fz8Avg/gQwCVns9qg3KrADQCaAbwDTtt+0pArDaBSjdhp01f+rBbxqh9u7+pysk3GdVfq/GqiJTVjUf8LjuQycTNjGDKt0Zx3HKQOZkQiUjPaL5yWVVoC1lnJLcr+lqoCLz8XYV06VYuxwVTEU7RB0XF1dh5P+J8RPPg3Nxcr5AjRvMhbouImmiOLHqki3VEMOIaxHnLBIYCJYrljXQuKiJiNBYV+KtzuBMwFEIm1hlSLCwAo4Xvo++kEt1DQJ61KPMJAGcBRAJwAKgCMNuqbX8IiNXC+0I8qE3xr1k/8uG7FyD3b3c8qvmZsdUyItC026ISXw+1ETJX3c7tjJ3GYqQElo0JzOZOz2TRkVjXjDiLa0Ig6kfEflX6EdGiSo4PZTZP1bjEMClivCp5PcTvoo/K9evXeRsiYRM5RJkQqfafEdcsz1sUm6kuODKHmJ+fb+lLpHo/di+Vd+tM+0s8JB2If/lAADAAfxa+/9nz7F7CfADNmqa1aJrmBpAN4DPD2YGcy8II7GYPE9tU5d+Qv1NOidLSUq8McncbVDkRxL9WIKcIVeUrofbENMGUyTApKWlQ+k6rtQOAtLQ0nv9czGmiGr+YZc5obnLuEfk51SkvL/fKD0LPae60BxwOB8/jnZqaCrdbz+VO+UIoZ4WqP8qBQWOnrIBipkdKoSvO3+Vy4dy5c3C73eju7sYrr7yC7u5ur2x7ZmlSxffjdrvR0tKCKVOmoKGhAU6nE8nJyQgNDfVaJzH9q9utpxLu6enB7t27UVxcjLNnzyIrKwupqalobm7mY6d0ubQvKDujeB5oXvI7UO2tJUuWICsrC83NzYapZsW5OxwOBAQEIDY21lZ+IPH9UL4YqzqEC+Q2/AWjNvzBHXZzI9nhCL4G/Yb/fc+nEsDTVvX8/Xj6OAed8/l3AJ9UlFkP4HXh+98C+LlBe18GUAagLDw83CfKfCduCOJNz0psIN/gfO1jOMv7wg1ZiX7M+pVv7KqbrzwO+TcjcZtRf6LoRAT5pmrFHchcjjwe1RzFUB0kAlLd3MW6cggVmWuTx0S6B7E/TdNzjMh7i8RqYr8qLovaFkVgoiWcvG6kzzl48KAXB6I6A9QuiaKoruxdb1cBrHouz0vTvE2WVb+rYCh6PnmPDgXfyBzDcAOGEgsLQAp0Xcg/Aphrp45Fe4eg61Xkz2cATIQuovorAP8PwL8r6n9OQUB2WPVrFo3XLphtSF/asAovYtWHGUK0a6lht7yMZO0YAlgRG6t+VWIgEcwOn4yI/FH4ywhelpubrb/RWFWETxSZGAUslEVMsgEA/S46jYlAz0lkJb5HuT/KfyHqM2QLLDG6r0goRJGPaj+IH5qvvCbiWovEVHWBMbqAkfjJ7L3LhJ3mJYr46LlcT/zfyHxc1Z/ROOR27cJw4SI7MFQC8kkASR5CkgIgxU69oX6gmxHXKp4vBPC+8P0FAC9YtUcExN+XJh9mO0jQn9+sgDa7GBjPqF07RMYOspcPsNyHmQzaCOyujap9OYigCmRZutUY5DKiPF9G9mY+GGYEVjZ9lYmdOHbVeooKZrlfimqrIqgiB2KF5Ik4GPl6kCOhak8YtSk/I4dEIyJpdz3pf5mQGYWqNxuXyopN1l2p9qFqzVXzNcoP4wvYxT1227Lbht8EBMA/A2gHkA/gA8/niFU9fz/wxODy/P9VANmKMgEAWgBE4LYSPd6qbfJEH8rCy/WslJ12IsL62ie1b3RrVn23OthGZVXrZfTM6Ddf5yp7CctrQAfSzq1PDP+h+t3qhiorpglU4heVslcEUrCqIsHKZsRiPCkCVRBG8Tc574fctkwQ5HKyqasRp2W0R2RCI1tWiSASMnE9VXtY1b+ZWFMmxnI7qvoEKnGd2XsVuTsVqOZhdi7NQLU2QwW7bQyFgDQCcFiVG64PgN/jdgTgfbgd1HEygFyh3GoAZ6BbY33LTtsyBzLURbVCumZIxm6/vtYxOuyqA6ciAqpNasXlyP0OdWMbIROxbbt9kDjDKPS3WXt2LZJUIhajd2YkEpH3ihEhEM10ZVNWlSkwlZWJhkgwxPbN9D5may7XO3jwoGE8sFu3dGdCcUxGnutGFwVVm+KFQZw7zVU0f1bpmOS2VOugGotRnCmz+FOqPsQxiOXMvott3UkYCgH5I4CHrMp9HD52zHitELaqvBmiU5X3td+hbA7VgbFqVz7Aqkx3vhBGX8drdMuy248KSctIxchfQzUeM6RBN3/Zr0QVJ0o1TkLOcj54FXJUrbs8P7vIT4WcjZAYcQtirhC5nLhOsp5EHuP58+e1T3/60zzEO9VR5UExSrIk/qU6V65c0Xbs2OEVtVgUO8o+RWIZI696Vb9Wv1H7Km5TBplIm4nMjOr74uBoF+S2hkJA0qA79r3v4Qj2AdhnVe9+/JgRECvEavVyhgt5DmebZsjYlzpmiMeonFn7Vr+r1sFsDuIzOrgyQpXLy8jYzLLKSIQnciCyZZIYvsNojoS4ZMW4OCfVTVn8XUXkxT6Iq/AlgZJq/hcvXuS5x8W2jQiUbI0lI1QiHiqRmjw3q/0nckhGHIhYT34/IgEyAzsXDhHMFPCqNqmOP2d2uImHPL+hEJDTHgusRwAspY9VvfvxY0RArDaEaiP7C1a3CTtj8mXD+DNmu8RSHKPVeFXlVeVUojYzizUj5EW/Gd3OrMR5qvGL31XvSla6G3F9Rop5o/VSISKzfCRiOYpvJQYglOdLt38VMhPblxX7pFeR19No7WS9B9UzEveq2lURfxXhFL+r9pxsRSZbhanmYaXjsjrbKmLoizGLvzAcOGAoBOSoVZmPy8cuByI/V21af8AMgaqQmNEmtcOyDvcmNOrDznhVHI2R/sXIvFTsy6hfo/5VbVkpas3mqyI2RuIHkUtR9aVCkFZIRURGRohWHvP58+eVCnjaT7LYR1TYGxEyX3NNyEiU/so5SsT+jNbabh/iGojfZWJg54zL799qT8t1zVI8W9X3F4bSrlhnKATk3wD80GM6e1fNeIf7M5RYWMN1O7BCQr60IT9TjVtV19fxGj23y2qrxiojdTEAnpE8mpCKKtOfEZKT36HKusvO5UBs32xNVH9F8Y28ZjLRsbpcqJCWiMjltRXrGyUls3P7l0OUiHXF8chtyOOQ151u/qoxGF0czHRBYrt26oich92zYUTk7OyhofzuL/hLPMS9akRA7IQymQsgHcC/AHjJ8/n/bNT72IIYhoLc+Sl0QllZma2wA3JYEgJqSwwfQWUoTISdcclhGCicB31UYQjEcmbjpe9m5eU5mLUrj/XEiROorq72Kh8YGIjk5GSv0BxG/TkcDkRGRnqtlxwKRVUP0MOZ0HMC/XwMBrkdat9ozYzWgsJbyGE+qM3q6mq4XC6UlpairKxs0DhoDsDtsC3iPgoNDcXatWtRX1+PgoICZGdne4VBoXJiKBUxvIk4J3FtxHApDQ0N/J2Ie41Cdsh7UDwnqr0kho+hEDPyfqXylZWV6O7u5iFixPclhwcCgKSkJB4KhtqQ3zG9q+rqagwMDHjN1wrEtRfDqMj7XFXPqt07Aap2rXDYsIUy+Uv6WHEgVqyoij02aseubsCXW7yZiIv6osQ5dmTSctsq6w+7txe7fhZkDWNkGize8o04AyO5udH8zH43mqPRu7EjcjB776p2VR7XRu/ZTNFL9czWVmzbTHms4tzMLL3E9yHPSdb5kM6FcqpbcXTEJRiVV50fo/dmtGa+gq9n1V+QOTCrvu22ace6SwQMxRP9L+VjpQOxgzR9YXOt6vi6ee0oflUIxG7bvlp/WI2FfhM/sj2+qjz9VcnL5XaHIt+1mrOMaOX3pbJsksenAvn9iASTkKWoDzCyHlLNSZ6LqCAXf6N2zcxX5bnKRFtuz8iHRM6RTuMi5b7VfqW27ZY3asPOM7u/+YqAfR0bPZdDCJldnnwBX+c3QkA0DSkpKbYWdThuDlaguon6Ut5OHTtjUH33l4gYPZcRol3CKY5juHQ6VEf2kDYjyCISNDJLlS8gZkhZtoCi9kVZvKh8FxMfyeaxRnMSb/p5eXmD+jcKaaIan1zHyIxWlc2SCKIqTpady468rrIRgFyW/prNSdWuUZ9m4xoOsOpLPC/inrCKpTfcuMEvAgI9oOEiszIfp8+dcCQcCthBkKrydn/35xYlIgSVuE51OAmsLIGs+jabk933IfdjdTDFMRuJ4VSK1lu3Biv7jdbF6LIgImYjCy4RccuEwGhO8vxkxK2ydFOtoYrjUfVBH1XIEnEN6a/dy4DRXFX7RyaasgOiap8aEXtfxmIX/CFGYp8qh16zesONw/zmQAAUWZX5uHzsWmHdKeJhdfiH2rbKwsfuxlUhXpXlisrckhCDUSIdX5CFak5mt05VeXH8ZjorGUGaWX7Jh3coOiLVupshrOvXdUfAV1991VRsJvenEieJxMGoDfG77E0ulpHzrxuJBFUEUQbV+MwQu9F7orpmIVDkfWqHePhqcSXW9Qehq/a+r/WHE4ZCQP4vgM8CYFZl7/ePPznRhwtUm3C4QaU89WVsdpG61c3OTtt2y8iyXztERB6rWR0VIjFC8HZuf0ZjMhJvWRFXUVQmRsEV2zUz2zVaD6PxiOssiqxUxEGVU9zoAmOHMNidly8EWPWblR+JFeEy268qwmZ2ZszAH1xxJ/CKpg2NgFwH8N8A+gFc83y/ZlXvfvzcSwKiaUNng63aHAphsoNsVf36WtaonlkZM8QughkBsyKuVusoIkx/ohLYRbKq/s1uoUa3YuKazMJ+yG2Kv8u+JdSmiiDZEeOZrYWqDTtWhHYQuT/nws45NSKA8l5TlbPSeZh9txr3nbqcjijRNWslui/g6y30ToCd26xRPdUzlex4qP2aHXgjpGN1CFQ3MzMRmizzV41DhcjlNugmbjcqgR1LGdUYzNZVtXZGhEdl8ioTHJXXtkrURGWH05vaaM5yaHurNlTjMLPgk8vaHZvVPK5fvz5or1mN2ahPO3WM5n4nYCgcCAOwCcB3PN+nAZhvVe9+/AwXB0LI1t/4WEabwe7GsfO70XMztlhEklZgB2mo+lLddn2xLlPd8sT+jEDux4wjMSIwdnUx1L4qSq/RnOS/RrdZWekuI0r6n6IEq+YproFRZGXVXO0gU18RvtF7pI/RpUBuTxw3nU8rRG209+SPHRGs2NZQxNRGOMDKiuxOG/4AKNf8JCCvAvgFgHrP908CKLWqdz9+hlOEZfdmonqm2gxiPgSzsnbATM5sdTuyG9dIblf1zKovIyRl1b6dsVndOn0107TzvuW6djgQ2UrK6jYrPhMRpVxXzPgnjktGOmY6IKO9ajZvK/GMiGSNEq7Z5UDk/lSGA2Z15fncunWL51634mBUY7C7Tv6A1bnw5/LpCwyFA6nw/D0lPKuyqnc/fu6mDsTsMJnd/uXf7HADqn7tyJDl73aQvq9jsXMLFMua3bTM5qFq2xcCYWcedkQaVuOVb7d0cRDfv9VtVvxftiCTiZcZYjNbZxXyNNK3mCEy1ffr129HIzBC5HbPjbyedi8JRmeQIgzbIUJmY73XYOcM+AJGBMROLKx+xtgnAOjyLMYmeJTqI2ACZrFkVM+cTifmzZvn9cxOfCyjfilGkVnfcnwiq7r+gFksLYotJcYxktdMtY5UXoz3JLdtFcdHjENmBrRGNDazORHIfYvxmsrKynDixAke82revHlYuHAhHA4HBgYGeHwpMb6SGD+Lxk7tUhwrOWYb7ZuysjIeQ0qsq/pfFdtM7mv27NmD4l7Je0iet7xW5eXlqK+v5+3TOOl9quJimcVbk9dUno/YhlFbNL/Y2Fg0Nzd7xSYzetfi3rgfwVYsq6GCiqqIHwBfhJ5E6kMA/w96itvPWdW7Hz93iwPxl530VWQwHHCnWW07NzhfxkFrZCVqs2pXFgX5wq2Y3YTtmKiq+iPxicrfxEhXYTUWu7doFRhZtKk4R18VxrdueTthquZu1paRXscXztDsjMp7wwyGcn6G6+yp9tJw60QwFCssALEA/o/nE2enjr8fAH8AUOn5nANQaVDuHPTc6ZVGk5M/IgG5U4jZSORgV5x1N9jhO9XHrVvDlzfFDKyU2SKSU627aGVEQf2M0ruq+jE7sEM5zDIxk0VddsQz8tx9MYgQ+7QSw9F4h8uYxK7YSlas+9KvFbEz63e4YbiQvNW7sqprF4ZKQFKgZyV8CncxFwj00PHfNfjtHIDxvrRHBOROUGhNMw4RYXY4zDiO4bz9iId/OJC8UR9G4U98acOuIlb1m4zkjBA6IWuV5ZlMEMwssqzmaJcDkLkNleOer/1ZtWE2VytCKK+jL3O1Mw9VnwSyObZdDsiOVdedALN3dSfbt6rjCw70m4AA+K7npv996F7pVQC+bVVvqB/o5sPtAGYa/O43AaEF9BXsbHYr71n5kBlxKkNBpHI5ud2hInmr/ozGabcPKwMAI0Soihdk1I48LrP1UCEwK4UzfffFX0Z+P3bmYdafPDZfCK9Vf/JtXlx/X275/vpMEBgp9sX2ZSIyFPCHQA73ZfVeEJ6hEJB6AKOE70HwmPTeyQ+AJWaiKQCtACoAlAP4sp02h6IDsbMRrA463f6tci9btefL73ZMDO/EJhfbJmRjl+CZmSDbQcKq8qp6Ro6FqvZUfYl1jRwM7SBwM07B6mJilxMS52vVv1U7RvtY9Z6tELY/ZuOq8ajWQ94PQ93f/p4TI6J9N8YwXGd6KATkPQAhwvcQAPut6lm0eQhAreLzGaHMqwCeMWljsufvQx6uaIlBuS8DKANQFh4ePqRFHI6XYbWR/eljONrz58Zr1ad4qH0xDx5q/0bjkG+iViIiVSgQo35EzsFozEaIxI6/jJkuxw6iNBufCvFaISmjRFBi/2JedRXQGg+XSEleD/F/OXy/v2DnAmT3nQ+FiNgtN1wXw6EQkByPBdZvAbwBoANANoCfAfiZVX1/PgACAHwEYKrN8t8H8KxVObvh3IejjD/gzwsfrluRFbI360c+MCox0nDcAIcCdm71qjp2OAi5rKYN9s/wZWxW/4sg9kP6HCNOyEj3ZUUIVH2qCIMKgVtlULTjqW80RtVzec3E9zcUD3G7fRtFq7aqe6fgfuBAvmT2sarvzwfAKgBHTX4fDeBB4f8TAFZZtWsnpa0dMcmdEvdQ+8PBIluVV938qB07DmPiM/kmL8vwVeXuBli9x+FaZ3luIoI1QmgqMLtBq/r3hQMxG7/qN6v3Jc9NdfGwGofRZUMuazQW1XMVJ2U2pqFwAXbEnvfy0jScMFQrLAeABM8n0E6doXw83M7fS88mA8j1/B/pEVtVATgN4Ft22vWHA1Fthju5Ke4GoqWbnyojnVjGnxu0qq6/6+ZLeRXHY0YEh3udVchd/t1M/0WEVyXDV/m9qJCj0ViswIzrNAJ5fe3UV+0ps/kYvUO5njgPOf6XGddhNhYr8OcCci/Bn7GKdYbCgSwDcB7AUQAFHuW1Ut9wv398VaKrDok/tztf+/Tl1jrUfsxuUpo2NKsVX4iQqq7deiLyUVm8mZnkDgeY3ThV71LVr6iEl5GoXQTvz3obESizOcrPVJcE1VqLZr9GayATDCMCabRnSSRm9+KiGp8V9303LnnDCf6MV64zFAJSDiBG+D4LBpEZ7/ePP+HczZCD+Hw4NpTq0Nl11PKV0FghPRVCttueVfv+jstOPTNE52ubZu2Iz2iNZEss1b4wu2lfv+4dgdbsBm42Dqs1UP1m1ofZ/r51y1tkaUagRUJoZVIsJ7Ey21+q+v44ONq9eJj1f7+CP+MV6wyFgFTbefZx+MTGxlpuPF8X1te6vrRtdLBV38UD4wuysRqHXeIh+1T4Q3hEZORLPbNn/pQxqmcH6YkRlY1usXYDJPo6XrOxmZkQWyF+s3HcunVr0JztjNHqAqOKMuzrWtglpmZzsypjZxx3E+5Uf0YExE4wxXLG2G8YY8s8n9c8XMnHDoKDg5XBxdxut2XgNLGsGIhtuAOqicHrqF07AerS0tJ4MEarYH92gw3Kfcsg9iEGGqTvVoHcKIie2A5jTNm+XE8VDM9q3nIQQF/A7XYbBuejZ2JgRHlfiH1TsEQR5MCGFHzRbtBHuQ2xT0D9PlwuF/bs2QO3243Zs2d7jVsOVGn2LgMCAmyVE3+X97k4R4fDgbS0NB5U0c5+VfVjZ58Y7RsxkKTZvIZjv/m6F+30d9dARVXED4AHAHwNwF4A/wngqwAesKp3P36MdCBWLLyqvOr7cFN/o/asbPaHkyMyGpeROMKXfsnsVHXTs7p1+npLFv/3hQOjccpmq1YiDtV4jEQkqjJ2xD12wKqeigPxtc+hju1OnB+akx0jA9V3u8YjdvaRFfd6J405hlqOAP6IsAD8FYBaszIfp4+KgAzXCxzujeBLP/4eAH/7l0NW+NOPfMD9FUlZgREytDr0RuahRuvuy8E1k+v7axXk6zjk8mZ9DvVCYgdx+rtnzd6rnbbsXlB8ucj4Wu5ui8f8WWu/CIheD28CCLcq93H4mHEgZt/twlA32VD7uZN9ym0P9aCLz+7ULcyKSJkh6OG6LdJa2UVsdsfii3WSWV9WSPzWLeOwJf70If9m9n04xj8cY7tbl0NfYKhjGi4OhOm/GQNj7AiAeQBOArghiL7WDq8w7c5DamqqVl5urL4h2WFlZeWwJWMhueRdSe5ynwKtwezZsw2TVckyZzttGumzxPUWkxbRGKgefa+rq7N8P2I7dscp6nhEub6qHKCWs6vWjnQX69evH7Sevq6jy+XyakNVXx6f1Z6W2zAbk6/jNRuXWXu+PFfNbyjjvFNwN8fEGCvXNC1t0HMbBGSp6rmmaUeHaWx3DeLi4rSqqipLxANYKwN9AX9f9L3ctMPdd3d3N5qbm02JiN0x+YrACFwuF6qqqsAYQ1paGldoW83Vn0sAKcBFMDPgYIwhKSmJr404JpfLNYjIyYjfbN5Gv6vatQt2CbhZfWDwZc3uvrNzKTEak50+7sXZux+JFIERATETXY0C8DSAnwPYBiDAqOzH5WPlB/JxYlGHM6fBndahiAmc/G3XSD8g/m5UT/5updg0a8eO3oc8okXzVqu25Qx9vvodWM3HSNxzJ3Jj+DJWlajIrke8P35KVvvoXsFwnrk7MSf4qgOBnhlwl4d45AD4qVHZj8tnuFPaDpfuxG77BKqQDUPpw1clsz/tW+kh7LalQqpmcxjO6AFkjUXI3oyYyLGizEBcI18Rm69ERvXdbjgUXxG1VTmjdTPSa6jatpq/Xd3b/UBI/NExqdoYLt2I+L8/BKRG+D8AQIVR2Y/LZzgIiNlNxh8Fq79jsBvF9E6Ow24bdm/FdvqwCktyp4k6IdvhMrMl8JUr8qe8+JfAyERZpTS3Y7Jqd03M2jPiGs3aNuLarLgsf7jROw3DSQT87Vcegz8EpMLs+8fxY9cKy84Cq+r5SjzuxSYZThgK8ZTb8Oe5Chn64t8xVLgTYhD5NmxkPix7/lu1aYZ8jQI/+rO/jcbkL0ejKu/LnrGzJ3zhFlV9+rqH7ZS7V3jBVw7EzBM9mTF2zfO5DiCJ/meMXRuaSub+AV+8N2WP2KEovOx411p5k5vBULxR7dQV102ei6q+UZtmilirccjWN1VVVV5WVnKbdr3VrcYs929X6St7JBu1T2Mka6vu7u5B4xbX227kAfKAl8crK6GNLMZUXviqeciRGYzW3Y6XveyhLo/DaHwE8pzl/kRvfF+BrOxKS0uVnuyyx7tqTv54/puNZ6ie6Ha8771ARVX+Uj9D5UDMYLjZ4KHe6v11yrLD9ovl7fTtr3jPTEyh+s0sYZIdWbcZC29nvGbzoDhZqmRDZrd1OXqt0freTbBaJ7s3aivuwO478FeCII5D/OsL2OFArNbLHzHoULkeXwFDyQfyl/IZbiW6DMP98obSnj/EgzaxVbRUf/r2ZzxGYhQjImdHdOULMrIrCjNCTCpRk1zPCkkaIZx7DUbrZFfsZfeiYvW+hitdsqwLupNneajnY7gvq3bAiIDYCaY4AjZhuG24/W1P5YNgpy9i9Y1EHf6IlsyeUZtGoO/bwe04HA7uAKgScRiNyc747QbQE9sxEkeKz8WPPBczUaZKPCjPe7jBKvifDEaBEc3WWxSr2WnbaJx1dXWIjo62vSZG7TmdTu6Y6XK5hj0oodW+8jVQpFFgz7sNlo6Ef0mQlpamlZWV3ethDDvITmdGXspm9fzpa6hg1yHQyAv8Xo7fyIP5bjiCqdYB8EbkQ7l8lJeXIzAw0NRz3ui9mb0jM497f8GfCAFW7dl1ULxfwB9HV1/ByJFwhAP5mIN8yxNvUr7UswvDuUHt3L5FJaMq7Lc/fQ4H+MudqZStQ+nb5XJ5pSIQx+Fr2263G9XV1XC73UhKSjJUPJu9NyPFu5nC2WgsdmA4iQe1N9RoCXcb7Bjk3CkYISAfY1BZQAGDrWpUcLc2nT/iLvl3Mwui+wXsWtXZFfHYARLhJCcne+XPEHOz+CqKSkpKwujRow3FUmJZX4Fy1liJXnwRIQ1lDY2sBf0VEfo7FpWllp3yItyrc3FPCAhj7HOMsdOMsf9mjKVJv73AGGtmjDUyxh41qB/KGDvIGGvy/P3k3Rn5vQWV+d9Qbl9mZrdmfdt5Lo/RV7Ay37wbN73h5s7odivOZyhEUSSuvupWjMDpdHqJrobjokH7gNqTn8v7uq6uztAcWwZ/x0cckS/c1XCORb5E2CWaVhzm3eaA7hUHUgsgC0CB+JAxNhvARgDxAFYBeIUx9glF/W8AOKxp2kwAhz3f/6LBruJ2qO36Usaq7lAOt1m7w2Hv7ssYrNZGRoBmZe0o/n0h6FaGA76C6kLiSzuyPwPVtzIykPe1LyIkf8+Akf7XH4MPX8YiX/5EDttO+0Yc5t04F4NAZZp1tz4A8gGkCd9fAPCC8P19AAsV9RoBTPL8PwlAo53+7rQZrwh3wsTuTpnt+WuaS8/vhLnxUGz/h9MXRzaZlH0yKLmWXR8aKxNOOyaad8qMc6g+JqqwKHbasTvn4QZf9p4dc2urdofah6q8L6bsQwEYmPEGDKIo9xamACgWvnd4nskwUdO0iwCgadpFxthDRg0yxr4M4Muery7GWONwDdYEGIAgAH0ANM93+jsOQJdBHbGs6re7CeOhHqcM8lx9gaHUJZDHORxtyiC+m2DPs17hGYS+/gp6JGu5f6P1VI3Xzvs22idQPLcLDPo4L5uMzWp8f/XEE0/8t6LdIAA3Aci/2WlTNQ67+9NXMNs/RmMU60Cq7+s4fXn3nwAQAuBPMF5XO2BnjNNVD+8YAWGMHQIQpvjpW5qmvWNUTfFsSEhA07RfA/j1UNoYTmCMlWmquPr3GYyMc3hhZJzDCyPjHD4YyhjvGAHRNC3Tj2odAKYJ36cCuKAo9xFjbJKH+5gE4JI/YxyBERiBERgB/+F+M+PdB2AjY+wBxlgEgJnQU+mqyn3J8/+XABhxNCMwAiMwAiNwh+BemfH+DWOsA8BCAO8yxt4HAE3TTgPYDaAOwAEA/0fTtD976rwumPz+CMCnGGNNAD7l+f5xgftGnGYBI+McXhgZ5/DCyDiHD/we4/+oUCYjMAIjMAIjMHxwv4mwRmAERmAERuBjAiMEZARGYARGYAT8ghECcgfg4xiqhTH2B8ZYpedzjjFWaVDuHGOsxlPuroc2Zox9nzH2oTDW1QblVnnWuJkxdtcjFTDGfswYa2CMVTPG/pMxFmJQ7q6vp9XaMB1+5vm9mjGWcjfGJY1hGmPsA8ZYvecs/aOizDLGWI+wF757t8fpGYfpO7xP1jNGWKdKT3bZp6Uyvq+nyrtw5DNkD/s4ADEY7Gk/G0AVgAcARAA4C+ATivovAviG5/9vAPjXuzz+lwB81+C3cwDG38O1/T6AZy3KfMKztpEAHJ41n32Xx7kSQIDn/381eod3ez3trA2A1QDeg+6XlQ6g5B6850kAUjz/PwjgjGKcywDsv9tj8/Ud3g/rqdgDnQCmD3U9RziQOwCaptVrmqbyeP8MgGxN025pmtYKoBnAfINyv/P8/zsA6+7IQBXAGGMANgB4+271eQdgPoBmTdNaNE1zA8iGvqZ3DTRNy9M0bcDztRi6T9P9AHbW5jMAdmo6FAMI8fhb3TXQNO2ipmkVnv+vA6iHOirFxwHu+XpKsALAWU3Tzg+1oRECcndhCoB24butUC0ADEO13AHIAPCRpmlNBr9rAPIYY+WeMDH3Ar7iEQX8u4F4z+463y14EvoNVAV3ez3trM19tX6MsRkA5gIoUfy8kDFWxRh7jzEWf3dHxsHqHd5X6wk9YK3RBdGn9bzfYmF9bIDdJ6FafAGbY/4CzLmPhzVNu8D0+GMHGWMNmqYVmJQf1nECeBXAP0Nft3+GLm57Um5CUXfY19nOejLGvgVgAMCbBs3c8fWUwM7a3NN9KgJjzAngjwCe1jTtmvRzBXQxjMujC8uB7nx8t8HqHd5P6+kAsBZ64FoZfF7PEQLiJ2gfw1AtVmNmjAVAD7OfatLGBc/fS4yx/4QuEhlWhGd3bRljrwHYr/jJ7joPCWys55cArAGwQvMImRVt3PH1lMDO2tyV9bMCxlggdOLxpqZpe+XfRYKiaVouY+wVxth4TdPuRJBFQ7DxDu+L9fTAYwAqNE37SP7Bn/UcEWHdXbjfQ7VkAmjQNK1D9SNjbDRj7EH6H7qiuPYujY3GIMqO/8ag/1IAMxljEZ4b10boa3rXgDG2CsDzANZqmtZrUOZerKedtdkHYLPHeigdQA+JVO8WeHRxvwFQr2navxmUCfOUA2NsPnR8duXujdL2O7zn6ymAoYTBr/W8l9YAf6kf6IitA8AtAB8BeF/47VvQrWAaATwmPH8dHost6CHfDwNo8vwNvUvj/i2Av5eeTQaQ6/k/ErrVThWA09BFNXd7bX8PoAZANfSDOUkep+f7auiWO2fv0Tibocu9Kz2fX94v66laGwB/T+8eusjlF57fayBYEt7F9VsMXcxTLazhammcX/GsWxV0Q4VF92Ccynd4v62nZxzB0AnCWOHZkNZzJJTJCIzACIzACPgFIyKsERiBERiBEfALRgjICIzACIzACPgFIwRkBEZgBEZgBPyCEQIyAiMwAiMwAn7BCAEZgREYgREYAb9ghID8DwfG2J89kTdrGWP/wRgLvtdj8gcYYyGMse3C98mMsT13uM/fMsbWK57zvhlj45geVdbFGPu5RXt7GGORd2q8nj5eYIx9cQj1VzHGTjI90nAl06M4h3t++y1jrNUTCuMMY2wnY2yKUPf/McbaGWMuk/YfYIwd8rT9eX/H6SswxrIZY/fCi/1jDSMEZAT6NE2bo2laAgA3dLtwDoyxT9ypjoe57RAAnIBomnZB07RByP1ugNT3TQDfAfCsWR1P3KFPaJrWcoeHtxJAnp2CnsgE4vcEADsAfEnTtFhN0+ZAD9EyQyj2dU3TkqFHoz4F4AOPwyIA/BfUwUNFmAsg0LMn/yD1f8f2IvQQOc/dwfb/ImGEgIyACIUAopmeF+ADxthbAGoYY6MYY28wPefBKcbYIwDAGNvCGHuHMXaA6fklvkcNMcY2eW6qlYyxX9Hh99zE/4kxVgJgodg5YyyfMfYTxlgB0/NAzGOM7WV6XpQfCOW+5uGYatntnAY/AhDl6e/HjLEZjLFaT3mz8e/1jL+JMfaialGYnu/hXz3zOckYixZ+XsIYO8EYayFuROxb07QbmqYdg05IzOCLECIOeNbpX5keoO8QY2y+Z31aGGNrhX4KGWMVns8iz/NJnjUkzjLD83wM9BDuNz2cQiA998wx0NPHvzDGjgKQc3A8D+BfNE2rpweapu3TFLG7NB1+Aj1s+GOeZ8WaiQc202NJ7QIwxzP2KM+4vssYOwbgc4yxv2OMlXq4nD8yD8fs4X5e9ezbFsbYUqYH26xnjP1W6GMlY6zIs17/wfRYW4C+9zNlojkCFnAvPCJHPvfPB4DL8zcAOgL739DzAtwAEOH57RkAb3j+jwXQBmAUgC0ALkL3nA+CHsIhDXo+lP+CfpMEgFcAbPb8rwHYYDCWfHjyZkBHXheg54V4ALpn/zjocbpqAIwG4ITuOTsX+i24VmiLf7cYfwuAsZ7v5wFMU4zrHG57GG+GJ2cCdM/9/4B+EZsNPUy6V99CG1sA/NzkPRwFkCh81+CJVADgP6FzDYEAkgFUep4HAxjl+X8mgDJhvjTeTwB40PN/FoB/8vz/BoB1nv+/DOAl4R28YjDGCgDJJnP4LYD10rOXATyv2nMGbSyDkJPCs/bPCd/HCf//AMBTQt/Z0L2+PwPgGoBEz7spBzAHwHjoMapGe+o8DyHvDYCDAFLv9Zn8OH1GqO0IBLHb2QcLoccfWgTgpKbnLAH0sBI7AEDTtAbG2HkAszy/HdQ07QoAMMb2esoOQEf0pUwPrROE2wEh/ww9QJ4RUFymGgCnNc+NlTHWAj0g3WIA/6lp2g2hzwyYx7oyG/9hTdN6PG3VAZgO79DbBG8Lf38iPM/RNO2/AdQxxiaajMEKJgG4LHx3Azjg+b8GwC1N0/oZYzW4LTIKBPBzxtgc6OtKcyoF8O8eDiNH07RKz/NV0AkHoIfOeQ56xNUnAPyd0LeX6EgFjDEKtxMM4Neapv1/RkWt2rIB4ngSPNxoCPQLxPvCb/+laZrmWaOPNE2r8Yz1NPQ1mwqd0B/37EsHgCKh/iXooWbKh2HM/yNghICMQJ+my7I5eA7XDfGRSX05Fo7mKf87TdNUIaNvapr2Z5P2bnn+/rfwP30PsBiLEZjVEfv4M4zPhGbwv1h/KMiyDzoXRNCvea7FENZC07T/FsQsX4Ueay0Z+k37pqdMAWNsCYBPA/g9Y+zHmqbthK5/+N+eMsc9IrCl0HUvYgBA8d2LcBpACoAqz6VhDmPsWeiI3AjmQic0QwFxPL+FzjlVMca2QOdYCKz2zp+hX3i+YNDPKOjvYQRswogOZATsQAF0GT0YY7MAhEMPBgkAn2J6Dvcg6JkTj0NHGOs9Mm14fp8+jGNZxxgLZnr007+Bzjldh5761Nfx24XPC3+LzAr6CfUAoi1LecNYABc9HNDfQhdXwbPWlzRNew06R5nCdCV9g0S8d0LnqN6APXgRwLcYY3HCM6XVHtPhH6BzVgdUZfyEBwFc9HBXvlqTFQN4mHRYnj00S/h9FnQiOQI2YYSAjIAdeAXAJzyigT8A2KJpGt3wjkGPkFsJ4I+appVpmlYH4NvQs7RVQ5ctD0sKT01Pc/pb6GHwSwC8rmnaKc+N+LhHafxjH8ZvFx5guuL/H6Hf/G0DY+wcgH8DsIUx1sEYm60o9i68b9N24BUAX2KMFUNHfnRTXwagkjF2CsBnAfwUuiJbRuRvAvgkbKYv9oiE/hHATqab8R6Hru96Syj2Y8ZYFfRov/MAPKLpqXPBGHuRMdYBINizDt/3cb6AbtFWAn1PNfhSUdO0y9B1UW979mUxdJ0YPOLHPu3ehVn/WMJINN4R8Bs8IoQ0TdO+cq/HcifBQwDStDuYqMjDwX0APbudmYjP3/YPQjdkuCg8Ww/gM5qm/e1w9/dxA8bYVwFc0zTtN/d6LB8nGNGBjMAI3AegaVof082gp0C3Ehvu9j8lfmeM7YDOlawe7r4+pnAVOic9Aj7ACAcyAiMwAiMwAn7BiA5kBEZgBEZgBPyCEQIyAiMwAiMwAn7BCAEZgREYgREYAb9ghICMwAiMwAiMgF8wQkBGYARGYARGwC/4/wEW+AAbsbALrQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_proper_motion(centerline_df)" ] @@ -1096,7 +1800,20 @@ "cell_type": "code", "execution_count": 98, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e1xU57kv/l11ZgVwFERUFERucr8ooAIqQWIttWxjrfVYk+M22e6kP/tLT87J2Wm796eXtKenp+l2n7TumqTxl2RbYymllFpCiFFEREC5KBe5XweVUWACOgy6ZpL1+2N83rzzsmYYjG3Tc3w+Hz7AWu99ve/zvM9dUlUVD+EhPISH8BAewmzhc3/tATyEh/AQHsJD+NuEhwTkITyEh/AQHsJ9wUMC8hAewkN4CA/hvuAhAXkID+EhPISHcF/wkIA8hIfwEB7CQ7gveEhAHsJDeAgP4SHcF/xVCYgkSW9KknRTkqRW7pm/JEkfSJLUfe/3Ahd1cyVJ6pQkqUeSpG//5Ub9EB7CQ3gIDwH463MgbwPIFZ59G8BpVVVXAjh9738nkCRpDoBfAvgigDgAX5MkKe7PO9SH8BAewkN4CDz8VQmIqqqVAMzC48cB/Me9v/8DwHaNqmsB9Kiq2qeqqgIg/169h/AQHsJDeAh/IdD9tQegAUtUVR0GAFVVhyVJWqxRJgjAEPf/VQDrtBqTJOkZAM8AwNy5c1Ojo6NhtVrh4+MDSZKgqiqsViu8vb3xuc99Qk/pOZX7S4Oqqk79iv+LZbXmdL9jd9eXJ+ME4La+WEarP3dz+Pjjj/G5z31u2rdTVRWTk5MAgLlz52q2OTk5iY8//hjz5s2b1RxnWk+xjM1mg06nc/kN3a2TWE6SJHz88ceYnJyEwWBwWUcco91ux8TEBBYsWABJktjecDcmKgNg2p4Sx05/T01Nwdvbm73XGt/HH3+Mqakp1h59Q3EOqqriww8/xIIFC6adR63vKfY3096lPqjM5OQkVFVl68qvAZX5+OOPYbVaWTlxbVz142otXJXX+j6e1vk059+TPhsaGkZVVV2kWfmv+QMgFEAr9/+48P5DjTpfBXCE+/8/Azg0U18pKSmqqqrq3bt3VR5u376tXrhwYdpz8X9XwJfztM5M7fHjEf/3pF9PxvQgxqrVpjh2d2Vczc1V3du3b6tvvfWWevv2bc0y1KYruH37ttv1mM1azWa/eLpHtNbj7t276pkzZ9RXX31VvX37Npu7u7FTO2NjY+xvV/vcXb/id9Rqi/7mx+VuLHwbWiB+W1flPTkXWm3zdW7fvq2eP39+2tjF/Tk2NuZUjt652qOu1vlBgdb31vrtaVszAYB6VQt/az38S/5oEJBOAEvv/b0UQKdGnQwA73P/fwfAd2bqKyYm5oEjU63N5upgzLbdmf6fCVFrlZvp+YMA/nC66sMdstH6rVXXU6JDz92t2d27d9Xz58+rVVVVHq3JTOsnIl/aF56su9YFhxA1EdCxsTGX8xL759uc7SWExn3+/PlpbfDfkC+jNR5CwLS+Y2NjM66fiOi1vt1s9rWr88m37WpuWuW09suDxAGu4O7du2pVVZXTN+H7ni3x8KTO3xIB+RmAb9/7+9sAXtaoowPQByAMgAygCUD8TH0RB/KggV/8v8TtQ+zXE2SmBX/uTe7qILlCePxt8H5uzHx9VwfLHXHTQrqzQfR8HRG58AjTXbsiYhwbG1PfeOMNp3WktrQQn6u5uerLE2I2NjY2I6IkpOaKOPMEVKuu1pqIz2mP3O9+13rH7wd+XK44ZH5Mrr7jn/NSJo7hQfTtSZ3PJAEB8BsAwwBscOgx/gHAQjisr7rv/fa/V3YZgFKu7lYAXQB6AfyLJ/09aAJyPxt4tm172tZMyE6r/F+CzfbkHSHckydPqhUVFZo3QVeIiYCIR2lpqXry5ElNsQT/t7tbokgEPCW0IqESiRU/F1ciGZGA0roQIhfn4+oG7m5u4jzdAXE8w8PDmu9EwuDpmeDHX1VVpVZUVGgSKf6mffv2bUZMHwSidEUwxLLuxvTnBK0LoitO7M8Nn0kC8pf+cSfCmi2IN64HCVobm57PVGe2ROTPUfZ+wJUs2hOOhJ6PjY2pFRUVamlp6TQRiSsEJoJIBLTk++5AC0FXVFRoik3EGzvtKR5B0vPh4WH1u9/9rpPoin+vhfC0xuLuZu0K3K0lzYP/TjO16QmnQW2Lz8+cOeMWububvzt9yWxu8+L3eVDgbrz8NxMvIn8JIvKQgKifjgPROqQiwptNW56WEW9qnt7qHwRo3YAeVJtaz7UON83Z0xs3L/IRx38/RIDa9FQkxM+FiJoogqIyvLhNSyEtjp+4AH4+58+fV8+cOTPtRuxKDCOWod+u9pY4p5lEfzwxcFWOuEyt78FfBnhjCXE8fFkt8ZM7rsITDsYdwfk0BiCu3rlar5nanQ0u+TTwkICoKlJTU+9r8QiRuTuks2lrtkpUevaXYJsJPLlNzubWRu88OZSetueqjDvENFsiQN/elTiMb5/KuVPIukPyYltaimt346S6WgRTC8nzREgUHWqNr6qqSv3ggw8056NFrLXaIoI6PDzsZAwgluHnogU8gRYvGaJuRVTGv/HGG4yTcYWwxXXlYaa9oLXPeeMHV4Tiz3G2PcE3nsBDAvIpCIiqupYX38+HuR8ke7993Q94cmN3dWPypJ6r57Pd7O7KaSHPmYiTiFSrqqqY9ZCIIMV5kxzf3T7x9JbJl59pnjzwt3Z3c+O5HXonckI8gubb57kpXpnPc+Misea5Avq5e9chlhMtt4aHh53Gx78X14Keu/s+/DwJRGW+q79dcVuuxKjieougxYE8KATvDh5E2w8JiPrns8L6tHA/t+7Ztjlb8ETcozXuT2OF5gr5uurLVT+isrWiooIhd1f1qW8RqbpSdmuNx9Uzvi93YgxX8/bkQkGIlEf4WmX4cRGBcDU+LdEWtU/Eanh4WL19+/Y0JbiI0IlwEPdBBPfMmTPsO4kiKRLPeaID05ozjV/89nw5cU201mqmdSfuwhPDhft5/1kAVwTkrx0L6y8KVqsViqJ4XH42Ze8XFEXB5cuXYbFY2DNZlj/VOKhNvt5s593W1jZjHX6c1Kcsy1i1atW0OXg6ZnfvaDyKorjtR5ZlrFy5kr1TVRU2m21aGaqvKArq6+tRU1ODpqYm1r7BYMCqVauY97GiKGwMdXV1TusjyzLrz2KxsDbr6upgsViwatUqAEBbWxvMZvO07+MKZFlGXFwcGyeBxWKZ1oaqfuIpLa4bzYnKy7KMyMhInDhxQnN8dXV1ABze7Hx7PT09MJvN6OjoQG5uLvr6+tDQ0IDU1FSsWbPGadziOgPAihUr0NfXh+TkZGRkZCAtLQ0NDQ2oq6tjYzIYDFAUBWlpacjMzHT6DuI3p70qnh9FUdDQ0IDY2FjHTVkA+j78Oonrzv+mchaLhT3j93xubq7Tc1pnre8kwkxnRaz758BL99vm/1UExMfHx2PEpoWEPQVP6vAHOS4uziXCVhSFISut9/zBIRAP7Wzn4g45u2qDryMiO1fgiiCIdcV3RHBdfUtZlpGRkcHGkpaWBr1er1mO+k5KSkJGRgbWrFnjtG7833V1daivr4fFYoEkSYxQ8GCxWFBYWAiLxYK0tDTExsaiqKiItRUXF4eenh5ERkZOQ06u1ogQJM1bURQ0NTUxwkKQnJw8bU0iIyMBgI2b5qAoCvz9/bFt2zb09PSw9YiLi0Nzc7MT4eDXKy4uDi0tLax+TEwMdDod69fVPquurkZzczMSExORlpYGg8HAvo9er0dycjIsFguKiopgNBrZGvJ987/570NjFi9M3d3d0+rw74mw0P5yB4qioKamBvn5+WxcVE9RFJSUlKCmpoYRX1rv5uZmxMW5j/Pq7qxoXZ7uFy952sdsYEYCIknS5yRJWi1J0pckScqRJGnJfY3yMwCziQv1aW/SrhC+WAYADAbDNGQgjlvrJsMjK63xf5q5uDp07jYafwOfaUPyhIDK8gRCi4jQb5Hg0lrzay7OX1VVp/LiGNra2mac65o1a5CUlISenh6Eh4ejqKgINTU1Tv0aDAYnpGwwGJyIBX3rlpYWRgxcrRdPWKkezVuSpGnEraGhwenme/r0aRQVFcFisUBVVciyzOZAdf39/aftDUmSkJqaClmWodM5h8ujcklJSQCAnp4exMbGOn0bLZBlGeHh4SgpKZnGuaWlpQEA2tvbERQUhKGhIeTk5KC9vZ0hYhGIg6C157kMRVFgMBiwe/du+Pv7Iy0tzeliQkRZJLgz7e2MjAzs3r2bcUj0nPpKTU1FT08PkpOTp/Xpqu2Z8IV4ebpfvOQOPlWbWnKtex8jAsCv4PD4fh/AMQCFAJoB1AJ4CsDnXNX/LP58GiX6bMATXYCWEtZVWXe+CPdjRuwKZqv3cCUfno0jm9azmWTc/DNeVl5RUTFN6Upl6d3t27edfAlEGThvcUXvtPwgeMWzlp7ClaUO1Xv11VfVDz74gOkOtHw/tKzgXP3m9RWk93n11VfV4eHhabJ+V3uNlNYnT56c5oPBj583G+YNDvi/XenHtPw4RCU7KdLpf61vQvMgXQzvH+PO0s+VDsqV/k1LT+JqDbX0KFr70VUfM+GLT6ts/zR1MVslOhxe4lkAJI13iwE8D+DvXdX/LP48CAIyGxvy2fgdzGSi+yAVba6Qh2hWOVMbnip3PanDv+fXjVeIu2qHP9gi8ebbpHd8e64IDY+Y33jjjWmxp9z5p7hCVvy4eQQtjlPLf2Em82dShvPvtEx6tfYav2bDw8PTCJsIWsRO/J9vWyQSfDu8EyIRPlpv/pmWoyJv7iuui9g/lXNl3qxlTk1rJRJH0TLP1TeieWuNSQu09pKrec32vSdnz93zWROQ/xN/Pi0BEW3I3cFsEf6DJBAz9eMKGYnxmsT3Ws940DrIWsjQ3UHR8j/54IMPZuxbrO/KB4LKaCEOMY4WPefNc0WzVVfrxfs0uCImPGLTeqeFdPg6NNaxsTH1u9/9rlO4EZ6guOKg+PkRYiSrJWrflTc0IXh3vkJEaPn2xXaoH/45PSPLJv6b8KbCPGHXAr5/kYhofX/+YkD1xf3gThogfi+eOPIXDlfnj37fD6fhST13RMKV0yc9v28CAsAHwHcBvHHv/5UA8maq91n8uR8CooUYHjSy/0sRD4KZbmBaiGGm+D+uTBl55CwiDk85mNlGyHU3P76ciEhF0ZarW6n4W6t9fh1FBM5Hph0eHnYyOebFNq7CjA8PD6uHDh1SX331VYZAebHP2NiY+q1vfYs5/bm6+VdUVLDwL6L5Lj8PcT3IH0Ss52q9RMQrrr0rzouIlBbyvXv3rvrHP/5R0/dGvCxoEQX+Pf83v09d7XlxXVwBP8eZnELdEWJP4X6Ih9Z7rW/5aQjIbwG8iHsRcwF4A7g8U73P4o9IQDxZ1AfxYV21rdXHgwZ3m1Vro7hDwjON0Z24w5WPgKtxzjQHd7epmYgAX45HbCIy0qrjri/6zesIxPdEaIeHhxkh+eCDD9SxsTH1gw8+UA8dOqSeOXPG6YbPExeq8+677zo53YlzoTapT368RNROnjypFhYWMl8LKit61Ivzv3v3LtOtaK2Hlpc3X58XT2kRLJEb4jkIfh1fffVVpq/RCgujNW4iClr+LyKn6GqfaRE9VzDT2fEUt3hy/tzVnW3cPrGsKwLiiRlvhKqqL8MRMReqqk4B+Mun6HvA4Inpmpb56P2az4kmhrzl0YO2qtDqh4D3KwDgZHpL70XfB7KRn8k8l/dBAD6xElMUxaWPAFmfiL4wPIimm7wpqpblEr0TTYvpPQH5ffDrQWaYopmwaC1D46isrJxm7mu32xETEzNtrrRG27ZtQ29vLzo6OpCUlISUlBS0t7cDAMLDw5mllyzLCAwMRHNzM86ePYtjx46hpaUFMTExmDt3LrOgojnTt1UUBenp6ejp6WGmpGTpBXzyzaempvDHP/4RwcHBzFS4vr4eU1NTmvuSvld1dbWTNRVvkaQoCuuX/6a8dVhBQQFee+01nD17FqdPn3byvQEcvictLS2IjY1Famoqswijb0JWVk8++SQeffRRyLIMq9WKpqYmNj/+u/HfIDk5GcHBwcy0mtaPzG3Jwor8YMRzqWUZ5+rsUjs1NTUu3/N4wBWIe55fT0/BEwtUEU94Ap4QEEWSJG8A6r2BRAC461Hrn2HwFHG7cojyBHhkwyNysa37MRX2pIzWmMlklUcoIrgyAfbERJkfn8FgwM6dO136CPDEScuW39XYyBQVgBMhIUTg6iCI34H8D3hiWVxcjLGxMYbUxHWgeQBAbGwsBgYGYDabWf3a2lpcvnwZjY2NTgeeH4O/v7/THMj0Mz09nRG7uLg4WCwWHDlyBMHBwXj00Uexa9cuZGRkwGAwOJnXNjc3Y3JyEhaLBbW1tTh48CAsFgtDbo4LJJz2QltbGzZs2ICXX34ZISEhzNRYkiTmM8MTRX7vZmZmMnNW0QTZYDBgx44d8Pf3Z2bHvP8JAGzfvh0GgwHR0dG4du0aYmNjnc5CamoqbDYbGhsbUVtbi6amJpjNZuTn5zMCT0SE6nl7ezuZ5Yom4gAYgSwtLcWCBQtYWdozoikz/82oPvVN54HMql2ZkkdEREwzhRb3lCc4aM2aNU6mwbNxFCZT6ZmIlLtLnEvQYkv4HwCfB3AWwAiAdwAMAMieqd5n8WcmHYinLJ6n8k9ehjpb9tMdy+sJ23w/poyejsvdGLTEflpiMr68qk43QyVwpaykefDiFj5lqlh+pr/pfwqzoZV7Q2tMfFDA27dvq6WlpeqhQ4eYiIqvz4sS7t6dnm+ExDIffPABE8nw43GVsInEb6STGB4edrIm42X7fB1e3EUKaXH9xH0sKpW1FOGijoOe8yIfqqMVeuXuXYfhRGlpqZM4j0RtWlGwtcYt/qaxkt5JVOqL7Yn1yFRcS+lP60+5aOj5TIp+8Vt6CuJcH4QY3JVI7u7dT6FEVx1EZCGALwHIAxDgSZ3P4o87AqKF6NyVm438k/52B3w5cUO4M1OcqV+t9j8NuGtH69CKv13JqHlZP49kXMUYEtt2Ff7bk+8kjkO0RtMyKOD7GRsbY8jlzJkzDIET8hDjO4nrIY737t27TvWoXVcxnWgMvA6HEK84Zr5P+r+iokIdHBx0qzug7/Hqq69qKt3JEIB0I6JOQUS6vCKe/4ZEHCoqKpx0Q/z4tRTurizCXF1GXFmmae0Jngjzxgq8Rd7JkyfZ+Lu7u1lddwE2qcxM+9OT8/9pz7Wrdmh8ABrUT0FAkgBsA7CDfjyp91n78YQD8eSDzhYZz9SmFlHiD4a7QG0iuFJ+/jlvKFp9uPvf3U1R/NvTeWuV5dfV07a1uDPxb63AgbwSl0eS1KanlxMqT1wH356rtaAxkfKavxHzY+GV0jz3RpkgtSy+eHNg6odHovT8zJkzand3t/r000+r3d3dToSYd/YjYsYrsnkiVFpa6mSJRtzC4ODgtD1EyFvLVFrLfFY00+bLu8sxznO4PPdDY+A5vO7ubnXfvn1OuVvEfaiFpF3tC544i/hpNnjI1X72tLwrDsSTUCZvAngTwFcA/N29n7zZCcr+dsATueRsdRcztcm/F5W+pEcQFdRaQDJZUbEn6jGATwL+8XXvp22+Dz6MhbsQDKLyXOybb9/VvLWUiaQApR/RIICXiVssFiZTF+coysPFvylwID83iu8EfKLr6enpYbJ68buKc+Fl0E1NTbh16xYaGxuZMteVvJ1AVVWkpaVBURxxshITE6HT6ZiCvb29HcnJyew58ImcX5Zl2Gw2J52HLMsICQlBQUEBKisr2TqlpqbCaDQiMjLSaa3S0tJgNpvxne98B2azmSmkaf358C4kz+cV1rIsY8eOHfD29kZzczNTePf29mLLli0oLy9nSm8aZ1NTE6xWK9rb213GFpuamnJ61tDQwMKj8OFwaEy0N2hd+CCONF5+nfLz8wGAhWO5du0a0/FQWTobvD5I3PNa+jIaw8qVKwE44okBcNLFicYKWiDqLj0NM8TrclyBJ0r0dFVV01RV/XtVVZ+69/O0B/XuGyRJipYk6TL3c0uSpOeFMtmSJE1wZb73afr01CJCq54n4EmbrpTaIhJ11aeIMEWgOZJCko/j5KlFmquxEOLiD4Ko8BMJB+B8GLT61yJyPLIVA81RVF1e2QmAWSMRopFlGUFBQWhsbHTqYyarGkLk9L/Yj4h0ZrJco8i8tBYGgwHJycnw9vZmSn5a25CQEACYNkfAQQxo/lNTUzAYDIzIpaWlsXY6OjqY4QAh8dTUVOj1eoY8aW37+voQEhICq9WKgoICtl9WrVo1LYYWzTsyMpKtYX19PZsff8GgOjU1NWhoaMDU1BQsFgv8/f2RmZnJYnXJsgy73Y7AwEAnYwyC5ORkZGVlITk5mcXNMpvNzFqLogbT/5mZmUhNTWXzFveeoig4duwYjh07xi5Y/CVBJB6KojjtJ8BhmLFx40Y0Nzc7fR9+P2gp6FV1esRggoyMDABwmotoCUZRlLX2rHh58+SC7MneBe6FKXFbQJL+PwAHVVVtc1vwzwSSJM0BcA3AOlVVB7nn2QD+u6qqHnNDaWlpKlmCiOAJtdWqc/ny5Qdmhqu1UR9En3wdAOxw8VYsYp+eEFJxLFprKG5AcRzu+hPHLfbl6jeBSDwmJycxd+5cdlusrKxET08PnnzySQBAQ0MD9Hr9NIsVapMfC0F9fb1TeS0k09TUBEmSprVLZs7btm2Dv7//tLnzfUxMTODatWvYsWOHk9UY3XRramqgqiqLopuVlcXGHBcXh4aGBrS0tCAiIgKPPfaY05qRdZIkSdDpdIzA8OOPiIiALMs4ceLENI5Y/E719fVISkpCTU0NBgcHkZeXh97eXtjtduh0OmbSXV9fj5iYGDQ2NmJgYAC7d++GLMusLSKImZmZUJRPLOzS0tLQ3NwMVVWdLK/MZjOKi4sBAFu3bsWJEydw584drFmzBomJiZBlGW1tbaxtnjOl5zyCvnz5MiIjI9HT08OQNBHHmpoadHd3M4szcR+7wyd8GX6uWhwO/762thbe3t5OEaMJzGbztG/jDlfM9nw/8sgjDaqqpk0rpCXX4n/giIc1AaATjkCKLQCaZ6r3oH4AbAFwXuN5NoCS2bTF60BEGeL96ggelPKKb+/ThCTwpI6nOhl3CkmxXa3f7nQ7no7fE9ktybfd6WZEBTK94x0dReWwVn13bYryaTHOk9b68BZM7tb07l2HhRjvpKelkCeFvpbC/IMPPmBhYcRv42p9VNVZ4UyyfS1jBfpNeoexsTGWcIrX5VA5/m+xDK0fKdIvXLigDg4OOq0n6R54vQxZv5HV1NjYmDo2NsaU/8PDw9O8//n1E63iXOkuaH7is5n0ElprzH8LrRhrWnvQ1TdwNR7x2WyiO6iq+qkcCd8E8J8B5OIT/cffeVDvQcFuOAI7akGGJElNkiS9J0lSvKcNKorDGUrL4Wy28CA4D7E9T3UwPMwkhnKlE5lpDK7ERXxZsYzotMY7XM2kA9Bq3928CdR7nLTouMaz+vzNjt7R8zVr1jAfC34+JHqh2y/tFy2Ztigq4GX9dNOvqamZlpeDD8kvriF/U2xpaUFHRwcbB82ZX5v29nbY7XbU1taisrKSzVeWZaSnp8Pb25vVEfUUNG5RlEX5S2isJpMJhYWFTv4vzc3NMJvNLEy6xWLB8ePHkZ+fj2PHjjmtOemfSExE61hTU+N0JmNjY6HT6dDR0YGQkBCUl5czp0fAIRZKSkrC5OQkSkpKEBISgr6+PjQ3N6O5uZmtPYXUj46ORnFxMQoLCxEUFAQA09Z4amqKhcWn70w3enH/kdiMvgefQEzLT4MXsfLrwe8bEkWK4xL3sFYqB+KatM6T+MzT1BYz4TdPRFjlqqrmeNTbAwZJkmQA1wHEq6p6Q3g3H8DHqqpaJEnaCuDnqqqu1GjjGQDPAEBISEjq4OAg+5BJSUkeKac/DXjCKn7W+3InCyYwm83w9/d3KS/WEj/x72YiMASu+qcDUlhYiNzcXBiNRqfDD3wiylJVFbGxsdPERjxQWRJ3nT17FrIsMxEMIcLm5mbYbDaWwEocL79+NTU1aG9vx5NPPumkO+DX7vLlywgJCWFjI9GG2WxGS0sLEhMTYTAY2Jrx4goak6IouHDhAgYHB7Fr1y6mlCYlMeknVEEERO/q6uogSRI7HyaTCUajESEhIXjllVfw4osvAnA4QJLYqqamhom/AIeCe2pqCikpKU4iISpfWVnJnP8URUFRURFWrFjBcmqQ6IjWgtaJxEm0JgaDgYnCxLUg4hQXF4empiY2Nl58JUJlZSV0Oh3S0tKYdz/tAa09xz/n/xdFWbwoqqmpSVMMJY6dwJXY12KxTMtNwp8NEs3RZYdvw9UZcoU/JEm6bxHWYQDHAXwNf2EzXgCPAzjpYdkBzOCjQiKsmUQpDwruVzT2acbmaV0t1tbTelpOaTOZGrsTF4o2+WI9PqLrTOIw3nRUy4yYnNdcha7nxUruTED5uYviBspPQs5wJC4RHe74+VE7g4OD6htvvKG+++67TnnH6ZmWOIXMS3lT3Q8++ID5ZJDoRlw73n/l5MmT6qFDh5zEQ/SbXytqRxwDtcebB7vbY7QWvM+PKDLjnTTFNigCMR9Xi74773ipJY7i9xH9z5v98v4xWv47noIo0tRaB0/rusIlNDZXIqmZRGoEM/lLwYUIyxMO5C2Nx6r6Z7bEutd3PoD3VVWdNgZJkgIB3FBVVZUkaS0cya5WqG4mlJaWplZXV6Ours7lDeDTwExU/X4U07Pt35O6WhyBqAx2V5fWD3COZ8UrJd1xdp5wIGIZ+s3fuMRbuNi+uN78uOhWHRkZyW77pEzu6OhATEyMk2mueNsk8RZ/O+TXhdZUkiTGNdB7uhlTvdOnT8PHxwcTExO4efMmsrOzcerUKTz55JNQFEfoE+JAeA6IxpGfn49ly5Zh7ty5TFlMt2dSUtOc0tPT2RqScn7jxo1QFAUFBQWMOyKOgsZL/VVXV6Onp4eFMqExAEB+fj5CQ0Oh1+uncWRat2otrpO4OuJ+iOvQ2tPEgfC3++bmZlitVuj1ethsNjZf/hvSXqfvKYqaePNi+p5aOEPcX1pnfbY3fVflxP0nlnP1zhPgz6Crc3vfHMhf6weOMPJjAHy5Z18H8PV7f/+/AK4AaIIjQ2LmTG2mpqY6Of3MBLO5cczEbXjyfjb9urptuKvrqo/ZKNX4fkTFn6rO3vFRbE/rbyojrp+o5NSaG/9MbH9wcJCNlecEROWoWJ+fI39DFJXaInfC5xDhb/ivvvoq4zzIYY482sWIBFpOkfScnAlFj22KvEucCMHw8LD66quvOt3S+Ru36ChI73mOgI8A4CoUCu+xTZyRyCHyt34x347InWhxcXx/t2/fZgYHpaWl0/aRq/1BXKNWu1oKaneOsjNx1O6cQt3tPU/KzxY8aQOfwpHQS5Kkb0iSdFiSpDfp534o3WxAVVWrqqoLVVWd4J69pqrqa/f+/ndVVeNVVU1WVTVdVdVqD9pEW1ubU05oV+BKqetOSe3q5j+Tol7saybuQWts9MzT+YjK6dlwZFqKP4LZOD66ao/+BpyVnPz60U2RV2bzayM6VvH1FcVhv28ymbBt2zY2VpoHObyJQH4MYpBIMg3ng93V19ezgIw0ft7/gLgXAEwfk5eXB5PJBEVREBMTg7KyMoSEhDjpWxoaGthceYUz+XNIksSUwLyC/NFHH0V0dDQOHz4Ms9kMRXH4hERGRjrNkZwr6YyQQr21tRWnT59GQ0MDOjo6WBs9PT3Ytm0bADAFP3+rp3U3GAyIiYlBa2srXn75ZTQ2NjIOxGKxMN8LvV7PgkyKimeTyYSXX34ZR44cgclkmqZopm9eU1ODkpISBAcHo6qqivmiuAsgCjiiANMcaOzUblNT0zTlt2i+zu9P4oh4oP+npqamBeuk96J/D98X3wb9TYp7WitPwB3e8LQNAk9EWL8D0AFgD4AfAngCQLuqqv9lVj19BoBEWJ4iSi0W9dP4YMxEGGYj3gK0lXquxAau2OnZjuPTsOTu6rgSe7maB7+mdMDJ14IXEYnjIpHPypUrkZqaOs2fgdoTxWkUkltVVWRmZgL4RAxDCloSN1E/AFBbWwudTofMzEyXSlhFcXhI63Q6xMbGoqOjA6qqIiIighkDtLW1ITIykinEk5KSWL+kKKXouDU1NZg7dy4jAry4yGw2IzAwkM0pMTER7e3tTFR17tw5DA4OYsWKFQAAnU4HWZYxMTEBo9GInTt3AgDKysqciG99fT2sViu8vb0RGxvL2qRvRmA2m9HY2IiEhAQEBgayZwUFBdi6dSsMBgM6OjowOTkJWXZ4/ZeXl8PHxwdZWVkwm81obW1lim4SN5nNZpSVlSE3Nxd9fX1MqU4OiqJISWvPWiwWlJeXIzc31+nb19XVISIiAn19fUy0xrcjivvoWxUVFTHfFq39oqUAr6urm2bgwYveVFV1uuxpKdvdnXUtfMQr413hKlciLE/MeCNVVf0ugElVVf8DjqCKiR7U+0zCbBCdWNYVF+GOamvdVETwFAGLt3RX4+Vv4WIeAXfgirOh3664svvV1VA7WiaJWgfLldk1eV0TB8B7GfNtUdndu3czk13qn+9L9KhXFAU6nQ7R0dGsT34MycnJOHfuHA4ePMhu5hQmo7W1FXa7nd3kRaDbH3md+/v7M8/xwMBAdntfdc/7OzMzk8nv16xZM40Lo7GFh4czc9e4uDhm1tvb2zvN9JNMR9va2rBu3Tps374dOp0Ovb29kCQJqamp2LBhA+Mg+vr6kJuby3KYEEHLyspixIPmzHODRGATEhJQVlYGi8XCzIQ3b96M119/HVVVVQgPD4ckSbDZbLBYLDh37hxsNhsURUFgYCDS09Nht9shyzJMJhMqKytRUlKCDRs2wGg0MuJx+fJlJyRNY6Bx0bei5xaLBdXV1TCZTKy8xWKB3W5HX18fMyHmuR9FUZwiBvDOhpGRkZom7bGxsU56KD7/TGxsLHp6epxMpKl+WlraNOLBnz3iVsXzpcXN8G3wIWnEdzOBJwTEdu/3uCRJCQB8AYR6UO8zBzNxW56AFvHQQqpiHVcf1ZP6Wv1rIXm+DG1WQqyAc8gGd/XE2xd/CNyF+tBq01U/fDui2EtcExKx8Up+kSBrEVVebCESEf72RcSLylCuDp6gxMbGMuTEt0WxqubPn4/nnnvOSYQhyzK8vLyQkJCA+vp65vtAc1QUhRE6UazKH2oeUdD/+fn5rA0iIg0NDWhoaIDVakVvb69TbDISy8XGxrK2ibugdY2MjERHRwd6e3uRmpqKffv2MY/2np4epKSkwMfHB0lJSfD392ciP0JCRAySk5MZd0cxs3i/EqPRyG75TU1NiIyMRGRkJJ566ikYjUa0trbCZrNBr9fDYDBg06ZNWLdunZPYp6enByaTCa+88gqsViuys7Nx8+ZNxqXRNwDAkDSF8FEUhwjz6NGjqKmpgdlsRn19PTo7O7Fq1SqcPHmSEbcTJ04gMTERMTExKC8vh8FgQFlZGfOL4UXixHnIsozm5mbExMSgpKTEKdwJJdQigkGXBQpFQqbLJ06cYGV4iYN4SaT8KKdPn8ahQ4dgNpunXVrF/c/vM3eXYqGetuOIlmJEdVZm7wewAA6P9D4ANwE8O1O9z+LP/eRE9wTcmStq/c0rFrXqe9LfTAo7UREomgPOZLZHdfh8JvdjKKCloJ9JKcj/Ft+5Ulq6Gs9M5qSq+onymM/PwbfN53c4c+YMC9NOimsqR5FT+RDlYuRWKkvh3kmRXVpayhTXWl7vWvXFcVJIcd4UVauu1tj4CLm8oYm7vSrOjcKdU3u8STVfnn9O0YHp7z/+8Y/q8PAwi8rLK/RpXcmr/vZtR/6V0tJSlkeF9zLn9wy/bnfvOjzqv/Wtb7Ew9mQEwOeCuXv3rpPBABldDA4OsvnyZsS80QJ9AzGcOxlNaHmR8+ssmi5rnRfRIEMrt4rWfncFWoYBBHARzt2tDkSSpM8B2KmqaoHLQn9D4C4W1v2COz0J4CyX5Mvzjmr3oxvhdQauxsDH7+F1Au7kwFQfmO4Q5YkeRWssotkkP36+vDsZLMma1Xs6CJ4DuXwvZpHoMSzGB6Ibu6gf4dcLwDQZtzhuRXEooG0227TxUD2tNeNjLvFrdfr0aXh7eyMpKckpLhQvYlMUh7NdaGgo0tPT2ThpHUkRTWa4Iqeq1T//XagfMvclHYarby/usZCQELS0tGBwcBA7duxAY2Mj04dQ6l66odMtu7W1FSkpKbhw4QJ8fHwwMjKCgYEBhIWFoa6uDs8//7yT/qKurg7JycnMSTErK4vd0mkdaCyk5xHNU/k9EBgYiJCQECeTbNpHiqI4OZ2SSIy83a1WK1RVxdTUFIxGI6Kjo/Hoo4+ytvl2qG1REa7l+MhzDVp4w9V5E7+NuM+16nv6DLhPHYiqqh/DYS77EDTAFXsoWhPxH5ZCScvyJ6lGZ9M+PedDUbvS1fBWOPw4xN/UJv0W9Q38OGZL7Eg+DnwiQuPT6vIWJK7YaR4oWCCPqElhWVlZ6dRee3s7cnNznQIOijnQCeiZKDriLxy07iR6SE1NZYH+zGYzampqnAgNiWzq6+thMpkYMad1IQQyf/58phD28fFBXl6e055pampCR0cH8vLyoNfr0dDQgNraWnYJofFSalgtUR71T6IXwCF9oG9gsVjQ0tKC8fFxdHR0ICIiYtq3FUWg9K0iIyNRVlaG1NRURvh8fHymBWWMi4tjoddbW1tx6tQpmM1mXLt2DWFhYUz3oNfrsXfvXly6dAlnz55lIinS+ZBHOYVLqaysZEEU4+LiYDQa2T4LCQlha0VQX1+PyMhI9PX1sfArVLejowPV1dVoaGhAUlISYmNjceLECTb+wMBAJCUlwdvbG4mJibh+/TrTPdB3pdA3tN9orfg15MWm/Nniw+eIoiYt8bB4Pun8NjQ0sDa08Igr3CL2w39vLfDECuu7AKYA/BbAJD1XVXV67ODPOGhxIDMhxZlgNvUVxRGDixAQ4FoB7eoGzL93V382IN54tNr2hHhocQ/8LZCe8/9TSBlXVlM8EDJOS0ubVl5UDANwso4BHE5wvHMgjY8P3SHOX6xDIcJpzCEhISguLobFYoGXlxf27NnDlMjk1FdbW4uBgQEWSVfrdkm6DIvF4hQVmAcam8ViQVFREYtyS+FIeKLKz4/Kb9myBX19fejp6cGOHTugKAo6OzthtVrh4+PDfkdHR6OkpAQrV65kVlp8yBOyBiKFLyFH8ZZP5cvKynDz5k1s2bIF/f39SE1NZWtpMpmYMyfpHfLz8zE1NYWRkRFkZ2cjJyfHSRlusVhw9OhR7Nixg3GYnZ2dzHmRCPrBgwexcOFC3Lx5E1u3bmWc25EjR7B7924UFhYiISHByZqL2uetyOg56TV4roicGQkorApxcqRvE7kh3tKP5yIpOjMfssXV+aIQOPSePwtiuJTZcCA8t0RnY/369Y2qqqZCAE8ISL/GY1VV1XC3FT+DkJqaqjY0NLD/3YlM/lzgCeIXP6I7xDxbk+KZCJanoFXelSkuLzrhDwzfzkze61SWCI6WmKi+vp6FbOeV0tS+K5Ehz/JHRkaioMAhsd21axdaWloAOHIy0C2dxFaEaCIiIhhRobE0NzdDkiQnvwZ3Xu2FhYXMRJaU9nzMK748IS6KGUUEy2azsfhSBMT1nDt3Dr6+vkhKSoKiKGhpaUF7eztWrFgBvV6PlJQUtLe3MxNSUsbW1NQwi6jHHnvM6Zvysbn4dSYPfL1ej/DwcJSUlCA7OxsVFRUICgqCXq+HqqrsO4mWUpWVlbBarVi1ahWGhobYWtTV1cFut2N8fBxnz55FdnY2ACAnJ2ea2K6+vh7j4+NISUlha08E/+DBg3juueemmeXy4l5ac9oT7e3tGBsbw/Xr17Fr1y5GRPgIDsTlkjm2SFz5iwJdXEiBLp4NLQ98/syZzWa88sorTmI+fo98mouxKA4D4DKcu0sCIknSV1VV/Z0kSeGqqvbd10g+Y/Dn4EA8gfvpQ/yIM/09Uz/iDeh+QBRpaYnnXOl0eELBBymkZ55wIDyiF4krvadbIn/4+LkD7rMcEnImERNxHIQISQchyzJDaJTwh2765GNC8xM5DZ7z4m+h1CbvR0EcSWdnJ0JCQuDj4+MUjoTqAp/ckJubm9Ha2spClxAnRdZTxJXQuHg/Fj73BRHTzZs346233sJTTz3Fsg1SfpHo6GhMTU1h/vz5SEpKQnt7O27dusXCoxBR4olETU0N7HY7Nm7cOI2roTkXFBRg165dAMC4DIKGhgaEhYXh8uXLTP/Ah07hv2dTUxPsdjtSU1PZep07d47pnDo6Opj/iihyI4JDfiWNjY2YmJhAYGAg48j48DQ8AeC/S35+Pnbs2AFZltlFgYhzamqqJtco+oPwxIeAD8Kp5SOitbe1wJ0+leB+dCDfufe70E2Zv3m4H+IhyghnKjsbM12tcfEISDRv5ftx5+9BclVedzIbEGW1WsjeHTfL38zpMJCOoLm5ecZMgHxmO96skSckgMNWnrLliXMHMM1kl5fx0hh7enqc/g4PD4fRaMSOHTuQlZXFEASFgKdx9/T0IC8vjyEF3jeDfAz4MOa1tbXMjJTakCQJsiwzPwriZJYvX46uri5cvnyZeZpTu9QPzT0tLY2ZG9M8JElCS0sLczQkU1LySyA9S0hIiJPuLDIyEiEhIXjqqadQVVXFlMOpqanYs2cPoqOjUV1djbGxMbS3t2P58uXo7e1lxGNqagqyLLNvJ8sOv5POzk4nPVFSUhJDyrIsY9myZejo6IDBYGAmvyQ90Ol0MBgMMBqN2LZtGyMKNTU1qKmpYalfDQYD0+WUl5fj+PHjqK+vx7p169g6x8TEsCjC/DkjAtrX18fW0WazYWRkBBEREWwsRHjz8/Nx+vRpFBQUsD1F+o/Q0FC0t7dDluVp5uqk3+H3uqIosNvtaG9vZ/9XVlYyb30CIi6yLGv6iPDtaXmr00WCQvPPhEO0wB0BGZMk6QyAMEmSTog/HvfwfxjwiJRHgq7AFbK9H+Db0vrIqqq6/fjkL3A/YxHnIY6BEKq7tmmjZ2ZmOin2VVV1Szyqq6tRVFTklPea/wY8ceSBvg0hWTrAhNBI3CIeLt4IIjIy0ik0PH9A+Vs8jaGvr48hDrLnJwV2Wloadu/ezZC8Xq/HyMgIUwQrisI4OEoxa7fbkZKSgsceewzx8fGIj49HYqLDj5fCpQQGBrIQJYDjOyckJOD69eswm81oaGhAYmIi9Ho9ACAxMRErVqxASUkJTCYTenp6EBsbi/DwcJSVlTGCpigKy6t+48YNrF27lt14KedGf38/Dhw4gMDAQCxYsAD9/f3MyS85OZl9W37vJCQkQKfTMa6K0uVSmJb6+noYjUYEBwdDURQ2JnJcJBGd3W6Hv78/EhMTMTg4iKCgICQmJkKSJOZvUlJSgkWLFuH69etYunSpE4fc0NCACxcuOOXgoL1Cehnar7IsY/78+di1axcMBgO6u7uZAl6WZezevRsbN25khgzAJ5eBrKwsdjZ4DoJEeARk0NDc3IzU1FSmgwEchgWUFdLV2RIvmrwPlJhnhN7Jssx0LoqizGjYI4I7EZYMIAXAr+HwBXECVVXPzqqnzwA8KDNens3zVPzyIEFLhOTJWFzVE8t4wgLTreZBRDWeScRHG14M70A3P7L8EdshpMPnthD75G9qZLbJH1xe9MWLziorK3HmzBm88MILTmIGvm0y++zt7dUMT0GiGj8/P8yfP58hG2qHxESJiYlITU1FQ0MD0/FkZGSwfmTZ4ZFNZrGy7HBkCw8Px8WLF3H9+nWWtpei9CYlJcFkMsFsNiMkJAQdHR2QZYcHO4lsiINISUlBVVUV/vCHP+Cll15ipq+0ZpmZmTCZTHjppZfwne98B9euXWMiPDItJiUx9R8cHIzAwEAmoktNTUVjYyOb//vvv4+RkRE2bll2mDtv3LiRcWBXrlzB3r17AQBnzpxBbW0tNm7cCL1ejytXruD69etYt24dPvzwQ2zevBkVFRXYsWMHE9Pxuif6RjROPtcJ9c+bnpP+S+u78ntLjFDNc7u8+bCoexFDi/Dta+1jrTPDj5m/7PD7mvYPP2b+N8GsRViqqiqqqlKU27Pij6t6/zcAv7CiieynAXfcg3jb1+qTRA7uxuKOg3HFUbkSw3ma1UwEsX1P1o5uSHwdWZYRGhqqyRUpisNXIzk5WTNxmNgneRQT8SCRGB1ePkSFLDuy+z333HPsRk7sPxFxRXGYffr7+2NqaoqJ7mhs9fX1MBgMyMrKwvj4OOx2OwthUVjokBqTNziJyVJTUzF37lzYbDaYzWbU1tay9gCgtLQUR48eRW1tLaxWKwCH5dnWrVud1mzx4sVQFAVHjx6FwWBg+crJakhRFJY/Xa/Xo729HWvXrsVLL70Ek8kEi8WC2tpadnu3WCwIDAzE97//fYSEhCA1NZWtAQVrVBRHvC+73Q4fHx+Ul5fDaDSioKCAtTEwMMAI0/DwMLy8vJxu1deuXWNcUWJiIqKionDhwgUcP34cer0e6enp0Ov1WL16NeLj4/Hoo4/i0UcfRWRkJAIDAxn3R9+0tbWV7UW73Y6WlhZUVlaivb2dIXLKkmg2m1nWRYqLNjU1hfb2dqeQKGRFdvr0afbNiVCZTCZUV1czsSVv4kvSAQDM414U1yqKc/ZKdxIQIh4k3mxoaGBRE3j8wZvr8/14KnafMZSJqqojM7byNwyeyvvclRMR1/2Ow9VH03qnhXQp9ILWhqI23PVFYhge2dFzkWCROGq2c9QKHTITaPVPdSlFKy9SpHc2myMKD6/34UVVxEUBzilD+YNL9XnHMEKGFFeKF6dRhNumpiandSQRAvWrqiqMRiPeeecdbN26Fbm5udi1axcCAwOZVRGJR2hesiwjLCwMqqoiPz8fpaWlLJTFpUuXkJ2djd27d7PUtbIs47HHHoPBYGAhPBYvXowf//jHUBQF+/fvR2VlJZYvXw4ATCxFYpWOjg6kpqYiIiICxcXF8Pf3R1xcHBTFEeOrt7cXYWFhKCgoQGVlJbq6uhiHQWFRbDYbQ4jj4+OYmJjAz372M6xatQqnTp3CsmXLkJCQgPLycmRnZ6O5uRktLS3w8/NDQUEBmpqaUFhYCEVRGAGIjY1FZ2cnZNmRITIkJAR6vR4+Pj7o7OxEa2srs/Lq7OyEqqpOugb6fhMTE7h+/TpaW1uRmpqK1NRUJ30IEauYmBjmI9PY2IiWlhY0NjZCp9MhIiICRUVFjCiQHows3khslZOTg87OTkxNTcFqtaKxsRFjY2NON/6mpiZGZHmg/WUwGJwCWPKiW/EsKYpzXC6K18UTCkBbbynuf3fgSSys/2PBU0o7UzktmeNswZ1+YybdB4EYU8pVGzPpZVxtKi3wdL48EuT1EK4Iprv+CfEriqLJMVBZivXEW2nxebeBT7gorUsAcRRxcXHo6elxUvoCYFY7RHwo0KG/vz+L3WWxOEKUR0dHs9tgW1sbIiIiUFFRgdWrVzPC1NjYCKPRiNdff51ZO/GIwGKx4MiRI4iOjsbevXsZZxEbG4vBwUGmVyD9Q09PD4tJtXKlI9vz1atXkZeXB4PBAH9/f9jtdnR1dcFqtTLluyzLSExMZIiss7MTd+7cYSKrc+fOISEhATt37mQIPSUlhZksk3gnPDwc8+fPZ4rmixcvIjY2FqtXr4a/vz9WrFgBX19f+Pv7Y9u2bbh58yYL3rhr1y689NJLaGpqQk5ODovlRdyRqqpIT09HdHQ0fH19AQCrV6/G6tWrkZCQAD8/PyQkJCAjIwOPPvookpKSmI6Fkk75+voiNzfXKekUzZl0EfSNbTYbZFlGSkoK9u3bh5SUFPatd+zYwVLxEtcp+g6dPHmSea8DgNVqRUVFBWpraxkRIaMM3p9F3L8iJy7qNfl3/KVI9H+iPe9OBO3J2f6/moDMhEj5cu6Uz9TO/YizxJu+O+5AZFm1bh3uTHRFDkJrLG1tbU43FXfgyfrxMl8qS5taiyi6Y8v59ux2OxMBiMSRnvGhOGhNdTqdk/ksKVV54kBlrVYrioqKADiLGSjcupbMmP/bYrHg0KFDGB4eZsEN+ci62dnZmDt3Lo4fP46ysjK8//77uHLlCtatW4fW1lbU19czCzVas/3792NoaIgpyg8fPgzA4bOSlZXFotbSWAnxkk6C/DOIK9i5cycSEhJQXV3NwqofOXIEFy5cYHUTExORkJDAdCQXL15EaGgoOjs7UVtby4gUKdwLCgowNjaGvr4+plfw9/fHs88+iw8//BBRUVEoLS2F1WplEY4NBgOCg4NZW8QlLFq0CIGBgYyrs1gsLJS7oig4cuQIfH19MTg4iNbWVgQFBaGvr48ZBPCyf1LCE2FLSUlBVlYWZFlmIkGac3JyMiOmAFiGw/b2dmauTRGOOzo62B4BPrnMAGD6lLy8PGzcuBFz586Fj48P1q5d6+TcSHuWfvj9yEsPRGJBZ5bnwEkZL55V8QyJz8XynuCyGR0JNStJ0vdUVf3hrCv+lWE2SnReLkgf5n50HTwC1Xqn1a7YN/+ObrBa8a1makvrf1fzFn+7K+vqmdaYtMYj+o+IxgD8WHjlH7+ursbJ19GKvUW/+ZwaopiLV5LS+AjEb0GIj26RRqMRJ0+exI4dO5wcviorK3Hq1CmsWbMGPj4+8PHxQVhYGOuLfDp4nwKtlLFkeUVOhQUFBVixYoWT0x8AxnVRhNgtW7agtLQUd+7cwd69e1FVVYXc3FwnPx0iRJT6lnwnLBYLrl69iuHhYQwPD2Pfvn1O36myshJ6vR6JiYlOznS8gyRF0g0PD8fOnTtx8eJF/O53v8OePXvY2MvKyuDj48OcHKempigoKrsomUwmnDx5EtnZ2eju7sbZs2exZs0abNq0iYkUKX9LZWUlUlJSmBd/X18f0z9RpOWEhAQYDAY0NDQwJTkRX7Jmo7WWZUc0YcrbQnG+eHEnH/+Lj45MHuv+/v6aZ4QMMDo7O6HX651C1NN68nuOV9aTbsOV0yzfH+/NLpbjv6krJfr9EhCjqqohs674VwZPCYiniG8mYkIhBXhnM3cIV3w2E1HQGhMBvec3Eo+YtcYizp93KBM3mdbYtKzAeOsTftPz60oeuWIQQ3ENqLxWHzNZn/Hrwvdrt9uZ5zCfDCo/Px+LFy+Gr6+vE8KiNaXxieFPysvLmdWTeKgBZ8dHo9GIGzduMNNP0h+Q6Iv3nKfvxxNOup0WFRUxAtXT04OysjLs2bPHKRwGOUQSYSDkQVZsJSUlzJpNtA4CwMLEDw4OIiYmBjExMSguLsayZcuQk5PjlBCLl9HTd6cAiOSwJ8sOq6qVK1fixo0bGBsbY7GmaG4FBQUICQmBn58fgoODIcsOR7yYmBim4yAHP0VRkJCQAEVxmP0CDk6jq6uL6U7Ice/cuXPM0fHNN9+E3W7HypUrsWnTJpawi+c+iPDxibd4AmY0GhESEsKICJ+ZkYgEfU8KAXP8+HHodDpmFixeEnlRHTlo8taB5IgKwImQeHq+AYdo7fDhw8ybnX9PBI4uAK480V2KsCRJuuXi5zaAZa7q/S2ClrhIFK+IiFoUM2mJk9ra2hAbG8tYe1eiKbEesaGu2Ejx9s33X19fj+rqaqcbND8eQgju5Ju8SC4yMlJTMU9lqG2xfb5PMt/kAxnyfVM4B55t5+fIiwbENeH75RGWuC7kZMbPg2TOpC/gFft5eXkwGo2YnJycZkGVlJSEtLQ0doDJh+HcuXOorq5mzob83iGdDVklWSwWVFRUYPny5UyuTQRJURRcuHABly9fRm1tLc6ePTttH5rNZhw7dgyNjY3MEs1isaCsrIz5YVAuDiIeMTExTuORZZk55ZGnNK0nAHaBkGWHBdhjjz2GXbt2ITMzE4GBgdi+fTsCAgLY2JYsWcICD/LfoKGhAbGxsSzhFFkz6fV6nDp1CrLs8JRvampCbW0tysrK0N7ejs2bN2Pz5s0IDg7G4cOHcfHiRYSEhCAqKooRj56eHoSGhuLUqVM4ePAguru7sWfPHqanAIDi4mK0tbUxP6nBwUEnp0QAGB4eZt8gPDzc6ZuQFR35nzQ3NzP/orKyMvj7+6Ovr49dtJKSkpCZmelE3AwGA3P28/f3x759+7B9+3YmVqO9Z7FY2HclvZTBYJimq6O5UNBEYLqlIH82Raivr0dvby8OHDjgkgPp6OiY0W/MnR+IEcAaVVVvaLwbUlV1uctWHwBIkjQA4DaAjwDYReonOVb05wC2ArAC2KeqaqO7Nl2FMnElnhJvv+7ETJ5wCnzIAFfg6qY+Ux2eteVDhYghu2cS+WjNj+citMRPWr4TPAHm64miKDGsiVYMIHFMYugFHiorK1kKWRoLhd6g+rxohZ9jfX09pqamcO3aNafAf3QgTSYTu3XPnz+fHWpVVRmnYDKZUF5ejm3btrH4WIADidpsNrS2tiI6Ohre3t64desWAgICGCLkb/uXLl1CWFgY1q1bh+LiYmzfvp2lbCXLIrvdjqioKPj7+zPrKRKzkLiDbsRWq5UZFSQlJbHytbW1SElJYR7vYmgNnoNITk5mPhsAWKgPCsh47do15OXlAQBKSkpYwMZjx44hPj4e69atQ0dHB0ZHR9HX14fdu3fj1KlTaG9vx1e/+lXU1tZiwYIFuHTpEnbv3o2ioiIcOHAAHR0dGBsbAwD09/dDp9M5+f6QB/yVK1fg7e2N8PBw+Pv7o76+HuHh4bBYLHjxxRfxn//zf8aXvvQlNieK+UUc2tWrV1nUgZCQEJa2t6GhAZIkMX0FxfoixXltbS2WLl2KRYsWsVAyMTExuHjxIs6dO4fvfOc7bN/zwRXr6uowNTWFhIQElngqLS0NtbW17BmlxOXPEH3X5uZmdHR0MG5X63zyAUVFLgdwH9aHziTg2g/EHQH5HwBOqKp6UePdT1VV/ZZmxQcE9whImqqqoy7ebwXwHBwEZB2An6uqus5dm65EWO6QqcjOiwvuSpyk1cdMehSREHgSs0qrfxFpA845MzwRvYmssDsiSWXEMQGf5OQg80N+jACcnBF5wsIjMR74HB/8d+Ej40ZGRjLlKE90AEeOcspTIbLtlG8kODgYVVVV2LZtm5Ofx7Fjx+Dn54fx8XEmeuCJGU+MSEQDOMK1U0gNEsHwwQvF0BYxMTEsR0ZYWBgjZCTWABxKcYvFgldeeQX79+/HjRs3pkXl1foe4ndraGiAqqq4desWdDod7HY7MyOmuVCfYWFhKC0txYoVK5gvRm9vL3M2pHaJyNpsNvT392NgYAChoaGMiNTW1uLUqVPYv38/3nnnHTzxxBMICQlh8587dy5UVUVISAgTPY2Pj6O/v5+FdImKisLw8DDCw8Nht9uxdu1aRgi+973v4e/+7u/Q3d0NPz8/PPnkkywagI+PDxTFERokMzOTRQmmefn4+DCRpdFohMFgwIULF5hJ+Pz585mzpclkQklJCfLy8rB06VJER0ejpaUFV65cYescHh6OtWvXorCwEIODg/jCF77ArL54x0oSmRE3RsE6ZdnhFGqz2ZwiS/PfUeR2CUhsRmI08dyRaH0mfKAoyuyDKf61wQMC8jqAClVVf3Pv/04A2aqqDrtq0x0BAVyLk0RPZJHzEMMuu5PDe/KxAO0IvFpltcqRDD8yMpKFYaDNToH+tIgT3zeZkIpBCWeSq2qJ+uiWqnUT0kJ2ruYvhpng6/PvRCJJ46CoqnykVH7M/G07IiJiWlIiyveRmJjI5Np8+G1+vGazGUePHoVOp0Nubi4qKipYeHQan8lkQl9fH2w2m5OneUpKCi5duoT4+HgcPnwYBw4cgMlkYh7jJNYwmUz49a9/DW9vb+zcuZPJ4AsKChAbG4vExES0tLRAURSW7EiWZRapVpZlhvgLCgpgMBhQUlKCPXv2wNvbG3a7Hb29vYiOjkZiYiKba2dnJ65cucLCqly6dAkAWB71FStWYOXKlXj99dexYcMGrFu3Dori0NXs3bsXsizj/fffh7e3NxISEtDZ2Yne3l7s2rULZ86cQWFhIX70ox8hJCSEfRfi4KKioli05KCgIMiyjLKyMsybNw+f//znsXr1albnxIkTyM3NZUrs119/HRs3bkROTg7bZ2azGTdv3sTo6CjWrl3rxDX+5Cc/wZIlSwCAxcFau3YtLBYLIzp+fn7YsmULADiF8ae1lmWHop18bfz9/Z0MNuhiQ9+FfE5SU1PR1NTklGaAv6yIXD6fJoK/jNHcaa/Thc1isbC9NNN5vHz5MtatW6cZzl0nPuBBkiQdgC8CiLn3qB1Amaqqdte1HhioAE5KkqQCeF1V1V8J74MADHH/X733zImASJL0DIBnALANyQOxkpIkTVtMWZadLGxEhCa+B7QzEPLPXd0GRb2GOxEO/7cWR2AwGBjrS5uJggHKsqwpHuOJEY2TDiC14QrIWIBfQ9rsvCOTmPebn6/4TGsNSYzCs+tUxp0JtSzL7CDxvhv0XfgLgCzLDHESkaJ2H3300WntUpRYURzW0dGB+Ph4BAUF4ebNmywXCL9mdHul4IOKoqCrqwvNzc0YGxvDypUrERAQAIPBwLirRYsWOdX/8pe/jKtXrzJ9lcFgwKJFi5CYmIjm5mZMTU1hcHAQiYmJKCsrw86dOxEeHs6cOcmia/v27WhtbcVXv/pVrF27Fq2trVAUBSEhIcjIyIDJZMLVq1ehKAoyMjJgt9tht9tx8eJFtLW1wcvLC7t372YisPr6euTk5DBldWtrK7q7u9HY2IiEhAQMDQ3BaDQiJSUFdrudcWg6nQ6+vr7o6urCtWvX2KWDzH1bWloQFRUFAOjr60NgYCDmzZuH/fv3o6enBwcPHsSzzz6LkpISLF++HKdOnYKiKHjnnXeYoyDtnbfffhuDg4N49tlncfGiQ9Bis9mYUcIXvvAFJiKkNScT4cDAQGzduhX9/f1M8Z6cnMy4BsoemZKSgqmpKUagd+3axcRPlDdEVVUkJyfDZrMxUSKAaQEeKR5cZmamJi4SUxhQGZ7QkENrT0/PtPOodSGl+nDg42ngTom+DMAVAC/AoTQPAvBPAK7ce/fnhvWqqqbAQcC+IUlSljhEjTrTJqmq6q9UVU1TVTWNDh8P9OFdhSHnP4DWex4ZcYsN4JMPAjjbiPPImMqICJpH2oRcqBz/tyx/YsrJP+dv4TQuf39/l4hWRNrk9UpZ2yjooFaYE/Id4YlHfn6+U7Y3rUROIojzEp/RwXK3ZlpAB0Y05eUvAKTAB8AC2YlrTu2Top8U4xRhl1+PpKQkJCYm4p133sHExARbl7q6OtTU1EBRFISGhsLf3x/Jyclob29HamoqduzYgYyMDDz11FMYGBgAAOb97Ofnh9raWpw7dw6KomDZsmW4efMmYmJiUFtbi4KCAhiNRvzhD3+AxWKBJElYvXo1nnzySQQGBmLbtm0AwKLY+vn5ITo6GgCYLwN5c4+OjqK7u5t9/6NHj2Lbtm1466232H67du0a+vr6YLfbsXz5cnR2djKPbwrXDoAh00WLFiEqKgotLS3YvXs3srOzIcsyrl27hqCgILS0tECWZTz++OPIyspCamoqkpOTWXKoqqoqKIoCvV6PtWvXIiEhAYGBgdi/fz8iIyPh4+MDX19fNDU1wWg0IjY2FkuXLkVlZSWeffZZZGZmoquri0Ui3rlzJxPX2e12XLlyBUNDQ8jLy4O/vz+ioqJw8uRJdhkKDAxETEwMW5OTJ08iLCwMMTExzHLu0KFDUBQFeXl5sNlsaGlpYcEjt27dipaWFrS0tGBychItLS2IiYlhmRYTExORmZmJxMRENDQ0ML8XEnPt3r2bSRTE/c2H6xGlAfxvOodkJCOeHx5/zXSuAPeOhP8TwKuqqmarqvpfVVV9XlXVRwH8EsBP3NR7IKCq6vV7v28C+AOAtUKRqwB4RX4wgOuz7YcOvKt3hFRmaoNHaDwS5ImPFsfg6qNRm7xjG68boHYosQxFUKXnPKJ3JSYS/6Z65IFNyJYseGJjY6eFTaA+RYJFt2EtKw5F0Q4b7W59DAYDywIION/4eUKrtY7iLYzWFXCOH0acF1kuNTc3Mwc2frzUFkVbJeQnWs4ZDAa88MIL2LhxI2pra3H8+HF2025ubmbRcRVFwdTUFC5cuMCQEp9UKSoqCrIsIzAwEM899xwAoKWlhVkikZJ8xYoVDEmYzWaMjo6ipKQEiqIweXhzczPLGb59+3YYjUZGbBISEmC1WlmujeDgYERHRyMwMBAHDhwAAKxbtw6VlZU4d+4cfvWrXzGRka+vL8LCwjA1NcU4MILQ0FDU19ejqqoK5eXlOH36NOOKASA7OxtHjx5lvibr1q2DLDsyOVJASV9fX9hsNkRHR2NwcBCdnZ1IT0/H4sWLceTIEZjNZqSkpMDLyws2mw3r169HZWUlZFnGihUrWJif8PBwbN26FSUlJbh06RIURUFpaSlWrlyJ+Ph4REdHM11KaWkpDAYDi2NF86J9sHjxYhQVFeHgwYMwGo3o6+tjY29tbcWVK1dgtVohyzK8vLyYR3tiYiIyMjKYY6KiKEy3x69dREQEE0Hyl0ISWVG9Y8eOMSMR/mJDP1rg7rLlzkJTBHcEJF1V1VfEh6qq/gJA+vTiDw4kSZorSdI8+hvAFgCtQrETAPZKDkgHMOFO/6EFIkIQQQuhabUhms+JLKDYphaIH41HnGStRN7DPEHw9/d3MsUjIsDH+OfbpmB9Wu9I/m+1WtlNMjMzk9mhuzLr0/qfrKD42z0/P1eh57UIHc8VaZkpXr58meUL4Q+NSKjIO5eP90X+BsQVtLW1ITAwECUlJbBarTAYDCwsCX0nGhNxXN7e3izmExGmmpoa5Ofns3FScENZlpGRkYHMzEymCC8oKGDZBEnUFRERAR8fHxYnKjo6milDSSRF+hTy+p6YmEBpaSnWr1+Pb3/72ygrK0N2djY6OjpYZsHg4GCUlJTg9OnT6O3tRUhICNMvnDp1Cq+++ioURcGBAwcwf/58AA7RDYXniIyMxLFjxzBnzhwcOHAAo6Oj6OjoQEBAAIqKivDBBx/gwoULsFgsjAgTp7Bv3z4EBQXhwIED7PZbVVWF/v5+rFmzBmvXrkVaWhoLKtnT04OwsDCEhYXBy8sLZ8+exaVLl7B161a2dr/4xS8wODiIixcvQlEc4e8bGhqwZs0a7Nq1C6tXr8bExAReeukljI6OQq/Xw9/fH1u2bIFOp4Ofnx+2b9+OjRs3MiJVX1+PlpYWZm03Pj6OwsJClJeXIykpiVmxAWBh3CsqKhAcHIyAgAC2f8lE2GAw4Mknn2SXMSIKPj4+iIiIQHNzM9rb25GTk8PWOTo6Gn19fZicnERMTIyTtzm1Yzab0djYyAJYAo6LCeWS4bld/qy4Ig50/meT8sGdFdYlVVVXz/bdgwBJksLh4DoAh57muKqqP5Yk6esAoKrqa/fMeP8dQC4cZrxPqarq1kuQV6ITcnGXxctT0NJruHvuqg1gZucfQnLijVpErLw5LLVLZSnLmlZedt4Hg3/nanw0x5nWQBRLUYgHVxZnoiMd1eNltMQl8d75AJw8qSk3NOBs0kzOi7Ls8JzmLWPIjNLf319z7CKR4+fIO3XRelVWVqKnpwdZWVn48MMPmT8B+SIoiuIUwqOwsBC5ubnsG1ksFly4cAHl5eV44YUXmJL1xIkTyMnJweHDh5GQkIDR0VEsX74cX/jCF9DT04NTp07h61//uhMXSSavlM61qqoK169fx+bNm1FcXMzES4qioL+/HxaLBX5+foxgUbKt4eFhrFu3Ds3NzVi8eDGuX78Oq9XKDBxefvllLFu2DFFRUfD29mYKfT6Cc2hoKEpKSrB06VIWfXf79u0AgN7eXgwNDeHq1au4fv069u/fj/b2dgwNDeHOnTtMZ3Dq1Cns3r0bo6Oj8PX1hdVqRUBAAEZHR6HT6dDQ0IA5c+bg7t27SEpKYiFJ+vr6kJCQgNDQUNy4cQNTU1PMn2Tr1q2QZRmdnZ2Ijo5GcXEx0tPT8bvf/Q7PPfccOjs7MTExgXPnzuGFF15g+4bK02WO/G8yMzOZqHPx4sXYsGGDUzri2NhYKIrDATInJwcAmHf9qVOnEBkZiZSUFGaaTQYdkiShtbUVCQkJzOqQ56xdnSFXlzTCiVri/Psx4+0D8N+1XgF4WVXVCM2Kn2EQrbBmQtqegDvE6cr0lwcRCbrjeFwRC9HjnTaDiJj5m4eYy4MXv/GiHHcWWPx4Zho7ESZF+STvBiFSysmg5e0tynxpHMRlUT2ey6AUpry1C7/W9De9500dzWYzfvKTnyAnJwePPfaYE4epZcJNlxCaC68n4S1fFixYgOrqagQFBUGn07GYVKSDMBqNrDy/1jTX2tpatLa2Yu/evcx6htaUTG1v3bqFoaEh1mZvby927tzJ8nsoikOZTRAVFYXDhw9j//79uHr1KsbGxtDf349du3bh5MmTyMzMRGVlJbZu3cp8TYKDg1FXV4ehoSHs3r0bnZ2dGBkZQU9PDyYnJ2Gz2fDiiy/CZDJhYGAAkiSht7eXie7WrVuHM2fOYGhoCOHh4Whra2Me2YBDX6LT6bBu3TpcuHABAQEBLCikj48PgoKCcOjQITz22GPQ6/WYmJiYRmR+85vfYMGCBXjmmWdQUFCAp556iokAa2trGRe5detWvPXWW3j22WeZ93pAQABMJhMAR+KrlJQUWCwWmEwm+Pv7IyQkBNXV1czPA3DEydLr9Wxtly9fjk2bNqGx0eGWRpcTk8mExsZG5k9iMBhQWVkJwKF78vPzw1tvvYW7d+8iMzMTAQEBiIqKQn9/PxTF2ZKOzjddJugMkG9JVtYnKmN351c0IHKFz+6HgLyl+eIeqKr6lLv3n0V4UAmlCNxRbGDmEBuEBHNzc52y3mn14wrR80REdCCcycFP62bPl+VNDbX8Qtz95seuKA4fClJ08sEMaeyu4lS529QiQRDjWFF9cU7UN5Uj+Tj5lpw+fRo+Pj5OcY/IvFOLiNA+aG1tZXGh+P7NZjOLv2QwGFBbWwudTofg4GCcOnUKdrudEUIxthZ9y/DwcACfpDE1mUy4fPkys/BqaWmBzWZjDoNz585FUFAQBgYGmA/DBx98gPXr1zMTXV9fX0xMTGDDhg1oaWlhdTMyMmCxODL6BQYGor+/H4mJiaiqqkJzczPbK+np6YiKisLBgwexYMECfPjhhyxHysGDB5kJLwAW/n7r1q04dOgQUlNTMX/+fBYNOD4+Hnq9HvX19Vi0aBHKy8vxxS9+EQsXLmQ3ezIHphzjdXV18PHxYfMeHR3FggULmLNidHQ0li5diqGhIVy+fBn/83/+TxgMBpbbHABOnTrFwtsDYHqRuXPnIioqCidOOJKvbtu2je0Rcpy02Ww4ffo0li5dimeeeQaAI3/7qVOnsH37dly9ehXR0dHMn+fKlSt49913ERwcDIPBgD179jCRU0pKCosq0N3dDQC4cuUK04FRPDUyFSaRJ1kV0j5WlE9C2/Cha1xZXmqdEy2QJEnTjPcz6wfy54C0tDSV7KV5mI2oSaznLiufyOFoIVlic7WQE9XR8olwdaMQETDgfBv2VATFP+cRL89xiARPHCv9HxkZyTLr8YpA8bcWxzYTJ0cInLgREhl1dHQgIiKC5cWgg0Qxm8jKSgwcSG2SiI33DqdcEVrjoEi2u3btYuIiXoRIcZgU5RPP6fLycuTk5KCrqws2m43lkCAg4l1TU4POzk4Ajsi4YWFh+Od//mf4+fnh7//+79lczGYzWltbGWdTWFgIu92O6OhorF69Gvn5+cwfYWRkBJs3b0Z/fz9Txre0tCA6OpolmIqOjkZrayvLlU6c48qVK5luJSkpCUePHkVeXh7a2tqQm5sLwEHgDAaD0xoQx3Tu3DkmSoqPj0dXVxcAx43/7bffZk6EXl5eWL9+PROnKYqCzs5OLFy4ELLsiIv1pS99CUuWLMGtW7dgs9lw7tw5ZGRkYPPmzWwNTSYTmpqaWNiVsLAwFBcX486dOxgaGsI//dM/oaysjMWzCgkJwYYNG5gZtF6vR1RUFA4dOoSNGzdi1apVOHnyJLZs2YLLly+jra0N+/btAwC88sor+MpXvoLY2FiUl5cjLi4OXV1dqKysRHJyMrq6urBq1SrMnTsXWVlZMJvN6OzsRFBQEF5//XWkp6ezQJCFhYVYunQpFi5cyPADrSHF5+JNjOkM0Dmvq6tjPk9iPDt3ER+0YNYZCSVJCpYkaQP3/3+TJOl7934iZ+zxMwiqqnpsRusJyLLrePrUrvg/r+wFHBtczAnO36K1FPmuCJ5486UfV2bIvHLblWKc6hPS5BX7vGJPHCu1SSHF6TZP46+urnayGKGyWm26S5pDJo68KIvyR/v4+CAtLc0pIKGiKE4xjSYnJ53mS32QwQDd3sikVBwHLyrkQ0pQYinqNzExEfX19SgqKsKSJUtgMpmQm5uLkJAQJCQksCCFAPD222/j/fffh8lkQnNzMxITE7Fv3z7s2bMHGRkZCAkJwQ9+8AOkpaXh5z//OYxGIxTF4QE+MTGB1NRUJm5Zv349VFWFv78/8vLy0N/fj+HhYWRlZaGiogKSJDEvaFVV0dnZiYiICFitVrS2tsJms2Hnzp3Q6/UsX4ePjw9k+RMrtOjoaHR3d7Mc7JWVlThx4gRaWlrYGphMJrS3t7O0sykpKejt7cWJEycQFRXFcsDrdDro9Xp8/PHH+PWvf423334bR48eha+vLxITExEQEIAbN25Ar9fjS1/6EiwWC4KCglBXV4fx8XHYbDbU1dXBbDajuLgYJSUl+N//+38zLqCzsxMlJSUAgMjISKxcuZIZeuj1epaXBABu3bqFjRs3MjHSE088AaPRiK6uLmRnZ2NoaAhxcXEYGhrCsWPH0NraitWrV6OpqYmZ+b7yyitISUnB/v37MXfuXFgsFqxbtw4pKSmMmxoaGsKpU6cQHx+P2tpaVFVV4eLFi9i2bRv6+/uZZVt1dTWKiorYHqZ4XXR+6AzQJS0iIoIRDz7WG3HcfPbS+8F/gHsrrJ8B8OP+fxbAJBy+Fi/dV29/ZZAkyaWZ6Gw5kJn0J2K7PDIVw5GLuoiamhqGWMU+3BE8V5vAFYGjXBPuuCeqLxJE3v9FHCuvw+BtznniQpufV6pSGXGOWr4r9I6suajdtrY2JCYm4rHHHkNGRsY0573BwUE2zqSkJHaoeZNpOmiK4nCmDAkJYYdSFBvW19ejsrKSeanLssws18jkk2TVaWlpyM7ORkVFBTNkIOUrmT1Tu7/97W/x9ttvY2RkBCUlJYwjAhy3x2vXrmF8fByRkZHsBr9o0SLU1tbCbDbDYrHg/fffx7e+9S28++67LBKBTqfDtm3bMD4+jh07diAhIQHt7e1oaGhggRxbW1vR2dmJyclJDA4OwmAwID4+Ht/85jeRmJiIvr4+NDY2OlnS2Ww2bN68mZmghoSEsEuD0WjE9773PSxYsIDpCfz9/bFnzx7ExMTgypUrGB0dxfHjxxEXF4dHH30Uer2e5f04deoUvvnNb+IXv/gFLl68yCyd5s+fj82bN2N8fBxf+cpXcPbsWWRkZGDNmjWorKyEn58fent7MTw8jJUrV6Kvrw87d+7E/v378fTTT2P58uXYtWsX9Ho95syZA5vNBn9/f+zevZvd6I1GIw4fPoxz587h1KlTWLp0KSYmJnDq1CnG2SxatAjx8fGIiorCkiVLWGTkwMBAfO5zn4PZbEZFRQV8fHzw3HPPsX1lNpvZWmZlZWHlypV49tlnYbVama/K9evXMTY2htdffx0xMTHIy8tzyj9ClzHaf/xeJ66KMkmSOToRGz6ag5ZZvSfgzhM9WlXVEu5/q6qqBwFAkqRzs+7pMwDiTZ/gfoiHlljJXbs8MnV12yfg02pqtclHnhX1GO7iSIngaj205kf98n3SGLRyo2shdiI45ClvMBg09UfkcS7Om9dz0Pgouivpe0SFPq8s7+joQF5eHhsT71tCIjJSqtPtmoIikn6C5kBhvCniqjhWRVGYnF1RFHR3dyM6OhoVFRVYvHixk+Jfp9MxD26LxYJnnnmGEQkKi0GiFbPZzAIVRkdH48KFC9Dr9TCbzZg/fz7S0tJw4sQJ7Nu3Dz/60Y+Yf5C/vz+8vLywefNmBAYGYmjIEcSBcoP09/dDlmUmztLr9UzkZrFY8K1vfQvR0dEICAhAdHQ00tPTYbFY0NjYiKamJly9epXpMuLj41FQUICcnBy2H//u7/6OiZMo5Ao56xUVFWFsbAwdHR3IysrCd7/7XaSkpDDO52c/+xmuXLmC8fFxrF+/HufPn0d/fz9GR0fR1dWF0NBQ2O12xMfHY+HChbh+/Tq2bt2Kzs5O2O12zJkzB7Iso6OjA3a7nSmYIyIiWGDKBQsWoKurC76+vggKCsK1a9fw+OOPIzIyEs8//zwuXbqEpqYm2Gw2jI+PIysrC6Wlpejv78fHH3+MFStWoKioiOUTARwOqStXrkRFRQXbd2fOnEFdXR3279+PkJAQfPOb3wTguBRERESgtbUVJpMJX/7ylxESEoLs7Gx4e3tj8+bNTH+mqipqa2uRnp7OxGze3t5OZ5McgXt6epgDMelDtfADr8qY6XLMgzsOxEv4n89Qs3DGlj+DYLVapylZ7wdmy7XwN+qZ6hBH4k7eTyy3ePMn5Mc/dzUeV+I3eic66pH+4NixY8wTmfrVCgHDh2jn/WQI3FmmUVpRnguhGyHvrAeAhWSguYhiNDGEfGdnJwvtLnJINK6kpCSkpqayEBV0uKhdyqMQGBgIg8HAzFSpD7KaOnv2LCN6u3fvRmBgIHbs2MFk8USkSK9iNpvx8ssv48KFC7hx4wYSExPR2NiIzs5OFsqksLCQxYBqbW3F0NAQFi1ahMOHD2Nqagrz5s1j62UwGHDt2jUWOyorKwtVVVWwWCysz8WLF6O/v58RfErTSn4FHR0dTmKqn/3sZ7hx4wYLpTI5OYm4uDhs2LAB8fHx7LuRuJbEOcPDw2htbcW2bdvwv/7X/8Lp06dhNBpRWlqKBQsWYO7cuYiPj0dMTAx2794Nm82GzMxM2Gw2nD9/HqOjo1i4cCEuXLiAJUuWIC0tDc899xzi4+PR09PDwnysWrUK27dvh7+/P8bGxtDY2IigoCD09/dj8+bN0Ov1MBqNePvtt3Hs2DFMTEzAaDSioKAAk5OTWLRoEX74wx9idHQUAQEBsFgsCAwMxLp166DT6TA6OoqtW7fi+vXrWLVqFfbt24eIiAi0t7fj2rVrTqH1BwcHIcsyVq5cCYPBgDNnzuD8+fNITEzEtWvXYDKZcOTIERQXFyMwMJAZQkRHRzM9CF3yDAYDampqWDTngYEBKIojQRjpzsiZkM6Mv7+/01mgsykCjwuIq54JhxC440BuS5IUpapqFwCoqmoGAEmSYgBo5xv9jIOPjw8A7UB9niB3HmbLtcyG4MzEFRDyJERLQDd6kTMRWVvxhs5zM6ISHPjEeolupJ4EYeO5LVeb2BUnR2HHCfHTGHlTX2pPJHS8fwe/RiRaojFQOlxxvYlAx8XFscNLxJDWnZw3yUqJ3lPYeJ1Oh/T0dKSkpExz8PT392f+GJR+ls/Ut3nzZqSkpLAxEcIgHQvfll6vR0hICHp6epCRkYENGzYwQlRWVoYNGzYgLCwMr776KoxGI7NeItFaTEwMrl+/jg0bHKrON998k/mN1NbWsm+hKAo2bNiAXbt2obGxEVu3bkV7ezu2bNmCK1euQFEUjI6OIjMzk3ljU3RcMqteunQpqqqqmBPf6tWrUVxcDJ1Oh6amJiQlJWF8fBwWiwVhYWHIzc1lN2fKJd7d3Q1fX19cu3YNc+fORXd3NzZu3IiVK1cyef5Pf/pTrFy5EmFhYaiurkZqairGxsbg6+uL9vZ2+Pn54b333sOqVatw9epVmM1mnDt3Dv/yL/8CRVEQGBjIQpwoyicWTcSdUtKqgYEBZGZm4p133kFKSgp8fHzw1FNP4dSpU/D390d7ezuWLVuG0tJSbN++HWazGXV1dUhNTcWSJUtgtVrh7++PvXv34uTJk6iurobJZEJ0dDQUxZEPprOzE0ajES+++KITp28wGJwssojYE5dLJuF0oSIRlZbPG51bXlIgWkm6A3ccyPcBlEiS9PeSJCXe+9kHhwf492ds+TMIdOMTEZaWp7QI98u5iLqD+wUeodLYydNVBDFHMn+Lp4i1hISOHTuGsrIy5OfnOyFkMYQKJRZ69NFHnYKwEdLmPV7pOS/q4uNp8YRESydFVkUUUiQ/P5+FpaC2Xa0r5UrnY1PV1tayPmkevIhM1PeQOIsIkZbokb/d8fogvV7Pbve8jJk8041GI3p6ehAREcFCmdy6dYspRyk3B5/ECgBD6MAnFl/R0dGw2WxMGU5hMfz9/REfH4/vf//7UBQF6enpLGYUmQRLksQU/dQmKe4bGhpw+fJl2Gw2xMTEoLCwEJOTk6iursbWrVthMBiY+W1nZyckScLSpUvR2dmJW7duob29HbLssLb64x//iKCgIExNTeHkyZMwmUwwmUwwm83w8vJihHdoaIh5s5PX/qlTp3DmzBkYjUasXr0aZrMZ7777LiYmJmC1WvHBBx/AaDTilVdewdy5cxEXFwcfHx/k5eUhPj4ey5Ytw4IFCxAdHY2cnBxs3rwZvr6+eP7555GXl4fg4GCMj4/ji1/8IqxWK27duoULFy4wyz0AWLFiBfP6bmtrw2uvvYZvf/vbTJ/57LPPYtOmTejt7UVPTw+7sMTGxiInJweLFi1Ca2srTp48id27dyM0NBRRUVEYHBxET08PKisrERAQgJqaGixfvhzx8fGMI8zLy8PnP/95pjNJSEhAeHg4W9/k5GR22ZJlGTt27GDuAOKZomRWIvHgdX50HvmwRDOBSwKiqmoZgB1wiK7evvezCcAOVVXf86j1zyi4unG6WjRCkp4qmkSEdD9KerEdGiePfPk8Gq7642//FNuJEI0sO2JWzZ8/n92y+JsIZbQT2xTHQVkX+bHyYUVMJhOLQyRuYnH8BPRNyHqIjxtFm16L+KSmpiI2NpaFfZEkiSnsaT0AB0Km4JBaRJb/TQeM+heJF4mtyCGRJ3Q0royMDGzZsgUnT55ESEgIent7mX8GhTCRZZnpX8icd/Xq1UxMU1JSgn//939Hfn4+7ty5A8CRSS87Oxs5OTksLMbp06fxm9/8huW+IK7D398foaGhMBgMLJxKQkICjh8/ju7ubqxfvx7+/v5ITEyEl5cXE93Z7XasW7eOpYZVFEdEXkJoNpsNw8PDmJqagtFoxPLly9HY2IjVq1fj29/+NgwGA8LCwvCLX/wCgYGBmJiYwLe+9S0UFxcjLi4OV69exaVLl9DT04Px8XFMTEwgPz8ff/rTn1BZWcn0Rb29vTAYDJgzZw7Gx8cxf/58NDY2oqOjg3EmTz31FNra2vCLX/wCd+7cgdVqhbe3N8xmM15//XWUlZWxb3jx4kX4+fnB29sbDQ0NqKysZFGlyXcnNTUVSUlJaG1txe3bt9He3o7x8XG8+uqrOHjwIM6fPw+z2YyQkBD4+voyn5qioiLmOJiQkIAtW7awDJRdXV1YtGgRjhw5Ai8vL3h7e8NgMGBqagpXrlzBnTt3YLfbUVZWBqvVitLSUhYV++bNm1i+fPm0i9Dly5edxLFi0FOey6C9ORuxtyv4v84PxJOEUlr/E8xECFyJZWYLWu1oidlc9Sc+58U7tbW1TgmXtOZFfbnqk57xOg4tr/eamhp0d3cjOzsbZrNZk/vjw7Rr9S96pfNJpcQ6JDKx2WxMWSqK5xRFwdtvv+1kiUJcF2Xc48OadHR0MG9p8n0g/QkAFqokJCQEc+fOBQBmgcRHAKYAibm5uWxeaWlpLDugLH+SEwIAC1Vy9epV+Pn54ciRI1AUBS+++CILs1JZWclEXvn5+SySrMlkQmVlJcrKypCQkMD0FC0tLU5+MOSZTRkPY2JimH8CmfF2dnYiPDwcOTk5zLpnw4YNKCsrw9TUFCRJYibM7777LubPn493330XQUFBGBwcxLx58/DUU0/h2rVrmJqawtTUFEpKShAaGopVq1ahu7sbBoMBCxcuxNmzZxEaGoo9e/bgypUrCAgIwL/927/hK1/5CuLi4tDe3o5Lly6xAIi7du1iXu9eXl7w9fUFAExMTGDOnDkYGRnBN77xDYyMjCAoKAhtbW3o6+vDli1bcOLECQwMDCAwMBB+fn7Izs7GxMQE0z3x36qyshJtbW3IzMzEe+857s+qqjLT51WrViEvLw+HDh3CCy+8AH9/f3R2drJ4V1VVVTh69CgLu7J582YUFhZieHgY8+fPx6lTpxAQEICvfOUrsFgsyM3NRX9/P+x2O/R6PVOYBwcHw2QyTctRxO9Hk8nEQve78qkSo0wQiI7RdHZcORK6zQfyfxq4IpYzIV5XiFwLufKipk8DrsQ77sqJYiPRiooSyQwMDCA9PX2anJMnJnw9HkT9ikg8eJkqAGRkZDghU7EtsiLhiZrYrxizy9/fnzkNimOiOVKuaX4svE4FcOgXvL29WZ3a2loWNoPqent7Y8+ePWx9Cel2dHQgMTERqamp0Ov1LBQHEQFynOS5ktbWVuh0OqbgprHxKWZJGarX61k8rNHRUSiKI8Bhd3c3S3RlNpuh0+lYX0FBQejr64Msy+jr68PChQvxz//8z2hsbERfXx98fHxYGA3A4QczMjICnU6HgYEBFvaEnNuIg1u/fj1+//vfs6RKmzdvRkVFBSIiIhAfH4+ioiJmYfXee+/hxRdfZMTB29sb69evR3l5Oe7cuYOoqCioqoq7d+9ixYoV0Ov1+PDDD1FWVoZ9+/YhMDDQaY+Mjo4iMjKShbafO3cuVq1aheDgYEbAurq6kJWVhcrKSsTFxWHNmjUoKSlBYGAgRkZGUFpaCsBhahwXF4f333+fcSsnTpyATqfDli1bcPHiReYISVwu5UYh/UN1dTVu3LiB8PBwFkkgOjqaKdj37t2L8vJyhISEoK6uDufOncOmTZsQHR2N1NRUFuuqsbER+/btYxyuyWRCYGAgIx5VVVXYsGEDbty4geXLl0NRFJbhkQ+cSCFqiCCQlR5FPRDPraiX5M+VoijTrLE4J+TZ5QP5PxEomYo70FpckXjwPgNie/QxRRaSf+8peEqEeEInckui7qanp4dtLlFEJvqfaI2d74OXmWq9pzK8voDWjt6lpaUhJSXFySmKZ7Mpgq4oFgI+OeQUfp76psRR/PqRDJv8Kfbs2YOsrCynQItECHhivGbNGia2OXHiBGJiYpCeno6EhARmekviOwp7QUH7ZFmG1Wpl+o2EhARs27YNzc3NsFgsTjc9igILOC46lLSIcnRPTU1hYGAAer0eFosFR44cwcGDBxEcHAxVVdHY2Ai9Xs9yct+6dQtNTU1oa2vDu+++y3wniGNUFAV+fn5oampCdnY2dDod/P39ERwcjOLiYlitVkxNTaGhoQG///3vsXv3bixcuBDLli1DSEgIU4TT+E0mE6qqqhh3dOvWLfzzP/8zHnnkETQ0NCAgIADx8fHQ6XQICAjA888/j7a2NlitVpjNZoSGhsLLywteXl6YmprCm2++idbWVlitVsydOxd+fn6oqKjAjRs3cPXqVaSmpiI4OBjh4eEYGRnBj3/8YwCOHCWkTM7OzsY3vvENlg9FVVUMDAxg06ZNjEuIi4tDVFQUenp6WL55CnVSXl6OiooKVFVVIT4+Hk8//TS2bt2KpKQk5ObmYs6cORgYGMDKlSsRFxeH8fFx/PKXv8T4+Dhu3boFAFi2bBnrNz4+HrLscKr805/+hPPnz+Nf//Vf8frrr7Ox7tu3DyEhIcjNzcWpU6ewZMkSvPLKKzh69CjCwsKYtVxzczPGx8fR0tLCLA0VRUFJSQmCgoKmEQ/i4l1dDOkZL2IWcJ9W/iX3BESSpDmSJP1Xd2X+loD3RHeHyN0hbi0qzrdHHIgrz2lPvd5nK4/U4lhE3Q2NjXJAaI3Flf8JgZZFlTh3V5uTXxtecWcwOHJy8OMlIsMTfXovmgaTtRQRM/pNugnyvCWHwFWrVjEREI1VkiQmuuKTZ9H8Ojo6kJubi97eXsiyzMRpPJHZtm0bZFlGT08PYmJiYDAYkJCQwLJDAg6up76+HsePH2cOf21tbYiOjmYKWBLxkKNZeHg41q1bB71ez26IRMAGBgYQHh4OvV4Pq9UKi8XCRHhjY2NYu3Yttm/fjvnz52NiYgKFhYUICQnB+++/j7feeguxsbGora1l3s60TitWrMDw8DAMBgP27t0Lq9WK4OBgGI1Gprh+6aWX8PbbbzOT3g0bNuD69esoLi5GcnIynnnmGYSGhiIrKwsmkwkrV66ELMuw2Wyorq7G4sWLkZSUhIiICPzd3/0dfHx8EBwczKLMLliwAFNTU7Db7bh06RLGx8dx4cIFXLt2Df/xH//Bgg96eXlh7969sNvtCA4OZrGxjh07hh/+8Id4//33cfToUdY3pRI+ePAg2traMDExgYKCAphMJpZSeNWqVUhKSsLSpUvx3nvv4Y033kBVVRWOHDmCDRs2sPwl2dnZWLBgAXx9fVmdvLw8FnDSy8vLKcT7+++/jx/84AewWq0ICQnBxx9/jMnJSQwPD6Ozs5OZ58uyzPRcy5Ytw/Lly5lXOoXK8fPzY8nP6BxReHnRCMNV+gQ6V/w55Z9x59tbq65bAqKq6kcAHndX5m8JyBMdmJ5/wxW4QvqkRCWkxlshuXMY1JI7zpbQuKqr1R/lsqB3PIIVkb0rqy5xTFp/WywWp1u+K6B+ySuWL9vc3IzY2FinxFH0N/XFW9KRGMiVYr66uhr5+fkAHMHwKOSHuE4Wi4URIeKKIiIinPq12WwwGAxOTpO0BpRbhbgoCh1hMplw+PBhpucBHHswKioKS5cuRXFxMRoaGhAZGYnOzk5mXjt//nzmeEa6EYPBwNK6tre3s/Dt9fX1OHHiBBYtWoSKigr86Ec/YomZnnvuORgMBgwPD6OtrQ3d3d3sO509e5ZZKm3evJmZuNvtdkRFRSE/Px/btm3D3r17cfPmTQwPD6OkpAR37tzBwMAA1q5dy3KfkyUXrRcRLJp3QUEBenp6UFxcDMBhGKDT6bBy5UqUlpbCy8sLa9asYV7ZoaGhyMvLQ21tLYsH9Y1vfIOFpenu7oa3tzciIyPx0UcfISQkBIsWLWI39K6uLgwNDWHXrl346le/ik2bNiEpKQm/+tWvMDY2Bp1Ohx/+8IeIi4tjllsbNmzAW2+9hVOnTsFisTBrLQD493//dyxZsgQhISH46KOPIMsybt++jcLCQub3QWHfh4eH0dvbi4yMDERGRmLhwoU4fvw47ty5A5vNBr1ejy9+8YtYv349izYcHh6O7du3Y9GiRSgsLMTU1BQ71yUlJQgLC8PChQsRHR3NfD78/f2drCF5PzMRv8iyQ9lOhiWuzrWrZ/f6uKN1nmdUokuS9GMAvgB+C0coEwCAqqqNLit9RkHMB+KpiMgV0uFDT1DeCU/aFGSLbv1SxL75urzs012/Wm0AzjkxZFlmgR1dRRfWyjFC829oaEB3dzfy8vKc7NC1xsLPjTgJMlOl+FV8+1THXVh1fh2pLtXTitjLv8/Pz2c3ZdKRFBYWYtu2bYwjURSFJcmicRHh+Jd/+Rf8+Mc/hsFgYH4gERER8Pf3Z74fRCjr6+sZp0E5HmgODQ0NzOeDX8/i4mKm5Cb/CBp7Y2MjbDYbfHx84OPjg3/7t3/Dl770JYyPjyMmJoZFjQUcJsZdXV24c+cOs5YKCwuDxWLBokWLsGnTJhw/fpxxUjS2c+fOMUX6hg0bIMsyampqWKDBwcFBZGVlMX3C008/zUQ1DQ0NOHPmDP7hH/6BJUei+YWFheHEiRPYtm0b/P39GYE/evQoE2v29PRgYmICTzzxBMu+WFRUhDt37iAlJQX9/f3IyMjAwMAA9u7dixMnTmDlypXw8fHBypUr8Yc//AFLly5FU1MTdu3ahfPnz8NoNCIpKQk5OTm4fPky3nvvPaiqis9//vOIjY1Fd3c3+vv7sXz5cgwNDWHv3r2oqqpCV1cXLBYLUlJSEBcXx0KNdHV1se9kMBhw584dFrSyoaEBVVVV+NGPfsRidFHgx+3bt+N3v/sd5syZgwULFqCnpwcpKSnYvXs3bt68ieDgYFy5cgU6nQ6JiYnTzib5dpAPEX9GtPKA1NTUsHQPPP7Swm/8M0VR8Mgjj7SrquqsxIRnBOSMxmNVVdUctxU/g/CgwrkTEtdSHvNlAGgSAbG8K2LGEwuxbdoslJ7U3Vj5iMH82CmhEYVOoXg6fE4RUfczU1RcHkGLwBMaCmVCYiKKHKplg+6ub5Lv8rcxcb78vMmElncO5JXa/Fi1bnMAphEZRXE4oBmNRgwNDWH58uUoLS1FbGwsMjIynA42jaehoQEZGRlsvJT7+/Dhw3jxxReZQyB5ID/66KPMOCAiIoIRExojEeCAgACMjIywECiHDh3C3LlzERAQgJ07dzJdDuXZMJvN+NrXvobi4mI8++yzqKurYwEPr1+/jhUrVgAAI1Jk2VZTUwOr1YqNGzcyQvanP/0JixYtQkpKCux2O06fPo25c+eivb0d69evx9atW1FZWYnY2FgW6ZcSQV24cAHV1dXIzMyETqeDTqdDXFwcxsbGUFxcjPnz52NqagoGgwEjIyNISUnBV77yFbz00ktYtmwZ9u3bhwULFuB73/setm7dinnz5uHkyZOYmpqCn58f9u/fj7i4OOaDQmlxg4ODmf/G3r17UVBQwIgS5QV58sknWSiTyclJfPjhhwgNDYVOp0NgYCCzALt58yZaW1uZZdiSJUswODiIpUuX4sMPP8Tt27fR1dWFr3/963jzzTfR09MDX19f5OTkoKKiAgsWLMBjjz2GO3fuYNGiRcyiDACz9tqzZw8LkEjnp6CgANu3b2dJwvhzxZ9f2meK4nCQpDPoCXwaK6zN90RZDwHO9tM81yHKDilRC4lg3JnjuuIeRJEXX5+IB5nr8WMQbxdirCpqkxAYlevt7WVKZNFjneasZdlBYxVYXqdyAFhUWz4BDvVBCJ0Ohrg+xFloESdKJ0sKcV5vwhOekJAQZj5KbZLoSbQQ4+uKNz4yOc7JyWEcmclkwksvvYQXXngBQ0NDiIyMZEicvlV9fT0zYqDos7IsM2W11WqFn58fW8uSkhKW5xwAc+Dr7e3Fhg0bUFhYCJ1Oh61bt8Jms7HbKsnOJUliyZJyc3NZWBLaLwEBAbBarRgfH8ezzz6LoaEh+Pr6Ij09HRs2bIDZbMbAwABz7COvdFmWGfewbt06GAwGpKenO+WyABzBHXU6Hf7pn/4Jw8PDKC0tRVhYGBITE3HmzBkWwXft2rXw8vLCD37wA9hsNgQFBaGsrAxxcXGor6/HSy+9hPfeew+PP/44Ll68iIGBAURGRiIwMBBPPfUUrFYrfv3rX2PZsmX4r//1v6KhoQEpKSloaWlBbGws1qxZg/7+fhiNRhQVFeHatWvMGm3u3LnYuXMni9ALAEuXLsX8+fPh5eXFHC6tVitWrlyJ7u5urFq1ioV+7+7uZqKw1157DePj40hISMDAwAAuXLiAqakpxMbG4vbt2/hP/+k/wWAw4MqVKwgLC2PftK2tDR999BGWLVsGi8WCnJwclJeXs2/Bn2Pax0QAZFmG3W53yvZIPkmK4ghNQ+eJxFh2u52dAVdnSgM0OQ1POJB+AIUA3lRVtX2mXj7L8Gk5EFH0pGUzzb8HPrmtipZKs/ET4ZE5MD3Zkyw7+zjwuTH4sjPd5ClnhVhPa9zi//yNnMQfWqIlWhO+X3pGEWN5cZI4PvJh0OLIeFEVz10QgWhoaJiWk4T8Ljo6OlhoEWqb8lJTCAhFcSjlKRggL35RFIfDJG9m2dDQAFVVERMTw26HZrMZV69eRXh4ODo7O5Gamso4qIaGBjQ0NGDPnj1O/ila3C2JwqKiolBaWoply5ZBr9dj5cqVLC0rZRUcHBxkjpgpKSlOITAsFgsTkVEfR48exfLly1nAvqGhIdjtdmzfvh3Xrl2DoijM4S01NRWSJGF0dJRxE/zNubm5GVevXkVwcDAzCMjLy8NPfvITfPnLXwYAFrE3KioKmZmZmJiYwMTEBK5cuYLS0lL84z/+I9rb2/Hss8/ipZdeQmBgICMCFN7lyJEjuHr1Kh5//HHmDW82m/Hoo48iOTkZxcXF8PLyQkhICCIjIxEZGQmTycQCLra2tiI8PBw+Pj4ssVZ7ezu8vLywZcsWvPXWW2wtAgIC8OabbyI1NRVTU1PYtGkTbDYbfvWrXyExMREvvPACSktLkZ6ejrfeegvPPfccS8a1f/9+lJeXw8/PD+Pj4ygqKkJKSgq8vb0xd+5c5ObmYnJyEmNjY0zPV1VVBR8fH+h0OrZX7XY7y3RIATPr6+tZpkvK70L+UOIFlwfxXGtdAB955JHZ5QPhIAlAF4D/T5KkWkmSnpEkab4H9e4bJElaLknSGUmS2iVJuiJJ0n/RKJMtSdKEJEmX7/18b6Z2P63TJM8RkLJV66ZM73k5P//heGSqBaJCiw8/Qn0QgiZkSP0aDAbmQMSXpfFpWYjRpqE0sDRGnsjwffD/8++3bduGlpYW5Ofns4x51BYvXqK+6Tcp041GI/Ly8uDt/YnBBxEH4JMwIVobnFd4k6EAEY+QkBAoiuLkgU8wOTnJYogRMiTOgZD+mjVrYDab0dDQgJKSEhZJlhwRiZgaDAZ2A6exkNWMzWaDxWLByZMnMTo6itbWVrS3tzOrKVKSX716FT/96U9x5MgR1k5DQwPOnj07zTqNQpRERkaytKpXr17Frl274O/vj7S0NLz88svTOAiSzwNAZ2cnAgICUFhYiOPHj7O1Jp+R9evXY/fu3bhz5w5KSkowOjqKxMRELF++HGlpaUhMTMTExASKioqgqip+//vfo66uDn19fVi1ahUiIyPxyCOP4Atf+AIeeeQRXL16FWVlZQgICEBMTAyzUFq2bBnMZjOee+45/Pa3v0VzczM+/vhjbN68GSMjI1iwYAEARxpeo9GI7OxsREVFobW1FY2NjQgODkZMTAzi4+MxNDSE5uZm7N69G93d3Th8+DDu3LmDnJwc6HQ6HD16FD09PThx4gTsdjsmJycZwVy5ciVz4COT4+bmZuTk5GDNmjXYu3cvsrKyEBQUhImJCaSnp8PHxwd6vR579uzB8PAwLl68iO3btyMwMBDLly9HfX09SktLMT4+jhMnTjCi0NTUhC9/+cvw8/NjVnj5+flYsGAB+vr68PLLL+PQoUP4zW9+A6vVivDwcBQXF2NqagopKSlsP9C+zszMREZGBkvPnJiYyIIu8kD7XzyftI9F3HCv3OzNeAFAVdXbqqq+oapqJoAX4YiDNSxJ0n/8GRNL2QG8oKpqLIB0AN+QJGm6jAE4p6rqqns/P5ypUa2w47OFmURP4jNRDEUfqLq62gk5EogfkZA+bRJ6plWOQET8fNt83CaxP94yS+vGojXf+vp6GI1G1NfXsxAZfEwesR4pkOkWrSgKU/KuWrUKgYGBjMMQ42cRO0716YdCtABg1nAWiwVFRUUIDAxESUkJGhsb4efnh8LCQqb8VhQFg4ODjKiQkyVxdbw8+eDBg4iOjmYhX0R9DxGVvLw81jeF2Sbi1NfXh7y8PAQEBCA9PR3bt29n1lfEmXz+859HTk4OoqOjmXGGzWaDLMsIDg5GQUEBysvLYbVa2T5ISUmBr6+vUxDGt99+G7W1tXjxxRfxhS98AVlZWQgODsbBgwfxyiuvYHh4GGazGTabDYsWLcLOnTuZB3x0dDRDxBQB2WQyISAgAGfPnmVRZZctW4bW1laoqoro6GgMDw/DbrfjkUceYSE7RkdHsWbNGlitVmzevBn//b//d+zbtw//+I//iKKiIhZaJSUlBU8//TSee+45ZGdno7m52Ulv1Nvbi9dffx0rVqxAQkICurq62E394sWLePfdd5GdnY3AwEBs374dixcvRl9fHwBg7969mDNnDsrLy5GQkIBVq1Yx4rFixQq8//77sNvt2LhxI2RZxvXr16HX67FkyRJUVVXhzTffhK+vLw4ePIgzZ87g8uXL8Pb2xpIlS+Dl5cUiBmdnZ2PHjh0wmUy4ePEi8vPzERYWBl9fX/zrv/4rfvCDH0Cn0+Hq1atYtGgRPvroI0xMTKCjo4M5sO7duxfj4+PIy8tjzpg/+tGPkJOTg/7+fixbtoxZzJEOa2pqCkVFRU4m62S8QfuVP3N8RGv+rIuXRNrbq9w4Es6oA5EkaQ6ALwF4CkAogIMA3gGwEUApgKiZ2pgtqKo6DGD43t+3JUlqBxAEoO1B9/UgYCYZoviBSO6elJQ0La2k+BHpGcn1+efu2E6tMWpZb1E7VIZ/DkwX04kwMjKCEydOOFko8URKFNfxsn/iCFVVdcrnTsj8xIkTyM3NZXJi3pO8oaEBNpsN6enpsNlsaG9vZxY0iYmJaG9vR1BQEAIDA7F7924oisLMKRsaGiBJErKyspyU+WVlZcjOzsbJkyexbNkypzl/9NFHUBRHOHjKRx0REcHEWUVFRSw8BuAwG+7r62NEjwiWLMvMM91oNLKAiCTeSUpKQk1NDex2OxNFEpdTW1uLZcuWobm5GX5+foiPj0dpaSkiIyOZrJyIQGJiInx9fXHz5k2Mj48jPDwcVVVVeO6552A2m/Haa6+hoqICW7duRU5ODmTZ4SNx7Ngx9p0oD3tbWxvL2z06OgpJkrB48WI2V7vdjo8++ggjIyNIT0/Hjh07MDIygtTUVISGhrJwKuQbATi4od27dyMkJIStQXFxMWw2G8LCwrB06VIkJydjzpw5MBqNmJycxPr161m0WL1ej87OToyMjGDp0qVMdEch1AMDA3H27FnMmTMH7e3tLHJxV1cXM7E+cOAAGhsbWY6NzZs3o66uDtnZ2YiLi0NZWRn+4R/+AYAj5hjlVo+IiEBISAjz4N+1axf6+vpYtODMzEyWOAsABgcHsW7dOuYw2dPTg+XLl+ORRx5BamoqPvjgA8ybNw8rVqxAeXk5li5disnJSZYnvr+/H4GBgbDZbCx3jMFgYLHVduzYwUSTkiQx60FFcSQyE3WdWhZaPP4R8YU73OKJCKsbDl+Qn6mqulpV1X9TVfWGqqqFAMo8qP+pQJKkUACrAVzQeJ0hSVKTJEnvSZIU76L+M5Ik1UuSVD8yMvLAx+eK7XMFhGApMJ0r812xDoW7IETE+6HwQR5d9c2LnAgZA5+IlHh2FvjErlx0QBL/XrRoEQ4cOMBEEXxbIvdFyLO5uRkAWN6TzMxMTXHgtm3bmOMeGS1QjonR0VGWoY+y0FE2OYqkO3/+fNaWv78/9u3bh69//etITU1lPhu8rmbbtm2IjIxEXl4e/Pz82HODwYD169ejv7+fpcCNiIhg4iyDwcByTkRERCA6OtrJUZHETrdu3cLx48dZtjlSxKakpCAmJgbFxcVMnh0fH487d+6w7HOKorA0u6RopRspEeVjx47h6NGjLAXsT3/6U9y6dQsxMTEwGo3MBLiiosJJLMgTd/LPoDSzer2eeVVfv34deXl5MJlMTExKVlq3bt1CREQEduzYgerqaoyPjzOd1tjYGN566y3cuXMHO3bswI4dO7B06VJUV1fDbDbDx8cHNpuNBT+8c+cO/P39UV5ejnfffReyLOO//Jf/gpiYGCQlJbFQMiMjI8jIyMDevXsxb948WCwWdHd3w2azITExEStWrMCjjz6Ka9euITAwEGvXrkVCQgITTQ0ODmJ0dBQ7d+7Es88+i/7+fvz2t7/FzZs3UVZWhhs3buAnP/kJfv3rX8NqtWLr1q0sDW9kZCRyc3Ph5eXFOE/SDZEj4I4dO6DX67F9+3ZUVVXhwIEDaGpqwp07d1BXV4fOzk688cYbSE9Px7PPPouenh7cuXMH3d3dsNvtWL16NUJDQzE4OMj2EJk6K4qCq1evstww/v7+WLNmDfMRoT1Dvj90JsWzZrFYpkXSFs+uO3DJgUiS9DUAJwEkqaqq6Rmmquo33bb+KUGSJAOA3wN4XlXVW8LrRgArVFW1SJK0FUAxgJUaY/wVgF8BDiW6p33PdKun91psnyeUm9dL8G26qsvf2EXETM/dKcn5vvi6vGMelVGUT8K6i7kweIV4W1sbk7cSwuTb59u7fPkyiwQ8NTXl9E6cK+9pzosd7XY7M2Ntb2/H9u3bNa3CaIxklaVlEEBcACnnW1paWJgSyjTIB6r78MMPsX79enR2drLvR+IXRVGYgxc/J8rNkp+fjy1btuDmzZvYuXMnAEcspIGBAeTl5THuiURf4eHhzKKKAjc2NDQwXcnzzz/PUs5SrnB/f3/s2rWLxUIaHBzEwoULWV6OyMhIdvOkzILp6elMP6QoCrKyspCQkIBLly6hoKCAIdqamhoEBwcjKioKXV1dMBqNLCVtVVUVUlNTWZiO3t5ebNmyBcePH2fxqNasWYNbt25hYGAAra2taGtrg5eXFzZs2IDW1lYsW7YMLS0tGB8fR3d3N1paWrBw4UKWtz04OBglJSV46qmnUF9fD5vNhjlz5iAjI4PlEPnoo4/g5eWFqKgoeHt7w2q1snl3dnaywImJiYkAHBxQfHw8Vq9eDQAoLi5GfHw8li5disbGRjz99NMwGo1Mf0NJvgYHB7Fp0ybcuXMHR48eRWZmJoxGI15//XUsXboUNpsNZ8+exebNm3H+/HmcOHGCBbK8desWdDodfHx8mAXlrVu3MH/+fJSVleHmzZv42te+hrNnz8Jms+Htt9/G2NgYnnjiCfT29iIlJQVRUVEsoCdlw6R8MrIsO/lK0UWVd2zmxbWAQ8LQ0dHBjGdEfMEbAGmBSyssSZK+DWALAD2A0wDeA3BR/QuF75UkSQ+gBMD7qqr+mwflBwCkqao66qqMp1ZYMxEBT97PRLnd9e2qLv/O1d+i+e1M7dP/PPERnSJF3YvYFx/dk8qJ7fO5SNrb252QO7+56ZmWlRmvnxGdAsl0UXRCdLUm4jxqa2uh1+uZ34bYNgAnboU4PxJDkpEDiQiIgADA6dOn4ePjwyzAKGIwZTGkCMAkuiIRGYVRJ6I7MTGBkZER7Nq1i4V9j46ORmdnJ4sg29HRgaVLl2LTpk24cOEC1q1bh5aWFkxMTOD69evYvn07Ll68iHfeeYfpqwoKCnD9+nXs378fIyMjmJycRF9fH3Jzc1FSUoLbt28jLi6OpbOtqqpiUWr/x//4H1i/fj18fX2hqiokScKyZctw4sQJ1NbWIjg4GPv370dZWRmGh4fx3HPPoaysDDk5OfjlL3+Jjz5yeAjs3LkTv/rVr/D8889j8eLF+MMf/oBbt27ho48+go+PD0JDQ1ko+KamJsyfPx9hYWG4ffs26uvrYbVakZWVhdzcXFgsFhw6dAjLly9HdXU1kpKS8KUvfQnnz5/H8uXLMTU1hbq6OixatAheXl548skn0draioSEBFy8eBEnT55EaGgowsLC0N/fD4PBgKysLFRXV+PChQv4xje+gbfeegsLFixAYGAgurq6cPv2bXzjG9+ALMsYGBhAVFQUSkpKWJDE6OhoXLlyBT09PU4+JKOjo9ixYwdaW1sxNTXFLN42b96Mqqoq+Pn5MUdPHx8fDA4OYsWKFYxr0+v1zAue/GvIkVfrLNJFjjI40h7VssokMfLOnTsxb948TSssT8x45wHYDCAXwFoA7XCIrt5XVfWG28r3CZLj2vkfAMyqqj7vokwggBuqqqqSJK2Fw9R4hTsCNxszXlcIWuv9/QKPvLV+u6t3PwTMk3rAzObJrsYMTEf+PGERRUaEnKkfXkdD5cgpkMrz4ySdDfkL8PGsPF0Tce5026cbmaJ8YhbNczB1dXXMEzsxMREtLS1oaWkBAMbJ0BqQwyaJtoBPfHVqamqgqirjVgCgoKAAW7duRVdXF+NCLBYLurq6AMAp73ZDQwNaWloQHR3NOLu+vj7s3r0bly5dYuKttrY27Nq1C0NDQ4iNjcWFCxcQHx+Pzs5ONDU1YWJiAjdv3sSmTZuQmZnJrPjef/99ZmUEOHxu3nvvPeTm5iI9PR1vvvkmgoODATgst27duoWTJ0/ie9/7Hvu+lZWVsFgsCA4OxpYtW9DY2IioqCi88sorePzxx/Hzn/8cixcvxp07d5CWloZ9+/bBZDLh29/+NkJDQzFv3jzMmTMHMTExsNvtuHjxIrZu3Yrz589jZGQEvr6+6O/vh9VqRVpaGvOJMZlMMBgcucApPW5bWxt0Oh0yMzNRWVmJgYEBPP7449Dr9QwhBwQEYHR0lK21xWJBfn4+ysvLsX79emYA4OXlhcLCQnzzm99EXV0dTCYTxsfH8dhjj8Fut2PevHmoq6vDli1bsHbtWgBgIffJ7yQ6Ohrr1q1DR0cHwsPDcenSJVitVjQ2NuKJJ57Ahx9+iCVLluDUqVOIjIxEQkIC04lRNF7aRxT1msSqvOe5eA74c6eF28iPjSQMkiTdHwGZVsFhDfVFAFtUVf3CrCp73scGAOcAtAD4+N7jfwYQAgCqqr4mSdL/C+D/gcNiawrAf1NVtdpdu/fjB+IO6bpDSjOxfvyNn7/Fu7vNu+p7JmKnVW+2YxcJhJhPQIsr4f0ueB8Ovp3m5mbmZ0FA622xWKaFbyBOgxSK5L1O/hyiUQI/fiJM7tamuroaly9fRnR0NObPn88S9oj1iCshbo1XktMPf+NTFIdX+IYNG7Bu3TpmINDX14fg4GD09/ez0CWE+AEwC7Xy8nLk5ORg5cqVOHToEHJzc5nVEN0WS0pKkJ2djZKSEkRHR6O3txfh4eEIDQ3F0aNHsX//fly7dg0ZGRmwWCyM4EVHR+P8+fM4evQoFi5cCG9vb2zcuBF6vR51dXV4/vnnGUEh89e0tDSkp6ejuLgYNTU1uHnzJiIiIhAQEICFCxfi8ccfx4ULF1iYk8nJSTQ0NGDFihWYmJiAr68vW6+JiQkkJSVhcHAQ8fHxCAwMhNlsxqFDh1i62w8//BCBgYGYO3cudDodTpw4AW9vb3zta1+D3W5HZWUlgoKCEBERwQjL5s2bYTA4wsynpaUhISEBb7/9Nu7cucOU1CaTCc888wwTNQYEBKC9vR1PPPEERkZGMD4+jvb2dty5c4fFtpo/fz4WLFiAkydPor6+HlNTU/D390dgYCCCgoJQXl6OLVu2YHx8HDabDV/96ldRVVXFzNzJ/4b2KIllW1paIMuykxl5cHAwi27g7+8/7UIm4gqe05/J25y4aC0jGfG83DcBkSRpPYDLqqpOSpL0JIAUAD9XVXXQbcXPINyvI6ErDkS8ldNz/tZKyMRdu+5u8yIyFJG7OI6ZOAWtOuL43Tkb8sAjSbFPUurGxsYiNTWV5bsQORD+b74fWkOyKKHnYkgQ8QCJ7dH/dNvkD5TWdyV/DzrIPEHiiYS4fiSWIs6F2uXjhxmNRty4cYPlH6FbJx+WhJTD5BtAuT4uXbqEdevW4cyZM3jnnXfwxBNPICAggIncamtrERoaihs3buDWrVvYuHEjLBYLWltb0dPTw/JlkMUWcWwUe8tiseDs2bPQ6XS4fPkyJiYmsGzZMuzcuRMhISE4e/YsFi1ahH/7t39DaGgo9u/fD1mW8corr2Dbtm3Q6/V45ZVXsGnTJnR2diItLQ3Dw8Pw8vLC5cuX0dPTg+9+97sYHh5mznPbtm1DeXk5xsfHYTAYsGTJEly7do35ely/fh1tbW348pe/jEceeQQDAwNYsWIFGhsbERERgWvXruFrX/saXnvtNdy6dQvZ2dkYHR1FWFgYbDYbC1Gi0+lw4MABWCwWHD9+HKGhoUhLS0NJSQnsdjuefPJJnD9/nuVMT0xMRH9/P3JycvDmm2/i2rVr8PHxwXe+8x22VuR8SQh76dKluHDhApYuXYqGhgYsXryYWbHNnz8fMTExLNxNf38/07npdDrY7XZYrVYYjUbs3LkTvb29jKD09vZi0aJF+PDDD7F7926233hDGNrv4iXS1SWWP8cUPsYdfpNl1wmlPLHCehWAVZKkZDj8QAYBHPWg3t8saCFKrXeEQMgKihZdlmWmLBUttLTa1foty9q528kun2+Dt+fmCQlZX4ih22VZdrLC4q246B0fuZOfG/0W++fnKssOS7Mnn3wSGRkZMBgMTGnNW4SIa8sD7xBZX1+P6upqNDc3s3GTCamI3PlxKIpDQW6xWFjaWDpQZrNZ03qup6cHGRkZTBTGmw5XVlYiPz8fFovFac1l2ZHWV1VVNDQ0MMs2ao84kKqqKixfvtyJQ/H392ecCK3TyMgI021cuXIFLS0tTBQ1NDSEpKQklg/bbDbj3LlzKCwsRElJCSIiIlgq297eXiQkJCAyMpKFaE9ISIAsO8JfREdHIz8/H0eOHMGRI0cwNDSE5ORkLFmyBF//+teZmSolijpy5Ai+9rWv4erVqygoKEBjYyNiYmLw2muvYXh4GP/0T/+EuLg4PPXUUxgZGcG8efNw9uxZrLoX5vztt99GT08PduzYgZUrV6K8vBy5ubnw8/NjcaMocVRubi4WL16M7du3Y3h4GHfu3GHWcE899RQWLVqEpqYmZg6vqioGBweh0+mwfv165oFPJrsmkwmvvPIKurq6cPr0aciyjKioKISFhaGiogK//e1vAQDr1q3D0aNHsXbtWnZhWbduHSMeDQ0NuHjxIlPel5WVwWw24/e//z1LFmWz2ZCXl4ecnBzMnz+fhRoxGo04fPgwgoKCkJCQgPT0dCQlJSElJQV9fX0s3cCtW7dQXFyMxMRE7Nq1Cz4+PsjOzoYsO2Ke1dfXIyQkBE1NTTh37hyOHTvmZElFe8sV8aipqWHl+fAnfBn+XN+D+04oZb+nV3gcDs7j5wDmeVDvbxJ4ROnqnYgEtayj6HZ8v9kJtW7HPFLlgS/HExKyvuCtMKht8jgXw70T8A5/vIkvWbaIt30tgseHFikqKkJlZSUjAiLHQ23xiJ3EJklJScz8kKxLeG97klHX1NQA+CTzoKI47OBra2uRnJzspH8gJaK4djQH8v5ubm6GyWRiora8vDynHOs0B8oBkpGR4RThOC4uDj09PZBlGTk5OTh58iQzRSbfntbWVtYe2feTJ/Hq1auRmpoKnU6Hzs5O+Pn5wWAwoKSkBMuXL0dJSQkmJiYgyw7fB5pPc3Mzc7IjD/SGhgZmKkxOaABYuuE7d+6gra2NRRLW6XQspe3evXtx+/Zt/O53v0NfXx8CAgIgSRKCg4Px3/7bfwMAVFVVYfHixbh+/TqWLl2KqakpPProozCZTGhvb2cxpWJiYpiRAF22/Pz8kJycjPXr1wMABgYGsGTJEuh0OvT19eH999/HunXrcPz4cRw5cgQjIyOwWCwICAhAVVUVRkZGIMsytmzZgt7eXly5cgWKosDb2xvp6eksoGNmZiZGRkYYx9jf34+rV69i69atSE1NhdFoxHPPPYfr16+jrKwMkZGRLMrBuXPnmH7i6tWrKC4uxo0bN3Dp0iUkJCTg+vXrGBkZwbPPPosbN25AlmWWd/7KlSu4dOkS/Pz8WGgXwHERom9P38nb2xuLFi1Cb28vI1Kvv/46i05869YtdHZ2IjY2FvPnz8euXbum+XoQnuKBv2QRzqJLCF1MxfPo7gIMeEZAbkuS9B0ATwJ4955jod6Den+ToIUIxXc8Qpbl6Vm8xLKeAn/jd/XhPCVG/DhEYiQSOpHDotwVVFa0fioqKtK8wbtig2VZxu7du5Genj7Nm5wfC1l9kFc5lSFixz/j15XMFekQ8TlJKKMff3hkWWYmuK7Wjf4ODw9HSUkJgoODMXfuXJbFrq2tjSFgWXZ4opeVlTGRBm+5RTe5vr4+ZrefnJzMxE90iwYcFluHDx/Gn/70JzQ2NjIdUmZmJsLCwlBeXo41a9awDII7duzA8uXL8fWvf51lqEtNTUV4eDja2tpQUVHB0p52dHSwuEiLFi3CW2+9hfHxcYyOjuLAgQNITExEX18fFEXBxYsXER4ezhTtHR0dmJycRFZWFn72s58xBDg2NoaKigq0tbVhdHQUv/vd73D58mXodDps2LCBKf5Xr16N9evXY2BgAD/+8Y9hNpsRHByMQ4cO4eLFi+js7MSKFSswNjaGrq4uXL16FVVVVairq8Njjz2G7373uzAajejq6kJKSgrGx8exZ88e9PX1ob+/H4sWLcKqVatQWVmJJUuWwNfXl6XT9fLywm9/+1vYbDaMjo6yII8UOywgIADj4+Pw9fXFq6++yhTcubm5yMnJYWltP/jgA6xYsQKTk5M4cOAAtm/fzhwHg4ODkZ6ejl27diEwMNApoCc5FcqyzDIp/uQnP4HFYmGOopTrpbGxkWVZjIiIwNDQEB577DE89dRTzHiA9EdkIEAXI14CIIYsUhSHYry5uRmJiYlMbBUbGwuj0chExVoSDXc4xxMdSCCAPQDqVFU9J0lSCIBsVVX/5sRYDyqcuwgzKa49bUM0aZ1JLunJmHilNo8w3Sn5eUQrmsASC8zL+unmQhtQaxy0gSmSrStzY0K8Yp8AmELalaKcb4Nk/GT3T166ZLaoZd0lzp/g7Nmz7PDTmhmNRpSXlztxhOQESERB9D2pqalhARv9/PyQlJSEpqYmTE1NISsri2Ug9PPzY6HI16xZw/K2A2Cio/Xr1+MLX/gCC6ZHMb+ov9deew0WiwWJiYnYtGkTALCgfB0dHYiIiMCKFStQWlrKPJ4BYGJiAna7HRcuXMCyZcsQHx8PRVEwd+5cjIyMMDFRfHw8rFYrzp8/j/Xr17NcIwDg5eUFi8UCLy8vlmGwv78fZrMZra2tyMnJgZeXF9LT0zE8PIwVK1agqKgIc+bMwVe/+lXU19fj4sWLiIuLQ2ZmJnMYLSkpQU9PD77//e/jj3/8I1Ooh4eHY2JiAr/+9a+RlZWF4eFhtLe3IyoqCjExMXjiiSeYPq2npwdWqxUREREYGRnB1NQU3njjDSQnJ2PevHnM437VqlU4efIktmzZgqKiImbu/PTTT6OqqgpWqxVXr14F4ODMKbcLWeelpKQwKynKIEjnQ1EUdv54Sz2KcBweHg5ZlpGVlcUU3VNTU1i9ejUzMCDjEn7/iopvEYfQ+6amJiQnJzOumueYtc4u4FqJ7kksLNM97/Nz9/43/i0SD2B2wRRFEYUrcOXJOVvgb/quCJInNwIaL7GwZJHB30a0dCkiJ0HjEMVwsuxQLhOXYrFY8Pbbb+MnP/kJzp49y4iJOB7AIRajfOCiEpCvwwePFNeHEPNMayBJEmw2G1paWthNjT9wsbGxTpwe/0MiO1qHjIwMlq2RDv/JkyeRk5PjdFirqqpw7NgxtLS0ICQkhO0L+p6pqalISEiA0WhEcHAw417T09NhsVhw+PBhBAcHY3x8HMuXL8e8efOQkpLCOFyLxYLAwEAsXrwYAFBbW8uU8ZTnpKGhgQWmpHwWx48fx/Hjx7FhwwakpKQgIiICNpsN169fh8ViQXx8PPO16Ovrw/DwMJ5//nk8/fTT8PHxwdy5c5Gens6IGHlJe3t7Izs7G8nJycjJycHTTz+NVatW4a233sKHH36I8PBwrF27Fj4+Pti+fTseeeQRljgqNjYWP//5zzE2NoZf/vKX6OjowIULF5g5bHJyMk6fPo2CggKcPHmS6RV++tOfor29HV/72tdgMpmY9d2dO3fw5JNPIjo6Gt7e3vjpT3/KnDQvX76MyclJ/PKXv0RzczPKyspw4MABnD17Fnq9Hm1tbejv78fNmzfx5JNPwsfHB/39/SyA47Vr11huFoLCwkKmgE9PT2dEbsmSJUxvVF9fj8LCQoyNjaG1tRXnzp2D2Wxm4WIKCwthNBrR0NCA8fFxXLlyBSEhIWy9aQ+Gh4ejvLwcra2t7HtTyBpeVMWfa97KiwdZlpnzcFpaGttbvDSBPweiGEwET2JhpQM4BCAWgAxgDgCLqqq+/397bx5X5XXnj79PhRvBGyG44YayKKACsqhoFI1aa6y1DLXWpjY1HX/NjN9mvnaaSZp2unxnOl0yk2k6tknbpE1qTUqtdYxDiMENcUFkURZZBEEWlahQ0SvohfT5/fHcz/Hcw3mWe8ElHT6v1/OC+zznOdtzzvnsn4/piw8gdHd32+IWREofUFtDUTkzT04qY4c7EQ9rSjYkIhP6a5fTof4SFSz2n3QI9NvI0Y7qEYGif5KOxOl04oknngAAruQTHfJEM11RTkv+HqI5L5nhEpdBiILmXw4EaTaPFFKdwr+Q9RcdOBTIjzYq5fqYM2dOvzYoNIqYY2HKlCloa2vjHvgulwvHjx/H5s2bubL1wIEDiI2N5cppysVAjnYJCQlITU3l33vz5s0ICwuD0+mEpml47LHH+KFFYUFWrFjB858EBAQgJSUF3d3daGxsRHR0NGpraxEWFoZnn30Wp0+fxtKlS7k1ltvt5gEGL168iPj4eG6ZtXz5cuzevRsffvghZs2axfUpCQkJKCoqgsvlwuuvv86pZkBH9OHh4fiXf/kXfOYzn0FPTw927tyJ0aNHw+HQg2G+/fbbuHjxIrq6utDR0YElS5Zg4cKFPLTHuHHj0N7ejlu3buH69esIDQ1FcHAwkpOT8dhjj3Ejj56eHgQHB+Pq1au4du0aGhsbMWHCBFy8eBG5ubloaGhAYGAgLl++jN7eXhQWFmLGjBn4/ve/D4fDgfz8fIwfPx6f+MQn+Df/1a9+hVu3buEnP/kJAODRRx9FWFgY2traEBwczNdyUlISsrOzsWnTJoSFhWHhwoWorq7Gxo0bER4eDrfbzUPMbNu2DVlZWdi2bRucTicyMzOxf/9+9PT0oLy8HN3d3TyiADlqjhkzBk1NTQD0aMPkYEp6mu7ubqSkpHjlBiEORN475OBJDoCi1SPtIxKXimeJyO1TOcmlwL9ovAB+BuDz0GNiBQHYBODnNt574CAoKKjfAakCu3JAUpJt2LBBafJqpZBXtQkA9fX1nNJVWVGZAR2S9D9xHqIoiH5TZE6ZyyBxE1lnUTmqj+T3oriGFmpDQwMX01DgO9HHA7gjqxXbdbv1rHaE8GjxAujHccjUEoEqyijpAkTlodPpRFZWFl8PDoeDWzaJbcjWbhSqxOFwYPHixTw+GcU+WrBgAcLCwjhBsWXLFjQ2NnJkO2fOHKSmpmLhwoWIi4vjSK6+vh4NDQ04d+4cNzQgscLx48dRUFCA3bt3Y+zYsWhqasLMmTMxfPhwzhWRGKeurg6MMbS3t6OxsREtLS3o7OzEuXPn0Nvbi+zsbEyaNAnLli1DfHw8cnJyMGHCBJSVlcHhcGD58uWYP38+kpOT+fotKirCvn37AACbN2/Gli1b8OSTTwIAmpqaEBQUhH/8x3/EokWLcO3aNWRmZuK73/0uhg0bhvfeew99fX2YO3cuD6tCyu25c+fi97//PXbt2oVVq1YhKysLDQ0NGD9+POrr67F161ZOgBw5cgR/+tOf0NXVhd7eXty8eRPHjx/H6tWrsWjRIkycOBGdnZ3IyMjgsaA+/PBD7Nu3D/X19Th+/DjGjBnjZYYcFBSE733ve5gzZw4OHz6MgwcP8jXW0dGBl19+GbNmzUJgYCBGjhyJ2bNn80jNgC6mo/VXWFiI0tJSOJ1ObN68GbNnz8amTZswevRohIWFYdWqVbh16xaefvppjBo1ihNcYWFhWLJkCR5//HFkZWXhySef5Bkcab0kJCSgrq4OZWVlfK+mpaVxJEB9qKysRExMDBobG1FTU8ODkNJeBu4QbaKloLi+6Vwg7l8iPP1OKFWiaVoaY6xC07REz73jnvDuHykgHYgvugR/QOZgfNVliOE7KEy4Sp5pxPHIugZaHCT7pINbzOIni87ExXX8+HHO8tLBQoo7KksIISIiAg6Hg/eZQMzQKIrIqL3Ozk4uaxblu8Adz3i5n+I8ut13fG8AnfPo7u7G+fPnkZWV5RVgTkSmdI+4A0rG43Dc8TGhscnfUxRPud2630tmZiaqqqoQHBzMD3WKDpyUlMS90inRD6DrU374wx/ihRdewPnz59HV1YU5c+agtbUVPT09XpSnGMIE0LmjI0eOcNPdiRMn4o033sDTTz+N6upqtLS04IknnoDL5cLLL7+MiIgILFmyBJs3b8a3v/1tjiwAPSnT+vXrUVBQgL6+PqxduxZVVVU4ffo0wsPDce3aNR5l+Pr168jNzcWYMWO4UtnpdOL111/H5cuXuQ+Jw+Hg1HBRURFaW1tx+PBhpKam4vr165gxYwZOnjyJ6dOn449//CM/RPv6+jBq1CicOXOGcz1hYWHo6enBnj17EBkZieHDhyM8PBxtbW3Iy8vDj370I+zbtw+VlZV45plnkJOTg7/5m7/Byy+/jIcffhgf+5hOL3/729/mnut1dXVwOp24du0aNmzYwBXZV69e5Sa4RAT09fXxdXjixAmEhobiiSeeQEVFBXp6ejBz5ky0tbVxboD61t3djenTpyM8PBwlJSWYNGkS8vLy8MgjjyAnJwf/9E//hOzsbGzZsoXvDVkvSOJL+lZ0jpGeTwwPJK5XWjOi7o/8lUTxK6ATTUZZTgfiSFgAPZTJ6wDaoYdZ36hpWpLpiw8giEp0X0RL/iAZ+ihG79qpV4zvJC8os3hXIldBByMtNjq0VAhDzCUu10flCwoKUFBQgOeee87rUKZQChUVFWhoaODpNsUDHuivHBfbJ8WinNOcEKJqzGQJFRYW5hUgjpAdUVLiN3G57mQpJK92EkGSJRhlVqQ+EyIXY3ARUqTNScp2TdMQFRWF3NxcREREICMjgztS0jxRQDxClp2dnQgLC8OOHTuwe/dujBs3Ds8//zwPCS/2o6ioCAEBASgvL0dkZCSuXLmCVatW4cyZMygvL0drayuWLl2KwMBANDY24sknn0RDQwPCwsJw4cIFhISEYMeOHWhubsbjjz+Oa9euoaenB0uWLIGmaQgPD0dVVRVCQ0MRFxeHzs5OfPvb3+ZBGCmU+fXr19HW1oauri78+c9/xqZNm/DWW29h5syZGDduHObNm8fjcy1duhS/+MUv+MG6adMm/PSnP8Xjjz+OgoICXL9+HePGjcPFixcxcuRIhIaGIiMjA729vcjPz0d4eDjmzZuHq1ev4re//S2+/vWv45133gFjDF/+8pfx05/+FLNmzUJfXx/XI82dOxfV1dXciu34cT1QxejRozFr1izU1dXh6tWrOHToENLT03n4kvDwcJ7ut7e3F48++ig3p33iiSfgdute61FRUVi5ciU6Ozvxu9/9DpcvX8aiRYsQHByMlJQU7ihKqYczMzPhdrt5VAFaR+RgGB4e3s+QhkB27iXihYhCwDtagogU5Pdo/9NvcY+KaaUlR0K/EcgUAJehm+5+DUAIgFc0TWswffEBBF9jYQHG+g8779t51wyR0MEsxrMh5HDmVij21nQA0HNVDBs2DAB4QDv6S8HqXK4b0DQgJCREmVhL0zRcv96FkSN11RbV8Ze//AXd3d0IDg7GzZs38eGHH+Ivf/kLRx6ZyZOwcprTK0cz6RyovyIiAdQe7ERRiXlF5DlSIZy3334bbW1teO6553jIlMrKSp7nmrgPOvApQyCljXW5XF6cGKAjpbq6Oj6HdOCT17goWxbHKorVRLk96X5aWlqwd+9enn0uICCAK9fJmurFF19EdHQ0urq6sGHDBq9+kMgrOzsbSUlJ+N3vfsdTxH7wwQfo6OhAS0sLFi5ciPz8fEyfPh2MMcybNw8AeJDHH/zgB1w3UFBQgNTUVGzfvh3Dhg3Dli1b0Nraio6ODixcuJBHCj569CjPQ07BGcnPIzs7GwUFBZg7dy5WrlyJo0ePYvz48TzgX0REBI4ePYqEhAT8/Oc/R0ZGBuLi4lBSUoJp06bB7XZzxEhrRrSYysvLw7Bhw/D888+jvr4eFy5cQHV1NUaMGMEP7R07duAzn/kMrly5gsmTJ+PIkSMYNmwYz5lOybQogOL06dN5fKoXX3wRS5YsAaBnqKQ4VHv37kVpaSnWr1+PS5cuITo6GvPmzcPRo0cB3MnaWF5ejuvXr/PIvrTuiCugtbp792709fVhzZo1PHQNeZeL6aAJCgsL+foAoCSgaP0SISOuR3HviGAmzRARjPj/oMXC+iiDHQQiIw5AfZgZ/Zbrkd+Xy8hIxowroPIzZszA375ViepL1xE7VjevHD16NIYNG8YpZEIeFNZaBBmB0Bq4du0aRo4cie7ubk9I7JsAGEaMGIFhw4ZxZHTz5k2MGDEC1ZeuY8b4kXgu7U5GPnl8FLGWxmQ0d8RtUbgTFYiWJWKwNwBeToIUDPHIkSMYOXKk1/yRonPTpk39Dn4xQKKmaUhMTOR+FYWFhRgxYgSioqIQHh7e7/vR2IgLOnHiBM8QSPGYvv71ryMrKwuPPvooamtruSiqsrISixcvBqBnmbty5Qq6urr4AUVy68WLF8Ph0ONRvf7665gzZw7mzJmD9vZ2xMTEoLKyEpGRkdyDff369aiqquL5vikUe2JiIqZNm4Zr166hr68Pf/7zn7FkyRKudHe73Xj55ZexadMmLlJzu93IycnBSy+9BLdbT861f/9+fP3rX8ezzz6Lp556iutiyMS1q6sLH3zwAXcYpBAiv/3tb7ln99tvv43z589j1qxZSElJwX/913/xqLJHjhzBmDFj4Ha7cfXqVaxevRrV1dWIj48HY4wbW5BJ9bp16xAUFITQ0FBMnDgRO3fuxPDhw7F+/XoUFRVxZHjlyhWcOnUKkZGR+PKXv8zX19GjR3nssStXrmDMmDEAgPj4eJ4U6ujRo/j973+PT3/60zwkvtvt5hwliXHDw8O9TOVp7YkJnmjdEfFAUZcbGhowYcIENDY2IjIyEqGhof1C5MjnBF2y8txIfC7uVxFRyAFQaX0b5US3Y4W1GsC/ApjiKc8AaJqm3dW86PcDxAPByOpKZjFVCABQBx2UQVbQq+qTnRTFZ/HhD2PH3y3wirck9lUXY91RKBsdeN7B13QRl/5usvJdonLW/eI4GGOmXBbJYGlziWXFcVMYDyNdAzkwTps2DampqV7yXtnunTYoBUMU23M4HFwBKn4HQD8oyNGK9EfkHzFixAgu2yaZPCkcAR35xMfHY8eOHZgyZQrq6urQ3d2NUaNG8UB4c+bMQVJSEs+1ThxAQUEBEhISUFVVhf3792Pz5s2oq6tDQ0MDF7XU1dXxcV2+fBkZGRlIT0/nCA7QCYGmpiYwxjB58mQ4nU6eN7y3txeZmZnYuXMnnE4nxowZg3feeQePPvooVq9eDUDXdbW1tWH9+vVYsGABcnJyEBoaivfffx/Lli3jDom5ublYuXIlbty4gYCAADzzzDOYMmUKxo8fj6NHj3IrI/Imv3LlCp588kns3LkTp0+fxrJly3jmvVu3bmHSpEncS3/16tUICgpCTU0N/64OhwMTJkzA+PHjkZeXh0mTJqGvrw9vvPEGYmNj8eabb3KlNQBuxRQZGYlLly7B7dZNrNPT0zFz5kx8+9vf5txnUVERpkyZwj3Phw8fzq3hSktLcf36dXz3u99FamoqkpOTERgYiLVr1yIkJAS9vb0oLS2F2+3mIXtozxOiJ1N1EimTwyCt1zfffBMbN25EWFgYDwyakpLCIxZTeH+y1BP1jeJ+LykpgcPh8MpGqAqU6HA4EBERwRGNw+HgFogkJhZN6K1M5u1YYb0M4EsARmmaNlLTtIc/qshD5LZEDoHA4fD2ulY9lw9LVVgO4E7YD7m83K78cUWrJKpLVV7TNG4ZRZkNCcjjVDSDJcpYpCxEXQll86Oxy/NAYwfumMYSJ6MaHx3mYgY0sY/Ud/JoF/USopc7cWG1tbXIyspCamoqt84ixTnVRZZj1CeVPgcAV5aK4Ha7OQVYU1PDlfrkAJaWloawsDDuU+NyuXgZyksN6EgoOTmZe8A/8sgj+O53v4vOzk6sX78e+/fvx9WrV7mljcPhwKZNmxAeHo709HQsW7YMYWFhmD9/PlfIJyQkcOcyAEhLS+O6LMo4R1FrydekuLgY77//Pvbs2YNx48bh2LFjKC8vx+3bt/GnP/0Ju3btQlhYGJqamlBWVoa6ujosXrwY48ePR21tLWJiYtDX14dr165h8eLFqKioQGBgII4fPw6Xy4V33nkH9fX1XOFdXl6Ot956CytXrsSKFStw5MgRPProo1izZg1HPJs3b8bMmTPx8MMPIyIiApWVlbhw4QJPO0vBDwGdE6urq+ORc5uamvDqq6+io6MDe/fuRW5uLlJTU7FixQpkZmZi3bp1SE9PR0BAAMrKynDgwAEcOXKEI+9FixZh9OjRPJ7WsWPHUF1djSNHjmDLli2YMGECPvWpT2Ht2rXYv38/AJ1ooGCg06ZNw6lTp9Dc3IykpCSeuCoyMhLnzp3ja5qQCJmjV1RUoLy8HOHh4Thx4gRefvlldHZ28rXd1tbGCSQKa+JwOBAYGIiUlBRcvnwZ06dP52FOKCacSLjQXhSzEdIZIe9Jt1uPkSYGKSV/ELHvIqJSnZUEdhBIK4Cqe5VI6m4C+YEYmcXamTARWZSUlHgFHQTu2FMbiWzEw9ysfRWyEt9hjPXz/CaEQ05z9JyUxWTOR3XLCI6okePHj6O0tNQwVW53d7eyT+L4aH5FkRM97+zsRHZ2Ng4cOMBjUlFf3G43XnnlFURERPA+JSUlcdGWOC8Oh8MrJlZ8fLyX9RbNCfWPHK2oH7RJqO9JSUkICQlBfHw8zp071y/cidvt5h7f5eXlqKysxJgxY3Dq1CnU1tbyyLl1dXUIDAzkMaU+8YlP8GCJ0dHRvA0SfeTk5HDxXGpqKsrLy3nQvv3796OzsxMtLS3cw97t1qPvVlRUYMWKFairq0N7eztKS0tx4sQJOJ1ObNq0CUFBQYiLi+OiLvKv+MxnPoPExEQ8+eSTmD59OkaMGMHjbpWUlKC9vR2vv/46pk+fjtWrV8PlcmH58uVYs2YNTp8+jTlz5iAkJARLly7Fzp07sXLlSnzlK1/h/hEXLlzAmjVrMGfOHLzyyitYsWIF0tLSuEVScXExQkJCcOXKFUyYMAGf/exn4XbrWR1zcnJAqadXrlyJhoYGFBYWcv1bUFAQnE4nvvnNb2LFihVobGz0Eu+kpaXh5s2bnHIPDg7maXMjIyOxfft2dHR0YPny5Rg1ahSSkpKQkZHBc47//Oc/xwcffAC3242oqCi89dZbmDRpEkaOHIng4GBkZGTgl7/8JV5++WUediU6OpqvLXI4pDWamJiI+Ph4HDx4ENOnT8eyZcs4UedwOLjujrgH4tg1TeOhasixksYYFRWFhoYGuFwujnCJUyYgAor2gLgn6ezo7Oz0IrgA9DsTrHS4dpToc6CLsA4DuE337WQJfNAgNTVVO3z4cL/QHrI80WzCRJAVTrJ4S/xLIFL9cgY9K72J2MYTr5/EsGHD8Ien53vVbRSBk56r9BQqyw/qN90TdQ6kMP/btyqhaRqeTQno560uz6lsiksbTaX0o3GQGJAsyQCdqiJFu9hv2sBr1qzh8mhRDkx/ydqJkAc5YYksvQiyXJg8gckOv7S0lOtLaL6OHz/OD7Bz587h1q1bmD17NucaSKfR29uLqVOncsV8Y2MjFyVQ3ZGRkWhtbUV7ezseffRRlJWVISUlBTt37kRERAQCAwNx8+ZNFBUVISkpCVevXkVUVBQaGxu5oyF5TS9fvpzrd86ePYvY2Fg0Nzfz5FWArt9KTk7mJtWnT59Gfn4+tmzZwmNUUb6LtrY2NDc341Of+hQyMjLw/vvv89Am9fX12LhxI44dO4bw8HBER0fj5MmTPGHTT3/6U4wbNw5jxozBlClT8Ic//AHx8fEICAhAe3s76urqsG7dOrz22mv47Gc/i0uXLmH+/PmYNWsWampqMGbMGK6v6O7u5rGvoqOj8dJLLyE1NRVtbW1Yvnw5z/Mxffp0vPfee9A0DUuWLEFwcDDmzp2LsrIyHjaEUgIHBARg48aNaGhowNGjR/HEE0/A4XBwHYfb7cbZs2cRGBiIyMhINDY28tzztE5EZ1UiPkQJg3gOENK7cOECjxqtOpNIVxIfH4/a2lq43brhiSjWMiI6xfUM6MYYEyZMwPLlyy3F9QOxwsoD4IJ3cidomvb/TF98ACE1NVV79dVX+ymQBssnRDysjHQg4sck81RRR2ClN6GD75Mv7cOYMWOwc/NC03HQfdG+W+X0SAtLXNyqflM5p9OJz/1Sj3776y8keFmCyO2rEIrKKovmRFR6i8hGDOMg+sZQf0QFdnBwMEdYNJ6YmBgvH5OSkhLcvHmT6xYI4aj0XLTxKYMgITFxjNR3ccwU34rECzSW9957D62trTyTYEhICM9YSGMi67DOzk689NJLGDVqFFpbW/GJT3wCmqbB4XCgrq4OsbGxmDZtGnbv3o3IyEgEBgYiODgYEyZMwI9+9COsWLGCB1Gsq6vDmDFjuFLY5XKhrq4OpaWlSExM5Ij65s2bCA0N5SHbH330UezevRtjxozh4o6ysjKu7E9OTsb27dsxadIkpKWl4Zvf/CbWrVuHMWPGYOLEidi7dy9qa2sxadIkJCYm4uLFi6ioqMDcuXMREBCAt99+G3PnzuVWSfQNfvSjHyEmJgZTp05FW1sbqqur8fDDDyMjIwOtra1wOp2orKzEsmXLsHDhQjgcehbFwMBAdHd349q1a5zDcLv1IJFEhZMVXF1dHaKionD58mVkZWUBAM/y+OKLL2LChAnYsGGDlx8GrYOxY8fi4MGDAICNGzfy9VxSUoKoqCieJIr0VAD66flcLj2lMqB7ohP3rdr7lBNejOog7yEZ8Rgpxmk/qaJxi+8DA4iFBSBM07QsTdO+q2na/6PLxnsPHDDGvGR8gLfeYaAg6wtkdlDUa4gyejoMjPQmchukBCXTXbFNFQU9Y8YMtLS0cO9UVZ0Uo2f//v1eeTdk6kXmGMizWxUWXhRpyf2SdTEiey0jqz179nAdyaRJk/hvek45OoA7HAFZZ5WUlKCkpITLo0XxGzkMlpeX87G53e5+McnouwDgKWbFvldUVKCzs5P725BY88SJE8jLy0NUVBQPC//SSy+hvb0dV65cwdq1a5GamoqQkBB0dXVxURZZkkVHR8Ph0MO0f/3rX8fatWsxbdo09Pb2YsSIEUhOTkZsbCxfPxcvXkRvby8aGxt5HpA1a9bwvN3Z2dloamrC9773PZSWluLo0aPYs2cPLly4wJ3/zp49i//+7//GiRMn0NzcjFOnTuHGjRuoqqpCRkYG91qvqKjArFmzMHLkSJw7dw7Hjh1Da2srzp8/z0U3I0aMQGRkJHJycrhuZMaMGejp6cG1a9ewYMECXLt2DcHBwZgzZw5iYmKQk5OD3bt3w+FwoKmpCcuXL8e0adO4ruP27dvYsGEDHnvsMYSHhyM3NxcjR45EYGAgioqKUFBQgKamJlRUVKC2thZjxoxBQUEBDh48iJ07dyIwMBB9fX04fPgwj/gQFRWFoKAgrF69GrW1tfzAJ3FRZmYmj7QsruOxY8firbfe8vIuJ/0Y7QuHw4Hu7m6cOHGCe6yTklo8LwICArjJslH8KbdbD6NDyIjeF8Wx8v+quHN0ToSFhfE9oBLbq4heGewgkP2MsRU2yn0kQHWoW+k9CHwpIy4OAjqMxN8iIlG9YwTkVatqU7xPBz4hEXEMomirpqYGU6ZM4ZufqKji4mIvRbcYAkFU5IviLhk5y4EcRf0IHc4kUiROjAIBUtwuUmC3t7d7KQAdjjuWUBUVFbh27RoYY1xJTRvEw4bzxEykmBctugoLC/H666/zgIQqPVlSUhLKyso4oqmsrMSVK1eQnZ3NRSpkXECH0tmzZ1FbWwtAj7cUHh6OrKwsOBy6pU5CQgJCQkKwZMkS1NTU4MiRIzh16hR2797NEUplZSX279+P1atX49KlSzxQJACcPXsWZ86c4WKZvr4+HvsqNDQUKSkpSElJAQBcvXoVsbGxmDJlCgIDAxESEoJjx44hMTERR48eRXh4OIKDg7FhwwacPXuW+2ccO3YMFy9exNNPPw2nU0/yVVdXh9TUVKxdu5a/M3z4cBw/fpzP2+nTp3Hs2DGI5vMU92nFihVYu3Ytli5diqSkJIwcOZJn8evu7kZPTw9OnTqFgwcPIi8vDxEREfinf/onFBUVoaioCFevXsXo0aMxZ84czJw5E83Nzejp6cGkSZNw+/ZtVFVVITo6GpmZmbh69SoiIiIwc+ZMzpVs2LABoaGhCAoKQk9PDxwOB3p7e1FSUoKDBw9yf6GIiIh+nHtvby+OHz+OL3zhC+jq6gKgpzeOiIhAQ0MDjwSRmprK/WF6enrQ3d2Nmpoa/l1pDaelpWH06NGcA5IDnYqBEokoEvcQ4J2lUCZIAfD9TEDEmSo1g9i2h+j1OxbW/wGwlzHWwxi7zhi7wRi7buO9AQFjbCVjrI4x1sAY+4biOWOM/ZfneQVjLMVu3apD3erQFrG70XO7MavkMkYUgFi3qi1N0/hhqCojxrMSldQkWikuLuYUSnx8PBYtWsT7Q4s6KSkJNTU1nCoXfUhkRb7cJuCNsEVRkhyjiyg3p9OJiIgIvPLKK9zLnMRTJEMW9TgOh27pRWbAV65c4RFsybyZ9CFipkFZMQ/o5p/Dhw/nZrw0X6dPn+bRVTs7O7F//34eCZf6QPoGstgSCYOgoCCsWrUKjY2NnGuqrKz0MiDo6upCfn4+xo0bh8DAQDz55JNYt24dR+R9fX3cv2D8+PGYN28e50ImT56M4OBgLFy4ECNHjsTMmTN5oqCGhgZUVFTA6XTyOh966CEUFRWho6MD586d45FkIyIiMGrUKEybNg0jRozAxz/+cSxYsADh4eG4cuUK2tvb0dTUhIaGBnzwwQeIjIxEZWUlTp48iZycHPz2t7/F6NGjcejQIRw6dAhTpkzB0qVLsXbtWrS1taGiogIAMHPmTEyfPh0ul57Hvb29HS0tLWCMYe7cuZg0aRKOHDmClpYW7N+/H4wx5OTkoLCwEEePHsWNGzdw4cIF/Nd//RfGjBmDGTNmoK2tDRkZGWhqasK5c+fw0EMPYfLkyXjrrbfgdruRmZmJ4OBgtLa2YtWqVZgwYQJfE7GxscjPz+f5VyZNmoSioiIeMZkSlYnfOyMjA+vXr0dMTAzi4+PhcOhZHs+dO8eJIdp3CQkJCAwMREtLCwAgOjoaJSUl2L59O1/jALhodfv27XjzzTc5cUYKdzFnBxF5IvFG+4xi14kgxqWj9S4SZ0ZnoICg/MtI6DHb/ZimaUH3yozXk7Tq5wAeBzADwOcZYzOkYo8DmOa5vgI99a5fYIfiN0M0JJssLy+3FIfJXAi9b0YBiAcy1UHOgkB/x0Aqm5SU5KUHcLvd3Pppx44duH5dpwOIanK73V4B4+g9cgQTFy5wx+tdBFGUpeLGZs+ezZMyifdFTiU8PBxbtmzxUnarDB9kIFNksvHfunUrwsPDvbziKZw8WTp1dnZyxO9wOHhgTKqfTDAp819bWxu2bNmCWbNmIScnBwkJCVi0aBG35Sc4ffo0WlpasGvXLjzyyCNob2/n1HVFRQUiIyOxevVq3teLFy9iwYIF2L9/P18LlZWVcLvd6Onp4fL6zs5OvPPOO3C73UhMTERVVRWKi4t5bKwFCxZg2bJlSExMRF5eHjIzMxEVFQW3Ww+MWFdXB0D3kWlra0NycjL+9m//FlevXkVgYCAWLVqE1atX46WXXsKUKVMwd+5cJCcnY+HChSgrK0Nrayt+/OMf8wyP3d3dCAwMxJw5c3hSpU2bNiEuLg7Nzc0A9NAgkZGRaG9vR3d3N5KTk3H27Fns2rULAQEB2Lt3L8aPHw9N03gO956eHrhcLjz11FOIiYnBF77wBfzwhz/E8OHDMXv2bJ7p75Of/CTy8/Nx8eJF5OXl4ebNmxg2bBimTp2KCxcuIDY2Fjt27MCpU6fQ29uLyZMno7Gx0SvIJqWTnTVrFiorK5Gfn4+nnnoKZ8+exYkTJ1BZWYkjR44gOzubm+DSHgTAI0UkJCRwaynZPD09PR1PPPEEAgMDce7cOSQmJnLnTzEjYE1NDTIzM3keG+COuJeU5qKBiHhu0H4iLkrmUmSrTQBenLwKRD2ICgwRCGNsquFb4BzAJLMyA4C5ABo0TWvUNM0NIBt6Sl0RPg1gm6bDCQChjLHxVhXbEUMZlTPTS4i21CpuQAbRnFdGTnJ52Z4buBNqhNoW3y0pKeHyVvpNEWNXr16NZcuWYd26dQgMDMSRI0eQk5ODiIgIbjZI6U4LCwvx9ttvc71BZ2cn33QyFyTrd4yQoshxiM9Eih8ARx6yX42RrFfkeGjRL1y4EE1NTZzj2rVrF65duwZA99fo6urCjh07UFpaioiICO5fQvNFyLO1tRVZWVn8YHY6ndzMV9ah0BjDw8Px+uuvAwDeeOMNhIeH86i4HR0d2Lp1K6dASXx45coVbql16tQpVFZWwuVyobm5GZGRkTwL4fr16/lhkJ6eji1btgAAXnrpJb6mnE4npk2bBpfLhWeffRY5OTk4fPgwIiMj8dBDD+H69esICAjAokWLsHz5cgQEBHAkFRYWhr/9279FQUEB3nzzTTQ2NmLJkiVYvnw5li9fjqSkJK5QPnfuHLq6ungK3ZdeeglvvPEGF5G53W5ERkbisccew6RJk3iOlOHDh8PpdHLuCND9LqZPn85DjUydOhV9fX0YPXo0zpw5g+TkZLhcLnR1deHy5ct44YUXUF1djRUrVsDhcGD06NEYMWIEN83NysrC2LFjce7cOR44cdeuXRwpEPeXlpaG9evXIzw8HKmpqZwIaWhoQEpKCjZu3Ihly5bxQJ9iznv6//Dhw9ixYweOHDmCgoICr5TJtHadTieCg4M58iW/FeIEiCikdMaU/1w8R0pLS7kflkiMimtv/vz5Xv5XdN8IjM4rK6kLYM6B/Dtj7E+MsScZYzMZY2MZYxGMsaWMsX8FcAx6jpC7AROh+58QtHnu+VoGjLGvMMZKGGMlly9ftiVisiOukkHUAYjvqn6rdAMiApCpCrLsEe+L+gcZSNFG4b6JdSWRASkDyaRz9erVqKur42a+JNtPSEhAXFwcAgMDubw0JiamHwUmHvLiOERltAwqbk5WiIuIleqhDSU6OooiMpIRl5eXY968edwBq6GhAatXr4bDoec7Lysrw8WLF5GZmclzYZP8mER3JOIgwgDQORIKt56ens5FF9Q3olBbW1v5nI8bN46LzUjv8NRTT/E658yZg3nz5sHtdnOLnpkzZ3InxilTpvDERIQ0SktLUVBQgCNHjnBP9YULF6Kzs5M7+yUkJODMmTPcyYwcFj/3uc/hX/7lX/DlL38ZDscdS6758+ejs7MT3//+97F161Z+wE2fPh1OpxOhoaGcC01PT+diw/DwcDz55JNobGxESEgIli1bhk2bNmHChAn49a9/jRdeeAEulwsbN27EtGnTEBYWhpUrV6Kurg4REREoLi7GsWPHMHHiRJw9exazZ8/G2rVrMXr0aIwfP56HRRk3bhxmzZqFkydPoqOjA6WlpRg7diwcDgcOHDiAkydPYtKkSZg2bRpyc3Nx9epVjB8/nht5ZGVlceRLiLulpQVHjhzhueLJGoqyNorrXBTr0lojDnzEiBHIzMzEyJEjkZ6ezk1xaW+Ie1MUIYn6T6of0K3AGhoauDEIPZs/f34/YxVZbCwiDauzTha7i+eMHfG+IQLRNO2zAL4NIBa6OOkIgHeg5wOpA7BU07R9pr3zH1QKG1kGZ6cMNE37laZpaZqmpY0dO7afv4MKrMRVshOa2bvyAUfvkuJYbsOobTl3BukfAP0AF0UxVD8lMSJOpKamBhMnTkRlZSUqKiowceJEXLx4EYC+CAsLC7nyur6+nh9WlDeDgr0Ru80Y8wplQn0mRKBSRpMinuZSnNfKykpO1YvzIX1PLw6GkKjbrQeeJI9syhUtetiGhYUhKCgIqampyMjI4PmrRUUjjU2k8kROSBTRUR+I0u7u7saOHTvgcrmQlJSET33qU9i0aRPWrVuHmpoauN1ujtQpgm5tbS0XXaSmpuKJJ57AzJkz0dTUxDmCmTNnoqSkBAUFBWhvb0dtbS2uXLnCqeqEhATMnz8fU6ZMwQsvvID8/Hz85je/QVlZGUaMGIHvfve7yMvLw9atW/HjH/+Y59oghX1XVxfvV21tLTZv3owvfvGLCAsLQ0BAAP8mcXFxKCsr47J8h8OB6dOnIzExEeHh4UhKSsKNGzegaRpOnjyJf/u3f8P48ePxqU99ClVVVXA4HDya7QcffICkpCQcP34cc+bMwaZNm1BfX4+qqipMnToV+/fvR1dXF5qamtDX14fOzk4kJyfjP/7jPxASEoJHH30Uq1atwqhRo+B0OrFs2TL83d/9Hdra2rB3715kZmZizZo1+NOf/oQvfOELOHv2LF555RUAwJo1a1BSUoJHHnkEr7zyCs6cOYMpU6bA5XJh//79cLvd/LAm3VxhYSG2b98Ol8uFgoIC/OIXv8C2bdswadIkbvwRFhbGkQt9b9oboqJaJk7pHhF2DoduBUbiVNGaSt4TRGCKYmOxPhk5iCCKhkV9inx+mYFpLCxN06oBfMu0hrsDbQAmC78nAbjoR5l+IB4IVuayRvdle2oVElD9lpGJKle5WJ4+qAoJkf7B4XDwOFbTpk3j6Wbp4CQkAsArLlR7ezvP+QwAH3zwAT744AMcOHAAW7Zs4ZQavSdm4xOtoIzmSAyLIvad8mHIixfQvWnJfFIle6XNQnW63W6eHpREcmIwRnHjkB286GMi51Z3OvUscQ6HAzdv3jTsp7jRSCZdXV2NWbNmoauri+suyFY/NzcXEyZM4A6IDoeu6Dx79iyPc9TX18dzhgQHB3vNQ3h4OD7/+c8jKSkJ7e3t3JR59uzZHMm0t7cjNzcXoaGhiImJwbVr17hMPyIiArGxsRg1ahROnTrFM+85HA68/fbbcLlcPJLr6dOn0dPTg+nTp2PPnj24cuUK/vVf/xVr167lyZXWrVsHt9uNlpYWvPDCC4iLi8PDDz/MleOMMSxcqPsnBQQEoK+vD++++y6qq6sxdepUXL16FZmZmRg3bhza2trQ1taGq1evoqenB0FBQaivr8eECRO46Hb9+vXcym3Dhg3cnLilpQXLly+Hy6Wn8L158yZu3brFOabOzk6Ehoaiq6sL06dPR29vL/8G48aNQ0REBJ577jk+z5WVlV7RoMW9TjomADw/yK1bt7gDKgXH7O7uRnNzM6ZMmcL3IXHvtG/kvTx79mxuWELrTEzjQH0QxVXyWqT/qT5qQw6NZEXcmpyJflth3Q8oBjCNMRbJGHMAWA9gj1RmD4AnPbqYdABdmqZdsqrYijWzYvkA78VlhaFV79JfEmOJoU2MRF/yRxeV1yQXp4Busi8FIRFCAm63mye0aWpqQm1tLZ5++mlMmjQJc+bM4bF9qCxRWIwxLxmspmnQNM2LIyO5sMiRiAs8ICCAWznJIVYo/IqRCFH0/aD6N2zYgMzMTISFhXkp+KkfJPISv5UcF4zaIy/kgoICnDt3zmutyPoX4nx27twJAFzsV1xcjIkTJ3rlJ4+JiUFISAji4uJQU1PjJaqgAzY4OBiTJ0+Gw3HHL8jtdnPF7aVLl3D+/HnMmDED4eHh2Lx5MyZPnswp+ldeeQV9fX1YtmwZJk2axLnF5uZmuFwuBAcHY/z48di0aRM+8YlPcI/8pUuXcgsyQM93fubMGWRnZyM0NBRjxozB8uXL0dvbi/fff58bArz44os4ffo0Hn/8cSQlJSE2NhbBwcE4f/48/vCHP6CzsxNLly7lGQkjIyMxadIktLW1YcyYMTh8+DC2bt2KNWvWIDQ0FOPGjcMjjzzCraWCg4PR09ODy5cvAwC6urowYcIEXL16FWfOnEFFRQVCQ0Pxy1/+Er/73e8wevRoHDt2jCvu33//ffzgBz9AQEAAIiMjcfDgQcycOROMMbhcLh5Qk3RJtbW13Bx3x44dXBQJ6Obdu3fv5o6eGzduxMaNG5Gens7TCFNk5ZCQEKxbtw7Lli3j5uGijkP0JRGRA4XIIa5W1nvSfhD1c7I0RDyTaJ/Q+WJ1Xtk4z/yzwrofoGlaH4CvAngfQA2AHZqmnWGM/R1j7O88xXIBNAJoAPAagM026vWS78kgHg52QKzDDuKRgQ5R+sji4jD7oKp7IkdAFLFoXZSUlIS4uDjOAaxevRrh4eE8N8UHH3yAuLg4hISEIDo6msvYqT+iGSwdbuJBLC5mVb4RouSjo6O5xRchJtkPhuoUkQHFz2pvb+cxh6i9nJwcdHZ2ory8nCtpZdaeNhSJIshXQdTfECJevny5lzUWjZfMOWNiYrjinA4Gp9OJxYsX47nnnkNMTAw2bNiA2NhY5OTkYNasWV7Inb5hcHAwEhISEBwcjIkTJ+L1119HZ2cnJwAcDgemTJkCQKeARR+WtrY2rowNCwvDc889h6985SsYP3484uLikJeXx2NltbS0ICEhAV1dXdi2bRveffddPPfcc6iursYbb7zBLe9qa2sxc+ZMLF++HFVVVTx8Snl5OWpra/HBBx/w9bRgwQIEBgbyJEyLFi3CsmXLsHbtWj7ulpYWLhKcOXMmD2MSGBiI/fv3o7W1FW63G2vWrMHNmzexcuVKbjk1a9YsXLt2DUuWLOGBJs+fP4+AgABMmTKFOyI+/fTTSE5OxooVK7Bw4UJER0dj9uzZaGpqwtWrV7F8+XJERETwHBw3b97kib7EWFBxcXG4ePEiAgMDMWHCBK7AdrvdSEhI4OliiXBoaWnhwS8XLFjA9WgUJYHWrnjeiGIwWtdUjvy0SLEvxrESRWHyfpH3nrhnKOyKaDIv70kVkerLWfa/Lh8IZSUzwrSi27+KTVQBUQZGYTysQDykqG9W71IYkd89dSdEghjmgA5oqrOkpARdXV04d+4coqOjERAQgNTUVC4+Ibk7iTwCAgIwYsQI7vUqi4UcDgcP5/7rLyR4ieOMFqsstlOxzfI9mlu3W7eIovSu4tgKCgqQkZHhFadK5n5kj1zagKo5J38UOqzJiCE7O5tb4tA8y3WIc1RYWIhr164hNDSUi7PIUIEOosrKSty8eRMOh54vIyIiAu+99x4XA5WVlaGhoQHr1q0DANTU1CA6OpojLXmOCwoKeOwlt1u3kiI/hezsbKxYsQJhYWE8K157ezuqq6sxcuRIxMXFoa6ujsfocjqd2LlzJ65du4asrCy43bqeh1L1xsbGoqysDBUVFfjqV7/Knd1Ij5GYmIg///nPeOihh9DX14cDBw7A5XLh+eefx/79+xEaGoqCggKehri3txetra3o6+vD7NmzMWvWLP6d3nzzTcTFxWHq1Kmcezp79iyqq6sxffp0LFy4EL/5zW8QEBCATZs2obOzEwcPHkRfXx932jxy5AgWLVoEt1s3aT548CDS09Px2GOPcZEXoCuwz507h8zMTDQ2NsLtdnODhhMnTvRLkyyvb6Ozo7Oz0ysfyGlPiBwSV7ndbi72Et8h/yeKCScmmKP9oooiLq55I5GzvFeNRFl+hzJhjAUq7o22eu9BBjMLK6PwI1ZYWUbEMntpBOIz8VCz4oRIfFRYWMhFQImJidzqSHbUi4uLQ1BQENauXYve3l6cOXMGnZ2dOHPmDKqqqrBr1y7ExsZi5cqVuHjxolcGPDFkOlHspETXNK3fIhUPVSpLlCuJg6icvFBV99LS0pCWloaUlBSea4HKArrHN200Chty/PhxjnhExOVwOJTOj9RHCulCxgQix0DmnaRgpXGSAQKJPejbUcgRUvwfP34cO3bsQEtLC7Kzs3HkyBHuoXz69GnuVLdv3z5s27YNRUVFSElJ4eaglZWVaG1txe7du7lhhHw1NDSgoKAAZWVl2L17Nzo6Orj/QFZWFs9ZHxQUhBMnTvDQ5R0dHWhsbMTEiRPR0NCA8+fPw+l0YvTo0dA0DT//+c/x1ltvYezYsdi5cye6urpQV1eHqVOncm6FQpasWrUKGzduBGMMra2tyM7ORn19PWJjY/H888/j2rVrmD17NrKysvCd73wHc+fORWBgIIqLi7FixQoe1iM/P5/raBISEjB9+nTs378fERERaGpqwsmTJ1FXV4fq6moeY4x0env27EFFRQWWLFmC2tpaHDx4EIcPH+Z7YtGiRVi0aBGampqwbds2HDhwANnZ2di9ezdXYIeHh/P4YBQVIDg4mPvv0JzT2gH6WxeKBExDQ4NX5GAqS2eHw+HtqEvfk75/UlISN3ZQ7Rf5nKKzTEQe8lkkE3qiWM0OmPmBPMYYawNwkTGWJ/mF5Nlu4QEDO7oLowPNCBGQuET1HmCMsEQ5vYxIZDNf8Tkt2r/85S8ICAjgynFifUUkKFpE0eI8e/YsXC49x3N4eDg+/vGP49atWzh27Bjy8/OxfPlyBAUF8fZEpfmMGTM4pfnhhx9yKyyRIxCRp0gFyVQ/jVU2R1YhbxKjiDF9qOy4ceP4WCgq6oIFC7zCmIibTBQhEFUnfq9bt27xA4MoQzEEhEjpORx6GPne3l7s2rULbrebB23UNA3p6emcM42Li0N0dDTa2tqwZMkSXLp0CVOnTuVpWAF903/84x/H5z//eSxatAgOh4ObUXd3d6O0tBSrVq3iVGxhYSEnIhwOBzIzMzFixAikpKQgMzMTQUFBmDRpEnbs2MFDsAA6YkxPT8e6desQEBCA4uJijB07Fvn5+Vi1ahX3ZC8tLcWMGTOwdOlSPP3003zcvb296O7uxsWLF7Fu3To4nU5MnToVpaWluHjxIi+3ceNGfP7zn8eXvvQlbNiwgYeaIQX/zp07sXPnTsybNw+bN2/mCv/e3l7s3LkTV69eRW1tLSIjI3H27Fke7LGnpwctLS08a+DevXuRnp6Obdu2weVyYeXKlXj88ccRERGBuLg4jBo1ivvLZGdnw+12Y+HChZg5cyZmzZqFefPmYfbs2cjMzOR7ib5Heno6YmJiUFVVxSPukrl0QUEBysvLuVhTRfTJe0BeR6JISnbCnTFjBmpqanjCKFWOG3mNy2eNuC9VUStUYIdoBsw5kBcBfELTtDEAfgVgn0dZDRho5D8qYEesJJdXcSIidyGzgXTPDGHJcnoRVNYaYr1OpxPDhg3z8lFQjc3pdGL9+vVYvHgxYmNjuSdyfHw8Vq5cicLCQvziF79Ac3MzmpqasGTJEly4cAF9fX04ceIEtm/fzr1lybu1trYWa9as4cEc5T6Kh7HKg1w8xAnBke5CvESOhbzqZSTQ2dmJbdu2YeHChWhra8PNmzdRW1uLzs5OHnRR/C4iYqb5F0UCDQ0NePLJJ5GZmcl1NeXl5ejp6UF5ebmXcpXqJE9jiiRLEYNHjBgBQPcdOXDgAHJycpCamoqoqChcuHABEyZMwIULF5CZmYnw8HCuRA8NDUVwcDB/t7u7Gzk5OZg5cyYee+wxLxk7GSWQzJzEa2VlZTh16hTOnDmDM2fOYPz48ejt7eUxmGhsYWFhWL58ObZs2cKdD0lX09jYyONUtba2Yvv27Xj55ZexcOFCtLa28vZnz56NvXv3IiQkBO+++y53hjx8+DA3ANixYweKiorQ19eHhIQEtLS0YOLEiejo6MDo0aPhcrmQm5uLnJwcAHrMsPT0dKSkpHCdTm9vLw9773a70dXVhREjRnC9y7lz5xAaGopjx47hl7/8JSZOnMi/Kfn1FBUVYezYsaioqEBlZSUCAgK4T0taWhpqa2u9PM5pD82aNYsHiiSDib6+PgQGBvK6Ozo6eIIxWhtkEk7IQ3WAy0iFRJGUE33OnDle6QKMQN6HKgJVpZ9U1WPXQMhQB8IYK9c0LUn4PRPALgDfAPBtTdNsx556UMBOTnQzkOXllApSpApUOhRf21C9J98nHYiYD0QUWck6GeIali5diqqqKrS0tCAzM5OHeIiJicHFixfR3d2N4OBgHteJxqzSH4jh3M10H/I9eY5EyxRa7IwxLzERyWWpTjF/OsnEqR4SWVHYfpdLj25bU1PDqWWVjJo2PNneE+ITORbK8UDh0em+2C+3293PnLi8vBzjxo1DeHg4srOzMXHiRPT29iIoKAjz58+Hy+XCiy++yM1Kd+zY4ZU5sb29nSdkCggIwIIFC+Bw6Oa7xHU5nU4UFBRg+vTpaGpqQm9vr1fOjPr6ejidelIrt9vNORUAKCsrw/79+7n+gJS5FGbD6dTDt48dOxbx8fGoqanB5s263QqFac/Ly+Nir5SUFOTl5aGtrQ2LFy/GgQMHMHz4cMycOZOLcSoqKjB27Fjs3bsXt27dQkhICA4ePIjExEQ888wzcLlcaGxsRFpaGtrb23HmzBnOldGavHjxIkJDQzFp0iS89NJLyMjIQHBwMIqKinDr1i1s3ryZ64sOHDiAffv24eMf/ziP+yanUqD1SBwkcfenT59GeHg4zwVCqRhoL7hcLmzfvh2rVq1Ce3s7ZsyY4WWyTjnvSUel0l+Je3X79u2IiIjA8uXLAejphuWMg0Ygr2nasyou3y74owPpZYyF0w9N084AWAbgu9DjT/3Vg4qFE6lsCl8ifiwVq2qnXrpvpDex+uBut5tT8ao2nE4n1qxZg/b2du5Ed+7cOe6tffz4cUydOhVHjhxBd3c3F3cQt0OHN/mUEHz44YdcR2LEZcn9lLkr8UAnfQfJeqkPhLxI1iwe1oS8iLMQHQfp8I6NjeWiJZobcmqk+abQLS6Xy0ssR2lJASArK8tLvEfvUhbHxMREJCYmcu6HdD/jxo3DG2+8AZfLhfXr1yM5ORktLS3o6+vjBw0AVFVVAbgTRZjaoLDwKSkp3Eqrs7MTu3fvRktLC95++23uZJibm4uEhARkZGRg0aJFXsrpNWvWIDAwEIwxnD59Gq+88gq2bduGWbNmYdasWbh8+TIiIiJ4Wt+qqipcu3YN165dwz/8wz8gKysLNTU1XF9UW1uLa9eu8TA4K1asQG1tLYqKitDQ0IDjx4/j1VdfRUBAAE9JvGPHDj5vFOkW0HOQPP/889wXgxAjIe733nsPBw8ehNutW0G99dZb6Ovr48iTqPVFixbhsccew6ZNm5Cbm8udO4ODg7F48WIkJyfzA5yILJEzJW4kPj6eW2nFxMTg4MGDfJ2LyIPWeXx8PMLDw/leIe6QOFG3W89ASforcQ2JEgan04l169YhNDSUP6+qquLjsAKVmExsQyVJEcGO6IrADIF8A8A48YamaW0AlgD4ke0WHnBQHdZ0Xz7MZdZOZilFkYtZe0byRZXexOhjyvndXS4Xz28gciIEYpgS2mwk+x8xYgRXsC5atAhz585FbW0tCgsLvdjfiooKLoMmGDZsGM/kZ7UQRfGVit0m5EC6HLE8eeHS/FKsH5qrzs5OL5No0b+GoqSmp6dzapPMfimgpMPh4AHsioqKvL5JWloaoqOjsWfPHn5I0XiKi4tRWlrKc6ITwiXz3hkzZsDtdiM/P5+nuwWAc+fOIS4uDvPmzUNvby+cTif++Z//Genp6TzJj+i1P3XqVNTV1XEnRYrnNGbMGLS3t8PlcqGpqQlr16714rLcbjcuXryIuXPn8vnQNI1n0mtra8O1a9fQ2tqKvLw8Hjuqo6MDO3fuRHt7O4YPH47Jkyejvr4er7/+Om7fvs1FOlFRUTzoIM0bjSs9PR0vvPACQkNDkZmZifb2dq+8KSROIdFZeHg4DzfvcDi4KK6zsxNRUVFYsGABWlpa8P777+OXv/wlP5gpje8zzzzDRWvz589HREQE1q1bxzk54nxkE2My6Y6IiOAGGG63biFXVVXFuVL6pkRUkPEFfXdRFErhbhwOh5f4KSEhgfeD1pBKZETGGrSennjiCS/TcjuHvMxx0N4xMxIyOZ98cyTUNG2/pmnlivvXNE37N8vefwSAqE4juaTqMLfiBOw8lxXBqvdl+26532Igw5KSEtTU1HBzxerqasTFxXmF+9i5cydaWlr4wUqhtV0uFw/o1tLSgsuXL8PhcHDfBVIi00FKlllu9x1HQpLtyjnURUU61SGGcqdxivNCh57IzYmLnp7T/w6HHriQwnNQeUImAHg8K9qMlFQsOjqaOwwC+qZds2YNLly40G/OW1pauDGBiOzmzJmD1NRUBAUFcQREz4qLi1FRUQGHQw9iSXoIQkJkkkzImgiP3t5eTnVTnor09HQeenz+/PkICgpCbGwsxo8fz51IY2Njea6MAwcOoLOzkzvcvfvuu3jyySd5aBCKoDt16lS0t7fj17/+NVatWoWwsDBMnjwZgYGBCA8PR3l5OSIjIzFq1CgkJycjJSUFo0aNQkpKCrq7u+Fw6KHsJ0yYgMOHD/NYXgQ3b97Eo48+CqfTibCwMLz++usYPXo052xo/dbX13PLOcpbn5CQgKqqKrz00kuorq7mVoTjx4/H008/jYULF6Knpwf79+9He3s7Wltbcf36dR5xubCwkHNS5H9BOVoorwygc32/+tWvsHv3bkRFRfF1NXHiRB6+RbToo72QlJTkRaiIQHszOzvbKyou+QPR3hP9vozOArdb17OJ4mkrZbhIfMn1qYhe8ZmMzDzt3GG7BTDTgezQNG0dY6wS3l6ITJ8fLdGw9w8oyDoQUZZpxTXQgTZQ3QYtANGPQC53+vRpxMTEcPtvVd/IB4P8QMRDVWxLlKHv3bsXK1eu5JFU29vbcfDgQaxZswZutxvf+ta38MILL/CUmg6HgyujicsoLi5GT08PAgMD8YMT3fjYxz6GP/79o8rFSfOWnZ3Nc0OLIj7SM5C+gsZLmQNTUlJMc7gTFBcX4/r161i0aJHXNxLnQfx+Yl3bt2/3ouwKCwuRkJDglfJY5q6Ki4sRHx/PRWSALtsOCgri3IncZ8q9XlNTw7krUs673W7uc3PixAmu4xC/3+nTelril19+GZs2bUJYWJiXz4vb7caRI0fw2muvISkpCVeuXMEnP/lJ9Pb2ch+PsLAwFBYWoquri4clmTx5MlwuF37+85/ja1/7GqfOx44di40bN8Lt1kOpuFwulJWV4f3338dTTz2FsLAwbN26Fc888wzKysoQGhqK0NBQHDx4EOPHj8fo0bqlf2RkJHbt2oWmpiaMHz8eU6dOxahRo9DR0YHTp0/jueee89IzAcDRo0d5SJn29nYcO3YMvb29uHr1Kk8bW11djfDwcC4qJARaV1fHOSu3W882SIEV09PTERgY6OWTU1tby/1RyJiBxIPf+MY38M///M9oampCQkICdu/ejfj4eL4+aF2Vl5dzZEJrT9bLqfa51Tkg7yUjvYbRu/7qY1V1MsbKNE1LlcuaibD+r+fvagCfEi76/ZEF8QPIVkxG5e3oNuT6xd+i7kT015CBKHEReajKkQ8GURki6606zMPDw7FmzRqeldDtdnNnsrCwMISHh+O73/0uIiIivDiuhoYGr0Q2FFGWUrGOGDGC6wdUC5xs8ykgI7HRIqUjjzcqKgoNDQ08nDngncyHODjyDJ8zZw6WLVvmpauhsm73Hf0EZS4URWWiotrtdvMgkjR+kdITHRopqxw9pzDdVJfIjZEllSj+Ki8vR3R0NIKCgpCRkcEV6efPn+cRWEXdEM2V0+nEL3/5S+5DQh75DocDycnJmDRpEj772c9i6tSpmDZtGi5evIioqCi+xskCKjAwEJMnT0ZeXh4aGhrw0EMP8fkjxfPJkyd5itWGhgbMmjULixYtwvHjx+F0OvH1r3+dW4SFhoaioaEB48ePx5UrVxAbG4uEhAS0t7cjKysLGRkZGD58OEaPHo3IyEi4XC5s3ryZH8SUKpe+F1mLVVVVobW1FW1tbZw7IC6yvb0da9euxVe/+lWkpqaisbERV69eRV5eHuLi4pCYmIjW1lYsX76cK/bFSAq7du3C1atXcfz4cWRmZnoZPYSFheFzn/scwsLCcO7cOa7jiI2N7ZfFj2LSiUYhVIaQh2iIQWtT9CcyOi/EtSyfEyougxCT2+3utx/sgIkIy7dQJhRXStO0ZtXlU68eEKAQ6LJJLIHqoJZFKVZg9PFF5ENmqWJuDRFEByCTD+qV411Uuqr6RPWSTN7p1AMHtre38z6Q85yYG0PW6ZDIgtr/2Mc+xvUiJK6SzXQPHjzIvaFlEB2waLwtLS1Yt24dEhISeHpbCvNO1LzL5eIRT2UOQfarYYyht7eXp7mVORTqr9Pp5ClFKasbyelJZEdiCEIEdHhQHC+C7u5unhs9KSkJmqZ5xSLr6enx8hJ3u93YvXs3lixZgrq6On6Iit+fIvY+88wzPN/466+/zp0DSQTndDoREBCA8+fPY8KECdi1axd+8Ytf4Pjx41wOn5KSgra2NmRlZWHlypV47rnneDyx8PBwnqaWPK5jYmLQ0tKCuXPnclEpHf4nTpzAd77zHWzbtg0AsGrVKlRVVaGmpoY7/Y0aNQpPPvkkdwYkj3iXy4UjR47gf/7nf3DkyBHU1tZyJXp5eTkCAwOxfv16zJ49m5sHi2uZ4rY5nXcyUq5evRpOpxM1NTXo6enBhQsXeHZHMfPl+vXrsXTpUl6exLwkQlu0aBGcTie3SEtNTeVzQ+3X1NT0M7Elg5WKigoe4l8Ov2MktiIw4hpkYlT2FwP6OzXb9ekAfDPhBex5omcxxuoZY133MqXt3QI5fDGB0UEtUs12wEiGaJRACeh/4FnVJwLVIyrdRBCplOLiYhw5coQnMqLYO7LeJScnx+u+vOgJ+dFCJW6KZP6inoM2k5ggSuQmqKxqvskLt7Gx0SvMOx3khDRJxyMqiYE7wRfnz5+PjIwMfuiL1BsAL+V7TU0NSktLee7qxERdUltdXe3FYdA9shKS11NgYCCio6M5dzZixAhERUWhtLQUJSUlCAwMRHx8PCoqKlBYWAiXy4W+vj7U19fzfOCEcERfmODgYD43TqcTW7Zs4WIXt9vNzWejoqKQnp6OhQsXIioqCn19fXwslNZXDNrY2NiIAwcOYNu2bfjFL36BkydP8jzuLpeegpcyM5aVlXlZ/IWGhuJHP/oR/vM//xOjRo3C6dOnUVtbi8mTJ6Ourg6apnGuas+ePbhx4waKi4uxfft2HDlyBJqm8VS8xJ3X1tYiPj6e95WIFlGv5nA40NPTw62aaE3QXk1KSkJKSgp/t7q6GmFhYV4BBktLS5GTkwO3282tFEl8RuWCgoLgcrm4oyARHQC4IYpq31J/wsLCeOpYIuBoH8gKbOIg6LeqXvE8kJXitD/NdBpGdYtt2AU7wRRfBLBG07SQe5XS9m6B7DUtcyJmDn92QMXVmNUtHohyPXLf7Hxwo77LBxCJcoh7IeRCm4OcyQhkYwJatJQPRAwdn5aWxnMs01jIaU2mmOiZkYcuIUZKYET3qT3yhXA4vPNFk45BNC+WkSHVD9yhZsn6S0Q4NA/iuiHLKEpJSo5n4jej9KxkcURxpjRNQ2JioldwxZs3b6KxsRFr166F263nFwkKCuJpV8V5ofDtFAWW5riwsBDZ2dlwOHSFfUhICJfxA3qoEnLapAMqOjqamyjHxcVB0zRMnjyZH7hRUVEoKyvD3r17UVhYiKqqKmRlZSElJYUriQHd6ioiIoJ7fbe0tCAiIgJnzpzBzZs3MWnSJOTk5ODo0aOIjY3F5z73OVy5cgXp6ekICQnB1KlTuQn10aNHecrZyspKlJaW4sSJE5zLpUgINOe9vb24efMmz5YZFRWFEydOcLFlZWUlDw4aHh6Obdu2ISwsjBuRzJ8/H1lZWaisrOzH1dD+IL+Xnp4eTuyRGFUURYt/ibig/SVab5F3v5GzMM2tkbmtSlQslpGJVRXykA1e/AU7COQDTdNq/G7hAQMzzOwL5pXBTNRkVjcdePJzM1M7AruBMEVqZf78+UhJScGePXu82unp6eGhOGQHPqpDlqeKVli0cEUg/YARxeRwOBAREeGFrESRHnEXYih6ui9S/WRtIz4XzS6N5hW4k1pY9E4X1wghBuobAB4SvKGhAQkJCVzMI4ZrSUtLQ2BgIGJjY7Fr1y6UlZWht7cXiYmJaGho4O3HxsYiNDSUcweFhYU8SVNtbS1H9tQ+rZXFixcjLi6OK5EpFavD4UBjYyOuXbuGnJwcxMXFYenSpXjhhRcQHh6OrKwsLFiwAC6Xnp0yKiqKU6zV1dUICQlBVlYWAgMDkZ6ejq6uLhw5cgTnz5/n37empgZ9fX0oKSnhSn+3W1c8nzp1ClFRUZg9ezbq6upQVlaGnJwcLFiwAJcvX+YK6DFjxuCPf/wjoqKiEBERgX/4h3/AE088gZEjR/I14Xa7ERISAkC3TCssLMT777/PvclPnjyJM2fOoLq6Gjt37kR4eDhyc3N5yJGEhARomoZjx47hwIEDcLvd2Lx5M9ra2rilG31nURxKfjYid08ZKBljKCkpQWlpKcrLyxEfH+8V+ZoIFiI45MgHcXFxnAgQ96b4jpgEzegMsJKYmJ1lhKTM6rELZlZYWZ5/FwMIB7AbwG16rmnaLr9avI8wUE90GWQ5ppFc00reKYLKckJlybHuF7qMfPc/LLFcLOKBK7YjHq4k/hEtYmTvcqJcEhMTUVpaih8WdYMxhj/+/cJ+G4IO9sDAQKVoDdDDkLz88svYsmULF3GJ3v3AnYil4vhp0RNCky3pjBANvSPOq9hnuf6IiAjk5OTw9KTk3e92u/nhQeEwoqOjeVpcmjeaK+oDWetQWwUFBTzSrtPpRHFxMZqamjB58mTexvTp0xEYGIjk5GTeF/IToTHQgS4qiEtLS3neFbLqq6ysBAAehZkiBQO6tdRLL72EZ555BvX19Th48CCefvpp7N+/H6tWrQIA7hUurhmK7lxbW4uSkhLuczJ69GjcvHkTRUVFPM1rXFwcGhsb0dvbC03TMGnSJERERKCkpARRUVGcc9m9ezeWL1+O7OxsHD58GF/60pe48+Zbb72FlJQUJCYmoqWlBdHR0UhOTuZRbslajDGG4OBgHlo+LS0Nu3btwubNm3kWRzKxjouL84qSS8SB+C0LCwv5cxHENUZpcsW1S2Jh2le0Bsw80cU1KMeQMzoT5P0sg7wP5PBCVueTP57oZHU1EkA3gBXwtsT6Xw0qzG2EPMwwvMyiytZeJN+X2U1KaWvUpti2rNgG0I/qpyi3FEaB7OaNZKeapsHpfBgjRji9kkKJcyHnb5bnICwsDJs2bfJayKJ3v0iVyZyiyMWIoiba7KSElhWOVA/5BlAwQrnvM2bM6Kd7ERETKc8Jeezdu7df7oXExERUVFRwC6P4+HgukiH/G9I1kViqpqYGkZGR3N+muroa+/btw6lTpzBx4kQvEUdJSQmcTicP5kiiGwDct4fGQmHjCbq6uhAaGorIyEgAui+EpmlcZ5OWlobz589jypQpcDqdaG9v5/lkTpw4gRMnTmD37t3clyYuLg5paWnYtGkTrl69ips3b2LatGkoKSnBlClTuHI+MTERCQkJiIuLQ35+PlwuF65du4bGxkaurJ4wYQL27t2L+Ph4fOELX0BAQAAKCgoQERGB8ePHIzExEQsXLsTGjRuxbNkybgl25MgRLjYk/x7ykJ89ezaP9xUYGMjnnEyrab7Jpyo8PNzL6KG+vr7foS3+JXEhidpEjp04FDFwp7zvRT2juAbLy8u9/EiA/meCrAOUQax/sCUv/+vygdxNDsSXcvTx5ZhVqrKiDJXKf/ENPfyFGAuL3hcpbarPyiZcbJfMD1VUElHVFRUVeLkCPB8I4M2xyJwLAC+ugfqUnZ2NmJgYHv5DFju53XfiUxnNtdgmoMcNolha1JY4L0Shu91upKamcqpR9Y0IuVIYFDnXCB0q5OkvUqNhYWFob2/H7t27sW7dOlRWVqKrqwuNjY1ITk5GbGwsnE4nSktLeV8p5hVRxeScSAdkc3OzF8eSlJTEx8IY6+fnQN/kxIkT6O3txaJFi9DZ2YlXXnkFmzZt4j4X1Nddu3Z5cQOBgYEICQlBVFQUzp07h+vXryMoKAiJiYmorKzk3AzpdioqKtDe3o6rV69i6dKlqK6uxsKFC3l9tbW1qKqqQnR0NHp7ezF37lzs3r0bmZmZqK2txfXr16FpGj+Im5qacOvWLTQ2NiIxMRGTJ0/Go48+ipaWFq+13NLSgtzcXIwZMwajRo3ischEogyAV4w0+r6Uj0PcbxTzjOJWUcwxMfqBGCuN6lWtU3l9Anf2vbg+xT2iIlpEUEkQ7HAg9L/cjhUMJB9IFGPsfxhjVxhjlxlj7zDGIm21+lcOdidftaBEhZmqrLjYRF8QsbyoyBTfl60yqA6zBSNSN+T1KveDZPv0l3xRSBErcjqi565oqiuOnUwpFyxYwC1VZORx+PBhvPjiizh8+HA/Ckusn9oGwDPEydQiHSKlpaXcgSssLMwrT7o8J06nk8eGiouL4xGJCbGVlJSgsLCQx9gi5PHyyy+jpaUFdXV13MyWvllsbCwiIyOxe/duLvYgQ4azZ8/yvOqpqak846DD4fAygADA+x0YGIiEhATurU4I7cUXX8SBAwe4z8i5c+fQ2dmJ3NxczJkzh/sGUXTbsLAwBAQEYO7cuXjiiScQFBSE4OBgjjzi4+MRFBTEDSXIQkoMzdHR0YGrV6/ikUcewfe//33cunULdXV1CAsLw969exEXF8ctshobG1FWVsa5sLa2NuTn56Ompgb19fVoampCZGQkJzCysrIQEhLCuRVxzebm5mL58uX485//zIMOEsFDodYrKioQERHBjToAHaGQmJHWEWWmTE9P5+u6rq6Oc3C0lsicXHSEldenvJ7EdSBzBkbcgWrPyuJaKytRIw7eqK8KUIYyCVDdlOBtAD8H8Dee3+sBZAOYZ+PdjwQYcQhm98y4DyvORPyARpSvzEXQbypf1KSHjP70Tw/i4YdH2grTDOgL16gs+ckEBwdj2KlS/psWJyEMulfTfgMzxo9EWlqq17ioLnmssoiOkAiBahOIaXRl8R7NCdWvakfcaBR5FYCXIlM153TP7db9M+jAYowhLi6Ox9EiZTNtdJqbTZs28ei59CwhIQE7duzAlClTUFdXh1u3buHMmTOcck1KSuLiNAp5AtyhLknGv2vXLowdOxZLly4FoFtL5eTkYNq0aV7ZKDMyMpCcnIydO3fysB1nzpzBhAkTEBwczL3je3t7OWcZHR2N/Px8rFixgvdZFM2Q6I7mmESMcXFxKCoqQnFxMTZv3gyHw4Hhw4ejtbUVQUFBqK+v54mYMjIy4Hbr1mZkaHD06FHs3bsXzz77LMLDw3Hq1Cn+bZqbm5GVlYXw8HC0trZysZOsSyBxFXEFpaWlnGucM2cOOjs7uYUXrU2y6iIOSYy6QOOltSD6Ozkcd3LXy+tPXE+kRJeJOtKTDEScZJeTUJ1HMsFkVo+nnG+hTHgBxoo0TZsn3TuhaVq60TsDAcbYv0PXs7gBnAPwlKZp1xTlzgO4AeBDAH0q9koGlQjL6OAQWVSVCMZowsX6AP/liyqlmti/6d/Zp48pIoTn5SCgbyojCvHwp2cyQhF/a5qGv/zlL/jYxz7m9Z5Y5tOzJ+KJeRG2+y8r88wWbXFxMRhjnOshj3vSlQDGFBpRhqKYgdKFihSfKNqj+uT36XAVxUZutxs7duxATEwMRyBut5uHaicFLgVPJM5A9E7u7OzEuXPnvOz2CwoK+BjooN25cycPQQPo4pqtW7di0aJFaGlpwaxZs7zCx5PSvKysDFOnTuW5REg3EB0dzcOZE/VcVlaGwMBANDY24mc/+xn+6Z/+CePHj+fiMLdbV+p3dHRg6dKlXoch6Z26u7sxc+ZMhIWF8fS5Z8+e5RySSATQviLdwcWLF9HX14fx48fz70NGAOSzJFoBHjhwACEhIV7GBGQkQJCamgq3+05Wv7fffhsRERG4ePEi9zE5ceIEDh06hGeeeYbPn8Ph4KmMCQoKClBbW4u1a9d69cVoj8prXlVWVmarwIoYtfNctc9oL4kGK2YE8UMPPaQMZcJNMY0u6JF3vwFgKoApAJ4D8G0AYQDCrN739YKurA/w/P9jAD82KHcewGhf6k5JSdFUcPv27X73Ojo6tKKiIu3GjRtaUVGRdvv2ba9yqnfEZ+J7dsGo7I0bN7zKUL3iffH5sWPHtKNHjyrrE8ch1iX34fbt21p+fj6vh+53dHSY9l+uiy7VXMh9kZ/duHGj3/0bN25o+fn5/Nq3b1+/dgk6Ojq0vLw8/i2oPvF70n15jg8dOsTv3bhxQzt27Jh2+/Ztvi6of/Ts0KFD2u3bt7VLly7xfh09elTr6Ojg9dy+fVs7evSoduzYMf6e2KdLly5phw4d4n/pvUuXLmlvvPGGVz3vvPOOdunSJT4+cT3cuHFDO3TokPbv//7v2te+9jXtj3/8I+9HR0eHdvToUf4OvZefn69dunRJy83N1TZt2qRdunTJqz1N07T6+nrt2Wef1XJzc3nfqb3c3Fxt69at2r59+7QbN25of/zjH/n/4hg7Ojr4XNK95uZm7fnnn9feffddraOjg/eFvs2hQ4e81l1HR4e2detWraOjw+sb0pzR/+L4bty4ob366qt8HmhMNCcdHR18jmnti2uqo6ND27dvn9d3kdcrjUv1TLX+jc4Is/2pAqtzSVU/fQs77xYVFWkASjXFmWrHD+RzAJ4GcAhAPoC/B/BlAKUABk8j7QFN0/I0TaOY4ScATBqsukV2VAQVFyGa8YkWP0bvyKCKnWUmZyR5rVxGtrAQxUSqSKCkn5BFY2K9YgRQI38TshIS8x6QbJ8yrsn9FyPy0njIOsuI05A9cukir3a5DZK5z58/HwkJCTh//nw/j14qS1Fp3e473tzimMW5FOeYvr84p5pHZk1pdUk/4nDc8Yh3u/UwLKmpqUhPT0dSUhL3bKe+UQZKwFvMFxMTg5ycHPT09KCurg59fX1cxi6Gz6D+Xbx4EadOneJzevjwYR5hgJwsv/zlL2Px4sUIDQ1FZWUlysvLudUWWc6RaK+rqwunTp1CcnIyPve5z3HFO81te3s79u/fz3OJJyYmcv1AaWkpgoODsXbtWgQGBvJ0r5Qrnb4jzTuNm75LeHg4Nm/ejOXLl3POpK6ujut7qqqqeH4at9vNswHK31DkikTOiMx1KWgmtUFjdzgcXjHfgP4OgjU1NUhJSTHkeOl7qva4SucAqPWSsl7ESMohl6ewN+L+MzpvSHQnrnGxXVVZGMTCGlTuYbAvAP8DYIPBsyYAZdAR2VdM6vgKdERXEhER4RdW9weMsL4RtXzjxg1DrkGmBOl/I+5IVVYsZ0QpifW+9tprSm5Dplrkd1UciFUZ1XhECpnmQMURynMjlj927JjW3Nys7KsMMlUp/hb7In4jaoM4DbGsOA6i+MV7RAHSmOR2VFys+Iw4CeIU9u3bp+Xm5npRzkRJi1S3zI1RXT/5yU+0p59+WsvNzdWam5u1r33ta9rXvvY17dKlS7wt4iiozWPHjnlxNNSPvLw8LTc3V6uvr9eef/55LTc3l/eBOC1aY83NzVp+fr722muvcW5g3759nNrv6OjQcnNzeds0T3l5ef0odeJuxLHl5+fz39RX4jaam5v595S5XXmdiVyTDOJ6MOP87YJZWfn8kr8pfQuR0zU678zODLk9DIADGXRgjO1njFUprk8LZb4FoA/AWwbVPKrpaXUfB/B/GGMZqkKapv1K07Q0TdPSRo8ebYjVRbCSK/oLov5EpiJUsZYISIYvUhqnPRFYxUx9VKcqYKRIdZNOwYhacjgcmDp1qpf+R+yLkV+LiksT25G5FCpD1JJsbilSVxRNV4whRnMg1nPak1yKQkm0trbyORNBptDksVK9FAiPzHXpG5FOJTExEUlJSTxkhRiEkrgU8lMROUcaixg3jOaL2hYpVLL4eu+991BQUMA5id27d6OgoACBgYGYN2+eF3UP6EEdS0tLvSyGZEMEp1MPIkl52J1OJ1atWsWd7iorK5GUlISMjAy4XC4899xz3KKKQn04HLqjJCn/582bx1OyJicnY8eOHThx4gTCw8Oxd+9euN1uTJw4EXl5eYiNjUVWVhbXKwHArFmzwBhDRUUFAgMDubUfzdOIESP4NxS5ELfb7ZXhkTiJ48ePY8eOHbh+/TqcTj2QKAX5BHTLPIpmTfWI80R7xkjnSf0gL3ajMnbAaG/SM9m4hu6Ja404XTPrS1HyIP5WtQdfo/HeTdA0bbmmabMU1zsAwBj7EnRnxS9otCP613HR8/cygP8GMNeqXRJh2VE62f3YqnKqIGlkYmqEwGgBqOoWTQXFAwpAvwNLPIiNRG7i4jMaZ1BQkNcBLr5rFtZePpjFOhwOB1/Y4uItLCxEeXm5l9ctzQeNs7KykmfjE8vIm00ODU8pY8XUtaL5rSi2EsVoFBusoaEBK1eu9EIQpIAUxShiIivxoBGJEeorOfaReEUkAkQCQVTCVldXY9KkSTh69KhXljyyDiOTWvHbkvkpY4yHyKf+ialaHQ49Kddzzz2H5ORkNDQ0ICUlBR988AG6u7u5tRGgWzp94hOfQHt7Ox83RTlOSkpCSEgIYmNjuXiEcrpMmTIFmqahra2NBytctGgRsrKyeMiTyspKxMTEYPr06WhpaUFCQgIWLFiAjIwMLF682MsHhwJTit91z549PKYXASH3uLg4rFu3jodGIbEgRQTWPIYhbrcekuXFF1/0EuGZESCiCI0yXsrEiC8+F2Z7U15PImEoPxP/96ctuT0V3BcEYgaMsZUAnocewLHboMwIxtjD9D90xXvVYPXBzsemBaTiJuhQUH1o+i2WJ+SiqlukGilIoUipyvoZ8TAzA7NFTQe9HMuH+kZhylVzouIw5HhAcpuBgYGcspfnk8onJCRwSx7xmch1yNSYw+HguhKyNCkpKfEKHihSteJ8iDkexFTAxDlQQESqk8K/izG7CDmKhABxM5QvWyRqxCyKtH4I8c6YMQMRERF44YUXsH79ep4rhbIaUr8pGi0hpeHDh2PWrFleYVbowHS57uStKC4uRlVVFXbu3Mkd7eLj4zFy5EgevoXmubW1FdHR0fzbiFZ8iYmJaGxs5Oaxe/bsQXt7O0aOHIn58+dzB8nt27fjxIkTcDgcPLRJamoqUlJSkJuby31vxAOMkDcFjuzq6vIKDUMIgQJYFhcXw+HQ463t3buXz4/I4VEfExMTERsbyyMyLF++nM+tnEWTdA2UQVEMpGlE8as4FyMwItJU541IqNglfO0iNzt12kIgjLGJjLEFjLEMuuy85yf8DMDDAPYxxk4zxn7h6cMExliup8w4AEcZY+UATgJ4V9O0vQNtWHWYW5VTTb5IsVF5I5ApabluWpByXCrxfbENMTCgWf+txqcSo9B7Rn4kKg5DrkP1DrHaoihCRkLkMa4yGhC5DnFOaCx79uzhdZGBQVhYGM+rLpenPtGYKTd8Z2cnduzYwUVk1JZIGYvU8F4LvgAAQWNJREFUr9vt5nnqaR4oqRf5MHR3d/dDYgB43naKOit+07q6Opw6dQo7duxAe3s7NyQoLCzk9yoqKlBTU4N169bxfB5kErtjxw5ER0dz5036bhT6nMbd0NDAD+jy8nLExMTg5MmTqKqqwpQpU7zEO263m4e/oX42NDRg4cKFOHjwICZPngyHw8E5t1WrViEwMNDrO7pcLq/vKxoS0Ny43W7ExsYCAE+OVlxcjMLCQq9+u1wuzlG0tLRg5cqVKCoqwo4dO7z66HA4uI8MpTEgHxoAyM7O5pyRSKSlpaVhwYIFiIuLw969e70cPO0Qn7KEAoAXN6zaw1ZEn13C1wgJ+VOnHT+QH0O3xKqG7nMB6Clt15i++ACCnVAmViwbgVnoALEOolY0j721meiH7MJVVDrVI/o/qN41S35FCIrKqEKbUF1m96l9M9kpvUMgs9hG80W/yQ5fnMeCggIEBwcb5j0BvENMENABJIaNkdt0ufTERiEhIZxKdTi8U/iSI+CGDRsA9PcGFscq1qsqRwdmdnY2d7AT551EbeSRTu/v2rWLJ71yuVzIy8vD6tWredpZcQzUbmFhIerr65GVlYWysjKcPn2aH4But+67sn79ek6Ri/11u+/oFChsyZgxY3Dy5EmsXLmS+0S4XC68/fbbiIuL4+FUSAQYHh6OvLw83n5tbS0vR0ENo6Ki8PLLL2PYsGF4+umn0dnZyQkCCjVCVoDLly/nFlGEFMUwM5RemJC0260nS8vNzcWUKVOwaNEiHgyTIghQ0rGMjAyvNUffTN4roniR/jfaN2ZrnvZVTEyMVygfu+eQ3XIDfccolIkdBFIHIFHTtNumBT8C4E8sLNVkiwe2HHrDaLEQe2sGZvGq6FCVcy/TM8D6kCZEJm4sOwe66j71R3T0E8vQ856eHr6ZxThE8rjEcCKqcYjjFxGs3CcSscnIB4DX+3Kbhw8fxnvvvYfNmzdj//79AMBjTsnjEg8L4I7jnpzDXj6Mab7I6Y8oYfKQpwOR3t25cyeWLl2KpqYmXkdPTw+WLl3KD3W3281zi5AIjWJZiRwZzUFJSQmuX7/u5QxYUFDAD04V8eN233HcpLltb29He3t7vxhT4roqLCxEbGwswsLCcPz4cc6pUP0ulx7Nt6OjAwsXLkRRURGSk5M5MiTkUFNTwyMfd3d3Y9GiRV59FEOJ0DehZxTH6pVXXsH69esRExPjhRSpf2K8NZEYERG62G8VEaZasyqkYrSvyATb7uFuFd9uMMHvWFgAGgEEWpb6KwQjGSCJTWS5qJm8UMWSir9psasoGGpTtOYRF7ModjNjR0l8I3rcGpVVjUMuTwmkVHJYh0O3WAoKCkJ8fDyPKUX5K0QQ/XPE92WgA19UdsuKbwA85ATVSfeTkpK4uEgOS5GamoqoqCiEh4djw4YNWLduHU/GBMAr4rDI2osiNFFWTtwFIQn6fqRkbW9v5xFVq6qq8Pbbb3M9Cnmrr1y5EmfOnIGmaVxfcvHiRbjdbvT29iI2NhapqalczFNaWsoTOsXExKCwsBDbt2/n7ZNl2uXLl73mjqyv5Pkk8Rwl7qJQ5G63GwcPHuRiG1FHRwd6Z2cnKisr+RjT0tJQWlrKRUgUzXfEiBE4fvw4ioqKeLZFOhg7OzuxZ88eHi7e7XZj3rx5nJs8fPgwz4ApGlwQd0dpZBsbG7F+/XqcPHmS152QkIDe3l7k5OSgvb2diznF/aRCDCIHb1ZGXifielTtK7db9zEiowArEPvhDwcyWGCHA/kTgCQAB+CdD+QfBq0X9wj8EWGZsXtWZeVFZSR2ktlfmYpXOQWK7K8YGsKMC7ELKspJRZmqxHIq0ZBIrckciNE8yffk+QHuHBRipGJycBO5CzGXA3EhdBjK4U5kjoGU73SoEqIQI++q+u1266ajdKCLh1tnZycaGhoQERGB8PBwjjAA4MSJE9i/fz8WL17M+y6mrSXk+/bbb6Ovrw9RUVEIDg5GSkoKF6/RvIgUu7g+SKQn91sO2yNS2AC8QroQYpQzSp4+fRrh4eFob29HREQE6urquIUY6WmovevXr+PKlStYtWoVn8+amhoebywsLIxHNSYECYAbU5SWliI2Nhbnzp3jnJ281pxOJ88FL4r1RDEhfVMyURej6qrWHs0RxRij90SO1EyKYCTKprqtJBWqfWMX7HJFMhhxIHac+b6kuqzeexCv1NTUfo4yKqcZO04/dhwRZSc/s1AGqvAFKqc/lSOReN8qhIpZ2AT5vvhMDmli5FSlak/lCGfVJ6MQK2ZjFR26xLLiHIp9IOcysQ75XRo7hU6hsCKiE6CRA9alS5e4Q+bt27e5M5zsRCg7E5LzHrWnaXccOCm8THNzs7Z7925t69atPJyJGE7ljTfe0C5dusRDqsjOiqJDnTgm0TFT/laio5zobCqGJ7l06RIPGSK/IzpIis6P5OBHTo+ic6L8bfbt28fDmBw6dKif46BqPYvPxblWrRvRCU+1x6if5PSoCitktqeMHBJVjqOqOqxA1WejMr4AgBLNH0dCTdN+C+D30D2+SwG87bn3VwcqllMFVuIqAtm+X35HFSZFFo/ICmO5j/J7ZmIwud/028jWXbxHFi2iiElFYanmSfwtm/mq5lL1HVRzIIot6D6x9iKXIs8htV9cXIza2lpEROjBIEUzW3GMSUlJSEhI4EmaSNFJIb1FsYMYUqK2tpY7ZLpcLhw6dAhut5uLe0TfETHpEPlFAOBUOIWHpwRWbW1tCA0NxRNPPIHFixfD4XBwpfju3bt5jg8SIVZUVHCrLrJQorFQWHfK705cDn07cS5FC7ypU6cCAHbs2IGbN2/C5XLxhE4iN0ZmtfSdiZOgaLxlZWWIj4+H262HKSkrK+N1iOvA6XRySzFAD9tPuiPi+Ki/ssiJ+i/OtbiWSeQI9BfNin/j4+O5+Tf1D0C/NafyBaO1SHMrPjt+/Hg/83+75wyBvJ87OzuV4ZEGVV+iwiriBWAJgGYAhwEUQA8hkmH13oN4WXEgvoBVuAGRijGjBu42GHEs4nPVX6P/jSgambpTvacK4Ca+b4erk0HmIGQOQwYKHChyIK+99hoPykhUqByK5NixY14B/sSxiBSsGJBP7oMc/M+o32JICnre3NzMuQWZ8xE5xObmZu3VV1815DiIS1GF7hADH1K9Kg6JKGkKLEghR44dO+bFRdBzkWshzoXqEbm0/Px87cyZM14cE7Uptk3fvLm5mbeZl5fHOROZa6d2zdbb7du3+Tjk7yJ+ZzH4phH3q+J0rDhqCgujWq9mv1V1UTkxyOdAAQYciB0EUgogVvg9HQZxUR70a6AIxO6HsDrEfGnPaMH4gpR86bfVQpf/F98x2lQE8mEk1kWiAV/epQObNp64cVURiWmjvvvuu/0OdjlCrHwQyO0T4hE3vfi9zL69am3I4kyxL+KhoPoONK7m5mbt29/+No//Jb4vx4nKz8/3QiavvfYaF83IIlSjyNTivIsI4saNG9pPfvIT7Yc//KEXUqI6xPeo/tu3b2s7d+7UNm7cqNXX13vVR3GrqI+EeGishLCo/+J3v337tvbuu+96IS2jdS4SBjTf+/bt055//nkee0v+ZvJvWo8qBGUGRuIr+fuLUZlVZczW2EBgIAikws69j8IlIxDVpBuB0YcyK2d1IKvuiQt/3759fOGLz+lwtNJ32BmTDEaL0wpRqCgxIwrNKLS1KCuX3xX1BvKmlcdktHno0JPnVJ4Lozrk//Py8vohHjo8jOTo9L98yKnCzYvvqfpEa4G+CQVXlMdByEMMcU4BD8XvovpWsv6CntE8UmBE0hERp0Oh5Ovr65XcHNWVm5vLEcWxY8e0+vp6Hg6fdCliEEQRWVE4+1dffZUjD3kshBwvXbrUbz3L809zJeumjLhmmUhRvW/nvFD9b3TPigORxzNYMBAE8hsAv/aIspYAeA3AG1bvPYiXiECMDil/D2OjciqKws4hTYeMiq1VHdhGZcwicZr1hUDF+lu9J1Prqo2rOpytfpuNVywn53Kg++Jha9QO3ZMRgKqsTIGKeTvEsirKXcynQWWM+kNiIvGQpnKiOE5GWCR2ExX5VB8d0PIYxD7Iynd5bb7zzjvaq6++yqPnUl2EEEjsJnNp1N6lS5e0Z599VnvnnXe8IvrSuhcNAMRxUvRemkdxbISURNGNzClRH1VEkErJrvrfDAmp1qqdPWi2l81+G/VxMGEgCOQhAP8IYBf0oIVfA/CQ1XsP4pWammo6yYM96ao6jVhVq0VnhzoR75uFjpf7Ih+oqnpU7RptKqNkNeKGIdm16vAza9ts3DQmUVwhvqMSaYlhr+U25LIixakSlYjiD9WYb9/W5eyvvvoq12Wo5kVGJqKFkrxWxINS7m9eXh7XD8iIQCVaEg9W6ovIUakQL1luEQcgi3HoHRVnlJ+fr/3+97/n1mayCElcUyJRIIrK5LXQ0dHBQ8jL65FCyRMStkPNi99e/B6qlAh29qMM4nwbET5W+hSrNgYD/EYgf01XSkrKgM3kfAG7B7DVgS/XI24Ms3fE/43GacVq290U4m9ZVKGqTxaPyIexqm153EZAB4sKYchAIhK74gaqW0SAqvqNvg8dFDKCFRGMnMfBCGFRP2SEQ+UJAYiHlJhRT/4WJDqS9TxkDizWL47lxo0bXuI84gyOHj2q1dfXa83NzdqXv/xljiTo8CaT3Pr6em6OLBsJiAhM/P7EWamIH3qHkBaNn97Jy8vrx9mrCAbxf9Xcm60TO/fEZyLhI4MKsRr1cyBg9r7PCATADs/fSgAV8mX03oN8iRyISG0NBhIZ6AGskn+LYCRKsINIjA5zqz5agRkFZrXJVOXprxWFpdpkqrrNxqxpd7gVUX5utdHFPtg5FIyQlpyi1kg2L9Ync2yEHOh/4jhI3CXK46msyJ3JlO2ZM2e8fDhu377NE0TRfVpLJGKi+3KK2xs3bmj19fXaJz/5Se2dd97Rmpubeb8JGVGf9+3bp/3kJz/hiaOovnfeeUd7/vnnuf5C/G5iPeI+EDkeQlriXFLfZOJHNOJQrUG7SMEOgWNUj9m6lteMv22Z9cGsLn8QyHjP3ymqy+i9B/kiBCIeqnYPI/Gv6rk/H1J1aJotSpXIiZ6b1WHnMLfTT6N7VohkMNqj+74gfTv9lpXHqvmV35eRk4p6pYPcaI2pRGzyM7Fe4h7oXl5enpf5q3jIi+IQ+p/KinWLc3np0iXti1/8ova73/3Oi9omrkFENGKGQpkqFpHy7du6WbGs6xENQERRl2jgQOMl/YjRmpaRurgHRLGZ6tvL30PFBRuVN9vzRmvTat9agYrbsrMP7RBHVs8HogP5sZ17H4VLFGHZPVTlw9vuAvMVrBaiin1VlbdCRnbbFutTHZYqqyH5t9Xm8BXRWB3wZmNWzY2qLiMkLT4nAkQmRsQNS4jDCOHJcyMfwJSelg5b4ipE+b8suhJ/y6l3STQkchGEDOid3//+99qhQ4e8vN+/+c1vckqf6iJrL6P0raKuRrUexbrkuVHpkFR7TkZKRt/ZbL7l52Zrx8gyzgrEsaq4TjucrFV/6J68T+l7i5ET/D2nBoJAyhT3PvIiLF9AtXD80Rv4UlY+mFXsq1mddikbs80hy83NqD2xj3b6aYSErMBoQ1npXeRQLJrmn6mx0RhFyl5lmGBGIMhzKfo0iEicFMBbt271em42T7dv3wl/IusX5PG8+uqrWn19vZcjomy9RZyHkYWgyFnIJsBGc2r0PeRxUN9laze7ekbRv0M0iDCrw2xfWIFc1ohYsYu4VOMTfxvp/OxyIGZt+CPC+nuP/uOmpP9oArDd6L0H+boXnui+HoZ2EJFIXfrShhmlLv+lS6UslE1HjSgwFQdi1T+7Zc3mSKTUjQ4BI32IEVFgdCCpDi2aN6PIA0YUI/0lKymqRxanaNodj3tCLqKiWq5X/i0jDxFEJPXuu+9qubm52k9+8hOOOMgpUeTM6DBWIUoReYhiNHnMRtyq0TonJEe+UbJVl4zUxbETEUTviVZo8pypEK+vB78vZX1d92bljdaXL/WL98V+GzmPmyGQEABTocfBEvUfYUbvPOjXYCIQM7D7ka3K0nMzCsuofqNDS9yoqs1rZdJqB0EYHQhm/TV7bkWJiR7Wdp+pxmjEOZkhALmfRu/ISFnUPXzzm9/kimIRCdElH94qxE+/RWQvjlU0yVVR/YSYKMBhfn6+tnPnTu2Tn/wkdwYUKWnRQ121xsS+y74x77zzjpdORp5Tue9UByEmWbdB3JPo1yITDqRjEedRdsYV1yw9F8eoQjRm4EtZO2C2D1TlBsLh0HP6C6BG8wWBeBXSw7l/1XMl2XnnQbz8QSBWH8sOKyvW5QsyEJ/bXbBGVLTq4FcdiEZiHfnQsrM4faHUjOpQRQGWyxghmdu375jFiu+TnkHWGYiHjTxXVtyc2Bej32K9IgV+5syZfvJwOvzkiLMyghcPSTGKrdg3Qiz5+fleYT1E5CEjKLrEsCjiXMkiNFEsppo7GishTPI4l/1YVAe6iPREZCrOAY1HRqIyIpHvycSFjKzF76ji+IzA7mHvK9itT+77QOvzmQPhBYB/AFAF4F88VyWAZ6ze8/cC8D0AFwCc9lyrDMqtBFAHoAHAN+zU7SsCsVoEKt2EnTp9acNuGaP67T5TlZMpGdVfq/6qkJQVxSP+lh3IZORmhjBlqlHstxxkTkZE4qFnNF65rCq0hawzkusVfS1UCF7+rTp0iSqX44KpEKfog6Liaux8H3E8onlwbm6uV8gRo/EQt0VITTRHFj3SxXdEMOIaxHHLCIYCJYrljXQuKiRi1BcV+KtzuBswEEQmvjOgWFgARgi/R9xNJboHgTxrUWYYgHMAogA4AJQDmGFVtz8IxGrifUEeVKf416wdefPdD5Dbt9sf1fjM2Gr5INC0O6ISXze10WGuos7t9J36YqQElo0JzMZO92TRkfiuGXIW54RA1I+I7ar0I6JFlRwfymycqn6JYVLEeFXyfIi/RR+VGzdu8DpExCZyiDIiUq0/I65ZHrcoNlMRODKHmJ+fb+lLpPo+donKe7Wn/UUekg7Ev3wgABiAD4XfH3ru3U+YC6BB07RGTdPcALIBfHowG5BzWRiB3exhYp2q/Bvyb8opUVxc7JVB7l6DKieC+NcK5BShqnwlVJ+YJpgyGSYmJvZL32k1dwCQlpbG85+LOU1U/RezzBmNTc49It+nd0pLS73yg9B9GjutAYfDwfN4p6amwu3Wc7lTvhDKWaFqj3JgUN8pK6CY6ZFS6Irjd7lcOH/+PNxuNzo7O/HKK6+gs7PTK9ueWZpU8fu43W40NjZi4sSJqK2thdPpRFJSEsLCwrzmSUz/6nbrqYS7urqwY8cOnDhxAufOnUNWVhZSU1PR0NDA+07pcmldUHZGcT/QuORvoFpbGRkZyMrKQkNDg2GqWXHsDocDAQEBiIuLs5UfSPw+lC/G6h06C+Q6/AWjOvw5O+zmRrLDEfwjdAr/e57rNIAtVu/5e3naOA+d8/kNgEcUZdYCeF34/UUAPzOo7ysASgCURERE+ISZ7waFIFJ6VmIDmYLztY3BLO8LN2Ql+jFrV6bYVZSv3A/5mZG4zag9UXQigkypWnEHMpcj90c1RjFUB4mAVJS7+K4cQkXm2uQ+ke5BbE/T9Bwj8toisZrYrorLorpFEZhoCSfPG+lz9u3b58WBqPYA1UuiKHpX9q63qwBW3ZfHpWneJsuq5yoYiJ5PXqMDOW9kjmGwAQOJhQUgBbou5P8CSLbzjkV9+6HrVeTr0wDGQRdRfQzAvwH4jeL9zyoQyFards2i8doFswXpSx1W4UWs2jA7EO1aatgtLx+ydgwBrJCNVbsqMZAIZptPPoj8UfjLB7wsNzebf6O+qhCfKDIxClgoi5hkAwB6LjqNiUD3SWQlfke5Pcp/IeozZAssMbqviChEkY9qPYgXjVeeE3GuRWSqImCMCDASP5l9dxmx07hEER/dl98T/zcyH1e1Z9QPuV67MFhnkR0YKAJ5BECiB5GkAEix895AL+hmxFWK+/MBvC/8fgHAC1b1EQLx96PJm9nOIejPMyugxS4GxjOq1w6SsXPYyxtYbsNMBm0EdudGVb8cRFAFsizdqg9yGVGeLx/2Zj4YZghWNn2VkZ3Yd9V8igpmuV2KaqtCqCIHYnXIE3Iw8vUgR0LVmjCqU75HDolGSNLufNL/MiIzClVv1i+VFZusu1KtQ9Wcq8ZrlB/GF7B79tity24dfiMQAP8KoBVAPoBDnuug1Xv+XvDE4PL8/zUA2YoyAQAaAUTijhJ9plXd5Ik+kImX37NSdtqJCOtrm1S/EdWs+m21sY3KqubL6J7RM1/HKnsJy3NAG9IO1SeG/1A9t6JQZcU0gUr8olL2ikAKVlUkWNmMWIwnRaAKwig+k/N+yHXLCEEuJ5u6GnFaRmtERjSyZZUIIiIT51O1hlXtm4k1ZWQs16N6n0AlrjP7riJ3pwLVOMz2pRmo5magYLeOgSCQOgAOq3KDdQH4He5EAN6DO0EdJwDIFcqtAnAWujXWt+zULXMgA51Uq0PX7JCx266v7xhtdtWGUyEB1SK14nLkdge6sI0OE7Fuu22QOMMo9LdZfXYtklQiFqNvZiQSkdeKESIQzXRlU1aVKTCVlZGGiDDE+s30PmZzLr+3b98+w3hgt2/rzoRin4w8140IBVWdIsEgjp3GKpo/q3RMcl2qeVD1xSjOlFn8KVUbYh/Ecma/xbruJgwEgfwJwFirch+Fy44Zr9WBrSpvdtCpyvva7kAWh2rDWNUrb2BVpjtfEKOv/TWisuy2ozqk5UPFyF9D1R+zQ4Mof9mvRBUnStVPOpzlfPCqw1E17/L47B5+qsPZ6BAjbkHMFSKXE+dJ1pPIfWxubtY++clP8hDv9I4qD4pRkiXxL73T0dGhbd261StqsSh2lH2KxDJGXvWqdq2eUf0qblMGGUmbicyM3vfFwdEuyHUNBIGkQXfse9/DEewBsMfqvQfxMkMgVger1ccZrMNzMOs0O4x9ecfs4DEqZ1a/1XPVPJiNQbxHG1c+UOXy8mFsZlllJMITORDZMkkM32E0Rjq4ZMW4OCYVpSw+VyF5sQ3iKnxJoKQa/6VLl3jucbFuIwQlW2PJByohD5VITR6b1foTOSQjDkR8T/4+IgIyAzsEhwhmCnhVnfSOP3t2sJGHPL6BIJAzHgusxwAspsvqvQfxMkIgVgtCtZD9BStqwk6ffFkw/vTZLrIU+2jVX1V5VTmVqM3MYs3o8KJnRtSZlThP1X/xt+pbyUp3I67PSDFvNF+qg8gsH4lYjuJbiQEI5fES9a86zMT6ZcU+6VXk+TSaO1nvQe8ZiXtV9aqQvwpxir9Va062IpOtwlTjsNJxWe1tFTL0xZjFXxiMM2AgCOSwVZmPymWXA5HvqxatP2B2gKoOMaNFaodlHexFaNSGnf6qOBoj/YuReanYllG7Ru2r6rJS1JqNV4VsjMQPIpeiakt1QFodKuJhZHTQyn1ubm5WKuBpPcliH1Fhb4TIfM01IR+i9FfOUSK2ZzTXdtsQ50D8LSMDO3tc/v5Wa1p+1yzFs9X7/sJA6hXfGQgC+U8AP/SYzt5TM97BvgYSC2uwqAOrQ8iXOuR7qn6r3vW1v0b37bLaqr7Kh7oYAM9IHk2HiirTn9EhJ39DlXWXHeJArN9sTlR/RfGNPGcy0rEiLlSHlniQy3Mrvm+UlMwO9S+HKBHfFfsj1yH3Q553ovxVfTAiHMx0QWK9dt4ROQ+7e8MIydlZQwN57i/4izzEtWqEQOyEMkkGkA7gBwBe8lz/YeO9jyyIYSjInZ9CJ5SUlNgKOyCHJSGgusTwEVSGwkTY6ZcchoHCedClCkMgljPrL/02Ky+Pwaxeua/Hjx9HRUWFV/nAwEAkJSV5heYwas/hcCAqKsprvuRQKKr3AD2cCd0n0PdHf5DrofqN5sxoLii8hRzmg+qsqKiAy+VCcXExSkpK+vWDxgDcCdsirqOwsDCsWbMGNTU1KCgoQHZ2tlcYFConhlIRw5uIYxLnRgyXUltby7+JuNYoZIe8BsV9olpLYvgYCjEjr1cqf/r0aXR2dvIQMeL3ksMDAUBiYiIPBUN1yN+YvlVFRQX6+vq8xmsF4tyLYVTkda56z6reuwGqeq3OsEELZfLXdFlxIFasqIo9NqrHrm7AFyreTMRFbVHiHDsyablulfWHXerFrp8FWcMYmQaLVL4RZ2AkNzcan9lzozEafRs7Igez766qV+VxbfSdzRS99J7Z3Ip1mymPVZybmaWX+D3kMck6H9K5UE51K46OuASj8qr9Y/TdjObMV/B1r/oLMgdm1bbdOu1Yd4mAgXii/7VcVjoQO4emL2yu1Tu+Ll47il/VAWK3bl+tP6z6Qs/ES7bHV5Wnvyp5uVzvQOS7VmOWD1r5e6ksm+T+qUD+PiLCpMNS1AcYWQ+pxiSPRVSQi8+oXjPzVXmsMtKW6zPyIZFzpFO/SLlvtV6pbrvljeqwc8/uM18PYF/7RvflEEJmxJMv4Ov4hhCIpiElJcXWpA4G5WAFKkrUl/J23rHTB9Vvf5GI0X35QLSLOMV+DJZOh96RPaTNELJ4CBqZpcoEiNmhLFtAUf2iLF5UvouJj2TzWKMxiZR+Xl5ev/aNQpqo+ie/Y2RGq8pmSQhRFSfLDrEjz6tsBCCXpb9mY1LVa9SmWb8GA6zaEveLuCasYukN9tngFwKBHtBwgVmZj9J1NxwJBwJ2DkhVebvP/aGixANBJa5TbU4CK0sgq7bNxmT3e8jtWG1Msc9GYjiVovX27f7KfqN5MSIWxIPZyIJLPLhlRGA0Jnl88sGtsnRTzaGK41G1QZcqZIk4h/TXLjFgNFbV+pGRpuyAqFqnRsjel77YBX+QkdimyqHX7L3BPsP85kAAFFqV+ahcdq2w7hbysNr8A61bZeFjd+GqDl6V5YrK3JIOBqNEOr4cFqoxmVGdqvJi/810VvIBaWb5JW/egeiIVPNudmDduKE7Ar766qumYjO5PZU4SUQORnWIv2VvcrGMnH/dSCSoQogyqPpndrAbfSd61ywEirxO7SAPXy2uxHf9OdBVa9/X9wcTBoJA/h+AzwBgVmUf9MufnOiDBapFONigUp760je7h7oVZWenbrtlZNmvHSQi99XsHdVBYnTA26H+jPpkJN6yQq6iqEyMgivWa2a2azQfRv0R51kUWamQgyqnuBEBYwcx2B2XLwhY9czKj8QKcZmtVxViM9szZuDPWXE3zhVNGxgCuQHgLwB6AVz3/L5u9d6DeN1PBKJpA2eDreocCGKyc9iq2vW1rNF7ZmXMDnYRzBCYFXK1mkfxwPQnKoHdQ1bVvhkVakQVE9dkFvZDrlN8LvuWUJ0qhGRHjGc2F6o67FgR2jnI/dkXdvapEQKU15qqnJXOw+y3Vb/vFnE6pETXrJXovoCvVOjdADvUrNF7qnsq2fFA2zXb8EaHjtUmUFFmZiI0Weav6ofqIJfrIErcblQCO5Yyqj6Yzatq7owQj8rkVUY4Kq9tlaiJyg6mN7XRmOXQ9lZ1qPphZsEnl7XbN6tx3Lhxo99as+qzUZt23jEa+92AgXAgDMAGAN/2/J4MYK7Vew/iNVgcCB22/sbHMloMdheOnedG983YYvGQtAI7h4aqLRW164t1mYrKE9szArkdM47ECMHY1cVQ/aoovUZjkv8aUbOy0l0+KOl/ihKsGqc4B0aRlVVjtXOY+nrgG31HuoyIArk+sd+0P60OaqO1J192RLBiXQMRUxudAVZWZHfb8AdAqeYnAnkVwM8B1Hh+PwKg2Oq9B/EaTBGWXcpEdU+1GMR8CGZl7YCZnNmKOrIb10iuV3XPqi2jQ8qqfjt9s6I6fTXTtPO95XftcCCylZQVNSveEw9K+V0x45/YL/nQMdMBGa1Vs3FbiWfEQ9Yo4ZpdDkRuT2U4YPauPJ7bt2/z3OtWHIyqD3bnyR+w2hf+EJ++wEA4kDLP31PCvXKr9x7E617qQMw2kxn1Lz+zww2o2rUjQ5Z/2zn0fe2LHSpQLGtGaZmNQ1W3LwjCzjjsiDSs+itTt0Q4iN/fipoV/5ctyGTkZXawmc2z6vA00reYHWSq3zdu3IlGYHSQ29038nzaJRKM9iBFGLaDhMz6er/Bzh7wBYwQiJ1YWL2MsWEAdHkWY2M8SvUhMAGzWDKqe06nE3PmzPG6Zyc+llG7FKPIrG05PpHVu/6AWSwtii0lxjGS50w1j1RejPck120Vx0eMQ2YGNEfUN7MxEchti/GaSkpKcPz4cR7zas6cOZg/fz4cDgf6+vp4fCkxvpIYP4v6TvVSHCs5Zhutm5KSEh5DSnxX9b8qtpnc1owZM/rFvZLXkDxuea5KS0tRU1PD66d+0vdUxcUyi7cmz6k8HrEOo7pofHFxcWhoaPCKTWb0rcW18SCCrVhWAwUVVhEvAF+AnkTqAoB/g57i9rNW7z2I173iQPxlJ30VGQwG3G1W2w4F50s/aI6sRG1W9cqiIF+4FTNK2I6Jqqo9Ep+o/E2MdBVWfbFLRavAyKJNxTn6qjC+fdvbCVM1drO6jPQ6vnCGZntUXhtmMJD9M1h7T7WWBlsngoFYYQGIA/B/PFe8nXf8vQD8AcBpz3UewGmDcueh504/bTQ4+RIRyN06mI1EDnbFWfeCHb5bbdy+PXh5U8zASpktHnKqeRetjCion1F6V1U7Zht2IJtZRmayqMuOeEYeuy8GEWKbVmI46u9gGZPYFVvJinVf2rVCdmbtDjYM1iFv9a2s3rULA0UgKdCzEj6De5gLBHro+O8YPDsPYLQv9RECuRsYWtOMQ0SYbQ4zjmMwqR9x8w/GIW/UhlH4E1/qsKuIVT2TDzmjA50Oa5XlmYwQzCyyrMZolwOQuQ2V456v7VnVYTZWK0Qoz6MvY7UzDlWbBLI5tl0OyI5V190As291N+u3eseXM9BvBALgOx5K/3vQvdLLAfyz1XsDvaCbD7cCmGbw3G8EQhPoK9hZ7Fbes/ImM+JUBnKQyuXkegd6yFu1Z9RPu21YGQAYHYSqeEFG9cj9MpsP1QFmpXCm3774y8jfx844zNqT++YL4rVqT6bmxfn3hcr312eCwEixL9YvI5GBgD8IcrCJ1fuBeAaCQGoADBd+B8Fj0ns3LwAZZqIpAE0AygCUAviKnToHogOxsxCsNjpR/1a5l63q8+W5HRPDu7HIxbrpsLGL8MxMkO0cwqryqveMHAtV9anaEt81cjC0c4CbcQpWhIldTkgcr1X7VvUYrWPVd7Y6sP0xG1f1RzUf8noY6Pr2d58YIe170YfB2tMDQSDvAQgVfocCyLF6z6LO/QCqFNenhTKvAvi6SR0TPH/HeriiDINyXwFQAqAkIiJiQJM4GB/DaiH708Zg1OcPxWvVpripfTEPHmj7Rv2QKVErEZEqFIhROyLnYNRno4PEjr+MmS7HzkFp1j/VwWt1SBklghLbF/Oqq4DmeLBESvJ8iP/L4fv9BTsEkN1vPhAkYrfcYBGGA0Eguz0WWG8CeANAG4BsAP8F4L+s3vfnAhAA4AMAk2yW/x6AZ63K2Q3nPhhl/AF/PvhgUUVWh71ZO/KGUYmRBoMCHAjYoepV79jhIOSymtbfP8OXvln9L4LYDulzjDghI92XFSJQtalCDKoD3CqDoh1PfaM+qu7LcyZ+v4F4iNtt2yhatdW7dwseBA7kS2aX1fv+XABWAjhs8nwEgIeF/48DWGlVr52UtnbEJHdL3EP1DwaLbFVeRflRPXYcxsR7MiUvy/BV5e4FWH3HwZpneWziAWt0oKnAjIJWte8LB2LWf9Uzq+8lj01FeFj1w4jYkMsa9UV1X8VJmfVpIFyAHbHn/SSaBhMGaoXlADDLcwXaeWcgl4fb+Tvp3gQAuZ7/ozxiq3IAZwB8y069/nAgqsVwNxfFvThoifJTZaQTy/hDQave9XfefCmv4njMkOBgz7PqcJefm+m/CPGqZPgqvxfV4WjUFysw4zqNQJ5fO++r1pTZeIy+ofyeOA45/pcZ12HWFyvwhwC5n+BPX8V3BsKBLAHQDOAwgAKP8lqpb3jQL1+V6KpN4g9152ubvlCtA23HjJLStIFZrfiChFTv2n1PPHxUFm9mJrmDAWYUp+pbqtoVlfDyIWr3gPdnvo0QlNkY5XsqIkE116LZr9EcyAjDCEEarVkSidklXFT9s+K+7wWRN5jgT3/ldwaCQEoBxAq/p8MgMuODfvkTzt3scBDvD8aCUm06u45aviIaq0NPdSDbrc+qfn/7Zec9s4PO1zrN6hHv0RzJlliqdWFGad+44R2B1owCN+uH1Ryonpm1Yba+b9/2FlmaIWgREVqZFMtJrMzWl+p9fxwc7RIeZu0/qOBPf8V3BoJAKuzc+yhccXFxlgvP14n19V1f6jba2Krf4obx5bCx6odd5CH7VPiDeMTDyJf3zO75U8boPTuHnhhR2YiKtRsg0df+mvXNzITY6uA368ft27f7jdlOH60IGFWUYV/nwi4yNRubVRk7/biXcLfaM0IgdoIpljLGfs0YW+K5XvNwJR85CA4OVgYXc7vdloHTxLJiILbBDqgmBq+jeu0EqEtLS+PBGK2C/dkNNii3LYPYhhhokH5bBXKjIHpiPYwxZf3ye6pgeFbjloMA+gJut9swOB/dEwMjyutCbJuCJYogBzak4It2gz7KdYhtAurv4XK5sHPnTrjdbsyYMcOr33KgSrNvGRAQYKuc+Fxe5+IYHQ4H0tLSeFBFO+tV1Y6ddWK0bsRAkmbjGoz15utatNPePQMVVhEvAA8B+EcAuwD8N4CvAXjI6r0H8TLSgVix8Kryqt+Djf2N6rOy2R9MjsioX0biCF/aJbNTFaVnRXX6SiWL//vCgVE/ZbNVKxGHqj9GIhJVGTviHjtg9Z6KA/G1zYH27W7sHxqTHSMD1W+7xiN21pEV93o3jTkGWo4A/oiwAHwMQJVZmY/SpUIgg/UBB3sh+NKOvxvA3/blkBX+tCNvcH9FUlZgdBhabXoj81Cjefdl45rJ9f21CvK1H3J5szYHSpDYOTj9XbNm39VOXXYJFF8IGV/L3WvxmD9z7RcC0d/DWwAirMp9FC4zDsTst10Y6CIbaDt3s0257oFudPHe3aLCrJCU2QE9WNQizZXdg81uX3yxTjJry+oQv33bOGyJP23Iz8x+D0b/B6Nv94o49AUG2qfB4kCY/swYGGMHAcwBcBLATUH0tWZwhWl3H1JTU7XSUmP1DckOT58+PWjJWEgueU+SuzygQHMwY8YMw2RVsszZTp1G+ixxvsWkRdQHeo9+V1dXW34fsR67/RR1PKJcX1UOUMvZVXNHuou1a9f2m09f59HlcnnVoXpf7p/VmpbrMOuTr/0165dZfb7cV41vIP28W3Av+8QYK9U0La3ffRsIZLHqvqZphwepb/cM4uPjtfLycsuDB7BWBvoC/n7o+7loB7vtzs5ONDQ0mCIRu33y9QAjcLlcKC8vB2MMaWlpXKFtNVZ/iABSgItgZsDBGENiYiKfG7FPLperH5KTD36zcRs9V9VrF+wicLP3gf7Emt11Z4coMeqTnTbux957EJEUgRECMRNdDQewBcDPADwNIMCo7EflsvID+SixqIOZ0+Bu61DEBE7+1mukHxCfG70n/7ZSbJrVY0fvQx7RonmrVd1yhj5f/Q6sxmMk7rkbuTF86atKVGTXI94fPyWrdXS/YDD33N0YE3zVgUDPDLjdgzx2A/ipUdmPyjXYKW0HS3dit34CVciGgbThq5LZn/qt9BB261IdqmZjGMzoAWSNRYe9GTKRY0WZgThHvh5sviIZ1W+74VB8PaityhnNm5FeQ1W31fjt6t4eBETij45JVcdg6UbE//1BIJXC/wEAyozKflSuwUAgZpSMPwpWf/tgN4rp3eyH3TrsUsV22rAKS3K3kTodtoNlZkvgK1fkT3nxL4GRibJKaW7HZNXunJjVZ8Q1mtVtxLVZcVn+cKN3GwYTCfjbrtwHfxBImdnvj+Jl1wrLzgSr3vMVedyPRTKYMBDkKdfhz33VYeiLf8dA4W6IQWRq2Mh8WPb8t6rT7PA1Cvzoz/o26pO/HI2qvC9rxs6a8IVbVLXp6xq2U+5+nQu+ciBmnuhJjLHrnusGgET6nzF2fWAqmQcHfPHelD1iB6LwsuNda+VNbgYD8Ua18644b/JYVO8b1WmmiLXqh2x9U15e7mVlJddp11vdqs9y+3aVvrJHslH91Eeyturs7OzXb3G+7UYeIA94ub+yEtrIYkzlha8ahxyZwWje7XjZyx7qcj+M+kcgj1luT/TG9xXIyq64uFjpyS57vKvG5I/nv1l/BuqJbsf73gtUWOWv9RooB2IGg80GD5Sq99cpyw7bL5a307a/4j0zMYXqmVnCJDuybjMW3k5/zcZBcbJUyYbMqHU5eq3R/N5LsJonuxS1FXdg9xv4K0EQ+yH+9QXscCBW8+WPGHSgXI+vgIHkA/lruQZbiS7DYH+8gdTnD/KgRWwVLdWftv3pj5EYxQjJ2RFd+XIY2RWFGR1MKlGT/J7VIWl04NxvMJonu2Ivu4SK1fcarHTJsi7obu7lge6PwSZW7YARArETTHEIbMJg23D7W5/KB8FOW8TqG4k6/BEtmd2jOo1AX7f963E4HNwBUCXiMOqTnf7bDaAn1mMkjhTvi5c8FjNRpko8KI97sMEq+J8MRoERzeZbFKvZqduon9XV1YiJibE9J0b1OZ1O7pjpcrkGPSih1bryNVCkUWDPew2WjoR/TZCWlqaVlJTc724MOshOZ0Zeymbv+dPWQMGuQ6CRF/j97L+RB/O9cARTzQPgfZAPhPgoLS1FYGCgqee80Xcz+0ZmHvf+gj8RAqzqs+ug+KCAP46uvoKRI+EQB/IRB5nKEykpX96zC4O5QO1Q36KSURX22582BwP85c5UytaBtO1yubxSEYj98LVut9uNiooKuN1uJCYmGiqezb6bkeLdTOFs1Bc7MJjIg+obaLSEew12DHLuFgwhkI8wqCyggP5WNSq4V4vOH3GX/NzMguhBAbtWdXZFPHaARDhJSUle+TPE3Cy+iqISExMxYsQIQ7GUWNZXoJw1VqIXX0RIA5lDI2tBf0WE/vZFZallp7wI92tf3BcEwhj7LGPsDGPsL4yxNOnZC4yxBsZYHWPsEwbvhzHG9jHG6j1/H7k3Pb+/oDL/Gwj1ZWZ2a9a2nftyH30FK/PNe0HpDTZ3RtStOJ6BIEURufqqWzECp9PpJboaDEKD1gHVJ9+X13V1dbWhObYM/vaPOCJfuKvB7ItMRNhFmlYc5r3mgO4XB1IFIAtAgXiTMTYDwHoAMwGsBPAKY2yY4v1vADigado0AAc8v/+qwa7idqD1+lLG6t2BbG6zegfD3t2XPljNjXwAmpW1o/j3BaFbGQ74CiqCxJd6ZH8Get/KyEBe176IkPzdA0b6X38MPnzpi0z8iRy2nfqNOMx7sS/6gco0615dAPIBpAm/XwDwgvD7fQDzFe/VARjv+X88gDo77d1tM14R7oaJ3d0y2/PXNJfu3w1z44HY/g+mL45sMin7ZFByLbs+NFYmnHZMNO+WGedAfUxUYVHs1GN3zIMNvqw9O+bWVvUOtA1VeV9M2QcCMDDjDeiHUe4vTARwQvjd5rknwzhN0y4BgKZplxhjY40qZIx9BcBXPD9djLG6weqsCTAAQQB6AGie3/R3FICrBu+IZVXP7iWMhrqfMshj9QUG8i6B3M/BqFMG8dsEe+51C/cgtPUx6JGs5faN5lPVXzvf22idQHHfLjDo/bxi0jer/n3sqaee+oui3iAAtwDIz+zUqeqH3fXpK5itH6M+iu9Aet/Xfvry7YcBCAXwZxjPqx2w08cpqpt3DYEwxvYDCFc8+pamae8Yvaa4N6BDQNO0XwH41UDqGExgjJVoqrj6DxgM9XNwYaifgwtD/Rw8GEgf7xoC0TRtuR+vtQGYLPyeBOCiotwHjLHxHu5jPIDL/vRxCIZgCIZgCPyHB82Mdw+A9YyxhxhjkQCmQU+lqyr3Jc//XwJgxNEMwRAMwRAMwV2C+2XG+zeMsTYA8wG8yxh7HwA0TTsDYAeAagB7AfwfTdM+9LzzumDy+yMAH2eM1QP4uOf3RwUeGHGaBQz1c3BhqJ+DC0P9HDzwu4//q0KZDMEQDMEQDMHgwYMmwhqCIRiCIRiCjwgMIZAhGIIhGIIh8AuGEMhdgI9iqBbG2B8YY6c913nG2GmDcucZY5Wecvc8tDFj7HuMsQtCX1cZlFvpmeMGxtg9j1TAGPt3xlgtY6yCMfbfjLFQg3L3fD6t5obp8F+e5xWMsZR70S+pD5MZY4cYYzWevfR/FWWWMMa6hLXwnXvdT08/TL/hAzKfscI8nfZkl90ilfF9PlXehUPXgD3s4wHEor+n/QwA5QAeAhAJ4ByAYYr3XwTwDc//3wDw43vc/5cAfMfg2XkAo+/j3H4PwLMWZYZ55jYKgMMz5zPucT9XAAjw/P9jo294r+fTztwAWAXgPeh+WekAiu7Ddx4PIMXz/8MAzir6uQRAzr3um6/f8EGYT8UaaAcwZaDzOcSB3AXQNK1G0zSVx/unAWRrmnZb07QmAA0A5hqU+63n/98CyLwrHVUAY4wBWAfg9/eqzbsAcwE0aJrWqGmaG0A29Dm9Z6BpWp6maX2enyeg+zQ9CGBnbj4NYJumwwkAoR5/q3sGmqZd0jStzPP/DQA1UEel+CjAfZ9PCZYBOKdpWvNAKxpCIPcWJgJoFX7bCtUCwDBUy12ARQA+0DSt3uC5BiCPMVbqCRNzP+CrHlHAbwzEe3bn+V7Bl6FToCq41/NpZ24eqPljjE0FkAygSPF4PmOsnDH2HmNs5r3tGQerb/hAzSf0gLVGBKJP8/mgxcL6yAB7QEK1+AI2+/x5mHMfj2qadpHp8cf2McZqNU0rMCk/qP0E8CqAf4U+b/8KXdz2ZbkKxbuDPs925pMx9i0AfQDeMqjmrs+nBHbm5r6uUxEYY04AfwKwRdO069LjMuhiGJdHF7YbuvPxvQarb/ggzacDwBrogWtl8Hk+hxCIn6B9BEO1WPWZMRYAPcx+qkkdFz1/LzPG/hu6SGRQDzy7c8sYew1AjuKR3XkeENiYzy8BWA1gmeYRMivquOvzKYGdubkn82cFjLFA6MjjLU3TdsnPRYSiaVouY+wVxthoTdPuRpBFQ7DxDR+I+fTA4wDKNE37QH7gz3wOibDuLTzooVqWA6jVNK1N9ZAxNoIx9jD9D11RXHWP+kZ9EGXHf2PQfjGAaYyxSA/FtR76nN4zYIytBPA8gDWapnUblLkf82lnbvYAeNJjPZQOoItEqvcKPLq4XwOo0TTtPw3KhHvKgTE2F/p51nHvemn7G973+RTAUMLg13zeT2uAv9YL+sHWBuA2gA8AvC88+xZ0K5g6AI8L91+Hx2ILesj3AwDqPX/D7lG/3wTwd9K9CQByPf9HQbfaKQdwBrqo5l7P7e8AVAKogL4xx8v99PxeBd1y59x96mcDdLn3ac/1iwdlPlVzA+Dv6NtDF7n83PO8EoIl4T2cv4XQxTwVwhyukvr5Vc+8lUM3VFhwH/qp/IYP2nx6+hEMHSGECPcGNJ9DoUyGYAiGYAiGwC8YEmENwRAMwRAMgV8whECGYAiGYAiGwC8YQiBDMARDMARD4BcMIZAhGIIhGIIh8AuGEMgQDMEQDMEQ+AVDCOR/OTDGPvRE3qxijP2RMRZ8v/vkDzDGQhljm4XfExhjO+9ym28yxtYq7vO2GWOjmB5V1sUY+5lFfTsZY1F3q7+eNl5gjH1hAO+vZIydZHqk4dNMj+Ic4Xn2JmOsyRMK4yxjbBtjbKLw7r8xxloZYy6T+h9ijO331P05f/vpKzDGshlj98OL/SMNQwhkCHo0TZutadosAG7oduEcGGPD7lbDg1x3KACOQDRNu6hpWr/D/V6A1PYtAN8G8KzZO564Q8M0TWu8y91bASDPTkFPZALx9ywAWwF8SdO0OE3TZkMP0TJVKPZPmqYlQY9GfQrAIY/DIgD8D9TBQ0VIBhDoWZN/kNq/a2sReoic5+5i/X+VMIRAhkCEIwBimJ4X4BBj7G0AlYyx4YyxN5ie8+AUY+wxAGCMbWSMvcMY28v0/BLfpYoYYxs8lOppxtgvafN7KPF/YYwVAZgvNs4Yy2eM/YQxVsD0PBBzGGO7mJ4X5ftCuX/0cExV7E5Ogx8BiPa09++MsamMsSpPebP+7/L0v54x9qJqUpie7+HHnvGcZIzFCI8zGGPHGWONxI2IbWuadlPTtKPQEYkZfAFCxAHPPP2Y6QH69jPG5nrmp5ExtkZo5whjrMxzLfDcH++ZQ+IsF3nuj4Qewv2Wh1MIpPueMQZ62vgBY+wwADkHx/MAfqBpWg3d0DRtj6aI3aXp8BPoYcMf99w7oZl4YDM9ltR2ALM9fY/29Os7jLGjAD7LGPv/GGPFHi7nT8zDMXu4n1c967aRMbaY6cE2axhjbwptrGCMFXrm649Mj7UF6Gt/uYw0h8AC7odH5ND14FwAXJ6/AdAPsL+HnhfgJoBIz7OvA3jD838cgBYAwwFsBHAJuud8EPQQDmnQ86H8D3RKEgBeAfCk538NwDqDvuTDkzcD+uF1EXpeiIege/aPgh6nqxLACABO6J6zydCp4CqhLv7bov+NAEI8v5sBTFb06zzueBg/CU/OBOie+3+ETojNgB4m3attoY6NAH5m8h0OA0gQfmvwRCoA8N/QuYZAAEkATnvuBwMY7vl/GoASYbzU32EAHvb8nwXgXzz/vwEg0/P/VwC8JHyDVwz6WAYgyWQMbwJYK917GcDzqjVnUMcSCDkpPHP/nPB7lPD/9wE8I7SdDd3r+9MArgNI8HybUgCzAYyGHqNqhOed5yHkvQGwD0Dq/d6TH6VrCNsOQRC7k33wCPT4QwsAnNT0nCWAHlZiKwBomlbLGGsGMN3zbJ+maR0AwBjb5SnbB/2gL2Z6aJ0g3AkI+SH0AHlGQHGZKgGc0TwUK2OsEXpAuoUA/lvTtJtCm4tgHuvKrP8HNE3r8tRVDWAKvENvE/xe+PsT4f5uTdP+AqCaMTbOpA9WMB7AFeG3G8Bez/+VAG5rmtbLGKvEHZFRIICfMcZmQ59XGlMxgN94OIzdmqad9txfCR1xAHronOegR1x9CsD/J7TtJTpSAWOMwu0EA/iVpmn/YVTUqi4bIPZnlocbDYVOQLwvPPsfTdM0zxx9oGlapaevZ6DP2SToiP6YZ106ABQK71+GHmqmdBD6/L8ChhDIEPRouiybg2dz3RRvmbwvx8LRPOV/q2maKmT0LU3TPjSp77bn71+E/+l3gEVfjMDsHbGND2G8JzSD/8X3B3JY9kDnggh6NQ9ZDGEuNE37iyBm+Rr0WGtJ0CntW54yBYyxDACfBPA7xti/a5q2Dbr+4e89ZY55RGCLoetexACA4rcX4QyAFADlHqJhNmPsWegHuREkQ0c0AwGxP29C55zKGWMboXMsBFZr50PoBM/nDdoZDv07DIFNGNKBDIEdKIAuowdjbDqACOjBIAHg40zP4R4EPXPiMegHxlqPTBue51MGsS+ZjLFgpkc//RvonNMN6KlPfe2/Xfic8LfQrKCfUAMgxrKUN4QAuOThgL4IXVwFz1xf1jTtNegcZQrTlfS1EvLeBp2jegP24EUA32KMxQv3lFZ7TId/gM5Z7VWV8RMeBnDJw135ak12AsCjpMPyrKHpwvPp0JHkENiEIQQyBHbgFQDDPKKBPwDYqGkaUXhHoUfIPQ3gT5qmlWiaVg3gn6FnaauALlselBSemp7m9E3oYfCLALyuadopD0V8zKM0/ncf+m8XHmK64v//Qqf8bQNj7DyA/wSwkTHWxhiboSj2LrypaTvwCoAvMcZOQD/8iFJfAuA0Y+wUgM8A+Cl0RbZ8kL8F4BHYTF/sEQn9XwDbmG7Gewy6vuttodi/M8bKoUf7nQPgMU1PnQvG2IuMsTYAwZ55+J6P4wV0i7Yi6Guq1pcXNU27Al0X9XvPujwBXScGj/ixR7t/YdY/kjAUjXcI/AaPCCFN07Sv3u++3E3wIIA07S4mKvJwcIegZ7czE/H5W/8+6IYMl4R7awF8WtO0Lw52ex81YIx9DcB1TdN+fb/78lGCIR3IEAzBAwCapvUw3Qx6InQrscGu/+Pib8bYVuhcyarBbusjCtegc9JD4AMMcSBDMARDMARD4BcM6UCGYAiGYAiGwC8YQiBDMARDMARD4BcMIZAhGIIhGIIh8AuGEMgQDMEQDMEQ+AVDCGQIhmAIhmAI/IL/HxKT35n31rtXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_proper_motion(centerline_df)\n", "plt.plot(pm1_rect, pm2_rect, '-');" @@ -1153,7 +1870,18 @@ "cell_type": "code", "execution_count": 101, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "1049" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pm_mask.sum()" ] @@ -1169,7 +1897,18 @@ "cell_type": "code", "execution_count": 102, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "1049" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "selected_df = results_df[pm_mask]\n", "len(selected_df)" @@ -1186,7 +1925,20 @@ "cell_type": "code", "execution_count": 103, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwMUlEQVR4nO2de5RtRXngf8VD8JFApNGQ4PXqIDKiyEvUmRiVtE6mSSAocUwmRluXRIPGGca+EZ2sjjEmY98kGsFMYjSts4xm+Q4+UVTQ6I2hL0+RxiAgoGbZPTGMkgc+av44e8O+++5H7Xrsqjr7+61Vq/ucs6v2V6/vq6+qdm2ltUYQBEGYHgfEFkAQBEGIgxgAQRCEiSIGQBAEYaKIARAEQZgoYgAEQRAmykGxBRjCwsKC3rlzZ2wxBEEQsmLv3r3bWusj699nZQB27tzJxsZGbDEEQRCyQin1tabvZQpIEARhoogBEARBmChiAARBECaKGABBEISJIgZAEARhokQ3AEqpA5VSVymlPhxbFkEQhCkR3QAALwNuiC2EIAjC1IhqAJRSRwNnAG+JKYcwHtvb2+zevZvt7e3YoggDCFFv0hbiE9sDeAOwC/hh2wVKqXOVUhtKqY2tra3RBHNBGnY76+vr7Nq1i/X19cbfpezSpK/eQqSZSltok6P+fSryDkJrHSUAPwf8SfH/U4AP98U55ZRT9FhsbW3ptbU1vbW1Nfj3tbU1Dei1tbXQYmZHX7lK2aVJX72FSLPeFpquDyFXnxxt36fcdoEN3aSHm74cIwC/D9wB3Ar8A/DPwDu64oxpAPoqs+v3MRrlvJJb2eUkb06yar2/vE19bgyl21Zu9e9TLt/kDMA+QsyZBzCv2OZ5nssqtALyWeYpj1CrmCrcrmtjk5pcYgB0epWSG30KpK18TRSPS91sbm7qpaUlvbm56ZzWUFzuZRLXVmk3xUthxBoyz77u74PUjG3SBsA0uBqA1CrFlbE7sO38fehOv7S0pAG9tLTknNaYhDSMsRWtyz1Dtuux8pzaYFMMgA5bKTEqPDVFF3o03IaLBxCzo8ZWEql6ACnefyy5Q91HDEBgYijjKSsvX6RmRIU0KdvJ6upq0HYfqj2KAQjMvChEU8ZUnD7LNoV58BSIle9cy7uUe3V1NclF/z7EAFiSSoNNbb5/THl8Gpspj/irdeayXuOCS/mn0BdTkMEGMQCWpKIwxpYjlXxrHdYDmAdM81TWable0rSlslxQT3GEm1KbzA0xAJbEWtgMmVaK9xtDjhTyFGKB2lQx9in4qoFIsZ2lUH8pymKCGIAITHHE4rtjzNv0zxAZhih2H0pUdrKZU5c7dYMgBsCQeRpx+r5/jL3lTfe0VXix66Muj89rfZP7tsfQ1OVO3ZBN3gD4dqdD3NtXvBLfeTFJb4wOHWIUnSMhyzrXcpPdTc1M3gCEcKd939tXvBKbvMScIjBNP5dRdGhCKulcyy1XwxWayRuAHN3pGIouhtGp37vrYZscFNO8Tp9I2dsTW67JG4B5x9cOjpjTTuW9ux62yWGE1yZjbCXgSg5lnyqxy04MwJzTtMWvrnDGUEA+7pHaTpWh9227NrYScCV3AxaSvrKJXXZiACZA386E1BRQ7E4xBB9ll1N+u0ghHzbrRVNeNBcDkDghGmeZZvnUZ9PTnzGx7TQxFFAKSi8VOVJQdqZTnlVZp7xoLgYgEUynB3w2qFANf2trS6+ururV1VUrOW3zmIICikUKefc1tejSxqtTnlUj0CVbfUDkc7eZz7ghEAPgGd/Kq2/6JoasfZQyTukY7NikmPeY25zr614m/cv0vn3XddVFCoa6ihgAB5pGukMreMzRh0/6FmRdPIAQhJxKm4eRYAhieABtadRfDlRS7a826wdNdOmA1OpdDIADTSPdoRWc2ojAlNzkDiGvS5pNcVNTDvOEqYdty1iLyr4RA+CAj5FuTo2lSm5y5+ABpGRUc6vfPkLnJ6W6G4IYgDlm3jqx1vOZp5Ix82YzjTHPZe9KrmUjBmCOqXbitjnQ3Mh1pJUaNguZIco+V8XZRU55EgPQQU4V2URV/urWuJzJvU5SwaYcQ5R97ga9ae4/9PuBfSIGoIExKnJsRZa7ByCKv58cyyhHmatUDVj5f9ehhamRnAEAHgJ8BrgBuB54WV8c3wZgjIpMfeQTo2MO3T89toypK6vU25QrKZZ/rrt/SlI0AEcBJxf//wjwFeBRXXFCeQAhKzL1xhJDmQzdP237zIVtmaeuYOfdIKZe/jmSnAHYTxD4a+BpXdf4NACpK+axSM0D8HG9jQIxGeGl0GZiyBBKIZd5qT8cmUI5zxtJGwBgJ3Ab8KMNv50LbAAbO3bs8FYg8zrKmFrnacqvTRmYtIcx2ozL06exZLKlzEv9OAfBP8kaAOABwF7gGX3X+vAA2kYd88K8GrYmqrueXPJr+qDfGMbVZtumzTUpMC99MYfyTtIAAAcDlwDnm1zvwwCkpCBTe2o1JUzyUR1BuuQ3pX3vPuovpTY+BXIo7+QMAKCA/wO8wTSOTw/ApoP5Vq45NJxYmJSNr/pIfd976DUTwY0cyjtFA/BTxQFr1wJXF2GpK07sJ4F9K+wcGk4boWXPuWy0zuN9DsJ0SM4A2ITYBiB3peQTH0pJytMM13Iaq5ylPtNFDEBAptjwfSilMXZ/TLFu6ozlQbTdx3cdSJ0ORwxAQMRFH46vBVzT+4SqmxyUUWwPwHcdSH8bjhiABlJeRJx3YislX4gy6kc8gPiIAWhARoeCK/Nax2Pka16eA8iBNgNwABNle3ubu+66i9XVVZaXl4PcY319nV27drG+vh4k/VBsb2+ze/dutre3Y4viHd95W1hYYGVlhYWFBS/ppcIYbbe8x/nnnz96P7FtB3PXN5qsQqrBpwcw1mP9MV+abjuKiz2tEXLfe255G4OtrS29srKiFxcX7zlG3PaIjSH5i+kB2LaDXHe/IVNA+zJWJYylcJryY3vv2EpqqNxDdp/klrcmQj2QSM+LhEzKObaBNWVqT2qLAYhETEMTW9nZ4ssDGLuj+R4htxHigcS6B9B2XV8559rmXGjL89DvQyIGICJjLqhNqeP1MXaZxPT2YpKaPGPTVu8peUNiACKSm2KwSSemS50KMdd85qkch5BCvlMa6bchBiAipotdrg3Gl6GxmU6yfQo0lHGs33fe1nxSua8JIcvett1NDTEACdDXSV07cUgPoE+2NoW7urrqfL69DXV5h5Sti0yxvLCUFV5X2bvKncr6jwtj1J0YgAToq+iUO3FVNhM5yw64uroaJU9tBqn0wrq8MV+GuHqPoXWb4gJ2iLTH8gBTY+ydU2IARib1BtiHSaftOscn1fxXZfc9Kq17PdV7DDWIuS9gm8qfajsJzdg7p8QAjExKLqhNAyuV2OrqamN6ub7H1XQ9xoaqkl9dXdUrKyv3LAibTon5ZEi9d11rMx1Vto/Qh/3lytgGUgzAyKQ0shk6f691twFoizNF2qbGUlicDLkpwOT64447LstBQkr4qkMrAwA8EXgTs7d2bQG3AR8FzgMO64obIsQyALkrO5udODmvV5T4kDHU7qeQMvtOy3ZBWg55cyeaBwB8DHgrcCbwE8BBwAOAk4H/AVwGnNkWP0SIZQBiT+eEVrY26buUyVjGw0e92XhPLtTvl4OhDY2UgTs2BmCh7bch1/gMU/UAYhugJlzKxNcum77dNWN4AL6p3y/GVFJq3p+LUYzdd2Pfv0TWADJmrEaUy32qCiEF4xhDGfvKd1P6fWl3/d6Unmv5mBrFobKOQez7l3g1AMB1NvFcQ8oGIBVL70IqjbUPUw8g1D3rxB6lu+wo8bn+U939U03Pd7uy8QBirUekohdspoCe0RKeCWy1xQsZXAxA6IrIRXl2kUJj7VJsMeUbOurtizOEIQvRQw3V1tb+5xfZlnOZfn3rp28PwOaamEbINK2QRsrGAHwPeBuw3hC+0xYvZHAxAEMagE3lpqA8QxDCpe+ia3rHphP7ktVmVOwyMq8yZCHah6Hq2wJsmw/b603qvbym+qCdLy/JViaTdKteU8hna2wMwF7g0S2/3d4WL2Rw9QCaTmq0mQNtSnselb/WzWVR72wuI5d6vVRHQz5Gpj5HfkOnPkzT6JuGGZLvzc1NvbS01Hmuf59MYz0DYlI3bf226bqVlRV9zDHHWK8P9dWjSZ0M9QarXlPbMSU+ytvGADwJ2NHy26lt8YYE4GeBG4GbgFf0Xe+6BtClzIbMgZqk6wPbuVjT321kqHbIpiMPhqSztnbvk7Gh5o1ty6BJ3ranW9umPpowbW+2+a/Hq6bdZBzaPJcu47uysqIBvbKyMki2Ol11U28fJh5NWT/HHXfcPUq6zXh0lXlbPQ7xROrXtOW1qU58eL51ktsFBBwIfBV4OHAf4BrgUV1xXA1AqOmM+sjA9Ux4k8avdfjTRfvSrI7W+8qwrVGXb6JaWVkZbZqpiumIrfzc9HTrEFlNR442bbWp7VXzUVeQTfnsy//a2ppeXFzUgF5cXByUR1Oqxrbr7KS6jJubm/e0pbJNVgcp1ZF7tW/V23Fbe+66rvxtz549Rka2noeq0TFpC0OxMgDAU4H3A9cX4b3AU7rimAZmTxlfUvl8AXBBV5yUdwGVlBXqonjLNPoODhvDAxiSpkknqHeeegcdmyaD1jRaHmLsbOg7e6laVm3tos+72Nzc3M+AtQ1YupRQ3zRT3yi4rwzrSrHtfn2j+LKsqp5bUxmajrjr9dB02N/QXVBVY9d0P18vGLKZAjoDuAVYBh4LnAg8H7gZWGqLZxqAc4C3VD4/B7io4bpzgQ1gY8eOHU6FMAbVSrNVFiFGALb3HkJ9lNz0gvGmKQrbxS8TY9SXj+p1pWyLi4v3jHJtR/pDKZXK4uJiq2IvlVabITCRr+ka20Vfk3s0lW9ffbdN7SwuLvYakCYj0+dRmPa3ej00eQB9a1dDPDsfg8kSGwNwGfDYhu9PAC5vi2cagF9sMAAXdsUJ4QGE7NRdlt8mnb5Rso+8uMhc9wD27Nlj1Nj7OoiprE3Kpm0U16Y8SkXR5JaHMFRN9+6TuWkaw0WOJgPQVk8mL49vy1OXh9hF6QGcd9559xiCofXQVIZ9o2vbgVhXH+rrX/W+ENMD2LT5zTSkMgXkS0nXGVJ5JlM5JqOmsmOsrKxYTw35NIhtU1ldUwEm9dEWv206pxqnae63ruSaRnAuxxubGqOhZT/0+rbyaUqnSebqiLQcjXfdu23g0lVPXZR119e+TWjbfNAk/1ADa+KhtMnu2xsrsTEAe21+Mw3MDpe7GXgY9y4CH98Vx9YA2Co8G2XYNTrrc/VMlF5fwzEZITUpZhPXdGh5lCO3ctdIKU99KqAuR5/hNFGo9c5Yls8xxxxzz4KzaWcz9cDacKl3H/dp+r2eJ5O6rnoAZZ12rVO1pVlVkEPKoEvGoW2zbcqtqw0NHfnb6I+UDMA/ARc3hA8B326LNyQAS8BXmO0GelXf9bYGwLaj2YxU2ka91d9cnpTsc+MXFxdbXew2pbi21rxnuv6dSXlUFXjfXHWTHE33NS2DKk1G5uijj9aAPvHEE/Xa2to+2xmHztv6wHe6Q5Vp00Lp0NHukGmoJvlcyqCanu1o3cQod6Xd1U5MZXIxOqbYGIAnd4W2eCGDDw/AVtmaGoO+35o62pCRtsnot62j1e/dVy5dcrXJUX7fNTqsp9u248bFKysNUfWtXIcddpgG9CGHHLLPVELTdECXIU8VVw9tiIdjo6hsHlJru+/W1r67g3wZU5N+UMXUOHTRZXR87Y4bbABSDD7WAGy9geoeY5fFt6ZG0TXSrqdh0uG67mHaoIZMJ9S/75rCqRui+kjUdGRvM+J8wQteoAF90kkn7eNmN8k8ZIQ7VPmYXB/K66hia+TaBjKm9xva99rS8JGeKz7qqc3o+DwawsYDOAs4r/L5i8Wc/c3AOW3xQgYfBsC285mMbNsYOqVh8nSgjzx1/R6qc1UNUZnP8nOpbH29bL7NgxkyajW539CyMrl+DA/EVnl1DSZ8eG+mMo9hJNvuXf+ur03ZyOozfzYG4PPAQyqfrwaOAHYAn2qLFzKM9SBY2wjcdkvW0Irs8gCaGl/pwjftITelfk9bD6CPpmmk6kLk2C+b99HJhk5tDDHYQ73NMbCdEomNq6fWN1XTle9qXJdBjC02BuCK2ueLKv//bVu8kGEsAzD2yML2/mWjKnf9uHQ8H0bKxz19do4Qo3ebNGzktPFWTO4VGtP7+5JzSDqunppLPVUHCS7TmLbYGICbOn77attvIcNYU0A+44Wk2vh8PDAyZGSawgu/+zqHSedxNTgmnmHXlEmbnLYdP/QI3Fc/8CXnkHRcPQAXbD0AHwvnWtsZgL8EXtjw/a8B72qLFzLEXAS2rUBTXOfxfciUytx0G21z+r6nqdqwVdR9U1uunlBfWj7xpbhjeAAxsZUzpgfwIOALwGeAPyzCZcAe4MFt8UKGVDyAEKMsk3n/rvuGmpJpuybG3LSJSx4SF0Wdi6LqY17ykQvR1gDuuQBOB15ahNP7rg8ZUjkNdCwPYIjCS0EZjn3PNqMnSkoQ9qXNAKjZb3lw6qmn6o2NjdhijMb29jbr6+ssLy+zsLAQW5zkaCuf3bt3s2vXLtbW1lhZWYkooSCkgVJqr9b61P2+FwMgxCSEkRvDcIpxFnKizQAcEEMYQShZX19n165drK+ve0tzYWGBlZWVoIo5hNxCPLa3t9m9ezfb29tJpDMWB5lcpJR6KPAIrfWlSqn7Agdprb8TVjRhCiwvL+/zNxdylXuqbG9vc9FFFwHwkpe8ZL/BQWnQAadpQ1/pjEbTwkA1AC8ErqDY+w88gjl/EriOLCoKuTFGm021X3RtqMDx4Dabe6cADruArmZ2Xv9Vle+u64sXIvgyADGeerW5r7AvuZZfm9zV78d4ZsEHobdD+6BtS3X9dNjQpNReXQzAF4u/VxV/DwKu7YsXIvgyAEMbrktF5tBhciGn8jOp9+r3vvMWSvmEfiDSB11yjdmGUmqvLgZgDXglsAk8DfgA8Nq+eCFCLA/AhRw6zJi4PI6fU/mZ1HuOectFTq3tH9ybx+kgFwNwQLEO8B7gvcX/qi9eiJDKg2BDSKkRpMDQUZHJE9I+cHmi1+dRDoI/bEfgKY3cfWFtAGZxuS/wSJNrQ4YcDUDK+JjaCn1apckT0jZy1+9vmmbTdfOoMOYBH8e+zAsuHsCZwI3ALcXnE4GL++KFCFM5DnosXBRXGdf3+f2hXXTX4yNktJ8OUu7muBiAvcBhtV1AWS8C9zGVEV0MD6CP0GU/ZN7dh7fSda2PI7x9kONIeWtr2KtE+9JKcS3GpyzedgHpCRiAlBpBFynK6SpTrAV6m99dri+vTWGgkeNcedUDdT2Z1nY3Vui26rN8XQzAW4FfBq4tHgK7EPjTvnghwtTXAOoNLkVPJUWZ2hAP4F5ZcvQAbEbtfVN4Q9Ia01t1xcUA3A94bfE08BXA7wKH9sULEaZuAOoNbh49AEEIiU+lHaqth0jXygAABwKXdl0zZph3A+B7RJoq87jP2oScpsdsCLUu5BObMhy73EN4Fi4ewMXAYX3XDQnA7uLBsmuLB8sON4mXkgEI0ShSnj7xsWDse+oq5fJqwlXe1PMbamdYTKqLzWPlJxkPYBaPdwO3FWsBbyxDX7yeNJ/O7ERRgNcBrzOJl5IBCNEZY43wTO7rY8uo76mrkOUVIu0QHoCvl4b7kKXLA0jde2mjatRyk72KiwF4blPoi2cagLOBvzS5NpQByMEtDImJcvfpAfhIMzSpj7ZLytHp0tLSqPcNuUMqJVJuo0NwehI4ZAA+BPxKx+/nAhvAxo4dO4IUTq6N0xexGnmMcjfNay4df0wPwGW/fI6DgHnCxQO4rpirr4bPAa8HjuiIdynwpYZwVuWaVxVrAEZnC6XkAQjumJS777pJaZ93btgY7L4yHJqm1IkdLgZgDfh94DFFeC3we8BvAh/qi9+R7nOBPcD9TOP4NgDSmNLHt5eQ0j7v3LDpL31lODRNqRM7XAzA59u+w/LFMMDPAl8GjhwSz7cBSLkxiXGakcrDRoIdvstQ6sQOFwNwDfD4yufTgGuK/6/qi9+S5k3A7czeNnY1hk8WT8kDSNk42RBrt4orOexYEtIllXp3MQCPK9YBbinCtYURuD/wrL74PkNK20BDk0rD8UWs3SqulIa4fuCYj6mLrjTmrf6nSioDOeddQMxOBD3c9PoQYUoGwJQYC6k298jdA6gfOOZj8bIrjVQUh9ZuZwWlct5RLFIx5C4ewIOZPQT2seLzo4AX9MULEcQA7I+JovClTLoac8pbOn3Er1/ro2On6gH4enK7jJeKIcsNn23AxQB8DHhWZd7/INvFX9cgBmB/bD0A3zs6YigsF6OztTX+I/650PXkdtPTvl17/KfuAQylWpY+B1UuBuCK4u9Vle+u7osXIsQwALFduFCdyGYKI7XO7FI38/KIvwm+HtrSuvm8n5Smq6rE7rs2VMsyFQ/gMuAI4Mri8xOAy/vihQgxDEDsxh3KjR76ROzQl26k3vlSl88FX1M4XWmbeACxid13bQgx1ai1mwE4Gfg8cGfx9yvACX3xQgTxAMaXoW0XjGm8lDtf7Lp1pU3+rimcKZF6vk3k89WPnHYBFfP+xwOPBg42iRMiuBiAGLtlUm+AJrjsALFdYB2LHIxUF23yz0O7G0qOeTaZhozmAQDP6Apt8UIGFwMwZLeMr3nh3BXMWMQqpxBKY0xFlKPSC4VrG4pRlmNuRLAxAOtF+AjwbeB9RfhH4P1t8UKGMTwAnxViss0v5bcnjcU8KTIx+nFwbUPzNAhpwmUN4MPAUZXPR+VoAEzxWSFd2+OqT8bmrjByH0n7JFe5p86815uLAfhS7fMB9e/GCj4NgMnoPNS++epU0zx4ACGeD5CRdDtTmWZKQSmnIIMPXAzARcAlwPOYHeH8MeDCvnghgk8D0KVgmn6zUUhdHsA8NKqSan58bUH0vWg/T2U+pnGMaYh93Luv3vt+n5eBiOsuoLOZvQDm9cDZJnFChNw8gDFJQb6mNZSQcg3pnKl25KHtsC/OmPLlcO++eu/7PYV+5QObReDet3SZXOMzyFEQ7aSg4HzvoupjHjyAoZ5oDFItuz62tvqfock1b0OxMQCXAS8FdtS+vw9wOvB24Hlt8UMEMQDtpNCQU5AhN2w8gKHpuF4/xBCFagM+1+DGJoV+YWMADgV+vXj69xvM3uB1C/A14M+BE9vihgoxDUAKlThlpPy7Garship106fRQyldn2twY5OCIXJdAzi42P55uMn1oUJMA5BCJU6Z3Mp/7K2xIT0Arc3LP9TzLakocxtsZPedXycDkEoQD2C6+Cr/seoxhMGqpjl2ewxlMIRmfJefGABB0OMpJlOFaTvPn7qClQGTG+IBJG4A5qGBz0MehhJqisKWkM9JCEJJmwE4gAlz4403csYZZ3DjjTcOjru+vs6uXbtYX1+/57vt7W12797N9va2TzGD0ZSHEKRULgsLC6ysrHDxxRd7y7tL/paXl1lbW2N5edlZDhtSqptQTCGP1jRZhZnB4CHAXwGfA15J5Rho4INt8UIG3x5A9TyeoTSNwFJ3y+vkPB/u+pCUz7yXL8tZXV31nnYbvso0Vpsd04PJrV+GAIttoJ8EXgScCFwIfAE4ovjtqrZ4IYNvA7C5uXnPeTw+ELe8mRDl0tapY3T2ugEYQ4bcFsXrjFlP0i/tDMDVtc+/AlwP/DuK10OOHcZeAxij4Ujj9LtNLkZ51u85lTp1yWdKD4xNARsDcD1waO27ReAm4Jtt8YYE4OXM3ne7YHJ96PcB1GkapfhuYOKeShn4Ymzll2K9pShTCtgYgP8OPLnh+5OAT7bFMw3FGsMlzJ4sDm4AbBpGOUW0Z8+eYNvvZMQyn2UQI09jK78U6y1FmVJgsAEIHYD3Ao8Fbk3dA6iecBmrgUnDzos+ZRziyd3UtrgKZozRt208gF3F3wuBN9ZDWzyTAJwJ/HHxf6cBAM4FNoCNHTt2BCugJlLqUK6ju3kyIL7zEurYhq7zc4bW55DrU54GSeFYhNQYo75sDMDPF3+f2xTa4lXiXwp8qSGcBXwROEwbGIBqGGsROMVFPVcZUlYKQ7HJS1f5hSqbrnRDeAC2aY+JTVlXPfGtrf1fOpQ7SXoAoQLwGOBbheK/Ffg+cBvw431xxzIA9UY6D8oz905Tld/Xgn5T2j7JvcxDYLN7a2tr3xcN1etSyrkfawMAHAu8GfgE8Oky9MUzDeIBCCZMdQrM1fDZ3CcGQ9ZM6rLOwwAtNC4G4BrgxcBpwCll6ItnGlI0AKbE7jRjEzO/KZR17J09torORO7YSnSMZwrGrr8U2myJiwHY23fNWCE1AxC704zN1PJbxyT/IReobdOOIfdYaQ9h7PabUn+xWQR+YBF+m9mbwY6qfPfAtnghg6sByGH3iG98yphDfkOSwkg6x100Icokh3KIXe5VbAzALcDNxd96uLktXsjgagBSsshjMcU8xyR0p8+xPkMMvFJ4NicnktkF5BJS8wBywPeBd0Jccm/DPuSvbwv1YRTnfeOHyxrAocD5wPuB9wH/jdoZQWOF1NYAciDHEaMwv6SqrF22fudgLFwMwLuBtwJPLcKbgff0xQsRUjQAqVd+6vK1MebaRa5lNCa+yijVB9rqi+1dT3HXyWGQ5bQN1OS7MYJvAxBi5CD4wWe59qU1lTp0ae/VMhpLMceql6H3zWEA4WIA3gY8ofL58cCf9MULEXwbgBDu6LyS8w4KWw9g3urWpb1Xy2Ksh/Ji1Usq9e5TDhcDcAPwQ+49uuGHzN4VcB1wbV98nyGUB5DCYW+p40t55MS8eQYxpnGacC3X+hvYbMihTfpsfy4G4KFdoS++zxBqDWDeOnoIfE0f5ISsHYTBtdy6DIBp2rHaZKw1ENkG2oAPDyAVJeAqR8h85JC2TTp1JZJKW7AlhPwhjGhXHFPFHquuSvlWV1dHvb8YgAZ8jAJ8jyRsjVKXHCaNPddRui+5bdKpl2vIMhxDYYVYExt7Ad63QfFNea/Sixmrv4kBaMBHxftuPGWHWFxcHDTP6ToqynX0msq8tk9ZmhjDQIfYFZfDNFqMwc/Y+RYDkAllw1hZWXFe6KqnmZtyF+7F146YFHfQxG6fse8/BmIAAhGq8UyhUQruDB29pjjVl6JM80abATgIwYn19XV27doFwMrKird0FxYWvKYnzCfLy8v7/PV9/RikKBPA9vY26+vrLC8vs7CwEFucMDRZhVTDlDyAGMxTXlzItRyqcm9uburFxUW9srKit7bm7z26YzBPngkyBeTGFDqQjwds5oFcO35V7vK45PJz9bcxpy1z7jc5y16nzQDIFJAhoaZ6hPEwdelTnZLooyr3mWeeyd13381JJ520Tz6Wl5eDteVquuV97rrrLl796lfvc6++epjE1EsqNFmFVMM8ewApjDZSkCEkuY7sfTOGB9D1wNPYzwb0ydrGmO0ldN9DpoDSRpTTvaS0s2rejWIousothWcDUns2pu9BziHHUzchBiBxTBvbFBRSaGM4pAzFMHdTL8uxPWXb+5nE85kXF6NXtkGXdigGYE4YqpBSNRguI0RXhpRhquWXCvWyDG0wx7yfz7Rd0hIPQAzAPQxVSKmOYGPKNaQM20accoT4jFw9AJt7pZKWDWIAJoqP0UMIQrruPmkbcZbbLFM3YFOQw5Tc5PVJcgYAeClwI7OXy6yZxIlxGFzOjaaUfeyTB0MytueQogeQilfnQ45UFlrnnaQMALOXy18KHFJ8fpBJvBjHQefcaLq24uVKbIPs4/6uC/6xy8BUjhhbLWOuLfnEt6ypGYB3A4tD403ZA8h5C2MqcvjAh8IyTSOXwUdb/cbYaplLmfXhOx+pGYCrgVcDXwQuBx7Xce25wAawsWPHDi+FofX4i1eu5Nywc5a9TgoeQGh8bTRoSmfsReJcyd4DKKZ4vtQQzir+vhFQwGnALYDqS9OnBzD29jVXhjaIlDpCSrK4MC/56CPkVuPU+9m8kpoH8HHgKZXPXwWO7IvnagCqDTU3D2Ao1Y42b3kLjcuUxjyQw9ZKadPDSM0AvAj4neL/Y4Hbx/AAptKBtW4+lyXnfKewW0SUTjq4tumuBfYUt027kpoBuA/wjmIq6ErgdJN4Pj2AKeFjt0ZsxjRiY5RHDmWeMq7l19aeyu+rv81DXSVlAGxDag+Cpd4wTOULoVx9l03qZT2UefDKSnKqm77nOJo8AN+7mWKUlxiAAKTeiU3XAUK4vSmUTcqKaZ52E9nWdYz6sZG1z2gMTTdG3xADEICUFYzWw9YBfDfKFMqmnqcUZPLJ0OcJlpaWgmzJtE1nDEXoc7NHl7xDtryKBzAnBiAnbNcBclaaddlT8Ep80rWrrX5d09lFsctjjLblM49D5Y1dvlXEAAhWzNMoOmfZ++hTNkNGqK6kVM4xBzaxPawqYgCETkw7SkqjGiGNw+nqDG0jJgrOt8LOqR37kFUMgNDZiUwbWUqju7FJMe8pKjLXqZKm+PO4RmWKeAATMwChGufQRawpMCTfYyvbGCPjGJh4mbZrWMIMMQAZEWpbnXSS/THdKqv1+OXnanBCyJvq3HnMxd4cEAMwEmPu766T4nRA6gzZKjs2Q9vBGOs1qZVRiU+lnWoeXRADMBIxRyLzOHIZE9/lF9tjyNUDiH3/0PeQ5wDm2ADMw0jENg+xlUNqpLhm4Os+sQ5MM52yS7ktxujXYgA8MWbDGrND+5g6mAfX2WeZx6q/0JT1HHtw0tXeUm6Lm5ubemlpSW9ubo52TzEAnpjHnTRDpw5iPlwTmlAL8CGJ4WmE9gBM2mCXDCm3RfEAMjYA9YaV8iKiKUMVeq75NCHHBfh5nLNuK89SltXV1Wzb4NABlo/yFwMQiCHbCJvIcaSSssxax1n8TL1MhhJ7YNM3+FhdXZ1LL3Rra/9zm3yUvxiAQHSNnk3c5JRH07LI5jfNnBbXXQc2oeiTJeX+ZEIpf/XkVvEAAhuAEA3cdKEspc41hJQ7WqrbH0Mvrue4gO37/q5y55rvPiZtAGKMGkw8gNiNbQgh5iV9kZIsXVTlHOJdmeYvllEOsSkgVl5SHti4MGkD0FepsRRIk1ypKrOUO0bKsrURYgtjCu3Y19pBrLzE7n/iAUTwAGLRJFeqyizVMtQ6bdnaCLW+EqMs2pR+jvUSm1D9f9IGICdCuNMh5ZoqMcujfJBoz549yQ0gpJ24IR7AxA1AG64d23VU2fRKQZ/3MJEhJcUSU9GWdXHcccf1TiHGrpPU6m2qiAHIHNeO5KKwmram+b6HqQwmaY+hdFL1AOrErpPYHokwQwzAxBljXjn2aLNElM69xK6THDyA2GU0BkkZAOBE4G+Bq4EN4DSTeGIABBNS6XSCGWV9xXqvcdeAwbfnHattpmYAPgH85+L/JeAyk3ipGgBROGkx5sh0CnUfOo/VKcYxPLch6yS+195ieaepGYBLgP9S/P9LwDtN4qVqAGTKIS3GnJtOse59K+zQeQzhAfhS6r7LUjyAmdL/98BtwO3A14GHdlx7bjFNtLFjx45gBeTCFEaBOTF1D8C3wk4xj32EnNbJkTYDoGa/+UcpdSnw4w0/vQr4GeByrfX7lFLPAs7VWi/2pXnqqafqjY0Nz5IKwnyxvb3N+vo6y8vLLCwsxBYnClIG+6KU2qu1PnW/70MZgB5h7gQO11prpZQC7tRa/2hfPDEAgiAIw2kzAAfEEAb4BvDk4v/Tgb+PJIcgCMJkOSjSfV8I/LFS6iDgX5nN8wuCIAgjEsUAaK3/Bjglxr0FQRCEGbGmgARBEITIiAEQBEGYKGIABEEQJooYAEEQhIkS5TkAW5RSW8DXYssxkAVgO7YQIyN5ngaS53x4qNb6yPqXWRmAHFFKbTQ9gDHPSJ6ngeQ5f2QKSBAEYaKIARAEQZgoYgDC8+bYAkRA8jwNJM+ZI2sAgiAIE0U8AEEQhIkiBkAQBGGiiAEIhFLqt5VSX1dKXV2EpdrvO5RS31VKvTyWjL5py7NS6mlKqb1KqeuKv6fHltUXXfWslLpAKXWTUupGpdR/iilnCJRSL1dKaaXUQvH5YKXU24t6vkEpdUFsGX1Tz3Px3QlKqT1KqeuLvB8aU8YhxDoOeiq8Xmv9B22/AR8bU5iRaMrzNvDzWutvKKUezeyd0D85vmjB2C/PSqlHAc8Gjgd+ArhUKXWs1voHMQT0jVLqIcDTmL3ateQXgUO01o9RSt0P+LJS6l1a61tjyOibpjwXR9q/A3iO1voapdQRwPciiTgY8QAioJT6BeBm4PrIooyC1voqrfU3io/XA4cqpQ6JKdMInAX8ldb637TWtwA3AadFlsknrwd2AdVdJBq4f6EU7wvcDfy/CLKFoinPTweu1VpfA6C1/r85GXkxAGF5iVLqWqXUXyilfgxAKXV/4DeBV8cVLRj75bnGM4GrtNb/NrZgAWnK808Ct1euuYM58XqUUmcCXy+VXoX3AncB32Q2Sv4DrfU/ji1fCDryfCyglVKXKKWuVErtiiCeNTIF5EDPi+//N/AaZqOF1wB/CDyfmeJ/vdb6u7PXIeeFZZ7LuMcDr2M2asoGyzw3VW42e6578vxKmuvwNOAHzKa8fgz4nFLqUq31zcEE9Yhlng8Cfgp4HPDPwKeK9+9+KpigHhED4IDWetHkOqXUnwMfLj4+HjhHKbUGHA78UCn1r1rri8JI6RfLPKOUOhr4APCrWuuvBhIvCJZ5vgN4SOXno5m9CzsL2vKslHoM8DDgmmIAczRwpVLqNOCXgY9rrb8HfEsp9XngVGbTncljmec7gMu11tvFtR8FTgayMAAyBRQIpdRRlY9nA18C0Fo/SWu9U2u9E3gD8Hu5KP8+2vKslDoc+Ahwgdb68xFEC0ZbnoGLgWcrpQ5RSj0MeATwd2PL5xut9XVa6wdV2vAdwMla639gNu1zuppxf+AJwGZEcb3Qk+dLgBOUUvcr1j6eDHw5oriDEA8gHGtKqROZuf23Ar8WVZpxaMvzS4BjgN9SSv1W8d3TtdbfGl1C/zTmWWt9vVLq3cyUwfeB83JaHLTkTcA6MyOogHWt9bVxRQqL1vrbSqk/Aq5g1gY+qrX+SGSxjJGjIARBECaKTAEJgiBMFDEAgiAIE0UMgCAIwkQRAyAIgjBRxAAIgiBMFDEAQjYopW6tnsJY+f5MpdQriv9/ungk//tKqXM60rqvUupypdSBDb+9rSvumCilHqyUeqdS6ubiJNU9Sqmzi9+eopS6Uyl1VXHi6GeVUj9XidtYFkqpI5VSH4+RHyEtxAAI2aO1vlhr/b+Kj7cBzwPe2RPt+cD7Q+7NLx4McomvgA8Cn9VaP1xrfQqzE0aPrlz2Oa31SVrrRwK/AVyklPqZ4rfGstBabwHfVEr9Rxf5hPwRAyAkhVJqp1JqszhX/lql1HuLo4VLXlqMaq9TSh1XxHmeUuoiAK31rcXDRz/sudV/Bf66iK+UUhcppb6slPoI8KCKPKcUnsLe4sCvo4rvH1fIt0cptVspVT71/Dyl1HuUUh8CPqGUun9xSNwVxUj9rOK6A4t4VxTpND0oeDpwt9b6T8svtNZf01pf2JQhrfXVwO8we/Curyw+WJSBMGHEAAgp8kjgzVrrE5gdJ/zrld+2tdYnMzuEzeplOkqp+wAPr5xTf3Zxz8cALwT+Q3HdwcCFwDnF6PsvgNcWcdaBF2mtn8jsALQqTwSeq7U+ndlBYp/WWj8OeCqwuzgm4QXAncX3jwNeWBwZUeV44MqB2bsSOM7gug3gSQPTFuYMMQBCitxeOTPoHcxOWyx5f/F3L7DTMv0F4J8qn38aeJfW+gfFews+XXz/SODRwCeVUlcD/xM4ujjb6Ee01l8orqtPN32ycgzy04FXFPEvAw4FdhTf/2rx/ReBI5idF9SKUupNSqlrlFJXdF3WlUaFbzE7tVOYMHIWkJAi9fNJqp/L9wj8APv2+y/MFHHXPWGmTK8vRvn3ftn8noMqd9XSeKbW+sZaGgp4qdb6ko50rmf2/oSZgFqfVyyCb3TEOQm4oUc+mOX/XwyuE+YY8QCEFNmhlCqV7i8Bf+Mzca31t4ED1b3vbv0ss5M7Dyzm+J9afH8jcGQpi5q98/b4Iv53lFJPKK57dsftLmG2bqGKNE6qfP/iYpoJpdSxxdRQlU8ze3vaiyvf3Y8WlFInAL/F7FC2Po7l3pNLhYkiBkBIkRuA5yqlrgUeyGy+34hicfYOZu+n/TOlVNtrNz/BvVNLHwD+HriuuNflAFrru4FzgNcppa4BrqZYH2A2h/9mpdQeZqP8O1vu8xrgYODaYqH4NcX3b2F2UuiVxfd/Rs2j0bOTGn8BeLJS6hal1N8Bb2f2RrmSJ5XbQJkp/t8oX0bSUxZPZXZEtzBh5DRQISmUUjuBD2utHx34PicB52utn2MZ/wFa6+8W/78COEpr/TKfMoZEKfVZ4KzCmxEmiqwBCJNEa32VUuozSqkDLZ8FOEMpdQGzPvQ1Zvvts0ApdSTwR6L8BfEABEEQJoqsAQiCIEwUMQCCIAgTRQyAIAjCRBEDIAiCMFHEAAiCIEyU/w+DJIf3p6fnPgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = selected_df['phi1']\n", "y = selected_df['phi2']\n", @@ -1218,7 +1970,18 @@ "cell_type": "code", "execution_count": 104, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.table.table.Table" + ] + }, + "execution_count": 104, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "selected_table = Table.from_pandas(selected_df)\n", "type(selected_table)" @@ -1298,7 +2061,9 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "centerline_df.to_hdf(filename, 'centerline_df')" ] }, { @@ -1312,7 +2077,18 @@ "cell_type": "code", "execution_count": 107, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2.2084197998046875" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from os.path import getsize\n", "\n", @@ -1331,7 +2107,15 @@ "cell_type": "code", "execution_count": 108, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['/centerline_df', '/selected_df']\n" + ] + } + ], "source": [ "with pd.HDFStore(filename) as hdf:\n", " print(hdf.keys())" diff --git a/_sources/04_select.ipynb b/_sources/04_select.ipynb index 1baa845..a29734a 100644 --- a/_sources/04_select.ipynb +++ b/_sources/04_select.ipynb @@ -1,5 +1,44 @@ { "cells": [ + { + "cell_type": "raw", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "title: \"Transform and Select\"\n", + "teaching: 3000\n", + "exercises: 0\n", + "questions:\n", + "\n", + "- \"How do we move the computation to the data?\"\n", + "\n", + "objectives:\n", + "\n", + "- \"Transform proper motions from one frame to another.\"\n", + "\n", + "- \"Compute the convex hull of a set of points.\"\n", + "\n", + "- \"Write an ADQL query that selects based on proper motion.\"\n", + "\n", + "- \"Save data in CSV format.\"\n", + "\n", + "keypoints:\n", + "\n", + "- \"When possible, 'move the computation to the data'; that is, do as much of the work as possible on the database server before downloading the data.\"\n", + "\n", + "- \"For most applications, saving data in FITS or HDF5 is better than CSV. FITS and HDF5 are binary formats, so the files are usually smaller, and they store metadata, so you don't lose anything when you read the file back.\"\n", + "\n", + "- \"On the other hand, CSV is a 'least common denominator' format; that is, it can be read by practically any application that works with data.\"\n", + "\n", + "---\n", + "\n", + "{% include links.md %}\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -40,7 +79,9 @@ { "cell_type": "markdown", "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "source": [ "## Installing libraries\n", @@ -54,7 +95,9 @@ "cell_type": "code", "execution_count": 37, "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "outputs": [], "source": [ @@ -223,7 +266,20 @@ "cell_type": "code", "execution_count": 44, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e1zU950vjj8/zcwnXCaKIyoqDnKR+0UBFVCRENdSyhprrYeYrGu6bpLjftOTc3KattvTbrM9e3qabnbTetYkjb8ka621lLLUEkIMIiIRFAblIhe5jyCjwAg6gn5mks/vj8nrnfe8+cwwmLSb7vp6PHgAn8/7/nm/X6/36y6pqor7cB/uw324D/dhrvCFf+8B3If7cB/uw33404T7BOQ+3If7cB/uwz3BfQJyH+7DfbgP9+Ge4D4BuQ/34T7ch/twT3CfgNyH+3Af7sN9uCe4T0Duw324D/fhPtwT/LsSEEmS3pQk6bokSW3cM6MkSe9LktT98e8FHurmSZLUJUlSjyRJ3/7jjfo+3If7cB/uA/Dvz4G8DSBPePZtACdVVV0F4OTH/7uBJEkPAPgXAF8CEA/gMUmS4v+wQ70P9+E+3If7wMO/KwFRVbUGgE14/CiAf/34738FsF2j6joAPaqq9qmqqgA49nG9+3Af7sN9uA9/JND9ew9AA5aoqjoCAKqqjkiStFijzHIAV7j/hwCs12pMkqSnADwFAIGBgWkxMTGYmppCQEAAJEmCqqqYmpqCv78/vvCFT+gpPadyf2xQVdWtX/F/sazWnO517N768mWcALzWF8to9edtDh999BG+8IUvzPh2qqri9u3bAIDAwEDNNm/fvo2PPvoIDz300JzmONt6imUcDgd0Op3Hb+htncRykiTho48+wu3bt2EwGDzWEcfodDoxOTmJBQsWQJIktje8jYnKAJixp8Sx09/T09Pw9/dn77XG99FHH2F6epq1R99QnIOqqrhx4wYWLFgw4zxqfU+xv9n2LvVBZW7fvg1VVdm68mtAZT766CNMTU2xcuLaeOrH01p4Kq/1fXyt82nOvy99ms3mMVVVF2lW/vf8AbASQBv3/4Tw/oZGna8BOMT9/xcADszWV2pqqqqqqnr37l2Vh1u3bqnnzp2b8Vz83xPw5XytM1t7/HjE/33p15cxfRZj1WpTHLu3Mp7m5qnurVu31Lfeeku9deuWZhlq0xPcunXL63rMZa3msl983SNa63H37l311KlT6quvvqreunWLzd3b2Kmd8fFx9renfe6tX/E7arVFf/Pj8jYWvg0tEL+tp/K+nAuttvk6t27dUj/44IMZYxf35/j4uFs5eudpj3pa588KtL631m9f25oNADSqWvhb6+Ef80eDgHQBWPrx30sBdGnUyQTwHvf/dwB8Z7a+YmNjP3NkqrXZPB2MubY72/+zIWqtcrM9/yyAP5ye+vCGbLR+a9X1lejQc29rdvfuXfWDDz5Qa2trfVqT2dZPRL60L3xZd60LDiFqIqDj4+Me5yX2z7c510sIjfuDDz6Y0Qb/DfkyWuMhBEzrOz4+Puv6iYhe69vNZV97Op98257mplVOa798ljjAE9y9e1etra11+yZ833MlHr7U+VMiID8B8O2P//42gJc06ugA9AEIByADaAaQMFtfxIF81sAv/h/j9iH26wsy04I/9Cb3dJA8ITz+NngvN2a+vqeD5Y24aSHduSB6vo6IXHiE6a1dETGOj4+rb7zxhts6UltaiM/T3Dz15QsxGx8fnxVRElLzRJx5AqpVV2tNxOe0R+51v2u94/cDPy5PHDI/Jk/f8Q95KRPH8Fn07UudzyUBAfArACMAHHDpMf4KwEK4rK+6P/5t/LjsMgDlXN18AJcB9AL4ri/9fdYE5F428Fzb9rWt2ZCdVvk/BpvtyztCuCdOnFCrq6s1b4KeEBMBEY/y8nL1xIkTmmIJ/m9vt0SRCPhKaEVCJRIrfi6eRDIiAaV1IUQuzsfTDdzb3MR5egPieEZGRjTfiYTB1zPBj7+2tlatrq7WJFL8TfvWrVuMmH4WiNITwRDLehvTHxK0LoieOLE/NHwuCcgf+8ebCGuuIN64PkvQ2tj0fLY6cyUif4iy9wKeZNG+cCT0fHx8XK2urlbLy8tniEg8ITARRCKgJd/3BloIurq6WlNsIt7YaU/xCJKej4yMqN/73vfcRFf8ey2EpzUWbzdrT+BtLWke/HearU1fOA1qW3x+6tQpr8jd2/y96UvmcpsXv89nBd7Gy38z8SLyxyAi9wmI+uk4EK1DKiK8ubTlaxnxpubrrf6zAK0b0GfVptZzrcNNc/b1xs2LfMTx3wsRoDZ9FQnxcyGiJoqgqAwvbtNSSIvjJy6An88HH3ygnjp1asaN2JMYRixDvz3tLXFOs4n+eGLgqRxxmVrfg78M8MYS4nj4slriJ29chS8cjDeC82kMQDy987Res7U7F1zyaeA+AVFVpKWl3dPiESLzdkjn0tZclaj07I/BNhP4cpucy62N3vlyKH1tz1MZb4hprkSAvr0ncRjfPpXzppD1huTFtrQU197GSXW1CKYWkueJkCg61BpfbW2t+v7772vOR4tYa7VFBHVkZMTNGEAsw89FC3gCLV4yRN2KqIx/4403GCfjCWGL68rDbHtBa5/zxg+eCMUf4mz7gm98gfsE5FMQEFX1LC++lw9zL0j2Xvu6F/Dlxu7pxuRLPU/P57rZvZXTQp6zEScRqdbW1jLrIRFBivMmOb63feLrLZMvP9s8eeBv7d7mxnM79E7khHgEzbfPc1O8Mp/nxkVizXMF9HP3rkssJ1pujYyMuI2Pfy+uBT339n34eRKIynxPf3vitjyJUcX1FkGLA/msELw3+Czavk9A1D+cFdanhXu5dc+1zbmCL+IerXF/Gis0T8jXU1+e+hGVrdXV1Qy5e6pPfYtI1ZOyW2s8np7xfXkTY3iaty8XCkKkPMLXKsOPiwiEp/FpibaofSJWIyMj6q1bt2YowUWEToSDuA8iuKdOnWLfSRRJkXjOFx2Y1pxp/OK358uJa6K1VrOtO3EXvhgu3Mv7zwN4IiD/3rGw/qgwNTUFRVF8Lj+XsvcKiqLg4sWLsNvt7Jksy59qHNQmX2+u825vb5+1Dj9O6lOWZaxevXrGHHwds7d3NB5FUbz2I8syVq1axd6pqgqHwzGjDNVXFAWNjY2oq6tDc3Mza99gMGD16tXM+1hRFDaGhoYGt/WRZZn1Z7fbWZsNDQ2w2+1YvXo1AKC9vR02m23G9/EEsiwjPj6ejZPAbrfPaENVP/GUFteN5kTlZVlGVFQUjh8/rjm+hoYGAC5vdr69np4e2Gw2dHZ2Ii8vD319fTCbzUhLS8PatWvdxi2uMwCEhYWhr68PKSkpyMzMRHp6OsxmMxoaGtiYDAYDFEVBeno6srKy3L6D+M1pr4rnR1EUmM1mxMXFuW7KAtD34ddJXHf+N5Wz2+3sGb/n8/Ly3J7TOmt9JxFmOyti3T8EXrrXNv9TEZCAgACfEZsWEvYVfKnDH+T4+HiPCFtRFIastN7zB4dAPLRznYs35OypDb6OiOw8gSeCINYV3xHB9fQtZVlGZmYmG0t6ejr0er1mOeo7OTkZmZmZWLt2rdu68X83NDSgsbERdrsdkiQxQsGD3W5HcXEx7HY70tPTERcXh5KSEtZWfHw8enp6EBUVNQM5eVojQpA0b0VR0NzczAgLQUpKyow1iYqKAgA2bpqDoigwGo3Ytm0benp62HrEx8ejpaXFjXDw6xUfH4/W1lZWPzY2FjqdjvXraZ+dPXsWLS0tSEpKQnp6OgwGA/s+er0eKSkpsNvtKCkpgcViYWvI983/5r8PjVm8MHV3d8+ow78nwkL7yxsoioK6ujocO3aMjYvqKYqCsrIy1NXVMeJL693S0oL4eO9xXr2dFa3L073iJV/7mAv8pyIgc4kL9Wlv0p4QvlgGAAwGwwxkII5b6ybDIyut8X+auXg6dN42Gn8Dn21D8oSAyvIEQouI0G+R4NJa82suzl9VVbfy4hja29tnnevatWuRnJyMnp4eREREoKSkBHV1dW79GgwGN6RsMBjciAV969bWVkYMPK0XT1ipHs1bkqQZxM1sNrvdfE+ePImSkhLY7XaoqgpZltkcqK7RaJyxNyRJQlpaGmRZhk7nHi6PyiUnJwMAenp6EBcX5/ZttECWZURERKCsrGwG55aeng4A6OjowPLly3HlyhXk5uaio6ODIWIRiIOgtee5DEVRYDAYUFhYCKPRiPT0dLeLCRFlkeDOtrczMzNRWFjIOCR6Tn2lpaWhp6cHKSkpM/r01PZs+EK8PN0rXvIGn6pNLbnWf9SfT6NEnwv4ogvQUsJ6KuvNF+FezIg9wVz1Hp7kw3NxZNN6NpuMm3/Gy8qrq6tnKF2pLL27deuWmy+BKAPnLa7onZYfBK941tJTeLLUoXqvvvqq+v777zPdgZbvh5YVnKffvL6C9D6vvvqqOjIyMkPW72mvkdL6xIkTM3ww+PHzZsO8wQH/tyf9mJYfh6hkJ0U6/a/1TWgepIvh/WO8Wfp50kF50r9p6Uk8raGWHkVrP3rqYzZ88WmV7Z+mLu4r0T8bAjIXG/K5+B3MZqL7WSraPCEP0axytjZ8Ve76Uod/z68brxD31A5/sEXizbdJ7/j2PBEaHjG/8cYbM2JPefNP8YSs+HHzCFocp5b/wmzmz6QM599pmfRq7TV+zUZGRmYQNhG0iJ34P9+2SCT4dngnRCJ8tN78My1HRd7cV1wXsX8q58m8WcucmtZKJI6iZZ6nb0Tz1hqTFmjtJU/zmut7X86et+f3CchnQEBEG3JvMFeE/1kSiNn68YSMxHhN4nutZzxoHWQtZOjtoGj5n7z//vuz9i3W9+QDQWW0EIcYR4ue8+a5otmqp/XifRo8ERMesWm900I6fB0a6/j4uPq9733PLdwIT1A8cVD8/AgxktUSte/JG5oQvDdfISK0fPtiO9QP/5yekWUT/014U2GesGsB379IRLS+P38xoPrifvAmDRC/F08c+QuHp/NHv++F0/Clnjci4cnpk57fJyD3SEC0EMNnjez/WMSDYLYbmBZimC3+jydTRh45i4jDVw5mrhFyvc2PLyciUlG05elWKv7Wap9fRxGB85FpR0ZG3EyOebGNpzDjIyMj6oEDB9RXX32VIVBe7DM+Pq5+61vfYk5/nm7+1dXVLPyLaL7Lz0NcD/IHEet5Wi8R8Ypr74nzIiKlhXzv3r2r/u53v9P0vREvC1pEgX/P/83vU097XlwXT8DPcTanUG+E2Fe4F+Kh9V7rW94nIBoExJdF/Sw+rKe2tfr4rMHbZtXaKN6Q8Gxj9Cbu8OQj4Gmcs83B221qNiLAl+MRm4iMtOp464t+8zoC8T0R2pGREUZI3n//fXV8fFx9//331QMHDqinTp1yu+HzxIXqvPPOO25Od+JcqE3qkx8vEbUTJ06oxcXFzNeCyooe9eL87969y3QrWuuh5eXN1+fFU1oES+SGeA6CX8dXX32V6Wu0wsJojZuIgpb/i8gpetpnWkTPE8x2dnzFLb6cP2915xq3TyzriYD8p7LC4sEX0zUt89F7NZ8TTQx5y6PP2qpCqx8C3q8AgJvpLb0XfR/IRn4281zeBwH4xEpMURSPPgJkfSL6wvAgmm7ypqhalkv0TjQtpvcE5PfBrweZYYpmwqK1DI2jpqZmhrmv0+lEbGzsjLnSGm3btg29vb3o7OxEcnIyUlNT0dHRAQCIiIhgll6yLCMkJAQtLS04ffo0jhw5gtbWVsTGxiIwMJBZUNGc6dsqioKMjAz09PQwU1Ky9AI++ebT09P43e9+h9DQUGYq3NjYiOnpac19Sd/r7NmzbtZUvEWSoiisX/6b8tZhRUVFeO2113D69GmcPHnSzfcGcPmetLa2Ii4uDmlpacwijL4JWVk98cQT2Lx5M2RZxtTUFJqbm9n8+O/Gf4OUlBSEhoYy02paPzK3JQsr8oMRz6WWZZyns0vt1NXVeXzP4wFPIO55fj19BV8sUEU84Qv8pyUgviJuTw5RvgCPbHhELrZ1L6bCvpTRGjOZrPIIRQRPJsC+mCjz4zMYDNi5c6dHHwGeOGnZ8nsaG5miAnAjJIQIPB0E8TuQ/wFPLEtLSzE+Ps6QmrgONA8AiIuLw8DAAGw2G6tfX1+Pixcvoqmpye3A82MwGo1ucyDTz4yMDEbs4uPjYbfbcejQIYSGhmLz5s3YtWsXMjMzYTAY3MxrW1pacPv2bdjtdtTX1+Pll1+G3W5nyM11gYTbXmhvb8fGjRvx0ksvwWQyMVNjSZKYzwxPFPm9m5WVxcxZRRNkg8GAHTt2wGg0MrNj3v8EALZv3w6DwYCYmBgMDw8jLi7O7SykpaXB4XCgqakJ9fX1aG5uhs1mw7FjxxiBJyJC9fz9/d3MckUTcQCMQJaXl2PBggWsLO0Z0ZSZ/2ZUn/qm80Bm1Z5MySMjI2eYQot7yhcctHbtWjfT4Lk4CpOp9GxEytslziNosSX/UX9m04H4yuL5Kv/kZahzZT+9sby+sM33Ysro67i8jUFL7KclJuPLq+pMM1QCT8pKmgcvbuFTporlZ/ub/qcwG1q5N7TGxAcFvHXrllpeXq4eOHCAiaj4+rwo4e7dmflGSCzz/vvvM5EMPx5PCZtI/EY6iZGRETdrMl62z9fhxV2kkBbXT9zHolJZSxEu6jjoOS/yoTpaoVfu3nUZTpSXl7uJ80jUphUFW2vc4m8aK+mdRKW+2J5Yj0zFtZT+tP6Ui4aez6boF7+lryDO9bMQg3sSyd2961mJ/p+WAxFhLrdrrduNCOKtwZf+6bd4wxA9cn25tWiFfBDFU/cqNvM0BpHr0eKCtLgx3rEL+IRT8eQoyc9j7dq1zFnv+PHjM26S4ncSuSsRLBYL4uLi0NPTo/ktFMXlBU5jCgkJwbZt29DS0gKz2Qx/f3/s3LkTXV1dKCkpYWFLqDzdbOlWSOMHwMQy2dnZiI2NRXt7OwwGA5xO5wzvcH7sBoMBSUlJ7LnRaISqqoiNjWUcjaqqbjdkXvyi1+uxdetWN490/nvSPlYUBUeOHEFdXR0TJxFXRh7aNpuNiYXEdaNQJPT/sWPHmFc74BIfEtem1+uh1+uRnJyMpqYmNDc3s7OUnJzsdvPX2lciEFdnMBgQEhKCHTt2sG+sJd7k15fGLMsyYmJi3Dh4nutNSkpCYGAgFi9ezNZ91apVbo6HIsw2bmBmtAlxj39WYnBPoWI+5ri1ZWBaVOU/6o8vHIivN3z+92wwW5taSjlR6ap1E9cCT8rPP+QNRasPXzgRes7/Fv/2dd5aZUWOy5e2Z7Pbv3v3rmbgQF6JSz+8EtuTMl8cL5UnroNvz9Na0JhIec3fiPmx8EppnnujTJBaFl+8OTD1w1t80fNTp06p3d3d6te//nW1u7vbzfqMd/bjORp+fnRbLy8vd7NEI25hcHBwxh4ibkTLVFrLfFY00+bLe8sxznO4PPfDc1JUt7u7W927d69b7pbZOH9v+4LWhd9b3jj62fbWvZbHfQ7EN/CFms9VdzFbm/x7UelLegRRQa0FdJMXFXsiVwB8EvCPr3svbfN98GEsvHEiovJc7Fu8XXsajzhuuunRj8hx8bdGu93OZOriHLVuePzfFDiQnxvFdwI+4aDohsvf7LTWjl8Lu92O5uZm3Lx5E01NTUyZ60neTqCqKuMSmpubkZSUBJ1OB0VxKdg7OjqQkpLCngPu3JDD4ZjBeZhMJhQVFaGmpoatU1paGiwWC6KiotzWKj09HTabDd/5zndgs9nYbZ/Wnw/vQhwNr7CWZRk7duyAv78/WlpamMK7t7cXW7duRVVVFRRFcTtHzc3NmJqaQkdHh8fYYtPT027PzGYzC4/Ch8PhuSwx1hU/D5FjOXbsGACwcCzDw8NMx0Nl6Wzw+iBxz2vpy2gMq1atAuCKJwZ8whHxkhBvugtRuuJrmCEtrl2EzyUBkSQpRpKki9zPTUmSnhPK5EiSNMmV+f6n6ZNftLkqyn0BX9r0pNQWkag3Np1HmCLQHEkhycdx8tUizdNYCHHxB0FU+ImEA3A/DFr9axE5T2JEQpZ1dXVuyk4AzBqJEI0sy1i+fDmamprc+pjNqoYQOf0v9iMiHZ5oawGJuGgtDAYDUlJS4O/vz5T8tLYmkwkAZswRcBEDmv/09DQT7xFyp3Y6OzuZ4QAh8bS0NOj1eoY8aW37+vpgMpkwNTWFoqIitl9Wr149I4YWzTsqKoqtYWNjI5sff8GgOnV1dTCbzZienobdbofRaERWVhaL1SXLMpxOJ0JCQtyMMQhSUlKQnZ2NlJQUFjfLZrMx8RpFDab/s7KykJaWxuYt7j0S0R05coRdsPhLgkg8FEVx20+AyzBj06ZNaGlpcfs+/H7QUtCr6syIwQSZmZkA4DYXfp8RceIvQ3z74uXNlwuyL3sXACRvA/88gCRJDwAYBrBeVdVB7nkOgP+pqmqBr22lp6erZAkigi/UVqvOxYsXPzMzXK2N+ln0ydcBwA4Xb8Ui9ukLIRXHorWG4gYUx+GtP3HcYl+efhOIxOP27dsIDAxkt8Wamhr09PTgiSeeAACYzWbo9foZeitqkx8LQWNjo1t5LSTT3NwMSZJmtEs6nm3btsFoNM6YO9/H5OQkhoeHsWPHDjerMbrp1tXVQVVVpifJzs5mY46Pj4fZbEZraysiIyPxyCOPuK0ZWSdJkgSdTscIDD/+yMhIyLKM48ePz+CIxe/U2NiI5ORk1NXVYXBwEAUFBejt7YXT6YROp2Mm3Y2NjYiNjUVTUxMGBgZQWFgIWZZZW0QQs7KyoCif6BrS09PR0tICVVXdLK9sNhtKS0sBAPn5+Th+/Dju3LmDtWvXIikpCbIso729nbXNc6b0nEfQFy9eRFRUFHp6ehiSJuJYV1eH7u5uZnEm7mNv+IQvw89Vi8Ph39fX18Pf398tYjSBzWab8W284Yq5nu8HH3zQrKpq+oxCWnKtz9MPgK0APtB4ngOgbC5t8ToQUYZ4rzqCT6tX0Grv04Qk8KWOrzoZLUsWT+1q/fam2/F1/L7Ibkm+7U03w8uQ+Xe8o6NoYaNV31ubonxajPOktT68BZO3Nb1712Uhxjvpid7NpOvgkzTx8v7333+fhYURv42n9VFV91AoJNsXxyw6ItJYKOEUr8uhcvzfYhlaP3KIPHfunDo4OOi2nqR74PUyZP1GVlPj4+Pq+Pi4+uqrr7Jyovc/v36iVZwn3QXNT3w2m15Ca435b6EVY01rD3r6Bp7GIz6bS3QHVVX/pHUghQB+5eFdpiRJzZIkvStJUoKvDSqKyxlKy+FsrvBZcB5ie77qYHiYTQzlSScy2xg8iYv4smIZ0WmNt/iZTQeg1b63eROoH3PSouMaz+rzNzt6R8/Xrl3LfCz4+ZDohW6/tF+0ZNqiqICX9dNNnyyYeMcw3tJMXEP+ptja2orOzk42DpozvzYdHR1wOp2or69HTU0Nm68sy8jIyIC/vz+rI+opaNyiKIvyl9BYrVYriouL3fxfWlpaYLPZmDWd3W7H0aNHcezYMRw5csRtzUn/RGIiWse6ujq3MxkXFwedTofOzk6YTCZUVVUxp0fAJRZKTk7G7du3UVZWBpPJhL6+PrS0tKClpYWtPVnpxcTEoLS0FMXFxVi+fDkAzFjj6elpFhafvrMnq0USm9H34BOIiXuZL0OiQGqT3zckihTHJe5hLQtF4pq0zpP4zNfUFrPht8+1CEuSJBnAVQAJqqpeE97NA/CRqqp2SZLyAfxUVdVVGm08BeApADCZTGmDg4PsQyYnJ/uknP404Aur+Hnvy5ssmMBms8FoNHqUF2uJn/h3sxEYAk/90wEpLi5GXl4eLBaL2+EHPhFlqaqKuLi4GWIjHqgsibtOnz4NWZaZCIYQYUtLCxwOB0tgJY6XX7+6ujp0dHTgiSeecNMd8Gt38eJFmEwmNjYSbdhsNrS2tiIpKQkGg4GtGS+uoDEpioJz585hcHAQu3btYkppUhKTfkIVRED0rqGhAZIksfNhtVphsVhgMpnwyiuv4IUXXgDgcoAksVVdXR0TfwEuBff09DRSU1PdREJUvqamhjn/KYqCkpIShIWFsZwaJDqitaB1InESrYnBYGCiMHEtiDjFx8ejubmZjY0XX4lQU1MDnU6H9PR05t1Pe0Brz/HP+f9FURYvimpubtYUQ4ljJ/Ak9rXb7TNyk/Bng0RzdNnh2/B0hjzhD0mS/vREWAAeBXDCx7IDAIK9lSER1myilM8K7lU09mnG5mtdLdbW13paTmmzmRp7ExeKwQbFenxE19nEYbzpqJYZMTmveQpdz4uVvJmA8nMXxQ2Un4Sc4UhcIjrc8fOjdgYHB9U33nhDfeedd9zyjtMzLXEKmZfyprrvv/8+i1dFohtx7UjcRQ5wBw4ccBMP0W9+ragdcQzUHm8e7G2P0VrwjoWiyIx30hTboAjEfFwt+u6846WWOIrfR/Q/b/ZL7ZFI05uI1BuIIk2tdfC1ridcQmPzJJKaTaRGMFtcL3gQYX3eOZBjAN5TVfUtjXchAK6pqqpKkrQOQDGAMNXLhNLT09WzZ8+ioaHB4w3g08BsVP1eFNNz7d+XulocgagM9laX1g/45DYjKiW9cXa+cCBiGfrN37jEW7jYvrje/LjoVh0VFcVu+6RM7uzsRGxsrJtprnjbJPEWfzvk14XWVJIkxjXQe7oZU72TJ08iICAAk5OTuH79OnJyclBZWYknnngCiuIKfUIcCM8B0TiOHTuGZcuWITAwkCmL6fZMSmqaU0ZGBltDUs5v2rQJiqKgqKiIcUfEUdB4qb+zZ8+ip6eHhTKhMQAuZ8KVK1dCr9fP4Mi0btVaXCdxdcT9ENehtaeJA+Fv9y0tLZiamoJer4fD4WDz5b8h7XX6nqKoiTcvpu+phTPE/aV11ud60/dUTtx/YjlP73wB/gx6Orf3xIEACAXwPwH8DkADgBoABwF8GcAXvNX9tD8AAgCMA5jPPXsGwDMf//3/AbgEoBlAPYCs2dpMS0vTDOvgCeZy45iN2/Dl/Vz69XTb8FbXUx9zUarx/YiKP1Wdu+Oj2J7W31RGXD9Ryak1N/6Z2P7g4CAbK88JiMpRsT4/R/6GKCq1Re6EzyHC3/BfffVVxnmQw9ypU6fcou3SfLWcIuk5ORPybfORd4kTIRgZGVFfffVVt1s6f+MWHQXpPc8REJfEr5u4t2i+FHmYFN3i3OjWL+bbEbkTLS6O7+/WrVvM4KC8vHzGPvK0P4hr1GpXS0HtzVF2No7am1Oot73nS/m5gi9tYK5KdEmS3gLwJgAFwI8BPAZgP4BKAHkAaiVJyp4DoZsTqKo6parqQlVVJ7lnr6mq+trHf/8/VVUTVFVNUVU1Q1XVsz60ifb2drec0J7Ak1LXm5La081/NkW92Nds3IPW2OiZr/MRldNz4ci0FH8Ec3F89NQe/Q24Kzn59aObIq/M5tfGU/gTuhVGRUXBarVi27ZtbKw0D3J4E4H8GMQgkWQazge7a2xsZAEZafy8/wFxLwCYPqagoABWqxWKoiA2NhYVFRUwmUxu+haz2czmyiucyZ9DkiSmBOYV5Js3b0ZMTAwOHjwIm80GRXH5hERFRbnNkZwr6YyQQr2trQ0nT56E2WxGZ2cna6Onpwfbtm0DAKbg52/1tO4GgwGxsbFoa2vDSy+9hKamJsaB2O125ntB4UvoG/OKZ6vVipdeegmHDh2C1WqdoWimb15XV4eysjKEhoaitrbWLZyMtzPidDrZHGjs1G5zc/MM5bdovs7vT+KIeKD/p6enZwTrpPeifw/fF98G/U2Ke1orX8Ab3vC1DQKPIixJkhJVVW3zWNGl4Dapqqp92j6HQCIsXxGlFov6aXwwZiMMcxFvAdpKPU9iA0/s9FzH8WlYcm91PIm9PM2DX1M64ORrwYuIxHGRyGfVqlVIS0ub4c9A7YniNArJraoqsrKyAHwihiEFLYmbqB8AqK+vh06nQ1ZWlkclrKK4PKR1Oh3i4uLQ2dkJVVURGRnJjAHa29sRFRXFFOLJycmsX1KUUnTcuro6BAYGMiLAi4tsNhtCQkLYnJKSktDR0cFEVWfOnMHg4CDCwsIAADqdDrIsY3JyEhaLBTt37gQAVFRUuBHfxsZGTE1Nwd/fH3FxcaxN+mYENpsNTU1NSExMREhICHtWVFSE/Px8GAwGdHZ24vbt25Bll9d/VVUVAgICkJ2dDZvNhra2NqboJnGTzWZDRUUF8vLy0NfXx5Tq5KAoipS09qzdbkdVVRXy8vLcvn1DQwMiIyPR19fHRGt8O6K4j75VSUkJ823R2i9aCvCGhoYZBh686E1VVbfLnpay3dtZ18JHvDLeE67yJMLyyIHwxEOSJH9JkmKE98qfEvEgmAuiE8t64iK8UW2tm4oIviJg8Zbuabz8LVzMI+ANPHE29NsTV3avuhpqR8skUetgeTK7Jq9r4gB4L2O+LSpbWFjITHapf74v0aNeURTodDrExMSwPvkxpKSk4MyZM3j55ZfZzZzCZLS1tcHpdLKbvAh0+yOvc6PRyDzHQ0JC2O199cfe31lZWUx+T4EYeS6MxhYREcHMXePj45lZb29v7wzTTzIdbW9vx/r167F9+3bodDr09vZCkiSkpaVh48aNjIPo6+tDXl4ey2FCBC07O5sRD5ozzw0SgU1MTERFRQXsdjszE96yZQtef/111NbWIiIiApIkweFwwG6348yZM3A4HFAUBSEhIcjIyIDT6YQsy7BaraipqUFZWRk2btwIi8XCiMfFixdnBDLk9zF9K3put9tx9uxZWK1WVt5ut8PpdKKvr4+ZEPPcj6IobhEDeGfDqKgoTZP2uLg4Nz0Un3+GAnnyJtJUn4JvaukJATBuVTxfWtwM3wYfkkZ8NxvM6gciSdI2ABcBVHz8/2pJko7P2vLnEDxxW3MBLeKhhVTFOp4+qi/1tfrXQvJ8GdqshFgB95AN3uqJty/+EHgL9aHVpqd++HZEsZe4JiRi45X8IkHWIqq82EIkIvzti4gXlaFcHTxBiYuLY8iJb4tiVc2bNw/PPvusmwhDlmX4+fkhMTERjY2NzPeB5qgoCiN0oliVP9Q8oqD/jx07xtogImI2m2E2mzE1NYXe3l632GQklouLi2NtE3dB6xoVFYXOzk709vYiLS0Ne/fuZR7tPT09SE1NRUBAAJKTk2E0GpnIj5AQEYOUlBTG3VHMLN6vxGKxsFt+c3MzoqKiEBUVhSeffBIWiwVtbW1wOBzQ6/UwGAx4+OGHsX79ejexT09PD6xWK1555RVMTU0hJycH169fZ1wafQMADElTCB9FcYkwDx8+jLq6OhYFuKurC6tXr8aJEycYcTt+/DiSkpIQGxuLqqoqGAwGVFRUML8YXiROnIcsy2hpaUFsbCzKysrcwp1QQi0iGHRZoFAkZLp8/PjxGRGPRa6YiGBDQwNOnjyJAwcOwGazzbi0ivuf32feLsVCvXuLxgvADGA+gAvcs5bZ6n0ef+4lJ7ov4M1cUetvXrGoVd+X/mZT2ImKQNEccDazParD5zO5F0MBLQX9bEpB/rf4zpPS0tN4ZjMnVdVPlMd8fg6+bT6/w6lTp1iOB1JcUzmKnMqnYBUjt1LZ6upq9Y033mCK7PLycqa41vJ616ovjvPEiRNu5que6mqNjY+QyxuaeNur4tw++OADZjpMprSkxOfL888pOjD9/bvf/U4dGRlhUXl5hT6tK3nV37rlyr9SXl7O8qjwXub8nuHX7e5dl0f9t771LXVwcNDNvJvPBXP37l03gwEyuhgcHGTz5c2IeaMF+gZimmQymtDyIufXWTRd1jovokGGVm4Vrf3uCbQMAwgAmNV7MeOVJOmcqqrrJUm6oKrqmo+ftaiqmuy14ucQvMXCulfwpicB3OWSfHneUe1edCO8zsDTGPj4PbxOwJscmOoDMx2ifNGjaI1FNJvkx8+X9yaDJVmz+rEOgudALn4cs0j0GBbjA9GNXdSP8OsFYIaMWxy3orgU0A6HY8Z4qJ7WmvExl/i1OnnyJPz9/VnuC4oLxYvYFMXlbLdy5UpkZGSwcdI6kiKazHBFTlWrf/67UD9k7ks6DE/fXtxjJpMJra2tGBwcxI4dO9DU1MT0IZS6l27odMtua2tDamoqzp07h4CAAIyOjmJgYADh4eFoaGjAc88956a/aGhoQEpKCnNSzM7OZrd0WgcaC+l5RPNUfg+EhITAZDK5mWTTPlIUxc3plERi5O0+NTUFVVUxPT0Ni8WCmJgYbN68mbXNt0Nti4pwLcdHnmvQwhuezpv4bcR9rlXf12fAPehAOGiTJGk3gAckSVolSdIBALNaPP1nAE/soWhNxH9YCiUty5+kGp1L+/ScD0XtSVfDW+Hw4xB/U5v0W9Q38OOYK7Ej+TjgnihKDAOiJYPVAgoWyCNqUljW1NS4tdfR0YG8vDy3gINiDnQCeiaKjvgLB607iR7S0tJYoD+bzYa6ujo3QkMim8bGRlitVkbMaV0IgcybN48phAMCAlBQUOC2Z5qbm9HZ2YmCggLo9XqYzWbU19ezSwiNl1LDaonyqH8SvQAu6QN9A7vdjtbWVkxMTKCzsxORkZEzvq0oAqVvFRUVhYqKCqSlpTHCFxAQMCMoY3x8PAu93tbWhsrKSthsNgwPDyM8PJzpHvR6Pfbs2YMLFy7g9OnTTCRFOh/yKKdwKTU1NSyIYnx8PCwWC9tnJpOJrRVBY2MjoqKi0NfXx8KvUN3Ozk6cPXsWZrMZycnJiIuLY4nK4uPjERISguTkZPj7+yMpKQlXr15lugf6rhT6hvYbrRW/hrzYlD9bfPgcUdSkJR4WzyedX7PZzNrQwiOecIvYD/+9tcAXDiQAwHfhCmooAXgPwA9VVb3jteLnELQ4kNmQ4mwwl/qK4orBRQgI8KyA9nQD5t97qz8XEG88Wm37Qjy0uAf+FkjP+f8ppIwnqykeCBmnp6fPKC8qhgG4WccALic43jmQxseH7hDnL9ahEOE0ZpPJhNLSUtjtdvj5+WH37t1MiUxOffX19RgYGGCRdLVul6TLsNvtblGBeaCx2e12lJSUsCi3FI6EJ6r8/Kj81q1b0dfXh56eHuzYsQOKoqCrqwtTU1MICAhgv2NiYlBWVoZVq1YxKy0+5AlZA5HCl5CjeMun8hUVFbh+/Tq2bt2K/v5+pKWlsbW0Wq3MmZP0DseOHcP09DRGR0eRk5OD3NxcN2W43W7H4cOHsWPHDsZhdnV1MedFIugvv/wyFi5ciOvXryM/P59xbocOHUJhYSGKi4uRmJjoZs1F7fNWZPSc9Bo8V0TOjAQUVoU4OdK3idwQb+nHc5EUnZkP2eLpfFEIHHrPnwUxXMpcOBCeW6KzsWHDhiZVVdMgwOfaE/2zhrS0NNVsNrP/vYlM/lDgC+IXP6I3xDxXk+LZCJavoFXekykuLzrhDwzfzmze61SWCI6WmKixsZGFbOeV0tS+J5Ehz/JHRUWhqKgIALBr1y60trYCcOVkoFs6ia0I0URGRjKiQmNpaWmBJElufg3evNqLi4uZiSwp7fmYV3x5QlwUM4oIlsPhYPGlCIjrOXPmDObPn4/k5GQoioLW1lZ0dHQgLCwMer0eqamp6OjoYCakpIytq6tjFlGPPPKI2zflY3Px60we+Hq9HhERESgrK0NOTg6qq6uxfPly6PV6qKrKvpNoKVVTU4OpqSmsXr0aV65cYWvR0NAAp9OJiYkJnD59Gjk5OQCA3NzcGWK7xsZGTExMIDU1la09EfyXX34Zzz777AyzXF7cS2tOe6KjowPj4+O4evUqdu3axYgIH8GBuFwyxxaJK39RoIsLKdDFs6Hlgc+fOZvNhldeecVNzMfvkU9zMRbFYQA8hnP3hQNJB/C3AFYC0NHz/yg6kE/LgfgC99KH+BFn+3u2fsQb0L2AKNLSEs950unwhIIPUkjPfOFAeEQvEld6T7dE/vDxcwe8Zzkk5EwiJuI4CBGSDkKWZYbQKOEP3fTJx4TmJ3IaPOfF30KpTd6PgjiSrq4umEwmBAQEuIUjobrAJzfklpYWtLW1sdAlxEmR9RRxJTQu3o+Fz31BxHTLli1466238OSTT7Jsg5RfJCYmBtPT05g3bx6Sk5PR0dGBmzdvsvAoRJR4IlFXVwen04lNmzbN4GpozkVFRdi1axcAMC6DwGw2Izw8HBcvXmT6Bz50Cv89m5ub4XQ6kZaWxtbrzJkzTOfU2dnJ/FdEkRsRHPIraWpqwuTkJEJCQhhHxoen4QkA/12OHTuGHTt2QJZldlEg4pyWlqbJNYr+IDzxIeCDcGr5iGjtbS3wpk8l+DQ6kF8CeBvAVwH8OffzHwLuhXiIMsLZys7FTFdrXDwCEs1b+X68+XuQXJXXncwFRFmtFrL3dhnhb+Z0GEhH0NLSMmsmQD6zHW/WyBMSwGUrT9nyxLkDmGGyy8t4aYw9PT1uf0dERMBisWDHjh3Izs5mCIJCwNO4e3p6UFBQwJAC75tBPgZ8GPP6+npmRkptSJIEWZaZHwVxMitWrMDly5dx8eJF5mlO7VI/NPf09HRmbkzzkCQJra2tzNGQTEnJL4H0LCaTyU13FhUVBZPJhCeffBK1tbVMOZyWlobdu3cjJiYGZ8+exfj4ODo6OrBixQr09vYy4jE9PQ1Zltm3k2WX30lXV5ebnig5OZkhZVmWsWzZMnR2dsJgMDCTX5Ie6HQ6GAwGWCwWbNu2jRGFuro61NXVsdSvBoOB6XKqqqpw9OhRNDY2Yv369WydY2NjWRRh/pwRAe3r62Pr6HA4MDo6isjISDYWIrzHjh3DyZMnUVRUxPYU6T9WrlyJjo4OyLI8w1yd9Dv8XlcUBU6nEx0dHez/mpoa5q1PQMRFlmVNHxG+PS1vdbpIUGj+2XCIFvhCQEZVVT2uqmq/qqqD9ONzD//BgEekPBL0BJ6Q7b0A35bWR1ZV1evHJ3+BexmLOA9xDIRQvbVNGz0rK8tNsa+qqlficfbsWZSUlLjlvea/AU8ceaBvQ0iWDjAhNBK3iIeLN4KIiopyCw3PH1D+Fk9j6OvrY4iD7PlJgZ2eno7CwkKG5PV6PUZHR5kiWFEUxsFRilmn04nU1FQ88sgjSEhIQEJCApKSkgCAhUsJCQlhIUoA13dOTEzE1atXYbPZYDabkZSUBL1eDwBISkpCWFgYysrKYLVa0dPTg7i4OERERKCiooIRNEVRWF71a9euYd26dezGSzk3+vv7sX//foSEhGDBggXo7+9nTn4pKSns2/J7JzExETqdjnFVlC6XwrQ0NjbCYrEgNDQUiqKwMZHjIononE4njEYjkpKSMDg4iOXLlyMpKQmSJDF/k7KyMixatAhXr17F0qVL3Thks9mMc+fOueXgoL1Cehnar7IsY968edi1axcMBgO6u7uZAl6WZRQWFmLTpk3MkAH45DKQnZ3NzgbPQZAIj4AMGlpaWpCWlsZ0MIDLsICyQno6W+JFk/eBEvOM0DtZlpnORVGUWQ17RPBFhPUIXHGwTgK4S89VVS2ZU0+fA/iszHh5Ns9X8ctnCVoiJF/G4qmeWMYXFphuNZ9FVOPZRHy04cXwDnTzI8sfsR1COnxuC7FP/qZGZpv8weVFX7zorKamBqdOncLzzz/vJmbg2yazz97eXs3wFCSqCQoKwrx58xiyoXZITJSUlIS0tDSYzWam48nMzGT9yLLLI5vMYmXZ5cgWERGB8+fP4+rVqyxtL0XpTU5OhtVqhc1mg8lkQmdnJ2TZ5cFOIhviIFJTU1FbW4t/+7d/w4svvshMX2nNsrKyYLVa8eKLL+I73/kOhoeHmQiPTItJSUz9h4aGIiQkhIno0tLS0NTUxOb/3nvvYXR0lI1bll3mzps2bWIc2KVLl7Bnzx4AwKlTp1BfX49NmzZBr9fj0qVLuHr1KtavX48bN25gy5YtqK6uxo4dO5iYjtc90TeicfK5Tqh/3vSc9F9a35XfW2KEap7b5c2HRd2LGFqEb19rH2udGX7M/GWH39e0f/gx878JPo0I60kAq+EKoEjiK5/zkP9HBH5hRRPZTwPeuAfxtq/VJ4kcvI3FGwfjiaPyJIbzNauZCGL7vqwd3ZD4OrIsY+XKlZpckaK4fDVSUlI0E4eJfZJHMREPEonR4eVDVMiyK7vfs88+y27kxP4TEVcUl9mn0WjE9PQ0E93R2BobG2EwGJCdnY2JiQk4nU4WwqK4uBgAmDc4icnS0tIQGBgIh8MBm82G+vp61h4AlJeX4/Dhw6ivr8fU1BQAl+VZfn6+25otXrwYiqLg8OHDMBgMLF85WQ0pisLyp+v1enR0dGDdunV48cUXYbVaYbfbUV9fz27vdrsdISEh+Lu/+zuYTCakpaWxNaBgjYriivfldDoREBCAqqoqWCwWFBUVsTYGBgYYYRoZGYGfn5/brXp4eJhxRUlJSYiOjsa5c+dw9OhR6PV6ZGRkQK/XY82aNUhISMDmzZuxefNmREVFISQkhHF/9E3b2trYXnQ6nWhtbUVNTQ06OjoYIqcsiTabjWVdpLho09PT6OjocAuJQlZkJ0+eZN+cCJXVasXZs2eZ2JI38SXpAADmcS+KaxXFPXulNwkIEQ8Sb5rNZhY1gccfvLk+34+vYndfCEiKqqrpqqr+paqqT37883Uf6v1JgK/yPm/lRMR1r+Pw9NG03mkhXQq9oLWhqA1vfZEYhkd29FwkWCSOmusctUKHzAZa/VNdStHKixTpncPhAAA3vQ8vqiIuCnBPGcofXKrPO4YRMqS4Urw4jSLcNjc3u60jiRCoX1VVYbFY8Mtf/hL5+fnIy8vDrl27EBISwqyKSDxC85JlGeHh4VBVFceOHUN5eTkLZXHhwgXk5OSgsLCQpa6VZRmPPPIIDAYDC+GxePFi/MM//AMURcG+fftQU1ODFStWAAATS5FYpbOzE2lpaYiMjERpaSmMRiPi4+OhKK4YX729vQgPD0dRURFqampw+fJlxmFQWBSHw8EQ4sTEBCYnJ/GTn/wEq1evRmVlJZYtW4bExERUVVUhJycHLS0taG1tRVBQEIqKitDc3Izi4mIoisIIQFxcHLq6uiDLrgyRJpMJer0eAQEB6OrqQltbG7Py6urqgqqqbroG+n6Tk5O4evUq2trakJaWhrS0NDd9CBGr2NhY5iPT1NSE1tZWNDU1QafTITIyEiUlJYwokB6MLN5IbJWbm4uuri5MT09jamoKTU1NGB8fd7vxNzc3MyLLA+0vg8HgFsCSF92KZ0lR3ONyUbwunlAA2npLcf97A18ISL0kSfGzF/vTA18p7WzltGSOcwVv+o3ZdB8EYkwpT23MppfxtKm0wNf58kiQ10N4Ipje+ifEryiKJsdAZSnWE2+lxefdBj7horQuAcRRxMfHo6enx03pC4BZ7RDxoUCHRqORxe6y210hymNiYthtsL29HZGRkaiursaaNWsYYWpqaoLFYsHrr7/OrJ14RGC323Ho0CHExMRgz549jLOIi4vD4OAg0yuQ/qGnp4fFpFq1ypXteWhoCAUFBTAYDDAajXA6nbh8+TKmpqaY8l2WZSQlJTFE1tXVhTt37jCR1ZkzZ5CYmIidO3cyhJ6amspMlkm8ExERgXnz5jFF8/nz5xEXF4c1a9bAaDQiLCwM8+fPh9FoxLZt23D9+nUWvHHXrl148cUX0dzcjNzcXBbLi7gjVVWRkZGBmJgYzJ8/HwCwZs0arFmzBomJiQgKCkJiYiIyMzOxefNmJCcnMx0LJZ2aP38+8vLy3JJO0ZxJF0Hf2OFwQJZlpKamYu/evUhNTWXfeseOHSwVL3Gdou/QiRMnmPc6AExNTaG6uhr19fWMiJBRBu/PIu5fkRMX9Zr8O/5SJPo/0Z73JoL25Wz7QkA2ArgoSVKXJEktkiS1SpLUMmutPwGYDZHy5bwpn6mdexFniTd9b9yByLJq3Tq8meiKHITWWNrb291uKt7Al/XjZb5Ulja1FlH0xpbz7TmdTiYCEIkjPeNDcdCa6nQ6N/NZUqryxIHKTk1NoaTEperjxQwUbl1LZsz/bbfbceDAAYyMjLDghnxk3ZycHAQGBuLo0aOoqKjAe++9h0uXLmH9+vVoa2tDY2Mjs1CjNdu3bx+uXLnCFOUHDx4E4PJZyc7OZlFraayEeEknQf4ZxBXs3LkTiYmJOHv2LAurfujQIZw7d47VTUpKQmJiItORnD9/HitXrkRXVxfq6+sZkSKFe1FREcbHx9HX18f0CkajEU8//TRu3LiB6OholJeXY2pqikU4NhgMCA0NZW0Rl7Bo0SKEhIQwrs5ut7NQ7oqi4NChQ5g/fz4GBwfR1taG5cuXo6+vjxkE8LJ/UsITYUtNTUV2djZkWWYiQZpzSkoKI6YAWIbDjo4OZq5NEY47OzvZHgE+ucwAYPqUgoICbNq0CYGBgQgICMC6devcnBtpz9IPvx956YFILOjM8hw4KePFsyqeIfG5WN4XXOaLEj1M6/mfoiXWXJTovFyQPsy96Dp4BKr1TqtdsW/+Hd1gteJbzdaW1v+e5i3+9lbW0zOtMWmNR/QfEY0B+LHwyj9+XT2Nk6+jFXuLfvM5NUQxF68kpfERiN+CEB/dIi0WC06cOIEdO3a4OXzV1NSgsrISa9euRUBAAAICAhAeHs76Ip8O3qdAK2UsWV6RU2FRURHCwsLcnP4AMK6LIsRu3boV5eXluHPnDvbs2YPa2lrk5eW5+ekQIaLUt+Q7YbfbMTQ0hJGREYyMjGDv3r1u36mmpgZ6vR5JSUluznS8gyRF0o2IiMDOnTtx/vx5/OY3v8Hu3bvZ2CsqKhAQEMCcHKenpykoKrsoWa1WnDhxAjk5Oeju7sbp06exdu1aPPzww0ykSPlbampqkJqayrz4+/r6mP6JIi0nJibCYDDAbDYzJTkRX7Jmo7WWZVc0YcrbQnG+eHEnH/+Lj45MHutGo1HzjJABRldXF/R6vVuIelpPfs/xynrSbXhymuX7473ZxXL8N/WkRPfZE12SpMUA/Oh/VVUtPlX8HIGvBMRXxDcbMaGQAryzmTeEKz6bjShojYmA3vMbiUfMWmMR5887lImbTGtsWlZgvPUJv+n5dSWPXDGIobgGVF6rj9msz/h14ft1Op3Mc5hPBnXs2DEsXrwY8+fPd0NYtKY0PjH8SVVVFbN6Eg814O74aLFYcO3aNWb6SfoDEn3xnvP0/XjCSbfTkpISRqB6enpQUVGB3bt3u4XDIIdIIgyEPMiKraysjFmzidZBAFiY+MHBQcTGxiI2NhalpaVYtmwZcnNz3RJi8TJ6+u4UAJEc9mTZZVW1atUqXLt2DePj4yzWFM2tqKgIJpMJQUFBCA0NhSy7HPFiY2OZjoMc/BRFQWJiIhTFZfYLuDiNy5cvM90JOe6dOXOGOTq++eabcDqdWLVqFR5++GGWsIvnPojw8Ym3eAJmsVhgMpkYEeEzMxKRoO9JIWCOHj0KnU7HzILFSyIvqiMHTd46kBxRAbgREl/PN+ASrR08eJB5s/PvicDRBcCTJ7pP+UAkSeoG0A/gNIABAO/OVu9PCbTERaJ4RUTUophJS5zU3t6OuLg4xtp7Ek2J9YgN9cRGirdvvv/GxkacPXvW7QbNj4cQgjf5Ji+Si4qK0lTMUxlqW2yf75PMN/lAhnzfFM6BZ9v5OfKiAXFN+H55hCWuCzmZ8fMgmTPpC3jFfkFBASwWC27fvj3Dgio5ORnp6ensAJMPw5kzZ3D27FnmbMjvHdLZkFWS3W5HdXU1VqxYweTaRJAURcG5c+dw8eJF1NfX4/Tp0zP2oc1mw5EjR9DU1MQs0ex2OyoqKpgfBuXiIOIRGxvrNh5ZlplTHnlK03oCYBcIWXZZgD3yyCPYtWsXsrKyEBISgu3btyM4OJiNbcmSJSzwIP8NzGYz4uLiWMIpsmbS6/WorKyELLs85Zubm1FfX4+Kigp0dHRgy5Yt2LJlC0JDQ3Hw4EGcP38eJpMJ0dHRjHj09PRg5cqVqKysxMsvv4zu7m7s3r2b6SkAoLS0FO3t7cxPanBw0M0pEQBGRkbYN4iIiHD7JmRFR/4nLS0tzL+ooqICRqMRfX197KKVnJyMrKwsN+JmMBiYs5/RaMTevXuxfft2JlajvWe329l3Jb2UwWCYoaujuVDQRGCmpSB/NkVobGxEb28v9u/f75ED6ezsnNVvzBcRVjOAXACVqqqukSTpYQCPqar6lNeKnxIkSRoAcAvAhwCcIvWTXCv6UwD5AKYA7FVVtclbm55CmXgST4m3X29iJl84BT5kgCfwdFOfrQ7P2vKhQsSQ3bOJfLTmx3MRWuInLd8JngDz9URRlBjWRCsGkDgmMfQCDzU1NSyFLI2FQm9QfV60ws+xsbER09PTGB4edgv8RwfSarWyW/e8efPYoVZVlXEKVqsVVVVV2LZtG4uPBbiQqMPhQFtbG2JiYuDv74+bN28iODiYIUL+tn/hwgWEh4dj/fr1KC0txfbt21nKVrIscjqdiI6OhtFoZNZTJGYhcQfdiKempphRQXJyMitfX1+P1NRU5vEuhtbgOYiUlBTmswGAhfqggIzDw8MoKHBZ+JeVlbGAjUeOHEFCQgLWr1+Pzs5OjI2Noa+vD4WFhaisrERHRwe+9rWvob6+HgsWLMCFCxdQWFiIkpIS7N+/H52dnRgfHwcA9Pf3Q6fTufn+kAf8pUuX4O/vj4iICBiNRjQ2NiIiIgJ2ux0vvPAC/uIv/gJf/vKX2Zwo5hdxaENDQyzqgMlkYml7zWYzJEli+gqK9UWK8/r6eixduhSLFi1ioWRiY2Nx/vx5nDlzBt/5znfYvueDKzY0NGB6ehqJiYks8VR6ejrq6+vZM0qJy58h+q4tLS3o7Oxk3K7W+eQDiopcDuA9rA+dScCzH4gvBKRRVdX0jwnJGlVVP5Ik6byqquu8VvyU8DEBSVdVdczD+3wAz8JFQNYD+Kmqquu9telJhOUNmYrsvLjgnsRJWn3MpkcRCYEvMau0+heRNuCeM8MX0ZvICnsjklRGHBPwSU4OMj/kxwjAzRmRJyw8EuOBz/HBfxc+Mm5UVBRTjvJEB3DlKKc8FSLbTvlGQkNDUVtbi23btrn5eRw5cgRBQUGYmJhgogeemPHEiEQ0gCtcO4XUIBEMH7xQDG0RGxvLcmSEh4czQkZiDcClFLfb7XjllVewb98+XLt2bUZUXq3vIX43s9kMVVVx8+ZN6HQ6OJ1OZkZMc6E+w8PDUV5ejrCwMOaL0dvby5wNqV0isg6HA/39/RgYGMDKlSsZEamvr0dlZSX27duHX/7yl3j88cdhMpnY/AMDA6GqKkwmExM9TUxMoL+/n4V0iY6OxsjICCIiIuB0OrFu3TpGCL7//e/jz//8z9Hd3Y2goCA88cQTLBpAQEAAFMUVGiQrK4tFCaZ5BQQEMJGlxWKBwWDAuXPnmEn4vHnzmLOl1WpFWVkZCgoKsHTpUsTExKC1tRWXLl1i6xwREYF169ahuLgYg4OD+OIXv8isvnjHShKZETdGwTpl2eUU6nA43CJL899R5HYJSGxGYjTx3JFofTZ8oCjKpwqmWAlgO4AfAQgGcB3AWlVVs7xW/JTgAwF5HUC1qqq/+vj/LgA5qqqOeGrTGwEBPIuTRE9kkfMQwy57k8P78rEA7Qi8WmW1ypEMPyoqioVhoM1Ogf60iBPfN5mQikEJZ5Oraon66JaqdRPSQnae5i+GmeDr8+9EIknjoKiqfKRUfsz8bTsyMnJGUiLK95GUlMTk2nz4bX68NpsNhw8fhk6nQ15eHqqrq1l4dBqf1WpFX18fHA6Hm6d5amoqLly4gISEBBw8eBD79++H1WplHuMk1rBarfjFL34Bf39/7Ny5k8ngi4qKEBcXh6SkJLS2tkJRFJbsSJZlFqlWlmWG+IuKimAwGFBWVobdu3fD398fTqcTvb29iImJQVJSEptrV1cXLl26xMKqXLhwAQBYHvWwsDCsWrUKr7/+OjZu3Ij169dDUVy6mj179kCWZbz33nvw9/dHYmIiurq60Nvbi127duHUqVMoLi7GD3/4Q5hMJvZdiIOLjo5m0ZKXL18OWZZRUVGBhx56CH/2Z3+GNWvWsDrHjx9HXl4eU2K//vrr2LRpE3Jzc9k+s9lsuH79OsbGxrBu3To3rvFHP/oRlixZAgAsDta6detgt9sZ0QkKCsLWrVsBwC2MP621LLsU7eRrYzQa3Qw26GJD34V8TtLS0tDc3OyWZoC/rIhcPp8mgr+M0dxpr9OFzW63s70023m8ePEi1q9frxnOXSc+0IBHAUwD+O8AHocrve3f+1Dv04IK4IQkSSqA11VV/bnwfjmAK9z/Qx8/cyMgkiQ9BeApAGxD8kCspCRJMxZTlmU3CxsRoYnvAe0MhPxzT7dBUa/hTYTD/63FERgMBsb60maiYICyLGuKx3hiROOkA0hteAIyFuDXkDY778gk5v3m5ys+01pDEqPw7DqV8WZCLcsyO0i87wZ9F/4CIMsyQ5xEpKjdzZs3z2iXosSK4rDOzk4kJCRg+fLluH79OssFwq8Z3V4p+KCiKLh8+TJaWlowPj6OVatWITg4GAaDgXFXixYtcqv/la98BUNDQ0xfZTAYsGjRIiQlJaGlpQXT09MYHBxEUlISKioqsHPnTkRERDBnTrLo2r59O9ra2vC1r30N69atQ1tbGxRFgclkQmZmJqxWK4aGhqAoCjIzM+F0OuF0OnH+/Hm0t7fDz88PhYWFTATW2NiI3Nxcpqxua2tDd3c3mpqakJiYiCtXrsBisSA1NRVOp5NxaDqdDvPnz8fly5cxPDzMLh1k7tva2oro6GgAQF9fH0JCQvDQQw9h37596Onpwcsvv4ynn34aZWVlWLFiBSorK6EoCn75y18yR0HaO2+//TYGBwfx9NNP4/z58wBchIKMEr74xS8yESGtOZkIh4SEID8/H/39/UzxnpKSwrgGyh6ZmpqK6elpRqB37drFxE+UN0RVVaSkpMDhcDBRIoAZAR4pHlxWVpYmLhJTGFAZntCQQ2tPT8+M86h1IaX6cOHjGeBViS5J0gMAfqeq6keqqjpVVf1XVVV/pqrquLd6nxFsUFU1FcCXAPyNJEnZ4vA06syYpKqqP//Ykz6dDh8P9OE9hSHnP4DWex4ZcYsN4JMPArjbiPPImMqICJpH2oRcqBz/tyx/YsrJP+dv4TQuo9HoEdGKSJu8XilrGwUd1ApzQr4jPPE4duyYW7Y3rUROIojzEp/RwfK2ZlpAB0Y05eUvAKTAB8AC2YlrTu2Top8U4xRhl1+P5ORkJCUl4Ze//CUmJyfZujQ0NKCurg6KomDlypUwGo1ISUlBR0cH0tLSsGPHDmRmZuLJJ5/EwMAAADDv56CgINTX1+PMmTNQFAXLli3D9evXERsbi/r6ehQVFcFiseDf/u3fYLfbIUkS1qxZgyeeeAIhISHYtm0bALAotkFBQYiJiQEA5stA3txjY2Po7u5m3//w4cPYtm0b3nrrLbbfhoeH0dfXB6fTiRUrVqCrq4t5fFO4dgAMmS5atAjR0dFobW1FYWEhcnJyIMsyhoeHsXz5crS2tkKWZTz66KPIzs5GWloaUlJSWHKo2tpaKIoCvV6PdevWITExESEhIdi3bx+ioqIQEBCA+fPno7m5GRaLBXFxcVi6dClqamrw9NNPIysrC5cvX2aRiHfu3MnEdU6nE5cuXcKVK1dQUFAAo9GI6OhonDhxgl2GQkJCEBsby9bkxIkTCA8PR2xsLLOcO3DgABRFQUFBARwOB1pbW1nwyPz8fLS2tqK1tRW3b99Ga2srYmNjWabFpKQkZGVlISkpCWazmfm9kJirsLCQSRTE/c2H6xGlAfxvOodkJCOeHx5/zXaugFkIiKqqHwKYkiRpvrdyfwhQVfXqx7+vA/g3AKLOZQjACu7/UABX59oPHXhP7wipzNYGj9B4JMgTHy2OwdNHozZ5xzZeN0DtUGIZiqBKz3lE70lMJP5N9cgDm5AtWfDExcXNCJtAfYoEi27DWlYciqIdNtrb+hgMBpYFEHC/8fOEVmsdxVsYrSvgHj+MOC+yXGppaWEObPx4qS2KtkrIT7ScMxgMeP7557Fp0ybU19fj6NGj7Kbd0tLCouMqioLp6WmcO3eOISU+qVJ0dDRkWUZISAieffZZAEBrayuzRCIleVhYGEMSNpsNY2NjKCsrg6IoTB7e0tLCcoZv374dFouFEZvExERMTU2xXBuhoaGIiYlBSEgI9u/fDwBYv349ampqcObMGfz85z9nIqP58+cjPDwc09PTjAMjWLlyJRobG1FbW4uqqiqcPHmSccUAkJOTg8OHDzNfk/Xr10OWXZkcKaDk/Pnz4XA4EBMTg8HBQXR1dSEjIwOLFy/GoUOHYLPZkJqaCj8/PzgcDmzYsAE1NTWQZRlhYWEszE9ERATy8/NRVlaGCxcuQFEUlJeXY9WqVUhISEBMTAzTpZSXl8NgMLA4VjQv2geLFy9GSUkJXn75ZVgsFvT19bGxt7W14dKlS5iamoIsy/Dz82Me7UlJScjMzGSOiYqiMN0ev3aRkZFMBMlfCklkRfWOHDnCjET4iw39aIG3y5Y3C00RfPFEvwOgVZKk/58kST+jH59av0eQJClQkqSH6G+40um2CcWOA9gjuSADwKQ3/YcWiAhBBC2EptWGaD4nsoBim1ogfjQecZK1EnkP8wTBaDS6meIREeBj/PNtU7A+rXck/5+ammI3yaysLGaH7smsT+t/soLib/f8/DyFntcidDxXpGWmePHiRZYvhD80IqEi71w+3hf5GxBX0N7ejpCQEJSVlWFqagoGg4GFJaHvRGMijsvf35/FfCLCVFdXh2PHjrFxUnBDWZaRmZmJrKwspggvKipi2QRJ1BUZGYmAgAAWJyomJoYpQ0kkRfoU8vqenJxEeXk5NmzYgG9/+9uoqKhATk4OOjs7WWbB0NBQlJWV4eTJk+jt7YXJZGL6hcrKSrz66qtQFAX79+/HvHnzALhENxSeIyoqCkeOHMEDDzyA/fv3Y2xsDJ2dnQgODkZJSQnef/99nDt3Dna7nRFh4hT27t2L5cuXY//+/ez2W1tbi/7+fqxduxbr1q1Deno6CyrZ09OD8PBwhIeHw8/PD6dPn8aFCxeQn5/P1u5nP/sZBgcHcf78eSiKK/y92WzG2rVrsWvXLqxZswaTk5N48cUXMTY2Br1eD6PRiK1bt0Kn0yEoKAjbt2/Hpk2bGJFqbGxEa2srs7abmJhAcXExqqqqkJyczKzYALAw7tXV1QgNDUVwcDDbv2QibDAY8MQTT7DLGBGFgIAAREZGoqWlBR0dHcjNzWXrHBMTg76+Pty+fRuxsbFu3ubUjs1mQ1NTEwtgCbguJpRLhud2+bPiiTjQ+Z9LygdflOh/qfVcVdV/9amHewBJkiLg4joAl57mqKqq/yBJ0jMf9/3ax2a8/w+uKMFTAJ5UVdWrlyCvRCfk4i2Ll6+gpdfw9txTG8Dszj+E5MQbtYhYeXNYapfKUpY1rbzsvA8G/87T+GiOs62BKJaiEA+eLM5ERzqqx8toiUvivfMBuHlSU25owN2kmZwXZdnlOc1bxpAZpdFo1By7SOT4OfJOXbReNTU16OnpQXZ2Nm7cuMH8CcgXQVEUtxAexcXFyMvLY9/Ibrfj3LlzqKqqwvPPP8+UrMePH0dubi4OHjyIxMREjI2NYcWKFfjiF7+Inp4eVFZW4plnnnHjIsnkldK51tbW4urVq9iyZQtKS0uZeElRFPT398NutyMoKIgRLEq2NTIygvXr16OlpQWLFy/G1atXMTU1xQwcXnrpJSxbtgzR0dHw9/dnCn0+gvPKlStRVlaGpUuXsui727dvBwD09vbiypUrGBoawtWrV7Fv3z50dHTgypUruHPnDtMZVFZWorCwEGNjY5g/fz6mpqYQHByMsbEx6HQ6mM1mPPDAA7h79y6Sk5NZSJK+vj4kJiZi5cqVuHbtGqanp5k/SX5+PmRZRldXF2JiYlBaWoqMjAz85je/wbPPPouuri5MTk7izJkzeP7559m+ofJ0mSP/m6ysLCbqXLx4MTZu3OiWjjguLg6K4nKAzM3NBQDmXV9ZWYmoqCikpqYy02wy6JAkCW1tbUhMTGRWhzxn7ekMebqkEU7UEufP2YxXkqSTqqo+IknSj1VV/ZZmoT8xEK2wZkPavoA3xOnJ9JcHEQl643g8EQvR4502g4iY+ZuHmMuDF7/xohxvFlj8eGYbOxEmRfkk7wYhUsrJoOXtLcp8aRzEZVE9nsugFKa8tQu/1vQ3vedNHW02G370ox8hNzcXjzzyiBuHqWXCTZcQmguvJ+EtXxYsWICzZ89i+fLl0Ol0LCYV6SAsFgsrz681zbW+vh5tbW3Ys2cPs56hNSVT25s3b+LKlSuszd7eXuzcuZPl91AUlzKbIDo6GgcPHsS+ffswNDSE8fFx9Pf3Y9euXThx4gSysrJQU1OD/Px85msSGhqKhoYGXLlyBYWFhejq6sLo6Ch6enpw+/ZtOBwOvPDCC7BarRgYGIAkSejt7WWiu/Xr1+PUqVO4cuUKIiIi0N7ezjyyAZe+RKfTYf369Th37hyCg4NZUMiAgAAsX74cBw4cwCOPPAK9Xo/JyckZROZXv/oVFixYgKeeegpFRUV48sknmQiwvr6ecZH5+fl466238PTTTzPv9eDgYFitVgCuxFepqamw2+2wWq0wGo0wmUw4e/Ys8/MAXHGy9Ho9W9sVK1bg4YcfRlOTyy2NLidWqxVNTU3Mn8RgMKCmpgaAS/cUFBSEt956C3fv3kVWVhaCg4MRHR2N/v5+KIq7JR2db7pM0Bkg35Ls7E9Uxt7Or2hA5Amf3QsBaQfwXwG8BmA3BKX1bE57n0f4rBJKEXij2MDsITYICebl5bllvdPqxxOi54mI6EA4m4Of1s2eL8ubGmr5hXj7zY9dUVw+FKTo5IMZ0tg9xanytqlFgiDGsaL64pyobypH8nHyLTl58iQCAgLc4h6ReacWEaF90NbWxuJC8f3bbDYWf8lgMKC+vh46nQ6hoaGorKyE0+lkhFCMrUXfMiIiAsAnaUytVisuXrzILLxaW1vhcDiYw2BgYCCWL1+OgYEB5sPw/vvvY8OGDcxEd/78+ZicnMTGjRvR2trK6mZmZsJud2X0CwkJQX9/P5KSklBbW4uWlha2VzIyMhAdHY2XX34ZCxYswI0bN1iOlJdffpmZ8AJg4e/z8/Nx4MABpKWlYd68eSwacEJCAvR6PRobG7Fo0SJUVVXhS1/6EhYuXMhu9mQOTDnGGxoaEBAQwOY9NjaGBQsWMGfFmJgYLF26FFeuXMHFixfxf/7P/4HBYGC5zQGgsrKShbcHwPQigYGBiI6OxvHjxwEA27ZtY3uEHCcdDgdOnjyJpUuX4qmnngLgyt9eWVmJ7du3Y2hoCDExMcyf59KlS3jnnXcQGhoKg8GA3bt3M5FTamoqiyrQ3d0NALh06RLTgVE8NTIVJpEnWRXSPlaUT0Lb8KFrPFleap0TLZAkSdOM1xsB2Qngr+CKxitiXVVV1VyvPX4OIT09XSV7aR7mImoS63nLyidyOFpIlthcLeREdbR8IjzdKEQEDLjfhn0VQfHPecTLcxwiwRPHSv9HRUWxzHq8IlD8rcWxzcbJEQInboRERp2dnYiMjGR5MeggUcwmsrISAwdSmyRi473DKVeE1jgoku2uXbuYuIgXIVIcJkX5xHO6qqoKubm5uHz5MhwOB8shQUDEu66uDl1dXQBckXHDw8Pxt3/7twgKCsJf/uVfsrnYbDa0tbUxzqa4uBhOpxMxMTFYs2YNjh07xvwRRkdHsWXLFvT39zNlfGtrK2JiYliCqZiYGLS1tbFc6cQ5rlq1iulWkpOTcfjwYRQUFKC9vR15eXkAXATOYDC4rQFxTGfOnGGipISEBFy+fBmA68b/9ttvMydCPz8/bNiwgYnTFEVBV1cXFi5cCFl2xcX68pe/jCVLluDmzZtwOBw4c+YMMjMzsWXLFraGVqsVzc3NLOxKeHg4SktLcefOHVy5cgXf/OY3UVFRweJZmUwmbNy4kZlB6/V6REdH48CBA9i0aRNWr16NEydOYOvWrbh48SLa29uxd+9eAMArr7yCr371q4iLi0NVVRXi4+Nx+fJl1NTUICUlBZcvX8bq1asRGBiI7Oxs2Gw2dHV1Yfny5Xj99deRkZHBAkEWFxdj6dKlWLhwIcMPtIYUn4s3MaYzQOe8oaGB+TyJ8ey8RXzQgjlnJFRVtVhV1S8BeElV1YeFnz854gG4FLe+mtH6ArLsOZ4+tSv+zyt7AdcGF3OC87doLUW+J4In3nzpx5MZMq/c9qQYp/qENHnFPq/YE8dKbVJIcbrN0/jPnj3rZjFCZbXa9JY0h0wceVEW5Y8OCAhAenq6W0BCRVHcYhrdvn3bbb7UBxkM0O2NTErFcfCiQj6kBCWWon6TkpLQ2NiIkpISLFmyBFarFXl5eTCZTEhMTGRBCgHg7bffxnvvvQer1YqWlhYkJSVh79692L17NzIzM2EymfCDH/wA6enp+OlPfwqLxQJFcXmAT05OIi0tjYlbNmzYAFVVYTQaUVBQgP7+foyMjCA7OxvV1dWQJIl5Qauqiq6uLkRGRmJqagptbW1wOBzYuXMn9Ho9y9cREBAAWf7ECi0mJgbd3d0sB3tNTQ2OHz+O1tZWtgZWqxUdHR0s7Wxqaip6e3tx/PhxREdHsxzwOp0Oer0eH330EX7xi1/g7bffxuHDhzF//nwkJSUhODgY165dg16vx5e//GXY7XYsX74cDQ0NmJiYgMPhQENDA2w2G0pLS1FWVoZ//ud/ZlxAV1cXysrKAABRUVFYtWoVM/TQ6/UsLwkA3Lx5E5s2bWJipMcffxwWiwWXL19GTk4Orly5gvj4eFy5cgVHjhxBW1sb1qxZg+bmZmbm+8orryA1NRX79u1DYGAg7HY71q9fj9TUVMZNXblyBZWVlUhISEB9fT1qa2tx/vx5bNu2Df39/cyy7ezZsygpKWF7mOJ10fmhM0CXtMjISEY8+FhvxHHz2UvvBf8BPlhhqar6w3tq+XMIkiR5NBOdKwcym/5EbJdHpmI4clEXUVdXxxCr2Ic3gudpE3gicJRrwhv3RPVFgsj7v4hj5XUYvM05T1xo8/NKVSojzlHLd4XekTUXtdve3o6kpCQ88sgjyMzMnOG8Nzg4yMaZnJzMDjVvMk0HTVFczpQmk4kdSlFs2NjYiJqaGualLssys1wjk0+SVaenpyMnJwfV1dXMkIGUr2T2TO3++te/xttvv43R0VGUlZUxjghw3R6Hh4cxMTGBqKgodoNftGgR6uvrYbPZYLfb8d577+Fb3/oW3nnnHRaJQKfTYdu2bZiYmMCOHTuQmJiIjo4OmM1mFsixra0NXV1duH37NgYHB2EwGJCQkIBvfOMbSEpKQl9fH5qamtws6RwOB7Zs2cJMUE0mE7s0WCwWfP/738eCBQuYnsBoNGL37t2IjY3FpUuXMDY2hqNHjyI+Ph6bN2+GXq9neT8qKyvxjW98Az/72c9w/vx5Zuk0b948bNmyBRMTE/jqV7+K06dPIzMzE2vXrkVNTQ2CgoLQ29uLkZERrFq1Cn19fdi5cyf27duHr3/961ixYgV27doFvV6PBx54AA6HA0ajEYWFhexGb7FYcPDgQZw5cwaVlZVYunQpJicnUVlZyTibRYsWISEhAdHR0ViyZAmLjBwSEoIvfOELsNlsqK6uRkBAAJ599lm2r2w2G1vL7OxsrFq1Ck8//TSmpqaYr8rVq1cxPj6O119/HbGxsSgoKHDLP0KXMdp//F4nrooySZI5OhEbPpqDllm9L+CLJ/p/GBBv+gT3Qjy0xEre2uWRqafbPgGfVlOrTT7yrKjH8BZHSgRP66E1P+qX75PGoJUbXQuxE8EhT3mDwaCpPyKPc3HevJ6DxkfRXUnfIyr0eWV5Z2cnCgoK2Jh43xISkZFSnW7XFBSR9BM0BwrjTRFXxbEqisLk7IqioLu7GzExMaiursbixYvdFP86nY55cNvtdjz11FOMSFBYDBKt2Gw2FqgwJiYG586dg16vh81mw7x585Ceno7jx49j7969+OEPf8j8g4xGI/z8/LBlyxaEhITgyhVXEAfKDdLf3w9Zlpk4S6/XM5Gb3W7Ht771LcTExCA4OBgxMTHIyMiA3W5HU1MTmpubMTQ0xHQZCQkJKCoqQm5uLtuPf/7nf87ESRRyhZz1SkpKMD4+js7OTmRnZ+N73/seUlNTGefzk5/8BJcuXcLExAQ2bNiADz74AP39/RgbG8Ply5excuVKOJ1OJCQkYOHChbh69Sry8/PR1dUFp9OJBx54ALIso7OzE06nkymYIyMjWWDKBQsW4PLly5g/fz6WL1+O4eFhPProo4iKisJzzz2HCxcuoLm5GQ6HAxMTE8jOzkZ5eTn6+/vx0UcfISwsDCUlJSyfCOBySF21ahWqq6vZvjt16hQaGhqwb98+mEwmfOMb3wDguhRERkaira0NVqsVX/nKV2AymZCTkwN/f39s2bKF6c9UVUV9fT0yMjKYmM3f39/tbJIjcE9PD3MgJn2oFn7gVRmzXY558MUP5D8MTE1NzVCy3gvMlWvhb9Sz1SGOxJu8n1hu8eZPyI9/7mk8nsRv9E501CP9wZEjR5gnMvWrFQKGD9HO+8kQeLNMo7SiPBdCN0LeWQ8AC8lAcxHFaGII+a6uLhbaXeSQaFzJyclIS0tjISrocFG7lEchJCQEBoOBmalSH2Q1dfr0aUb0CgsLERISgh07djBZPBEp0qvYbDa89NJLOHfuHK5du4akpCQ0NTWhq6uLhTIpLi5mMaDa2tpw5coVLFq0CAcPHsT09DQeeughtl4GgwHDw8MsdlR2djZqa2tht9tZn4sXL0Z/fz8j+JSmlfwKOjs73cRUP/nJT3Dt2jUWSuX27duIj4/Hxo0bkZCQwL4biWtJnDMyMoK2tjZs27YN//f//l+cPHkSFosF5eXlWLBgAQIDA5GQkIDY2FgUFhbC4XAgKysLDocDH3zwAcbGxrBw4UKcO3cOS5YsQXp6Op599lkkJCSgp6eHhflYvXo1tm/fDqPRiPHxcTQ1NWH58uXo7+/Hli1boNfrYbFY8Pbbb+PIkSOYnJyExWJBUVERbt++jUWLFuHv//7vMTY2huDgYNjtdoSEhGD9+vXQ6XQYGxtDfn4+rl69itWrV2Pv3r2IjIxER0cHhoeH3ULrDw4OQpZlrFq1CgaDAadOncIHH3yApKQkDA8Pw2q14tChQygtLUVISAgzhIiJiWF6ELrkGQwG1NXVsWjOAwMDUBRXgjDSnZEzIZ0Zo9HodhbobIrA4wLiqmfDIQT3xIFIkmRQVVU75+jnGAICAgBoB+rzBbnzMFeuZS4EZzaugJAnIVoCutGLnInI2oo3dJ6bEZXgwCfWS3Qj9SUIG89tedrEnjg5CjtOiJ/GyJv6UnsioeP9O/g1ItESjYHS4YrrTQQ6Pj6eHV4ihrTu5LxJVkr0nsLG63Q6ZGRkIDU1dYaDp9FoZP4YlH6Wz9S3ZcsWpKamsjERwiAdC9+WXq+HyWRCT08PMjMzsXHjRkaIKioqsHHjRoSHh+PVV1+FxWJh1kskWouNjcXVq1exceNGAMCbb77J/Ebq6+vZt1AUBRs3bsSuXbvQ1NSE/Px8dHR0YOvWrbh06RIURcHY2BiysrKYNzZFxyWz6qVLl6K2tpY58a1ZswalpaXQ6XRobm5GcnIyJiYmYLfbER4ejry8PHZzplzi3d3dmD9/PoaHhxEYGIju7m5s2rQJq1atYvL8H//4x1i1ahXCw8Nx9uxZpKWlYXx8HPPnz0dHRweCgoLw7rvvYvXq1RgaGoLNZsOZM2fw3e9+F4qiICQkhIU4UZRPLJqIO6WkVQMDA8jKysIvf/lLpKamIiAgAE8++SQqKythNBrR0dGBZcuWoby8HNu3b4fNZkNDQwPS0tKwZMkSTE1NwWg0Ys+ePThx4gTOnj0Lq9WKmJgYKIorH0xXVxcsFgteeOEFN07fYDC4WWQRsScul0zC6UJFIiotnzc6t7ykQLSS9Ab3yoG032O9f1egG5+IsLQ8pUW4V85F1B3cK/AIlcZOnq4iiDmS+Vs8RawlJHTkyBFUVFTg2LFjbghZDKFCiYU2b97sFoSNkDbv8UrPeVEXH0+LJyRaOimyKqKQIseOHWNhKahtT+tKudL52FT19fWsT5oHLyIT9T0kziJCpCV65G93vD5Ir9ez2z0vYybPdIvFgp6eHkRGRrJQJjdv3mTKUcrNwSexAsAQOvCJxVdMTAwcDgdThlNYDKPRiISEBPzd3/0dFEVBRkYGixlFJsGSJDFFP7VJinuz2YyLFy/C4XAgNjYWxcXFuH37Ns6ePYv8/HwYDAZmftvV1QVJkrB06VJ0dXXh5s2b6OjogCy7rK1+97vfYfny5ZiensaJEydgtVphtVphs9ng5+fHCO+VK1eYNzt57VdWVuLUqVOwWCxYs2YNbDYb3nnnHUxOTmJqagrvv/8+LBYLXnnlFQQGBiI+Ph4BAQEoKChAQkICli1bhgULFiAmJga5ubnYsmUL5s+fj+eeew4FBQUIDQ3FxMQEvvSlL2Fqago3b97EuXPnmOUeAISFhTGv7/b2drz22mv49re/zfSZTz/9NB5++GH09vaip6eHXVji4uKQm5uLRYsWoa2tDSdOnEBhYSFWrlyJ6OhoDA4OoqenBzU1NQgODkZdXR1WrFiBhIQExhEWFBTgz/7sz5jOJDExEREREWx9U1JS2GVLlmXs2LGDuQOIZ4qSWYnEg9f50XnkwxLNBh45EEmS/oenVwBmT1TxOQZPN05Pi0ZIUitir6fyPPK8FyW92A6vR6ANw+fR0OqPJwikNKfbL9WNioqCTqdjt1e+L8poR1wPf0vhx0HpPvlx86bDdCOmW6W4ubW4P14vUVBQwMxYqW0SV4htEZdEehRJktDT04OMjAw30RflBeG5CyKcvC8Gn2FR5MqoLRJbkfmuyP3Jsit8SXh4OE6cOMEi8JJ/BoUwkWWZJSsihfaaNWtYHo6xsTEMDAzAz49llsbIyAhycnKQm5vLfIEmJyfx/vvvs9wXxHUkJydj5cqVMBgMLMWyzWZjMbo2bNgAo9EIo9HI0qkCLqK8fv16ZuFjt9uRmZkJm83G/CFGRkaYeGj16tVoamrCmjVrEBYWBoPBgPDwcPzsZz/D2bNnMTk5iW9961t44IEHUFBQgKGhIbS0tODDDz8EAExOTuLYsWPo6uqCLMtYs2YNFEVBb28vDAYDHnjgAUxMTGDevHloampCZ2cndu/ejeHhYTz55JNob29nnMDU1BRCQkJgs9nw+uuvQ1EUJCQkQFEUnD9/HsnJyfD394fZbMbo6CiWLl3KYomRrkmWXXG5bt26hY6ODty6dYtxdc888wzWrl0Lk8mE+fPnM5+a7u5u5OTkoKmpCc8++yzT9ezYsQOXL1/GokWLcOjQIda/wWDA9PQ0Ll26hDt37sDpdKKiogJLly5lXIwsy7h+/TpWr17N9ixdhHjpBO1jXkws7kn6TWJv0WfMV/DmB3IHwE8AODVe/3dVVYPm3Nu/M/iaUErrfwJfiIcvCvbZQKsdLUTrqT/xOS/eqa+vd0u4pDUvcaNpvQPcPbq1vN7r6urYYbLZbJrcHx+mXat/0SudTyol1iGRicPhYMpSUTynKArefvttN0sUOnSUcY8Pa9LZ2cm8pQkRk/4EAAtVYjKZEBgYCADMAomPAEwBEvPy8ti80tPTWXZAIiBkzkuhSoaGhhAUFIRDhw5BURS88MILjBDX1NQwkdexY8dYJFmr1YqamhpUVFQgMTGR6SlaW1vd/GDIM5syHsbGxjL/BDLj7erqQkREBCNSJB6rqKjA9PQ0JEliJszvvPMO5s2bh3feeQfLly/H4OAgHnroITz55JMYHh7G9PQ0pqenUVZWhpUrV2L16tXo7u6GwWDAwoULcfr0aaxcuRK7d+/GpUuXEBwcjH/6p3/CV7/6VcTHx6OjowMXLlxgARB37drFvN79/Pwwf74r7uvk5CQeeOABjI6O4m/+5m8wOjqK5cuXo729HX19fdi6dSuOHz+OgYEBhISEICgoCDk5OZicnGS6J/5b1dTUoL29HVlZWXj3XVdGb1VVmenz6tWrUVBQgAMHDuD555+H0WhEV1cXi3dVW1uLw4cPs7ArW7ZsQXFxMUZGRjBv3jxUVlYiODgYX/3qV2G325GXl4f+/n44nU7o9XqmMA8NDYXVap2Ro4jfj1arlYXu9+RTJUaZIBAdo+nseHIk9KYDaQJQqqqqWXwhSdI+L/U+t+CJWM6GeD0hci3kyouaPg14Eu94K+eN8yGOxW63Y2BggN3ItQgl/9wb8eC5N5574etnZma6IVOxLbIi4Yma2K8Ys8toNDKnQXFMNEfiiPix8DoVwKVf8Pf3Z3Xq6+tZ2Ayq6+/vj927d7P1JaTb2dmJpKQkpKWlQa/Xs1AcRATIcZK4Pll2Kb11Oh27HdLY+BSzpAzV6/UsHtbY2BgUxRXgsLu7myW6stls0Ol0rK/ly5ejr68Psiyjr68PCxcuxN/+7d+iqakJfX19CAgIYGE0AJcfzOjoKHQ6HQYGBljYE3JuI7n7hg0b8Nvf/pYlVdqyZQuqq6sRGRmJhIQElJSUMAurd999Fy+88AIjDv7+/tiwYQOqqqpw584dREdHQ1VV3L17F2FhYdDr9bhx4wYqKiqwd+9ehISEuO2RsbExREVFsdD2gYGBWL16NUJDQxkBu3z5MrKzs1FTU4P4+HisXbsWZWVlCAkJwejoKMrLywG4TI3j4+Px3nvvMW7l+PHj0Ol02Lp1K86fP88cIUm0Q7lRSP9w9uxZXLt2DRERESySQExMDFOw79mzB1VVVTCZTGhoaMCZM2fw8MMPIyYmBmlpaSzWVVNTE/bu3Qu73c5CpYSEhDDiUVtbi40bN+LatWtYsWIFFEVhGR75wIkUooYIAnFOFPVAPLeiXpI/V4qizLDG4jjtOecDeRKAxcO7GR6JfwpAyVS8gdbiisSD9xkQ26OPyYdTF9/7Cr4SIZ7QidySqLvp6elhm0vUWYj+J1pj5/vgZaZa76kMry+gtaN36enpSE1NdXOKovrEUfBrwbdNbVH4eeqbEkfx60cybPKn2L17N7Kzs90CLRIh4Inx2rVrWVrb48ePIzY2FhkZGUhMTGSmt6SLorAXFLRPlmVMTU0x/UZiYiK2bduGlpYW2O12t5seRYEFXBcdSlpEObqnp6cxMDAAvV4Pu92OQ4cO4eWXX0ZoaChUVUVTUxP0ej3LyX3z5k00Nzejvb0d77zzDvOdII5RURQEBQWhubkZOTk50Ol0MBqNCA0NRWlpKaampjA9PQ2z2Yzf/va3KCwsxMKFC7Fs2TKYTCamCKfxW61W1NbWMu7o5s2b+Nu//Vs8+OCDMJvNCA4ORkJCAnQ6HYKDg/Hcc8+hvb0dU1NTsNlsWLlyJfz8/ODn54fp6Wm8+eabaGtrw9TUFAIDAxEUFITq6mpcu3YNQ0NDSEtLQ2hoKCIiIjA6Oop/+Id/AODKUULK5JycHPzN3/wNy4eiqioGBgbw8MMPMy4hPj4e0dHR6OnpYfnmKdRJVVUVqqurUVtbi4SEBHz9619Hfn4+kpOTkZeXhwceeAADAwNYtWoV4uPjMTExgX/5l3/BxMQEbt68CQBYtmwZ6zchIQGy7HKq/P3vf48PPvgA//iP/4jXX3+djXXv3r0wmUzIy8tDZWUllixZgldeeQWHDx9GeHg4s5ZraWnBxMQEWltbmaWhoigoKyvD8uXLZxAP4uI9XQzpGa8nEXCfVv4lr57oXaqqjnp4d81Tvc8z8J7o3hC5N8StRcX59ogD8eQ57avX+1wIjTguvo2Ghga3zRMfH89yQGiNxZP/CYGWRZU4d0+bk18bXnFnMLhycvDjJSLDE316L5oGk7UUETP6TboJ8rwlh8DVq1czERCNVZIkJrrik2fR/Do7O5GXl4fe3l7IsszEaTyR2bZtG2RZRk9PD2JjY2EwGJCYmMiyQwIurqexsRFHjx5lDn/t7e2IiYlhClgS8ZCjWUREBNavXw+9Xs9uiETABgYGEBERAb1ej6mpKdjtdibCGx8fx7p167B9+3bMmzcPk5OTKC4uhslkwnvvvYe33noLcXFxqK+vZ97OtE5hYWEYGRmBwWDAnj17MDU1hdDQUFgsFqa4fvHFF/H2228zk96NGzfi6tWrKC0tRUpKCp566imsXLkS2dnZsFqtWLVqFWRZhsPhwNmzZ7F48WIkJycjMjISf/7nf46AgACEhoayKLMLFizA9PQ0nE4nLly4gImJCZw7dw7Dw8P413/9VxZ80M/PD3v27IHT6URoaCiLjXXkyBH8/d//Pd577z0cPnyY9U2phF9++WW0t7djcnISRUVFsFqtLKXw6tWrkZycjKVLl+Ldd9/FG2+8gdraWhw6dAgbN25k+UtycnKwYMECzJ8/n9UpKChgASf9/PzcQry/9957+MEPfoCpqSmYTCZ89NFHuH37NkZGRtDV1cXM82VZxp07dwC4iNCKFSuYVzrp2oKCgljyMzpHFF5eNMLwlD6BzhV/Tvln3Pn216o7W0bCv5QkqUmSpNsf/zRKkrTHW53PM5AnOjAz/4Yn8IT0yQKIkBpvheTNYVBL7jhXQuOprlZ/lMuC3vEIVkT2nqy6xDFp/W23291u+Z6A+iWvWL5sS0sL4uLi3BJH0d/UF29JR2Ig0bqE1vfs2bM4duwYAFcwPAr5Ia6T3W5nRIi4osjISLd+HQ4HDAaDm9MkrQHlViEuikJHWK1WHDx4kOl5ANcejI6OxtKlS1FaWgqz2YyoqCh0dXUx89p58+YxxzPSjRgMBpbWtaOjg4Vvb2xsxPHjx7Fo0SJUV1fjhz/8IUvM9Oyzz8JgMGBkZATt7e3o7u5m3+n06dPMUmnLli3MxN3pdCI6OhrHjh3Dtm3bsGfPHly/fh0jIyMoKyvDnTt3MDAwgHXr1rHc52TJRetFBIvmXVRUhJ6eHpSWlgIA1qxZA51Oh1WrVqG8vBx+fn5Yu3Yt88peuXIlCgoKUF9fz+JB/c3f/A0LS9Pd3Q1/f39ERUXhww8/hMlkwqJFi9gN/fLly7hy5Qp27dqFr33ta3j44YeRnJyMn//85xgfH4dOp8Pf//3fIz4+nllubdy4EW+99RYqKytht9uZtRYA/L//9/+wZMkSmEwmfPjhh5BlGbdu3UJxcTHz+6Cw7yMjI+jt7UVmZiaioqKwcOFCHD16FHfu3IHD4YBer8eXvvQlbNiwgUUbjoiIwPbt27Fo0SIUFxdjenqaneuysjKEh4dj4cKFiImJYT4fRqPRzRqS9zMT8Yssuyy2KJ+Qp3Pt6dnHfdzROs8eCcjHhOI5AM8DWAZXvvEXAPy3P2UiQgvsq5Lbky6CN6klczqxnqf2PCFjrT69fXBfzI89jUNRFGbuShuPvLq12pNlmVllAZ9wIrQWZrMZJSUlMJlMmtwX3y/g0lXwxAFwIS9yXBNNZEk06MlGXVxT4hLI453EFfya0hqWlJS4+dQoiis3AyFGslIh4kL9R0VFwWaz4bvf/S5sNhtbh46ODhZC4rnnnmO+IhkZGfD392epV3ft2sXCraSlpTGv85SUFHR1dbFUuZRgqaKiAjExMczRdPfu3YzYjY6O4rHHHoPdbsf09DT6+vpw+fJl1NbWYsWKFUzMotPpUFJSwgIJXrt2DZWVlRgbGwPwiQ8OJSmTZRnT09Ms/PrXv/51ZGRkYOHChQz5TkxMYOvWrWhvb2dm0pmZmSgoKEB4eDisViv+8i//Eunp6cxTe82aNVi7di38/PxY6I+tW7diz549aGlpYdGKDQYDSktL0dLSgpycHAQGBkKWXbk6BgYG8OGHHzInvPz8fAwODiI8PJz5U/T19aGmpgaSJOG5555j3uuFhYV45JFHALjMhS9evIjs7Gzs27cPFy5cQFtbG5qbm3HhwgVERkbCZDKhsrISCxYsQE9PD771rW/hH//xH7F48WLGOQAu44krV65Ar9cjLi6OhWR5+OGH0d/fz7Is1tXVITIyElarFcPDw/j5z3+O//W//hcmJiawcuVK9PX1sWgD8+bNY5knaf+TGIs4ZTojnhyWZVl22+O8GFkLv4liewB+0ABvVlj1AApVVR0Qnq8EcExV1Qytep9n+KzCudOH0lIe82UAz2aq/DOt93w/WqIpQqiUntTbWPmIwfzYKaERhU6heDp8ThFR9zNbVFwxLDsPZOXU3d3NEDuJiShyqJYNure+Sb7L38bE+fLzNplM6O3tdTPf5ZXa/Fi1bnPAJxZbxcXF2LZtGxTF5YBmsVhw5coVrFixAuXl5YiLi0NmZib7VnwoGLPZzExpyTqOPNxfeOEF5hBIHsibN29mxgGRkZHMLJrGSH4iwcHBGB0dZcTowIEDCAwMRHBwMHbu3Ml0OZRnw2az4bHHHkNpaSmefvppNDQ0sICHV69eRVhYGACXjiYgIIBZttXV1WFqagqbNm2CoihoamrC73//eyxatAipqalwOp04efIkAgMD0dHRgQ0bNiA/Px81NTWIi4tjkX4pEdS5c+dw9uxZZGVlQafTQafTIT4+HuPj4ygtLcW8efMwPT0Ng8GA0dFRpKam4qtf/SpefPFFLFu2DHv37sWCBQvw/e9/H/n5+XjooYdw4sQJTE9PIygoCPv27UN8fDzzQaG0uKGhocx/Y8+ePSgqKkJ/fz8yMzNZXpAnnniChTK5ffs2bty4gZUrV0Kn0yEkJIRZgF2/fh1tbW3MMmzJkiUYHBzE0qVLcePGDdy6dQuXL1/GM888gzfffBM9PT2YP38+cnNzUV1djQULFuCRRx7BnTt3sGjRImZRBoBZe+3evZsFSKTzU1RUhO3bt7MkYfy54s8v7TNFcTlI0hn0Be7FCmueSDw+nsiAJEnzfOr1PyDwugTKdid+KADMb4Ru2d7Mcb1xK1oWVjzxIHM9fgy8DTiJfXigNgmBUbne3l6mRBY91mnOWpYdNFaB5XUrB4BFteUT4PD27OR7IiJzWgettQPA0smSQpzXm/CEx2QyMfNRapNET6KFGF+X+uOTRxkMBuTm5rKQ2FarFS+++CKef/55XLlyBVFRUQyJ07dqbGxkRgwUfZZu+GazGVNTUwgKCmJrWVZWxvKcA2AOfL29vdi4cSOKi4uh0+mQn58Ph8OBS5cuQafTMdm5JEksWVJeXh7j7mi/BAcHY2pqChMTE3j66adx5coVzJ8/HxkZGdi4cSNsNhsGBgaYYx95pcuyjPDwcBw/fpz5h2RkZLjlsgBcwR11Oh2++c1vYmRkBOXl5QgPD0dSUhJOnTrFIviuW7cOfn5++MEPfgCHw4Hly5ejoqIC8fHxaGxsxIsvvoh3330Xjz76KM6fP4+BgQFERUUhJCQETz75JKampvCLX/wCy5Ytw3//7/8dZrMZqampaG1tRVxcHNauXYv+/n5YLBaUlJRgeHiYWaMFBgZi586dLEIvACxduhTz5s2Dn58fc7icmprCqlWr0N3djdWrV7PQ793d3UwU9tprr2FiYgKJiYkYGBjAuXPnMD09jbi4ONy6dQv/5b/8FxgMBly6dAnh4eHsm7a3t+PDDz/EsmXLYLfbkZubi6qqKvYt+HNM+5gIAHEWfLZH8gdSFFdoGjpPJMZyOp3sDHg6UxqgyWl440DMWhRntnefZ/i0HAjPEQDaNtP8e+CT26poqTQXPxEemQMzkz3JsruPA58bgy87202eclaI9bTGLf7P38hJ9MQjcXFN+H7pGUWMJcWrWK6uro75MGhxZHw0W567IAJhNptn5CQhv4vOzk4WWoTaprzU5GRFIi8KBnj8+HFs27aNWWlZrVY3M0uz2QxVVREbG8tuhzabDUNDQ4iIiEBXVxfS0tIYB2U2m2E2m7F79243/xQt7raxsZHpK8rLy7Fs2TLo9XqsWrWKpWWlrIKDg4PM6z01NdUtBIbdbkdpaSlzVAOAw4cPY8WKFSxg35UrV+B0OrF9+3YMDw9DURTm8JaWlgZJkjA2Nsa4Cf7m3NLSgqGhIYSGhjKDgIKCAvzoRz/CV77yFQBgEXujo6ORlZWFyclJTE5O4tKlSygvL8df//Vfo6OjA08//TRefPFFhISEMCJA4V0OHTqEoaEhPProo8wb3mazYfPmzUhJSUFpaSn8/PxgMpkQFRWFqKgoWK1WFnCxra0NERERCAgIYIm1Ojo64Ofnh61bt+Ktt95iaxEcHIw333wTaWlpmJ6exsMPPwyHw4Gf//znSEpKwvPPP4/y8nJkZGTgrbfewrPPPsuSce3btw9VVVUICgrCxMQESkpKkJqaCn9/fwQGBiIvLw+3b9/G+Pg40/PV1tYiICAAOp2O7VWn08kyHVLATHJCJWs8iq3FnyUt0bJ4rrUugA8++ODc8oEAiJMkqUXjpxVArJd6nxokSVohSdIpSZI6JEm6JEnSf9MokyNJ0qQkSRc//vn+bO3Olv99NuA5Al4e7uk9fRBRJ8AjUy0QFVp8+BHqgxC0GGbcYDAwByK+LI1Py0KMNg2lgaUxip6sWubN/Ptt27ahtbUVx44dYxnzqC1evMTrIAAwZbrFYkFBQQH8/T8x+CDiAHwSJkRrg/MKb9KbEPEwmUxQFIWF+uDr3759m8UQI2RInAMh/bVr18Jms8FsNqOsrIxFkiVHRCKmBoOB3cBpLGQ143A4YLfbceLECYyNjaGtrQ0dHR3MaoqU5ENDQ/jxj3+MQ4cOsXbMZjNOnz49wzqNQpRERUWxtKpDQ0PYtWsXjEYj0tPT8dJLL83gICipFAB0dXUhODgYxcXFOHr0KFtr8hnZsGEDCgsLcefOHZSVlWFsbAxJSUlYsWIF0tPTkZSUhMnJSZSUlEBVVfz2t79FQ0MD+vr6sHr1akRFReHBBx/EF7/4RTz44IMYGhpCRUUFgoODERsbyyyUli1bBpvNhmeffRa//vWv0dLSgo8++ghbtmzB6OgoFixYAMCVhtdisSAnJwfR0dFoa2tDU1MTQkNDERsbi4SEBFy5cgUtLS0oLCxEd3c3Dh48iDt37iA3Nxc6nQ6HDx9GT08Pjh8/DqfTidu3bzOCuWrVKubARybHLS0tyM3Nxdq1a7Fnzx5kZ2dj+fLlmJycREZGBgICAqDX67F7926MjIzg/Pnz2L59O0JCQrBixQo0NjaivLwcExMTOH78OCMKzc3N+MpXvoKgoCBmhXfs2DEsWLAAfX19eOmll3DgwAH86le/wtTUFCIiIlBaWorp6Wmkpqay/UD7OisrC5mZmSw9c1JSEgu6yAPtf/F8aulj6Rk8mPF6E2HFeXn3hwYngOdVVW2SJOkhAGZJkt5XVbVdKHdGVdUCXxvVCjs+V5hN9KSlvBI/ELHmWVlZM+qIN3tP4jKtcgRaIQyobT5uk9iflmWWKKYSobGxEaGhoRgaGkJ6erqm4yBfjxR5vO6CQnrQXEh5S9kaSWwkcnsE5FAFuGTzlJK1pKQEW7duZVxNUFAQiouLsXv3bkaABwcH2bqQyCY6OhqyLDN5ss1mw8svv4znn3+ecTCivoeISkFBATNrXbx4MQuxTuMsKChghCkxMZFZXyUmJmJoaAh/9md/BqfTiYCAANjtdhbyRJZlhIaGoqioiHEbtA9SU1OZaSflinj77beh0+nwwgsvwGQyQZZlWCwWvPzyy/jwww+xbt062Gw2OBwOLFq0CBs3bmS5OmJiYpiDIKVctlqtyMjIwOnTp5k8fd++fWhra4OqqoiJicHIyAicTicefPBBrFixApcvX8bY2BjWrl2LqakpbNmyhYn/rFYrSkpKsGfPHnb7J58MACguLoZer8f27dvR09ODgYEBvP7660hKSgIAXL58GQsXLsT09DQ6Ojpw6dIlfPe730VISAir09fXBwDYs2cP3n33XVRVVWHbtm24efMmjh8/Dj8/P4SFheGf//mfsXnzZmzatAmyLOPq1asst0dtbS36+vrwgx/8AC+//DKys7Oh1+vh7++PJUuWwM/Pj0UM3r9/P5vb+fPn0dfXh/DwcAQEBOAf//EfAQBFRUUYGhrCokWLMDw8jMnJScZRrF+/HmFhYZiYmEBBQQFKS0uxatUqPP744wgJCYHZbMayZcuYxVxPTw8iIiIwPT3NwqQAYFEajEYjCwQpnjktS1Hxkkh7e7UXR0KPBERV1UFP7/7QoKrqCICRj/++JUlSB1xWYCIB+VzAbDJE8dZOcvfk5OQZaSXFj0jPSK7PP/fGdmqNkRdz8SIxXr/APwdmiulEGB0dxfHjx92IIU+kRHEdL/snjlBVVbd87iQSO378OPLy8picmPckN5vNcDgcyMjIgMPhQEdHB+Li4tDd3Y2kpCR0dHRg+fLlCAkJQWFhIRRFYeaUZrMZkiQhOzvbTZlfUVGBnJwcnDhxAsuWLXOb84cffghFcYWDp3zUkZGRTJxFxIrPod3X18dk0MSRyLLMPNMtFgsLiEjineTkZNTV1cHpdDJRJHE59fX1WLZsGVpaWhAUFISEhASUl5cjKiqKycqJkCYlJWH+/Pm4fv06JiYmEBERgdraWjz77LOw2Wx47bXXUF1djfz8fOTm5kKWXT4SR44cYd+J8rC3t7ezvN1jY2OQJAmLFy9mc3U6nfjwww8xOjqKjIwM7NixA6Ojo0hLS8PKlStZOBXyjQBc3FBhYSFMJhNbg9LSUjgcDoSHh2Pp0qVISUnBAw88AIvFgtu3b2PDhg3MEk+v16Orq4vFryLRHYVQDwkJwenTp/HAAw+go6ODRS6+fPkyM7Hev38/mpqaWI6NLVu2oKGhATk5OYiPj0dFRQX+6q/+CoAr5hjlVierLPLg37VrF/r6+li04KysLEaMAWBwcBDr169nDpM9PT1YsWIFHnzwQaSlpeH999/HQw89hLCwMFRVVWHp0qW4ffs2yxPf39+PkJAQOBwOljvGYDBg69atLFc6iSYlScK2bdvYnmttbZ2h66SzpqUD0RLHe8Mt3sx4/0qSpG9y/w9LknRTkqRbkiT9V48tfsbwsdXXGgDnNF5nSpLULEnSu5IkJXio/9TH/iuNo6OafpGfCjyxfZ6AEGxhYaGbhzZfV4uLoXAXhIh4PxQ+m5invnmREx8kkERKPDsLfGJXLjogiX8vWrQI+/fvZ6IIvi2R+yLk2dLSAgDMHDUrK0tTHLht2zbmuEdcGOWYGBsbYxn6KAsdZZOjSLrz5s1jbRmNRuzduxfPPPMM0tLSmM8Gr6vZtm0boqKiUFBQgKCgIPbcYDBgw4YN6O/vZylwIyMjmTjLYDCwnBORkZGIiYlxc1QksdPNmzdx9OhRlm2OFLGpqamIjY1FaWkpk2cnJCTgzp07jKNQFIWl2SVFa39/P+NGFEXBkSNHcPjwYZYC9sc//jFu3ryJ2NhYWCwWFsyyurraTSzIE3fyz6A0s3q9nnlVX716FQUFBbBarUxMSlZaN2/eRGRkJHbs2IGzZ89iYmKC6bTGx8fx1ltv4c6dO9ixYwd27NiBpUuX4uzZs7DZbAgICIDD4cCdO3cwNTWFO3fuwGg0oqqqCu+88w5kWcZ/+2//DbGxsUhOTmahZEZHR5GZmYk9e/bgoYcegt1uR3d3NxwOB5KSkhAWFobNmzdjeHgYISEhWLduHRITE5loanBwEGNjY9i5cyeefvpp9Pf349e//jWuX7+OiooKXLt2DT/60Y/wi1/8AlNTU8jPz2dpeKOiopCXlwc/Pz/GeZJuiBwBd+zYwbio2tpa7N+/H83Nzbhz5w4aGhrQ1dWFN954AxkZGXj66afR09ODO3fuoLu7G06nE2vWrMHKlSsxODjI9hD5MimKgqGhIZYbxmg0MtN4Pgo0+f7QmRTPmt1unxFJWzy73sCbDuQZAG9y/19XVXUegEUAHvPa6mcEkiQZAPwWwHOqqt4UXjcBCFNVNQXAAQClWm2oqvpzVVXTVVVNX7Rokc99eyMC/Hstts8XJ0VeL8G36akuf2MX+6TnVN+TI5+oQwHcQ9zz46EyfB5wfnzErcTGxsJkMrn5Z4gcFdWz2Wzo6OhgMnmesPDrQBueOC8Cp9PJzFhv3LiB7du3u8WUoraoLlll0ZpQNFmDwcC4AFLOv/3222hqamK6mNjYWLd537hxAzExMQgMDIRer4fBYGCRbRVFwfz585GWlsZS6ZKOTFEUphO6fv06du7cie3bt6OpqQllZWUwmUwsbheJ3UiBrNPpWOBGs9nMdCXPPfccRkdHcfv2bZYr3Gg0YteuXSgocEl0BwcHsXDhQpaXIyoqihEjCm/+P//n/8QjjzzCjAOII5NlGUVFRejq6sL4+Djq6uoQGhqK6OhoDAwMwGKxsJS0gYGBSEtLwwsvvIC9e/fixo0b2Lp1Kzo6OvDjH/8Y4+PjzOcDcHniFxUVYWRkBOnp6Whra8OiRYswMjKCiYkJtLS0oLS0FGNjY8jOzmZmuCQSHBsbg8PhwAMPPIDMzEyWQ+TDDz+En58foqOj4e/vzxw/o6KiGDd76NAhnDvnuofqdDokJCSgsLAQTz/9NMxmMxISEpCfn4+WlhZs3LgRa9euRWpqKv7iL/4CY2NjGBwcxODgIOLj43Hnzh0cPnyYmW8fOHAAHR0dmJ6exunTpzE1NYUPPvgAv/rVr2C327Fx40bs2bMHCQkJLEc6JdBasGABKioqUF1djc2bN0On08HhcODtt9/G66+/jvT0dPT29iI1NRX5+flu+Vz0ej27WNGZpPPv6aJKlxoKA0Q6FC184c0pGPBOQL6gquo49/9vAEBV1Tvw4Nb+WYIkSXq4iMcvVVUtEd+rqnqTklqpqloOQC9JUrBY7l5gNiIgvvcmR5wLeKtLCFGLO+F1I57CqPBj5zcSfxshREvxpwD33Of8+Kivnp4et/hKWhZDfNm4uDimJBfXkSdMZAGWnJwM4BMT4LVr1zKxFAUVBD7JTw64OzlqrYksu4ciSUtLY4eRyouHjvrLzMxkIgEKjEiElB8HjUWWZcadkMNcb28v9Ho9k087nU7IssvMMiYmhrVNfzc3N0OSJKxYsQKlpaXsMhEYGIiYmBi0trbCZrOhqakJFRUVWLFiBTZt2oQvf/nLkGUZdXV1qK2tRWdnJ+x2OxwOB37/+9+jrKwMVqsVr732Gv73//7f6OnpYSle/fz8UFBQgLGxMYSEhCAuLg79/f1ITExkawcA1dXVmJqawuXLl9Ha2spCogAu8eaNGzdgMpkwNDSE0dFRREdHw8/PD7m5uXjjjTdQXFyMn/3sZ4xLIge92NhYjI+PIz4+HvPnz0dKSgquXr2K8PBwFuuJwqAfPHgQfX19jMsIDw9nYsAf/ehHAIBvfvObbK1DQ0MxOjqKw4cPM5FdVFQU1q1bB6PRiI8++giVlZVwOBzw8/OD2WxGbm4uwsLCEB8fj507d+LChQuYN28exsbGcOjQIRa596tf/Sry8vIQHx+Pa9euISwsDGVlZTh37hysViuqq6tZuPnQ0FAsXrwYu3fvRnJyMkvXC4CF3aHo2VarFefOnUN5eTkmJydhNptZ/LPIyEgUFRXBbDa7OfISh037kL/IHTt2jImnKZKyiCdsNhvLAuoJvJnx9qiqGqXx/AsAelRVjfDY6qcEyXXt/FcANlVVn/NQJgTANVVVVUmS1gEohosj8WhqNRczXh4RaomVfNE7+NqHp9/e6nmTT3qq70s9YHbzZE9jBmaaGPM6FVFkRDccnoCRjobKkVMglefHyRMbMmEk+bCvayLOnW77ZM6sKJ+YRfPKyIaGBkxPT0Ov1yMpKQmtra1obW0FABZwkdaAHDZJtAV84qtTV1cHVVUZtwK4FK35+fm4fPky40LsdjsuX74MAG55t81mM1pbWxETE4Pp6WkAQF9fHwoLC3HhwgUm3mpvb8euXbtw5coVxMXF4dy5c0hISEBXVxeam5sxOTmJ69ev4+GHH0ZWVhbj7N577z1mZQS4fG7effdd5OXlISMjA2+++SZCQ0MBuCy3bt68iRMnTuD73/8++741NTWw2+0IDQ3F1q1b0dTUhOjoaLzyyit49NFH8dOf/hSLFy/GnTt3kJ6ejr1798JqteLb3/42Vq5ciYceeggPPPAAYmNj4XQ6cf78eeTn5+ODDz7A6Ogo5s+fj/7+fkxNTSE9PZ35xFitVhgMrlzglB63vb0dOp0OWVlZqKmpwcDAAB599FHo9XoWaiQ4OJh55icmJsJut+PYsWOoqqrChg0b8Nd//dcoKSmBn58fiouL8Y1vfAMNDQ2wWq2YmJjAI488AqfTiYceeggNDQ3YunUr1q1bBwAs5D75ncTExGD9+vXo7OxEREQELly4gKmpKTQ1NeHxxx/HjRs3sGTJElRWViIqKgqJiYlMJ0bGI7SPyHiFxKpkUKJ1oePPnRZuIz82suj62HVjhhmvNwJyEC4E/r+E5/8bQLCqqs9oH8VPD5IkbQRwBkArgI8+fvy3AEwAoKrqa5Ik/X8A/itcFlvTAP6HqqpnvbV7L34g3pCuN6QkJnTx1C6fuIj/LYqUtOprEThfEOVsREpr7CKBEPMJ8DJVPr0rWS3xPhx8O1rJbGi9KUmTKLNtaWlhCkXyXid/DtEogR8/fyPztDZnz57FxYsXWQgJStgj1qNbGVnH8dwXL1K7+HHyK0VxeYVv3LgR69evZwYCfX19CA0NRX9/P7q7u1FQUMAQPwBmoVZVVYXc3FysWrUKBw4cQF5eHrMaIhFUWVkZcnJyUFZWhpiYGPT29iIiIgIrV67E4cOHsW/fPgwPDzMrNSJ4MTEx+OCDD3D48GEsXLgQ/v7+2LRpE/R6PRoaGvDcc88xgkLmr+np6cjIyEBpaSnq6upw/fp1REZGIjg4GAsXLsSjjz6Kc+fOYXBwENnZ2bh9+zbMZjPCwsIwOTmJ+fPns/WanJxEcnIyBgcHkZCQwBJAHThwgKW7vXHjBkJCQhAYGAidTofjx4/D398fjz32GJxOJ2pqarB8+XJERkYywrJlyxZmFUVhVN5++23cuXOHKamtViueeuopJmoMDg5GR0cHHn/8cYyOjmJiYgIdHR24c+cOi201b948LFiwACdOnEBjYyOmp6dhNBoREhKC5cuXo6qqClu3bsXExAQcDge+9rWvoba2lpm5k/8N7VESy7a2tkKWZTcz8tDQUBbdwGg0zriQibiCzh8ZdnjzNif9qZaRjHhe7oWABAI4BGAtAEognQKgEcC+P8Wc6PfqSOiJAxFv5fScv7WK8n2tdr3d5kVkKCJ3cRyzcQpadcTxe3M25IFHkmKfpNSNi4tDWloay3chciBaYkB+DcmihJ6LIUHEAyS2R//TbZM/UFrflfw96CDzBIknEuL6USIr4lyoXZvNxtqwWCy4du0ayz9Ct04+LAkph8k3gHJ9XLhwAevXr8epU6fwy1/+Eo8//jiCg4NZqJT6+nqsXLkS165dw82bN7Fp0ybY7Xa0tbWhp6eH5csgiy3i2Cjfut1ux+nTp6HT6XDx4kVMTk5i2bJl2LlzJ0wmE06fPo1Fixbhn/7pn7By5Urs27cPsizjlVdewbZt26DX6/HKK6/g4YcfRldXF9LT0zEyMgI/Pz9cvHgRPT09+N73voeRkRHmPLdt2zZUVVVhYmICBoMBS5YswfDwMPP1uHr1Ktrb2/GVr3wFDz74IAYGBhAWFoampiZERkZieHgYjz32GF577TXcvHkTOTk5GBsbQ3h4OBwOBwtRotPpsH//ftjtdhw9ehQrV65Eeno6ysrK4HQ68cQTT+CDDz5gOdOTkpLQ39+P3NxcvPnmmxgeHkZAQAC+853vsLUi50tC2EuXLsW5c+ewdOlSmM1mLF68mFmxUSwr0pf09/ejtbUVsbGx0Ol0cDqdmJqagsViwc6dO9Hb28sISm9vLxYtWoQbN26gsLCQ7TetbJniJdLTJZY/xxQ+xht++1gXqRnKxFs499uqqj4GYCuAtz/++aKqqoV/isRjLqCFKLXeEQIhKyhadFl2hYsAvEf9FVlI/reWPoS8vXmZpKiX4AkJKaPFoIsk5wfgFu6df8dH7uTnRr/F/vm5yrLL0uyJJ55gwQJJac1bhIhrywPvENnY2IizZ8+ipaWFjZtMSEXkzo9DUVwKcrvdztLG0oGy2Wya1nM9PT3IzMxkojDedLimpoYFOBT1LHFxcVBVFWazmVm2UXvEgVBgQ55DMRqNjBOhdRodHUVMTAy6urpw6dIltLa2MlHUlStXkJyczAJ42mw2nDlzBsXFxSgrK0NkZCRLZdvb24vExERERUWxEO2JiYmQZVf4i5iYGBw7dgyHDh3CoUOHcOXKFaSkpGDJkiV45plnmJkqJYo6dOgQHnvsMQwNDaGoqAhNTU2IjY3Fa6+9hpGREXzzm99EfHw8nnzySYyOjuKhhx7C6dOnsfrjMOdvv/02enp6sGPHDqxatQpVVVXIy8tDUFAQixtFiaPy8vKwePFibN++HSMjI7hz5w6zhnvyySexaNEiNDc3M3N4VVUxODgInU6HDRs2MA98Mtm1Wq145ZVXcPnyZZw8eRKyLCM6Ohrh4eGorq7Gr3/9awDA+vXrcfjwYaxbt45dWNavX8+Ih9lsxvnz55nyvqKiAjabDb/97W9ZsiiHw4GCggLk5uZi3rx5LNSIxWLBwYMHsXz5ciQmJiIjIwPJyclITU1FX18f03vcvHkTpaWlSEpKwq5duxAQEICcnBzIsivmWWNjI0wmE5qbm3HmzBkcOXLEzZKK9pYn4lFXV8fK8+FP+DL8uf4Y5pZQ6mPzWaiq2qeq6u8//unl3kuSJIV6qv+nCqJiV+udiAS1rKPodnyv2Qm1bsc8UuWBL8cTElKAi05DdDAAzAj3TsA7/PEmvmTZIt72tQgeH1qkpKQENTU1jAiIHA+1xSN2EpskJycz80OyouK97UlGXVdXB+CTzIOK4rKDr6+vR0pKipv+oaSkhM2DXzuaA3l/t7S0wGq1MlFbQUEBMwHmvxXlAMnMzGTe8kSMe3p6IMsycnNzceLECWaKTL49bW1trD2y7ydP4jVr1iAtLQ06nQ5dXV0ICgqCwWBAWVkZVqxYgbKyMkxOTkKWXb4PNJ+WlhaMj4/j/PnzzAPdbDYzU2EKpAiApRu+c+cO2tvbERkZCaPRyKyBurq6sGfPHty6dQu/+c1v0NfXh+DgYEiShNDQUPyP//E/AAC1tbVYvHgxrl69iqVLl2J6ehqbN2+G1WpFR0cHiykVGxsLf39/Zjywc+dOBAUFISUlBRs2bAAADAwMYMmSJdDpdOjr68N7772H9evX4+jRozh06BBGR0dht9sRHByM2tpajI6OQpZlbN26Fb29vbh06RIURYG/vz8yMjJYQMesrCyMjo4yjrG/vx9DQ0PIz89HWloaLBYLnn32WVy9epVFZCal9JkzZ5h+YmhoCKWlpbh27RouXLiAxMREXL16FaOjo3j66adx7do1yLLLWCMxMRGXLl3ChQsXEBQUxEK7AK6LEH17+k7+/v5YtGgRent7GZF6/fXX0dPTg56eHty8eRNdXV2Ii4vDvHnzWFRnfj9qWWPylyzCWXQJoYupeB5nsyj1ZoX1E0mSfitJ0h5JkhIkSVosSZJJkqRcSZJ+COAD/Pt6q/9BQAsRiu94hCzLM7N4iWV9Bf7G782c19d50G+RGImETuSwKHcFleVD1xPy1brBe2KDZVlGYWEhMjIyGBGg9/xYyNySwqhTGSJ2/DN+XclckQ4Rb8pIGf34wyPLMjPB9bRu9HdERATKysoQGhqKwMBAFha+vb2dIWBZdnmiV1RUMJEGb0pJN7m+vj5mt5+SksLET3SLBoCTJ0/i4MGD+P3vf4+mpiamQ8rKykJ4eDiqqqqwdu1alkFwx44dWLFiBZ555hmWoS4tLQ0RERFob29HdXU1S3va2dnJ4iItWrQIb731FiYmJjA2Nob9+/cjKSkJfX19UBQF58+fR0REBFO0d3Z24vbt28jOzsZPfvIThgDHx8eZZdHY2Bh+85vf4OLFi9DpdNi4cSNT/K9ZswYbNmzAwMAA/uEf/gE2mw2hoaE4cOAAzp8/j66uLoSFhWF8fByXL1/G0NAQamtr0dDQgEceeQTf+973YLFYcPnyZaSmpmJiYgK7d+9GX18f+vv7sWjRIqxevRo1NTVYsmQJ5s+fz9Lp+vn54de//jUcDgfGxsZYkEeKHRYcHIyJiQnMnz8fr776KlNw5+XlITc3l6W1ff/99xEWFobbt29j//792L59O3McDA0NRUZGBnbt2oWQkBC3gJ7kVCjLMsuk+KMf/Qh2u505ilKul6amJpZlMTIyEleuXMEjjzyCJ598khkPkP6IDAToYsRLAETLQ0VxKcZbWlqQlJTExFZxcXGwWCxMVKwl0fCGczzqQABAkqR4AI8D2ABgKYApAB0AygEUf2zS+ycDn1U4dxFmU1z72gYvc5xN7zJbf7wcVMxbDnhX8vOIVozKSywwL+unmwttQK1x0AamUBZiu/y4AMzoEwBTSHtSlPNtkIyfQl+Qly55u2tZd4nzJzh9+jQ7/LRmFosFVVVVbhwhOQESURCDUdbV1bGAjUFBQUhOTkZzczOmp6eRnZ3NMhAGBQWxUORr165ledsBMNHRhg0b8MUvfpGFWqGYX9Tfa6+9BrvdjqSkJDz88MMAwILydXZ2IjIyEmFhYSgvL2cezwAwOTkJp9OJc+fOYdmyZUhISICiKAgMDMTo6CgTEyUkJDBfhw0bNkCv1zNi4efnB7vdDj8/P5ZhsL+/HzabDW1tbcjNzYWfnx8yMjIwMjKCsLAwlJSU4IEHHsDXvvY1NDY24vz584iPj0dWVhZzGC0rK0NPTw/+7u/+Dr/73e+YQj0iIgKTk5P4xS9+gezsbIyMjKCjowPR0dGIjY3F448/zvRpPT09mJqaYjlUpqen8cYbbyAlJQUPPfQQ87hfvXo1Tpw4ga1bt7IwIUVFRfj617+O2tpaTE1NYWhoCICLM09NTYXBYGDWeampqcxKisLM0PlQFMXNL4ks9SjCcUREBGRZRnZ2NlN0T09PY82aNczAgIxL+P0rKr5FHELvm5ubkZKSwrhqnmPWOruAZyW614yEqqq2q6r6XVVVc1RVjVFVdY2qqrtVVT3yp0Y8gLkFUxRFFJ7AkyfnXIG/6XsiSL7cCGi8xMKSRQZ/G9HSpYicBI1DFMPJsku5TFyK3W7H22+/jR/96Ec4ffo0IybieACXWIzygYtKQL4OHzxSXB9CzLOtgSRJcDgcaG1tZTc1/sDFxcW5cXr8D4nsaB0yMzNZwjA6/CdOnEBubq7bYa2trcWRI0fQ2toKk8nE9gV9z7S0NCQmJsJisSA0NJRxrxkZGbDb7Th48CBCQ0MxMTGBFStW4KGHHkJqairjcO12O0JCQrB48WIAQH19PVPGU54Ts9nMnCEpn8XRo0dx9OhRbNy4EampqYiMjITD4cDVq1dht9uRkJCAgIAAlshoZGQEzz33HL7+9a8jICAAgYGByMjIYESMvKT9/f2Rk5ODlJQU5Obm4utf/zpWr16Nt956Czdu3EBERATWrVuHgIAAbN++HQ8++CCMRiMsFgvi4uLw05/+FOPj4/iXf/kXdHZ24ty5c8wcNiUlBSdPnkRRURFOnDjB9Ao//vGP0dHRgcceewxWq5VZ3925cwdPPPEEYmJi4O/vjx//+McoKChAR0cHLl68iNu3b+Nf/uVf0NLSgoqKCuzfvx+nT5+GXq9He3s7+vv7cf36dTzxxBMICAhAf38/C+A4PDzMcrMQFBcXMwV8RkYGI3JLlixheqPGxkYUFxdjfHwcbW1tOHPmDGw2G/M9KS4uhsVigdlsxsTEBC5dugSTycTWm/ZgREQEqqqq0NbWxr43+R3xoir+XPNWXjzIssych9PT09ne0vLH0hKDieAtmOJ/OJiamvKJW+Bv+oC2NRSVa2xs/P+39+VxVV3X/t8d4UbwRilxwAkFUUAFFNA44IRGrbHWWmtsmlqT+mJ/6ctrWjN2fu/1NW36bNLaTI1pGmsSa601FomiIqICKiCTzIMgKlEholeQC8n5/XHu2u672efccwGN6WN9PucD95w9n332mtdCaWkpp8hVbVnhTsTDmpINiciE/lrldGi8RAWL4ycdAv1WcQO0mSRFGo/+SToSu13PjAeAK/l8fX25eEY00xXltOTvIZrzkhkucRmEKGj9RXGQp3WkkOoU/oWsv+jA2blzJ0aPHs0/VMr1MWXKlE59kEOXmGNh1KhRqK+v5yFLHA4HMjIyeEC9nJwcHDx4EOHh4Vw5TbkYhg0bht27dyMqKgpxcXH8fVMWQLvdDk3TMG/ePH5oUViQhQsX8vwnPj4+iI2NRUtLC6qrqzFmzBiUlpYiMDAQTz31FPLy8pCYmMitsZxOJw8weP78eURGRnLLrAULFmDXrl345JNPMHHiRK5PiYqKwvHjx+FwOLB582ZONQM6og8KCsJ//dd/4atf/SpaW1uxY8cODBw4EDabHgzzvffew/nz59Hc3IzGxkbMnTsXCQkJPLTHkCFD0NDQgBs3buDq1asICAiAv78/Jk+ejHnz5nEjj9bWVvj7++Py5cu4cuUKqqurMWzYMJw/fx7JycmorKyEr68vLl68iPb2dmRmZmL8+PH4xS9+AZvNhrS0NAwdOhSLFi3i7/yPf/wjbty4gZdeegkAMHPmTAQGBqK+vh7+/v58L8fExGDbtm1Yt24dAgMDkZCQgOLiYqxdu5Y7s1KImS1btmDFihXYsmUL7HY7li9fjgMHDqC1tRX5+floaWnhEQUWL16MpKQkDBo0CDU1NQD0aMNRUVGw2WxcT9PS0oLY2Fi33CDEgcjfzuLFi+F0OnlARdHqkb4jEpeKZ4nI7VM5yaVAGYnWlAP5VwM/P79OB6QKrMoBSUlm5MnpSSGv6hMAKioqOKWrsqIyAzok6X/iPERREP2mcNAyl0HiJrLOonLUHsnvRXENbdTKykoupqHAd6KPB3BTViv263TqWe0I4dHmBdCJ45CpJQKiusR3R7oAUXlot9uxYsUKvh9sNhu3bBL7kK3dxHAtc+bM4fHJKPbRjBkzEBgYyAmKJ598EtXV1RzZTpkyBXFxcUhISEBERARHchUVFaisrERVVRU3NCCxQkZGBtLT07Fr1y4MHjwYNTU1mDBhAvr27cu5IhLjlJWVgTGGhoYGVFdXo66uDk1NTTyi77Zt2zBixAjMnz8fkZGRSEpKwrBhw5CbmwubzYYFCxZg+vTpmDx5Mt+/x48fx/79+wEAjz/+OJ588kmsWaNntK6pqYGfnx9+8IMfYNasWbhy5QqWL1+On/3sZ+jTpw8+/PBDdHR0YOrUqTysCim3p06divfffx87d+7EkiVLsGLFClRWVmLo0KGoqKjApk2bOAFy5MgR/P3vf0dzczPa29tx/fp1ZGRkYOnSpZg1axaGDx+OpqYmzJ49m8eC+uSTT7B//35UVFQgIyMDgwYNcjND9vPzw89//nNMmTIFhw8fRmpqKt9jjY2NePnllzFx4kT4+vqif//+mDRpEs6cOcP3RN++ffn+y8zMRE5ODux2Ox5//HFMmjQJ69atw8CBAxEYGIglS5bgxo0bWL9+Pe69915OcAUGBmLu3Ln44he/iBUrVmDNmjU8gyPtl6ioKJSVlfEwO8XFxYiPj+dIgMZQWFiIsLAwVFdXo6SkhAchpW8ZuEm0iZaC4v6mc4G4f4nw9C6h1L8ikA7EG11CV0DmYLzVZdBBSDJ/8jyV5ZlGHI+sa6DNQbJPOrjFLH6y6EzcXBkZGZzlpYOFFHdUlhAChQ6nMROIGRpFERn119TUxGXNonwXuOkZL49TXEen86bvDaBzHi0tLThz5gwPISKumyyiJO6AkvHYbDd9TGhu8vsUxVNOp+73snz5chQVFcHf358f6hQdOCYmhnulU6IfQNenvPDCC3j++edx5swZNDc3Y8qUKTh79ixaW1vdKM+CggLuvwHo3NGRI0e46e7w4cPx9ttvY/369SguLkZdXR0eeughOBwOvPzyywgODsbcuXPx+OOP4yc/+QlHFoCelGn16tVIT09HR0cHVq5ciaKiIuTl5SEoKAhXrlzhUYavXr2K5ORkDBo0iCuV7XY7Nm/ejIsXL3IfEpvNxqnh48eP4+zZszh8+DDi4uJw9epVjB8/HidOnMC4cePwt7/9jR+iHR0duPfee3H69GnO9QQGBqK1tRW7d+9GSEgI+vbti6CgINTX1yMlJQW/+tWvsH//fhQWFuKJJ55AUlISvvKVr+Dll1/GPffcg7vu0unln/zkJ9xzvaysDHa7HVeuXMHDDz/MFdmXL1/mJrhEBHR0dPB9mJWVhYCAADz00EMoKChAa2srJkyYgPr6es4N0NhaWlowbtw4BAUF8fQHKSkp+MIXvoCkpCQ8/fTT2LZtG5588kn+bch6QRJf0ruic4z0fCUlJfxbFvcr7RlR90f+SqL4FdCJJqMsp147EvICjPlqmtYu3Ruoadpl04p3IIhKdG9ES11BMvRSjOpaaZe8rmUzWyMFtPyckERHRwffbHRoqRCGmEtcbo/Kp6enIz09Hc8884zboUyhFAoKClBZWcmD8okHPNBZOS72T4pFOac5IUTVnMkSKjAwkFOHhHCofflDcThuZikkr3YSQZIlGGVWpDETIqcx0rhExTwp2zVNQ2hoKJKTkxEcHIzZs2dzR0pap9LSUkRHR3Nk2dTUhMDAQGzfvh27du3CkCFD8Oyzz/KQ8OI4jh8/Dh8fH+Tn5yMkJASXLl3CkiVLcPr0aeTn5+Ps2bNITEyEr68vqqursWbNGlRWViIwMBDnzp3DgAEDsH37dtTW1uKLX/wirly5gtbWVsydOxeapiEoKAhFRUUICAhAREQEmpqa8JOf/ATh4eEYOHAgD2V+9epV1NfXo7m5GR9//DHWrVuHd999FxMmTMCQIUNw3333ITc3F6WlpUhMTMTrr7/OD9Z169bhd7/7Hb74xS8iPT0dV69exZAhQ3D+/Hn0798fAQEBmD17Ntrb25GWloagoCDcd999uHz5Mt555x1s2LABH3zwARhjePTRR/G73/0OEydO5LGurly5gqlTp6K4uJhbsWVk6IEqBg4cyHOxXL58GYcOHcK0adN4+JKgoCCe7re9vR0zZ87k5rQPPfQQnE7daz00NBSLFy9GU1MT/vKXv+DixYuYNWsW/P39eY6W0NBQnnp4+fLlcDqdPKoA7SNyMAwKCupkSEMgO/cS8UJEIeAeLUFECnI9+v7pt/iNimmlJUdCrz3R5wH4C4C7AZwC8BjlSHd5JcYqK97B4G0sLMBY/2GlvpW6ZoiEDmYxng0hh9M3ArC3RI91+cknn6BPnz4AdBENY4z//eSTT1z1rkHTgAEDBigTa2mahqtXm9G/v56OlNr49NNP0dLSAn9/f1y/fh2ffPIJPv30U448lk8egcVj7W45mknnQOMVEQmg9mAnisooyZYRwnnvvfdQX1+PZ555hodMKSws5HmuifugA58yBFLaWIfD4caJATpSoqCCROGJXuOibFmcqyhWE+X2pPupq6vD3r17efY5Hx8frlwna6oXX3wRY8aMQXNzMx5++GG3cZDIa9u2bYiJicFf/vIXniL2o48+QmNjI+rq6pCQkIC0tDSMGzcOjDHcd999AHSuzGaz4Ze//CXXDaSnpyMuLg5bt25Fnz598OSTT+Ls2bNobGxEQkICz7Ny9OhRnoe8sLAQzc3N3M9j27ZtSE9Px9SpU7F48WIcPXoUQ4cO5WHag4ODcfToUURFReGVV17B7NmzERERgezsbIwdOxZOp5MjRtozosVUSkoK+vTpg2effRYVFRU4d+4ciouL0a9fP35ob9++HV/96ldx6dIljBw5EkeOHEGfPn14zvQRI0Zg48aNGDRoEI/aS/GpXnzxRcydOxeAnqGS4lDt3bsXOTk5WL16NS5cuIAxY8bgvvvuw9GjRwHczNqYn5+Pq1evYvLkyQDA9x1xBbRXd+3ahY6ODixbtoyHriHvcjEdNEFmZibfHwCUBBTtXyJkxP0ofjsimEkzRAQj/t8VBHISwFpN004zxlYCeAHANzVNy2KMndI0bbKy4h0MVhCIjDgA9WFm9FtuR64vl5GRjBlXQOXHjx+Pb79biOILVxE+WDevHDhwIPr06YPa5qMYNSCBI4+WlhbY7XaUXX8f4f30KPwyAqE9UN10GKMDZqGlpQV+fn44e+0Y7u0zGf369cPljlMY6KO/8uvXr6Nfv3442XAEowL98b8zpnMKXZ4fZUCjORmtHXFbFO5EBaJliRjsDYCbkyAFQzxy5Aj69+/vtn6k6Fy3bl2ng18MkKhpGqKjo7lfRWZmJvr164fQ0FAEBQV1en80N+KCsrKyEBsbyzmghoYGbNiwAStWrMDMmTNRWlrKRVGFhYWYM2cOAD3L3KVLl9Dc3MwPKJJbz5kzBzabHo9q8+bNmDJlCqZMmYKGhgaEhYWhsLAQISEh3IN99erVKCoq4hn/ysvLUVdXh+joaIwdOxZXrlxBR0cHPv74Y8ydO5cr3Z1OJ15++WWsW7eOi9ScTieSkpKwceNGOJ16cq4DBw5gw4YNeOqpp/DII49wXQyZuDY3N+Ojjz7iDoMUQuSdd97hnt3vvfcezpw5g4kTJyI2Nha///3vERkZifDwcBw5cgSDBg2C0+nE5cuXsXTpUhQXFyMyMhKMMW5sQSbVq1atgp+fHwICAjB8+HDs2LEDffv2xerVq3H8+HGODC9duoRTp04hJCQEjz76KN9fR48e5bHHLl26BEr/EBkZyZNCHT16FO+//z6+/OUvY+DAgfz9EEdJYtygoCA3U3nae2KCJ9p3RDxQOPjKykoMGzaMZzQMCAjoFCJHPifokpXnRuJz8XsVEYUcAJX2d1dyots0TTsNAJqm7QCwHMA7jLGvwECh8nkHWlzAPSS4/FykNFXhMMT7ZspvWUGvKi87KZI1EgDcG1iOHY8n4B9PzMH80EJsfTQeR77/JL6deA1rZjUhMaQA278zA1sfjcea6aPx7cRrmDsqD7GR6YiNTMdf10/HmllNmDsqDw9Nv4h+vnsROz4d278zA/NDC/GzZVH44HvzsOPxBDy/eByG3/s3/NuC6/jb/5uJ6ZOOI2SgHUP9pmLSpEmdkIe4HmS9ZOR4SFSTnINDbINCUJNprOhBL+s3iGOjYIji+tlsNq4AFcdhs+mmvT4+PtzRCgD3j+jXrx8POU5IghSOgI58yETzyJEjKCoq4nmv6+rquClxTEwMT2kbFxeH3NxcHDx4EE1NTUhPT8eWLVsQEhICPz8/Hiq/sLAQZWVlfF0uXryI2bNnY968eaipqeFGBpqmoaamhod+t9vtPEVse3s7li9fjmHDhsFut2PQoEE4fPgwAGDp0qWw2+3IyMjAli1bAOiJh5KSklBfX48dO3bg+vXr3CExOTkZixcvxn333QcfHx888cQTmDBhAubOncvNh+12O48ka7PZsGbNGly8eBF5eXmYP38+UlNTcfLkSdy4cQMjRoxAYmIiTpw4gaVLl2LixIncMIPWediwYRg6dCjq6+tx7do1NDU14e2338bFixfx5z//GQsXLsTAgQPRr18/REVFISgoCCEhIXxfHD16FGPHjsWECRNw8OBBADqxQWHWKRT+sWPHEBMTg1WrVvGEZD/72c94aB9fX1+sXLkSAwcORHt7O3JycpCTk8MJn/Hjx3PjBXIoJSMYm83GHQZpT/75z3+Gw+FAYGAgIiMjMXv2bB6+hDhI6ofmIhrViDqR0tJSt2yEYogica8HBwdj9+7d3DAmOzsbJ0+edDP7pzF6Mpk3QyDtrpDpAAAXMpkP4GcAxprUu2NB5LZUh7q4YKpFkw98AJ2sl0QEJJvPqvoVn4n9i22pymuaho8chXA6dYX2uvnrAACHzhzCP7P/ib15e7Fm1hocO38Mmw9uxvro9chryMO6+eswKWgS7rmuZ3B7LuU5rJm1BlXXq7Dn/+3BUzOegs1mw6hRo+Dj44NN2ZsA6AfpkslLkNeQh+d3P48n4p8AAHzUlq2cHx3mYgY00TyWNi95tIt6CdHLnbiw0tJSrFixAnFxcdw6y+l0uoVgIMsxWieVPgcAV5aK4HQ6OQVYUlLClfrkABYfH4/AwEDuU+NwOHiZpqYmHko9MjISkydP5h7wX/jCF/Czn/0MTU1NWL16NQ4cOIDLly9zSxubzYZ169YhKCgI06ZNw/z58xEYGIjp06dzhXxUVBR3LgOA+Ph4rsuijHMUtZZ8TU6ePIl9+/Zh9+7dGDJkCI4dO4b8/Hy0tbXh73//O3bu3InAwEDU1NQgNzcXZWVlmDNnDoYOHYrS0lKEhYWho6MDV65cwZw5c1BQUABfX19kZGTA4XDggw8+QEVFBVd45+fn491338XixYuxcOFCHDlyBDNnzsSyZcs44nn88ccxYcIE3HPPPQgODkZhYSHOnTvH085S8EMAPDcJRc6tqanBa6+9hsbGRuzduxfJycmIi4vDwoULsXz5cqxatQrTpk2Dj48PR8pHjhzhUWxnzZqFgQMH8nhax44dQ3FxMY4cOYInn3wSw4YNw5e+9CWsXLkSBw4cAKATDRQMdOzYsTh16hRqa2sRExPDE1eFhISgqqqK72lCImSOXlBQgPz8fAQFBSErKwsvv/wyT/7kdOpZBQkpUFgTm80GX19fxMbG4uLFixg3bhwPc0Ix4UTChfSbYjZCOiPkb9Lp1GOkiUFKyR9EHDuVNcstBJgjkOcADBFvaJpWD2AugF+Z1LtjgfxAjMxirSyYiCyys7Pdgg4CnTkXFQdDFKxZ/ypkJdZhjCEqcK3b86f/8TTmjZ6HL8V/CRtXboTdbseicYuwZtYaLH5nMc7W6/moKQmN3W5HzuM5OHb+GDbM2ACbzYYNOzbgD3v+gPLyciRl69FKN2ZsRMLwBMwbPQ+Tgm4qxIfcHe82JnF+tL6iyImeEzdx8OBBHpOKkK3T6cSrr76K4OBgvn4xMTGcwhPXxWazucXEioyMdLPeAtxNfsnRSuSGxLHHxMRgwIABiIyMRFVVVadwJ06nk3t85+fno7CwEIMGDcKpU6dQWlrKI+eWlZXxNQ4MDMSiRYt4sMQxY8bwPkj0kZSUxMVzcXFxyM/P50H7Dhw4gKamJs75EFWZlZWFgoICLFy4EGVlZWhoaEBOTg6ysrJgt9uxbt06+Pn5ISIigou6yL/iq1/9KqKjo7FmzRqMGzeOU+2TJ09GdnY2GhoasHnzZowbNw5Lly6Fw+HAggULsGzZMuTl5WHKlCkYMGAAEhMTsWPHDixevBiPPfYY9484d+4cli1bhilTpuDVV1/FwoULER8fzy2STp48iQEDBuDSpUsYNmwYvva1r8Hp1LM6JiUlgVJPL168GJWVlcjMzOT6N0oi9cMf/hALFy5EdXW1m3gnPj4e169fR0dHB9rb2+Hv78/T5oaEhGDr1q1obGzEggULcO+99yImJgazZ8/mOcdfeeUVfPTRR3A6nQgNDcW7776LESNGoH///vD398fs2bPxxhtv4OWXX+ZhV8aMGcP3Fjkc0h6Njo5GZGQkUlNTMW7cOMyfP5/rBG02G9fd2Wx6Cmfi2DVN46FqyLGS5hgaGsq5U0K4xCmL55SckZP2PGOMi81EggtAJ6LXkw73/5QZb1xcnHb48OFOoT1keaJVhbmscJItKGTFL+BuISWa18lWF0Z6Ferjoc0ncLnjFNL+Q+cEUmtSMXWQnr50Y8ZGbJixwa3eoTOH0Nraiv79+yMxJBGpNalIDEnEvvJ9SD6VjCWTl2DRuEV8DPsr9+P+sPv5uH6w4wcI7x+OkSNH4qWUl9A6oBUh2u+gaRqeivXp5K0ur6lsiksfGomvxLESJUf6HrIkA3SqisRL4nrTB7xs2TIujxblwPSXrJ0IeZATFsmO5XWX5cLkCUx2+Dk5OVxfQh94RkYGP8Cqqqpw48YNTJo0iXMNpNNob2/H6NGjuWK+urqah5agtkNCQnD27Fk0NDRg5syZyM3NRWxsLHbs2IHg4GD4+vri+vXrOH78OGJiYnD58mWEhoaiurqaOxqS1/SCBQu4fqe8vBzh4eGora3lyasAXb81efJkblKdl5eHtLQ0PPnkkzxGFeW7qK+vR21tLb70pS9h9uzZ2LdvHw9tUlFRgbVr1+LYsWMICgrCmDFjcOLECZ6w6Xe/+x2GDBmCQYMGYdSoUfjrX//KRYgNDQ0oKyvDqlWr8Oabb+JrX/saLly4gOnTp2PixIkoKSnBoEGDuL6ipaWFx74aM2YMNm7ciLi4ONTX12PBggU8z8e4cePw4YcfQtM0zJ07F/7+/pg6dSpyc3N52JCmpiYkJSXBx8cHa9euRWVlJY4ePYqHHnoINpuN6zicTifKy8vh6+uLkJAQVFdXcxEn7RPRWZWID1HCIJ4DhPTOnTvHo0arziTSlURGRvLUtjNmzODtmRGd4n4GdGOMYcOGYcGCBYa6Ek9WWIae6Iyx7ZqmrWKMFcJd58H071iLNqh6R4NopgZ0XiiryAPoLH6SvTnlxEtiOUA/DOkQIwWcqo7ch9PpxKVLl6AN+JQ/O3lWF/Osm78Ok4fqyu7vJH0HXxn3FSSfSsbzc57H9z78Ht769ltubfr6+uI3X/kNNmVvQs75HMQNi0NHRwdqa2txyOcQfH19cerCKfx25W/xUtZL2Ht2L5554Bn4+fnhv/6pUy/jxz/iZgkirg1tfjnDoRzPija5aDRAzylpFB3eJDMWkQd51wP6gSIiZ1G2K/qY0IcrcjIqQkAMu1JYWAhN0/i4yePeZrPxsdNcnU4nJkyYwHUeIuK8cuUKzp49C03TEBwcjLKyMp6xkObk4+PDPcJ37dqFiooKnD17Fh0dHRg5ciR8fX15vfXr12PXrl1c7j9x4kQMGzYMv/rVr7Bw4UIeRLGsrAyDBg3i1lkULJHk+Iwx5OXlYciQITyU/MyZM2Gz6cr7QYMG4Re/+AXsdjtyc3MxduxYMMbgcDhQU1ODqVOnIiYmBn/9618RFhaGQYMGYciQIdixYwdKS0sxYsQIREdHY+7cuSgoKOCxsj799FP069ePWyXRO8hzBWacNWsWR1733HMPZs+ejbNnz8Jut6OwsBDz58/nRgvTpk2Dr68vRowYgaysLKxZs8bNh4KocE3TcOrUKZSXl6OjowMXL17kDn2FhYXc4GLYsGFcVEzfLiVIGzRoEE8tQJ7hAFBaWoqlS5eisLCQG3XQM5qbyKWQ1ztFYladM8Sxkie7yG2rojSIxJPKp4l8rlRgJAGRwUyE9T3X36UAviRc9PtzB4wxNxkf4K536C7ISEJmB0W9hiijpwPJSG8i90FK0KF+U7ExYyMA4NnZz2LdfD3JD3EYry99Xd+UUQvxwuEX8LsHf4cTl04AAE5dOAUASAxJhM1mwyMRj+D9jPd1ZaJLfzJv9DxO5R06cwhTRk7B7xf+nuc0H3J3PD5uL3eLNWUkspPnI1p5yOy1+G5INkw6khEjRvDf9JxydAA3OQKyzqL85CSPbmlp4WMgh8H8/Hz+oTmdzk4xyUTDBUoxK469oKAATU1N3N+GxJpZWVlISUlBaGgoDwu/ceNGNDQ04NKlS1i5ciXi4uIwYMAANDc3c1EWWZKNGTMGNpsepn3Dhg1YuXIlxo4di/b2dvTr1w+TJ09GeHg43z/nz59He3s7qqureR6QZcuWISgoCOXl5di2bRtqamrw85//HDk5OTh69Ch2796Nc+fOcee/8vJy/OMf/0BWVhZqa2tx6tQpXLt2DUVFRZg9ezb3Wi8oKMDEiRPRv39/VFVV4dixYzh79izOnDnDD8V+/fohJCQESUlJXDcyfvx4tLa24sqVK5gxYwauXLkCf39/TJkyBWFhYUhKSuJ532tqarBgwQKMHTuW6zra2trw8MMPY968eQgKCkJycjL69+8PX19fHD9+HOnp6aipqUFBQQFKS0sxaNAgpKenIzU1FTt27ICvry86Ojpw+PBhHvEhNDQUfn5+WLp0KUpLS7kokcRFy5cv55GWxX08ePBgvPvuu27e5aQfo4gHNpsNLS0tyMrK4h7ropKa9rmPjw83WTaKP+V06mF0yKyX6oviWPl/Vdw5Ol8CAwP5N2CkE6Z+jcAsodQF199a1WXY4h0OqkPdk96DwJsyKh2IyH3QbxGRqOoYwV133YWP2rKxYcYGOJ1OpNak4ui5o0itSUVqTSofS8LwBDww/gH8zwP/g52ndiJheAIAYMOMDdhXvg+pNanYU7wHW49txciAkfDx8cHiSYu5PuSf2f/E9ZbrSD6VjNbWVvxgxw/Q3t6OxJBEfNSWjb4dI/lBKx7CNA85rLSsH6HDmUSKxIlRIEDiLEiB3dDQ4KYAtNluWkIVFBTgypUrYIxxJTV9IC42nCdmIsV8XFwclxVnZmZi8+bNPCChSk8WExOD3NxcjmgKCwtx6dIlbNu2jSNbMpOmQ6m8vJxTejNnzkRQUBBWrFjBqfqoqCgMGDAAc+fORUlJCY4cOYJTp05h165dHKEUFhbiwIEDWLp0KS5cuMADRQJAeXk5Tp8+zcUyHR0dPPZVQEAAYmNjERuru21dvnwZ4eHhGDVqFHx9fTFgwAAcO3YM0dHROHr0KIKCguDv74+HH34Y5eXl3D/j2LFjOH/+PNavXw+7XU/yVVZWhri4OKxcuZLX6du3LzIyMvi65eXl4dixYxDN5ynu08KFC7Fy5UokJiYiJiYG/fv351n8Wlpa0NrailOnTiE1NRUpKSkIDg7G008/jePHj+P48eO4fPkyBg4ciClTpmDChAmora1Fa2srRowYgba2NhQVFWHMmDFYvnw5Ll++jODgYEyYMAFXrlzB7Nmz8fDDDyMgIAB+fn5obW2FzWZDe3s7srOzkZqayv2FgoODO+XhaW9vR0ZGBr7xjW+gubkZgJ7eODg4GJWVlTwSRFxcHPeHaW1tRUtLC0pKSvh7pT0cHx+PgQMHYsWKFfw7ISCxLhmMEFEkfkOAe5ZCmSAFwK2tCIg4U6VmEPt2Eb1di4XFGFvBGKtgjDUzxq4yxq4xxq56qtddYIwtZoyVMcYqGWPPKZ4zxtjvXc8LGGOWHRuNRE9mIGJ3o+dWY1apzFnN6qiU7Q6HA4NtcdhXvg+v73sd7e3tOHXhFBJDEpEYkoiE4Ql4fd/reCPlDa5nWDd/HT/g/+vAf+G19NfQ2tqK2tpaXPG7gu1rtgMA131sXLkRw4YNw8WLF7EwaiF8fHwQ3l8PoZFak4ohd8fjhs9ZN2QsZzgUETYhazE6sHifRFHBwcF49dVXuZc5ia9Ihiyy+DabbulFZsCXLl3iEWwpzDnpQ8RMg7JiHgCioqLQt29fnoODWP68vDweXbWpqQkHDhzgkXBpDKRvINGCSBj4+flhyZIlqK6u5lxTYWGhmwFBc3Mz0tLSMGTIEPj6+mLNmjVYtWoVbDY9ZllHRwf3Lxg6dCjuu+8+zoWMHDkS/v7+SEhIQP/+/TFhwgSeKKiyshIFBQWw2+28zbvvvhvHjx9HY2MjqqqqeCTZ4OBg3HvvvRg7diz69euH+++/HzNmzEBQUBAuXbqEhoYG1NTUoLKyEh999BFCQkJQWFiIEydOICkpCe+88w4GDhyIQ4cO4dChQxg1ahQSExOxcuVK1NfXo6CgAAAwYcIEjBs3Dg6Hnse9oaEBdXV1YIxh6tSpGDFiBI4cOYK6ujocOHAAjDEkJSUhMzMTR48exbVr13Du3Dn8/ve/x6BBgzB+/HjU19dj9uzZqKmpQVVVFe6++26MHDkS7777LpxOJ5YvXw5/f3+cPXsWS5Ys4ebM06dPR3h4ONLS0nj+lREjRuD48eM8YjIlKhPf9+zZs7F69WqEhYUhMjISNpue5bGqqooTQ/TdRUVFwdfXF3V1dQCAMWPGIDs7G1u3buV7HAAXSW3dupWb99L+s9lsbjk7SCQqEm/0nVHsOhHEuHS030XizOgMFBBU12JhMcYqAXxJ07QS04I9CIyxPgDKAdwPoB7ASQBf1zStWCizBMATAJYAuA/A7zRNu8+s3e7mAzFSsJOSmBSgRo5wYnlAHU5ApcxSJb5f9XqGHsZh3lWUl5dj/cL1nVhOp9OJY+eP8Tozh83EI28+gthhsciuz0b8iHg88cATcDgceOHwC/jZ/T/D+nfW441vvYG3S9/W054OCEdKQQpGjRqFZ2c/C4fDgROXTmD76e0orZ6Aj9vLkb9hk1u/NDfVetE90ckK6ByeRVR2A+qQDLKehdohC5ONGzdi/fr13KKL8ihQHo6Ojg4e+VSm3ghOnjyJkSNHIiUlBcOHD8eAAQM4lUwex+IHKb7PwMBApKWlYcaMGXA4HAgODkZRURF3uCPxVFNTE7Zv387zljscDu6FTg6RPj4+YIxh3Lhx+PGPf4wXX3wRdrsdWVlZOHDgAI+jJEYA2LlzJ5YuXcrl99TO8ePH0dLSgv79+yMyMhLXrl1DQ0MDJkyYgFmzZqGhoQEvvPACNmzYgMDAQJw4cQItLS04ceIEYmNjsWfPHjzwwANYvnw5jhw5AgD46KOP0NDQgJUrV+Ljjz/GH//4R6xYsQKzZs1CTk4ODxmSkJCAuXPnYuvWrfDx8UFAQAAcDgeGDh3Kg1tmZWWhuroa48aNg91u5+l3f/e732HlypUYPnw4Ro0ahR//+Md46qmnUFxczDP9NTc34+677+aizoULF+LKlSuYMGECAHCdFCm8x48fj+zsbOTl5WH16tUoKytDRUUF5s6dy9PrUv4UIwW3uIfpMBcJHtpbTqceMNTPzw+RkZHIzc2Fr68voqKiePickpISjBkzhr97cS+SUy7tNdW54XTq0StIrCnq47oipqd6XcoH4oKPbifycMFUAJWudLpOANsAfFkq82UAWzQdsgAEMMaGemrYihjKqJyZXkK0pVZxDDKI5rwyFySXl+25gZuhRnx9fTFu3Dhsyt6E1JpU7Cvfhw07NuCV5FfwzD+eQUdHB8rLy1FWVgabzYYHZz+I6r7VePORN+HTxwdTXp+CB//yIJ6f8zzymvPwjcRvYN2udRjTbwxqa2vxTso7GGkbiUlBk7Arfxd+tOdHSBiegN8v/D2qr+5FeL+vu8lcaT5GHJvIcYjPRIofAEcesl+NkaxX5Hho0yckJKCmpoZb1+zcuRNXrlwBoPtrNDc3Y/v27cjJyUFwcDD3LyFW3+l0oqOjA2fPnsWKFSswf/58zrWQma+sQ6E5BgUFYfPmzQCAt99+G0FBQTwqbmNjIzZt2sQp0JKSEowaNQqXLl3illqnTp3iitza2lqEhITwLISrV6/mh9i0adPw5JNPAgA2btzI95TdbsfYsWPhcDjw1FNPISkpCYcPH0ZISAjuvvtuXL16lSunFyxYAB8fHx5aJTAwEN/+9reRnp6OP//5z6iursbcuXOxYMECLFiwADExMVwpXVVVhebmZp5Cd+PGjXj77be5iMzpdCIkJATz5s3DiBEjuCNo3759YbfbOXcE6H4X48aN46FGRo8ejY6ODgwcOBCnT5/G5MmT4XA40NzcjIsXL+L5559HcXExFi5cCJvNxh0JyTR3xYoVGDx4MKqqqnjgxJ07dyIrK4tHryWOcfXq1QgKCkJcXBxWr16NwMBAVFZWIjY2FmvXrsX8+fO50lnMeU//Hz58GNu3b8eRI0eQnp7uljKZ9q7dboe/vz9Pr0x+K8QJ2O12MMZ4OmPKfy6eIzk5OdwxVxRfiXtv+vTpbv5XdN8IjM4rT1IXwDwn+grG2AoA2YyxvzLGvk73XPdvJQwHcFb4Xe+6520ZMMYeY4xlM8ayyRPWExKxIq6SQdQBiHVVv1W6AZkbEe9TPB3xvqZpKGz6M/fPIMureaPnYWn8Uvzbgn9DREAE8i/mIzQ0FN9Z9B0klyTjr+l/xQOjH+BilzUj1uCJxCfwftb7mDpoKvr3749vT/s2UgpSsDB6IWaEzIBPHx+0trbi5f0v42f3/4zPYdrAHyGn+Tduh7w4D1EZLYOK25IV4iJipXbogxIdPkURGcmI8/Pzuae006lbfS1duhQ2m57vPDc3F+fPn8fy5ct5LmziQOLj4zknOX36dE4YALqcm8KtT5s2jYsuaGzkJHb27FlMmTIFDocDQ4YM4WIz0js88sgjvM0pU6bgvvvu03VZqbr+asKECdyJcdSoUTwxESGNnJwcpKen48iRIygrK0NZWRkSEhLQ1NTEnf2ioqJw+vRp7mRGDosPPvgg/uu//guPPvoobDYbt+SaPn06mpqa8Itf/AKbNm3iBxxxAgEBAVx8Mm3aNC42DAoKwpo1a1BdXY0BAwZg/vz5WLduHYYNG4a33noLzz//PBwOB9auXYuxY8ciMDAQixcvRllZGYKDg3Hy5EkcO3YMw4cPR3l5OSZNmsS9vcn7vLm5GUOGDMHEiRNx4sQJNDY2IicnB4MHD4bNZsPBgwdx4sQJjBgxAmPHjkVycjIuX76MoUOHciOPFStWcORLiLuurg5HjhzhueKzsrIA3OQ6RK6OCMWYmBi+10jf1a9fPyxfvhz9+/fHtGnTOKciOwOLhzqNi/YxtQ/o1n6VlZXcGISeTZ8+vZM0QhYbi0jD01kni93Fc8aKeN8sFtbbJv1qmqY9avK8W8AY+xqARZqmrXP9/iaAqZqmPSGU2QPgBU3Tjrp+HwTwjKZpOUbtxsfHaxSa3BNLZyauIrYRMPbXEO+Lsn7Zd0El7lLVF0U4TqcT33xbtzb6duI1VFVV4bLvZcQNi0NKYQr+54H/4XqDRe8swsrhK9Ea0Ar7NTuut1zHWedZ9OnTB9+b+j08/8/nsenrm/Bvf/o3fPqFT/HWV96C3W7HI28+grWL1mJO8Bz86dCf8Oi8R3Gg6gAWjFmApa8v1Z2nLure7395xJ3VJkQwduxY7jkuzlkOI09zpJSvZHKqWhc5Mq/40ZBppeh0JYrMbDYbr0/3xDAoTqfTzZeEPlQ5PhABvRPyJcnNzUVlZSXXXVD/TU1NOHv2LCIjI1FQUMDDxoeEhPDw32TbDwDHjx+Hv78/93lpaGjAD37wAwwfPhwbNmxAfX09zp8/D5vNxqPt2u12nu51woQJbsrTYcOGISUlBTU1Nejfvz9u3LiBDRs2oKqqClevXkV7ezv8/Pwwffp0Hm68vLwcEydOxM6dO7Fw4UKEhYXB4XDwOVIOHArT4nQ68cc//hEfffQR5s2bB5vNhr/+9a/44he/CB8fH36wEpSUlKCmpga7d+/GkiVLMHXqVNTW1qKsrAxLly7FgQMHMGjQIFRUVKCjowMXLlzAqlWr8MILL2D69OlYv349R9QxMTFITU1FWFgYkpOT0bdvX6xcuRJOp+6Uunr1aly+fJmL+pxOJzZt2oRHHnkEW7ZswcCBAzFhwgRMmDABr776KnfuI06ZkryVlJRg1apVyMrKQnFxMXx8fLBixQoEBwfz/UX7iML30z4gfZRspm8kohWJKCOXAPG7oLJye0bRr43OFaOz0Ws/EE3THjF6dhugHsBI4fcIAOe7UKYTqA5yo3JG90UTVCN/DdVvmVpW5SoXy6sUZDR2TdNw0ZkDX98JWH3faqx/Zz3ucdyDeRHz8Nzu5/Dblb/FGwVvYN+39uG53c/hVwv04AGv5L6CURiFwnOF+PY/vo3vzPoOACCnNQdz7pmD2Fdj8W8z/w1rF63lXr+PznsUz+9+HiF+ITjsexiJkxLx0wU/xdzfb+Le6PL4KTKvPHYxpo+cyMrX15fLfVWbmLgxatPpdPL0oKtWrYKvr69bMEaRqqIPSQysKPui2O16ljibzYbr168bjlOkzpxOJ7ccmzhxIpqbm1FYqIeYoaB5ycnJGDZsGNe/2Gy6orO8vJzHOero6OCHjr+/v9s6BAUF4etf/zpiYmLQ0NDA5fuTJk3iYqeGhgYkJycjICAAYWFhuHLlCiZOnMjT64aHh+Pee+/FqVOneOY9m82G9957Dw6Hg0dyzcvLQ2trK8aNG4fdu3fj0qVL+O///m+sXLmSJ1datWoVnE4n6urq8PzzzyMiIgL33HMPV44zxpCQoFv7+fj4oKOjA3v27EFxcTFGjx6Ny5cvY/ny5RgyZAjq6+tRX1+Py5cvo7W1FX5+fqioqMCwYcO46Hb16tXcyu3hhx/m5sR1dXVYsGABHA49he/169dx48YNzjE1NTUhICAAzc3NGDduHNrb2/k7GDJkCIKDg/HMM8/wdS4sLHSLBi1+65R/BQDPD3Ljxg3ugErBMVtaWlBbW4tRo0ZxQomsnUgJLn/LkyZN4oYltM/ENA40BlFcJe9F+l/2MZFDI4n7XXWumJyJXbbCCmWM/ZMxdokxdpEx9gFjLMRTvW7CSQBjGWMhjDEbgNUAdktldgNY47LGmgagmUyPzcATa2ZFRyIfjN6A+PKIQhBDmxiJvuSXzhjjh/fbpW9j7aK1+O6S78LPzw/nWs5hf+V+Hp7kV8t+hT8d+hPeTnsbn3z6CSYOnIi2hjbMGzwPDQ0N+M/9/4n0b6UjICAA9w+7H/ln9XznCcMT4HTqliQvLHsBaZfSsCdnD+zXbup5NE1z00cQl0BrJI7d6XTyYIVkuksZ/QCdvReVg/K7EH0/qP2HH34Yy5cvR2BgoFvUXxoHibzEd0XrLX6Qea4QK0lJSUhPT0dVVZXbXpH1L2Qhs2PHDgDgJr0nT57E8OHD3fKTh4WFYcCAAZzTEEUVdMD6+/tj5MiRsNlu+gU5nXreiaamJly4cAFnzpzB+PHjERQUhMcffxwjR47k+SleffVVdHR0YP78+RgxYgQPDV5bWwuHwwF/f38MHToU69atw6JFi7iRQmJiIrcgA/R856dPn8a2bdsQEBCAQYMGYcGCBWhvb8e+ffu4AcGLL76IvLw8fPGLX0RMTAzCw8Ph7++PM2fO4K9//SuampqQmJjIMxKGhIRgxIgRqK+v54EcN23ahGXLliEgIABDhgzBF77wBW4t5e/vj9bWVly8eBEA0NzcjGHDhuHy5cs4ffo0CgoKEBAQgDfeeAN/+ctfMHDgQBw7dgy1tbqHwb59+/DLX/4SPj4+CAkJQWpqKiZMmMCdHimgJumSSktLuTnu9u3buSgS0M27d+3axR09165di7Vr12LatGk8jTBFVh4wYABWrVqF+fPncy5b1HGIviQicqAQOSTWlvWe9D2I+jnxO5HPNZFzpj49EcwezjOlqMqKEv09ANsBDAUwDMDfoCu1bxlomtYB4N8B7ANQAmC7K6z8dxhj33EVSwZQDaASwJsAHrfQrpt8TwbxcLACMjvoLdAhSi9Z3BxmL1S+t2HGBjww/gEAug5k3Yx1+FXar+BwOLD54GYcO38Mj857FN+Y8Q1klWdhTvAcbPr6Jlz2vYyvT/s6Qv1C8fKJlzF//HxMHDgRry99HXty9uB3u3+HVVtWYV/5Ppy4dAJDhgzBi195ETWtNfjfjP/lAQRFc1en06nMN0KU/JgxY7gjJ/l9yH4w1KaIDCh+VkNDA485RP0lJSWhqakJ+fn5XElL3ApRcfRBZWZmYuvWrdxXQdTfkIJ6wYIFXEQjsvVkzhkWFsYV53Qw2O12zJkzB8888wzCwsLw8MMPIzw8HElJSZg4cSKmT5/OlaT0Dv39/REVFQV/f38MHz4cmzdvRlNTE3emtNn0oJaATgGLPiz19fVcGRsYGIhnnnkGjz32GIYOHYqIiAikpKTwWFl1dXWIiopCc3MztmzZgj179uCZZ55BcXEx3n77bZ6qtbS0FBMmTMCCBQtQVFTEw6fk5+ejtLQUH330ETcpnTFjBnx9fXkSplmzZmH+/PlYuXIln3ddXR33XZgwYQIPY+Lr64sDBw7g7NmzcDqdWLZsGa5fv47Fixfj3LlzCA8Px8SJE3HlyhXMnTuXB5o8c+YMfHx8MGrUKO6IuH79ekyePBkLFy5EQkICxowZg0mTJqGmpgaXL1/GggULEBwczHNwXL9+nSf6EmNBRURE4Pz58/D19cWwYcO4AtvpdCIqKoqniyXCoa6ujge/nDFjBtejRUREcO4OgNt5Q3tPJBipHEXxJcW+GMfK6XTy70H+XuRvT/xmKOyKaDIvf5MqItWbs8yKGe9x2TyWMZalado0ozp3KpAOBDAWUcnmpICxPoSAKAOVJ7YVDkU8pGhsnuo++IZ+mMVGpuP7074PAHgj5Q10dHToMtvzOZg2ahoShifg0JlDKC8vh+O6AyfqTqCtXxvmDp6LdYnr8Nzu51DfUo/Xl76Ov+f+HX8v/TsWj1yMPn36IPNqJtYnrAcAjqB+nf5rTAqahEXjFnFT4re+EeUmjjParLLYTsU2y/dobZ1O3SKK5OiitVt6ejpmz57tFqdK5n5kj1z6AFVrTropOqzJiGHbtm3cEqe9vd0tL7zYl0i5XrlyBQEBAVycRXoXOogKCwt5OJXRo0cjODgYH374IRcDiXoVANzMk5CWvMbp6ek89pLTqVtJkZ/Ctm3beKgMyorX0NCA4uJi9O/fHxERESgrK+Mxuux2O3bs2IErV65gxYoVcDqdaGlp4al6w8PDkZubi4KCAvz7v/87d3YrKirC6NGjER0djY8//hh33303Ojo6cPDgQTgcDjz77LM4cOAAAgICkJ6ezkPQtLe381AtkyZNwsSJE/l7+vOf/4yIiAiMHj2ac0/l5eUoLi7GuHHjkJCQgD/96U/w8fHBunXr0NTUhNTUVHR0dHBT6yNHjmDWrFlwOvVc76mpqZg2bRrmzZvHRV6ArsCuqqrC8uXLUV1dDafTyQ0asrKyOqVJlve30dnR1NTklg9E1KGRCJHEXmId0p2Q6bmYYE7UY8hEmLjnjVwLjPQiMvHaHTPeQ4yx5xhjoxljoxhjzwDYwxgLZIypk0Dc4WBmYWUUfsQTVpYRscxeGoH4TDzUPHFCmqbpoo4mG36w4wc4dOYQHpn7CPr06YOZw2YioDUACcMTYLPZMHPYTHzc92Pcbbsb30j8BmYMmIFjVcfQ1NSEjz76CHdduQurt67GyJEjsT5hPU41nMKRpiNYn7Aec4LnYMv+LfzAu+f6PZg3eh5+mfZLXHTqinx5k4qHKnDT0kMUB1E5eaOq7sXHxyM+Ph6xsbEoLi7uhBz8/Pz4h0ZhQzIyMjjikfUYsh0/5UIgMdbWrVu5J7zIMZB5J1nD0DxPnjyJzMxMLvagd0chRyjmWUZGBrZv3466ujps27YNR44c4R7KeXl53Klu//792LJlC44fP47Y2FhuDlpYWIizZ89i165dyMnJcRMb0lVZWYn09HTk5uZi165daGxs5EH3SOFrs+nOjeRDAgCNjY2orq7G8OHDUVlZiTNnzsBut2PgwIHQNA2vvPIK3n33XQwePBg7duxAc3MzysrKMHr0aM6tUMiSJUuWYO3atWCM4ezZs9i2bRsqKioQHh6OZ599FleuXMEkVyymn/70p5g6dSp8fX1x8uRJLFy4kIf1SEtL4zqaqKgojBs3DgcOHEBwcDBqampw4sQJlJWVobi4mMcYW7hwIQBg9+7dKCgowNy5c1FaWorU1FQcPnyYH5izZs3CrFmzUFNTgy1btuDgwYPYtm0bdu3ahbi4ODz88MMICgpCdHQ0Ojo6eFQAf39/LF261C0gJ+0doLN1oUjAVFZWukUOprJ0dthsNjfund4nvf+YmBj4+LirrcV25HOKzjIRechnkUzoiWI1K2CFA6kxeaxpmhZqubfPGMiR0CpnQCByCEb1jKhuwFjZTocPBSFUUQ8qCwqn04nlv0+Dv78/ggL0iJo/nPtD/uzoOT2zmq+vL6YOmopH3nwEU0ZOwZnWM/jp/T9F4puJCNaC4bA5MHfQXKyMW4kfJf0IU0ZOwaGLh/DWV97C7sLdeOz+x3C47jCmB013+2B+m/VbnD59Gp/4PoE+ffpwKyxxnWjOMtehWitRpyGvD1FXFKxRjHpLQBFTExMTuVUTyZvlrGuy1cnJkyc5VUdj2bJlC/r27YtVq1bxcpR7WkXJNTU1ITc3F2fOnMHq1avhdOpB765fv87btdlsnALt168fBg8ejAMHDmDBggU4cOAAvvCFL+DChQtYs2YNjhw5go6ODixatAiAHt8rPDych/V44okneFZEEqv5+Phw7/uysjJERUVxDic8PBzJyckICwvjfiYip5KVlYX09HSsW7cOaWlpPEx6aGgoN+cFwK2Kdu/ezVPW+vr6oqWlBVOnTkVRUREaGxvx8ccfY9WqVTh+/DgmT56MY8eOcapa1BeUlZUhMzMTdrsdDz30EH9fR44cQUtLC95//31MnDgRc+fO5RkVS0tLsXLlSpw4cQK7du1CUFAQ+vfvD7vdjoSEBGzbtg1PPvkkD+44Z84cOBwOzrnZbDYeaRjQLd4o9wZZ08ncncPh4Oa9sbGxbrk+Ojo6uGMgWdLJwRBFTsBon8scC+1X2nuqQKUyqM4pmcMWg5UagYoL8doKi0DTtFutML/t4A3yoPJG4hZ6rhJd0T0zXYZszkpgZK1B7ZI8va1fG6aNuilNPHruKBJDEvkYNmZsxNpFa3F/2P1oamrC+1nvYwAbgCGDhuAPC/6Aye9Mxs7SnWCMoelsE/6y+i/4beZvkduUi0/2foKs2izsGbwHC6MX4uDpg+j4pAPjvzAer33zNazY+i6G9IlXjpGoGBXyEA9x0eSXDltxfag9MbOgWL+pqQlbtmzBmjVrUF9fj+vXryvzl1PfsmmjuP5E8a1Zs4b/T8irtbUV+fn5PDKwuAcqKysxbdo0ftCWlpYiIiKCx7+inNnkyex0OlFWVoZhw4bh3LlzWL58OcrKyrhFVUBAAA/6mJ+fj5aWFiQlJWHhwoU8TwSN18fHh4+J+u7o6EBubi7a29tRVlaGjo4ODB06FO3t7ZyrJSe5wMBALFiwgCvRx44dy/dWdXU1EhMTMXbsWCQlJaGwsBBXr17FmjVrkJaWhvDwcPj4+GDSpEnYu3cvJkyYgC1btuC55/TIQ4cPH8aoUaNw4cIFbN++nYdIoUN4+PDhaGxsxOjRo+FwOLgV2YABAzBz5kzU1NRg3LhxiIiIQFJSEoYPH87D3judTjQ3N2PMmDFYuXIlD2ESEBCAY8eOISsrC4888gifK4XIP3LkCAYPHoyCggIwxuDj48P9eeLj45GdnY3Kyko3j3O73Y6JEyciKSkJ06ZN42a9ZI5Ne7OxsZEjJzllABE+qgNc/p9Ekb6+vtwPyQrRK3+HANwIVKBzOmujdqwaCP2fygfSE6FMgJsvisKXiBtCpUPxtg9VPfk+6UDWL2zl0XdJZLWvfB/Ky8vR0r8FU0ZOQWJIIhwOB7791rfxm6/8Bu9mvIvk2mT87Vt/w6M7H0WQbxASxiag8XIj2trakHU1C1PHTsXdtrvx3djvAgC2HNmCNbPW4HDdYR4ra+7vN+Hj9nIcW/+Cqe5DvievkWiZQhwiY8xNTCR+FOJHSUiE9ApUnmJu0X3Rjl9GAOL/pP+QkRw9pxwPoq+KSC2Sl7BsTpyfn48hQ4YgKCgI27Ztw/Dhw938LxwOB1588UVuVrp9+3a3zIkNDQ08IZOPjw9mzJgBm00336XQHHa7Henp6Rg3bhxqamrQ3t7uljOjoqICdrue1MrpdPLDHAByc3Nx4MABrj8gZW5TUxN27NgBu10P3z548GBObT/+uG63QmHaU1JSuNgrNjYWKSkpqK+vx5w5c3Dw4EH07dsXEyZM4GKcgoICDB48GHv37sWNGzcwYMAApKamIjo6Gk88oYfYqa6uRnx8PBoaGnD69GnMmjWLr0lxcTHOnz+PgIAAjBgxAhs3bsTs2bPh7++P48eP48aNG3j88cc5R3Hw4EHs378f999/P2bNmgUAnVIp0H4sLS3loYlIPBQUFMRzgYj+RFRn69atWLJkCRoaGjiSofdPOe+J81Ppr8QzZOvWrQgODsaCBQsAABkZGZ0yDhqBGQdC4O3Z1B0dyP9ZUOkuRGsHCl8ivizZZ8Bqu3TfSG/i6YUnDE/AK8mvwOl08jDsk4Im8bDtdrsdr33zNSSdTsITS5/AhsUbsP3kdmxdvRVj7xmLd06+g69M+greLnkbg30Gw++KH74b+10cO38MdrseiPFw3WGevhPQw7kP6BPGLW2MuCx5jjJ3JR7opO8gWS+ttZhLge7TYS06fdFvCrpIh3d4eDjPB0Jr63A43EwiMzMzucxdNN2ltKQAsGLFCh7OnsZB+g3KqREdHc1DzpPuZ8iQIXj77bfhcDiwevVqTJ48GXV1dejo6OAHDQAUFRUBuBlFmPqgsPCxsbHcSqupqQm7du1CXV0d3nvvPTQ0NKC0tBTJycmIiorC7NmzMWvWLDfl9LJly+Dr68vzfrz66qvYsmULJk6ciIkTJ+LixYsIDg7maX2Liopw5coVXLlyBf/xH/+BFStWoKSkhOuLSktLceXKFZ49b+HChSgtLcXx48dRWVmJjIwMvPbaa9zpLi4uDtu3b+frRpFuAT2Z1bPPPst9MQgxEuL+8MMPkZqaCqdTt4J699130dHRwZEncZSzZs3CvHnzsG7dOiQnJ2P79u1cfzFnzhxMnjyZH+AkOhYjQ1B4k8jISG6lFRYWhtTUVL7PReRB+zwyMhJBQUGc0CGT9X79+vH3WFpayvVX4h4S9Rd2ux2rVq1CQEAAf15UVMTn4QlkjkYkwuS+qH0RjM4nFfyfRyCqw5ruy4e5zNrJoit6bmTxILcrgyj68aSAJ86RxFXJJcl4u/RtXqemtQYzh83EhhkbkFqjb/y85jysmaV7Lfv6+uLAhQOw2Wzo27cv5k+ej6pPqzA2aCx++aVf4oPKD/DgXx5EUnYS9pXvAwDszduLTz75BIfOHOIh44f6TeWZ/DxtRJq7yCmI8yTkQGaMYnmKU0XrS7F+aK2amprcTKJF/xqKkjpt2jRObZLZ79WrV/naR0VFAdDl4uI7iY+Px5gxY7B79243sRdRojk5OdykmUQeJDqjIHppaWk83S0AVFVVISIiAvfddx/a29tht9vx4x//GNOmTeNe8ITgAGD06NEoKyvjTooUz2nQoEFoaGjgMv+VK1e6cVlOpxPnz5/H1KlT+XpQDDXyhKfkVikpKTx2VGNjI3bs2IGGhgb07dsXI0eOREVFBTZv3oy2tjZMnDgRZ86c4bqJrKwsvm40r2nTpuH5559HQEAAli9fjoaGBre8KSROobhdQUFBPNy8zaaHVs/NzUVTUxNCQ0MxY8YM1NXVYd++fXjjjTf4wUxpfJ944gmcPatHN5o+fTqCg4OxatUqzskR5yObGJNJd3BwMDfAIP1RUVER50rFpGPkvyR6jIvWURTuxmazuentoqKi3IIkEoEkSyzIWIP200MPPeRmWm7lkJc5Dvp2zIyETM6nrjkSAgBjbDhjbAZjbDZdVurd6UBUJ1GhIhgd5lbkkJ6ei8ldjOrL9t3yuB0OBz5q08U9G3ZsQF1dHdIeS4PNZsOP9vwI/7n4P/GjPT/CvvJ9aG1txbff+jbC+oRhyxHdompv3l7MGzwPDocDffr0wX3B92HMXWNwT/s9+kYfHoXH5zyOpfFLMXPYTBw9dxRL45eiNaCVcziapuGjtmwu2xXj8YhjJwsum83mFsqd5imuCx16Ijcnbnp6Tv/bbHrgwk2bNnEdh+hfA4DLkeljpKRiY8aM4Q6DgP7RLlu2DOfOneu05nV1ddyTWER2U6ZMQVxcHPz8/DgComcnT55EQUEBbDYbli5dyvUQhIREnQkpkwHdnJWobspTMW3aNB56fPr06fDz80N4eDiGDh2K1atX82eUK+PgwYNoamriDnd79uzBmjVrUFNTw2X3U6ZMwejRo9HQ0IC33noLS5YsQWBgIM92GBQUhPz8fISEhODee+/F5MmTERsbi3vvvRexsbFoaWmBzabHVBs2bBgOHz7MY3kRXL9+HTNnzoTdbkdgYCA2b96MgQMHcs6GRMEVFRXcco7y1kdFRaGoqAgbN25EcXEx/Pz8sHLlSgwdOhTr169HQkICWltbceDAATQ0NODs2bO4evUqCgoKuM8PcVLkf0E5WiivDKBzfX/84x+xa9cuHiXZZrNh+PDhPESNaNFHRAWF1FFxBWR5t23bNrfcHeQPBLhzwGbcu9Op69lE0bnqzJLPCNmSUyR8xXsyUSwjM1c/N9luAaxYYf0awIMAigF8cnN9tGWmFe9AkHUgoizTE9dAB1p3dRu0AUQ/ArlcXl4ewsLCuBJXNTYxnPu80fPwvxn/i6dmPMX7OHruKNeJpNakYrzfeHzvr9/D7x78HYpbi5EwPAENDQ14+h9P4+tzv46Ojg78v7/9P2Suy0TVp7qYytfXF1tytuBU1Sn88ku/xP1h9+MHO36AUbZRqGmtwYmzI1H7yS7UfP+gcnPSum3bto3nhhZFfKRnIH0FzZcyB5KSV7U+oqnhyZMncfXqVcyaNUtpuSa/P7GtrVu3ulF2mZmZiIqKcrPekrmrkydPcmsbup+eng4/Pz/OnchjJgufkpISzl2Rct7p1PURcXFxyMrK4joO8WDJy8tDcHAwXn75Zaxbtw6BgYFuPi9OpxNHjhzBm2++iZiYGFy6dAkPPPAA2tvbuY9HYGAgMjMz0dzczMOSjBw5Eg6HA6+88gq+//3vc+p88ODBWLt2LZxOPZQKxcHat28fHnnkEQQGBmLTpk144oknkJubi4CAAAQEBCA1NRVDhw7FwIEDAQAhISHYuXMnampqMHToUIwePRr33nsvGhsbkZeXx+NOiQfd0aNHeUiZhoYGHDt2DO3t7bh8+TLWrl0LQNd/BAUFcVEhIdCysjLOWTmderZBCqxIqW5Fi7vS0lLuj7J8+XIeZbipqQnPPfccfvzjH6OmpgZRUVHYtWsXIiMj+f6gfUUWeqp0BGYWhp7OAflbMtJrGNXtqj5W1SZjLFfTtDi5rBUOZDmAcE3Tlmia9iXX9blDHiKIL0CMtGpW3opuQ25f/C3qTqKjo3mUWBmIEheRh6ochXOvqqqCw+HAhfMX8Ic9f+B9UKpaQBdzBQUF4bVvvoadp3ZyCvfpfzyN33zlN1gesxwHLhzA75f/HlWfVuGNo29g5rCZaG9vx9R+U/Gfi/8TD4zXI/h+cZIeHO+BuAd07+t7N3L9gGqDk20+5XogNlqkdOT5hoaGorKykoczB9yDyxEHRyasU6ZMwfz5890CCFJZp/OmfoIyF4qiMlFR7XQ6UVFR4YZ0REpPdGikrHL0nMJ0U1siN0aWVKL4Kz8/H2PGjIGfnx9mz57NFelnzpzhEVhF3RCtld1uxxtvvMF9SMgj32azYfLkyRgxYgS+9rWvYfTo0Rg7dizOnz+P0NBQvsejoqJQV1cHX19fnueksrISd999N18/UjyfOHGCp1itrKzExIkTMWvWLGRkZMBut/N8ITabbjlWWVmJoUOH4tKlSwgPD0dUVBQaGhqwYsUKzJ49G3379sXAgQMREhICh8OBxx9/nB/ElCqX3pfDoWfsKyoqwtmzZ1FfX8+5A+IiKf/Iv//7vyMuLg7V1dW4fPkyUlJSEBERgejoaJw9exYLFizgin0xxtjOnTtx+fJlZGRkYPny5W5GD4GBgXjwwQcRGBiIqqoqruMIDw/vlMWPMea2nyn2VVNTE0ceoiEG7U3Rn8jovBD3snxOqLgMQkxOp7PT92AFTERYXQ5lUg3A16tR3KGgaVqn8MUKVs0NZFGKJzB6+SLysdvtnGJRyTNFByCTFwrGGEaNGoVtx7fhPxf/J3x9fXHozCEA6JTaltpdM2sNZg6biTcK3sDXEr6GjZkb8ev0X+Mr476Cjz/+GADw6pJX8aM9PwKgZ09bErmEt+Xj44M+ffog/2I+Pm4vx+WOU+jo6OD90PqKB39qair3hpZBdMCi+dbV1WHVqlWIiori6W0pzDtR82Tbr+IQxMOb1qm9vZ2nuZU5FBqv3W7n/gGU1Y3k9E6nk8eoIpEYtU2Hgbg/WlpaeG70mJgYaJrGlf5OpxOtra1uXuJOpxO7du3C3LlzUVZWxg9R8f2XlJQgLi4OTzzxBM83vnnzZu4cSCI4u90OHx8fnDlzBsOGDcPOnTvx+uuvgyJRR0VFITY2FvX19VixYgUWL16MZ555hscTCwoK4mlqySQ1LCwMdXV1mDp1KvfspsM/KysLP/3pT7FlyxYAwJIlS1BUVISSkhLu9HfvvfdizZo13BmQPOIdDgeOHDmCf/7znzhy5AhKS0u5Ej0/Px++vr5YvXo1Jk2axH1YaC+PHz+eG3XY7TczUi5duhR2ux0lJSVobW3FuXPneIRkMfPl6tWrkZiYyMvv2LGD60acTidmzZoFu93OLdLi4uL42lD/JSUlnXyT7HY7li1bhoKCAh7iXw6/40kcbsQ1yMSonBYC6OzUbHR+qEAlwjIDKwikBUAeY+wNVwrZ3zPGfm+p9TsQRE5CXFSjg1qkmq2AkQzRKIES0PnA89SeCH5+flg3XxdprF+4Hr6+vvywTwxJxL7yfdh8cDMcDgd+sOMHeHL7k/jiK1/EIxGP4OLFi7j33nvx7OxnAejIYuawmXji/Sfws/t/hkXjFmHe6HnYfHAzEoYn4Nfpv8aicYswZswYBLQGILzf1zHYFse5KZL5i3oO+pjEBFEiN0FlVetNDlvV1dU8eRMAfpCTpRKF0BCVxMBNB8Xp06dj9uzZnXw+CHmJyveSkhLk5OTw3NWUAa64uNiNw6B7ZCUk7ydfX1+MGTOGc2f9+vVDaGgocnJykJ2dDV9fXx7ePTMzEw6HAx0dHaioqOD5wAnh0HpQpF5aG7vdjieffJKLXZxOJzefDQ0NxbRp05CQkIDQ0FB0dHTwuVBaXzFoY3V1NQ4ePIgtW7bg9ddfx4kTJ7gfi8Ohp+ANCgpCUlIScnNzecwxAAgICMCvfvUr/Pa3v8W9996LvLw8lJaWYuTIkSgrK4OmaZyr2r17N65du4aTJ09i69atOHLkCDRN46l4iTsvLS1FZGQkHytZ5Yl6NZvNhtbWVm7VRHuCvtWYmBjExsbyusXFxQgMDHQLMJiTk4OkpCQ4nXpMroaGBi4+o3J+fn5wOPQ0BFSP9k5HR4eh/oLGExgYyFPHklEFfQeyAps4CPqtalc8D2SluM3m7jNldH6YIRRvxF1WEMhuAP8NIANAjnB97oAxZkjZmx3UVhdUxdWYtS0eiHI78tg8vfCNGRvd2k8MSQQALBq3COvmr8OJSyfwq2W/woTACRjQfwAA4IrfFQxsHwiHw4GysjK0trbildxXMCNEzzFOiGjdfD3vxz3X74HT6UTplVKsm78OjDEwxrgYMCYmBvHx8TzHMs2FgifKFBM9k0WD9PFNcgU4pARGdJ/6I18Im809XzTpGETzYlGXQGOhMRI1SdZfIsKhw0jcN2QZFRYWhsLCQh4xV3xnmqahqKiIWxxRnClN0xAdHe0WXPH69euorq7mOSx8fX3h5+eH0NDQTsiVnA0pCiytcWZmJrZt2wabTVfYDxgwgMv4AT1UCTlt0gE1ZswYbqIcEREBTdMwcuRIfuCGhoYiNzcXe/fuRWZmJoqKirBixQrExsZyJTGgW10FBwcjODiYp4oNDg7G6dOncf36dYwYMQJJSUk4evQowsPD8eCDD+LSpUuYNm0aBgwYgNGjR3MT6qNHj3Iv+MLCQuTk5CArK4tzuePHj+fzaGpqQnt7O65fv46mpiYUFxcjNDQUWVlZXGxZWFiIMWPGICcnB0FBQdiyZQsCAwN5fvbp06djxYoVKCws7MTVkGiV/F5aW1s5sUdiVFEULf4l4qKystIttlpBQQFycnI6GYeI3zytrZG5rUpULJaRiVUj/Ys87q6AJUdCV0j1ca6fZZqmtXe5x88QVEp0b7CtGdAL74qSXR6HaqPIbT/4hp73ePt3ZmBjxkZsmLGhU7siJ0L/nzx7EuEDwvF+2vtYc/8a3B92Pw6dOYSdGTvR9HET91qnTf30P57GsKHDcLT+KBJGJOD7077PFfQLX38DAJD2H090GiMdtLK9vDzfhoYGHpZDNXei/ORwLyLVT4mkZA9f+nA9rasqWQ+1TzG2RFlydnY2PxxIr0LiGNHChkKQJCUlYfTo0QBuhsKg9pqamlBdXY3o6Gg4HA68/PLLXAchOksSpyXPj/JMiBRndnY2Ll26hEuXLnFxE3GDNEaH42bOdBrz66+/jkmTJmHcuHE4ffo07rvvPhw6dAjp6eloa2tDWFgYHn30UX6YUih6Hx8fHgzw+PHj0DSNJ6Oi/hYuXIiMjAze3759+5Cbm4snnnhCJ1ZSUzFp0iRUV1fj6tWrSExMRGZmJgYNGoTLly+jvb0dPj4+uHr1Kvz9/bmDZHl5OQCgb9++WLZsGZKTk3Hjxg2ej4ZS7Z48eRLr1q2D3W7n4VREfQgZU9D60brTPiDuNidHj/9GXuyRkZGdcp+Leks60EXlOhlSqA52UbQq7ifV92V03ng61+ibEiP+ejq3uuxIyBibC6ACwCsAXgVQ/q9ixttd5CFjeTO5pdVxiIHZxPpy26TPcTqdHHlszNjoVi8xJJF/aAnDE5AYkogpI6dgecxyvPXtt7hifNG4RVg2dRne/re34efnB6fTiT3Fe2Cz2bBk8hJMGTkF/3zon5gUNAkbdmzA1EFT8eRfn8T16w60tFznH5c8xo6ODk7pqebb1NSEV199lUdBJcpIdO4j0ZGMPETqTMxCSM/pwBQ/ZNW6Evejso1vaGjgua0BcMo9OjoaJSUlnAMpKSnhUW1F8Zyvry/Xq0ybNo0bEhD1mp6ejl27dnFRXFVVFSZOnIiamhou6jp69CgOHjzopgeicZB4kMRuBNHR0QgICODhOIiLyczM5H4k5ENSVlaGnJwcnjVx9OjROH36NFJTU9HU1IRLly5hw4YN+OEPf8jfAaXzjYiIgJ+fHyIiIpCdnY0//elP2L9/P65evYry8nKEhISgpaUFN27cwMWLF7F06VJUV1cjJycH9957L7fmKigowNSpU9HQ0MDDqjc0NOD48eN4+umn0dDQgJaWFly9ehXvvvsun2tdXR0mTJjAQ+cHBgZi+fLlGDduHM8pHxERgY8//hirV6/mOhrGGKKiopCdnc0pcVFHFxER4Sbmcjr1RGgkDp0xYwbXgxG3TboS0nsB4MYNooe7mKlQ3osiEUB7XzSBl/eo+Ftlriu3T39Fcay3Og8ZrIiwNgJYqGnaHE3TZgNYBOClLvX2LwQqFtPoxZkpsWQWVbb2Ivm+zG4yxjhlStwFIRKn04mNGRuxr3wfkk8lY0/xHq4HIdEWUTapNbpn71tZb+HY+WOYOmgqvvXGt/Dcruewp3gPFo1bhMSQRGzM2Ih5o+chxE8PjaZBg5+fP/r29XNLCiWuhZy/WV6DwMBAThXSc9G7X9SHyCIu0S9EFDURR0JKaFnhKCKvrVu3IjMzk1tzie2PHz++k+5F5GBIee7j44MxY8Zg7969nXIvREdHo6CggFsYRUZGcpGMw+GAj48Pj7RKYqmSkhKEhIQgLk63mCwuLsb+/ftx6tQpDB8+3E3EkZ2dDbvdjsjISLS3t3PRDaAjVVo3SnZFWRYBPUFTQEAAQkL091lUVARN07jOJj4+HmfOnMGoUaNgt9v54U7jz8rKwq5du7gvTUREBOLj47Fu3TpcvnwZ169fx9ixY5GdnY1Ro0Zx5Xx0dDSioqIQERGBtLQ0OBwOXLlyBdXV1VxZPWzYMOzduxeRkZH4xje+AR8fH6SnpyM4OBhDhw5FdHQ0EhISsHbtWsyfP59bgh05coSLDcm/hzzkJ02ahCeffJI70Yo6CjJOAHQioaSkBEFBQW5GDxUVFZ3EoeJfEheSqE0UkRIioHDsskhaPCPEPUZx2OQAsPKZIOsAZRDbVyGM7hDSVhCIr6ZpZfRD07Ry/ItYZXUHrGJuo3KiwkzWw4hiF9kDViwvB0ZLrUnFvvJ9ePofT+OJ+Cf05DhDh+GB8Q/git8V/GjPj5SI7Oi5o9j28DYsGrcIdrsd31zwTfxq+a9QeqWUt0vIyddXf/XjvzAed911F+666y5ER0dzikZEdPSx0Vzlj8ThcCAlJQUZGRncUkXFfovZ4cR1lUHUP8imlaJsmJTCY8aMQVxcXKcQ2bTu8fHx3HdFpEaBm9kTKanTsmXLeBgLElWIJsnUZ3NzM4qKijh1PG3aNK4EDgwMxPr161FfXw9AN09+7LHH8OMf/5jHbiJfBJvNxhFJYWEh16PRvCmVKo23vb2di22ampqQkZGB4cOHIzU1FeHh4ViwYAGeeuopnD17Fu3t7bh06RIP6FhaWorg4GBUVVXxWFyxsbE8iGNHRwf3Sbl48SIGDhzIPcIfe+wxzJs3D5WVlWhoaEB2djbee+89nDp1CoMHD4bTqVvdURj+1NRUaJqGoUOHAgAuX76MyspKXLt2DceOHUNiYiKmTp3KHevoCgkJQW1tLZqbm9G/f3889NBDmDNnDtez0fsj3QS9X5EYoPcaGRmJlJQUtLS0cE526dKlPAwO7WXR0pDaFc1yZSKI9GvATcMZ8VAH3C2mqI4cqVs8E1S/ZVCdQd5YZpmBFQSSzRh7izE213W9ic+pEr2nwSrmViEPUWGmKiu+XFEUI5YXFZkEi8Ytwm++8hscPXcUAPDs7GeRWpOKaaOmYcnkJbx9MvMljkSkbs6fP4/7w+7n4yAdytFzR7F+4XrYbDaMGzcOQ+6Ox2BbHFfEiia84gcimuqKcydTyhkzZnBLFVlncfjwYbz44os4fPhwJwpL/pipH8oQJ1OLJDrKycnhDlyBgYFuedLld2G323lsKBLV0NxonpmZmfxwIeTx8ssvo66uDmVlZdzMlt5ZeHg4QkJCsGvXLi4TJ5+S8vJynlc9Li6OZxy02fQMhiROA8DH7evri6ioKO6tThTxiy++iIMHD3KfkaqqKjQ1NSE5ORlTpkxBUFAQli1bxqPbBgYGwsfHB1OnTsVDDz0EPz8/+Pv7IzQ0lJsc+/n5cUMJspASQ3M0Njbi8uXL+MIXvoBf/OIXuHHjBsrKyhAYGIi9e/ciIiKCW2RVV1cjNzeXc2H19fVIS0tDSUkJKioqUFNTg5CQEISFhSE6OhorVqzAgAEDOLci7tnk5GQsWLAAH3/8MQ86SAQXiZYKCgoQHBzMjToAnTuIjo5220eUmXLatGl8X5eVlXEOjvYSmZOLjrDy/pT3k7gPZM7AiDtQnTMixy3+NgIjDt5orApQhjKx4ol+N4DvAkhwNZIO4FVN09o89XingVE0XhXV6+memaLKkxJLLGPUj5HCDNA3wOjn9qD1rnyM6n8XRgfMBmMMH7VlY8jd8W5/RRCfqeCjtmy0trbi7rvvxl136bRFa2urW/BA8V5j0zjcG1iOlO+s5+OijSiGrRbnSkprUUFptkYilSaL9+Q1MeqH2iLlKClCyYpLlFnLcmanU1ewhoWFcW4hKioKJSUluHr1Knx9fd0sxIjSpei55PVNGRO3b9+OUaNGwcfHB6dPn+apamfPns3FbxRqhCL+ilY8pPwePHgwEhN15O9wOJCUlNQpJP6BAwcQGxuLHTt2YNmyZTh9+jQAnRuhvOMRERGcg4mOjsbx48fR3NyMhQsXorCwEFFRUTwDY1RUVKeMeiLHdfz4cRw+fBiPP/44bDYbjh07hrNnz2LkyJH4+OOPeSImWtusrCz4+voiPDwcJ06cwPbt2/HUU08hKCgIp06d4vOora3FkiVLEBQUxKMAkC6BDAK2bt3KszbSWskRmMlgITQ0lCNlclgkyzFKAUB7gPYMvZf58+fzcdEel/cfzc/IQIOeE3RVhCSfE2blzDh2wFyR7nQ6cffdd5domtYpBtMdF86dMfYbAF8C4ARQBeARTdOuKMqdAXANeniVDpWFgAwqBKJ6CaqDDnA/sMwsIOSDrSsgv3R5c4776X59TsED0KdPH17uo7ZsDLbp8lzGGEod7yHC/hCAm4p3Mh+le/Q/1RWfffrpp7jrrrtQ23wUowYkcA94KvPlScPx0H3BlscvH/Jmm1ZOtuVwOLhcWkyuo6pPlKEYkp0sT0SKTwz3QO3J9UWrHLIsczqd2L59O0csNCcK1e7v789DawDgnIHondzU1ISqqio3pWp6ejqfAyGVHTt2YPHixdxara6uDps2bcKsWbNQV1eHiRMnuoWPz3OFwsnNzcXo0aORlJSECRMmcN3AmDFjuEiMqOfc3Fz4+vqiuroaf/jDH/D0009j6NChHFk4nXrIjsbGRiQm3oxyQPPOzMxES0sLJkyYgMDAQJ4+t7y8nHNIIhEgIsTS0lKcP3+e5y2h9xMVFcUP/rq6OjdLuIMHD2LAgAF8H5CIUIS4uDguwgoLC8N7772H4OBgnD9/nvuYZGVl4dChQ9wajOYkIgd6L5TMShyL0Tcq73lVWZnIUYEVIsvTc9V3Rt8SpaOQxye3cffddytDmfDUqPIFYLvrbyGAAvkyqtfdC8BCAD6u/38N4NcG5c4AGOhN27GxsZoK2traOt1rbGzUjh8/rl27dk07fvy41tbW5lZOVUd8JtazCkZlr1275laG2hXvi8+PHTumHT16VNmeOA+xLXkMbW1tWlpaGm+H7jc2NpqOX26LLtVayGORn127dq3T/WvXrmlpaWn82r9/f6d+CRobG7WUlBT+Lqg98X3SfXmNDx06xO9du3ZNO3bsmNbW1sb3BY2Pnh06dEhra2vTLly4wMd19OhRrbGxkbfT1tamHT16VDt27BivJ47pwoUL2qFDh/hfqnfhwgXt7bffdmvngw8+0C5cuMDnJ+6Ha9euaYcOHdJ+85vfaN///ve1v/3tb3wcjY2N2tGjR3kdqpeWlqZduHBBS05O1tatW6dduHDBrT9N07SKigrtqaee0pKTk/nYqb/k5GRt06ZN2v79+7Vr165pf/vb3/j/4hwbGxv5WtK92tpa7dlnn9X27NmjNTY28rHQuzl06JDbvmtsbNQ2bdqkNTY2ur1DWjP6X5zftWvXtNdee42vA82J1qSxsZGvMe19cU81NjZq+/fvd3sv8n6leameqfa/0Rlh9n2qwNO5pGqf3oWVusePH9cA5GiKM9VMB/I919+l0DkC+boloGlaiqZpHa6fWQBG9FTbYlgKEVRchBibSbT4Maojgyp2lpmcUVaQE8gWFqLCTRUJ1GbrnKdE7luMAKrivIgyFM1jRdk+md3K4xcj8tJ8yDrLiNOQPXLpIq92uQ+SuU+fPh1RUVE4c+ZMJ49eKktRaZ3Om97c4pzFtRTXmN6/uKaaS2ZdWlraKbc6meGSQjguLg7Tpk1DTEwMN7GlsZFSFLipz7LZdI/8pKQktLa28iyCJGMXw2fQ+M6fP49Tp07xNT18+DC2bt3KlfczZszAo48+ijlz5iAgIACFhYXIz8/nVltkOed0oqQBqgAARltJREFU6s5tzc3NOHXqFCZPnowHH3yQi5hobRsaGnDgwAGeSzw6OprrB3JycuDv74+VK1fC19eXK+kpVzq9R1p3mje9l6CgIDz++ONYsGAB50zKysq4vqeoqAi5ubl8bxQWFnJrJvEdilyRyBlRRGQKmkl90NxtNhsqKyu5MyrQ2UGwpKQEsbGxhhwvvU/VN67SOQCdvcipLzOLKSojlyeDCfH7MzpvSIcj7nGxX1VZGMTCssIRdOIAVPduxQXgnwAeNnhWAyAXukL/MZM2HgOQDSA7ODi4S1i9K2CE9Y2o5WvXrhlyDTIlSP8bcUeqsmI5I0pJbPfNN99Uchsy1SLXVXEgnsqo5iNSyLQGKo5QXhux/LFjx7Ta2lrlWGWQqUrxtzgW8R1RH8RpiGXFeRDFL94jCpDmJPej4mLFZ8RJEKewf/9+LTk52Y1yJkpapLplbozaeumll7T169drycnJWm1trfb9739f+/73v69duHCB90UcBfV57NgxN46GxpGSkqIlJydrFRUV2rPPPqslJyfzMRCnRXustrZWS0tL0958803ODezfv59T+42NjVpycjLvm9YpJSWlE6VO3I04t7S0NP6bxkrcRm1tLX+fMrcr7zORa5JB3A9mnL9VMCsrn1/yO6V3IXK6Rued2Zkh94cucCAE9yvufdFCPUNgjB1gjBUpri8LZX4EoAPAuwbNzNQ0LdY1lu8aOTdqmvZHTdPiNU2LHzhwoCFWF8GKErwroDLVo/5UsZYISIYvUhqik5LcpipgpEh1k07BiFqy2WwYPXq0m/5HHIuRCaCKSxP7kbkUKkPUEnFtALjJLc2ZoumKMcRoDcR28lzJpcis8uzZs27mrOKai/fkuVK7ZF5MynF6R6RTIRNmMhUVE18Rl0J+KiLnSHMR44bRelHfIoVKFl8ffvgh0tPTOSexa9cunj/7vvvuc6PuAT2oY05OjpvFkGyIQM6O/v7+vN8lS5bg8ccf50msYmJiuCHAM888wy2qKNSHzWZDfn4+z3dy33338ZSskydPxvbt25GVlYWgoCDs3bsXTqcTw4cPR0pKCsLDw3mu+O3btwMAJk6cCMYYCgoK4OvrC027GYzSZrOhX79+bgYWtLakPCcgTiIjIwPbt2/H1atXYbfbsXjxYh7kE9At8yiRFLUjrhN9M0Y6TxoHZYs0KmMFjL5NeiYb19A9ca8Rp6vicsS2xL1iVMa1tt5F42WM/T/GWCGAcMZYgXDVQNeDdBk0TVugadpExfWBq+9vQRedfUOjL6JzG+ddfy8C+AeAqZ76JRGWFaWT1ZetKqcKkkYmpkYITPb/ENsWTQXFAwpApwNLPIiNRG7i5jOaJ3mki/buVNcsrL18MItt2Gy2TnbtJGbIz8/n7YofBM2zsLCQe1GLZeSPTQ4NTyljRe920fxWFFuJYjTKNldZWYnFixe7IQhSQIpiFDGRlXjQiMQIjZUc+0i8IhIBcgRe8Z2OGDECR48edcuSR+asZFIrvlsyP2WMcX8UGp+YqtVm05NyPfPMM5g8eTIqKysRGxuLjz76CC0tLdA0jc8hMDAQixYtQkNDA583RTmOiYnBgAEDEB4ezsUjlNNl1KhR0DQN9fX1PFjhrFmzsGLFCpSVlSE3NxeFhYUICwvDuHHjUFdXh6ioKMyYMQOzZ8/GnDlzeNRbADwwpfhed+/ezWN6ERByj4iIwKpVqzBggB4HjsSCFIJGcxmGOJ16LpAXX3zRTYRnRoCIIjTKeCkTI1Z8xuRvRvVtyvtJJAzlZ+L/XelL7k8JKrbE9QIGABgN4H0Ao4Qr0KhOT1wAFkNPXjXIpEw/APcI/2cAWOyp7bi4uE4smopls8JuGimHid2VRSJmYh9VG6JyUBRzWGE7VUo+o749PVOJUczYdGKdjcQBqjqyMlkl5iJRjKq+KA5S1SWxG/VFYoxDhw65jVX8K4osRFGZLKqisqRcldsTRUrXrl3T3n77be3ChQt8DCRikddJvCf+bWxs5Ip6EguJhgTi+BobG7XXXnvNTSFNbYiiHFFERcppsRyJp0j89MILL2jJycmdxDuiUQH1L4qK6F5KSor22muvcbEUib3kMVMd8T2Twv+ll17SPvjgg07GAG1tbbxd2qdkhEDKchHondC6Uh+iAYC4t8T9QfuH6sn7yAw8lTFS1Jt9R1aNdqycIXKbALI1b0RYmqY1a5p2RtO0rwMIwE3l+UhjdNQj8AcA9wDYzxjLY4y9DgCMsWGMsWRXmSEAjjLG8gGcALBH07S93e1Y5BSsllNRFppAsVF5I5ApabltosKN/CZkNpSoZLM+PXFXYj9yxFCgswe8OBYjz1kzNppYbVEUIYu54uLiuMOdXF/kOsQ1obns3r2bt0UGBoGBgTyvulxeFvNlZmbyvA7bt2/nIjLqS6SMNYH6dTr1EBjUN8Wuqqur4z4MLS0tbqIZkbNsamriUWfFd1pWVoZTp05h+/btaGho4IYEmZmZ/F5BQQH3gaB8HmQSu337dowZM4Y7b9J7o9DnNO/KykrExMQA0HNzhIWF4cSJEygqKsKoUaPcxDtOp5OnjaVxVlZWIiEhAampqRg5ciRsNhvn3JYsWcKjGtA6kk8GgWhIQGvjdDoRHh4OQDdnJm4xMzPTbdwOh4NzFHV1dVi8eDGOHz+O7du3u43RZrPx1LZJSUl8nSj3yLZt2zhnJFL08fHxmDFjBiIiIrB37143B09PnIZM9YvfLv1WfcNmnIxVLkfFcRjVsdKmlWCK/wFdDzHYdW1ljD3hqV5XQdO0ME3TRmqaNsl1fcd1/7ymaUtc/1drmhbjuiZomvY/PdG31ZcginFUB7poAUWWEWY5jGWRkmz1Rc9FCwsRRJGFWeZEEt/Ilk+qtuQNJiI28XBVbXJx7qKc2opYUHUQ030xR4YIIoKSRW4U5kEU24jsPvXncDhw8OBBjiho3CTXF5GmLMYTEY747snTXrSekgmCc+fOITQ0FMDN5FoiIhk7dizvj5wIo6KisGbNGixZsgRpaWncQS8uLg6jRo1CdXU1IiIiuDw8MzMTO3fuRFNTE3Jzc7nvBa3jtm3b4HTqnuhkqSSOIScnh4vrBgwYgB/+8Ic4ceIEGhoa+JidTj1TY1FREQ8NEhYWhqamJiQmJvLMhuSLQlF0nU4nfHx8EBISghdffBGbNm3CggULuDUbxRMTRUtFRUVYs2YN1q5di8DAQERGRsLX15e/07CwMFRVVXHfGEI8tbW1GDVqFADdErGpqQnZ2dkoKChAYWEh1/uJ+3j16tWIi4tz814X94EYRsToe1LtcVmPIevaPOktVO1bEZF5K07zVM6KJ3oBgOmapl13/e4HIFPTtGhLI7iDwMgT3QxUVD+9dNkJyEheSIeRp3ADolObqk9yYlOFHgc6e8PK9bOzs6FpGqd+zcp6uk/jMQuzfvLkSe61TuMOCwtzy3NO5VRe6zJnoAoPL4+JDn0ZiQNwqy/3efjwYXz44Yd4/PHHceDAAQDgHszyvAhRicp8VQ57ORw3rRcdbEQJU9h2OpCo7o4dO5CYmIiamhreRmtrKxITE7mi2Ol08twipJsJDQ1FXV2dG0dGa5Cdnc3DpdP6pKenc693eT2JaCHTY1rbhoYGNDQ0uBk9EPVObWRmZvIouRkZGZxTEZF2VVUVGhsbkZCQgOPHj2Py5Mk8BztxTCUlJYiMjERhYSFaWlowa9YstzGKoUREZ0P65hoaGvDqq69i9erVCAsLg9N5U9FO46P+xLUSHfDkcROhJn6Lqj1r5iwrf1dkgm31cDc7L3oauhzOHXr4kk+E35/AIC7KvxoYKZiIIhTZTE/KKBVLKv4WqVOV+IuoW7mMHP7djB0l8Y1IZRmVNaKcRDALs26z6RZLfn5+POhecHAwdu/e3UkMJfrniPVloANfVHbLim8APCIqtUn3Y2JiODUrpuElEVloaCiCgoLw8MMPY9WqVTwZEwC3iMMiFSeK0ESLKofD4ZaGl94fKVkbGhp48MiioiK89957PI0ueasvXrwYp0+fhqZpiIqKAmMM58+fh9PpRHt7O8LDwxEXF8fFPDk5OTyhU1hYGDIzM7F161beP1mmXbx40W3tyPpKXk8Sz1HIl/z8fO6Fn5qaysU2dJhS/CkSvxUWFvI5xsfHIycnh4uQKJpvv379kJGRgePHj/Nsi3QwNjU1Yffu3Tx5ltPpxH333ce5ycOHD/MMmKLBBYnDKI1sdXU1Vq9ejRMnTvC2o6Ki0N7ejqSkJDQ0NHAxp/g9qRADzY8Qp1EZeZ+I+1H1XTmduo+RmaRCBHEc3iIPK+1bBSscyA8AfAu6pRMALAfwZ03TXu6xUdwmsMKBqKgIoxfkqay8qVTUCW0AFbUjU+dyuzInZES9ewsqyklFmWqaZjg2AplakzkQo3WS78nrA9w8KMRIxeTgJnIXmZmZPCQHcSF0GMrhTmSOgcI80KFKiIIOS6NxO5266Sgd6OLhRkmqgoODERQUxBEGAGRlZeHAgQM8kmxmZqZb2lpCvu+99x46OjoQGhoKf39/xMbGYvv27TwpEoX2IIpd3B8kJpHHLYftESlsAG4hXQgxyhkl8/LyEBQUhIaGBgQHB6OsrIxbiJGehvq7evUqLl26hCVLlvD1LCkpAWOMp4JtamriHAJxDRQWhRJ2VVVVcc5O3mt2u53nghfT3dIYyNKOyhI3KVu0yXpKADzGGNUTOVIzKYIqmZS4xzxJKlTfjVWwyhXJYMSBWLWMigXwH9C90ydbqXMnXp6ssLpjyWDWlpF1hsoRUK4nWzSpHInE+55CqBhZYKjuqyyvZKc2T6Cq48kKxMgyTX6ushDTtM6hX2TLKPGSLWzkujR3Cp0iWvSIDnmqeV+4cIE7ZIrWQbIToexMSM571J+m3XTgpPAytbW12q5du7RNmzZxCyYxnApZe1FIFdlZUbTCEuckWj3J70q0bBKdTcXwJBcuXOAhQ+Q6orWU6PxI1l5kWSZaf8nvRrQUIyso2QFT3i/ic5VFo9i+6ISn+sZonLJ1lrxvjPa1kUMitWG2762AasxGZbwBeGuFJUENgDQAR3RkxGIto67PEVhVMHkSVxHI9v1yHVWYFFk8IlsJyWOU65mJweRx028jhbp4jyxaRBGTisJSrZP4W3YkVK2l6j2o1kAUW9B9Yu1FLkVeQ+r/5MmTPNcF4B42RpxjTEwMoqKieJImUppSSG9R7CCGlCgtLeWKWYfDgUOHDsHpdHJxj+g7IiYdIr8IAJwKp/DwlMCqvr4eAQEBPO+FzWbDjBkz4HQ6sWvXLixevBiBgYFchFhQUMCtushCieZCYd0pvztxOaKCnNZSNCagNL3bt2/H9et6ZkpK6CRyY5QXnt4zcRK+vr7w9fVFbm4uIiMj4XTqYUpyc3N5G+I+sNvt3FIM0MP2k+6IOD4aryxyovGLay3uZRI5Ap1Fs+LfyMhI7tRI4wPQac+pfMFoL9Lais8yMjK4T5BKJGwF5O+ZjATk+j2qL1FhFfEC8N8AzkJHIIdcV6qnenfiZcUPxCqYYXGiVGRqoyuYv7tgxLGIz1V/jf43omhk6k5VTxXATaxvhauTQWWjb9Ye+RGIHMibb77JfSlEnwf6Te9S9BMQ5yJSsGJAPnkMcvA/o3GLISnoeW1tLecWZM5H5BBra2u11157zZDjIC5FFbqDLrFdFYdElDT5vlDIkWPHjrlxEfRc5FqIc6F2RC4tLS1NO336tBvHRH2KfdM7r62t5X2mpKRwzkTlh6TiLOX9TfOQ34v4nsXgm0bcr4rT8cRRU1gY1X41+61qi8qJQT67CzDgQKwgkDIANk/lPg9XdxGI1Rfh6RDzpj+jDeMNUvJm3J42uvy/WMfooyKQDyOxLRINeFNXdAITx0Ifj+zwSB/qnj17Oh3scoRY+SCQ+yfEI3704vsye/eqvSGLM8WxiIeC6j3QvGpra7Wf/OQnPP6XWF+OE5WWluaGTN58800umpFFqEaRqcV1FxHEtWvXtJdeekl74YUX3JAStSHWo/bb2tq0HTt2aGvXrtUqKirc2iNnRBojIR6aKyEsGr/43tva2rQ9e/a4IS2jfS4SBrTe+/fv15599lkee0t+Z/Jv2o8qBGUGRuIr+f2LUZlVZcz2WHegOwjk7wAGeyr3ebhkBKJadCMwelFm5TwdyKp74sbfv38/3/jiczocPek7rMxJBqPN6QlRqCgxIwrNKLS1KCuX68re5qrximNRfTx06MlrKq+FURvy/ykpKZ0QDx0eRnJ0+l8+5FTh5sV6qjHRXqB3QsEV5XkQ8hBDnFPAQ/G9qN6VrL+gZ7SOFBiRdETE6VAo+YqKCiU3R20lJydzRHHs2DGtoqKCh8MnXYroOS8iKwpn/9prr3Xy6BfnQOOU97O8/rRWsm7KiGuWiRRVfSvnhep/o3ueOBB5Pj0F3UEg8QDOAdgHYDddnurdiZeIQIwOqa4exkblVBSFlUOaDhmj8B2qg0lVxlPoA0/UjIr191RPptZVH67qcPb022y+Yjk5lwPdFw9bo37onioki1xWpkDFvB1iWRXlLoe7MeNcSEwkHtJUThTHyQiLxG6iIp/aowNanoM4Bln5Lu/NDz74gIckIQMBWt9r165xsZvMpVF/Fy5c0J566intgw8+cAuZQvteNAAQ50nRe2kdxbkRUhJFNzKnRGNUEUFGYYNU+8AICan2qpVv0OxbNvttNMaehO4gkNPQLbDmAZhDl6d6d+IVFxdnusg9veiqNo1YVU+bzgp1It5XxYWSQSUWUiE8o3Uy+qhUug75AyXZterwM+vbbN40J1FcIdZRibTEsNdyH3JZkeJUiUpE8Ydqzm1tupxdjE+lWhcZmYgWSvJeEQ9KebwpKSlcPyAjApVoSTxYaSwiR6VCvGS5RRyALMahOirOKC0tTXv//fe5tZksQhL3lBxTTBy/CI2NjTyEvLwfKZYXIWEr1Lz47sX3oUqJYOV7lEFcbyPCx5M+xVMfPQHdQSCHPZX5vFyxsbHdNpPzBqwewJ4OfLkd8cMwqyP+bzRPT6y21Y9C/C2LKlTtyeIR+TBW9S3P2wjoYFEhDBlIRGJV3EBtiwhQ1b7R+6GDQkawIoKR8zgYISwah4xwqDwhAPGQEjPqye+CREeynofMgcX2xblcu3bNTZxHnMHRo0e1iooKrba2Vnv00Uc5kqDDm0xyKyoquDmybCQgIjDx/RNnpSJ+qA4hLZo/1UlJSenE2asIBvF/1dqb7RMr98RnIuEjgwqxGo2zO2BWvzsI5LcAXgAwHbo/SCyAWE/17sRL5EBEaqsnkEh3D2CV/FsEI1GCFURidJh7GqMnMKPAPH1kqvL01xOFpfrIVG2bzVnTbnIrovzc04cujsHKoWCEtOQUtUayebE9mWMj5ED/E8dB4i5RHk9lRe5MpmxPnz7t5sPR1tbGI+XSfdpLJGKi+3KK22vXrmkVFRXaAw88oH3wwQdabW0tHzchIxrz/v37tZdeeoknjqL2PvjgA+3ZZ5/l+gvxvYntiN+ByPEQ0hLXksYmEz+iEYdqD1pFClYIHKN2zPa1vGe62pfZGMza6g4COaS4PrdmvCLFqxJdGC2u+Ff1vCsvUnVomm1KlciJnpu1YeUwtzJOo3ueEElP9Ef3vUH6VsYtK49V6yvXl5GTinqlg9xoj6lEbPIzsV3iHuheSkqKm/mreMiL4hD6n8qKbYtreeHCBe2b3/ym9pe//MWN2iauQUQ0Yvh3mSoWkXJbm25WLOt6RAMQUdQlGjjQfEk/YrSnZaQufgOi2Ez17uX3oeKCjcqbffNGe9PTd+sJVNyWle/QCnHk6XmXEci/0iWKsKweqvLhbXWDeQueNqKKfVWV94SMrPYttqc6LFVWQ/JvTx+Ht4jG0wFvNmfV2qjaMkLS4nMiQGRiRPxgCXEYITx5beQDmNLT0mFLXIUo/5dFV+JvOfUuiYZELoKQAdV5//33tUOHDrl5v//whz/klD61RdZeRnlhRF2Naj+Kbclro9Ihqb45GSkZvWez9Zafm+0dI8s4TyDOVcV1WuFkPY2H7snfKb1vMXJCV8+pXgSidVaiWwXVxumK3sCbsvLBrGJfzdq0StmYfRyy3NyM2hPHaGWcRkjIExh9UJ70LnIoFk3rmqmx0RxFyl5lmGBGIMhrKfo0iEicFMCbNm1ye262Tm1tN8OfyPoFeT6vvfaaVlFR4eaIKFtvEedhZCEochayCbDRmhq9D3keNHbZ2s2qnlH07xANIszaMPsuPIFc1ohYsYq4VPMTfxvp/KxyIGZ99CIQ7fZ4ont7GFpBRCJ16U0fZpS6/JculbJQNh01osBUHIin8Vkta7ZGIqVudAgY6UOMiAKjA0l1aNG6GUUeMKIY6S9ZSVE7sjhF02563BNyERXVcrvybxl5iCAiqT179mjJycnaSy+9xBEHOSWKnBkdxipEKSIPUYwmz9mIWzXa54TkyDdKtuqSkbo4dyKCqJ5ohSavmQrxenvwe1PW231vVt5of3nTvnhfHDeAHM1bBAI93PsMszKfp6snEYgZWH3JnsrSczMKy6h9o0NL/FBVH68nk1YrCMLoQDAbr9lzT5SY6GFt9ZlqjkackxkCkMdpVEdGyqLu4Yc//CFXFMupdGlc4uGtQvz0W0T24lxFk1wV1U+IiQIcpqWlaTt27NAeeOAB7gwoUtKih7pqj4ljl31jPvjgAzedjLym8tipDUJMsm6DuCfRr0UmHEjHIq6j7Iwr7ll6Ls5RhWjMwJuyVsDsO1CV6w6HQ8/pL4ASrSscCPTkUZ/54d8TV1cQiKeXZYWVFdvyBhmIz61uWCMqWnXwqw5EI7GOfGhZ2ZzeUGpGbaiiAMtljJBMW9tNs1ixPukZZJ2BeNjIa+WJmxPHYvRbbFekwE+fPt1JHk6HnxxxVkbw4iEpRrEVx0aIJS0tzS2sh4g8ZARFlxgWRVwrWYQmisVUa0dzJYRJHueyH4vqQBeRnohMxTWg+chIVEYk8j2ZuJCRtfgeVRyfEVg97L0Fq+3JY+9ue13iQPR6+E8AX4Urd8itvgD83OX5nue6lhiUW+yK01UJ4DkrbXuLQDxtApVuwkqb3vRhtYxR+1afqcrJlIzqr6fxqpCUJ4pH/C07kMnIzQxhylSjOG45yJyMiMRDz2i+cllVaAtZZyS3K/paqBC8/Ft16BJVLscFUyFO0QdFxdVYeT/ifETz4OTkZLeQI0bzIW6LkJpojix6pIt1RDDiGsR5ywiGAiWK5Y10LiokYjQWFXRV53AroDuITKzTHTPeawA+BdAO4Krr91VP9bp6uRDIUx7K9AFQBSAUgA1APoDxntruCgLxtPDeIA9qU/xr1o/88X0WIPdvdTyq+Zmx1fJBoGk3RSXeftRGh7mKOrcydhqLkRJYNiYwmzvdk0VHYl0z5CyuCYGoHxH7VelHRIsqOT6U2TxV4xLDpIjxquT1EH+LPirXrl3jbYiITeQQZUSk2n9GXLM8b1FspiJwZA4xLS3Noy+R6v1YJSpv1zfdVeQh6UA+H0p0iwhkOoB9wu/nATzvqW1vEEh3MLenNj1R0nRPpMg+b6A6kDwhH/kDlilF+UChtozk8DIVa6ZI90R1m5WTOQQzxbY4XlF0dO3aNTfq2xMSEds2Kiuvt+hn0djYqP3kJz9xc9Lz1Jb8Lo8dO6YlJyd3ijEmHvbie7t2TVeCizG0COmoEI0otqID3YgIsELQyMhNXiMZyRtZmhmtM4FV5CH3113oaYTUUxwIA/AwgJ+4fo8EMNVTva5eLgRyBkABgD8B+IKizEoAm4Xf3wTwB4P2HgOQDSA7ODjYcIE8LWBPgXiwevoA5I/W2z56srwVBCCWtSrqMupHJe6R64lrada3inMRyxshavlQ88Qd0KHj6YAX2xJDdZAISHVYi3XlECoy1yaPiXQPYn+apucYkfcWIRexXxWXRW2LIjDREk5eN9Ln7N+/340DUX0D1C6Joqiu7F1vVQGsui/PS9PcTZZVz1XQle9TrtudNghuBcErQncQyGsAXiEtPIAvADjpqZ6HNg8AKFJcXwYwxCWiugvA/wD4k6L+1xQIZJOnfs2i8VoFsw3pTRuewot46sPsQLRqqWG1vHzIWjEE8IRsPPXrifI3+/jkg8jKYWPEFRrJzc3W32isKsQnclxGAQtlEZNsACByNHL0W027GQaDuA3xPcr9Uf4LUZ8hlqP+VXoOUeSj2g/iRfM14wREZKoiYIwIMOJWzN67jNhpXqKIj+7L9cT/jczHVf0ZjUNu1yr01FlkBbqDQHJdf08J9/I91euJC8BoAEWK+90SYXX1pckfs5VDsCvPPAFtdpHNN2rXCpKxctjLH7Dch5kM2gisro2qfTmIoApkWbqnMchlRJGHfNib+WCYIVjZ9FVGduLYVetJSEy1XhTVVoVQRQ7E0yFPyMHI14NET6o9YdSmfI8cEo2QpNX1pP9lRGYUqt5sXCorNlnMpNqHqjVXzdcoP4w3YPXssdqW1Ta6g0COuzgCQiSDRGTS0xeAocL/3wewTVHGB0A1gBBBiT7BU9vkid6dhZfreVJ2WokI622f1L4nXYr8Ycltmn2Eqvue7hk983auspewvAb0QVqh+sTwH6rnnihUWTFNoBK/qJS9IpCCVRUJVjYjFuNJEaiCMIrP5LwfctsyQpDLyaauRpyW0R6REY34DcjrLyIycT1Ve1jVv5lYU0bGcjuq+gQqcZ3ZexW5OxWo5mH2XZqBam26C1bb6A4C+Qb0JFLnXCKlMgBf81SvqxeAvwAodOlAdhNCATAMQLJQbgmAcpc11o+stC1zIN1dVE+HrtkhY7Vfb+sYfeyqD85I+SxvUk9cjtxvdze20WEitm21DxJnGIX+NmvPTFwniz+MDghVm3JbYhsERohANNMV956o51DtRxlpiAhDbN9M72O25nK9/fv3G8YDa2vTnQllhbXKc92IUFC1KRIM4txprqL5s0rHJLelWgfVWIziTJnFn1L1IY5BLGf2W2zrVkK3rLAARAD4ruuKtFLnTrysWGF5OrBV5c0OOlV5b/vtzuZQfTCe2pU/YFWmO28Qo7fjNaKyrPajOqTlQ8XIX0M1HrNDgyh/2a/EivWOqIeQ88GrDkfVusvzs3r4qQ5no0OMuAUxV4hcTlwnWU8ij7G2tlZ74IEHeIh3qqPKg2KUZEn8S3UaGxu1TZs2uUUtFsWOsk+RWMbIq17Vr6dn1L6K25RBRtJmIjOj+t44OFoFua3uIpBY6FkJn8DnNBeI5gGBeDpYPb2cnjo8e7JNs8PYmzpmB49RObP2PT1XrYPZHMR79OHKB6pcXj6MzSyrjER4IgciWyaJ4TuM5kgHl6wYF+ekopTF5yokL/ZBXIU3CZRU879w4QLPPS62bYSgZGss+UAl5KESqclz87T/RA7JiAMR68nvR0RAZmCF4BDBTAGvapPqdOWb7WnkIc+vOyKsn7pESj+H7pWeD+DHnurdiZcRAvG0IVQbuavgiZqwMiZvNkxXxmwVWYpj9DReVXlVOZWozcxizejwomdG1JkncZ5q/OJv1buSle5GXJ+RYt5ovVQHkVk+ErEcxbcSAxDK8yXqX3WYie3Lin3Sq8jrabR2st6D6hmJe1XtqpC/CnGKv1V7TrYik63CVPPwpOPy9G2rkKE3xixdhZ44A7qDQEoA9BV++8EgsNadflnlQOT7qk3bFTA7QFWHmNEmtcKy9vQmNOrDynhVHI2R/sXIvFTsy6hfo/5VbXlS1JrNV4VsjMQPIpei6kt1QHo6VMTDyOiglcdcW1urVMDTfpLFPqLC3giReZtrQj5E6a+co0Tsz2itrfYhroH4W0YGVr5x+f172tNyXbMUz57qdxW6065YpzsI5EMAAcLvAABJnurdiVd3YmH1FHXg6RDypg35nmrcqrrejtfovlVWWzVW+VAXPbiN5NF0qKgy/RkdcvI7VFl3WSEOxPbN1kT1VxTfyGsmIx1PxIXq0BIPcnltxfpGScmsUP8qL26xjFViQl53ovxVYzAiHMx0QWK7VuqInIfVb8MIyVnZQ9153lXoKvIQ96oRArkLnqENwGnG2J8ZY29Dd/hzMMZ+zxj7vYX6nztwOp0AAJvNhkmTJsFms8Fms8HpdCI7O5s/t9KG/D+1Re3SM6fTieLiYtO2xXHZbDa3+3l5eXA6nfyi9uX6VM5svPTbrLw8B7N25bFmZGSgoKDArbyvry9iYmLgdDpRWVmJ8ePHG/Zns9kQGhrqtl42mw3jx4/vtIZiPQBgjPH7BPr30Rnkdqh9ozUzWgu73Y6VK1ciMDAQkyZN6tRmQUEBHA4HTp48iezs7E7joDkA4G2L+ygwMBDLli1DSUkJ0tPTsW3bNjgcjk717XZ7p/E5HA63OYlrQ3+dTidKS0v5OxH3mt1u52XE++J3otpLdA/Q34m8p8V+8vLy0NTUhJMnT8LpdLq9L3rucDiQl5cHAIiOjkZxcTG/J9cR31VBQQE6Ojrc5usJxLW32+1u+1Icl6qep3ZvBaja9XSGyd+NIaiwingB+JbZ5an+nXR54kA8saIq9tioHau6AW+oeDMRF/VFiXOsyKTltlXWH1apF6t+FmQNY2QaLFL5RpyBkdzcaH5mz43maPRurIgczN67ql2Vx7XRezZT9FI9s7UV2zZTHqs4NzNLL/F9yHOSdT6kc6Gc6p44OuISjMqrvh+j92a0Zt6Ct99qV0HmwDz1bbVNK9ZdIqCbVlg2ABNdl6+VOnfi5UkHYuXQ9IbN9VTH281rRfGrOkCstu2t9YensdAz8ZLt8VXl6a9KXi632x35rqc5ywet/L5Ulk3y+FQgvx8RYdJhKeoDjKyHVHOS5yIqyMVn1K6Z+ao8Vxlpy+0Z+ZDIOdJpXKTc97RfqW2r5Y3asHLP6jNvD2Bvx0b35RBCZsSTN+Dt/LqMQADMBVAL4DCAdAA1AGZ7qncnXrGxsZYWtScoB0+gokS9KW+ljpUxqH53FYkY3ZcPRKuIUxxHT+l0qI7sIW2GkMVD0MgsVSZAzA5l2QKK2hdl8aLyXUx8JJvHGs1JpPRTUlI69W8U0kQ1PrmOkRmtKpslIURVnCwrxI68rrIRgFyW/prNSdWuUZ9m4+oJ8NSX+L2Ie8JTLL2ePhu6g0ByAIQLv8fBIDvVnX7dCkfC7oCVA1JV3urzrlBR4oGgEtepPk4CT5ZAnvo2m5PV9yH34+nDFMdsJIZTKVrb2jor+43WxYhYEA9mIwsu8eCWEYHRnOT5yQe3ytJNtYYqjkfVB11GqQdExGdkWaWak9FcVftHRpqyA6Jqnxohe2/GYhW6gozEPlUOvWb1evoM6w4CKbBy7/NwWbXCulXIw9PH3922VRY+Vjeu6uBVWa6ozC3pYDBKpOPNYaGakxnVqSovjt9MZyUfkGaWX/LH2x0dkWrdzQ6sa9d0R8DXXnvNVGwm96cSJ4nIwagN8bfsTS6WkXOfGIkEVQhRBtX4zA52o/dEdc1CoMj71Ary8NbiSqzblQNdtfe9rd+T0B0E8jaAt1yirLkA3gTwtqd6d+LVlZzoPQWqTdjToFKeejM2q4e6J8rOSttWy8iyXytIRB6rWR3VQWJ0wFuh/ozGZCTe8oRcRVGZGAVXbNfMbNdoPYzGI66zKLJSIQdVTnEjAsYKYrA6L28QsOqZJz8ST4jLbL+qEJvZN2MGXTkrbsW5omndQyB3A/gBgJ0A/gE9Qu7dnurdiddniUA0rftssKc2u4OYrBy2qn69LWtUz6yM2cEughkC84RcPa2jeGB2JSqB1UNW1b8ZFWpEFRPXZBb2Q25TfC77llCbKoRkRYxnthaqNqxYEVo5yLvyXVj5To0QoLzXVOU86TzMfnsa960iTruEQKAndeqUj+PzenlSonsD3lKhtwKsULNG9VT3VLLj7vZr9sEbHTqePgIVZWYmQpNl/qpxqA5yuQ2ixK1GJbBiKaMag9m6qtbOCPGoTF5lhKPy2laJmqhsT3pTG81ZDm3vqQ3VOMws+OSyVsfmaR7XrnlOR2y1Tyt1jOZ+K6A7HMi7AII9lfs8XD3FgdBh29X4WEabwerGsfLc6L4ZWywekp7AyqGh6ktF7XpjXaai8sT+jEDux4wjMUIwVnUx1L4qSq/RnOS/RtSsrHSXD0r6X8x/LvclroFRZGXVXK0cpt4e+EbvkS4jokBuTxw3fZ+eDmqjvSdfVkSwYlvdEVMbnQGerMhuteGPkeGUFQSSCuAagIPQ83PsBrDbU7078epJEZZVykR1T7UZxHwIZmWtgJmc2RN1ZDWukdyu6p6nvowOKU/tWxmbJ6rTWzNNK+9brmuFA5GtpDxRs+I98aCU64oZ/8RxyYeOmQ7IaK+azduTeEY8ZI0SrlnlQOT+VIYDZnXl+bS1tfHc6544GNUYrK5TV8DTd9EV4tMb6A4HMkd1eap3J163Uwdi9jGZUf/yMyvcgKpfKzJk+beVQ9/bsVihAsWyZpSW2TxUbXuDIKzMw4pIw9N4ZeqWCAfx/XuiZsX/ZQsyGXmZHWxm66w6PI30LWYHmer3tWs3oxEYHeRWvxt5Pa0SCUbfIEUYtoKEzMb6WYOVb8Ab8BqBAOgL4EkAfwCwHoCPUdnPy3W7lejevjzVh9mVTeANpewNhekteBq/ysLKysHRHTlzV8rIVK2ng0l1aNJ4yRNf5VgphnhRIRxPYzPqz6qo1ezwFduU35cZoaRqh3KWi06YKidET22JdcU1lefjzfzERGFWnPVuteioq9DTiK0rCOSvALa6kMcuAL8zKvt5uW4XArFKPanK3MoD3ajPW9meFQrOm3HIH7onCtMK8rLCVZj9pntmh5wnhNDW1tbpEJQRgWpfeEOVewNGFm3imOiet4i8rc3dCVM1d7O2jPQ6nup6MvwQ25et1byZn1XoqW/PiGD5rBFIofC/D4Bco7I9ebkQV57rOgMgz6DcGeiJrvKMJidfIgK5VQezkcjBqjjrdlAzt6oPoga7276n+p6U2eIhp1p30cqIgvoZpXdV9WP2wXbnY5aRmXgwepOCV5y7NwYRYp+exHA03p4yJjFCAKp3p8prYrU/q+LZ20G49cQh7+ldeaprFbqCQHLNft+OC8BGAD81eHYGwEBv2iMEcqtYT6OP1uzjMOM4epL6ET/+njjkjfowCn/iTRtWFbGqZ/IhZ3Sg02GtsjyTEYKZRZanOVrlAGRuQ+W4521/ntowm6snRCivozdztTIPVZ8Esjm2VQ7IilXXrQCzd3Ur2/dUx5szsCsI5BMAV13XNQAdwv9Xjer11AWAATgLYKzB8y4jEFpAb8HKZvfkPSt/ZEacSncOUrmc3G53D3lP/RmN02ofngwAjA5CVbwgo3bkcZmth+oA86Rwpt+eDnB5TOL7sTIPs/7ksXmDeD31J1Pz4vp7Q+V3V5dlpj9Tzbm7yKMrCLKnidXPAvF02Qrrs7oAzDYTTUGPCpzrCvb4mJU2u6MDsbIRPH3oRP17yr3sqT1vnlsxMbwVm1xsmw4bqwjPzATZyiGsKq+qZ+RYqGpP1ZdY18jB0MoBbsYpeCJMrHJC4nw99e+pHaN9rHrPng7srpiNq8ajWg95P3R3f3f1OzFC2rdjDD31Td9RCATAAeiZDeXry0KZ1wBsMGljmOvvYAD5MAgxD+AxANkAsoODg7u1iD3xMjxt5K700RPtdYXi9dSn+FF7Yx7c3f6NxiFTop5ERKpQIEb9iJyD0ZiNDhJPa+NJl2PloDQbn+rg9XRIGSWCEvsX86qrgNa4p0RKRtZh4ru81RyIJ2KN7nUHaXrzHfYUYXhHIRBPl0tp/xGAERbL/xzAU57KWQ3n3hNlugJdeeE9RRV5OuzN+pE/GJUYqScowO6AFapeVccKByGX1bTO/hnejM3T/yKI/ZA+x4gTMtJ9eUIEqj5ViEF1gHvKoGjFU99ojKr78pqJ7687HuJW+zaKVu2p7q2Cf0kOxNMFYDGAwybP+wG4R/g/A8BiT+1aSWlrRUxyK22/u3LQdqW8ivKjdqw4jIn3ZEpeluGryt0O8PQee2qd5bmJB6zRgaYCMwpa1b83HIjZ+FXPPL0veW4qwsPTOIyIDbms0VhU91WclNmYusMFWBF7fpZEU0/C5w2B/BnAd6R7wwAku/4PdYmt8gGcBvAjK+12hQNRbYZbuSlux0FLlJ8qI51YpisUtKpuV9fNm/IqjscMCfb0OqsOd/m5mf6LEK9Khq/ye1EdjkZj8QRmXKcRyOtrpb5qT5nNx+gdyvXEecjxv8y4DrOxeIKuECCfJXRlrGKdzxUCuVWXt0p01UfSFerO2z69oVq7248ZJaVp3bNa8QYJqeparScePiqLNzOT3J4AM4pT9S5V/YpKePkQtXrAd2W9jRCU2RzleyoiQbXWotmv0RrICMMIQRrtWRKJWSVcVOPzxH3fDiKvJ6Er45Xr9CIQrWvh3M0OB/F+T2wo1Udn1VHLW0Tj6dBTHchW2/PUflfHZaWe2UHnbZtm7Yj3aI1kSyzVvjCjtClMiCpLopX3b1bW0yFq1ofZ/m5rcxdZmiFoVegao7HISazM9peqflccHK0SHmb936nQlfGKdXoRiKYhIiLC48bzdmG9retN20Yftuq3+MF4c9h4GodV5CH7VHQF8YiHkTf1zO51pYxRPSuHnhhR2YiK9WQ2axRk0MoYjcZmZkLs6eA3G0dbW1unOVsZoycCRhVl2Nu1sIpMzebmqYyVcdxOuFX9GSGQu/B/CPz9/WGz2TrddzqdOHnyJLKzs+F0Ok3bcDqdyMvL4+Xod08BjU9sVxyz3D9BfHw8pkyZAgDK53IfkyZNUq6FPA6zMmIfkyZN4n3Tb7O6VF9ec8aYsn25njxHo3UxqufpPavqynOiNujelClTMH36dNhstk77Quzbbrfz9SIQ27XZbMjLy4PD4eBtWQF5vcUxqN6Hw+HAjh074HQ6MX78eLdxOxwO07ZF8PHxsVROfC7vc3GONpsN8fHxsNls/LKyn+R+rOwTo33jdDo7vRMV9MR+83YvWunvtoEKq/yrXkY6EE8svKq86ndPY3+j9jzZ7PckR2Q0LiNxhDf9ktmpitLzRHV6SyWL/3vDgdE4ZbNVTyIO1XiMRCSqMlbEPVbAUz0VB+Jtn90d2634fmhOVowMVL+tGo9Y2UeeuNdbaczR3XIE6BVhqRFIT73Ant4I3vTT1Q+gq/3LISu60o/8gXdVJOUJjA5DTx+9kXmo0bp78+GayfW7ahXk7Tjk8mZ9dpcgsXJwdnXPmr1XK21ZJVC8IWS8LXe7xWNdWeteBGKAQGhBzX5bhe5usu72cyv7lNvu7ocu3rtVVJgnJGV2QPcUtUhrZfVgszoWb6yTzPrydIi3tRmHLelKH/Izs989Mf6eGNvtIg69ge6OqZcD6cLlyQrLE7vZFbgTN9/tBjNxgljG2zbN+lJR1LIZqTcioq5yA0bJjuRynuYj+zYYhQjxdh2t+H6oEKA34sVbQX2rxmXWnjf3jRDpnQa3c0xGCITpz/5vQGRkpJafn2+oSM/Ly+PKTW8Udp5AVsjd6no9AT3dd1NTEyorKzF+/HjY7fZujUl8V0bvUnXf4XAgPz8fjDHEx8dzhbanuXrqTwWkABfBzICDMYbo6Gi+NuKYHA4HiouL3fp3OByd1tHKPMTnqnatglFfVteKFL1yWav7jvqxsp/kMVnp47P49j7L790TMMZyNE2Ll+/3WmG5QLT06OmX2FXkYWZRIVvJdAdUFig9ac3hcDhQWVmJsLAwFBcXd6ldcUwqqxzZikd13263Y8qUKYiP178DGosVyyHqj9bdbA4OhwPbtm1DZmYmr2+276ZMmYKIiAg+Hnn9yWpLbEOFPMzemcr6qLi4mFtfeQtWviMjMLIOM7IAU83JZrNh/PjxlvaTOCbVOngzv1sFPfnN9Vph3aKrp1Pa9pTuxGr7BKqQDd3pw1slc1fa96SHsNqWSqxgNoeejB5AoiPy2jYzAJBjRZmBLF7zZmzeiFmM1t6qKMwb3ZuVsRitm5FeQ9W2p/lb1b3dCSKqnhCZ9aRuRPwfvX4gPQNG9uNdoSCsUE5G98PCwnqESjKiGLsi0jBrnyhmKz4tZiDa1as4EpkTMaOGvZ2j3W7HypUrERgYyKlfh8OhnIPdbrfcvjhOcU5moOJUrIiv5PUhXxCR6iexWlf9bIzWRAajdRPfGa0NlZfbNvMn8eTTIrd9Wyl3BZjNxZs2uiKSlPu1PAYVVvlXvaxaYRmBkYLW23ZUbXkLdxLF1J25dEfpKZexohDvyXXrimLdSptie0bmw7Lnv6c2zQwGjAI/dmV/G42pqxyNqrw3e8bKnvCGW1T12V0OtyfWprv1VPV7ORAL4A22l7F7dzgAq7Jis/pm0B1qykpdM52Eqr43smar70TmZvLz8w1l+lapKpmCtdK/VaWv7JFs1D6NkbiDpqamTuMW19tq5AGVLgXorE8RPcFV85XHLvctR2YwWncrXvYq3ZY3HKU8Z7k/0RvfW3A69UgKMrdGz4x0Ld5wSd6Op7uclBXvezdQYZV/1au7HIgZdJej6Mn2ulqXqClPJrdieSt9d2U8RlSsmROeWcIkK7JuuVxPeGNTWxQnS5VsyIxal6PXGq3v7QRP62SVovbEHVh9B12VIIjjEP96A1Y4EE/r1ZVoA93lerwF9PqB9LwSXYaefnndaa8ryEOMKmvV+ctq310Zj5EYxQjJWRFdeXMYWRWFGR1MKlGTXM/TIWl04HzWYLROVsVeVgkVT++rp9Ily741t/Jb7u730dPEqhUwQiD/50VYPQl3gvkvoPZBsNIXsfpGoo6uiJbM7lGbRqDv287tGJlwms3ZKLie2TjNxiwrco0MEUTTcNmcl357UvTLIpiumkJbBVnU5gmMlL9m6y0bV3hq22icxcXFXpmHG7VHBhJ2u92yEYA34GlfefO9ejJjv53wf8qRMD4+XsvOzv6sh9HjIFrtkEyXPgar9brSV3eBDhhPDoHy3+6MpafGr2qnJ9fGm75VFkndIT5ycnLg6+ur1INQ+0bvzewdWbEW8xaM9kZ32rPqoHingKfvqCeg15HwXxRkKk+kpLypZxV6coNaob7NTEN70gGuu+1YXU+VsrU7fTscDrdUBLIppjfgdDpRUFAAp9OJ6OhoQ8Wz2XszUrybKZyNxmIFehJ5UHvdjZZwu6E7prvdhV4E8jkGlQUU0NmqRgW3a9N1RdwlPzezILpTwKpVXXd9h+T2iouLERMT45Y/o6u+DTabDdHR0ejXr59Hn4SuvAfKWeNJ9OKNCKk7a2hkLdgT0RK6Mg6r9YxEgp8FfCYIhDH2NcbYacbYp4yxeOnZ84yxSsZYGWNskUH9QMbYfsZYhevvF27PyD9bUJn/dYf6MjO7Nevbyn15jN6CJ/PN20Hp9TR3RtStOJ/uIEURuXqrWzECu93uJrrqCUKD9gG1J9+X97U3IVa6Oj7iiLzhrnpyLDIRYRVpeuIwbzcH9FlxIEUAVgBIF28yxsYDWA1gAoDFAF5ljPVR1H8OwEFN08YCOOj6/S8NVhW33W3XmzKe6nbn4zZrtyfs3b0Zg6e1kQ9As7JWFP/eIHRPhgPegoog8aYdVYw2K0YG8r72RoTU1W/ASP/bFYMPb8YiE38ih22lfSMO83Z8F51AZZp1uy4AaQDihd/PA3he+L0PwHRFvTIAQ13/DwVQZqW/W23GK8KtMLG7VWZ7XTXNpfu3wty4O7b/PemLI5tMyj4ZlFzLqg+NJxNOKyaat8qMs7s+Jl0NM291zj0N3uw9K+bWntrtbh+q8t6YsncHYGDG69MJo3y2MBxAlvC73nVPhiGapl0AAE3TLjDGBhs1yBh7DMBjrp8OxlhZTw3WBBgAPwCtADTXb/p7L4DLBnXEsqpntxMGQj1OGeS5egPdqUsgj7Mn2pRBfDf+rnstwj0Ifd0FoK+if6P1VI3Xyvs22idQ3LcKDPo4L5mMzdP47nrkkUc+VbTrB+AGAPmZlTZV47C6P70Fs/1jNEaxDqT63o7Tm3ffB0AAgI9hvK5WwMoYR6lu3jIEwhg7ACBI8ehHmqZ9YFRNca9bh4CmaX8E8MfutNGTwBjL1hTmcHca9I6zZ6F3nD0LvePsOejOGG8ZAtE0bUEXqtUDGCn8HgHgvKLcR4yxoS7uYyiAi10ZYy/0Qi/0Qi90He40M97dAFYzxu5mjIUAGAvghEG5b7n+/xYAI46mF3qhF3qhF24RfFZmvF9hjNUDmA5gD2NsHwBomnYawHYAxQD2AviupmmfuOpsFkx+fwXgfsZYBYD7Xb8/L3DHiNM8QO84exZ6x9mz0DvOnoMuj/H/VCiTXuiFXuiFXug5uNNEWL3QC73QC73wOYFeBNILvdALvdALXYJeBHIL4PMYqoUx9lfGWJ7rOsMYyzMod4YxVugqd9tDGzPGfs4YOyeMdYlBucWuNa5kjN32SAWMsd8wxkoZYwWMsX8wxgIMyt329fS0NkyH37ueFzDGYm/HuKQxjGSMHWKMlbi+pe8pysxljDULe+Gnt3ucrnGYvsM7ZD3DhXXKY4xdZYw9KZXxfj1V3oW9V7c97CMBhKOzp/14APkA7gYQAqAKQB9F/RcBPOf6/zkAv77N498I4KcGz84AGPgZru3PATzloUwf19qGArC51nz8bR7nQgA+rv9/bfQOb/d6WlkbAEsAfAjdL2sagOOfwXseCiDW9f89AMoV45wLIOl2j83bd3gnrKdiDzQAGNXd9ezlQG4BaJpWommayuP9ywC2aZrWpmlaDYBKAFMNyr3j+v8dAMtvyUAVwBhjAFYBeP929XkLYCqASk3TqjVNcwLYBn1NbxtompaiaVqH62cWdJ+mOwGsrM2XAWzRdMgCEODyt7ptoGnaBU3Tcl3/XwNQAnVUis8DfObrKcF8AFWaptV2t6FeBHJ7YTiAs8JvS6FaABiGarkFMAvAR5qmVRg81wCkMMZyXGFiPgv4d5co4E8G4j2r63y74FHoFKgKbvd6WlmbO2r9GGOjAUwGcFzxeDpjLJ8x9iFjbMLtHRkHT+/wjlpP6AFrjQhEr9bzTouF9bkBdoeEavEGLI756zDnPmZqmnae6fHH9jPGSjVNSzcp36PjBPAagP+Gvm7/DV3c9qjchKJuj6+zlfVkjP0IQAeAdw2aueXrKYGVtflM96kIjDE7gL8DeFLTtKvS41zoYhiHSxe2C7rz8e0GT+/wTlpPG4Bl0APXyuD1evYikC6C9jkM1eJpzIwxH+hh9uNM2jjv+nuRMfYP6CKRHj3wrK4tY+xNAEmKR1bXuVtgYT2/BWApgPmaS8isaOOWr6cEVtbmtqyfJ2CM+UJHHu9qmrZTfi4iFE3TkhljrzLGBmqadiuCLBqChXd4R6ynC74IIFfTtI/kB11Zz14R1u2FOz1UywIApZqm1aseMsb6Mcbuof+hK4qLbtPYaAyi7PgrBv2fBDCWMRbiorhWQ1/T2waMscUAngWwTNO0FoMyn8V6Wlmb3QDWuKyHpgFoJpHq7QKXLu4tACWapv3WoEyQqxwYY1Ohn2eNt2+Ult/hZ76eAhhKGLq0np+lNcC/6gX9YKsH0AbgIwD7hGc/gm4FUwbgi8L9zXBZbEEP+X4QQIXrb+BtGvefAXxHujcMQLLr/1DoVjv5AE5DF9Xc7rX9C4BCAAXQP8yh8jhdv5dAt9yp+ozGWQld7p3nul6/U9ZTtTYAvkPvHrrI5RXX80IIloS3cf0SoIt5CoQ1XCKN899d65YP3VBhxmcwTuU7vNPW0zUOf+gIYYBwr1vr2RvKpBd6oRd6oRe6BL0irF7ohV7ohV7oEvQikF7ohV7ohV7oEvQikF7ohV7ohV7oEvQikF7ohV7ohV7oEvQikF7ohV7ohV7oEvQikF7oMWCMfeKK4lnEGPsbY8z/sx5TV4AxFsAYe1z4PYwxtuMW9/lnxthKxX3eN2PsXqZHqHUwxv7gob0djLFQ1/92xthrjLEqxtgpV8iNf3M9G80Ya3XdL2GMnXA5QFI7EYyxTMZYG2PsKZP+vuaqf6ira+AtMMaiGGN/vl399UJn6EUgvdCT0Kpp2iRN0yYCcEK3MefAGOtzqzru4bYDAHAEomnaeU3TOh3utwOkvm8A+AkAw4McAFwxjPpomlbturUZwMcAxmqaNhnAYgCBQpUqTdMma5oWCd2x8PuMsUdcz5oA/AeA//Uw1G8DeFzTtHnSWG5ZtAtN0woBjGCMBd+qPnrBHHoRSC/cKjgCIIzpOQYOMcbeA1DIGOvLGHub6fkTTjHG5gEAY2wtY+wDxthepueq+Bk1xBh72EUZ5zHG3iBk4aLE/4sxdhzAdLFzxlgaY+wlxli6izKewhjbyfQcK78Qyv3AxTEVsZv5EX4FYIyrv9+4qPQiV3mz8e90jb+CMfaialGYnjvi1675nGCMhQmPZzPGMhhj1cSNiH1rmnZd07Sj0BGJGXwDrugFjLEx0ENr/FjTtE9d7VzSNO3XqooupPMD6EgDmqZd1DTtJIB2o86YnjciAcDrrvVa6+JA/wk9yKCdMXaQMZbrWrcvC3MrZYxtdq3/u4yxBYyxY641nOoq14/pgTNPutZcjB78T+hIrxc+C/gsPCJ7r3/NC4DD9dcH+gH2/6DnGLgOIMT1bAOAt13/RwCoA9AXwFoAF6B74ftBDwcRDz23yj8B+LrqvApgjet/DcAqg7GkwZWDA8D3oMceGgo9F0u9q5846J7B/QDYoXvhTgYwGkCR0Bb/7WH81QAGuH7XAhipGNcZ3PRWXgNX/gXoUQD+Bp2oGw895Lpb30IbawH8weQ9HAYQ5fp/GYB/mJRVtR8AnZsU7/0cJnlYIOS+cY2vHq4ICq790N/1/0DoXvrM1XcHgCjXvHMA/Mn17MsAdrnq/BLAw8LYygH0c/2eCeCfn/Xe/7969XIgvdCT4Mf0TIbZ0A/Wt1z3T2h6/hNAp1T/AgCappVCP2jHuZ7t1zStUdO0VgA7XWXnQz/oT7rang89fAQAfAI92J4RUIynQgCnNT3HRBv0g36kq/1/aDpl73D1OcvDHM3Gf1DTtGZN024AKAYwyqCN94W/Iue0S9O0TzVNKwYwxMM4zGAogEuqB4yxH7k4K7Ngfqrosd7Cfk3TmoT2fskYKwBwAHooc5pfjaZphZrOHZ2GvoYa9Hc22lVmIYDnXO8/DTqCJrHVRejhYXrhM4DeaLy90JPQqmnaJPEG02OzXRdvmdSX4+porvLvaJqmCj99Q9O0T0zaa3P9/VT4n377eBiLEZjVEfv4BMbfl2bwv1i/O4d4K/RDFtARWQxj7C4XcvofAP/DGHOY1J8MPYFTd0B8598AMAhAnKZp7YyxM8L45PcivjNaPwbgq5o6SVtf6PPthc8AejmQXrjdkA79QAFjbBx0SpIOhvuZng/eD3oWxmPQg0muZHquBcoXb0TZd2Usyxlj/kyPpPoV6Lqba9DTqHo7fqvwoPA309tBW4ASAGEAoGlaJXSO8BeC7qgvDBAU05M3/S+ATT04ngEALrqQxzwYc2ZGsA/AE4zxSLGThWfjcJsjQvfCTejlQHrhdsOr0JWthdDl32s1TWtznQ1HoYuHwgC8p2laNgAwxn4MXRl7F3Rl7nehi466BZqm5brMQCmk/mZN0065+jzmUl5/CD2SqpXxW4W7XYr/u6CH17YMLuq9PwAbY2w5gIUukZcIe6Drng64fq8D8BsAlYyxJugU+7NC+TGMsVPQqflrADZpmva2q78g6AioP4BPXYYG47XOyZ3M4F0A/2SMZUOPqlvqRV1ATxz2MoACFxI5Az3PCgDMgz7fXvgMoDcaby/cEcAYWwtdCfvvn/VYbiW4EEC8dguTHrk4uEPQM+WZifg+18AYuxu6wUCCdjP/fC/cRugVYfVCL/yLgcsI4Wf4bPNu3w4IBvBcL/L47KCXA+mFXuiFXuiFLkEvB9ILvdALvdALXYJeBNILvdALvdALXYJeBNILvdALvdALXYJeBNILvdALvdALXYJeBNILvdALvdALXYL/D7Awqh0o7CmfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_proper_motion(centerline_df)\n", "\n", @@ -245,7 +301,20 @@ "cell_type": "code", "execution_count": 45, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e1zU953v/5wGJoATwBEMKgJyv6NcFBQvQWsMZa2x1mOta5Mes+nJ/nI23aQ9p9nubru9p5s9OU03bRo39rjGutZa6xJDjBJE5KKA3O8XAZVRcQI6gBkm+/39QT6ffObrzICXpNmu78eDBzDzvXy+n+/n876/X2+Dpmnco3t0j+7RPbpHKn3mjz2Ae3SP7tE9ukefPronHO7RPbpH9+ge3UT3hMM9ukf36B7do5vonnC4R/foHt2je3QT3RMO9+ge3aN7dI9uonvC4R7do3t0j+7RTeT1xx6AOzIYDOeA68AHgEPTtMw/7oju0T26R/fovw59aoXDh/SQpmlDf+xB3KN7dI/u0X81uudWukf36B7do3t0Exk+rRXSBoOhF3gP0IBXNU37le77vwD+AmDGjBkZcXFxGAyG276fpmmMjY3h5+fn8jqapt3R9fXXmM71PB1zJ+OZ6lnvlP7jP/6Dz3zGWe8Q49Xf+27M61R0K/dQxzmdcz6J8X+a6Vaf/26s6Y97/f6x7vXHoJqamiFN04Jdfqlp2qfyB5j74e/ZQD2wwt2xGRkZ2t2g999//65cR6Xr16/La1dVVWnvv/++09+exuLuGFff3erY7/RZ3Z0vxiaeW/1MnKP+nmoepnvfW6VbmfupnvXjWDd3g6Z6xts9Vz3mbj3/rV7rk5zzT+v7vRsEVGtu+Oqn1q2kadrFD39fBn4PLP6472k0Gu/q9Ww2GwcOHMBms2E0Glm4cCFGo9Hpb09jcXeM/ju73U5dXR12u33aY9Nf91bOVe+nP89oNJKYmEhLS4v8Tj9e9fdU8+DuvndCU11HPIPRaPR4rBj/p5E8jXuq55/uPE/1/m51Pd7KWridvXq76+Zu84Wp6E7X992iT6VwMBgMMwwGwwPib2At0PRJj+NOX5LJZGLTpk2YTCYAJ2Y+nQU3lfBQ/76VjaWnW2W6KlN0dZ7JZHI7HlfCZLp0O8/pial7YmpCuE3nnp6Y8MdNngTcdJWLW/1ef6y7cU21pu5kLdwq3S3F4uOmT9M4P5XCAXgQKDMYDPXAaeBNTdOKPskB3K2XJATD3b6uej24s43lyhKZzjlTMSB1jHV1ddhstpue/Vbn4VYFg6u5nko4u7N0pnPsVPe+mzQdC0gc5+47d3SnjHo6AviTZIJ3qkB9UvRpGuenNiB9K5SZmalVV1fflWupjGO6Gv6d3ONOr1NXV3dXF9PHcU1xXeGmAZxcNh/nZtDP9SdxT3f3/mPcw9PzfhLj80R/7Pv/VyT9nBsMhhrNTQ3Zp9Vy+KOQ3W7nzJkz0pd+NxmuSnfruneiZdyOO+JOSBUMwor4JLQk/bVvN05wOxru3VIAPN1/OhaAqzl2ZcV90vSnIhg+DS6g6dCtWmv3hIOODAbDlMG82w3e3gr9sdwR09FEb2d84p6AU8B6Kgbxcc3bdN6J+qx3wkg9BX49nePJHacnm83m9jtXFkNLS4sMuk81lnvknj5NMYKp6FaVsT9p4XA7/uzMzEy3AVVhWVRXV99y8FbVnKcz7ukyr9tdmK7GpL+eK1/9dJmVntQMIE8Ba1f3u9vzNp1Nol7LU1xB/e2K1LnyNNeu7g2T72mq+VKz4qZD4nlEPGyqsXxS9HErRLdznztdS582oXFL1pq7HNf/TD+u6hymmzct6g5uJb/6VvPyp1vboK8NuNtjEed4qrcQf1+/ft3leKfK/Z/OfW/1vLt9/O3k0ruah6qqKu3q1atT1qNcv37d5fOr73u6Y3T3zt1d607qBtytgY+D7kbtznSuPdUz6e9/J8//aa+D0TTPdQ5/dMZ+N37cFcG5Y2zq/2VlZVpJSYlWVlZ211+iuP6pU6c8MnKxaHft2uWRYejPud2FN9UGdFXIdjfobhS73Y3ivdspvHN1jmA0V69e9Xiuu789CV9XdP36daf1dLvjng59XGtgqnvq7383BcRUz/RxCKhbUab+GELkv6xwUMnTZrwdDXy6pL+2pyrhW92IH+diupvXvlVrw9O7uhvWx+1YP67WyHQ0UXdjcDeu6VohtzLu2z32j63xfhz3v533dKfXnM4a+WNZGZ6Ew590zAGc6wBc+QZFvv50fHHT8R+6ykzSVzJbrVaXGTu3mr3xSaV/3um1bjVO4eldTce/O5VvX8RaRGaaeqyrhAM1y0ofpL7V+IX+eab7fGqcQF1PU8UJpvse3c3TndCd+tunuydvNfZ1p/fU33+qanN98N/dfe+0kPVu05+ccPDEGO5ksU8n2Gm326murvYYGExMTKSrq4vo6GinjB2Vibq79t0gd4xP/d/TOG7lHmowd7pB6KmuOVVRlV4IeSrwU4HUxLsrLy93SjjQB4fVwrjpCvW7lbIr1on4qa6udingbie4fKtjnCoD65PI4nE3B58kTTVv+uD/VNe6HfrY5tqdSfGf6Ue4lT7OoNZ0rvX+++9r7777rkufsD4Q7Op6noLAd8P/q5+fqXzptzN34txbucZU7pXpmtzu5lX9XI3/6OdTfK6PIdyt9TSVa2mq51RjZO6ewdN9pgMmOJ1xT9ftN5Ub5W7szelc55Nw1fxndcHxXynm8MdeCJ4W61S+b0/n3kqWhSearl/5dpmIKsSmKximCszeCSMR17969apkrlevXtVOnTqlvfvuuy4Fo6vEADGG6SofrmJNrpQDT9dzdW0RlNaPZzqKg3pf9Rq34wu/k3Uo7u8psH6n+/hWFYs7ue8fK15wN8iTcPiTcyvd7aIq/XlTmXCu3AzCDeAKxkGNPwj3hSuaCszuVvz5nkgd661cV+9CUu91K+4MvftIdevcDhmNRqKjozl8+DB2u520tDS6urqIj493OT4BlujqXYGza0nvwlJ/V1dXc+LEiZvcW4CT20r/TvXPrXcZmUwm0tLSnK5pt9unVeegg03w6JaZTqxuqnt4GkdWVhaZmZl3vJ5d0XRqVKY6T/w/HfJUdS/eyVTu6E8luZMa/5l+ptvP4XbdM7dqkuu1w1OnTrlMlVVdMNO5rqdjbkW7dqdVudLopqsl30qWza1e5264dfQ1JOrPVP0nXN3XlZWkntPZ2am99tprN73b999/XyspKZmWJehunK5cl1OtaVeWjKvP3T3/rdBUlsidXuPjPP9OLA79HhdW6HRqYf5YVgf/ldxKU9Ht+sJvZZHohcF0XU1T3cPV2G91MevdG64YgzvB4GmBe/r8+vXrck5cbRT1/KkKw6bj4rgVISTGd6vuHVfPLMZ+9epV7W//9m+1vr4+l/ebyqWjCgJ9nYyYy+kIA/Xvd955Z9r1EZ6eeTrnTYcRftJCYjr74k7uLfa9uzVxNwTmx0H3hIM2Pb++/vg7Ccre6nn6++l/660MV59N59kEg/G0UVVN1Z2wUI/VWxriR9VwVSastyKE4JhuPvhU8+YqIK5nlu7mYDpatCstUX/cdILanp7X1XpVn22qOdKP5bXXXpNjmu460f++3QQD/Xfu1vpUz3Gr5G4t3M597vS5P2663Xv/yQuH9PR0jxMw3UXi6jxXf0/3XrdKrgTBqVOnpLbtyvWhauJTaWaCqbli2K6YwHQ2shAC4ljVQnCl4bq7pvrs6n1uRdjp59HVM7iaA/2cuhPQ6jXdnT+dsar3utV14g6Kw9W91PuogkFFBHCnHLgTsHeLAeqVA0+M+07u6e4Z3Y3H3Xe3YnVNdb27TXciRP/khUN8fPwtaUKeFqK7z29l8u9WKqjqX3ZlnnpiXq5iHOpGUZmmKwbu6n9X86DfOKrA8YQV5U54qUxJhadw9ywitXO66cPqua7IlYBWzxHvwpWQc3ct8XdJSYnLOMR0SS+UpmJ6ro4Rcybm1F08zN3autv+cXdrVXznai25Os7Td3c6Zk9jdDWOW73n3ZjP273Gn7xwmMpyEORpQ9/KRp/uvW7FL6yOQdUOVa3YnW/cnWbrzgXljmnqx+XpO3FNd5qn3nV0qy4J1X//2muvydx+/fU8MUn1Hdyq1qdaZerc6XG4bkWhmM54pmJ0qsYvLCB3tQ76dF1X62gqAaNebzrHTrVmPJ3jSukoKSnxGKfSz/Pt3P9Wxujp+9upI/k4BO6t0H8p4eBuo7hiKK6Oux1ydZ6rfHn1vp6ElLu/XWnjeheJmveudzepzG4qpiZcWu6Ou379+k1MWx2TXpt3xwBc3V+vLV6/fl0Gd9X7eyJVK74dS04veNSxuGMA0/nfnVvIneLiSREQ1qW7Z1PfoacYjKtn1/+vX2eujnE1/qnWkXq+q5iaKgw9jUe9xq0w5ts5b6rrfVLn3Q0CarQ/ZeEg3EruGLJeKNyJ20e9rv76etKPw1UW01TneGKmesalP8bV357S6vTXncqUduXrV8fkarye4iOqtjg4OCi/Hxwc1B577DGtr6/vlt6fnsG7O0Y/V+J/IVhcCRm9IHalOeqZpHAr6d1k+uu6my+9e9GdsqOfU1eM19Uz66+rnx91HPp17G787ooNXY1hqqwx/Xnuxj8duhVheavXvhv0Sdzr/fff14AW7U9ZOKSnp7tklOokiN/qRle/c3eOu+9ux5T1xKQ0zdnacLUJXY3B1YZyp1W7YxKuxjvVWF0dq7o5psrCUc/TZ9a888470i8u5uIPf/iDVlJSclMMZqrnmGoswqLSX1PMv5756pml/p2p54p1ps67PrlAHYOr51B/611aV69elXPkLuA+nXl3xdTVsbkSdNMRNOJzd5aq/t27Gud07uGJXJ2jxrKmOt7VXHzc9Ene60/ecli0aJFHRqqSfqNPN/5wKwt1Oi/X3XeeLAd319BvXFfWk6dzXAk7TzEJ/RhcMRlPPQ70zyrOEW4E4WdWA7hqfMPd87h7Dk9uNGEZHD169CZhoD6Dp/lyZyWJa+u/1wssdxlj+piO+vf169e1l19+WXvuuee0o0ePulw3UykVqjDRx3TUserPuZX+J66ur97Dk1BxtyZdHTuda6ifuYtjuLqnmuk13XvfKX0SgkHTtD/9mEN8fLxHBqDSdJm8q0VzK2mHnsZyK+bz7ZA7t5r+M3f+c5W5TGec+nlxJaD0dPXqVVk9qjIpVStVtU53abF668nV+3W16fXPqf6UlZVp77zzjpMLyJV/ezpKhlp8ph7v6ln0TPndd9+VVpSruRSWiLvndhe0F4JXFTTC9ePKChGCUsy1u/FMJYCnM1+38r+na3k6R6+UeFrfYp26e96Pcx9/EuRJOPxJYCv5+fk54dy7o1vBrNfj3SQmJtLS0jItrBRxjjvYZFfN3fV9qaeC1vZEam9gVz2sBd5QQ0ODxNVxh2Wkxz0S86fOg4Aeh0ksGT0+katn6erqYt26dbS2tspndzgcAHKeRb9pgNHRURoaGm7C79fDgXvqhWA0GrHZbJw5c0b+rq6uvun4rKwsVqxYwcaNG+nq6sJut6Np2k1YSurcifdps9mcxuft7U1qaiqAxNI6c+YMNTU1N82LHird4XDg5eVFQkKCfHZBYp7NZrPTueo7TkxMBCaxnEpLS6mursZqtVJbW0tra6sTjpYYe0NDA9HR0XIeBQZTa2sriYmJEttJD0HtCQ/JaDSSmprqEu7c0/nTwXOaDmS2uL747Qoq393+MpvNbNq0ySXktitcsKl6O/xnoj8J4aDi8nui6YJwuVvgqoDQM0lX13DX4MXVGCaFuPO5KgO+1UWnBx9T/xfMOTU1lbS0tJsEoQBzc7VZ9UBvesarfu6uyY84JyQkhKysLMk4vLy85DzX19c7nTNjxgwnJqsHKpwKwE2Mr76+nvHxcQn+Jq4pgPKEsBCCSQgfAdgnhIDdbpfrTjAcq9XKvn37qKiokGMXzyQEcldXFwkJCXh7ezuNVb++6uvrAUhNTcVkMjkJRavV6gS0ZzQaCQsLcxL2YkwA8fHxeHl5ERkZSWNjI97e3mzevBmj0ciZM2fkfdra2hgbG5OCw2g0SnA8g8Egn1tVBlRyta7t9smmSnrhpidP4HWuaDoKnnqsOyA+vfLkap956sXgau98HGCCfxRyZ1L8Z/q5FWwlldyZqZ6gEVRT1JPJ6e76+uu5O9aVX3o613LlHtL/La7nyd2iT33Vk7uApLiup5RPd+N35/Zw9VzuruvOFSHe6+Dg4E2BYvEuBSCeeA53QV0RwHYVk1CfW/Xri/fZ2dnp8RnUexw5ckSOVXUviXur91FdYOr8v//+ZIzgnXfe0d599135jOIYfQaUer7+M1fP6Oodunom/fU8pfK6i+G4up+7Y/TkLgY2XdfVVNef6ntX8/JpIP7U3Uq3Q+4gkeFmS8RV1y+hfa9fv15qdlPdz9X11M9UUl0lqrbmyRJx9UyutGy73U5DQwOAkztEr12ZzWapzephjNXxCheNOLeiooJ9+/a5PFb/DEKjVl0bBw8evOm9uHMp6OfYk2vC4XDQ09NDVFSU1KoXLlyIzWajtbVVHi/mZ3R01GnM6viGh4dpbGy86RmFe1No91arlerqaiorKzGbzfzgBz+gv79f3kfvThSf19bW0t3dTUJCAkajEV9fX/n3xMSEfLfi3PDwcDkG/fx7e3uTnp5OZmYmOTk5GI1GysvLaWhoID4+3smNJ+5/4MABLBaLhPQW60O4no4fP34TrDcgu+nprWpxD2GZqWtWdWUmJiZSU1PjBCOunydX+8dTG1rxzvQuYf11Xa0z9bmnst49deCbDuz8rfCQOzlmuvRfVjjomar6Al3hzOsZnIgbmM1mt4JGdeOof7tjdq7GqI4VcIm9L55Bb5qL/131gtA0TT6HzWa7KQ6iMjvVlSLaoKo+7oaGBq5evSrHlZOTw5YtW256HuFiUFupWq1Wp41rMpnYsmULK1eulOeox+tdbnpy5ctWx5Wamkp3d7f0x9tsNvbu3UtUVJRknEajUfZ7EGMWriKj0ciWLVtIT0/Hy8vrpucTv7u6usjLy6O/v5/Zs2dz7tw5jEYjjz76KAMDA/LY4eFhp/PEj7e3N2FhYVLYJCQk0NXVJee8ra1NPkN9fT0Gg0G6bnJycigoKHB6lsbGRqf4isPhIDU1FbPZTEhIiHTjibGsX7+enp4eUlNTSUhIkPczmUxERkZSVlbm9A7EvYSL0GazsW/fPnmMeC/ah+5TVZkR34vPvb29b3J3ivP0wlgIIU99mo1GIzExMS4VKPW6rvawuO5UbW49uZRcxSbUe7i7v0rTcUvdbdeVR+FgMBhyDAbDPxsMhgaDwXDFYDD0GwyGIwaD4S8NBkPAXRnBXSDxgm+FxEbXL1DVOnB3njhW9UW6Cvqq11M1q6l63uq/U4WJCNqqx3kSRHpmL/7Oyspy8qm7W9hi46mbSfWPA0RGRlJeXs7JkyedGJC+AY3RaCQtLY3U1FQplFpbW5k3b568twi06p9DBHDFvfU+bNE0SdVY7XY75eXlHD9+3CkOIOawurqaqqoqOjs7OXv2rNN8trW1MTExIRmzfp6LioqkJi/uKbRQMUaLxUJISAhlZWWsWrWKI0eOkJubK5v12Gw2SktLqayslNZXRUUF9fX1xMXFcfnyZfn8ou94Q0ODZMJintLS0sjOziY1NZWamhosFgsHDhygvLwci8VCQ0MDIyMjOBwO7HY7VqtVCpquri5eeeUVrl27ht1ul1aHzWZjaGhIzoU61yEhITz99NNSMRLPIt6xGFtMTAyAk9aclZXlUukR78NutzsFr8V8ZmVl3cT8hOAWQXR3sQGj0UhGRobci6oQEeNxx9yFYBDX8UR6pcTVd6q1oj6Pflyurj1VvHQ6x9wKuRUOBoPhLWAH8DawDpgDJALfBnyAPxgMhvV3ZRR3SGNjYzdpkqoWpCf9S5luIEzVfF1dyx1jFn8bjZMBPnWDqAtdfz31nuL5hLbq7hmEpgPcpEV4Mp/dHd/S0uLk9hFjVy2KkJAQvvnNb7J8+XJpdRmNRjZt2nTTfVtaWpwsmrS0NPz9/QFkQNtqtTppbKmpqXh5eTkJXlUhsNlsHD58mLCwMGpqapw0VofDQXd3N6Ojo9TU1FBZWSkFXGZmJsuXL+fhhx/G29tbas+Cwfn6+joxR9XdtmnTJskcS0tLqampkW4o+MjislgsrF+/XmYVATJwbDKZ+OY3v8mKFSukEMrIyCAtLQ2z2cyWLVskY1LfQUpKCiaTCavVyp49e6isrJQM58yZM+zevRuHw0FkZCSHDh3i2rVr9Pf3MzY2xsmTJzl06BCBgYHs3LmTV199laysLJYvX47JZCIjI4OCggIOHjzI3r17KSsrIzU1ldTUVOrr66Xl0t/fLy3I/v5++d4EswbIyMiQigfgMjNMdddMTExQU1NDdXW1k4Uq3rsr6zYrK4vQ0FAZRFdJv+7EvlSTStyREJSqEuKKn7j7zJMGr1pPetexp25+t+JtuCvkLhgBBLn77laO+SR+0tLSbqo6nQqqQh+o1VeVegoAewoe6wNunoJnagDOHfSCCCiqGDlTBWTdBaf1xT8qdo2767mrMNYH7l09syvQPFeBbDVYKIKqakBVP241GCvOVQuV1O/V/9VgtPq8aiW2PmivaZo2ODjoEhlXXPu111676RhxvhqMHhwclP/ra1FKSkq0l19+WTty5IhWUlKiHT16VI7nnXfe0X7xi19o7777rlMwXBTvib/7+vq0n/70p9rXv/517fTp09r777+vHTlyRBscHJSV5++++67W2dmp/eEPf9Cee+45rbm5WY5HrWG4fv261tnZKf/X11yoc/faa69JaBP9HlAD/Pr6iMHBwZv6TLgr/FOD2ipdvXpVe/7557UjR454DJLrkwPU96g/Xl3f+nU4ncC4unZckbvAtKdqfk90K8fr9zoeAtIGbRouGYPBEA7EaJp2zGAw+AJemqZdv3si6s4oMzNTKykpoaWlxckKsNvtTi4KV/7oM2fOOPk3hb90z549bNu2TZ6vP08vofWWgriWq+PV8YjjVDcX4DRe1RKprq5G0zQn60Ml4QZyZV6qvlmY1GAnJibIyclxmit1PK6eR3xWXV0tLQX1GNXFINxEqv9ejF3k3J87d46NGzdiMpmoqKgAPnJfZWZmOs2RzWbjpZde4plnngHgpZdeYseOHVgslpt88OLcM2fOkJCQwOHDh6UWL95BWFgYhYWFxMTEkJKSQmtrKwkJCZhMJvl9UVER69ato7+/X6ajJiYmUllZKQPFYu7E3AtrZv369dIl1NraisPhkAHlFStWYLPZMJvNWCwWmpqaZMrpkSNHZLppdXU18fHxctyVlZX4+fnJNFxhRRw+fJh169ZhtVp58cUXefbZZykuLubGjRts27aN9vZ24uLiKCwsZN68ecTExHDp0iWuXr3KxYsXCQsLw2Aw4O3tTXJysnxeo9FITU0NKSkpADQ2Nso1YzQaKS0tZWJigoCAAOlSAqT7Sjx7VFQUPT09ZGZmYrfb2bNnD+Hh4axevVquK3V9iDUrtHexHvTr2mq1uqxzEmvyzJkz0pWoaRoGg0FaNfrjXbmG1L0qaKq9UVdX5+SSmi65s+o9He+Kt3k6VriEFy5cyP3331+jaVqmq+OnFA4Gg+EJ4C8As6ZpUQaDIQb4paZpqz2e+AlSZmampmYd6CdAz+wE2Ww2ampq8Pb2dmJyIkj52GOPYTQab2LUnl6GngGKz9wJEz0TFtcWzFr9XO+T1J+vD8y5Gx9MmvjCt2u3T2anqAywra3NaU6EEFUFiD4+IJji/v37iY6OxtvbG03TWLp0KUajEYvFIoOcVquVo0ePMm/ePJKSkiRzr6+vl8xWPKOerFardNOIa0ZGRtLd3Y3D4SAjI8Np/sSzis/ENS0Wy00McGxsjL6+PrZt2+bk6xfPKTJ8jEYje/bsYfPmzZhMJikoxdzU1dUREhJCWFiYk3vBZrNRW1tLU1MTBQUF7N69m+3bt1NSUkJBQQEA3d3dXL16FX9/fwwGA2NjY5Lx1tTUoGmaZMJCgIlnEs/X0tLCe++9x8yZM/nnf/5nCgoK8PPzIycnB5vNxrvvvktAQACxsbEcOXKE/Px8Ojo6GBsbo6WlBR8fH7Zs2UJTU5NcNzNmzGBiYoK2tjY2bdrEoUOH2Lx5M3a7ncLCQlatWoXVapXrr66uTgqG8fFxKRSFMKioqCAlJUWONywsTAoPse6EYBTr2ZPC5WmPqe+goqKCGTNmuBQ06h7RKz1iH6iKB+CSH3hS0m6FpiMsbkWg6PmOwWBwKxymk630l8Ay4BqApmmdwOxpjeQTIqEViAlyFWR1tXBaWlrIyMi4aTGqDEAfKPIU9BELSU2FdZUCJ9IGBVNVNW2h/apBYPG5CAADLrOGPMUbxPjEfYVmLuIH69evl4xSTdFU51j4nMU91UpTIdBaW1uJjo4mPT1dbnyYZOivvPIKs2fPprKykldffZVVq1bh6+vL+fPnnapvu7q65HO78tsKDdput2M2mxkbG6O9vZ2EhAQZmzh48KC0QoS/vLGxUSYDWCwWioqKJOM3GieL8JYsWSID0KpgUP3iwqcujrPZbE7ZXzAZIzh69CgWi0W+L6vVSmNjI8nJyTgcDs6fP8+OHTu4dOkSs2fPpqmpiQMHDhAVFQVMZs1lZGRIwQCTaanx8fFyjsLCwnjxxRd5/vnnKSsr48yZM1itVsrLy7l69SpdXV14eXkRExMjs7GsViu///3vqayspKOjQ6bBXrlyRRbn3bhxA7vdTlNTE2NjY8yYMYOUlBTS09OJj4+XxwhBt3btWkpKSmTmkxib2WwmKyuL9PR0uru76e7ulmsmIyODmpoaampqCAkJoaioiMjISKe9JeIQYs6F8qYmGLjy8es/q6+vp6amBnAuqNSTEADq/hIkYhyqRQqui/+mym6aDk0Vu1DHNdV19MdOZ1zTsRyqNE1bYjAYzmqatshgMHgBtZqmuZ7dPwLNnTtXa2pqkptYddd4InfahqCpLAV3Wr96rtBahRYrUvxEsFHVMACpgepJ73o6ceIEOTk5AFLrEtq06irTj091i+hhNvRWhRifWschjtVbDup5dvtH2T6q+d7V1SU1S5vNRkhIiJNLQD8OcK+VNTQ0oGkaCQkJVFZWMmPGDDkfggGqVoLqmlMtJZPJRENDw01zLq4h5koIvoSEBGpra6VLaP/+/QBs2LCBkJAQp7EXFRVx8eJFNm/ezMmTJ+nt7QVgy5YtUusW81dfX09UVBSHDh1izZo1/MM//AMvvPACZrNZWkri/TU2NjoJ3v7+fn75y1+yevVqli9fLp9XaP1DQ0MMDw9La+jgwYNkZmZy5coVUlJSOHv2LFVVVZSXl/Od73yHjo4OhoeHCQwMxGKxkJGRQUZGBm1tbYyMjODt7S2tgKSkJI4ePcrGjRupqqrCz88PgLi4OF5++WWefvppQkJC5Ps3m81ynVqtVvbv309YWBgzZsxgwYIFWCwWpz0kBKrINqqurmZ0dJTu7m62bdsm1+JUrl5RdS6ynoRl42kfuLquekxFRYWTS1Z/T3d0O5r+7dJUno47tRxOGAyG5wFfg8HwWeC3wL/f9mg/BgoODsZsNksNFm7GmlFJZRR60puv7iwFvVRXj1OPFRq6en2R4gc3axiqsK6oqKC8vFxqMSqja29vp7q6GqNxEjrhlVdeccrQEXNgtVrl9YS7SI8DpGY9GY1GqVXp4TAEUxXzJyAjxPli7F1dXURGRkroCKHtlZSUSBdOf38/FouFw4cPy+uJ8QqhCq7rFurr64mMjCQtLY3Gxkb6+/uJi4tzYhRCEIlz4KNCLGEpmc3mm1JihaYoBFxISAgNDQ3U1NTIeRVpoCaTiW3btrF582aZvaNag/7+/kRHRwPQ29vL/PnzSU5OxmQyScEgrJuEhARCQkLYtm0bISEhfOlLX8JkMlFaWspLL73k5K45e/YsZWVl7Ny5k507d9LX1yetgrKyMn70ox9RW1srYwdz5sxh5syZMnV49uzZDA8PYzAYJGTGjBkzyM/PZ/fu3ezdu5fIyEj27t3LjRs3pIAPDQ2lr6+PiIgI+vr6uHbtGgMDAzJe5O3tzYIFC8jIyMBsNpObmysthbq6On7wgx9QVlYm33FbWxubN29mxYoVTExMMDAwIC3fioqKm4oTYdKaWrlypRQM6tpVFRj1HLHP0tLS5Lq12WxOBZ76IlB1/+stFLHPvL29nfaIO03fk0UzFbmznqdLnjwdU9F0LIfPAP8dWAsYmExt3alNJ5J9B2QwGNYB/xe478P7/djdsQkJCVp9ff1N2qUamFQZq+o3dOfD9ESurAu9xqEeq9dA3PkjBZMUGnt9fb3Middrt6WlpWRnZzsF/1S/eGZmJlarlaKiItavXy+DoZqmkZmZSU1NDZ2dnWzcuNFJINrtk6mZIkis/07VktQYh2pBiE0trJfS0lLS09NlIFNohEITF24ii8XC0aNHiYiIwMvLS8Yq1Hm02WxUVlZy7tw5tmzZIj/r6uqS82mz2bBYLOzatYvHH38cq9XKwoULneajoaGBpUuX3vRO1fdx4sQJ+vr6KCgokLESo9FIUVER/v7+GI0fBUhVayYqKkq66MS4d+/eTVxcHIsWLaKtrQ2jcbI4be/evYSFhUkLw2icjH1kZGTIuaytrcVoNErme/DgQWJjY+X7dDgc9Pb2EhsbK91CixYtwmg00tjYyLx583j++edZvHgx27Zto62tTSoAQuD7+vrS1tZGdnY2YWFh0jU0Y8YMli1bRkdHB21tbQQFBREUFMTcuXPZuXMnTz31lLSYXn/9dS5dukRubi6PPPKIFM42m40f/OAHPPHEE4yMjHDhwgU2btxITU2N1LzFWhDr7ODBg7KQUnzmaq2ppI81qucCct9HRkZSVFQkU61dWRHqulDjfWIc6vWFoiCeVbUi1ONd8RpX/MHV/e9m/YJKniyHaWUrfdJkMBjuAzqAzwLngTPAlzRNa3F1fEZGhib8iYJc+dncMXFXLiE9qeeqwkVdtPX19TgcDskA1XP1L9jVGEQmUlpamtNGsFqtkuGr99IHvdXzAVmjYDabnSwP8RxWq5X29nbGxsbw9/eXzLy8vJzQ0FCsVithYWFOWTruKj0FqQir2dnZ2O12XnjhBdasWUN6eroUBCKDRLiCKioqaG1tJT8/X7oh1HelbnyhXYIzAq34/etf/xqAwMBAbty4ITVbEdwE2L9/P5s3b5aZQgcOHMDLy4vNmzfLYLy4pngHYh737NnDhg0bpHtECEzBDISL6OzZsxQXF5OXlyfnWGQDCTfJ8ePH8fb2ZmxsDG9vb7y9vWlqamLLli1yTBs2bODs2bNMTEzQ399PVFQUSUlJMoDc0dEBTLp4vLy8SElJobCwkLlz59Lf38+KFSv4zW9+w9KlS1m+fDmVlZVMTEzQ3t5OZGQko6Oj1NfX84UvfIGEhARaWlowmUwcOHCA2tpaQkJC+OxnP4u3tzcNDQ14eXkREREhEwpmzZrF/Pnz8fPzIzw8nNLSUvLz83nppZdkvUVISAh+fn54e3uzZMkSAF5//XWSkpK4cOECa9eupaOjg6amJhYtWiRrOYSrUqzlrq4uwsLCaG9vl4i3Ym+oipXK8PVZjOp+no4bWgh+4SZVlSX9HlavJ/iE6lZW769f155imR+HYLDb7R6zlaZ0KxkMhgKDwXDWYDBYDQbDNYPBcN1gMFy76yN1psVAl6ZpPZqm2YF9wOc9jNHpf/GSXH2mMklBRqPxpkCuO1PQaHQOStXU1DgFU11BKojr6++r3ktoofrKZQEvIVwa6r307qrU1FSysrKAjwqGBDMWAT31nO7ubsbGxuju7pZ4QzabDYfDwbFjx2SQMCwsTG5K/UYQvlcRnMvMzJRFaw0NDbLQKz09XbpjYLIyVYWryMjIYO7cuZw/f95JEIt7qBAGYqMJ/B/xroRgSklJYdOmTcyfP5+CggLJ1MVxra2thIeH09raitVq5dChQ4SEhJCfn4/JZGJiYsJpzgQ2j8ViwWicxIJqb2+XFc579uxxWlfj4+PSP798+XKSkpJ47733SElJwc/PT7pp7HY7/v7+JCcn4+fnR3d3N7Gxsdy4cQOY9Ntv2LABk8lEX18fdrud+Ph4kpKSpDvO29ubpKQktm3bxpIlS+R8bty4kTVr1rBmzRp27txJe3s7SUlJwKQ7xG63Mzw8TEdHB0ajke3bt3Po0CEZCzp69Cjnzp0jMjKS0NBQJiYmWLhwIRaLhWvXrtHZ2cm1a9dobGzE4XDw7rvvMjIyQl9fH+Hh4ZhMJvLz8/mf//N/smPHDlJTUykpKaG5uRm7fbLivbe3l0WLFrFx40appIjnFu9MuGVF8WF0dDSHDh1idHRUWnKapkkrVljc8JFLUuxt8X7OnDkj52k68UlRiKmuCaHgqIFx9Z4qn3Bnjaj72ZNlcKeuJXFPN2NwC2k9nZjDS8BXgFmapvlrmvaApmn+tz/MadE8YED5//yHn0kyGAx/YTAYqg0GQ/WVK1ecTlZfusrUVUhkPeCWCsSmnqdeT9W8xXnCJwqTi0ivzdfV1WGxWG6COXY1RvXaqu9848aNZGdn09DQIOMPeiwcNXtItToEqdW7qpBbvnw5KSkpEmSvq6uL5ORkmU66adMmmZJZVFTklFklhIXoOSDGLuDAhcvFZDLJzJ/6+nonWGyVLl++TGhoKA0NDZIRh4WFOVWqinNMJhO5ubkUFhZy7Ngx7Ha7hJuOi4vDZDKhaRrt7e1YLBb279/PpUuXpLtr9erVMjU3PDyc8+fPc/jwYWw2m8x4EsxAaKSFhYXYbDbS09MBJKMQcQXB9Ly9vQkNDeXQoUNMTEzQ09PDxo0bCQkJkZaLeIcPPvgg3d3dMrvLbp8MJJeUlMjqbrvdTn5+PhaLhYiICDo6OnA4HMTGxgLI9NLGxkZGRkbYvXs3VVVV2O12Ll26xDe/+U3+8R//kZCQEFpaWliwYAHj4+NYrVaCgoIks0xOTubUqVMcPHiQoKAgrl+/Tk9PD0FBQRQWFnL+/HmCgoIYGRlh5syZDA0NMWfOHAoLC7l27RptbW1UVlZy9epVWltbCQoK4tixY/T397N7927S09NJSkqivb2dBQsWOFW9Nzc3S7dZT0+PfGfz58+XzFa4qcLDwyWEuNE4WVku+k0YjUbGx8flmqqurpZAfkJBUJVJYXGL961XCtX9KrKcxH2FMijO0yukauxC/7nY+/reEq7urSpJt0OuzlfG4NZ1NB3hMAA0fdwxBh25kmZO99c07VeapmVqmpYZHBzsdKCYbD1TVyW0yLaAm4PJ+vP0PkJ1IahMUVxL/VswVbWBikp6IaHHIhIak9BexDVEExaRuijMbldaiM1mk5quKrAE41Y1+MTERLq7u4mLi+Pw4cPymfv7+yUCLXyUmmqz2UhLS6O1tVVqz8L8d/UcaWlpxMfH3yTYTCYTGzdu5Pz583R0dPDSSy/R39/PoUOHaG5uvinF0WazScyi/v5+7HY7fn5+MuOnsrJS+tXb29sJDg6mvLycqKgo+QxiY65evZrt27dLoSKeR8BGVFVVUVdXR2ZmJm1tbdTW1hIXF0dqaiorVqwgPT2dhoYGqekKYZuZmcmyZcvk3Ir6mZ07d1JZWYnFYuHVV1/l2rVr0nqyWq0899xz0oKKiori4MGDNDc3Mzw8TGFhIWNjY4SGhlJYWEhNTQ0dHR2kpqZKy+TGjRt0d3dLKxBgYGAAm81GWFgYhw8f5vTp0yQmJvLggw9Kq+HUqVMUFxdz9epVbDYbnZ2dhIeHExwcTG5uLq+88gqAdAVu2rSJ8PBwNm3aRH5+vmS0wtL98Y9/zMWLFzly5AgLFy4kNDTUCW9p5syZHD58mKqqKry8vFi0aBGBgYHEx8fT1NTE8PAwR44cwWq1YrFY+Lu/+zt2797NxMSEfD7h8hE9OoRCpVrjGRkZJCQkyHRWNd5SX1/P2NjYTZaAnqGKa6kKlxBMYh2ptVBTkZ7PqPdzde+p3LlT3cuVZTKVq2o6wuGbwBGDwfAtg8Hw1+LnlkZ363QemK/8HwpcnM6JqvsIbp4A8b/e/aOPEeivpxcKwr2hjy/ox9LT03MTto7+uuL+0dHRLi0MQSaTSS5QoZWPj4/L2gKxKcDZZVVbW4vD4aC2tha73S6zm9RsHnU8BoMBs9lMXl6e0yIWzyCqep966in5mcPhoKamRgaHhTatkig63Lt3L7/+9a8pLy93grY2m83Mnj2bt99+m4UfNgPavHkzkZGRtLW1SWYgNPlNmzYRFhYmrZzMzEzMZrOsEzCZTMTFxUm8Iv3mErEbV3PtcDhobGwEICAggB07dlBdXS3rEfbs2cPevXux2Wy0tbUxOjpKY2Mj4+PjlJWV0djYKN04wi8u3ELJycnExsbi7+9PXl4eixYtQiRUJCYmcuXKFQYGBujt7cVkMrFq1SqWLFnC/fffT1BQEN7e3gQGBjJ//nw++OADvLy8ZBKAgOZev369dG3t2bOHgYEB9u/fT2NjI+vWrWPHjh0cO3aMU6dO0draipeXF1u3buUv//IvsVqtDA8P8+STT/L+++9Lwf/888+zaNEiOe7Ozk6GhoYoLS3l+vXrjI6OkpKSQmpqKhUVFURERBATE4PD4SAgIIDAwEB27dqFn58fVVVV8h2uXr1aYlUJpU3UZmzYsIHW1lZOnTrF1atXKSgoIC8vj/j4+JuyyASJGiVB9fX1tLW1OTVZEvs4LS0Nb29vyegFX1CVNlfrQwhCsfdU7KZbzUZS7+dKOVWP83R9T/e8nZjFdITDD4AxJsH2HlB+Pk46A8QYDIYFBoPBCGwBDk/nRNV95G6yhEvFlSQWL13tT+DqpQlpP5WmMDo66jYYtfDDwjHhKtJ3GnN1jvoMAL6+vhKoTR2bGuPQNI0tW7bIOIDZbOaZZ56Rfl0BVCfcSvHx8dhsNl599VVKS0ud/OnieKvVKtM3W1paSElJkRsrMTGRtrY2qYXZbDbZGjMjI4PHHnuMrVu3snTpUplWKpj/hQsXSEtLY+3atfJZ+vv7uXbtGpWVlezZs4fS0lKnuRearBhnTk4OXl5eWK1WXnjhBd5++21KSkp4/PHH6e7uprS0VL5fg8Eg6xWEBtnS0kJcXJxkJKmpqYSEhBAeHs65c+eIi4tjwYIFREVFYTROxnpELcDExAQnT55EWLMiDXV0dJTa2lrS09OJjY3l4MGDGAwG6WYRiKlGo5GVK1fyrW99iy1btmCxWPjBD36A1Wrlgw8+4PTp09jtdtLT0/H29mZkZIS1a9dy+PBhent7sdvtjIyM0NzcLN0rXV1ddHV1sWLFChwOh7QAgoKCGBoaoqOjg8DAQP7hH/6B06dPs2DBAqKjo/nsZz9LaGgoERERwGTxYWtrK8ePH6ehoYGZM2dit9t55JFH+OCDD2Qa7oYNG3A4HLS1tdHd3Q1MgmPu2rWL+fPnU19fz9NPP81Xv/pVWetSWFiI1WqV7rHIyEgqKyul+yYkJISf/OQn0pW5YsUKaRWkp6c7FSHqK5+F719Yc6p1LdyiwuLQx/L0jFhvSWRlZTn1PRH7Wm/luiLVra3uaf3f+n3vykK5U9eTK/Ka+hDMmqatvWt3nAZpmuYwGAz/H5Nps/cBr2ua1jzVee7cSVOdo88kUjNVpjpPzeJRSbw8EUhUBZHIKhK+UofD4aSp6Mck/tdnNQghp19cYpMI4SPy4JcuXSrHIjR+o9FIeHi4zNBRM4KeffZZjEajU2aU0WiUzEIN+Al3jLiviuLZ1tZGVFSUZBTimuL46OhoWSMhGKwKnxEXF4fBYCA7O5vY2Fi5CURKa0FBAU1NTRw7doxnnnkGk8mEw+GQm9LPz4+EhASGh4flOER/BOGqCw8PlyisYg4iIyOpqalheHiY4OBgFixYwKVLl0hOTpaVzJWVlcAkA87Pz8fX15fs7GyZsSOqtx0OB+3t7UxMTNDc3MzFixdZu3atTN2NjY2VdSupqak0NjZSX1+Pl5cXBQUFhISEkJmZyejoKDNmzMBoNBIQEMCaNWswmUxcunSJAwcOUFdXJ9fjsmXLSEpKorKykvb2doqLi8nNzZWM8Pnnn8dms9HX1yfdPTabjTVr1nDs2DG6uroYHBzEy8tLCi8fHx+ysrKwWCwsXryYiIgIoqOj6e/vp6ioCKvVSllZGQkJCVKIeXl5MXfuXN555x06OjqkYiKKNw8dOsTcuXMxGifTe0WB37x58+SYRI2CmgFUU1PDxMSEjC1lZGQ47UOx11RYE1ceArG2xX4R36l8RJ8BpRZuCreoK54j6iBEH2pVqdHzD08eCL3gUHmE+Oxup7tOx3I4ZjAYPlHhAKBp2hFN02I1TYvSNO0Hno79j//4Dyd3kj4wpCc1COXK7yeChXrYYFU6C6YotH34qAuW0JhNJpNTJbRYeJmZmdKvnZaWJjVf+EhT0fsY9VkN6iJWi3DgI+tJbAYV+lmFBbZarVJTFUxSQE0LaG2j0SjjG8q7kQ16hCASz6veNyEhgcbGRoaHh+np6SEhIUH2ZRBBQTGHwicMOPVXFr54Pz8/mbm1f/9+rFarZJzd3d0kJyeTk5NDe3s7lZWV1NXVUVhYyFNPPUVMTAy7d+9mcHBQCiphaQny9vYmMjKSgwcPynG1t7czMDBAWVkZ3t7e7Nq1S56bnJwsU0dFoZnwtT/00ENER0fT0dHBwMAADoeDRYsWsXDhQhYtWkRSUhLbt2/HZrOxdu1a0tPTOXLkCOPj4/I9OBwOvLy8iIuL46GHHgIgOzub5cuXy/nJyMggOTmZ/fv3c//997N06VKuX79OQEAAPj4+BAcHU1dXR0tLC319fcTHx1NWVsaDDz5IbW0tp0+fZteuXZSXl/PKK6/IgPOxY8e4du0a0dHRfP3rX2f9+vWMjIxw5swZIiMj8fHxka6xffv2SSiSwMBAxsfHycvLIysrS1qjDoeDffv2sWrVKp555hlZWBgSEkJ7ezvh4eH4+flRW1uLpmkSIj05OZmysjK+/vWv8/bbb7N//36ioqKcGjGJtOC4uDh5nrpfRSaTmtkmLNnjx4/LrnXic2EVq/tcfK4qDuJ4tf+FKxKuMxWDTOUfaiDdFZ9S+Y9KqjKpXvNu0nSK4K4DM4D3gQkmg8XaJ5CxNG1SgfdUd48rEpMsSt9dSXqh1erdR+J8vfahfme3f1SEpnfFRERE4OvrK9NNVa1GRfMUQkMIlX379hEeHs7KlStv0hr0Wo1YMGfOnJHFWGrmknADibiD0LT1WoiAjhDalPpMYtGqFpNeGxJ+eCEEsrOzAdi5c6csXtPXEzQ0NEgAPRXkr05BTxXgdGazWebAq42AFixYgMlkoqysTALy9ff3M2fOHPz8/JiYmODy5cuyU9revXtZv349R44cISoqCoPBQHp6OiaTiePHj/PWW2+xePFibDYbwcHBklEDHDx4kHnz5uHr68u1a9doaWmRQWqxHqqqqmT9QnBwMBcuXODUqVOMjo7y+OOPU1xczPr162WtgqgNqa2tJSIigpCQEKqrq2lqapKZTiK9c2JigurqagYHB1m9ejULPyz0u3jxIlarlTfffJMvfelLhIWF0dTURG1tLRkZGSQlJfGP//iPbN68mcTERA4dOsTKlSupqqpizpw51NXV0draKqu5fXx8JGJtQEAAZ86c4amnnuLSpUvMnz8fk8nEr371KzIyMggODqasrIywsDAaGhrIzs5mYmKCpKQkmpub8ff3l5AnPT09xMXFkZOTg9VqZWBgQCYMCOvVbreze/duCgoK6OzsBJBFdCqshqt9qdb5iFqW+Ph4vL29iYuL49ChQ1IwiWJCTdNkF0J1Xwt+oZJYf4KmAvp0xS9UZGP9cZ7qJNxd81a+gzuEz/gwdfUzmqb5foKprLdFrkxGlcSE2+32mwLS6jXUNDn9dae6hxosVmnLli2sWLHCyT0jaiXUwi6BYCmyX0QWj1hwemtH3FNvbVy7dk3m76vxF6Hdq3EHoREJLUUf/wBnWA/hltLnj8NHlkBkZCQzZswgOTlZumtsNhv9/f3s2bOHsrIyJiYmZMVzZWUloaGhFBUV8eCDDzoF+IRwE60eRZGc2JhxcXESm+eVV16hrKyMgIAANm7cSEBAAFFRUTz00EP4+fnh6+vL2rVrKSws5N1336Wzs5Pm5mY2bNjAypUrSU5O5vDhw1itVpKSkoiNjSU/P5/Nmzfj5+fHr371K1544QVsNhsbN25k9erVsq7D4XDgcDg4efIkJ0+epLa2Fj8/P9LT0xkZGeE73/kOFy5c4L333iMjI4Nz587R0dHB/v37pavu7bffZvfu3VRWVrJz506sVivx8fHEx8cTGxuLl5cXOTk5ZGRkEBsbi8lk4tlnnyU3N5e9e/fyk5/8hODgYBmLio6OprKykuzsbMxmM6dPn2ZwcJDnnnuO3NxcTCYT/f39nDp1iry8PAAefPBBvv3tbxMdHc2CBQuYOXMmr732GhkZGQQGBjJ37lxZ59De3k5ZWRlXr15l3rx5lJWVceXKFcbGxvDy8iI2Npb29naMRiMXLlwgKiqK1tZWDAYDUVFRZGRkYLPZeOWVV5g5cyaFhYWAc6fFLVu2UFRUBEzG2ISCoO5poSCI/V1RUSFdNkJ5ElaepmmYzWa2bdvG8uXLycnJITMzU6LWiv2pJrUIwaBq8Sp4pYqG7Mn/r1r9gge4EgzCZSxiJJ7c3J4Ew53EIabVQ9pgMMw0GAyLDQbDCvFzW3f7GEl1s3hqxSkYv7t+COC6h/RU93Fn/gmTVn8ufJTOpvows7KyWLFihVMrTbFJRIcsd/dQP/f19WXu3LkMDAw4pdGK1D/RiUxU/JaWlkooByF8VGBAfbaP6nqzWq1YrVYqKiowGiezrrq7u4mPj5cVvQcPHuT06dPs2LGD2NhYiYckUD3r6uro7e0lLy+PY8eOSeiJffv2UVxcTE1NjUyvFR3HKisr+fWvf82hQ4cIDQ0lJCSElStX4uvrS0pKChaLhZSUFAICAjAajdKXbTabpeBYvXq19Fnb7ZMpu7m5uRw4cED2R1AB/BwOB9u3b+ff/u3fqK2txWazUVVVJesGRkZGaG9vp729HYB58+ZJd6DZbOaBBx5g3bp1LF26lOTkZJ577jm8vLwoKipiZGSEU6dOMWfOHCIiItixYwdHjhzhwIEDjIyMSLeVyPo6ePAgYWFhUlgCLFiwgH/913/lzTfflFXMNpuNc+fOER0dTXZ2NmNjY7z22mvs3r2bs2fPsnjxYoKCgjh8+DCnTp1i3bp1dHd3s3v3bhobG7n//vuJjo6mqqqKiYkJNm/eLF1bV69eJSAggM2bN3PlyhUCAwMZGhqira2Nc+fOSYUAkAWJooLfy8uL2tpazp49S1BQEBcvXmTu3LlyHff39/PCCy9IZW7JkiVkZmZy9uxZdu/eLTPE1Cwjh8OB1WqlpKQEu90uW6u2trZKPCuVQYsgsmDUaqq2qza3qltJ32JUjZN5chV5YtgqH1E9F67OcXcNlb+4ckNPl6bjVtoB/BWT6aR1QDZQoWla3rTv8jFTRkaG9otf/OIm3JWpzDpX3+mD0+6+F/+L+4hAlereEdcQvv19+/Yxd+5ciSAqtBNXRWtCa3ZV+g/ODUjEddTzBfMWgVfVPyk0fjFXpaWlMsgqAOyEua4G4MS4VJgOu93O/v37uXHjhkyHbGxsZGJiQrpXjEaj7FU8d+5cEhMTMRgMLF++XDJ9EVAEZJ8E4Q4Q5r9AHNXPvegNsWXLFux2u3RXqcfV19czPj6O3W6X8NMqyqpwJ4j6CZgsLrty5Qrh4eF4e3szNDTE7373O77+9a/z8ssv8/nPf56AgAAJkRETE0NJSQmrVq2SY//pT3/Kww8/TEBAAHV1dWRlZREbG8tLL73E4OAgP/nJT5yYSnFxsUQr/dnPfiazeUpLSxkeHiY3N5e6ujopwNLS0liyZImEI09KSmLOnDn84z/+I8899xzDw8OkpqZis9n43ve+R1RUFOHh4VRWVvL444/T19fHW2+9hZeXFyEhIURERLBmzRra29vx8/Ojv79fCoI5c+ZQVVVFXFwc4+PjXLhwgdLSUr70pS/xb//2bzzyyCOcO3dOYmOVl5ezcuVKifsk3Hy5ubkcPHiQgoIC2traMBgMspFQVVUV3d3dsreDw+Hga1/7mtO+/fWvf82NGzfYvHkzAwMD0k0Lk5hjfn5+zJ49m0uXLkm3jGCQwtUk4hOq9a6PPap9qfX73hPchdjTesasd03r+Y343x3Gk/4arniVq8/V59EHv+8IW8lgMDQCWUClpmkLDQZDPPBdTdP+m8cTP0HSd4JzFxNwRaokdfUi3R1bXV3N2NgYfn5+Tt3K1HuK48XLstlsMndeNVNdNTnRM39BQgjor61/BlVgqM+knqd2hBO+f7vdTmNjI15eXjfBfqvzYLc7A/Cpmk55eTkOh0P2Rhaa7sjICL6+vmRkZEjG3NraKje3KkxVYDwxb6ISWwgjh8PB5s2bOX/+PD09PWzYsMEpXiQsDyE0GhoauHr1qsT4EXEQkXEUGxtLc3Mzu3fv5nOf+xyhoaGEhoZy/vx52cGtqqqKwMBA6ebKyMigv79fQlFbLBaOHDlCcHAw7733HpmZmZSVlREYGMisWbNYsmQJZrOZrq4uqqurCQkJ4dq1a/j7+5OamkptbS1dXV0yays+Pp6f/exnlJaW8v3vf5+ioiI2btzI0NAQ//7v/05OTg5z5swhLi6Os2fPStwikTW0bt06zGYz//7v/87Pf/5zvvCFLxAWFsbY2JiscB4YGGDVqlW0tbVRXl4uBXhHRwcdHR2EhYVx/fp1zp07xxe/+EUWL17M66+/zsmTJ4mJiaGrq4vMzEzi4+MpLCxk4cKFZGRkEB4eLqve6+vraW1tZWRkhGeffRaTySTXplinYt2oOFPJycmYzWYJBrllyxasVivNzc03QZHAR13/VLeonuGLFG7R3U6FsNfXR504cULGIPTKmis+o1f21NiBJxeSu//Vz10xfXfxFv011FiqKnjuFLL7hqZpNz680P2aprUBcdM47xMjTdNcppLpzTFXZpnIMNJ3knN1rGruCT+zWk4vSLwwtRkITAZRc3JynALhiYmJ9PT0yE0iyJU/X7iPhA9VmI3wUaaU1Wq9CWIDcKrbEGZvQ0MD9fX1Ts/Q2tpKSkqKTDMVgkA/F2ocQ2jraixF4Prb7XbZvSw3N5eVK1fKtFeRpaTWUYj7CV9xRUWFLDYU9Rzbtm1j2bJlXLx4kcOHD+Pn5yezZkQA/MSJEwBERETI8Ync+aGhIZqamrDb7RKEbnh4mJdeeomkpCQ+97nPMTQ0RGhoKGVlZdLfn5SURG5uLkFBQbLlps1m49vf/jZ/+7d/y1tvvUVzczNz587lypUrrF27lrCwMIKCgnjzzTe5evUqtbW1Eh3WYrEwe/ZsSkpKuHbtGrW1tWRnZ7N582bGxsYYHR3Fbp9EqxVZOlu2bKGsrIzY2FhWr17N+fPnGR0d5ezZs7S3t3P06FF+9KMfYTQaWb9+Pd3d3VgsFgICAvjyl7+MUKK8vb0JCQkhKCiIVatWUVJSwvnz51m6dCk+Pj4s/LAIUdM0AgMD6ezsJDExkcWLF9Pe3o7JZOLRRx8lIiKCxx57jKysLIaHh/niF79IamoqExMTFBcXY7FYKCwspLS0lNTUVJ588kna2tqc1tLevXuxWCw4HA6JMyXiA6KWRmSm2e12jhw54oRwoGYoCuanunnEOhX1NyrzFEVsgrHv2bOHPXv2yP1YUlIi92V9fb08Vs9nhHtV7wUQrmIV3UAl/WeuhIf43F26/HTiCkbjR7FUHd0RttJ5g8EQCBwC3jEYDH9gmtXKnxSJ4iVXE6032VRmJxjZ0qVLpVR39RLEsaq/0ZVGrZLd7ozhovcjinQ6IWhSU1OlP13EFgSTF6SmxanjEtcwGAw0NjZKpiLub7fbb6oiFXAcek1CVFKL5z158qRT/EY1zQGnAjLxvR7qQ3Qva2trw2KxyHz+xMREqqqqePHFF7FYLNhsNk6cOEFhYaEsguvs7HSCSbDbJ9Fkf/nLX7Jjxw4ee+wxFi5cyCuvvEJ0dLS0gI4fP47VakXTNDknRqOR5cuXc/XqVeCjHseA01wNDw/jcDg4d+4ceXl5VFVV8Y1vfIMXX3yRuXPnMjw87GSdvP/++3zwwQeMj4/T3d1Nbm4u+fn5nDlzht27d+Pt7U1+fr6TUAoMDCQuLk762RcuXOjEuMbGxuQ7i4+P5+tf/zoAR48epbOzk46ODubMmSODvn5+foSGhtLV1cWMGTM4ePAgdruda9eu8fLLLzM2NkZBQYGsnu7t7eX8+fN4e3vzxhtvcOPGDZKSkli6dCmRkZFOUBK1tbWkpqby2c9+lt7eXgwGAwsWLJDNhFasWMGsWbOIi4tj5cqVMvAfFhbG+fPnKSgoYPXq1eTm5tLc3ExTU5MMINtsNnp6eti/fz9NTU3SsjYYDPT09Dj13m5qaqKhoYHw8HACAgJISUmReGMiRlVfX09paal8l+I5hPIniuWMxskgs0i3FvGybdu2yd7xZrOZp59+2gkFQLwjV/td7ZWiJ1dFuVMxdFeMX6/sqjzO3TngPviNB2ylW4LsNhgMK4EAoOhDtNRPBbmC7HZFeleMO1NM9RmCa/NRf5wri0WYsOJYVZMpLy+Xjc7VgjWBxCp+61NR9c+j3tdisWAymTh58iQBAQEyH1xAiYs4gqDy8vKbFo3wd4uuYS+++KJTNy/xLOo11XQ88dyqu0gUwvX19VFfX8/KlSud+ggvWLBAYgkJxiN6Sgs315kzZ4iJiWH58uV0dXUREhJCSEiI07tQn+Hs2bNomibjC1VVVTIFUgjnoqIi1q1bh9FopKqqiqSkJHp7e50A8EQW0uDgIAaDgQcffJCrV69y+vRpzGYzCQkJvPPOOzz00EP4+vpKjXf//v2cPn2a6OhoZs+eTWRkJIsXL5aYQTt37uTHP/4xISEhMiXz9ddfZ8GCBfj6+spAqQDXu3jxIuHh4cBkrwaLxcI3v/lNkpKSmDVrFlu2bKG+vp7i4mKWL1/O+fPniY2NZfHixZw+fRpfX18WLFhAUVERISEhnDt3jqCgIIqLi1m7di1r1qwBkAizwoU3Pj7OsWPHyM7O5vDhw2zfvp21a9dit9v5/ve/z5IlS5gzZw7JycmcPn0af39/CQpoNBp58cUXyc7O5sqVK6xZs4af/exnPPfcc7I5V13dZK9tsb71riaV6akuQ3UPCLegSFEtLCxk48aNTlD14nw1Bic0flHgJzK69PtYHCvuq3friL8FqXEDT64fd65jT3tcvZ67+Oh0XVVwB24lg8HwGYPB0CT+1zTthKZphz9NggE+AqHTkyvp6coy0FsV+l7M+owFQWrRl55EgYu4ptpxTLwsgVmvWjddXV3SghBw2ULLUp9JryEIIDyr1UpfXx+RkZG0trbS0NBAWloaKSkp1NTUyO5yghGredpCOAkwQZEmqceFEm4hkSGiuqXEc4vg75kzZyQcwujoKDt27GD16tVyzry8vDCbzaSmprJ06VIyMjKwWCwyy8RoNOLn58fAwACtra1UVVURHR0t8/9tNhtWq5U9e/Zw/Phxjh8/zssvv0x4eDgdHR0sWLAAo9GIv78/BQUFkuEYjUbpj6+treXEiRPY7R+h7IrspdTUVNLT07lw4QK1tbUyPrB9+3bZc/mRRx6RsYfx8XGOHDnCggULeP755zGbzdIFZrNNIrrm5eXx+OOPU1ZWxoEDByTMxfXr1ykuLmZ8fJwFCxZIhNLExETWrFkjYyUAx44dIzk5mY6ODt566y327dtHZ2cnCxYsYOnSpcTGxnLy5EnOnj2Lt7c3V69eZefOneTm5mKxWJg3bx4PPvgg//t//28eeOABTp8+zdmzZ+nu7ubChQtcvnxZvuP+/n5MJhM//OEPCQoKora2FoDQ0FAuXbpEU1MTZWVlnDx5ktmzZzMyMiIhOp599lkCAgLIz8+nublZ9tRWe223t7dTVVUlIdSLiop48cUXOX78uOyUJxCPVRKuJNG2dGRkRGaiCTwo1bUq3Cpib4tmYLGxsXR0dEisLHWvCwVFZAOqyojKM1TB4Qr9Wc+swTUCtCfS38ddQFzwEnHO7aazTicg/QbwLU3T+m/56p8QiWwlfUGWu0I3V1JX/+L1RWNTdYlSg2KiOKahoUEyzjNnzsjF7SpzwGq18v3vf59Lly7x3e9+l+joaLlQ9+3bJxvWqPfTZyiJrCjRYUuMEZCafkpKiuwEJprfCOtEaFbiWcT4XVlRYlPU1NTInsZqQZIa5K6srJQ9l1WtTTxDdXU1BoNBvivhOmpsbOTatWu8+uqrbN26lQceeIDBwUHi4+NlZzlN07h2bbK9iL+/P5GRkRIS4q233iIsLIysrCzpghABz6NHjxIfH8/WrVsxmUxYLBZ6e3uZmJggNjaWpqYmmV2TnZ0tC7FaWlpk8VZzczObN2+mubmZ7u5uWWgXExNDUVERc+bM4Z133uH+++8nJSWFkpISkpOTSUtLIykpST7/4cOHWb9+PS+++CIzZ84kPj4ei8VCSEiIdP/4+fnx5JNPcv78ea5du8bx48eZM2cOISEhnD9/ni1btkirR+1CZzKZKCoqoq2tjfnz5xMeHs7Vq1fp7OzEx8eHoKAgiWG0fft2hoaGmDt3LmazWabj+vn5ceLECRYuXCibBIWEhBAQEMCiRYsAaGpqwmKxSOa/YMECgoKCSElJYe/evURFRcmmRosXL5YKR2lpqXRPFRQUUFRUREdHBzk5OQQGBjoFnUVBaExMjFPvZpvNRmFhIXV1dXzzm9/EaDTKtVtZWYmXlxfj4+MsWbKEtrY2NE1zgp1paGhgeHgYo9Eokyj0+xtwuceF9aOHthH7Q7WqVb7k5eUlU2EF6KSe9NaFp0xKT/xtCsuhVtO0DFffTSfmMAdoNhgMxw0Gw2HxM43zPlHSS2G73S791YLUrBpPaWYqxITJZJKoi+Iz9RxVSxBWxsTEBEbjJE6M0JDUjByR866OwWw28+1vf5sXX3yRsLAweW+j0UhBQYFEXBVMXAS/hD9eHN/Q0ODkPhJB54SEBHJyciT4mIhDFBYWyvuNj49LaIrq6mpGRkacLC0RexCLz2icTHkVeDiifkJ1VdntdpnvDjhpYgI2XPX3i/ckuogtW7aMvLw81q1bR0hICJs2bZIdyVJSUoiPj6e8vByAyMhIXnrpJf75n/8Zu93O1772NZKSkqSFJu4j8HjWrVsn5/X8+fNomkZERASvvvoqDoeDvLw8qfELunjxIrGxsSxatEhmN8EkiJ2fnx/t7e20tLRIQfHII4+wYsUKIiIi+M53vkNiYiJlZWW8/PLLnDx5UmboiKB7QkICFouF0NBQLBYLX/ziF/nc5z7Hk08+yYULF4iPj8fLy4tvfetbbN26lZkzZ5Kamkpvb6+09qKjo2lsbKSpqQmr1cqRI0dkTU5oaCheXl54eXmxdu1a6uvrWbVqFTt27OCNN94gKCiIXbt2SddSXFwcw8PDXLx4kYiICJYvX878+fP53e9+J3GjTp8+zdDQkAwqJyUlSatDFPEBpKenk5iYyMsvv4zVasVms+Hr68vGjRtJTk7m8uXLEqX14YcfxtfXl7i4OLnOjcbJJkYi5VmFsWhsbGTHjh3yc2ERC1gUkZ4swPIAiYSbmZnJmjVrZOq1WIvq/lYZu4hdiD3mrmGPSJ9WYx5iTMI9JpQDV/AbKp9yZSm4imGoVoneDaanD4/1dfklHoSDwWC4/8M/vwsUAP8AvKj8fKpIP4GisliYl0LrEC9X9dvp3T1q4Fm4elQBoZ6jZkaIbAgR9FJxU9R7qS9NvZ5IhxT/22w2ysvLZWBOCBqHwyGzLGpqapywXcSiFfcROE5qfwWxINPT09m4cSPd3d00NDSQnp5OVFQU7e3tXLt27SbQQMFcxTyL73x9fWUQWi0utFgstLa2smrVKmpra3nhhRekfzgvL4/CwkLsdjsZGRmkpKRIF4DJZGL16tUsX75cMk1RPGU2m8nIyMBgMNDa2orRaOSZZ54hKCgIs9nMqlWrmD9/Pg6HgzfffJPm5mbKysqw2yfRW7OzswkICJCwDyKXXXSws1qtfPnLX8bPz4/S0lIyMzPp6Ojgxo0bHDt2jA0bNpCdnc3p06dpaGigsrKSS5cuUVNTQ3h4OKGhofT09NDb28vY2JiEuBbra2xsjJMnT1JQUCCFs4+PDxaLhZMnT0qIitzcXGy2yZ4KVquVc+fOcfbsWd59912JSrt//37eeustYFKwp6SkUF1dTW1tLSMjI9TV1VFeXs7Y2Bhf//rXeeihh+js7JSuM7PZTG5uroRmF4xM9I2YP38+7e3tpKSksGzZMlmlnJWVxdy5c0lLSyMuLo5jx45x/PhxIiIiyMzMJCkpiZ07dzJjxgx+8IMfEBQURHd3N1VVVRw7dkxafaKZz/nz50lOTpZFaJ2dndjtdhngF1XeFRUVNDY2cvz4ceAjRaOnp0fGxQ4ePCgzigRWl9lslumzKqnrWaxZ0RRIKEJ6t6+A8FAhcMS6VZmw0TiJJuvr64vRaHRyvarFdgKV2B08hv6aqoKq510i+C6yJKeiD88dd/e9W7fSh+ZGusFg+FdN0/58Wnf7I1FCQoImtABBYtJUE04136YKJLmrEXD1Gz4KiKqfqaZneXk5qampLgNeatxCLADhihofHyc7O1sGqAXchXosfNRLWT1XZdRqwFZf4AOTjDwsLMwpbU+AzLlyt1mtVg4fPsymTZucritM8OLiYsrLy8nKyuK9995j48aNcswq+F56erqMUQgQNTUoKdqTms1mp3xxMR7hkhEKQX9/P01NTRgMBurr6wkPD6e2tpaHH35Y1jXY7XZef/11qUGvX79exjBCQ0M5ePAga9eupauri5KSEpYsWcKsWbNkB7iqqirefPNNRkZG6O3tJTExkfT0dGy2yeY6mzZtorm5meLiYhYsWEBISAjj4+P89re/ZcWKFfzrv/4rX/ziF1myZAne3t78+Mc/JiwsjA8++IAPPviA8+fP8+1vf5vXXnuNVatW8fvf/57vfOc79PT0YLPZWLFiBWazmZ07dzI4OMhf/uVfsmvXLp599lna29tltlVra6sUhidOnMDhcJCQkEBnZychISE88MADDAwMMGfOHE6dOsV9993H2bNnWbRoEbm5uRiNRpqbm4mNjWViYoLe3l6++tWvUlVVJRsC5efnc+rUKSoqKnjuuefkGjl48CDbt2+nrKwMLy8vDAYDMTExTutJpBFPTExw8eJFtm3bhsVi4W//9m/ZtGkTAwMDMrAs+nbb7Xb+/u//nu9+97t0dHSgaRoGg0G6LRsbG50wkNQYotDk1R7eqgvIaDTe5BJWk0jEftMXq6r8RD3W3fcquXJxuyORyq5HeNWPxdN49Nd6/PHHz2qalu7qfp7cSkaDwfAVYKnBYNio//H4FJ8w+fn5OT288GPDZLGZ8C+KNpf6ILMIbKkuItVK0JPeErBYLOzbt4/S0lKprQhtQVxHtFBUTT/hJoJJjUX0ThCaiNqIxGab7GNstVqdhJNq8opxC5eRuJeIAQirSVg6IjhtsVj49re/TX9/v7ROEhIS6OnpcXIlqWZ8V1eXE7SE0WiUbUArKyu5ePEiO3bs4M/+7M/kBhebSmzo5ORkurq6pD9aBM3F/Q4ePIjZbKaoqAi73S6xZsS7NplMrFu3jpqaGmpqaujq6uLll1/G4XAQHh5OYGAgDz30EM8++yzZ2dnU1NTw61//GoCkpCTWrl3LnDlzeOWVV7BYLIyNjUm0zp07d5KYmCghSNLT0zEajTJtd+3atXzxi1/ka1/7GitXrqSlpUX2UO7s7GT58uWsW7eOgoICTp8+zcjICP/rf/0vLl68SGpqKjExMQwPD9PU1MRjjz1GXl4ejzzyCKtWrSI8PJzf/e53LFiwgAceeIDMzEx27drFoUOHJBz4L37xCwAefvhhQkJCmDVrFna7nbi4ODo7O+ns7OTKlSvMnTuXU6dO0dXVJSEo5s2bx5kzZ2TRnJ+fn3Tf/e3f/q2cHxH8rq2tldaGCBifO3cOHx8fDh8+zAcffMDKlSspLS3lK1/5Ct/5zndkJllubi79/f309fXx93//97z99tuIzMK5c+fS3d3NxMSEhM0oLCzkc5/7HMuWLcPhcMiUXBG4DgkJ4Uc/+pEsJBwfH5fIq4cPHyYuLs5pTwtPAHzU2Gd0dNSpF/SJEydkbYNYX2Lvqm5UV0zWXTxTFTiq+9oVL1EFg3B9uzp+OlaGagXpx6O/1qZNmwD+w+XF8CwcvsYkVEYg8Ge6nwL3p33ypO8Jq2YGickSEysA41RTUHVFCcap/tYLA9WvJ4ROQUGBE7CeuLe4Tn5+vkTLFAUz+/bto7KykoaGBqKiojh37pw0p8XiVTtTCS1YpBvCR6a1MG+FFaJpmqxRgMmMIk3T5Ma02WwSiVK4hNS5EUFr9XnEvUQxkNBkVfdbVFQUK1asYMOGDdKvLAraBECaKCBsamoiLCzMqbm8cCkYjZN9I86fPy+FkJgH4fs9duwYp0+fpr29naGhIYqKiggICGB0dJSdO3eyYsUKuru7ZcBz3rx5srFLc3Mzr776Kt7e3mRlZcljJiYmCAsLY/v27YSFhcmcdzFnQlgsXLiQhQsX4u/vj9lsZuXKlWRlZcl0UzWWtGrVKrZs2YK3tzcrV64kOjqa3t5eysrKuHHjBvPnz+f06dM0NzfT2NjImjVrCAgI4PLly1RUVBAZGUlwcDApKSlER0ezYsUK6urq8PLykmuwr6+Pn/zkJ5SUlODl5cWmTZtYunQp9fX1xMXF8fnPf57Nmzdjs9m4dOkSMTEx1NTU8P3vf18ix8KkkpKZmUllZSXp6emsWbNGBvxDQ0NlPAUmhYaXlxdvvvkmY2NjGAwGnnzySVnfIBS0NWvWUFJSwkMPPcSFCxcYHh7m7bff5sc//jE+Pj4MDAzQ09NDf38/vb29DA0NYTQaJdCg0Wh0svqEQpKfny9xs4SiIHCc1DhZZWUl+/btAyZhzmfMmCHTvIVFHR4e7rTPXfn7XfEAV8xXH//Uu6L1pAoGoWS6woYTrmrhJp9u8Zu7dNcP17XbIji3zX40TSsDygwGQ7Wmaf/icQSfIhI+PfG3ILv9I8wdNQiqP86dZiAmGZDYQllZWaoEdjpedRk1NDSgaZrsPXDt2jUZE1GlvYCyFpXXIn1PXHPlypXY7Xanjaw3k8UYBJTBkiVL5OeZmZmylacAlevu7sZodAYiVFNZxUYQ91KRKIeHh6WwycnJITo6Wl63p6eH0NBQCZMhfLDC/RcfHy/TA8fHx7ly5QqLFi1ymhPR8L67uxuTyeRUDzI6OkpLS4sMrF68eFEyeYfDwQcffMDFixdJTk7m0KFDjI2NUVVVxZNPPonRaJQN7kXtQVdXF2vWrKGpqYmcnBwqKysZGRkhLi6ODRs2UFtby7Fjx4iPj+fGjRuyPwRMxk/8/PwkdIWvry/9/f3s27ePy5cvMzo6Sm5uLpmZmVgsFt59911yc3OJjo7mypUr/OAHPyA9PZ377ruPFStWEBUVxR/+8AeSk5MJDQ3l9OnT9Pf3Szjvvr4+md11+PBhoqKimDdvHjabTWY5dXZ2UlJSQnd3Ny+88AJms5mDBw9SWlpKTEwMIyMjJCQk4Ofnh4+PD1evXmX16tUUFxfj4+PDL37xCxlk3r59O01NTZw/fx6A9evXY7fb6e7upre3l4cffpiOjg4qKip47LHHCAwMJDY2lvj4eAmJnp2dzapVqygsLMRgMDBr1iyefvppampq2LhxI2fOnGHfvn3k5OSwatUqjEYj3t7eUlO22yeDwJWVlTQ1NREbG8vFixdlFh8gs+7UvShiA9nZ2XJ9j42N0dDQIPeI2JeqC0rdx+JvcQ585JpV+4IIpUVk3YnPXdVnqCTuIXiCqgjpyeFwODWFmsoV5eo6ujout+mq04Hs/k8jGMCzj0/EV4QAmcoPqLplxHniXH2bUTXYLY4VC1UEhUXR1IULF6SrSTBXRZLLznB6Ep/l5OTIWgMhKFQNRbRbFO4c9XkE1Ijo2SsEnPDTlpeXs3//fqdGR4BEvhwfH5fZIhcvXpRmPEwG/tavXy81+cOHD3Pt2jUaGxtlRlFUVBQNDQ20t7fL/gmiQKqwsJCqqirOnDkjXXUHDhxg5syZTvMpBExMTAyRkZEUFxdTV1dHc3MzRqORvLw8/v7v/57s7GxCQkLIz88nNzeXL3/5y5hMJvbu3cvg4KCse1ixYgWbN2/mwoULwGRK7ObNm4mLi+Pll1+msbGR9PR0tm/fTnNzM/Pnz8fHx4e8vDyWL18u0ztF0WJoaChHjhwhLCyMt99+m8HBQSorK+V8fuYzn2F0dJSuri6Ki4tlts7AwADDw8OyhmHbtm3YbDb8/f0ZGxuTTa2WLFlCYmIiv/vd7xgaGmLRokWEhobS19fHsmXLOH/+PEuWLOHJJ5/kpZdeoqysjL1797Js2TJmzZola0suXbrEtm3bePDBB3nttdewWq08+uijpKen88orr9Df3y9TnQsLCwkMDMRms/Hiiy/yzW9+k/feew8AHx8fZs2axbZt21izZg3bt29nzZo1svq5ublZptpGRkbi7e0t8ZaCg4MxGo0EBQWxfft2goKCaGxs5O233+YPf/iDUybP0qVLSU9Px8fHh/T0dLZs2SJjGMKtKaxo1R0qvq+ursZisdDX18f4+Djt7e1EREQ4KWEq7IZeOxcKJkzWZ+zfv19aKsJVrdY2if3qBrZCXlNkMgnrW93rehIdHYXy6Mq6mOp/vQB0R7dUIf1pJbXZjz5oOVVgxh2JSfV0PfhICqsBXtX10dnZKbOmxHWEIBDxBbW9pt1u59e//rXMv1eDVV1dXZSVlUlLRYzFarVy6NAhAPLz8+np6aGtrU1CFIvnEYJIRVx1lR4nnl2t1hbB2ldffVUWxgmTvLy8XILkATI9EyY1NpvNRnt7O6Ojo/T09MhnU+8n5qyxsZG4uDj6+/sJCwvj1KlTXLlyhejoaPz8/IiPj5ebQiC6Apw9e5aJiQn8/PycaipCQkJ4+eWXCQgIoK2tjc997nMEBwcTERHBsWPHcDgcPPbYY/KaYi43bNgg35HROJk3r6K6wmT18v79+2lvbyc0NJQZM2Zw48YNEhISJGDbwMAAp06dIi0tjZiYGK5cuSKZb25urnz/ly9fpqioiNmzZ5OSksKMGTPYunUrdXV1dHR0sHLlSt5++20CAwPJy8tj586dpKamcubMGZ544gneeOMNkpKS8PHx4Q9/+AP//b//d/7pn/6JH/7wh7S1tXHgwAEWLlzI+++/L5l6eXk5P//5z5mYmMDb25vi4mIKCwt5+eWXmT9/Pr/85S8JDAyUmv3AwABXrlzB19eXvLw8Tp8+TVBQEDabjezsbA4dOkRgYCBJSUnExcXxyiuvSJRYYcEFBQVJBrhu3TrKyspwOBzMmTOH9957T7rl6uvrGRgY4Otf/zohISGydkcoQf39/U61NzabjV//+td4eXnJd2e3T2Z0bd68GYCamhra29ulYiTWudi/KgCf2L9CEdInp9hsNn75y18yNDQkayvEPVTUA9V15cq1I3iM2tzKldUiFDzVZeWqtkJf3+Buj4vv77///ttHZf3PQEI4wM3ZR1OVp09Fqtagh8rQF8gJLUDkWIsXoF9Y+uuL44zGyYKYvXv3Eh8f7wR5bbFY+Ju/+RueffZZwsLC2Ldvn8QSEplFQoCosBMirpCdne0SwtvVvKh+17q6Oul+Eq0f1Y0lmLTYEGrqrnimPXv2kJ+fT0dHB21tbZIZC7yksbEx2Qu6vb0dTdOkMNaPS81OKi4upr+/n8jISBwOBz09PSxYsICkpCTKysrIy8tjYGBAAteZTCZKSkooKCiQSKodHR0SOkKM96233qK3txcvLy/i4+PlHLa3t8ueBFarld7eXq5du8axY8dYsmQJ9913H5cuXSI2NlYGUX/yk5+wevVqvLy8ZEGUQHq12Wz4+Phw4MABCgoKCAwMJDk5mba2Nvl9eno6LS0tbN26lRdffJGcnByGhobw8fFh6dKl/OxnPyM+Pp7AwECZfeTj40NHRwc+Pj7Mnj2b+fPnyypsf39/Cen94IMPApPa6Ny5cxkaGmJwcJAbN25IF5XIlBPd8P7hH/5BFiGePXuWWbNmkZeXx29/+1tOnDjB9u3befDBByUwnhDYmqYRGxtLfX29rMFYsmQJn/3sZxkcHKS9vZ2NGzdKiHJV2I+NjXHx4kU2bNhAYWEhMTExElpewLSIvRcfH093d7dE0a2rqyM2NpbLly+zatUqioqKeOyxx4CPYLqFIiFgX0S/CZEhdejQIafYkyCr1QpMCg61a5ueEYtKbP2aFvzJFW9xxdhdCQ69wjvV//o9vmTJErdFcJ5SWcOBYU3TRj78/yFgA9AH/PzTBKHhDltJSGx3kzydyYaPANrUKmnxmbAYhIZQUVGBwWCQ8MLu4hmutAkhbEJCQiROvTo+UYEqFrQQOidPnpQdwgAnqyQqKorCwkK3Y3H33F1dXTzzzDN8//vfZ2xsjNTUVBlgVU1hAV0iNCwRyK6oqKCvr4+CggIOHDggK6jFNVSrScydSFsViKeCEahV3Tabje7ubq5evUpPT48En/P19cXhcNDS0sLw8DBf+MIXmJiYIDQ0lN27d1NWVsY//dM/SRwfm83G3r17Adi6dSs1NTVyvO3t7bJS2mw2U1lZSXJyMnv27OHcuXPMnDmTrq4u0tLS2LRpE3v27JEFfampqQQHB8t8eGFJiD4NwcHBLF26lKGhIfLy8jCbzQwMDPBP//RPxMXFYTKZuHjxIvn5+bzwwgv8zd/8DW+99RZbtmzh0KFDfPWrX6W8vJzXX3+dJUuWEBAQwJo1a/jlL39JREQE4eHhXLhwgdDQUOkSUnszx8fHk5GRIYPMnZ2dzJw5k7Vr13Lw4EFZjf3+++9L11NLSwuxsbFs2LCBoKAghoaGGBsb48SJEzz99NNcvHiRf//3fyclJYV58+Zx9epVmpqa2L59O7t37yY5OZkzZ84QHBzMlStXWL16NXPmzKG/v58TJ07wta99jSNHjsi6CeGSEwKor6+PNWvWEBYWJi2HQ4cO4XA4iI+PJzs7W7a+DQkJcUorr6yslJhLbW1tjI+Ps3z5cmktGI0fdXEDnKxrYZkeOnRI9hcR5EpLFyTiEQIwUI0HnjlzBofDIa0gwQNcKY+ePB236gVxJyBuy3IwGAxVwKOapl00GAwLgWPAj4BUYELTtB3TGtknQKpbCT7S2FXICpUZCu1ehYUQJmR9fb3URIRbRWirQgiIRvcikGUwGIiMjJRwA4IJmkwmSktL8fb2lv0RVBiAefPmsXz5cjk2sajcCSI18CUWtwClE4Bvfn5+N+VpC9eQuIfe7ExMTJRarepvffvtt3n44YelRvbKK6+wY8cOJxA+sQHb2tqIioqSQkpku4i5F/cT4xYbRw+Z0d3dzfj4OL6+vlLbr66ulpqvn58fcXFx7Nmzh9DQUM6dO8fly5f57Gc/S1JSEu3t7QQGBvK73/2OrKwsAgICmJiYoK+vD5iMecyYMYPQ0FB6e3slQ25oaCAwMJDh4WHi4+Ox2yez0BYvXkxpaSn5+fkA7N27Fy8vL9asWUNfXx9Go5GmpiYiIyMJCwvj//7f/8ujjz4q+xGEh4cTEhLC0aNHqaio4Mknn+TKlSsMDQ3J2oKnn36ao0eP4uXlRW5uLjU1NXR2djI2Nsbs2bNZtmwZr732Gh0dHXzlK1/hkUcewWKxSODAixcvsmvXLr7whS/g7e0tz21ra2P58uWUlZXx6KOPygCscPlZLBaJa3Xu3DkGBgZ44IEHqKys5Lvf/a6E4ti/fz8DAwPMnz+f1tZWYmNj8fX1pa6ujm3btrFw4ULq6+tlTKqmpoYvf/nLJCYmSliSkZERYLI6WPSwXrx4MYcPHyY/P5/z58+TkJDAlStXmDlzJrNmzQIms/VCQ0Nld0AhCAQqMCAtObFPxf5R972ogVCtUqHRqzAYAtNLbQIUFhYm3Vh6QeCK6aquZjUJRnwnlCIBaSMEhacGQu5cTFMJiKlcS57gM9xmKwG+mqZd/PDvbcDrmqa9aDAYPsNkR7hPFQmmL7KIwLkCUiUhEFVm29nZSUpKCgaDwam4qqurS1aQCkba1tZGRESEzN232+2y2bzoViasiq6uLunzVF9+QUEBhw4dwm63ExwcTGpqqvxOjAtuLvRSGWxXVxcpKSlomnZTwY5qEYiq7bS0tJvK6oVZK7J8hCuroaFBVvaKTIodO3Zw9OhRadaLYKBoPSmC48IKiIiIkMVZRqPRya0lGL8YY3l5uYyTCBI9GMR77O7uJjIyErvdzqVLlwgNDSUxMZHHHnsMm83GkSNHmDt3rhTwAqhu7ty5nDhxQgo2m22yZ/H27dtpa2vj2rVrJCYmsnPnTrKyshgZGZFVyrt27WLBggW8/PLL5OXlkZCQgMFgYGhoiN7eXkJCQoiMjMTPz4+hoSEeffRRHnroIcrKyhgdHeXHP/4xn//85wkKCpJAf4KxqVhbv/rVr5iYmKCjowM/Pz/q6uooKChgcHBQdmPbsGEDb775prQMysvLGRgY4IknnuALX/gCS5cu5fDhw1JoRkZG0tXVxSOPPEJAQIDs7TA2NkZoaCjBwcE0NjZKRvrEE08Ak4kG+/bt4+LFi5SVlWE2m7l69SoLFizA29ub7u5uCgoKZJvPkydPYjabue+++/Dx8SEpKUn2zRD1K+L9z58/H6PRyNWrV0lPTyc9PZ2dO3cyPDxMdHQ0+fn5HDlyhJUrV9Ld3S0htefOnSvTWoW1fvz4cbq7u9m6dSt2u10WhyUmJlJaWsrFixfZsmWLxF4SmXCCOQv3kVBexL4TBZTqfhFrXbhCVT6j7jX4CDXBaPwoc1IcowIICgFht9udcNj0pGYXqWN156JWydWxqlLI7cBn4Jz/mgccB9A0zW3RxB+TxIsQaZPqi4GPsnmMRqPTSxG+dZH5kJmZidlsliZ/WFiY1PqENp+ZmcmKFSskozYaJzFf/P39nbIBTKaPEE7b2tokU6irq8NsNrNhwwauXLlCZGTkTXjvdXV1EoJb7eEgXraoSTCbzSxdutSJ0QqNSCwW0bdBRahU5w2QWr/4TPSHEH+3tLRgNpvZsmWLZJbHjx+X7qXLly/LxjpNTU0EBwfT29tLenq6FKAGg0FCVhw6dIjKykrpjomPj5fByP3791NTU8PQ0BCHDh0iJSWFJUuWsGnTJmbMmMH58+d5/PHHGRoaks1gdu7cydy5c4mOjpZprf7+/ixYsIDi4mIWLlzIhQsXqKysxGw2s2PHDi5fvsy5c+f413/9V1paWsjKypJWhrAEHn/8cekaWLRoETNmzMDX15fk5GTmz59PWVkZnZ2dsne0n5+fhMJITEzk7/7u7wgJCSE9PZ2kpCReeukl+vv7ZWvTpqYmEhMTiYiI4Kc//Slz585ly5YtbN++HbPZLAVjXl4ekZGRJCUlMT4+Tnl5OUFBQTzwwAPs3LlT4jTNmTOHc+fOAZN4T4sWLeLBBx9kZGSEK1eusHXrVmJjY/H39+cLX/gCwcHBAJw7d46dO3fyz//8zxgMBjRN4/333+f+++9n5cqV+Pj4sHr1aoKDg/nrv/5rQkNDefjhh+nv72fRokVomoaPj4+0vvLz82VtgnDVzJ8/n1deeQWj0cjf/M3fUFpaKpUOo9HIyZMnAST4o+pW9ff3lxbd/v37sVgstLe3c+PGDY4cOcK3vvUtGQOASQG3du1aKRhmz54t17bD4aCmpobq6mqJVKy6eTMyMkhISHDCUxN7q6GhgcjISClYBA8RdTwqCqsacNb3fhd8Rzyjq1iB+K26wPT7Vj3eXd2DK4tBycpyC5/hSTgUGwyG/QaD4f8CM4FiAIPBMAf41MQbVBIBS331s8AoUjGIBOPTB2aF22jnzp1YLBb6+/spKChgxowZN71E8dLq6+ulIFBdQkaj0cltIhqFiKBtSEgIW7ZsISQkRNZDiOuHhIRICG5htegtgoaGBomCKZ6zpaWFqKgoiVUkPoPJFFm1QFDMWUNDA76+vjf1XRaAeUJbEwvcYrHw5JNPsnr1alk8pyJqjo2NMTg4yNWrVxkYGJCmtBqoj46OZmxsjBdeeIH+/n4OHTokhVd0dDQZGRn4+fkRHh4uLbPa2loyMjKIjIxkeHiYTZs2sX79ei5dusTSpUtZuHAhxcXFzJ49WyoBHR0dOBwOgoKCmDdvnmw4NDAwQGhoKLW1taSlpbF48WKpsYviuePHj3Pu3DlWrFjB8PAwp0+flvN4+vRpmZIZERHB0NAQ8+fPZ2Jigp07d/KZz3yGXbt2ydTXqqoqmpub8fb25sUXX2Tnzp0sXbqUixcvEhISwjPPPEN2djZRUVFcunRJjsfLy4uBgQHpphKp0GFhYfyP//E/CAoKIjc3l6ysLMrLyxkfH8dqtZKamsqaNWtobm7m6tWr1NXVkZ2dzb/9278RERHBggULGBwclNbV5z//eXbs2EF4eDjr1q3jueee48aNG2zfvp3Dhw/j6+vLyZMnGR8fp7S0lIqKCk6dOsVf/dVfkZeXx7Vr10hKSqKkpITh4WF6e3sBSElJobu7m5MnT9Lc3ExQUJBUJi5cuMBLL71EV1eXxMRqbm5m3rx5cm3X1NRIy7qwsFBClDQ3N5OUlMTmzZsZHh7mG9/4hmwYZTKZKCgooLe3l0OHDslMuv3792O3T2JspaSkSIh4kVQhFMiGhgZaW1sJCwuTQJRiX4yNjUnFRqTLCkabkJDg1G5X7FlR2S/IaDQ6tTBV+Y+4j1qRnZiYKAEi3ZEna8LddT8ktxlJntxKzwD/jUlU1lxN00RfvhDgbzyc90ch4eN3pWUbjUaWLl0qqyJVzCMRm1B7vJrNZp555hkJhCfMQXD22atmqN1udwpQCxL3WLp0qZNWL9xA6uIQi9NkmoSQfuqpp2QQTC3AEwttaGiIN998k2effVYutujoaOniErAiQlipgTE1GKYybRWLSqTgCpjr9vZ2DAaDTDUF6O3tlcB4KSkp0oUgfOIwaRYLDVi4/rKzs7FarZw8eVJWkL/88sucOnUKf39/jEajtGTa2tpkAVVycjJHjhwhMDCQkZERLly4wNq1axkbG5NuHqPRKNNRvb29ZQ9p0Xv64MGDzJkzh6ioKMLCwti8eTMhISEsX76cmJgYrFYrM2fO5OzZs7z33nsEBwezZs0aCbx3+vRpSkpKWLVqlaw1WbVqFU1NTSQnJwPI9NPjx4/T0tJCf38/K1euZMaMGfT09HDp0iUSEhJYu3Ytra2tPPPMM/z1X/81fn5+EvBOuF2ENaZpGjdu3ODcuXPk5uZKvCSHw8H58+eZPXs2/v7+PPPMM7ISX2ArCSjqwcFBbDYbg4ODfOUrXyEmJobCwkIyMjIoLCykr68PLy8vHnroIVnkJX6io6Px8vJi3rx5XLp0icuXL/Ob3/yGxYsX4+/vz29+8xueeOIJNE2TUCg5OTkyvdrhcBAaGkpbW5vs+yDiUv7+/kRERNDc3ExRURGLFi3iwIEDzJgxg6qqKl566SVZk7B161YJEy/WiclkIiwsTCps3d3dxMXFMTY2RnFxsex0J9ajigtmNBolWGZLS4tMl7Zardy4cUPeq6urS74TYQ0L95PNNtkRccOGDRQVFbFp0yanVFOVdwBOn4s9qHf3iv/1SA3u3EnurAnVHTWd+gZBbi0HbZL2aZr2fzRNu6B81QAETevqnxBpmnaTRNRH/0WAUcBGqC9CxexR/Ybie6FdAzeB5An3lfB16iW8eEHimllZWdKNZLVapcYvNKL9+/djs9lITEx0CvwKf6eaQODv78/TTz8tA6oCLrugoAB/f39SUlIApHksrAaB3CigLwSst2irmZCQACCL5EQtQXJysgxSms1mXnnlFafe1KI4r6amhpKSEjZt2sSWLVsoLi6WlaWiIBCgp6dHomWGhYXx9NNPc+XKFVkEmJmZSXZ2tsxC6uzs5MSJEwQHB0stvqCggObmZim0hoeHWbhwIVFRUZw9exa73c7Zs2fZv38/vb29REdHM2fOHH77299y6tQpvLy8JAxITU0NRUVFmEwm3njjDXJzcwkODmbDhg2EhYVJ5cLf359ly5axcOFCFi1ahLe3tyw8rK2tZeHChXh5eckCuODgYO677z4CAgLYtGkT/v7+rF+/noGBAfbv38+//Mu/kJycTHx8PCUlJezevZuKigrKysqora2VhVfi+ZYvXy7dJKGhoVRUVHDhwgViYmLo6Ojg5MmTfOtb32Lp0qUsW7YMQGryGzdupLq6muPHj/P6669TVlZGc3MznZ2dst/D6Ogop06dYmxsTLpwvLy88PPzIzo6mkuXLsmMudTUVCwWC9u2bePv/u7v6O3tle4fgSh75MgR4uPjSU5OpqSkBIvFQnFxMWazmaGhIVpaWnA4HFgsFjZs2MCcOXM4f/48y5Yt4ytf+Qp5eXn09fXJCmmjcbI6v7GxEaPRyJo1a3j11VelVV5TU8O1a9dob29n+fLlbNq0iaysLJYsWUJNTQ21tbVOCSY5OTmSOYtYntVq5cCBA8TFxREXFycVv9raWtnKFJAuqqqqKglFI+qQBE9wFSdQBYaKieYqa0nPS9xZA3rS31MIP9Wz4ok8QXb7GwyGbxkMhp8bDIa1hkl6GugBNrs7749BBoNBBlbFZOsnTMVWUn2ZggTzraiocGLaglTNwp3fXpXw6nf6FyRaNYo4RE1NDXv37iU5OVkuQBWADj5CQRX1DOLawrIRTLempkYG8gRYmj7LQrgnBEigiNUUFhYyPj4ue+qKDKJDhw7R3t5ObGysXPCXL1/mqaeeuglLSmw2EcMxm81ysxw4cACr1SrB+dra2qTLzGazERISwoYNG/Dz85NzrZIA4YuKiuKzn/2szPQqLi5mbGxMurcsFgsLFiygr6+PuLg4fH19iY2NJS8vj5CQEHJycggKCiIhIYEdO3ZIK04IwQsXLpCens7o6KhMYRSMUATJW1paeOmll9i3bx8DAwP88Ic/xGQyUVtbS0dHBwUFBQQFBcnYyEMPPSQhyI3GySru7du3s2HDBpKTk/mf//N/MjIyQmJiIl5eXty4cUO66IRg7e3tJTY2lpUrV5KYmEhSUhIPPPAAeXl5LFu2jJUrV8q1+pWvfIWQkBAKCwuZmJhgdHSUQ4cOkZqayvPPP89LL72EwWDg97//PUNDQwQFBTFr1ixCQkJoamriyJEjjI+PExERQX5+vhyDw+Ggvr6eH//4x5hMJtmzobCwEKNxEmivqamJwsJCVq1aBcDw8DC1tbXYbDaZ4puXl0d6ejqbN28mMDBQWiVms5mIiAiuXLnCxMQE58+fZ+vWrTJL7dy5c1itVsrKyhgeHpbJCUuWLJHavKiVmZiYwG6309/fL1OtJyYmnODrAQlqeeLECdra2ggLC5MJGklJSRKWw2icrCOamJiQDD0jI4OMjAz8/f2dijv37dsn17onZi6EhCos1NiJ/hxXriNP1oCeF6ntCKYiT26lfwXeAyqAHcA3ACPweU3T6qa88idIKuMWE+UqQq92XlM/F5H7iooK2tvbGRkZITc31ymwLNJQp8oScPedYPRCSKnN5OPi4mhsbMRkMpGdnU1lZeVNz9TW1iaBxYRA0JuiMMn4hZtIZF6pAWHVjaQGrU0mk6yFEOayCOatWbOGlpYWqQEKv6ra+1clcQ3hQkpISJDj7+npkbUNosBK4PWrUCAi7iL+F5XPX/rSlygvL5dAaTDJaLy9vSUjCAsL49ChQ8yZM4fe3l6Z2it6dtvtdu677z527dol00g3btxIT08PmzZtwm6f7BEgej4UFRVRXl5OTk4OM2bMkMkCf/mXf0lISAi1tbU8+uijwGRHtJiYGHx9fcnPz6euro7q6mqio6Pp7+/nwoULzJ8/XwIiXrlyhby8PIqLizGZTLz77rs89NBDUsD19PTg7e2NpmnSBSMgLERB3MyZM3nrrbdITk6WbrONGzdit9tZu3atfP9jY2N873vfIykpiejoaO6//36ysrLIy8vjN7/5DV/60pdob29n9erV1NXV0draSmBgIKtWraKkpEQqSzNmzOB//+//zaVLlzh58iQXL14kMTGRH/7wh9x///2sWLGCtWvXyvifsHzS09NlRtT/+T//hwceeIDFixfLDCVRxyAgQYaGhvDz86O3t5fBwUEmJiYoKCiQa0e8/4SEBGpra7HbJws/o6KiWLJkCQ0NDbI/t4hbbdy4UcLEi3XY2toqoVTgowB6XFycU7qz3W5n8+bNGI1GJ94A3KQkRUREYDR+hOGmZhypeGsJCQnSxSX2wsGDB9myZYuT90LvohL7QmCeCbehK7eTerzgYdMhT8IhUtO0FACDwbATGALCNE27Pq0rf4KkaZqTYFB9e/ARs1FBuVQ/nbA6ZsyYwbp169i1axe5ubnyhejL1FVSq6T1fj/x8sTiVQvjBIOtqalB0zTpsgBkrYI6Nk3TnGIg+toH1cUFkxkSUVFR7N27l8jISOmbtdvtsnViamoq9fX1XLt2jYCAAFlkJqwrQCKjilRKdQMIjUtUaquptGrVdmtrqwQbFF3yVIHZ2NhIW1ub3CANDQ309/fzgx/8gLy8PKnBw6R1ZjKZZCVte3s7ixYtklaIeMdRUVFkZGRId6CI+YhNLqCpxUaGyRjO0NAQ5eXlLFy4kHfeeYcvf/nL9Pf3y+ymyMhIzp49ywcffCDhOXx9fSWkd1paGhcuXCAqKoqmpia8vb1ZuHAhw8PDPPfcc2zdupU1a9awc+dOHA4Hubm5MtvJ4XDwjW98g8LCQqxWq4Qyn5iYoKenB5h0xQUGBtLb28vq1atZv349dXV15ObmUlJSQlBQEDNnzqS4uJji4mLuu+8+oqKi8PHxYePGjTgcDtra2jh58iRZWVmyCK+vr4/jx48TFxcnO9GJNqJvvPEGGRkZnDt3jpiYGK5fv87hw4cZHR0lJyeHnp4e7rvvPgIDA1m4cCGDg4OYTCbi4+M5d+4cw8PDjI6Ocvr0afz8/Dhz5gyXL1/mL/7iL2RdS2BgIDDZu3vGjBnYbDbWrVvHhQsXmDdvHq+88gqLFi1iZGSEwcFBhoeHMZlMTkpBeno6mqZJyzM1NVX2u25tbZXv2WQySXdQSkqKtJaNxslMpYmJCZlpVVlZKdNgGxsbZb2SKw+Buu9F2q3Y5yIWItagiGsATj1RhIDQ8xl3XomEhAQOHjwox6vv46KOSQ+/8eHfbr1HnrKVRAAaTdM+AHo/jYIBJlEW1QwhPaqicFuoaWt6t5PIpomOjubpp5+W2rTIRBBMR28iqhlLKvCeILHwvLy8KCgowG53blbu5eUlU2P1DF6Mu6GhwQnVUWXKejNVHKOCfRkMBikMYLIGQ/j1RfZLZGQkJ0+e5Ec/+pHMkDIaJ3vqpqam0tfXJ333AnbbaJxMARaaueoGGx8fZ9++fdTW1jJ//nwJNihgFYRP1263y1ajAiE2NTWVy5cv81d/9VdcunSJ/Px8jMbJXgpFRUW8+uqrdHV18dJLL1FRUUFTUxPXrl2T1kpNTY18ftH6VAhxm22y18fZs2fl8wjEVpFK+dRTT1FQUMCTTz5JcXEx169fJyQkhPj4eNra2oiJiSE6OpqOjg5qa2uJioqitraWyspKzp8/z9DQEKdPn6arq4tFixaRkZHBjRs3+F//639hsVg4duwY/v7+zJs3D4vFQmNjI/fffz+RkZGyDuPzn/88b7zxhmxDGhkZSWxsrExVNRgMJCYm0tzczKFDh3jrrbcYHBzkxIkT5OTkODUPioiIkGve29ubz3zmM7J5koAB2bhxIxERETQ0NNDT00NMTIyMe+Xl5UnXW1hYGOfOnWPNmjW89957dHV1cfnyZfr7+6msrCQ1NVUGimNjY2lpaSEpKYn77ruPjo4ORkdHsVqtstI6KiqKiYkJTp8+TUdHB8HBwRw9epSgoCDOnTsnlYmcnBxWr17N4OAg69atk5hPwoLIz8+Xqejz5s3j5Zdf5siRIxKKPSsri+TkZA4fPizXnKZpNDY2SqtaWOsiFVhYKCpSqnDHinWu5wdq0okgwSNqa2vZt28fFotFWlVi76p7eOnSpU78y5MLSKSXi/Gp91VJ9aaoSifg4+7aniyHNIPBcO3Dvw2A74f/G5iMV/t7OPcTJ9WnLioc1YmASX+jkOh6KSyYifBZtra2Sn+zeOEOh8OpMbh6beHvB+ccZWEFwEcVmWrDDldSHj5aUG1tbYyOjsqxCReYqJlQISj0GUhGo5HHHntMavkCgkIAkwlrSF38Dz74oNPChMkFuG3bNgBZ5KcWFokxClTShQsXkp6eTl1dndR6165dK6Gxk5OTaW9vZ/HixXK8opOa+i6HhoaoqakhMTGRFStWEB4ezqJFi1i8eDE9PT3s2LFDapa7du1i8eLFGAwGCbch3nlUVBQAYWFhmEwmmcIaFRXFhg0b6O7uZv78+bLCure3l46ODpla2t7eLi2csrIygoKC2LBhA52dnUxMTNDY2EhzczNxcXHMnTuXN998kwcffJD8/HxMJhNLlixhdHSUxsZGmbFz8eJFvvrVr2Iymdi3bx8FBQWylmT79u2UlpbKdN6JiQk6Ozs5evQooaGhREdHS+E+MTHB/fffz4wZM1i2bBlPPPEEnZ2dBAYG4uXlxfvvv09qaqoUfACDg4MSXryyshKHw0FMTAxBQUH8+Z//uazGzsjIIDk5GZvNxquvvkpaWhpvv/02n/nMZzh+/Dhz5sxhZGSERx55hISEBI4cOSJrg2pqahgbG2Px4sUA0soKDAzkiSeekHDnbW1tLFq0iJiYGJltlpSUxKpVq2hsbOTatWscOXKEtWvX8stf/pLZs2djNpuJioqSfbPr6uro6uoiPz+f9vZ2uru72bBhA//v//0/aS0IV+H69euBSU1cWJP6AjRh3QsAST8/P4kmKxQOgaigZiiKvamiMog4AUxCua9du1b2QhdWgoqHpgJwAk6YTWrltsozVPeTJ7Rp/ecfxvRuuDwYz9lK92ma5v/hzwOapnkpf3+qBMOMGTOcpK8eEkR116hCAz5yL6mTKpqqCPhdo3Eyo0l0ldNPsshGEm6b6upqysvLnSAsxDXUSmZ1bKp2IISO2WwmPj5eooCKz02myeY8Is0UkEU4drtdWkkCjBAmG7OMjY1RUVFBYWEh8FEQTGRY+fr6OgWvRfGOsCREALumpoYDBw4wb948aSIbDAYOHTpEWFiYfCYfHx8WLVokQesmJibIz8+nqamJkydP8sMf/pDjx49jtVp5/fXXef755zl27Bh2+2RHrry8PL73ve/JgkOhJQtt6vLly8TFxXH+/Hlp7QGyUNFut1NVVcWCBQvYu3evLEA7evSobFhjNBqZP38+r776qlPWk9A4ly9fLuc8ODiYkZERsrOz6ezsxMvLS1YAi2B2aWmpTI3dtWsXO3fupKqqCovFwvr160lLS8PHx4dly5Zx+fJl+d7r6+s5cOAA9fX1lJaWEhwcjJ+fHzDJzCMiIoiIiCA0NBRvb2+uXLnC3r178fb25s///M+57777pPUsniM6OpqmpiZqa2tZsGAB0dHRREdH8+CDD2KxWAgICCA7O5vo6GgCAgKYN28eVVVVvP/++1y8eJHa2lp27drFgQMHmDVrFt7e3jQ1NfH++++zevVq2tvbmTVrFllZWVy5coX8/HwKCwvp6upiYGCA9vZ2zp07x7lz5+js7OSdd96hqqqKN954g/DwcLy9vbl27RoHDhyQrjSbzcbIyIjU5gcGBpg7dy5ms5n/+I//wOFwYLPZ8PX1ZWxsTLYhXbFiBUePHmV8fJy5c+cyODjIZz7zGekKra+vZ2RkRELXqEVvYu8Lq1LQ+Pi4hO8oLCyU1fkirbuxsVH2rbbb7TKWINaV6rUQVnpxcbFTHFAIBjWOAci9rGZSCstGZBrqSW9hqEqqqySaD/e/26JmT9hKWUCQpmlv6T7/M+Cipmk3I939kSg9PV375S9/6YSO6kp66j9X/XAqQ1TBsjxdR8/QPX1eV1dHWFiYRIwUxXHiemr9gjhPBfxTx6LiswDSqhG+UuHiSU1NlZqNwIJStQy9gFQXnJhHFb5DWB6qtiUQKRMSEqiqqsLPz4+UlBTZFzo7O5uKigrGx8fp6ekhOTlZ9g1W8+iPHz8ueww3NjYyOjqKwWCgr6+POXPmYDAY6OnpoaCggMLCQrZv3w5M9nMWwGwCf0cNzqm9sUVGlNVqpbKyUkJOR0VFkZSUhMlkktlIL730Es8884zTHL344oskJSVhsVi4fPky27dvZ2hoCJiMe2VkZHD06FHKy8vx8vJix44dmEwmzGYzJ0+eJCYmhubmZsrKynjooYeIjY2lpKSEmTNn8vDDD9PV1cUbb7wh/ccDAwNERkbK7LDAwEBeffVVcnJy8Pb2lo2Urly5QkZGBv39/XR2dtLe3k5aWhpr167l5ZdfJjIykkcffVSmcjscDlJSUoiJieHo0aPMnz+frKwsjh49SmZmpoxdWCwWrly5wpw5c2Qdx09/+lOeeOIJWYNis9lISkqiublZ1hsIQMN/+qd/YnBwkDlz5vCzn/0Mq9XKli1bcDgcsmgwKCiI4OBgqqqqOHbsGH/2Z3+Gt7e3/PzixUkEn+TkZNn5T9Sm1NXV8fbbb5OXl8ecOXOIjIyksbFRulaGhoaYNWsWOTk52GyTPZNhMh4lMt2Etl9ZWUlXVxfh4eEEBAQQGhrK0aNHJX7a1atXJXQIIDX/yspKAAk7I3z+Yk+JTC7h+hGCQc9LRFq5yIyrrKx0UmbFsSJOCTjxEMET9FhRIrXXy8uLqKiom3DRPAHveYo5/BRodfF564fffWpIpLIKhqaSmFBXAkN1L4nvExISpPmoFyTit0g305fFq8Fa9aUZjZP50yINU2ws/RhtNhsnTpyQ2vrhw4dlcEpYRWIRCLeCqJ3IyMiQwbnU1FQJqSEY8MaNGzl79qzUjNQ6B7E4KyoqOHnypFMluWjgI6yV+vp6amtrZVqn3W7n2rVrGI1GGQhsbGwkLS1N+oPFZk1KSiI9PV1iCB0+fFhq893d3XR2dlJTU8PIyAg9PT14eXmRn59Pb28vPT09MrAufOWNjY10d3fLNpTh4eFkZ2fLStny8nKOHj0q30F3d7fcnA6Hg9bWVtLT0+nr66Ojo4PW1lZZ8f3UU09x+vRpvv/97/P6669TVVXFrFmzMJvN+Pj4kJiYyBtvvMHo6Kj0iwtX2IoVK3jmmWe4cOECr776KhaLhcrKSr7zne9gMBh4+umnSU9Pp6SkhMzMTFmYNjQ0xLx588jKymJwcFBmQhUVFREaGkpXVxdjY2NS4Il0z+DgYI4fP86+ffsYHh7G39+fgoIC3nvvPdasWcOiRYtk7CAmJgYfHx/Zn9lisdDZ2Ulzc7NkdgUFBcyfP5+VK1dSU1NDcnKybLO5ePFi1q9fL2HOk5KSSEpKYuHChcyfP5958+bx85//nF/96lcSYbekpITY2Fj+/M//nMzMTIaGhrhx44asAXn11Vc5e/YszzzzDBaLBT8/Py5evMhPf/pTIiIiGB0dZc+ePQwNDfG1r30NHx8fmpubpUstLS1NBnhnzJhBdnY2sbGxDA0NOaVNb9q0ia1bt0pUVpvNJve/r68vGzZsYMmSJURGRnL06FGZ6ZWWlkZAQAC+vr5s3bqVxx57TMaGzp07J5MRjMbJhAS7fbL51/Hjx2lvb5ewMPCRC0jlGTabjT179rB3716Z/iqyDl25guLi4mRmn+AxQlmMj4+XKeDi2by8vCR0iVrt/aHHw22bUE+WQ6PIVnLxXb2maWnuLnonZDAYvgM8AVz58KPnNU074ukcAdkt3CmAE9iXGisA97gkanaSXrqrFoaaoQQf+f3154hmP0JrsFqtMoYhmImIZ4yPj0tcHzW3Xr+Y6j5EjhSCQb1WaWkpXV1dJCQkyArVvr4+tmzZgtVq5ZVXXmHp0qXk5ubKLA5fX1/S0tKorq6mrq6OpKQkUlJSMJvNspJcpN2J1M7du3ezfft2WltbpUtGFOMBTufFx8fLWIMw8ffu3cucOXMk9tGlS5e4du2aU3FibGwsISEhUlMKDg7mvffeIy0tjeLiYmbNmsXMmTPp6+tj+fLlMgukv7+fZ555hr/4i78gNzcX+MgKElqeqGL+xS9+QXBwsAQ1FNXoAoaivr5epswKZN0VK1bIwq7g4GDS0tIkg6ipqcHhcODt7S1belqtVlpaWjh58iRf/vKXCQsLo6ysjICAAAYHBzl//jw3btyQ8YW4uDi53sbGxjhw4ABf/OIX8ff3p66uDoPBwLp163jjjTeYMWMGPj4+xMTEAJPxlXPnzrFu3Trp3hPouO+++y4HDx4kOTmZ2NhYJiYm2Lt3r6zBWLx4Ma2trSQmJuLv7y9RcPft20dERASpqamyt4Kfn5+sTDeZTOzfv5/8/HwOHz7M0NCQTLkNCAhgeHiYRYsWyfd64MABaakBNDc3y97nixcvlpXt7e3tzJs3D7PZzOuvvw5MFvxt3LhRFhw6HA4iIiIoKirC4XCQnJwsU0iLi4vJy8ujubmZJUuWyMI1wQeERi+6JVqtVhoaGmhrayM8PJyxsTECAgLo6upi27ZtLnmGiBWJDDrheRDXb2pqklagylf0LQCE0ifSbtV76e+rIr4KXqJ6O9TvVL4hrBg97PjtWg5u0fqAGR6+uxv0fzRNW/jhj0fBAEhtSrhTRGVndXU1aWlp5OTkSBeMqyIT1Zcvfuu/V9Ng1bQyo9EoC4P07qScnBwZ7BX+RSEQrFYrFRUVEqlUwByouPH6RSLG0dDQQENDg1O2g9E4mVmxbds2MjIyaG1txWicBAQEOHr0KDt27MDb21tmaAAymC1QYYV7wm63y8yi1NRU5s+fz3e/+136+/ulZp6QkMD58+d58sknOXv2rCzcE2mCdXV1HDhwgPT0dDZs2EBPTw+1tbWEhYURFBREXFwcly9fJioqSoLaJScnMzIywuHDh7FYLLS0tDBv3jz27dsnhVNeXh7z58/nxz/+MTU1NRw/fpzGxkapyX3/+98nLy+PxsZG2aK0srKSiYkJTpw4wQsvvEBJSQm+vr6EhYVx5swZacHApK95ZGSEy5cvS793T0+PfB8Wi4X8/HwmJiacqsS7u7tZtGgRMBno3bt3L4cOHaK/v5/HH3+csbEx3n33Xfbv309AQAAWi4UbN27w/vvvA5MKzenTp/nGN75BS0sLBoOB7OxsGQz94IMPSExMZHBwkOzsbL761a+iaRq9vb0MDAzI1NFXXnmF73//+3R1dcmisffee49nnnmGxx9/nKCgILy9vdm6dSt5eXnMnDmT8PBwhoeHSUxMJDU1FW9vbxkobm5uJiEhAU3TJMbT2rVrZU9pkf4sOtudOXOGkpISCb64e/du9uzZw9mzZ2Xw++DBg7KLnhAM3d3dTt0Lz58/LyuPRc2ISHoQcxISEkJUVBTz589ncHCQ559/nhdffFECZ4rWrzk5OU58oKenh+DgYNra2qSwEckao6OjXLlyheTkZJnMIPbtmTNnqKioAJCCSBR3wke1Q01NTTIpQuzblpYWmakkoD7EHjYajaSkpDgVfqoZTMKSV4PY+nioitIgvALqNfSCwV3gWpAn4XDMYDD8wKDLjTIYDN/lQxC+Twvdf//9FBUVERkZycqVK1m9ejXbtm2TrhWQkXnCwsJuAucDZ5eQSqp2L/oqCxIumoyMDJcNxO12uwxqw2Qlo2pC2u12oqKiZMWmqBUQ9xTBLNWlBZNVqpGRkU4FLWKMQohkZWVJC8BoNEp/vsCcEdqwCGSruPNqjUh1dTUNDQ2YzWa+9a1vMTw8zPbt2zl69Ci1tbWMjo5it9s5ceIEg4ODEjM/IyODLVu2yPoN0fPA29sbX19f4uLiOHr0KP39/ezbt499+/bJXPhTp05x6dIlDh48SEhICJcuXWLHjh309vbK1F6z2czf/d3fkZGRwcDAgAxOHjlyhJKSEqxWK15eXsTFxclsMQEvIWIxPj4+REdHc+XKFeLj49m1axcWi0VCWz/11FOEhYVJlFThV05MTKS9vZ3Tp0+Tnp4u3ZACTdTPz4/09HS2bt1KZmYm69at47333mP27NkEBQXJlMy4uDgWLFggW6iK95uSkiLPWbp0Kd/73vcICAjg8uXLzJkzR2ZUGY1GZs6cSX5+PqGhoRJeWzTK+e1vf0tMTAwlJSUsXbqUf/mXf5GIubW1tWRmZrJs2TJiY2OprKxk+/btlJSUUFVVJetGtmzZwsKFC2ltbaWhoUEyONGpzWKxMDQ0hNVqlQIhOTmZZcuWceXKFebPn8/ly5dxOBwsWrSI5ORkOjs7cTgcxMbGsnbtWgICAmhsbJTWSkNDg0xvBrh69Somk4mVK1fKdNojR47IwLW3tze9vb1cunSJ9evXs27dOlmgWVBQ4FQRLaqDIyMjCQwMlOnJAo7j7NmznDx5UmaaCetrz5491NTUkJCQIN+Tr6+vLGpV97Bw5Yjxi4LHxMREmTEVEhIiFVGRCi8QEwQfEfvQYrFw4MAByQvU4wSTV3mPEETq36riqvIWT+RJODwLRAJdBoPhdx/+dAFxwF97vOqd0/9nMBgaDAbD6waDYaarAwwGw18YDIZqg8FQ/d5777F+/Xqp8QqXizphYqL7+/udUkk9keKXk5lG6kSL8vyGhoabIHlF5oPoO3zmzBlqampkiuxjjz1GTk6OrOgVVk9paanTYmpoaKC0tFQy8eLiYpqamjh06JB8uUI7EBXR4sUfPHhQ+ttFlzhACoa4uDiKiopISEiQgeY9e/Y4QQOIZub19fW0tLTQ1NREX18fa9euJTs7G4PBwLFjxyRuflxcHAaDgYaGBpqamvDy8sJms3Hs2DHOnj0r3X0C6mJ4eJj58+eTnJxMcnIyAQEBPPXUU8yaNQubzSZRVY1GI52dndjtdoaHhzl58qSETdi6dStLlixh1qxZ7Nixg8jISI4cOcL8+fMpLCykrKxMMrucnBySkpK4cuUKy5Yto7y8nPz8fObNm8eTTz4p0wwXLVpEWFiYBIprbGykv79fbtKUlBTWrFkjG94DEssqPj6e2tpajEYjoaGh/P73v8disbBz504CAgJoaWmhrq6OmJgY5s2bx3/7b/9NaqDieUtKSpg7d67sCfHggw/yH//xH/zmN78hKCgIHx8fjEYjGzZsoLi4GIvFQm5uLhMTE8THx7NmzRo2bNjAz3/+c2bOnMno6Chnz57F29ub0tJSvvzlL3P58mVgMo4guqht2bKFJUuWyGcQmW0C9mJoaIgDBw5QXFxMcHAw+/btk30y4uLiyMvLY9asWfj7+5ORkcFDDz3E888/71QVL9Bsr127xhtvvEFwcLDMxqmtrWVkZES6fZKSknj66acZGBgAkCgGwcHB0hKNjY1l4cKFxMbG8uCDD7JkyRLp/lWhL0Tsr6KiggMHDjA2NobRaJQZgRkZGSQlJcljW1paSElJYcWKFWzevFnuoe7ubux2u5NCqBajAk6w/qpnQdxTHGuz2WRatYjjqXtYZBeuW7fOycWsP064pkTtkBiPHrRP3FcRILcec5AHGAyRQNKH/zZrmtbj8YRpkMFgOMYkuque/gaoZLIaWwO+B8zRNO2rnq4nOsGpJepqhF/EE1St3FXGgCA11QxuzkQSn6td49QcZDWO4OXlJSGD1fuI38KktdvtslOX8IOK74VP12QyOWUdiWcQ41VjIXa7ndraWpKTk6Xv/syZM1y9epW8vDyJmCnOra6uZnR0lPb2dlkboc6h2KwCHdXHx0fGEETRWXJyMmazmYqKCpmxJGIxQiMXfSXEvNlsNnp6emR2SEREhKx5OHjwoMxKEllXALt372ZiYoJHH32US5cu4XA40DRNCgWRJiliC2o/4rlz58rmMqmpqURGRrJ48WLpCxf9jkUq7AsvvMDSpUuZmJigtraWz33uc5w+fRovLy/+//a+PK7K68z/+yZ4FbwqIiiioiyyqIACRjRuMVaNsf6stU62ZtI2004zTSfTdtpp0iXttDPTJW3azJimccY0NYm1xhpLjLsEEVQW2VRAFEFZlEWWC8qF9P39cXmOzz2c973vveCSlufzuR+4733Pfs6zn+eZOHEicnNzMXv2bIwZMwalpaXw9/dHSEiIiIh64MABtLS04MUXX0R1dTVGjx6NCRMmYMeOHYLrdDpdbrmTJ0+GzebKuR0TE4P77rsP27ZtQ2RkJGpqagSCKC0txbRp08SNbUKWjY2NGDNmDJqamlBaWoobN27gxIkTeP7554Ut7saNG7hx4waSkpIwc+ZM7NmzB6NGjUJ9fT1GjBiBxx57DGVlZZg8eTKcTpffPdlbJk2ahB/+8IeYPn06Hn30UURHRwvjODE2FCbl3Llzov60tDQcPHgQdrsr+u7Jkydx8OBBDB8+HJ/73OeQl5cnwmJkZWWJ2+ChoaFoaGgQjENpaSl6enowZ84cHDt2TNwBofzSFPpm3LhxSEpKcvOo454+PT09aGtrg7+/v3ATdzqd4t5CaGio8HAjeyLVVVxcjLa2NrFPKEPiM888IwgReQ3FxcVh9+7dYt3IMM7zwx88eBAHDx5EZGQkHnvsMRQXF4v7FzyPg3weOe7iOaodDoewZ3BcKNtNqezw4cN9yiGdrPyhD3RdLzD7fTBA07RpANJ1XZ9l9h4RB0CtSyNVBB34HTt2CFc0bkQio42cbpC7hQEuI50qZARw89IKvx5Pi0Mun0b18jy4vM69e/fixIkTIqOaTNh4CHJ6tnXrVoSEhCA3Nxff/OY3hdFt+/bt2LhxI/Lz8/td4gFcxIi7u9HckUGacirHxMRgz549iIqKEnl/KY2j6rIOJ6r0d+fOnYIYcOS/fft2TJ06FefPn8eGDRsEUbHZbMjMzERXVxfOnDmDwMBAcaGPkF99fb0I+Pbyyy9j9uzZaGhowJQpU3Dp0iXExMSIcCHTp0/H5cuXhTPAmDFjEBERgdOnT+PBBx8EABw6dAhz5sxBeXk5xowZg7feegvjxo3DU089JQgyqYUo4F56ejpWrFiBoKAgbNu2TSSd4aqA3/72tyI0SXFxMb72ta8hKytL5KROSkpCSkoK3n77bYSGhuLy5cuYOXMmUlJS8OabbwJw3Zq+evUqFixYgDfffBMjR45Ee3s7Nm7ciKamJkycOBGlpaUiTtOYMWPQ1tYGXddx+fJlzJkzB2PGjMHPfvYzfPKTnxS6/aysLOzfv18g5n/8x390031XVlaipqYGEydOxKVLl/D000+7Gd8vXLggvHS6urpQWlqK++67D6tWrcLx48fhcDhw48YNJCYmYuHCheKugqZpOH/+vCAuAETehoCAAJEnYsqUKXjvvffwb//2b7h69SquX7+OBx98EA6HKy84ne28vDy3UPnXr1/HsGHDEBERge3btwsCTPuH8oY3NDSIM0lOFcTo8PNM+5xsLiqmsqWlRZQtKirChAkTcPXqVYGLKHkQnevMzEzhik1njzQWsqFZDhPEzxpnaDmukHGjpmmGBmmzG9Ivmfymw5UdbtBB07SJuq7X9339FIBSq2VVg6dnRATtdvecD31tincrKytF9FZOfYkjoDwHKqM1ALGBVF5PFNeG3M1mz57ttrhkaCKVGC3+qlWrsHDhwn6EgY8xPz8fw4YNEzpP8lgKCAgQZUi/CUCEqoiNjRWBvwAXIaLxy5uXkDnFeaK6Ll26JDg3AGLjE/K02Vw5NNra2oSfeGRkJFasWIGqqioh+tK7U6dOxaJFizBz5kycP38e7e3tYpwXL17E0qVL4e/vL8KHz5gxQxjSf/Ob36ChoQFPPvkk5s6dK3Ifk/0BcEUJXbBgAQ4fPoyFCxcKe1VsbCy2bduG2tpazJkzRxxESiXa1dWFhQsXitDMtIY8WTzgip66Z88eJCUlITY2VnChdH+jt7cXV69exfTp0/H5z39eqAyrq6vhcDgwYsQIEUV0w4YN4jY5GYDJlZEkrEuXLuG5556D0+lKt/qLX/wCkyZNwuXLlxEZGYnGxkbMnDkTMTEx2LlzpwjFERERgaqqKmzcuBFTp07F888/Dz8/P4wZMwYrVqwQHjwZGRl49913ceXKFaxcuRLJyckIDw/H8ePHcePGDdTU1GDz5s2ora3F448/jjVr1gCASH7U1taGVatWIS8vD4sXL4bdbkdVVRUSEhJQUlIicj1EREQgKioKly9fRkBAACIiIsS9GdL9R0ZGYuHChUhKShJJjSj6MAFJiuTanZ+fL8Y6adIk5Obm4uLFi+jt7RU37SMiIrBz504h+RQXF6Orq0sE6aOwGfwOFM//Qpw+3W6mvWC320X0BYqDtGLFCoEj5PzVFy9eFB5OhLdIHcYD9AE3o7HKXo0qwsBxlBVjNGBBrXS7QdO03wOYDRcBugjgS4xYKCE1NVXPzs5Wik2cuqomjXsBUBkVteUculEwPt4ecVjy75yr4PWSzYCSitAm46ojknjMREz+vtPpunNAl2W4BEWImBA4zQEhBFKFffjhh6iurhZeT6RG4jYMau/EiRMYPXo0oqKisHfvXqxatUokPiH1UVxcHBwOh1D/+Pv7Y8GCBXA4XJFG582bh5qaGmzYsEGosfbu3YtZs2ZhwYIFIoT41KlT8eCDD4r5u3z5MlpbWzFx4kTcf//9gnMkIye5CBMEBQUJVVdzc7O4IUwI9dKlS4iKisKuXbuEm2ZrayseeeQRbNq0SUhjXD2YlZWFuro6BAYGYty4cQL59fb2orq6GoGBgUICIEMxRU995ZVXsG7dOnR1daGzsxMxMTF47bXXsGjRIgwbNgyjR48W+ZSdTidiY2Nx+vRplJeXC/fUw4cPizk/ffo0PvWpT+HAgQNobGzEM888g6tXryIvL0+4kZaXlyM0NBRLly5FTU0N7HY7rl69ivb2duHuPGvWLNhsNtTU1OBPf/oTpk+fjnXr1qGyshLPP/88fvCDH6Cnpwfjx48X54G4ffJOoot6ly5dQlFRESZNmiTSoLa0tMDpdOLgwYNobW0VYa9JrbhmzRrU1NQgOjoaWVlZQmIZM2YMkpOTBcdOUmVMTAxOnz6NAwcOYPz48XjqqaewY8cO9Pb2YsKECSL+2cKFC4W6i+7JBAYGwmaz4erVq1ixYoW4BHfhwgURlJJCqZD9iuMUOkfbtm3D9OnTBRHhOOXgwYOoq6sT+axlSYPGIuMt2mN0vikpF501wgvcJV/GPQS8bjO1kqHkoGnaQl3Xs0x+Hw1XlFbLnL0V0HX9s76UIy8bjtjlZ7JNgjyH+K1aFdDEkv6S1AOc66cNQEidhwTmC3P8+HG36Kw2m00Yg8+ePevmgcT7ShIPcHNxuV6Sc7LELZ09e1Zw9zR23hZxQYBrQ1OfKisrERkZiaCgIKSkpCAhIcEt5DW5uPJN+/bbb6O3txfr168X+nHK5eB0OpGeni5sJXTngR86u90u7krQnRVSu8TFxbmpzcimQH1obm7G1q1b8dRTT+GBBx4QNhyewGnevHlwOp3YtWsXoqOjkZycjPLyciFNTJgwAT/+8Y/xr//6r+KS3KlTpzB16lQEBQVh1apV+OEPfygQAPmw0/e3334bN27cwLp161BbWyviO2mahoCAACxfvhzp6em4ceOG6PuaNWtEUMbPfe5zyMjIwPDhwxEQEID09HShUw8ICBB7qa2tDcOGDcP27dvFniLCsGzZMthsLtfqL33pSzhz5gyuXr2K+fPn4/Dhw2L/kGR38uRJnDhxAsOGDcPKlSvFPnvllVeES2RYWBgOHz6M3t5eaJqGP//5z5g1axYKCwvxgx/8APHx8cjMzERbWxt6enpEYMaHH34YmZmZwvA/ffp0OBwOPP7442hqahL2pu3bt0PTNBw9ehQPP/ywm02OwrNER0cLh4CFCxfirbfeEsmOZs2aJWJjkTqYpM6dO3cKuw4FMFyyZAnOnTuHy5cvixSwRCCuXr0qzofdbheZEKOiopCXl4fKykqsWbNGZOXj54oj5EceeQSAy9OPAvqRpLF8+XI4HA6cPXtW3GYmjQRwk0lVIXYeFXbYsGHCFkUONk7nzRTEcvBRnu2S8Euf40uAEunBXK30aU3TfgpgL4B8uC6ljQAQDeABAFPh8mi6K0F28eL6O74Bo6Oj3fIIGIXTcDpdIb0jIyORnp4uOAN5Y3D9JpcMdF1HUlIS/P393dRS/Nq7rNPkxIeek90CcBnE6VBs2LBBvE+ugJxz4WHF8/LyEB8fj+LiYmF7ICJit9uxYsUKbNq0CcHBwUIdQzkFSLVDoi+pSyIjI4WYTqI+IdCysjKEhYWhvLwcKSkpYn6J63vppZdw//33IzAwEKmpqYiIiMAPfvADfPvb3xb2jzNnziA0NBSvvfYa5s2bJ1QGdrsdn/zkJ0X4aZvNJtwTaU3z8vKESi88PFx4xdA7CQkJwu3x8OHD4rLb4cOHERUVJQ7v9773PbS0tOC5554TBsY9e/Zg+fLlIndEUVERgoODBdEnyM/PR2RkJC5cuIDg4GB85StfwVNPPYWJEye6XaD8/ve/j/j4eERHR6OlpQUVFRVunnbZ2dn49Kc/DQBYvXo16urqxC32rKwsjBs3Thh3ictOS0vD3r17xdwQdzphwgQsXboU586dQ0NDg4hGOm7cOFy8eBFjxozBm2++idmzZ2PFihVwOp14/fXXkZWVhVWrViEjIwP19fU4c+YMenp64O/vj40bN2L16tWorq5GTEwMVq5ciQceeEBIpeTM8Kc//Qnf+ta3MGrUKPzud7/DCy+8gK6uLoFQe3p6UF5eLozhkydPRlNTE7q6uvClL31JGObJYE/Z6mbNmiUQ5YgRI9DQ0ICMjAxMmjQJ/v7+mDlzJpKSkrBr1y60traitLQU169fR21trTgvXH3U29uL8+fPCwbFbreLi6O0L4k54yG5aY5VtkeKakD7UxVJVdZGUBIo2itxcXFuF+nIO5Iu/HK1l81m63cB2Ol00jPDwHumaqU+N9INAO6HK5f0dbjCZ7xvJlXcbiC1EjfMykieVDekLpGpspE+jlRBpHunLGtkF+BqJ+DmDWZ+b4Dq4Deagf65IKg82Te4Zw8Zt0pKSsTVen4bnBuquIGdvtOm4t9J1cNjztOckbhP7qjkZkcIj1RWJJ3MmjULp06dEjpikhb4JUDqL49bRcHWCLGTRNfS0oLLly+LhCh0aClHBHFR/JAVFxejs7MTI0eOFEZEijkVExMjIq3SXDc0NAgkSgeb+kQIhTKMAS4VW0pKirjLERcXh61bt2Ljxo24cOECmpubcfz4cXzpS1/C1atX0draipEjR4pkTikpKThy5Ajuv/9+bN68GWlpaSIfMa1VTU0NioqK0NPTg507d2LGjBmIi4tDQEAAjh49itjYWBQWFqKjowNz5sxBZGQkgoODERAQgF/84hf43ve+JwL68YBxFJF4//79uHr1Kh555BHEx8fjrbfewmc+8xm89dZbmDRpEh555BGRM5luKWdkZAip8tChQwCABx98UNwCLiwsxI0bNzBixAhERESgsbERUVFRgujyc9LS0oI33ngD6enp+MpXvoIxY8YIBqW6uhrr1q0T6qZTp05h3rx5OHHiBN5//33ce++9ePbZZ5GRkYFp06YhJiYG27dvx5QpU0TSJGJycnNzMWXKFKEaCgoKEraRwMBAgfyJ6aMQGLJnHe3H7du3Iz4+Xnj40XkjpjMuLg7bt29Hb2+v8PiiPcj3KBEeUsvSWeQ4SMZFRGjoN443+JkmgztpA4zc9YngREdHY9y4cWd1XZ+hes9McoCu69cAvN73ueuBexDIMZN4UDsKcsclCwJ5YbjqhxZW3vC8HLUrEwaVDpCH3ZDVUsRN0I1Lh+NmADzaxJTMRu6zHDmWDGK0ySi8+Llz54TxkKuz6HthYaEb8iJDOhnH1q5dKzYihepYvXq1OEh0AYku+6SkpIhosTabDZGRkXjppZcwYcIEJCUlYcmSJW62FZoX0j3TfYezZ8+6hRnIzs52kxiIw5s7d66whWzfvt3NjtPS0oJXXnkFU6dOxbJly/Dmm2+ipqYGS5cuFa6Rdrtd3GAHgIyMDCQkJEDXdRENd8SIEaioqBAcKwBcvHgRMTExKC4uRnBwMEpKSnDjxg2EhIRg586dIrwG5U/g+4sITFpaGl588UUUFxfj5MmTWLp0KdLS0kToio8++ghLly5FfX09Jk+ejE2bNmHFihXC2+3o0aNCsiwuLhZc56JFi0TUVLqsFx4ejgceeEDo8G02mwi+Fx4eLgh8TU0Nenp6MHr0aME4JCcnY9q0abh48SKmTZuGjIwMLF++HHa7XUTi1XUd58+fF3aiDRs2iPbnzZsnCHBLS4u4ib5r1y7cuHEDixYtEt5iU6ZMQXh4ONasWYPy8nJUVFQAcHmoBQcHCzVWQkICNE0TKUep7oyMDBH25dKlS5g5c6awMeXn56O8vBxr164VBIVsa3a7XTh4kC2E5sRmu2k05k4ZdBZJ60DagaioKHFPgs6mw+EKfz9q1ChMnjzZzT0+MTFRnJfU1NR+oTcI9xABIlDZLDiOY/ccupXIFHehQdoXoNhKKilAZaTOzs5WuqGalePvEaje4cB1fXKobm7glg1QJD0QQif9JN24lMVJ4iIIkfFNQ20R9xMXFyekJ143GalJ4qFyPPord6dTxWmh+SFOkEtLfK65tHX06FHouo6RI0cKrx/6neL6cM8T8kvnBvG8vDyMHz9e+NvztnJyctDU1IRjx47hmWeeQVZWltDRHjx4ELNmzcL+/fsxfvx4DBs2TKSXJHVAeno6HA6HMMjT2PndjoKCAtTV1WHFihV4++234efnh9mzZ4u8FZMmTRL3GoKDg4Wr7SuvvIKFCxeKCKG0JyZPnoyDBw8iJCQE9fX1CAwMxPLly0VdZ86cQUFBAUaMGIFLly7hu9/9bj+pbfPmzTh58iQ2btyIrKwsTJs2DRs2bMDly5eFXp1CPMTFxblFMK2pqcFXv/pVfOELX8AnP/lJnDlzBna7HT/+8Y8RHByMr3/967Db7fjRj36E5ORkFBUVYdGiRSLeFdkoIiMjERAQIGwzZHci43ddXZ1ArMToNDU1YdWqVUIqITdnym2dnJwsuHoCh8MhHAfsdruwE9jtdpHHorq6GsHBwQgMDERZWRmmTJmCkJAQTJ48GZcvX0ZbW5uwQZGNiku+dFZ6e3vd7kiQJM3dvS9duiQkE86I0nmKiorChQsXhFRMHoo//elP8Z3vfAfh4eFC05Gamor8/HyRqnTbtm1uhEnWdHB3Ws4sy/iAcMuoUaMMJQezG9IfGyAuW5YEiBOXkTe/sUgHkuLjGJWjd4lwAHCTTvh7HJKSktwIEb1D3KIcQZHaBlxIjwzbtMAUl4VyPBPH73S6oqNu375d3LLmfSkuLhZ3M2hcxF2TWmnnzp0ijAPdG+nt7RXZ1cLDw8XNTIrfwscDuOwgRBhefvllNDQ0iGTr9C7dMj9z5gwWLVqE5cuXizLbtm0TQdLWr1+PxYsXY968eSLyaUpKiiAitA6TJ0/G97//fezcuVNEtKW+dXZ2YtiwYVi6dCnCw8NF6HGHw4HAwECEhoZi/fr1AkmTPvfll1/Grl27kJ6ejgULFghnAVLtNTc3o7KyEjabDSNHjsSKFStQUVGBq1evYtq0aRg2bBjsdjs6OztF7oe1a9ciODhY3Dr+0pe+JJLuZGZmAnDFdQoPD8fixYvR2NiIhQsXorS0FKdOnUJTUxM2b94s0mpOmTIFw4cPB+DKO5GQkIC3334bW7duRXd3t8hgN23aNEyZMgV79+5Fc3OzUCfOmjULGzZsQFhYGN577z3k5+cjMzMTJSUliIiIEIQ4NDQUhw8fFnagqqoqADc9vhYtWoSFCxcKwhAcHIzIyEj4+fkJ5wWyZZ0/fx5BQUE4fPgwWltbhX3BZnPdJj9x4gRqampw4cIFdHV1iZwJpaWl2Lt3L7Zu3Yrm5mY4nTcDKZJbdWFhIU6cOIHm5mbs2rULR48eFZz8unXrEBISgrS0NDz11FN46KGHEBcXh8OHDyMuLg4PPvgg1q9fL0JxlJaWYs2aNSgoKEB2djbKysqE9DBmzBgh+Z45c0Zw9fHx8di/f79QP9lsNhEtgM7I9evXcf78eSQmJgo72ezZsxEaGoof/vCH4tZ6amqqOKs9PT0ijwklL6I4U3L8JbrBT2eezjOP6kyEpw8nXYcBmKqV/hpAJgxOp9PNoARAmV1JJgzyBlFJGdzwC9zkJrjOEbgpcXBVjtxPnuGNCBDdwSBjHL/Yt3PnTkyaNEnobKlOTvCISPGLbTyrHemVAQiOjhBxXl4eysvLxXM5vzaF+iB1i91uF4bbqVOnCnUP15Vy4kq2FfL0OH78ONra2rBy5UoUFBQIl00CbqsJCgpCQkKCCPf829/+VlyQo3AU5F5MCJv06gCEiySF/khLSxOHe82aNQgNDUVra6twow0MDER+fr7wrnI6naiqqkJycrJQLxFnVlNTg7CwMGEkXLx4MWJiYrBjxw60trYiMDAQ4eHhOHr0KIKDg5GVlYWpU6diy5YtSEpKQldXlwhPUVRUhCeffFJ4Q9H9BVqXuLg4EShu4sSJmDRpEt544w1ERUUJ9VNmZiaOHTuGuXPnoqCgQNgK1q1bhyVLluDYsWM4cuQIlixZAn9/fxw9ehR5eXlCpw+48jFHREQIQ/HChQtx4sQJ/O53v8P06dNx/fp1REZGAnAFuKNsgDdu3MCMGTOQk5OD3t5eNDQ04L777hMxsy5duoTHH38cGRkZWLFihUics2fPHoSFhWH58uVob28X6qRDhw5B13XMnz8fMTExePnllxEUFIS0tDSRNpScTex2u9i7tMfJm472IKmTyD4DQIT6JhsbJXcC4LaH6IxNnz7djasntStJ3YR7uHTrcDjw8ssv45lnnhFOHzabTaiiyfkDgFseD36ZlsbI70FwuyTZ1Eg1bgU8EgdN0/4JwFu6rrf2fR8L4FFd1zdZauE2AE0o0B/JciDkTQZO7t5lVs5ms4kYQ3zRZE6fNgAhXtn7iIiC7IUkG8+Bm3YCbtPgBqiAgAAR1A6A0MPS5Ta6mEN182xX/PINJ3JcuuF2Cxq/PMccyQMQqilKLkJ1EIHhBIHX43Q63YgK5T/IysoS+TViY2ORnJzsdimRq6z4jeWjR4/iscceE9xdQECAMF5u3LgRNpvLJZRCjh86dAjLli1DQkICdu3aheTkZAQGBqKtrQ1NTU2Cky4pKUFYWBgAF6dOKqbr16+jt7dXGKrpvgrF0SJOjm5OX7p0CcHBwbhw4QKefPJJ2Gw2tLe3Iy8vD5/73OdQW1uLcePGoaGhQXhNLVu2DFFRUYKoNDY2Yu7cuUhPTxd3IbZt24bY2FhcuXIFv/vd7zBr1iy8+OKLsNlsqKioQHJystgHFRUVeOCBB4QqhTLfVVVVoampCaNHj0ZCQgIKCgrQ1NSExMRE/Pu//ztSUlIQExODwsJCVFdX4+rVq1i6dCnmzZuHpqYmjBkzBj09Paivr0dUVJQwlk+ZMgXHjx/HjBkzhE3HZrOJi4HkUtve3o5p06YhNDRUrBUh5kmTJmHTpk0YP368CGKXkJCAnJwcaJqG5ORktLa2Ytq0adi/f7/IMU0qZ5nho+9knKUoq2PGjEFcXJywFR04cADFxcVYtmyZCP/d2dmJCxcuiHrIW4uIAXHopCEIDw8X4fTpd8IZs2fPxnPPPSfsPfSMjOs2m00QBarfSCvCzzD9dvToUVRXVyMuLs7N1tp3ng1dWa3EVirUdX229OyUrutzTAveRoiLi9Nfe+01N4QEqG8L8rsOHFQShqzL41KB7AlAKieu7wPc7yrw/sgEgSNuOfMb1a/KKREeHi70l+SBRLpdSkjCXevoIHDuBrBmP+EuuTyeC3DT64JnoSMCRVLXunXrRJwn3nZOTg56enqwePFiYfCbNGkSJk6cCKfTKfzcuWtufn6+uGSWkJCAnTt3Cqnj6NGjmDdvnvAeoVvGp06dwtNPPy3maMWKFTh9+jT27t2LZ599FuHh4cjOzhaX8sggSJf2bty4IW7a0v2IAwcOwOFw4FOf+pRQERUUFIhsd/fddx9efvllLFiwADNmzMDBgwexbt06EYWU4ifV1taKPjidrlAU27Ztw5NPPgmHwyFycZCzQlVVlbjMRvkstm/fjrS0NBHe5caNG1i7dq1QRQIu4/3s2bNx+fJlfP7znxfr/cYbbyAuLg7JycnCnkQcKs3nyZMnsXDhQmGv6OrqEnXV1NTg5MmTWLJkCUaOHImYmBgAwHe+8x1873vfE27LtP50TnJyctDW1oa6ujqsXr3azbuI1B/EAdtsNrS2tsJmcyWW6uzsRHJyMt544w1ER0fj8uXLWLFiBRobG9HU1ITg4GCxR8ggz7lyknopJfD169dFznc6M4cOHUJWVhZSUlKE8wa528bGxopxFRQUCA7/+PHjIhwItU/OH5RetA9vucU+o3NI96joMh3Z16jvnKkl3CXjK463uA1NxinDhw8v03U9XnXmrRCHYgBJet+LmqbdC6BY1/WZpgVvI6SkpOgUY11W96gCUKne4+od+RngWjRK8ylLG3RXQXZRIyMyN9wSqDgZ2hjyzWq5DCH8lpYWN88JwLVxm5qacPXqVWH8Cw8PF7coAbilE+R+2jJRJZAJDPWBv5OXlycuzvHgX1QuMzNT3AzlgcFmzJiBo0ePwt/fH6mpqW7eQWQstdvtyM7OdjtsJSUlwvPjscceE8SDDiYheOCmEZneOXPmjIj1T+EdKEYQjYnai42NFcZOWkcyEJJ75KZNm/Dcc88JQ2RTUxOqqqpQU1OD559/HqdOnQLgiuJLt7/5TVtytQ0NDRX7z+Fw4M0330RsbCzmzJmDrKwsjBw5EufPnxf5L2gtqM+k9kpLS0NbW5uIpZSbmytiK4WFhWH//v04d+4cVq5cieDgYCQmJgrD7Zw5c5Ceno6xY8cK5EqxrigZEd1Q9/PzEx48mzdvFvchKHXrxo0bceTIEQQEBKC8vFyEsaagc7SPiNDTXiGniJaWFqEyowuYfI/m5+ejsbER27dvx9q1a3H58mXY7a6Q3jU1NSKQItmzAOCnP/0plixZgkWLFok+UD/4+efttLS0oKqqyi2ZDgBBPMmle926dSgrK0Npaambesdms4mYZdxOV1BQgMrKSmzcuFGceX52eP+IOSMDuCz1kMusrAHwpFHRNM3whrQVg/Q+ANs1TXtQ07RlAN6B62LcXQOyCga4KXbJum0yYsrvARCcCn9G78+YMQM1NTXCOEz1cVUV6SltNpe7KOUNkI3U9A7gvnjUpizV0DuENMjoZLfbhY6TG7lXrVolbipHR0eLW5Q2m0245ZFaifJLU92ykaulpUUkMyHjOTcq0/xERkaKNIR094GSmdjtdixfvhyPPPKIMMDRpSEAqK2tFRw6XR4sKytDW1ubuKiWmpqKnp4enD17FgkJCXjqqaeEEdZutwv/84sXLwpvnIKCApw9exYNDQ2orKxESkoK7HY7QkNDkZGRAafTieTkZNx///2ora11m2ciDGVlZbhx44bQc9vtdsTGxiI9PR0tLS0IDw/H8uXLERoairlz5yI2NhaNjY1Yt24dwsPDYbfbxe3suro6EVo+JSUFS5YsQUpKCpKTk3H58mXk5uaioaFBJC8KDQ3F6dOnsXXrVjQ0NGDmzJnYsGED/Pz8cOrUKbz55pvIzMxETk6OCPPucDjE5bSXXnpJBJqrr68X6qg1a9Zg5cqVgksmtUV5eTlKS0uxdOlSFBQUCAK4bt06odq7cOGCyOTW29uL//zP/8SuXbvw5JNPYsqUKcKmRxn0xowZA13XERsbi7Vr1yIgIAAOh3uSKrIF0Bh0XUdNTQ3S09ORkJCABQsWiLWjc0frEBISgvXr1yM0NBSpqanYsGEDli1bhqeeegpz5swRKuedO3cCcN2QpnS2FN7a6XR59VBQwK1btyIzMxPZ2dnIz89HVVWVuBE9Y8YMlJWV4cSJE2hvbxeqnnXr1qGmpgaJiYki+yHlgWhoaEB6ejpqamrEGSLbiBxtgZ8dFXN4/PhxYUcgVTNlxXM4HG7OHzTPMvB9DleYIiVYIQ7fgiu5z5cB/BOAQwC+aaHcbQMj6UfWbfNFUL1H+RnoGU0+IVXihGVCQ8iODM+k8jFqj4DqIG6CDFMcQdMCU8IPAG7xlUifzxG40+kUSJgCCNpsNuTk5Ahp4/jx48jNzYXN5jKiOZ1OvPHGG9i+fbtA2rIRnEszMuENDQ0VBmhN0wTyp/7I9hOKEMvdRF9++WWh+6a0lGRXIaQTHx8vAq0RUaDfSVVks9lEwvgJEyZg7969YkwtLS04fPgw1qxZg/nz5ws3wmXLlsHpvJl3o6enB+fPn0dqaqpQVxUVFQludvz48cLNNTAwUMwX+fMHBQUJ6S4/Px/19fVYvXq1W5IXwCWFlJSUIDExEfHx8di2bZvIldDU1ISIiAjMnDkTq1atwu7du1FSUiI8fGguKdnU+fPnMXPmTMyaNQsrVqzAypUr8etf/xrnzp3DqlWr0NDQgPr6eqSnp4vyBMnJyUJVFh4ejq9//euC0yWiUVpairi4OKSkpGD//v2YOXMmJk6ciN7eXpw5cwZRUVFIT0+HzebKyexwOATiJy+gyMhIcVOduHLi3OmOx4QJE7B582aMHz9e7BliNAgBNjQ0YO/evYiIiMCUKVOQlpYmbuPn5+cL4kLMBnn5PPjgg5g/f75bbnSyTdENcfJqSkxMxPz585GSkoLU1FRxpuPi4nD+/HkMGzZM2BXPnz+PGTNmCKQfEBCAWbNmYerUqbhw4QLGjx+P/fv3u7mp0tgyMzMFkaK7PCQ5cCKamprqljuazkBqaqq4jzFt2jScPXtWecGW2iCcU+hrDmm3lzTNH644SuUeX74DEBcXp/PLYEZgpF+n53SZiksGqvsHANy4da6f5iobesdMny/He+J5pqlNunFNKiqV2ou4KVX8KArnQflwAXeCScSJ+1Orbm6T2MtvffK6uCqPOEEeX4p7V+Xk5ODEiRMiGxfZGzgRofWgkCWkPsvMzHTz+qC5otu7lOt45syZIoAe+YhPnz4dsbGxQs9LZSnmFfdrp3Xmuu+ysjJ0dnYKFQdvv7CwEEFBQSIelMPhwN69e0UwQLIN8bkj9RWpI3NycjBp0iRUVFSIoIFjxowB4IrnRAZsug9BGc+Am4HZqD8Oh0Pknli8eDH27t2LixcvCg+lmJgYwdmTQwCp5Pj+JwkGcGU/i4yMFHaXjIwM9PT0YM+ePfjud7+LgoICbNq0CV/84hfR1NQk7nvY7XZhOO7s7ERVVRV6e3tx5coVPP744yIh0z333IPly5dj2LBhmD59OlpaWvqpW44fPy5yefNkPoAL0TY1NSE9PR3f+MY30NnZiaSkpH7ry/c0/U+hWr7//e/jhRdeEGFCKGAkZwwpZ4ndbkdubi7a29uFKzTNPZ07upVP60J3FWw2V67ro0ePYtmyZcJOQSFDeMgLbqfjNhuVdKEqQ3NFXpVU3iyHtBWbw1oAPwNg03U9QtO02QB+qOv6WtOCtxHoEpwMsu6QwkoAxjYH/ptcB0UsraysFAl5SBfodN4MzSHXISM9s37Kzwl4SAz6jRAutS3bDLgdg3v2yGoubh8pKytzu5zDVXJOp1NcTKNQxmR/4cSJGxtTUlKEPYaS6FDClPPnzwtdsUyQ6cDTGLu6ugRCILdYygFRWVmJ8PBwlJaWorKyEsuXL8fBgwcRHR0tbvTSbWmb7aYxkvrl5+cnPNioza1btwJAv+TydDmLpBpuT6qsrMSWLVtEeOfRo0fjo48+Qnt7O775zW8KYgJA6I9pLWgv0Y3uvXv3YuzYsWhvb8dzzz0Hm82VapX09YcOHRJeTBTKgiLhHjt2DPX1rkDGa9euFTe4d+3ahZCQEJEHmmwINpvN7eIYRywNDQ0i94G/vz+uX7+OjIwMPPPMM9ixYwcKCgqwdu1aVFVVYdSoUXjyyScFkXrppZfwpS99CRkZGcIYSxKLruuYNGmSyA1B0rDD4cDly5cRGBiIbdu24ZlnnkFQUJC4uArcvGTJGRjaM8ePH3djRCgsBtXNjdN8vXmIjIiICISHh6OhoQEXLlxAW1sbamtr8cgjj4i9TbYRWkOSuGl9aK/RLWvaQw6HQ6g8/fz8cP36dcyZMwd2u93NcMxxiBGTamZL5bjn+PHjOHLkCJ599llh6KfzZpbPwQpxyIcrd0MGeShpmlas63qiacHbCDzZD4HMsROy4gvF37UidRCyI3ULd6cE1PGZqBwAZdtyH7g0Ii8+NzZxxM/Dcst9IamGI18KJkj5H+g9QlAyoud9lBEs1bljxw6RIIm4Ex7am4+P+qdqk/6XY0pRf1566SUsXLhQhOumEBGHDx/G2rUufoWIBR040qtz5oDGTG3KdzaoTT5+ynQWFxeHmJgY4VlD6pcdO3Zg4cKFuHLlilBnhYeHCwLFs+xR0qKamhr4+flh48aNKCkpEV5OXV1dbrfCq6urRZ4LmsejR4+KvA67d+/GsmXLcOrUKbz77rt49tln0dbWJtpISEgQnla6rgvDJiFEMjRHR0dD13WUl5eLoIP5+fl45JFH8MADD8DpdGXHe+6557B9+3aEhoZi9OjRmDFjBtLT0/Hkk0+KOcvMzERaWhqOHz8Of39/N+LT0NCA1157DZ/73OeEB1dQUBByc3MxYcIEcdeB9ge5IRNS5THSOLPDiW5xcbEIqvfII4/A6XSKLHcNDQ39kO3x48dFCBGZSeFngc4Pua/OnTsXLS0tIu7aiRMnkJWVhWeffVbELqM6duzYgWXLlmHPnj3CO4vuF3GpXIXk+dnn54LG3dPT44Zj+BhI1ex0OoVHnifiYMXm0KvrepuF9+4YyASOJk9W5ZDBWAZPhIHqpOxUPBGQTFhoQWTu3IwIcz0gT3dKKix6h99+5OOjcZEUQ7ejqQ/8f8B1h4H0qHS4du/e7eZ7TX3gddCNbWqbDrrNZhMJgujA5efnu90/oTq3bdsmQnKTsZ7G1tLSIm5m0613h8MVU4o297PPPityBAOuG8WXLl0S7ZNtqKamBgDc3BJ5Uqfs7GxhiOf2JPKeeuWVV3D06FHk5OQIWw1525ABmewOdEjXrl2L8PBwzJ07F+Hh4XjqqaewcOFCTJw4Uejz+TrU1dVhw4YNQjqh33RdR0BAAAICAsQt5dWrV4vge9nZ2XA6neJ+A7Vtt9sREhKCf/u3f0NRUZFIJbp27VokJCTg8uXLSElJERE9SX9Oxl7K5Edh2mfOnInU1FQ8/PDDGDNmjMjD/dBDD8Fut2PEiBHiolxRURFu3LiBgoICIUmTOmXx4sWIj4/Hrl27xFxeunQJiYmJCA0Nxbp167B37144HA60t7fj4MGDIlz31q1bsX//fkydOhWAK24VJZ8iIkN1kkoYcKkDyW61Zs0asccpHS2/Q0DnaNiwYW63mbltqKSkRBjMk5KSRG5p8hCqqakR9rCAgACRj1yOSLBs2TJcuHABU6dOhd1uF4QhNzcXBQUFIhaTjB/4WbTZXGH1d+7cKRjPxMRE+Pn59TvrNAYu4VrBd4A1yeF/4TJC/xuATwP4KoBhuq7/o6UWbgPIaUKNdPwyd25FYuCg4qRl24SqXpUeUAZ6h6g6R6qyPYKX4dwNRzBc5dTb2yt09LJ/N48uyTl3lU5Tll6oHF3643GdcnNzERUVJfScNH5OgLjkRe3Lqj+n0+k27pycHJw7dw7r169HQUGBuCHLbSNEVOkSEuXyJQTK35FtKtQGuYLSRTDSV8trSLegw8PDhdqEUqXSRSrK7UB1khoOuGm7ysvLQ1dXF2JiYgR3T+XpolpCQgJ27NiB4OBgNDQ04JFHHhFh0SmQIoUJIbsMufuSWi8xMVHMBZfaaK+Q4ZVCZixcuBCvvfaaiKckS4y0L0tKSnD69GmR85tyavT29iItLU2oUnp6elBdXY3ly5dj06ZN+MQnPiFSfJI9id8y3759O95//31s2LABK1euREtLi7jg5nS6QrQQ8ScVFI/JRVKbpmmIiIhAaGiosBeQVClHWOVME+1ZrorJyckRFxzJzZrf65HtclwS37ZtGyZNmgTAFe/piSeeEL+RGzepq7gqmtaJ5vuFF17At7/9bYSHh7upxozUwipcMxhqpQAALwBYAZdlex+Af9d13TAO+O0GWa2kQsCyuobr7AhUOnurxMMM6at0h6q2gJtisZFhmxA6Hw8At2TqNEaeG5rGR+2QjppHPwUgOBHiJo36T4eZEK3D4Qp+FhUVhSVLlripamQ7h6wKIDGd+7FTezwpOzfskaohJCQEK1eudMunQWPnRnxZLAdu5kOW9wDVT2V4f48ePYrDhw9j0aJFGD16NGw2m+BGx44di8bGRqxevRrl5eXQNE34sXPiTTpy2aEgJydHZN2z2WwCITkcrlhIkydPRmFhISoqKnDp0iWkpqais7NTSB4NDQ3YvHmz8BrjSElF5GleeKgWmheau5aWFvzpT3/Cl7/8Zbf+E0Lk9R89ehQzZ84UKUCBm/nAa2tr3caVmJiIN998U2Sx45n3goODERISIu5YBAYGIjg4GMOGDUNPT4/Ijw1AOFBQ3gZSHwGuBEyAy7uP7FHkkJGTk4PTp0/Dz89P3K7ne4PUohRJmC5p0pkjVVl8fDzefvttxMbGijNDZ4ju5NDlS5kxzcnJwZIlS9zm3Waz4cMPPxQaAVIxORwOcVGRbG881zy/oCrjAxkXcVwybtw439VKuq536br+gq7rc3VdT+37/64hDCqQDwK5bdFB4CoEAP1UMdzVSxbxVGBGGEjEpn7JhCE3N9fNH5m4EwqIx41TFCqbXF2J08nPz0dnZ6dQ1xQVFQlDLQciJLm5uSgtLXXLIMXHSpykw+HoF8CPCMPLL78Mh8MhuMgLFy4It0bgZghwzhnn5OQgOztb9IPGHB8fj56eHhEMMScnB4cOHUJ+fj66urpEvKCioiIxF5WVlVi8eLHoH80rrWtlZaUwsHOpiCAzMxM7d+5047yorpaWFhw/fhwvvfQS3njjDbEv6IJdSkoK/P39kZiYKKJ6rlixAhMnTsTq1auxZ88e9Pb2Ijk5WdgSKIQDXTYjPXBubq5IXZmSkiLuggAQareamhpMnjwZr732Gnp6evD5z38ezz77LE6fPo3ly5eLOeHuxMQg8L/8HLz00ktoaGhAcXGxyGvhdDrx4YcfoqSkBI2NjWhpacH3v/99dHd3izXMy8tDQ0MDSktL8eabb+LPf/6zqKu8vBwvv/wycnNzRSjyJ554AvPmzRO3nu12OxYsWICgoCA8+eSTmDVrFjZt2iSMv8uXL0deXh46Oztht9uxceNGEQYjISEB9fX1OHnyJCIiIoRKzWaz4cqVK5g2bRqcTqdwT37sscfw2GOPCfdScjoAgJEjR2L9+vVucdII8vLycPz4cZSUlMDhcIhYS1zaW7x4sfCWi4qKQm9vL3bu3AmHwyESZFVWViIiIgK1tbVi7olJ4FIBnU1SHY0cORIJCQlK2wMBv1BH6jRVnhmOi7hbLOESmNAAQ8lB07Q/w+SCxN3kraQySAM3kS9x4CQSkpGUODMCziFalRyoDdmTiED+TS5LfeCqHDlZD+8P5wY51+Z03gyvzV1GSZ/Z3t7uZpiTY9IbEUEeVpyL1g0NDQgKChIcMCFP4s44x0JjJW4MgFuMGC6t2GwuY21lZaUw2HH3Qy4tFRUVob29HQ8++KD4TZ5/chUlrykS9SkZTENDg5vnUkREBF577TU8++yzbtw+heKgcBRRUVHQdR2ZmZlYsGABhg0bhjlz5iAoKAgHDx5Eb28vRo8eLUIu9/T0YNq0afjxj3+MF154ARUVFcKNl7LS9fb2ivAeNF4uvVVWVgrjLalgNE0TXDk5SRw9elQ8o7sWu3btAgBh+CVjMakofvzjH6OiokJEIyWVT3NzM8aNGyccAMgllEKPBAQEYNKkSaitrRWeT+RoQDefKaUpqWEISL2TlZUl4hJRpFd6j8cra29vxzvvvIOZM2fiueeeA4B+Tg9cYs7MzOznFsrfkZ1KOAcPuKTEgABX6CHK7W6WmIvWiy6CkjR26NAh5R7lZ4sn5FI5o/B9T21QyBgqw3PM87pl1RR3tx01apRPksPPAbwEoAqusK6U9McBYFDzRg8UzC7BcQ7c6XQKDxBejiMBfqPQiDDIiJSn+SPkTsTKjPoTxQcguAan0+lmOKW6OOdBG5w2EXAz/Lbdbner0+FwICkpCQEBAQJZ2O2u/LhlZWX9JCY+HzbbzbDiTqfTLW8uGXw5x7548WJBGPgc0ea22WyIjY2FruvIz88XkoKu625Zw9LS0vDEE08gPDxcbH4q39LSItxM586dK5AWcUXyOFJTUwXXR4mTAJdRsaGhQXg1kZG+qqpKJJ+hds+ePYvVq1cLLjQhIQFz5szB8uXL8dxzz2H27Nk4fPgwtm3bJgzfNTU1QooiFcvVq1fxr//6rzh37hwOHjwowo0sXrwYGzZsEGktv/GNb2Dz5s1u+8TpdKVnDQsLE4bdtLQ0+Pv7i9zcRKTPnz8vLgMeOnQI5eXlWLduHTZu3CjWjYIYEodNCMPPzw92ux2RkZGYPn06WltbMWzYMEGwkpOTxZqQTeby5csoKSkRdga6KX/u3DnYbDZs3LgRGzduxNmzZ5GTk4PMzEyhlz9x4gT8/PzQ29srLm/RRba8vDyEh4cLl+lly5bhJz/5CZ555hlxps6dOycYJC41ksowISHB7a4Nt7XJki3tH5JQKfggXTAjQkBnmwgLnXFOGHia4DFjxvRTH9tsN5Nn8TNPZ5luTstS/ZkzZ4Q7N91Cp/pIRUznNj8/Hzk5OYKoOJ3uTi19a+77JThN0zJ1XV/s6dmdhPj4eL2oqMiUy+d6NpWemb9nJjVwvTvn9uU6eL2e6uRliBuRdaCyvlJ+pnqXPH3Wrl3rZiCT9d1yuyrDN2+X2z4A93sc/B3ZBpCfn4/z58+7cZDEjQYEBCjTldJ8E8eWnZ2N0tJSoSeWf+eEiICyZ5HRmDhJymnM/dezs7Pd8vAmJiYKiYhUUOTGSgTW6XSKi2ERERG4dOkS4uPjBaK+fv06dF1HREQErly5gubmZpw5cwZf+cpXANwM4kheT3v37sXChQvd5heASEnqdDpx4cIFREZGorS0VOT3JoRw+vRp4R11+PBhpKWlITQ01M2uUMhihZHxksZH3DsZ2GfNmoW9e/di2bJlwn2X7lTQZUKuutu8eTOefvppsRak/6a9sX37djzxxBNwOm8aqSk7HkmOZJj38/NDVFSUmAvuhk11ygZcaockEx7LS45dRu9yRwjSLtBelHPE8zmkZ5TEZ+/evbjvvvvQ2trqFruM94G70NI54tICnVtuD1RJPLR3OE7iY6K9TGeLzpskOQwo2U+IpmmR9EXTtAgAIRbK3TYICAhQqhT4/6TvJ46BL7D8nkyteX02m03oi8n9UoWcuRrIkw2DbzjuPsf7I/dN/p1LGWSTsNtvxnfneRto/ByBUrstLS0iSY8MVIa4M0IKW7duFe6E1Dc6ADzqpaZpgtuhtvPy8sRBB1yGNC66OxwOREdHC25uwYIFgtOlcfPwINu2bRPPqX9lZWWIjo7G+fPn0dPT4xbYj8I00xqkpqZi8eLFWLBggVChLV68GBs3boSmaSgtLUVFRYVIP0lIKSgoCLGxsdi0aZOwkaSnpyMqKkqEot68eTOmTJkiVB3kvdLS0iIImNPpRHBwsJhzeofmwWazCRvEjh070NPTg9jYWPT29qKgoAA2mw3r16+Hv78/Fi1ahGeffRahoaGIj493C9tA80HhGsLDw5Geno4TJ04IAzh5XoWGhmLVqlWoqKgQLqYUI4r2JvWd9hfgUvmQPez48ePYvn07nE6nCIlis910w6YwGw6HA6Wlpdi9ezcSEhIQHx+PvXv3inM2d+5czJ8/XyBem80m7G2ZmZkirpDN5gorwlVHtMcJsfKzxAknMcy8DN/PVD8RhpycHFy/fh0XLlzAwoULsW3bNkRGRopyHOdwz0KKi0QIm+qrrKzEsmXL3PAARWDmdXFXetob3H65YMECLF68WBAG0jzQvuo7U4b2YyvE4V8AZGialqFpWgaAIwD+2UK52wZcDSOrF2TEL/9VuXqpnnMkT5uSLn0REpKNurRIcnIbDjLxkH8jXSLdrJT7xtuZO3euuDnMN6FcLy9LBIX6HRQUhGeeeQY1NTWiTXkeudhrs9lEAiS6sQzc5HZp7ElJSUhOToa/v78wnFNfyMsDgMgKBrg46ZdeegknTpxwS1BCaoODBw9i69atIiPY/PnzhUcMGXrpchD1Qdd1cSBJhQXAbW1l7pDGTMHn0tLShOcK4Aq9TJLr5MmThSpq2rRpQg01btw4LFmyRHiajRgxAgAwbdo0HDlyBNu3bxece2RkpDBu2mw2hIWFCS6eEEF5eTlu3HCdawpOCLi8dyg6LAAhxdBYSEVZXFyM+Ph4YYu5cOECFixYgNraWgAuv3l/f3+xT8rKykQ7RUVFbsiMEB0l5yFX7OrqasTGxmL+/PkiyBxPQ0t5RUhKczhcN5hjY2MFAbHb7Vi1apW4B0F7jp+nkSNHiiCJb7/9tnB6kM8cqY/oQ/uT+sL3pCz90/+yxE3SMOXKIKcAVcKtvLw8kcGRnnHNDUkH4eHhOHz4sOgP4ErWI88Bjc3hcN3upthqckRX+X2n0+mWmMsIrMZWGg4gru9rma7rhkmp7wTI9xxkdY4KzH4zAiqjcouU1UHyb9zX36heue9cbCUkryJacr1yfap3+LuyKgeA0GuqsuQRN8szx9G8FBUVobm5GdnZ2Zg/fz4CAwOFtwchPq7a4XUTseJ2Gn4LlL/ndLpCeVDyHDOVGVf/kaFOVp/RXJHPPs9RTXMou/k2NDSI8NUAhP1Ddh/lMaZIlbV06VJxk3rz5s1ISkoSiYScTqfISGez3YyjRCodUlUBLtsBIZGKigq34ITx8fHiLghxtnQPQc4nzsNvkIskd/vm+4kMzrIRlNaOIzm6OEcqQx4igvYlGa5JVx8TE4OgoCC3bIX0LnfG4HuB73On0+m2hnQ2ZcRJdglOIEitI6ueuOqSn3XyAiPvIYqbxM8OvU/9Ky4uFjGUVO7n3PWa2iamSxX+v6WlBW+//bab7Yg7j6iA5m3UqFGG+Rws5ZDWdb1b1/Wivs9dRRhk8IQMAXcJw5e66cIQPSOqrPLnB25yJ57aVHEpxCVxkVQeh6oeHtlVNV7efxWHRbpguV9cjKUxcY4rKSkJ48aNw9NPPy181QGXi25cXJwIV83VXLzfsgGfsmPJ79ntrtuldCNZ5o54GX7rlRCTw+FKKsTVELS2ZBjlc2az2USEzuLiYhH1kxB6dXW1UMURcqSyFFLe6XRi7969WLp0KS5fvoz29nZcvXoVzzzzDMLCwpCSkoKUlBSMHDlSGIydTpc9o6GhQeTniI+Px+LFi5GWloasrCz8y7/8C37+85+jq6sLSUlJCAoKQlRUlIhe29vbi5qaGsTExAipZt26dW566JqaGqxatcoN6ZKEyF2InU6n4FKBmxGCAYj4Vfn5+WLP9/b2CtsAGbq3b9+ODz/8EPn5+Th+/Dh0XReSXVdXFzZt2gSHw4HU1FS3dL7btm1DTU2NkKTpRn1+fr6IMAxA5PuQJW2ujiG9fnh4uHC7JaaCEwy+30kyIkJDEXfpljxX7/B0nxSaY/v27Thx4oTwniNHGeL4yZ5Ac0VzHh4ejp07d4p9LJ/jsrIyTJkyxU2CNGL6ZbxlBpaIw8cJZESoQsZG6iRehxkSp4nnbRAnwhEycarklaPi+s0Ilfwu92iS9bukggJcnMTu3bsFApe5P+qXipDR7xcvXuznA86J0YIFC2C3uxKr0N0LupGclJSElpYWoY+/ePGiG5dmNu+e1kJWb1Hf5bJcJOdeVrt37xZ+/dOmTRNIhOYzNTVVGMx5yHE+T52dnYKLX7VqFRYtWoTVq1dj06ZN2Lx5s7AP8FvHRNDWrl2L2tpatLe3i+B9xKnTmMj+Eh0djby8PKSnpyM8PByhoaFu9h6n0yli+3z1q1/FuHHjxD7csWMHoqKisHjxYjz44IN46qmnRFC43t5e4RGUk5ODoqIiYazfunWrWEu6B3H9+nU4HA7h+eJwOHDkyBFs3boVDodD3BNyOBx4++23UVJSImxXpaWloj8UtHDq1KlISEhASkqK4J4JWVGQxPPnzwv1F4ULmTp1Ki5fvixiaO3evRtxcXGYP3++kBzPnDmDhIQEkW+c9kF2drZYP+L6V61ahaCgIBGqn/YlnSluwyNVJK0RrUNCQgLWrFkj7hTRWvOsiDabK4T5unXrRPIhYvhoT3IPKnn/19TUYM2aNULKk5mWxMREhISEuCUCUrnWy/eW+n7vggFYUivd7UBqJZU6RaWKMQNCnCTOGqligJveBnJmMy56Uj/4bWGqQ1aBqDh0Vbu8f/S9s7NT3K4l3T+/zi8HEyPfbFkNJntiyW3z5yQKk6GMq4S46E8XnPh9CXl+SaUk3wrn7xJnr7r5ydciOjpaeMTI3mSUB4BnxaO0pxS6gILeUfROWbzn46PxpKamCg8fPqaRI0e6jcfpvHkfZPXq1SLDGKWeTEhIwIkTJ/Dhhx+K3ANOp9PNw87pdN0XIRdbshfQ2jQ0NOCnP/0pHnroIbeAjHTrnhuEaR3pRjTdCqYsZSEhIfD394emaSILHYXvnjZtGsLCwsS6Ajc9hCj7HhFF7nEVFhaGq1evYv369ULFwu8qUOh4uhVeUVHhlpiIryUnrDITweeIB7jLzc3F9evXRUgUkhwo5pSsguLBGzmDxQ33FJCzoKBAhKrhwSP52ZVVtVyFpMIV5Kwg33tQ4Qau8qJnPIUvRTem8gMKn9FXwSQAUwGIyHW6rmd6LHibIDU1Vc/OzjbUyfPDasa1ypQWMFdN0aHih58vuBwXSeWCJus0Va5pqv5xJC0jbr7ZsrOzUVlZ6eauScjN6KKNLHIS4iYXT67fl12D5bqBmxn2eJ4APrfyoVZFoyUk3NnZCU3T3DY4vUOIjVQfGzdudLMp8P7J65qTk4Nhw4YhMjJSuHcS8qf1dDhcuadDQkJw6dIlAMBjjz0mLh3KOTD4eMhji+L+E6ErKysTIR3oshwF+FPpl7n+Oj8/H5qmITk5GXb7zVAmeXl5uH79OubNm+eWG5mIAs//Tf1wOl35KgoKCgQidjgcwqZC0V9JDVJSUgKbzSakS/pwFSOBvE4yA5eXlydUjtR/inpaXl6OWbNmCfsL1SdfAqM9yi+BOhyu8OejR492i/sl7wd5negZrzc+Pl4wWDk5OSL097p168R+oYuSdB/GKhKn5zzsBj9TMm5QnSECbieivzQfJAHx8P4Dja30EwB/B+AMgI/6Hut34w1pT8jfSIowQsaE/ORDyhdS13W3yZbf48ifRPdz584JLoYjHzLWyRtL7h8nJjIi50SIcyMqHaOKOHEjoIzkCFQcDz2XDxP1iSNa1VzKcWRk6YQOCt32JcTP14luffM7DXJOb+La5Jvz1BeVLzy568bFxSEuLk7cMSgvLxfxc4jDV80zjSE0NFQEsePIlN9n4PmUgZtSIr89S8g9MjIS27Ztw6xZs7B48WLRPk9EQ5JKcnKyWzh1apskLZvNJm6vUzIkmm+n0ylCT1OfSIWRl5eH0tJSoSaiWFhRUVHw9/cXqjrAPckWXRaLiopCaWmp4OLJGEvSw44dO/DYY4+J/lFOELodP2/ePLe8KkTck5KSBLElwkJrHhkZKVLocsMxlzaioqLE5TcVIZIZNH5GzO4o0XMVE5STkyPwCT9rKucGTuCNzrUskVDQvwcffNAScbBic1gHIFbX9dW6rn+y73PXEAYOZqojm03tnmr0m812M/4I119TOYqxoyIMMlW32WwijHRCQoIgDLLusKury82F0ajvVB/d1qQ6SH8ZGhraT1eusmvw+signpqaakgYVBwxSVDcMM1vu5Lhl0s38lxRukUudZC7Hxk3qe0LFy4gLCysX2jloKAgcXiJMJ47d068QzflqR5y++U3XlV+6TRu0ukGBQUJl0UiDDQOcpGUxwi49NiUftNmswmjqpxjvKenR9wOdjqdwijLXWz5rX8erp3fZC8pKRG6egrPTRLHmTNn0NDQIAyypC+nmEDkMul0urx+0tPTERkprjqJftB+obDfdC7obgcRU3kP055obm5Geno6kpOTBWGgd/lNbZIau7q6hHGf3JLpvAAQGQMphlJra6vbXp87dy4iIyNFno2zZ88Ke0Nh3x2A+fPni0CJR48eFQRg0qRJbvsBcLkQ0xxzl2cAwkZDbrV0Puh/1ZmmfNn0jMrwc07jp/2rwnlEbPiesdtdUREoq6Bqj/YDXddNPwA+AGD39N6d/KSkpOhG0N3dbfj8xIkTekdHh2FZXdf7/e6pHP3e3d3dr+2Ojg49KytLPJd/7+7u1pubm5XPjdqS+9Hc3KxnZWWJeo4dO6YfOXJE7+jocHtXVdZovFlZWfqxY8f69Z/q3LJli15fXy/mhcZx7Ngxvbm5Wc/IyBDzceLECb25udltrqiv/Dv9ffXVV93mpKOjQ8/IyBB1yuPJyMjQs7Ky3MYrj5vGQGVU88uf1dfX65/97Gf1bdu26UeOHBFls7Ky9IyMDNEWjVeezy1btriNmfeJ2qe1OnDggJ6RkSHmgN7jbfK9xeeGntP8Uz3Ux4yMDP3YsWN6fX29vmXLFr26utptH9D/vE8dHR16dXW1npWVpR84cMCtPup/VlaWW50dHR36gQMH9FdeeUV/5ZVXxJzxPvJ9wuvg9dL619fX6xkZGfr+/fvd+krzzefuwIEDend3t15fX69/61vf0t977z23OaOzIc+XfCbr6+v1559/Xm9ubtabm5v1119/3a1t2p/Hjh0T4+DnXu4P7Q/amzJ0dHSINuS+yP3jZ0V1jvm7qt94WQB5ugFetaJWehdAElw5HYQbq67rX/VMem4PmAXeU6mSSNyS9e5yWTMVlcxFqzhtHkyLnnP/Y1U52VirskcYqZvoWWZmpls4ClJX0ZV8m83WzxZB88LvLxDXRGIpALegfjykAM0nz6VNum5uQCaDMOUToDI0ZsDd++jQoUMICAhwUzvJkgxxV5SzgPTX1DfyxZfvOuTn5/erl4v4pJKy2W4GvaNUkLwfQH/7i5GqTw4TLzsXEHApir9P2QiNwjpQPyjXNXGkdrtd5NgIDQ0VdgOn02U0Jx09qeZIIurp6XFLvTp16lT4+fkJQztXwwUFBSErK0vsMVkV6XQ6xTrR3FJgxKamJhw/fhxTp07FY489JhwDnE4nAgMDERkZKZwa+H7l6jkeepzUuKTO5PYNuQ45pIWc/Y1sIrJ3HB8jV0FzKVnODyGrovjZl9dWfo+3Rf0lbQHPz8GdSuS9z/GEzWaez8GK5PD3qo+ncrfz443kIFNoFdfY0dFhyP2r6qd35efEqckcrqdyKo6YuEhenxFnQFw+H4/8rswx6rruxhUeOXLEbZ6OHTsmflNJT8Q9mXHlNA4uZRiNg55zKUj+jb+jkljM5ojWh+8D6lNHR4eQWPh8y+NRcXRGEgI95/PHuUBZQpDboL5xKYyPb8uWLYLb5uOgPUi/0XtcAqPvWVlZ+p49ewTnT1z9/v37hcTB50weJ5cK5TXkUgvfI/yZLDlwCZDvm/r6ejeJVu6LPG/yPHMJV94rtOa8jyR58+fyWvF55+dalsL4b0Z7Wn6PfpNxEj3jc8r3HN93NF9ynQDydSPcb/SD20uADcCsvs8wK2Vu5yc5OVm3ChwpqAgAP4gqJEggHxDVxvREXLwhPPThiNDocMhIVyZSqg1GiENGqrxOfmDk8R44cEB//fXX+6mMVKK4fFCMCCW1qzoofB4I+dH/e/bsEb8brZ+8DzjC5CoZroZQlefIOiMjQxAVOrSkcqO/vN98nmnu+Zqq9tSRI0fc+sMRj2q88lxzFRhXIXEkU19fr7/66qtCJULlmpub3VREfM/J+0peQ06AZORFbXL1oq67VDvyPqiurta/+93v9lOJyWvD+8MJlEwgDhw44KYy5fNCdfD1kM8DERc+7/wvMVVHjhwRe4rGbcYcmo1L9T7vo4y/5Hf4uACc1QegVloK4HcALsIV3nVKn+Rw17iyWonKykElEhq5japUT6R+Ics/1UHiqNE9CZVYZ9Q3o+9ySAPgppgrhwkoLi5GT08PdF13C1vOPXe4iGwUFoR7VPDQAtQ2ifRkCOQiO8+hoFIreJoP1XoBcPNwksMgkEurmerQ6XS6pWQl9cjbb7+NhIQExMbGoqamBqGhocJHXnYF5t4z9KygoEB4DvFwCC0tLSKejZ+fn1t8Ie7eLHum8D3kcDhEPgVS/WVnZ8Nmuxla3SiEC1+r4uJiNDY2YtGiRW4eTHRnhcZdVVUl1olSY5JajeZBVpPKHn58vyUmJrqpWWg8lOjp6tWrWL58uVAjbdq0SSQv4utfU1ODrKwsEdtM5WXIzwH38uIB9miO+S1smid53/P66VzwsBv8PJLqiueWIOcKPz8/xMfHu6mC+FpxwzNPf2t2LuT/ZVWZ0RlzOp0YPnx4ga7rKcoGjKgGfQDkw+WtRN9jYCKKWPkA+AyA0wD+AiBV+u3bACoBlANYaaU+leTgiSu3+i6n4vy9+vp6N06ZcwIqI6dMxY24Bln0U4GKm+b9U4m08ntG3Imqr7xd4nA5h8I5b1JbcG5FfsfKGFV9ImOzLJlxlQNXbcnjlTnKAwcOuKncqA1uECdDrMyVUZvEHe7fv19wiCoJjaQSUs3QWGRDJuf6ZMMvn0OqnxtlVessq0gOHDigV1dX69/61rfE+Am42ubAgQP9xkJqJlnSkSUBrrqivqv2ZkZGhv7LX/5Sr66u1l955RX9vffec5NmqD3OFR85ckSoonh9HLgqT1bxyPNBbbz++uv6nj17xJiNOHeqT5be+PpQ/bJ0LEvi8h7h87x///5+c6bqiywlGv1vJNXBxCBtBZEXW3nmzQdAPIBYABmcOACYAaAIwHAAEQDOA7jXU31kc+CTaaSmMAOzw8URBoGsZ+Qiu2qhjBZPJcKavc/LGPXbjABRedk7wmwu6JnZgefPZU8KIzWelXbpucrTgw6TrJOmNukd7ilC6/jKK6/o77//vpvajdaXIx/VOshIkJC0vC60L44cOSI8kWSiLRMRlcpDtiPR3JqponjdNDbywCG9PQGNh4jXK6+8IlQ31C/eDieq8j6TCYh8Hmg8pL6ieeMMBZ058rajtjjxNhovP5OyvYrPB7erkSrRU/0yEyS3yfcIXyeu1uK/cVUWPaP5V6mG5L7IKiTVeEm1pTo/AyUO/wfgfwEs7fu8DmCLp3JWPgri8G0A32bf9wGY76melJSUfsjQCkXlYIZMOafINwVvh29smeMyI1QqXb+M3OU6aFOp3lNxK6ox0iY0kkJU80MHlrv2eeJWjFx3ZW7GiKDx9VSVJ8Su0vNz90OVnn/Pnj1uyJrW4ty5c/p3v/tdQ1sD/eW/yzpr3ibtC1mqMVprjlCoDrncgQMH9FdffbUfsVFJVrx+LvXJ9h8uBb///vv6q6++qu/fv9+NCVLta3kt+Zyo+s4RpUr3zp/zsZE7KydORnZDal92e1YRMXlfcBuWfO6M3Ec9SeEqKUt1Znm/+e9GeISXpXPJJU5VO3zMAyUOwwF8DcBOAH+CK7/DcE/lrHwUxOG/ATzBvv8vgA0GZb8IIA9AXnh4uNvCGyFWMwLA/5r9ZnRA5IVQ1aGqW/be6e7udvOlV/WDkI38jERuztXJxMwT4jVrl3zXyX9bJkSquTAyrhIR5Won1Xt0sFR+5jIClcfD51Fl2OeeOpwB4NKHUX9kZwBOYLiBX+YmjfrA+6k6xHx8hCiNuESuDuMqDv4eEU/yRFI5EpB6ie8pXodMlGTOWLWH5P1mxNnLKhMyhqucSVRInO9Zvg9UhlvZmMyRuKpO1fjMHB/oU19f3699o3r5vHJpzehdviaeJB+uWjMzEQwYwRtWDByEK9e0/Pl/7B2ZOPyPgjh82lNbJDmoJowmRPW/ruv9JlI+hGYuZaqFMuqD0XN+YFSIUC5nhGyNOB6VblP+nyNpWSer4mj44bai3pKJGf/NSBSXy6tEcl3XhUpCdThVahg+R4TMZW5LXn95/6jmgKQ/jtTl/shzytVN8nzKXDfvCyEweR1pPmgfcc8b2WuFuwgbXbjjFyh5vzkx4O6mZrYkKsPXqrm52U1Ck9vg60bzK7sK8z2i2vsc0ct95M9lW5K8740kWvorl5H3D3my8bW2gjuMGAczgiqrmoz2oa77KDkA2N73twRAsfwxKufNZ7DUSsnJyYYI20xM5JuONg43etI78oRaRfqexEAjgmbGIahEU86BGvWF69xlAiDrPFWEVR47IRUj/2q+MYkAqYgaR3hmh0A1Fx0dHQKxE1cmH3hengzHMvdmZNDVdbVRUybenBBwZEz/8/7IHDh3bOD9oXdl6USWDmX9OpcCOIFRqRn4HMj3D/gaq/YUJ4Cy+ocD3z/clZT6pLoXIe8PKqOSILlaUXaG8CQRyPteXifeB/l8yPPOVcOq8XDipRqrXMbsDKjOmQo/8fVRtdXdbX5D2gxxT+z7O1X1MSrnzUdBHGZKBukLVg3SfEJkLklGCKpNbqSe4OoLmfuVJ9roLoFq0Y2Ih2rRORgZ+FT++Crugv7n+mWVlCL3Vz4g+/fv11955RV9z549bojaiMs2sm/Qb6+88oob8lCtlWpuZI8h7rOuImwqAkX9kImAXA+B7H/P9xbtEzLsEuKX1Ye8zerqajdiokJaVL8RE0B9JVUSXzPVvuXj5YwR566JeVL1RWYKVMiMl+fImCN1I4aGP+NnWea8ZclALsvfk8vyuZLbk8vTXyNEbHSG6DezulTvyO/z/qkkB9XYjZhQ/vuA1EoAfmLlmTcfAJ8CcBmucBxXAOxjv73Q56VUDuAhK/XJN6RVE2e0KPRMdejkg2yEyOl9lTrGjFsw2gCqd3kbKt2uSsdtRHzo0J47d05//vnn3Q6Nqm8yB9Ld3a3v2bNHePrQM/mCVEfHzZvGRmoQeo+ramQPMaPNzQkSRyIywjazM/G54gba119/XXgXyQSD30aWHRC45MC9cPgzjkiJMHCuX+WKK3P38nrKayWvIf9d3tt8Pmn+ZaTHiZY8v/wjMygys8DLyYTIaJ1kta9cvxEC5GOX547OvOyCrmLe+HzS+M1wAW+X9hLtb9XckkQk2/FU9fH/jYiwEXFT9XGgBukCxbNBUSsN1kcVPkPmGswmlzaK2XtmSMrof0KOMoJR1W3GecjtGS22EVJQAedmVfOhQq70O21mlTFR7qtRuAcjd1/+jiytyO92d3e73UEwQnxmXBV/h6vbZPdKfgCJMHCVpDwuFTctj4W7jxJxlblpet9IdSFLbGbEkKsWVdyyiiumD7/LwY3hvE4uKanWjK8X75PZWhutH/0lZknFMHGiyu/n8LblMco2SFp3Ulvu37+/3+1xM4JG/af35CCUNHZurJaJj4pgGLWhCvFhZgvyVa305T57Q6dkb6gCsNWo3J34qCQHWbWk4uA9qYHkOvlfWhBZJyi3ceDAATe/e2645AtrZDji/5shYnnsVoiNSlKidoxcUDkH7AlUfSafa9UlH9Uhk/smc3fEbXHPHLNDpBq73F8Z6cnInc8BIXWSMuRxyURLHqvKIULuE5dCVHNDRmP+m8pWQGPg9zr4fpHnTb4/QfXKc83r5yFC5P1Ed0tkSUfuo3wu5XmTv3MJRF5LWYpTnVe5DnkNuBsqzQF9N1I3q86n6lzJc6Cad5WUJ8+fPG4CI7Uiga/EYQyAaQDekewNQUZl7tTHTHLgEyRvaCOK6gnxqhZNXlR6tn///n7+9vQbX0jVxpUPl+wbbqSvNVLHmBE2+XejjSfHBpKBc0kqLrijo0Pp0icjE9Xcc0RJf19//XVh1OW2ANW4zBCMan44Aud18blvbm4W9yVkDyEjjtiofWpXfuZJZSivZX19vfACUrUlExMzVYY8j0TcjYgrdzfle5xfepPVNhxkJK3aa57OrArBUr3ymZFdqo3mwOxiq9FZUIFMDIwIC1dfGZ1bFc7gQHjPjJEbsCsrXCG7v9L3SbJS5nZ+5BvSKuATrUJC8sE14rw9IVMV96+qi7hdlQ5S1Sfa3PySl0o/atR/GbHzso2djcpxqgjQ+0fe7ycC8z6SyN3RcdOzho+PbqVyDyGZYMqIz2hO+O8yB25FDKe/3ItLPnQyYpbX+tVXX9VfeeUVN3sFuS3KOm3VOOQ9IbvE8t9khKRiDriaQtVWd7e7W7ARkuP1czWUaj/zNeB2ExmRyYhKNSeyRKZSX8rtGhELmVExUj3xd42IrozUfQEV/pHtdPTekSNHlK6vKk81Pnf8OxnwB12tJF4Avtp3P+GHfZ8SAM96Knc7P6ob0hysUFgzTowvmuo75xDNuF9ejkfwpGdGnBTVzTlm+TcVoVK1KUtP2w9t198tfdeNQFBZGUk1djbqb+W9pf/iN7/Q33vvPTdd7r6j+wTB43pVFdHl+lGZgMjty4jZbE6NEJ1cLyeUspeOfFdBxXnxteI2B9WtVnke5L7I32XVlTx/stSkUg2qCBkBJ4I0Po68aUx0A5u4fU4A5bPCI89yW4Q8fqNLchxkgkIER+b6ZUKqmk+VWsxoP6jsLbLHm3zGjdZSNffyuOiZ2cVB+VY19UneK3xOVKpyszkfKHEoBjCSfR95txqkVchfdWDkRTCK2SN/Vx1WlerACNHL/ZIPsQrJEyLgoRnkw65CCJ6Cz+m6C9m/W/qu/kHFB3pjZ6Nb36leOny112pFmerqajfOuOpKlf5u6bt6WWOZXnut1vSw8L80FtXc87F7qkc+3GYqN/quQl7yXHIVh6oP8oFXufJSfbKuWd5LRtw8By4VkBTmaY9xdapqrxJBJCJJRGfPnj2Ca+V2BpXqhc+X3A/VHHgiEDIRkomX3K4Z0pfbk5G/0ZzzPaIqy/tg5gAgB3LkCF/2dFOBEWOrwjFGuMwIursH7q1UAmAE+z4CQImncrfzw20ORpNmNkFWDUqeVBxm5Y0IBv1GftjyDWj+VyX66np/G4M8Jn4Q5PY/qPhA/9rer+m/PPpLwf3Lh66krkTfXbZbEJB9R/cJD5uqK1X666+/ru8t3atvLdqqby3aqpfUlRjOhYqomtlaVHNlVE5GSCpioZpXVZvyQVMhGSPVj9yuao/J5bhLrtn+JfuKkd5fNV9mRFMlfaqINiE21Vyq2lTNkTzXKiCJQMUomYW14O+Z7Sf+v3zWPGkY+Bjk8cnrSX9JMqbwH1xVpBqjag7N5llFqM3mV+67yhuVPlaIw9f6Lqa92PcpBPCcp3K382N2z8EKmG0wI0ptlTBYJVLEWdFGkxfYSGWlOvSqduUYRrrukgJ2l+3WMy9k6vuO7hMiPCGexs5GIV3k1OTojZ2Nek5Njv6Hwj/o+47u02uv1eqvn3hd/7/3/k9/YdsLekldiX688rj+g50/EJJG1ZUq5Vh4H70huqry9L/Kg4bPnXyBkM+5SnUkq19kTlNGet3dNz2X5H4YraU8JrN3aa2NXIhV7Zm9J6s5VPuqu9slOaiC8KnmW+6vp/Oh+m5E9GSGwqo9x+w80tqq7DyqeVM5nXCCxv+nPsvvqoikioiptAJyf6w4EvDn8v4HcEY3wKv3wAPouv4LAJ8D0ALgGoDP6br+sqdytxN0FxHrl1vYKsjv22w2kQClsLBQJMngyT8KCwvhcDjE7wS8DE/e4QnsdrtI7CInD6EkOfSM95f6Jeebld+hZD88H3FwQDBSJqRgUcQiLL1vKYKCgpCYmAhd1/FW5ltIL0uH0+nER1c+QlljGbac2oI3i95EeFA4lt63FA1tDairrcOMmTPQ9VEXWltbcTLjJEaOHYmO3g6U1pdiS+YW+E3wg81mQ1NXk0gqwxP4fHDyA2W+YXluaS54eQ6apoly8tzOmDEDZWVlbvl98/Pzcf36dWRmZmLnzp1wOBz95oz/z3NN5+XloaioCA6HA7m5ucjLy4PD4UBvby8qKytFO/Scr2VxcbFIFEPv8fXjiZX4XqC1DgoKckvsQnsxNzcXOTk5cDgcot3c3Fy3c0F9ByD2wpkzZ9zq4fsKAMrKyjBx4kSRyIme03zz8dM+BdBvHfj4+HrK66zKsUzPaa/PmDEDlZWViI6OVp5fK2eOr0lZWZlIzEPP+PzSfps7d65IVkR12O12kaeZ/0/rx9vjOa15kiL+nf9PSYv4vqV1knESB9XZAW7iSjbP143mxyNx6IMquEJdHAWgaZqWbLHcbYGuri4loqaNrkIwVkCVcY3+8k2qQtZy5igjZMeBbwz5gGiaZkj0eFtG9fOyhYWFqGutg9PpxOWKy26I1m63Izg2GMeuH0ODowEdvR146L6HsCZuDdbGrkXihEREj4tGU1cTDhYexJrkNXDe40RXbxf2n96P+5beh5EjR2Ln6Z34w+k/oPFGI4qbi7H33F7sq9yHgisFmBwzGRXNFSitL0VVexUKPipAVXsVmrqaUN5UDgBo723H7Nmz0dTV1G8c0dHRbs+o/5wAynNlt9uRmpqKBQsWiN/8/PyQnJyMkSNHYv369cqE7hwx8PVPTU1FfHy8IOqJiYk4e/Ys0tLS8MQTT7ghmeLiYrd1oQOal5eH3NxcN6JEZTIzM90YAj5OWmcilJTtLCkpCX5+fm5taJrmVi/9xsfE9zJHRPR7YmIiQkJCkJKSIto/c+YMEhMTRbuEMPk+lc8G9YHvU5vNhvDwcMsMHd+nRCBU55vWjeMF1Rl0Op1YsGABEhMTUVZWBofDIQgeJ868fVVf+d6hzG8y/uBroGJu5O95eXn98AkAsU5EIGTcR0RF1U+eWbDvfcNUoB6Jg6Zp/w6XUfrXAF7q+/zcU7nbCQEBAf2QgsPhwI4dO9DS0uLGEZkhaZl7VSFp/jvnYlW/8f/NqLyqvPydcysqII6Qc4pG/Z4cMxn5V/LR3tuOgCkBbnU0dTVh2LBh8Pfzx4j2ESiqLUJ2YTZG+41GbHAsHoh4AIBL6pg5eiZqu2qxq2IXpk6dirkz52Je1DyMHz4edXV1qG6rxkMpDyF0VCgOXDiAooYifPvgt/HvH/47nnvvOXz3/e+ip6cHT815Cj09Pdhxegd+m/9b7D23FzmXclDRXIF3jr6DutY60ceLVy9i586dyM7O7nfgZSIuMwp0sDkXaLPZMGzYsH7r3NLSojzcfK52797tVi8hRqrLZrNhwYIF/dZu7ty5glglJSWhqKjIDWk6HA5cvHgR8fHxAOAmpZJUkJubCwBue54IldwG9ZfKJyUluREsmhMzwhoZGdkP6fHvVA+1R5KVjIhzc3ORmZkpJOqWlhZs2rQJLS0tbu9Z5fxV6V+55E9SmsyRU9s7duxwI7o0L0RU6X1PjB1vn/eN7yu+hioiJTMJnIjzvc4lCtU+VeElWaJm3zUYgJUc0uUAEnRdt8Zu3wFITU3VSVTm0NLSIvL3lpWV9cuZzIEmy2izGQFfPL44VBfPuUzvyPlpVe1aAd5mU1cTRvuNBgDlGJu6mhAcEOz2vaGtAZtPbcb9I+7HQ/c9hOzCbDjGOrA4YjGOVxzHrLBZsNvtGO03Gk1dTbDZbPjj6T9Cg4bZobPR1t6GrCtZuH/K/ejp7UFGTQYSghKQWZaJNUlrcL7jPEbZRgEAxo4Yi6vtV/Gdg99B4qRELJm6BPMmz8P8qfPR0NaAncd3YlbULISNDcP5a+eRGpaKcQHj0NDWgCD/IIQFhqGpqwk5l3KQMDYBLddbkDw12e0wGq2n0+nEjh07sGHDBgAQeYyBm7mA5UO8Y8cOrFq1CqGhoYbzz3Nuy+thtF68Pa56iouLw9mzZ0WOaZJKKMcxz19NiIKe8f1Dfaex8v3mcDhE7uKzZ8+6qclU80DQ0tKCl19+Gc888wxCQ0P7jVO1BkbrQjms4+LiRP7klpYWtzzRPMe5qg4+l6r80aT2IgLEpUV6j9qIi4vrl6Oa5pHyn5vhDLleo7PMpRC+llQuJycH586dc8tVzgkxz8XOGWBZ7WjUN9WaOBwOjBo1Kl/X9dR+EwxraqVSAIEW3rurwOl0orKyEg6Hw03XDKg3mxEXYkUVJL9HdQEQie8JQTkcjn7teEsYZHG5qasJ+yr3oaq9yu2AUX/od66iGe03GnXn6xA1Ngr3J98Pu92OWbNmYeaEmbhy5Qp+9PqP8D/7/kfU/6sDv8LZK2ehQUODowG/zv413jr0Fqb6T0ViSCJOlZ1CT08Pzl48i4TwBKxPXI+HIh/CAxEPoMPZgUMXDmFu+FwsiliE+eHzsXDaQpS1lGHH6R1IP5eOxnsa8VbeW2h0NKKlswXXrl/Dvsp9OHLxCH514Feoa61DcEAw5k+ZD8dHDryU8RIKqguQcTJDjImPj6+nzWbD2rVrYbPZUFRUhJ6eHrd3ZIRot9uxdu1a1NTUGHKxVtQC/F36nasEiJOLi4tDZWUlkpKSMH/+fMydO1cgTq6m4ciEc+Wc0SCdNwDBFdPvQUFB2LBhA4KCgtzUC7xfqvEGBQXhmWeeEfPBCRSBfE5UyIrmNjEx0U0dxDlzkuiIMPB9rJLseRvymstqRP4etWG32w1Vh1wlZ8R8eOoTvXvmzBk3m4bc7/nz57sRBpIQqL7e3t5+5bikp+qLLDnwdWISn6HkYIU4/CeAU5qm7dM0bTd9LJS7raBSzRBFNdokMqg2kRnilomBvODUBzJUrV27FpWVlW7lZVHPyjgPHDuA/Px8N2Nce3c78uryhNGXb2wVVLVXYel9S/Hp+E/DZnMZi4/UHEFOTQ46/Drw2b/7LP5++d8jLNDFydffU49jl45hWuA0bIjbgHF/GYeV81YiuzIbLddbsD5tPeInxKNOq8MfS/+IX374S+zL24fOzk5EjYqCX4cf6q7V4fK1yyi9UooTl08g51IOrjmu4VLNJXzU8REmj5+MrKosVFyswPHq40gNS8WK6SsQOD5QbPbggGCEjgnFrGmzMHLkSJzGaWGvSC9L70cgiFCWlZUBcKlb5s+fb6iCUhF4lS2LjLDymnGkOFts/AAAP9BJREFUyYk4qQz4gZYZCG6sJJBVUkQYent73ZgArjaSDaN8XCrkxPtlxBCFhoa6ESFuhKZ9zvsozwlHSnwOOHfM14T+p33Mx8fXV25HdQZVfaLfjJhCwhsykuXlrTJ1ND+yfUQmsHxtOJEDgGHDhhnW7Ymx5f/LRm8MxOYA4HcAfgLgv3DT5vCShXK3DXRd77dxnE6X/pB0s96qbAjMCIMsLfDfgJtiH/UrKChIIATagLJ6yYhA0PP23nZ0BnWi1dmKs2fPCoT5mZmfwcrolRjtN1oYCwnpBwcEY2X0SgQHBMPpdKK0vhRbi7fij2f+iNLSUuGVlBSShJGtI1HXXoflM5YjyD8Ida11OFJ4BGH2MJRWleKDcx+gqrUKMdNisDJhJVbNXIVZE2chdEwo5oTOQeuNVkRNiELexTzcM/oevJPzDn6X8zvouo4xw8dgZuhMRAZFIi44DrVttdhasBWjQ0bjoZSH0NPTg6zSLMycPBPHy49jlJ9LJVV+rRyZlZlu8zNq+ChUNFYgqyILO0/vRENbA2qqa5RIgHuYyMiXryUh8oaGBiHlcSaD3j1z5oybEZaA7AHZ2dni/6KiIkRHR/fTAXOmgEsvnLCoVKU0HiJw7e3tyMnJAYB+3D9xoUaETN5bHFGrgCNvMsLT/i4qKhLEQsXFUp1k6OV1GY2fI2hZ6lKNgexQqt/Mzpa8hlySoPlTtWlFmiCQ7Tl8XcguqtJuWCFUqr7IBIZUU4oyA5IcmnRd/7Wu60d0Xf+QPhbK3TbQNE3pacHdDwcbzERIQjQkSsqIgRuO5UPCNwU/KLR5ggOCsWz6Mjy05CG3sXF7Ah22utY65FzKEdy00+nSbbZdaEPUqCjsPrcbjtEOXOu6hmMFx1DRUoHQiFCkTUrDKL9ReOfoO2hoa8D6tPX4XMrnsDxhOZZHLMepslNou96GoktF+PXhX2Nn8U7kXMpBWUMZKmsq8amYTyEtOg25jbmYHTcb31jxDTww8wHsOLkDWRVZOHnpJKYGTsV3Fn8HM0fNxOqY1SisL0TRuSKMtY/F6ZbTyKzPxP5z+3Ht+jV0dXfhrby3UPxRsTggly5dwsXWi1ifvB7hY8MxbNgwzIqaJeagrrUO5U3lqGutMyQIZOjmCGrGjBk4f/485i6ZK9SS8r5SqaIIscbFxYn2EhMThYpIxRQA7kRCRi6k/lLtPZqH8+fPo7y83I0jp3oJCXPiKCMXLtnQflWpKVR94K6lXE0jnws+h729vW4qMZmTJuJMxExWo8jnnJel9ZLrtcrlq6QYAP36bFTWUzuyVMO93Iw8uwoLC9HS0mKJgTRqj9430CYYSg5WDNK/gCspz+6+v64adb3AUg9vA5BBWt5MBEbPfQVP9XGug//lvwP9pQ2+mHl5edB13dQgxqGpqwmZVZmwX7Nj6X1LAbgQRMCUAISOCUXOpRykTEhBYWEh0hLTkHcmD/eG3AtHjQP5bfl4eM7D0G063it7D9F/icZD8x5CQ1sD0gvSET41HGvi1qC5qxmj/Eahoa0B7+W9h9QZqXgp+yXcN+U+rI9fj5zqHBSdK8LSWUvxdsHbKO8sR0pYCoJHBONq41U8lvIY9hTtQdCEIKSEpaCnpwdvZLyB7679Lhq6G+APf9R21iLIPwjbSrchaUISJgdOxsXGi4gLicOWvC344vwv4vHZj+No1VGcbjoNABiBEWi43oBdRbuQMjYFX1j0Bfzh5B9Q6axEtC0a//yJfxYG7eCAYNS11uHUqVM43X4aTyx5AsEBwW5z/8GHH6BxTCNWx6xGWGAYLl69iLDAMKXYTsiYwGazCaQsOx5wQ6vMGcr7wMggKr/P1VUcCCEbGWw5siGVVktLi3CekPenr6AyxFLdqn3e0tKCnTt3YtKkSXjwwQe9Os/UfyIgvjh5kFqOzzeBJy2CL/NGc0Buwaox7d69W6gIzfCA6jc+x+TYwEHTNEODtBXicETxWNd1fZlpwdsIRt5KgLkHAf3u7XNvvIusECZVnU6nS19NhkkrUN5UjojREWjvbRd1HKk5gpXRK8U7mVWZmDlhJk5fOY20SWmoOl2Fi34Xcb7uPJ5+4GnUdNQg93IurnZexROzn0BPTw9Cx4SisrkSOdU56GjswJrkNai/UI85c+bg6KWjOHzhMBZPXYzzVecxKmgUKjoqMGPsDFzqvITIMZHYnrcd4QHh+Oqyr6K2qxa/K/gdTtaeROiYUCyYtABfTvsyenp6cKX9CrJrs+FodmBy2GScrTqLa/dew96ze/G1RV9Da28rGhwNeDbtWTR2NSIkIARvFbyF0nOlePz+xxEbGouosVEICwzD5pzN+ODsB/i72X+HjckbcfzSceEFlVOTg/gx8ZgybopQw3GE+cGHH+DDxg/xjdXfAAD8PuP3SAhMwPIFy5VEPicnB35+fsKbhBAu4I60ZcRoxDDISJt/9wbpyd5U1I6KGMltWgErTJJRnTLy5fWQdyFHmDLStjIeb5Co3F8iaFbmW1YXWp1DzgiQB52qHavrqCJQKjUrL29GHKzckH5A8blrCIMVMCMMKjHNTHwzUyd5U7+nOp3Om370RvVzaOpqQkVzBaraq7Cvch/2Ve5DTUeN+J3UTosjFiM2OBaLIxYjLDAM/pP9sfP0TmhjXF4x0eOiUXylGHvP7sXvT/0eRY1FqGyuxLaSbcg/n4/7Z9yP2hu1GD1tNPZf2I9rrdfwUcdH+LD6Qzj8HMg6n4XzjedRUVOBscPHorW7Ff5+/kiKTMIfTv4BbxS8gdwLuYgcEYmlYUvx5bQv44OyD/DTPT/FD977ATJLM3HuxjmUNpWi5UYLPjPzM1gYvRCB9kD43+uPisoKlF4uRcy4GNRdq0Ndcx2mhU/DkYojGDtiLACgtL4U2ZXZiAqJwukLp7GzeCe2nNqCyuZK9PT0oOhsEX6484e41HwJmXmZGDtprJt6LykpCXab6zCGBYbhs0s/i8Wpi5V7AXBdpktKSnLT7xYXF/dTRcgcPFetyKpGrrqiOlV6a6O9QSoSI+TAv6vaVNUnf7eiejIiDCoPIYKgoCDExcWJ/jscDmzdurWfbl429puNk0C2iajUT1xd5ums01j4eFXzblSO5sCMSVfZY+QxyKpKp9Pp1jdexqp6yqPk8HEAI8lBJUarFtqq5GD0jA6ifHCNOESV5KGqm3NLVqSV8qZyxAbHoqmrCc1dzahorkDMuBiMCxgHwCU1LI5Y3O++wztF72Du5LkY6z8WVzuu4jeZv8EnZnwCcaFxiB7nuo2cV5uHrYVb8Xez/g6BIwJx/tp5vJ/3PoouF+Frn/gazrSdwdEzR3H/9Pvxl86/4OlFT8N5j2vznW8+j9y6XHw6/tNovdGK/9z3n7jno3twoe0Cnk57GiWXSjBhxASMDRyL/8v9P9wz/B78fcrfI7MiExP8J6BWr8VYbSyqu6vRda0Lo0eOxvK45SioLsCTyU9iXdI6pJ9OR+rkVOzL24cHEh9A8dVi/O/J/0XgPYGIHh2N1o9akTw9GY8mPYpdRbuw6fgmLJq+CPe03QPowL+u+VeEBYaJOaxrrUNYYJhYm7y8PDR2NmJKzBSEh4S7zaERZwfcVDPJ60i/8T2kQpRGe4arI7jaRi7ni9QqlyeVmOxn76l+lWpLNT9GfYqOjkZQUJAgDk888YTb+4WFhQgPD0dNTY0bYiSvKyOiJEtkZvjB03ypxmGEJ1RrqPrfaD+p+srXxqhemhe+RwZFcvg4A+fIVdSW3iHwxInJ1JYOqCrMAafSqj55qhtQu7bJ5QhIciC9+riAcZg/ZT7GBYxDzqUcOJ2uGEmj/UbD6XQKI3VwQDBWTF+BUw2n8Kvjv0JpUykeue8RpE5Oxfvn3nepky7loOt6F6obqvE/Gf+DbTnbMGXkFPxq46/wo3U/woaUDfintH/Cw7MfRnVXNVputKDzL514Lf81/Db/t6hpq4GjxYGosVGw/cWGSQGTkDA+AXOmzEHGxQzktuRCH6MjYFQAUkNT8Q8p/4Bpo6ahsbMR17qvYcS9I7AwciGWTVuGR+c+ivsm3Idxw8ehprMG2ZXZeP7Pz+M3x3+DP1f8GY5hDvzXvv/Ciukr8M1l38SK2SvwhWVfwBPznsCjSY+ioa0B5y6fw5zwOZg4eiLmx8/H6BGuy4PlTeXYWrwV5U3lgjCU1pfCZrMhZGoIMq5m4EcHfoR3it5BU1eTcBvOzMs05NAdDge2bdvWLxYO3yu5ubkoLi7ut+fkPSOvv67rptyqTHxkUHlj8d/4nuRxq3j8JSMghsnshrmZdB4dHS1cP+12OzZu3CjqIW54xowZqKmp6XcD2um8eaeIt6eSyDx5C8rnnc8X58zl/svlVWvIiQu9S5cYZWlILs/rkQ3NchuAu0ec/I4RmEoOmqbdAyBN1/VsjzXdQUhJSdHz8/M9vseprYqKE3UtLi52M5LR74Dafc3oOW1S7m/O2zLiIlT95m1wboDXQbek23vbkXMpB/OnzEdwQLAgBJlVmUiblIbS0lJxE3q032jYbDYR06jqWhW6nF3orutGwqwEhI4JRUNbA/547I+40nUFK2avwOGqwxj/l/GYEzcH7T3t6OjuQIOjATVtNZgxbgYa6hrw0OyHcLLhJB6IfAA9vT3Iq82Dv+6Pbce3QfPXMCJgBLIvZmPBtAW4t+defH7+57ErdxdOXj4JHTpG+I2ANkqD/1/8UdFUgZHDRmJGyAxsmLMBU0ZPwYGSA3DanQi8JxAvZ72M8LHhiJkQgw+rPkRXbxf+Y/l/4LNzP4vNeZtx/5T78ZvM3+DTcz6NM01n0NnTibbGNji6HRhvH48F8QuwOHoxmruaAQDjAsYhOCAYR6uO4j/3/yd+tOpHqL9Qj5kzZ8LxkQOnm07jwagHkV6WjtSJqXj/xPv47NLPouV6C2ZNnOW2xtHR0SgpKRGupyqJkofgMNu3MnAOU8VtUlnZ6Evv79ixQ9y9MToLMqdpJg146rdch6p+VftEQFW3puX5pHmQ58ZIsvfUXy7p0Xry+fJ0bj3ZO2mcRUVFYnyy1GM0j/J3qxILB03TCnRdT1H134pBOkfX9fmmL91hkImDFfGQbx55clXI2BsjtFE7HKyqs1QHg8RIeRPxQ9De2+6m+gBuhtBwOp2oaq9CxOgIFBYWilhLIQEheP/c+7hv4n04U34GD897GEWNRVgZvVLMyflr5/Gt97+FR+c8iqvdV/Hw9IfR6GhEeUs58uvzMTFgIsaOGCuQ7xeXfBFv57yNq51X0XCtAYtnLEZSRBIutl7En/L/hAWxC1BYX4jZE2fj9IXTqGyrhOO6Az1+PbjWew1fmP0FdHR3oLy2HFWdVRihj8DcCXMRaAvE383/OyRNScKL+17EznM70Xa9DZOGT0JPdw82zt2INfFr8JvM3+AfF/8j/lD8B7Q3teN803msmrsKCyYtwO+zf4/QsFBcuX4FIQEhcDgdWBu7Fj1/6UFIQAi2FmxFzsUcPLvgWVRVV+FLy7+E4sZivPjhi3gq4SmcvnAa337o2wCAlust+MXBX+Bry7+GmHExglDLnjqyYRmAGwJScfAqtRGvy2azGSJz+p+A1y/fN7C6P1XvewJ57HJfjZgl1ZmUx0ZSSnR0tPDsIWJrROg8nWcjIk7teHIU8YSwVeNUzausNpIJnRnDy+sgkHHL8OHDz+q6rrzYYkWttF/TtE9rnq7c3kHo6upyUwl5MrY4nTcDbPH3jQ4K4H2ICwKzwH2qfsl9t9lsbheunE6nEPF58DRZjOeEgcZJz9p721HRXCEin4YFhmH+lPmIHheNJxKfQMK4BHxizifcbmVSf+MnxGNt4lo8OudRrIhYgZ7eHmw5tgUTR07EYzMfw5XGK1gasRQPzX4IAND5l04EhwXjm6u/ib9f9Pc4WnYUhfWFmB48HZ9I+ASSJyTj2pVrqGmrQU9AD3q0HgwfMRxj9DGYOHwiPhHzCbT3tqOuvQ49H/VgzrQ5SIhOwL333osPCj/AO0Xv4FMzPoUFwQvwyIxHsHbGWswMmYmKugo0djTi82mfx9gRY1HXWIcAvwB8b833sDRiKWw2G67r13F/+P2YNHISQkaG4B7tHjRfb0ZIQAgOnjuIM+fO4InZT2DY8GEInuRyd02dlIrF4YvR0duB7oBudPR2ICwwDLMmzhKE4WD2Qfw+4/difmU1Bjd0clWIvPZmd2W4OgnofwGOQnfztZMvwtlsNnHRzkglpdqfqudmz7g6hht7ORipXEiNJSN7Giep5GbMmCHCgxCxVKmS+Dp44vg58QTMI8GqynPEbYSfOM6R1UwE/JY4V2HL7ZiNSXURsu9dw5DdViSHDrhSg37UV5EGlyvraNOCtxG8lRycTtdtygULFohnnsRJX4mDt2BFtKXNYWaI4uVV/vVkcKUyFNRu0ohJ2LRrE4aNHYaUuBQsilyEcQHjkF6WjprqGjz9wNPo6O1AT08PXst4DeMnjMeBswcQNzkOX7//6+Li1pGLR7Dr1C7MjpyNxs5GPHPfM0ibkobNOZvR69eLc03ncK37Gr6Y8kXUXavDrnO70HS1CaevnkaAFoCn5j+F49XH8fDMh5FdmY2y5jIsjlmMbyz9hhhXy/UW7Dq7C+cvnccV/Qq6u7rRdK0JM0NmYlnCMhwsO4jJ/pPxtVVfQ8v1FgT5B+HslbPYlLUJD8x8AFPHTEXKxBRsPrIZc+LmIKMmA5+Z8RlEj4vGO0XvYEbQDCRNSUJlcyWix0W7qejOXjmL8aPGCwcAIrwUA6qutQ7Txk+zJMWacbeqQG1G+4Ujoa1btyI+Pt5NncWD+AEQdymSkpJ8VhV5uk9Be1ZWx8hjN2rbigoKMFYz+Qp8XLx++s2TqyrvByFluiRoJiWo5kKuy+yejFk/eJs0hoG6so7Sdf0eXdeH6bo+uu/7XUMYAHODDKA2yHHKqwKZs7NyaAYDzKQWzgXZbDaPhIHqkxOUOJ2uPA7c6EhB7ZKnJuOZdc8gJjIG2jUNEaMjAABr4tbg6Qeehs1mw5GqI9h7YS/ah7fjE9M/gR+v/jG+fv/XERsci2s3rmFf3j5MGjkJ4/zGYZg2DLbrNuRU5+DPZ/+MIxVHcL3rOsovl2O4Nhznr51H2NgwTB0zFY/Pfxw/++TPsCpqFR6e9TA+e99ncbj8MBLCExAwIgB11+vQ3NWM4IBghAWGIcg/CK1XWzFMH4Zpw6bhMwmfwcyQmbDb7AgaGYR/WPAP+NqqrwnOvqGtAcfOHEP0xGhEj4tGe087bDYbnn7gaXwy/pO4f+L9SJuShoa2BlRXV2PC6AnYcmoL/vv4f6O5q1kEMDx75Sy2ZG1BZ2en2y30utY6EWL86sWr/YIjmq25rDaS952Kq1QxEjt27AAAPPHEE/1iSBER4KoYiv7qSR2hQmhyVFCjvhO3rTJOy+/KbapuRcttyUTJk0rMCsi3zWUJ3VNdfN4TExP73bJWaTeMcA2vy1Pofg7yfHDCoDJ6y2Aln4OmadoTmqZ9t+/7FE3T7rPUuzsIfDHlPAc0ybTxVJwMB6ucn4oIWdmQRu/IfZE3vepQGBFC1eGVkQJxv+Eh4fAf7o97Q+5FVXsVci65YveQB8+o4aOwMHwh5k+Zj7H+Y9HqbMW4gHEobyrH/qr9iImOQXV7NS63XoZ9mB2fmfMZNNQ34GLrRQSPC0bD1QZETYxCUlgSosZG4ciFIzh67ih+X/x7hIeE4wvLvoC8+jyEjApBYmQixo8dj39e8s+YH+5u+mq53oLH5j+GF9e9iP83+/+h/ko9AKDV2YqfZPwE7+a+i4a2BhytOuqKEVV8BPNi5qGrrQtHzh1BzbWb90AKqgvwxqE3cKj8EPLq86D1hZy50X0DF6svorOzU7w7ftR4fGXxV3Cj9gaqTlchZUIKRvxlBMICw/Dookcxbfw0TI6ZLOaZpDJOIPj/cogODnxdZSTFPYcAuAXbIwaCg6zO4ioSIy6Wty17/8iRRjlw5kul2uH1qPYxJ6xGxEvVporrluuW2zc7oyoiLbdhFOuJQ0BAgNtdGKPxWBkjb9dMhW7UjhyU0QisqJVeBfAXAMt0XY/XNG0sgP26rs81LXgbQb7nIItnvopx3gDnCIjj4N+NRF1P6gMuFloxOKk8U3wBctMMDggWxm3uDUV/6Tk3dJOqpaaxBjabDXXn6xATE4Pue7qRV5eH0cNG42LrRayYvgLjAsbhj6f/CH/4Iy40DmlT0lDXWocfpf8Iw7Xh+MKyL2DYsGEYFzAOZ6+cRWlTKZZFLMPputP4Q94fEDwiGOtT1mN/8X6Eh4TjatNVLE5YDJvNhpH3jMTmo5tR0laC/1j9Hy5XWpsN/3Xwv5Bdlo3E0ER8Zt5ncOzMMTz9wNMoqS3BypkrRa6LWRNniXEkT3UlPyytL0VFSwXCRochfFS4GDf3SqNQJsOvDseSuUtw5swZTI6ZLIgrEYv5U+ZjxF9GoLi42DB8At+7shMFzxXiy36V6zR6h0savC0rnktmZ0m1p/k5km+Zy4TEKtNmhAeMVK5GfVONi3t9kZHaSBXszT0UT2NVqSK9KU8w0HsO83Rd/ycANwBA1/VrAG698n0AoKL2RlTaTIyzAtzoR/UBN32x+cY0EiXlGP/8HTOOhdqntkgiIg5lIDDabzTOFZ1DXl6eSPaTWZWJjJMZGPGXESgsLBTJhUjHXlhYiIjREYJYhIeE4+jlo6gLqIPjIwdig2ORGpaK5uvNuHz5Mkb5jULRpSLUttbiwJkD6OntQVNXEzp6OzAxbCLu9bsXV9qvIK8uD+8UvYPtJ7bjeM1xbC3civ878X9YGLsQUyZPwammUzjXcw5v576NmZEzkXEpA2NHjMXIkSPxnTXfwX+s/g/ET4gX63Bv9734/sPfx1c+8RU0dDcgaGIQWq63oPRCqQjGR2HAgwOC3dxTa8pr0HixEW8VvoXd53ajqaupHycWHBCMtElpGDt8rFg3Igz0+/wp8zHab7TIL2G2XsS10x4hpFZSUqKUfD1Jq1wSMLvNq+L+eVsqjl61v+V6OZJWGaIBCMJA6g9ZkvGU8dCoftkYLKtczcryMXCpZu3atW45Y3hZI6nJbAwqqY1LQLwNI8JA62t1rlRgRXI4AWABgFxd15M1TQuBS3KY43VrtwjMYisNNnAqzLNumd2QVZU1etcqN0HfPRkyrdRj1B/ZgEmSg9zPutY65F/JR8oEV45h4oqbu5qRV5eH8FHhOFl6Eo8uelQEwHM6nWhoa8C3d3wbCxIXIDokGrjHlZdCgwYdOiYMn4CiiiIkxSRhcfRi5Fflo/UvrZgaOBWvnnwVEUERCLWH4oGIB3Dt+jXkVOfAf5g/fpn1S0y3T0dYaBg+m/hZxE+Ix77Kfejo7sADEQ8gpyYHa+LWuBmYgwOCcfHqRUwbP02MlaQC4gLbe9uRWZWJ5JBk5JbmYu6subh68ar4jd73lrultTd7h7hU4tSdTqdbYD56z4gTlsEoVhHVY8Rx+yIJ8P9Vkq3ZO4SA+Xv0jmqMRuPxZk3MgPdBnneVtG7UHwCGYzDqsydphr/L7UFmcZsGGnjvcQB/ByAFwBsANgD4jq7rfzQteBvBV+Lg7UZRLY7ZPQbVhjFC8EbqIr5BVEhfNQYjX2hP7cm/A9btLbLaBAByLuUgZlyMWzgKOV3pifMncOHCBQwPG46ZE2aKUB/NXc3IqclBRnEGrjmv4fHUx/Hrw7+GX5Af/m3Rv6HtRht69V6khqUiNjgWgOuGc05NDiqbKjHcbzicf3FiWMcw4WGVV5eHpJAkhI5xpf6U3X2trAP1nyNXunSYMiEFlysuW1JTmjEKVpC6Wb1Af+8d+R2jNVapmzii8UaNpGpH7p+Rt5OnoJNWkadV9ZAVsLpH6DvQ39NRnhM+F2Z9UhElVf84wbFSxow4QNd1jx8AcQD+qe8Tb6XM7fykpKTouq7r3d3dulXo7u7WT5w44VUZK23Q793d3fqxY8fc3jdqU1Wn6t2Ojg7LfaZ3VGU8le/o6LBcv1l9jZ2N/b7vLtvt9ryjo0NPP5yu116rVZY/WHZQ//Lvv6znX8zX3y16V//+4e/rP836qf7lP39Z331mt9v7tddq9afeeEpf+5u1+jNvPaOX1JWIehs7G/WSuhL957t/rpfUlei7y3brZY1loi/d3d16R0dHvz4bjXff0X1uz3g9HOT57+7uNt0HZuur2lOqNnlbVJ/qHbk9+k597ujoEM+am5uVbXkCT+PNyMjot986Ojr0119/XTw3mw/VGOR3jPazLzjAyr43m3feb1X7qrJW+9nd3a1nZWVZOr8EAPJ0A7xqNbZSAIB74bJR+Fssc1vBSKdvBGY6RU/lrPTBZrOJbGye2jSqk6cBBdQ6XlUf+P90QUil15XninScnlz1rM61zJkHBwQjZUKKeO50OpFdmI3OoE7DMTV0N2Bi2ERsyd6C9t52PJrwKNbGrsU4/3H4sOhD1LXWCUnFZrNhScISfGPFN/DC6hcwa+IsIa3kXMpB6JhQPLroUYSOCUXMuBjk1ORgX+U+1LXWIS8vDx/mfojMqsx+bqdOpxMZJzPEeKvaq9A6qlWERqexqrhH7upJ8wYYX6r0tL66JOmrdNJ8D3IbGF8vrg+n9rgeW75gR4l0fDkvRvve6XTi3Llzbt+pzPTp093mTLVXVXMpz39ubi7y8/OVe9WsX2bj4e17qtdovoz2gWrN+DMjoPe4u7JFML7cbEQ16APgewBKALwI4AcAiuBSK91xiYE+vkgOtwq8pfZGdWRkZLhxT1bLcc6vublZz8rKsiSZGHE7Rv3nnKQnyUTul/yuEbeu6y6OvKyxTN+Sv0UvaywTz36d/Wv969u+rpfUlehbi7aKOozq4r/vLtutV12p0rcf2i4kCxq3XE9jZ6Pe2Nmov1v6rtv/2w9ttyQV8vUz4iTpN5VUwH/nf+VnntbM131IYCS1eiPFqt7l0gHtEfldT3NiBh0dHWJezd434+bNyvgK3tZv1i9P0pNZezCRHKwQh7MARrDv/gDOeip3Oz9EHG4nWNmwA908MmHwZkM1Nze7HTazd42+c4QgI4rXX39dqWowUyGo3rUKstqpsbNRr71Wqzd2NroRByPgY6i9VqvvO7pP/0PhH5TlqM6yxjKhBuPvNXY2WhqPPH9mSKejo8MyIadnHOnx371hKLwBI6Jvhow8MQYcVCo4o3e97beZSpbUMVaIiKd2BtJXT0jdm7Ms98do7AMlDh8ACGTfAwGkeyrnoc7PADgN1/2JVPZ8GlwhOgr7Pr+xUt+cOXMMJ+1WgNFhHYi04Gubqvf4gRzIRpX1znyzHThwwBSZeToonubKiODQhxMLFYLnvxMi5f01kliIEGwt2iqIjxHI3K6n34zmxKweuSz/zvXL/O+WLVuUaz9YyJaXt0LMjKQBFSFQITQrRMhTX63M70CIqhkR9La8/EyeA2/G7OkcDpQ47AJQC5en0hYAlwFsA/BrAL/2VN6gzngAsQAyFMSh1Nv64uLibglCNgMz5GX27kDb5B8zY5YKqfvSnup/3hejclYOilH9ZsQ3KytL37V/l/6TXT/Ra6/VKuuuulKl/3z3z/WqK1VuZT0dFG4wr71Wa2nuPHGkqmfeqGfMkCc3HMvIWIUcBoJsVetjhZiZjZe/Q4SbP7PCCA2GCsjTnFitz9P+8lSHJ+nK235aWd+BEoe/N/t4Ku+h7kEhDsnJyR4n6laDrxyyt214En850rDKZXjbB2/e84XLkcupDggRBiOProrLFUrEKSM2uW7Zk2qgiMfsfSsEQfYeksdkVpcZgjVDtip1pjzPpLb0Zn6MCEZ3902vJavct2rcvux1PmZv9vZAz7Q3Nhyjdzy1ryontzkg4uAqDxuAWX2fYVbKWKxXRRw6AZwC8CGARSZlvwggD0BeeHi4x4kZDPC1zsFEMJ4QvhWuzlfwVLcvG9vTRvdW+uBul0aukEZIlhuEZULsaZxm4A3Xq0Kcqr8qdZX83ep6qYir2ZgHA6HK9akkB7PxGUnNVve9lTFbLe8teNNXo7F6IlBm+4vDQCWHpQCq+5B1JoAqAIstlDsIoFTx+X/sHZk4DAcwru//FACXAIz21JZskB5Mbv1W1Glls6ve8/Tc6u8DATPkIdsgzLh2q2onjuy96Z8n6Ymec2Qr919V1tt9YPb+QNbXSEUk/2a2Xp4MxWYEm7ftC0KWn5sROJVtS1UX90zy1J4V+51V8KWsr8ygvL6eGEVPMFDikA8gln2PAZDvqZyVj0wcvP2dPipvpVuBIAe6EPSeFUJglbMcSF889dOoPhUykF0GjRCHESdsBAPh6lTIU3adNOqr2cGzMveeOF9f6jR6pqqfj8nTOIzqV807Gby5dGbF8GkEZlIAjcPMxVeui0sgViXOgcCtYETluuU1VDECvsJAiUOxlWe+fBSSQwiAe/v+j+wzhAd5qmcwXVm9Pbj0u7dGSV/74qn8YGwYeVMacaae3rd6oD09H+jB44SBPHn4c+KwCUiKsIqUeDueJCJP8ye/6+18chiousSonGxvMNobVgmeN8TPylm0+u5gwa0kQMR0mXkGDgQGShy2APjfPvXSUgCvA9jiqZyHOj/V5/XUDeAKgH19zz8Nl4trEYACAJ+0Ut9gEQdPXIynsjL46tY2UBgMqcJMLWPEqXrbhtF8Gz23WqfZMxUC5ofPKsftCzdu1Ad6ZqYe8pXoeoO4fDEyG/3viWEyQnae2hwsddBgnknVXHtDKD31yRfGwCoMlDgMB/A1ADsB/AnAvwAY7qnc7fzcacnBqB4zfblRnQPV31rp00AlF/7bQCUVowPly0HzlbhzHbpZ/fQbERNfjP6ekKbqO/9rZTye3lH9LquLbsV4+HMjqcwKIzKQtj2V8xY4M6FSTVptbzDPpjfgM3GAK5aS166lt/uTkpIyoMm6VVTZiPs2Qnay2sOsv75ubiME6E1dvnBFVtuywpF7q0u2cihVh9uoju5uzzduVf321B+zy3RWynvDURtJDlbf9fS7p76ouGHVvvLFvmbEZHgq5039qu9WjPu+7H3Ve76qGmUYqOTwFoBwT+/dyU9ycvKAkKWvaiOr9asWU2UY5c89testEpTf8+YQessVetO2L+DLwTb7Xz7cVvz8jfohr7UVryxq24gxsDLegaowzcboi91CNQd8rq3OqVWCpyrnzboZ1Wk1srJRf83O2UDPwGCorQdKHA4D6ABwCMBu+ngqdzs/vkoOVqn6YCE0I2Rh1q5V3ay3B8Gb97zRQ99KQutNPTJSUrl+qvprdOC8udthJWQGPZPb9gX4WAcCRpyoL0yDPK5jx47pGRkZ/UKYWOkT/fXGyG/UR2/3s5EbrS8MCv8+0DWj8t6qAWUYKHFYovp4Knc7P97YHMyo+K1yfVNxP1YvwHjymDHjrHwlala5N9Uh95bD9PUd1eFSIXQjtZ5Z/d5IDlY9j1T957aLwWA8+Hdf67GKsMzGbkYIvd0f3ng/Wd1PA92jg8UsDiQOk64bS7regE/EAcAIAM8B+G8AXwLgZ/Tunf5YJQ6qzTaQQ+UrN21103vi5KxsUl/GZLThVFy31Q3uC+Hy9I6M/L3h+OV2+Jx6cyta9Z43c9Lc3GzqquipTW+ZHE/gq8eS2TNvfpff8WZOBtvoa7WP3r4vnyNvQBVHayDSuq/E4Q8AtvYRhl0AfmX07p3++CI50P+DZavwxMEbIRtvuFL+3Cg0xGDAQIytKjAbiyewQkDpr9w3qwhDjlfliyeS3J5VbteT26xRGbM2fN0TZoyBWRmrzMlAEfhgSQ6qugbrHBn1ezBccI3Wx9fzp+u+E4cS9r8fgAKjd+/0hwfeGwzu31sOTsVRGx0KbwyORs/r6+u9vqDlqU5P7w308Aykr56Qihn3bAVpyO9YyYUhlzeKKjpYXjOq/vqiBh0Mzp6/a3ZZ0BNS9KaPnoiGN9KO2X7x1JdbQdi8gYEQfhX4ShwKzL7fTR8iDt5sEiMYjEOneqejo8Oyq6oZdHS4Eu0cOHBgQETMG/CW8x+Mg6A6wJ7e52DkDeapn/S+N+oVVUwfThQGw6tENfdGRMdsvXy5fGbWH28kByt9NCtndsasEgYjYm1lHo04d2/74U3Zwa5PBl+Jw0cA2vs+HQB62f/tRuXuxIerlaxwip7A1w1tVp+Z5OAtDFY0TG9AdZhUXOFgEGijNo2eqd7xNObubs8XsazaK1RqKG8QipU2jJCUN2EVVGMe7It83tbjS/3etj+Q8aqYjsHa33I73hj4falPBQPyVvo4fGTicCsWj9f/cSg32HWo6jLayN605+273viYm9XDEas33LfqPZUvvFG/rPTPqB35uxmBMwI5hpQq1pTV/ngrzXkDntSvvjBH3qypL7/finp9kZAIrHjMmQVRvQd/ZWCz2TB79mzYbLZbVv+tLOd0Ot3+LywsdHvmDVA5m83mcx1yfdQfp9PpVi+fd6Oxyn1Qjc+sn2Zra3WunE4ncnNzUVxcjKSkJABQlpPbojGr+pSamur2nlwf7y/VY9ZXo3bk73LbnupwOp04c+aM+M1ut2PDhg2w2+1wOBxe7zVPY/B2jEb9pGc5OTmW9jQ9pz3K9yX972u/qW0ZPM2fr/XKe8fqGjmdThQXFxvuA4fDgby8PAAIMKzEiGp8nD6DGVvpToKsE+bc2UBUWQOVpoxUR96I2EZ9GCwxmtdlJKLLY1D9ZlSvN1FaPalDPAX1u5V2MzMXZW9vZ3vDCXu7zip1zquvvurRlmRlb3ojgVoBq6rDgcylL+8ZXeDj92tgIjncccQ+GB9v7jnczcDVBIOB3H0Rw1V1mN0fGKgKyarY7K14PZhEh+oYjP1jxdDt65wY/aYimkZtDNa8earHl7185MgRS3VYYagGGxfcKmI+kHbMbvVTPTCxOfzVqZWMYKAqGlV9Ay2jUmWQmkAWh2fMmGGqmvKkijASpT2NQ6XK4WK/N2o2+V1PKhij96yoQOSxD0TVSOP0prxKVeZ0OlFZWYkZM2aYlrWiSvC0n1VqLpoHoL9KiPZHXl6eUlXozX6X+6aaf94/VXn6y+tYsGCBWzmj9aDnZuvl61oORn2qslb2p7dqJVk1x9uz0t+/GeLg60ZXgS+ERi5jVIfqADkcDsOFttofOvgOh0N8NytnhrAHay6tHgq5vTNnznhEsKo6fIGBrrUKOdtsNq/qVM2RL3NH383KuphJ9/LezoEZMeBgZHPKzc0VOvHc3Fw3AmFU7laBL7YYwHvm0Qph8IbJGRTbq5FI8XH6eHtD+la44Vl1ezT7blRmoPpM+p0Cn1nJr2xF9TFYc+ktWG3bV3uNUT2+ljFTp3nq/60MZWG1Hl/r8qU9VbrZ29kfuQ1f3JB9LeepvlsxZvwtubJaAV+QtBkMxuU2s/4MFgLkh80bnb3qN36A7xRYQay3MhvfYBCdwYiNZaTTHwx7we2EwUaqgwG+zsVg77tbtSZmxOFvRq3EwVf3MCPgLoEDBZUYa+YaWlhYqCzjSddoRR1hBnqf+uFWuQxbAU865dmzZ8Nut5uK157sQEZA6g9fXDV5H81sSVZtOio1n5FawVO/fFWjWKnbE/A1G6w6zcDqGnmzJwjsdrtHO6E3cCfO2d8kceDgjW7ObJMMFmEgfboVZGaEAH3Vk8v1G4HNZsPcuXMHPGe3GjwRQqt2IP4+B03TLNVrBGZGQ1XfzEBlG7DiAKDqj2r/ka3KbCyDYQcYDMbNqsHW6hr58p68trfjHAx6G0YixcfpY6ZWGkyx7lbfvLYSt+VWuLwNRAUzWDrzwYSB9N9Mx+2NO6a3bqZm7/my7r7q6lW/e5O+1kob3gDV5U0QxME+I76+58v6+Qq+toG/VZvDYC7K7dCvDzbS96VtX4jKrTIc+oLkb+VBHIidhsATAfZlHlVIabAuPdL3wUDO3vaHEwYz4jTYNkRfwds1Gux++lIf/pbCZ3AYDP92+pubmzuYXVOCVf3yYICRC6239xaM/Oblen3pnzc+3aT/HxQXPgPwdM/EijuxmdrQrA6j91VlBuJqLNscqH6r82lm6/BGRcTfN7PpGY3/doMv+5XfKbFSxhN4a1/qA93oh79q4gD4ftlFPiRG+mVv6x0sGEidAzE6yuDJb94TGPWBEx6z9wh6e3vdylop4yuoDP9W5kBlcFX9btWWU1hYCMD4HoQRwvLG5jBYNjlP9aiYFf7+YMyZVfBl35j1Q2ULmjt3rmFcLE/lrcBg2ID+6omDVeCTKR8Sm804wJk39Q5WPwdSpyfu1Ve4VXPDvbHMjKJ+fn6mdQ/m/KsuuAGDI/n5wqEblVEhLE/SiYp4eYPAzBgPmWjzC5kqbztv5mKwYCBny5t1MHtf7o/MKFnty9AlON09E9xAwKqh0Jt3PL032Dr+gfZnMGEw5pDrnX1NDjPYdghv94m3dd5quBUGY/6/FSeF5uZmw3Dhd/qOwO2wLVoNHT5YwTONAH/t9xy4ykcl8lsFo+v+qjq94TCsulJaqccTtyjX701/BhOsjs0qJ+3pvoLquS+qESvgKSyEFTBTYVp1pfUVBtNupZKcPNU/e/ZsBAUFudkRuFThq2Rr5BJsptv3xk7mq6Suql92PVeBfN5vZSoCFfxVEAcCM5GffleV8aXOwVosb+uw+q4n5Gx1o3vybzeCW7GZB1LXrTLk+1qHkQrTzE4wEPWkt+Wob6qy3thZ5HJkJwHUdgRPdhlPdZud8YHM6WDr/a3eSbLKiNwS+5qRSPFx+siZ4OT/jcQyb8Q71f8Dgdvl++xL21ZdCO9WuNV3UQbDRdRsTw22W7CVfsv94TH/edmBqnxu936nsRj12xd36YH2aTDqlcv7uiYwUStprt8/3pCamqr3ZTXqB0SZyaCjcve6E65vt6ttozbMntN82Ww2OByOQbn97St4O0ee1ltVt9U2vDE8m/XLm/XwBeS6PPVb1Tdehs9TYWEhZsyYcUf3hLfg7Toblb/VZQYCZu2Z/aZpWr6u66mq3/6q1Eoq8KSnv1OEwVPbg62+kJ+b6e65vvdWIgFvVHpWy3HPDk9qNU/eNar3fQVvXB2N2rcCKi8tT/325E0j224+ToSBw+3yNhyoCtAXGCy7phsYiRQfp89fS5pQgsG+2e1N3bdD3eVNOwO5/Wu1bqu3w2+l14sVDx9fveN86fedCHtyK2AwxuKLt+HdpHYzqxN/y2qljysMRCxVleWiNWBN3XKrwarKSqUmGez+eVL73A313S1qio8beKM29EWFydVsvtQhG6dvp1fS37Ra6eMK3m4w/r/KS4urUAazbV+BvHR8US3div7dCnfXW+U+ezvgr4UwAN5d4vNG/UIqWNrHKpWeN23eCXdVM/ibkxz+GjgiT9yGJ8nhbhn/YHB0d9N4Pk7gi3Hd01x7sxa3Qxr0FgbDYC0b7z0h+zs97iHJoQ/uhKFosMEKt+HpQthg9WOg5T1dArLqZcN98r1p/1aALLHd6vZ8AafTt8BvVgz8VuozMprfiTnyRSKV+ymfPdrbVqQAIweFWwlW678jxEHTtJ9pmlamaVqxpml/0jQtkP32bU3TKjVNK9c0beVgtjuYYtudOuxWicFAwFcvIm/qN7usaLUNq55Jg91/K/VaGeOdApvNWuA3GXGa3er1dLbM6rpT6pRb4YnEvd9ul3fUrar/jqiVNE1bAeCwruu9mqb9BAB0Xf+WpmkzALwD4D4AYQAOAojRdf0js/put0H6VhmOzNRBtwtulzisEsVV7wDeBSjzpf3BBKNx3Wn1gbdgtg+83f93wtDqCQaiZjXbr4NxD+RW7xVe/12nVtJ1fb+u6xRj+TiAyX3//z8A23Rd79Z1vQpAJVyE4q6CW8HpmBmSbwWHawQDEYe9AauSj9Xxe9ufW3XHRDWuu4kwWFXBme0Db/e/N+/fDumKnytf1sWojHwPxKqKzWr9gwVW6/fz/Moth88D+EPf/5PgIhYEl/ue9QNN074I4It9X7s1TSu9ZT1UNA+TJBkWIRhAk4V65WdW2jZ7RwPgD+C6hXpkUPXZlz54A76Mn8Cb/vL6fZ2fwajPlz5TO1b2RUDf/10W+2MFfO2zDDRXNwD8ZRDqM4JgAM3wfNY8PTcDvu4wqZfvDbN2BmuOZZhq9MMtIw6aph0EEKr46QVd19/re+cFAL0A3qJiiveVk6Xr+m8B/Lavnjwj0ehuhaE+33r4uPUXGOrz7YCPW3+BO9PnW0YcdF1fbva7pml/D2ANgAf1m4aPywCmsNcmA6i7NT0cgiEYgiEYAiO4U95KqwB8C8BaXde72E+7ATyiadpwTdMiAEwHcPJO9HEIhmAIhuBvGe6UzeG/AQwHcKAvUc9xXdf/Udf105qmbQdwBi510z958lTqg9/euq7eMhjq862Hj1t/gaE+3w74uPUXuAN9/qu4IT0EQzAEQzAEgwt/Uzekh2AIhmAIhsAaDBGHIRiCIRiCIegHH2vioGnaZzRNO61p2l80TUuVfrtlYTgGCzRNm61p2nFN0wo1TcvTNO2uu/Ang6Zpz/bN6WlN0356p/tjFTRN+4amabqmacF3ui+ewCy8zN0Emqat6tsLlZqm/dud7o8n0DRtiqZpRzRNO9u3f//5TvfJCmiadq+maac0TUu/ne1+rIkDgFIA6wFk8od9YTgeATATwCoAmzRNu/f2d88j/BTAD3Rdnw3ge33f71rQNO0BuG6xJ+q6PhPAz+9wlyyBpmlTAHwCQM2d7otFOABglq7riQAqAHz7DvenH/Sdp/8B8BCAGQAe7Tt3dzP0Avi6ruvxANIA/NPHoM8A8M8Azt7uRj/WxEHX9bO6rpcrfvpYhOGA64Lf6L7/x+Duv9PxZQD/pet6NwDoun71DvfHKvwSwDcxeDeCbymYhJe5m+A+AJW6rl/Qdd0JYBtc5+6uBV3X63VdL+j7vwMuhKuMwHC3gKZpkwE8DGDz7W77Y00cTGASgEvsu2EYjjsMzwH4maZpl+Diwu86DlGCGACLNE07oWnah5qmzb3THfIEmqatBVCr63rRne6Lj/B5AB/c6U4o4ONyxpSgado0AHMAnLjDXfEEL8PF2NzKcCJKuBtiK5mClTAcqmKKZ3eEazTrP4AHAfyLruvvapq2EcD/AjC9WX6rwUN//QCMhUsknwtgu6Zpkfod9of20OfnAay4vT3yDD6Gl7mb4K45Y96Cpml2AO8CeE7X9fY73R8j0DRtDYCruq7na5q29Ha3f9cTB09hOAzgrgnDYdZ/TdPehEufCAB/xB0QHWXw0N8vA9jZRwxOapr2F7gCgjXerv6pwKjPmqYlAIgAUNR32XIygAJN0+7Tdb3hNnaxH/gYXuZugrvmjHkDmqYNg4swvKXr+s473R8PcD+AtZqmrQYwAsBoTdO26rr+xO1o/K9VrfRxCcNRB2BJ3//LAJy7g32xArvg6ic0TYsBYMOtiRQ5KKDreomu6+N1XZ+m6/o0uBBa8p0mDJ7AJLzM3QS5AKZrmhahaZoNLgeQ3Xe4T6aguTiE/wVwVtf1X9zp/ngCXde/rev65L69+whcOXBuC2EAPgaSgxlomvYpAK8ACAHwvqZphbqurxxAGI7bDf8A4FeapvnBFab4ix7ev9PwfwD+ry88uhPA39+lXO3HHZThZe5sl9yhL1HXVwDsA3AvgP/Tdf30He6WJ7gfwGcBlGiaVtj37Hld1/fcuS7dvTAUPmMIhmAIhmAI+sFfq1ppCIZgCIZgCAYAQ8RhCIZgCIZgCPrBEHEYgiEYgiEYgn4wRByGYAiGYAiGoB8MEYchGIIhGIIh6AdDxGEIfAZN0z7qiyhbqmnaHzVNC7jTffIFNE0L1DTtGfY9TNO0HXe4T+s0Tfte3/8vapr2DfbbN/qitpZqmlakadqTfc8z+qKkFmmalqtp2mxW5vOappX0RXot1TStXxwkTdNC+kKjnNI0bdFtGCa1e1DTtLG3q70hsAZDxGEIBgLXdV2frev6LLjuPbj54t/KSLiDXHcgAEEcdF2v03V9wyDWD8DrPn8TwCZFHf8IV4TZ+/rmfTHcQ1k8rut6Ul/Zn/WVmQxXKJGFfZFe0wAUK9p8EECZrutzdF0/OoC+ewu/B5v/Ibg7YIg4DMFgwVEA0ZqmLe2Lmf82XJeNRmiatqWPaz3VF/YbmqY9pWnae5qm7e3jdr9PFWma9oSmaSf7pJLXCDFpmubQNO2HmqadADCfN97HNf9S07TMvnj9czVN26lp2jlN037E3vtaH+dcqmnac32P/wtAVF97P9M0bVrfRT946P/Ovv6f0wxyW2iadlHTtO9pmpYF4DOapv1DH1dfpGnauyppq+/2ebeu66rb588DeIZiAum63qbr+u8U7+XgZiC88QA6ADj6yjj6ohXzNmfDFTJ+dd88+Mvz3TeO3L65+23fjWNv5l65rnDdrH5UNX9DcAdB1/Whz9DHpw8AR99fPwDvwRXSeymATgARfb99HcCWvv/j4MqpMALAUwDqAYwD4A9Xbo5UAPEA/gxgWF+ZTQCe7PtfB7DRoC8ZAH7S9/8/wxWaZCJcN40v97WTAqAEwEgAdgCn4YrMOQ1AKatLfPfQ/wtwhVofAaAawBRFvy4C+Cb7Po79/yMAzyrKfA7AS+z7iwC+AWAUgGsm65EBILXv/+cA/Eff//fCdZO5BsAWAJ80KP8UgP9m393mG0AQ+//3VI/FuTdc177v5/jcDH3u/OdjHT5jCO44+LMwBEfhiluzAMBJ/SZnuhCuECfQdb1M07RquEJ/A8ABXdebAUDTtJ197/bChcRz+xhTfwCUN+IjuIKmGQHF9ikBcFrX9fq+ui/AFSRuIYA/6breydpcBPOYQGb9P6TreltfXWcATIV7GGuCP7D/Z/Vx04FwEah9ivcnQh3MUIPnyKdvaZo2Ei6CkNzX7480V7ymuXCpjn6paVqKrusveqhLnu8HNE37JoAAAEFwEdc/9/1mZe6N1hV9/4cBaPbQpyG4TTBEHIZgIHBdd2WxE9B38Dv5I5PyMqLT+97/na7rqtwWN3TzGFndfX//wv6n734e+mIEZmV4Gx/B+Dzx+XgDwDpd14s0TXsKLklLhutwSSRuoOt6u6ZpnZorTPoFg7YeB1AEl6rsf+DKlAjdxZ6fhCua7gG4JIgXDeogEPOtadoIuLj9VF3XL2ma9iJcEhOBlbk3Wlf01XXdQ3+G4DbCkM1hCG41ZMKFsEiXHg6Asvd9QtO0IE3T/AGsA3AMwCEAGzRNG99XJkjTtKmD2Jd1mqYF9HHXn4JL4umAS2Xjbf99gVEA6jVX6OjHDd45CyDa4Lf/BPA/mqaN7uvTaE3T3AI26rreA+A7ANI0TYvXXN5XyeyV2XCpwbwBIgRNmisfgrcGe8N17bNdhMKlghuCuwSGJIchuNWwCcBvNE0rgUtl9JSu6919EkYWXLrraABv67qeBwCapn0HwH5N0+4B0APgn+A9MusHuq4XaJr2Bm6Gb9+s6/qpvjaP9RmhP4CL47bSf1/gu3BlH6uGSwWjIkqZAF7SNE3r4/g5vAqXOipX07QeuObnJbkCXdeva5r2Ely2ih8C+LmmaWFwRf9thORZ5gl0XW/VNO31vj5fhCtktzflz5isawpckWd7zeoYgtsLQ1FZh+COQJ9KJVXX9a/c6b7cjaBp2q8A/FnX9YN3ui+3GvrGulvX9UN3ui9DcBOG1EpDMAR3J/wHXIbfvwUoHSIMdx8MSQ5DMARDMARD0A+GJIchGIIhGIIh6AdDxGEIhmAIhmAI+sEQcRiCIRiCIRiCfjBEHIZgCIZgCIagHwwRhyEYgiEYgiHoB/8f+L1JpIsNMiYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = centerline_df['pmra']\n", "y = centerline_df['pmdec']\n", @@ -286,7 +355,18 @@ "cell_type": "code", "execution_count": 46, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(1049, 2)" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import numpy as np\n", "\n", @@ -312,7 +392,18 @@ "cell_type": "code", "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from scipy.spatial import ConvexHull\n", "\n", @@ -331,7 +422,19 @@ "cell_type": "code", "execution_count": 48, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 692, 873, 141, 303, 42, 622, 45, 83, 127, 182, 1006,\n", + " 971, 967, 1001, 969, 940], dtype=int32)" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "hull.vertices" ] @@ -347,7 +450,33 @@ "cell_type": "code", "execution_count": 49, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -4.05037121, -14.75623261],\n", + " [ -3.41981085, -14.72365546],\n", + " [ -3.03521988, -14.44357135],\n", + " [ -2.26847919, -13.7140236 ],\n", + " [ -2.61172203, -13.24797471],\n", + " [ -2.73471401, -13.09054471],\n", + " [ -3.19923146, -12.5942653 ],\n", + " [ -3.34082546, -12.47611926],\n", + " [ -5.67489413, -11.16083338],\n", + " [ -5.95159272, -11.10547884],\n", + " [ -6.42394023, -11.05981295],\n", + " [ -7.09631023, -11.95187806],\n", + " [ -7.30641519, -12.24559977],\n", + " [ -7.04016696, -12.88580702],\n", + " [ -6.00347705, -13.75912098],\n", + " [ -4.42442296, -14.74641176]])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pm_vertices = points[hull.vertices]\n", "pm_vertices" @@ -382,7 +511,20 @@ "cell_type": "code", "execution_count": 51, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e1zU5533jz+ngYngBHAEg4qAnM8qBwXFQ9AaQ1lrrPVnrWuT3Haz3+yde9M7aXebdnfbbdNDdrO3d7Nrm40be7vGuq5rqUsMMUpQEUEBOZ9PAsqoMAEzgA6Tfn5/kOvKNR9nBjzksF3fjwcPYOZzuD7X57reh9f7ZNA0jft0n+7TfbpP90mlL3zWA7hP9+k+3af79Pmj+8LhPt2n+3Sf7tMtdF843Kf7dJ/u0326he4Lh/t0n+7TfbpPt9B94XCf7tN9uk/36Ra6Lxzu0326T/fpPt1CXp/1ANyRwWDoBj4APgQcmqalf7Yjuk/36T7dp/8+9LkVDh/RI5qmDXzWg7hP9+k+3af/bnQfVrpP9+k+3af7dAsZPq8Z0gaDoQt4H9CA1zRN+2fd938C/AnA9OnT02JjYzEYDHd8P03TGB0dxdfX1+V1NE27q+vrrzGV63k65m7GM9mz3i39/ve/5wtfcNY7xHj1974X8zoZ3c491HFO5ZxPY/yfZ7rd578Xa/qTXr+f1b0+C6qsrBzQNC3I5Zeapn0uf4A5H/2eBdQAK9wdm5aWpt0Lunnz5j25jkoffPCBvHZ5ebl28+ZNp789jcXdMa6+u92x3+2zujtfjE08t/qZOEf9Pdk8TPW+t0u3M/eTPesnsW7uBU32jHd6rnrMvXr+273Wpznnn9f3ey8IqNDc8NXPLaykadrlj35fBX4LLP6k72k0Gu/p9Ww2G4cOHcJms2E0Glm4cCFGo9Hpb09jcXeM/ju73U51dTV2u33KY9Nf93bOVe+nP89oNJKQkEBjY6P8Tj9e9fdk8+DuvndDk11HPIPRaPR4rBj/55E8jXuy55/qPE/2/m53Pd7OWriTvXqn6+Ze84XJ6G7X972iz6VwMBgM0w0Gw0Pib2AtUP9pj+NuX5LJZGLTpk2YTCYAJ2Y+lQU3mfBQ/76djaWn22W6KlN0dZ7JZHI7HlfCZKp0J8/pial7YmpCuE3lnp6Y8CdNngTcVJWL2/1ef6y7cU22pu5mLdwu3SvF4pOmz9M4P5fCAXgYKDEYDDXAOeAtTdMKP80B3KuXJATDvb6uej24u43lyhKZyjmTMSB1jNXV1dhstlue/Xbn4XYFg6u5nkw4u7N0pnLsZPe+lzQVC0gc5+47d3S3jHoqAvjTZIJ3q0B9WvR5Gufn1iF9O5Senq5VVFTck2upjGOqGv7d3ONur1NdXX1PF9MncU1xXQHTAE6QzSe5GfRz/Wnc0929P4t7eHreT2N8nuizvv9/R9LPucFgqNTc5JB9Xi2Hz4Tsdjvnz5+XWPq9ZLgq3avr3o2WcSdwxN2QKhiEFfFpaEn6a9+pn+BONNx7pQB4uv9ULABXc+zKivu06Q9FMHweIKCp0O1aa/eFg44MBsOkzrw7dd7eDn1WcMRUNNE7GZ+4J+DksJ6MQXxS8zaVd6I+690wUk+OX0/neILj9GSz2dx+58piaGxslE73ycZyn9zT58lHMBndrjL2By0c7gTPTk9Pd+tQFZZFRUXFbTtvVc15KuOeKvO604Xpakz667nC6qfKrPSkRgB5cli7ut+9nrepbBL1Wp78CupvV6TOlae5dnVvmHhPk82XGhU3FRLPI/xhk43l06JPWiG6k/vc7Vr6vAmN27LW3MW4/lf6cZXnMNW4aZF3cDvx1bcblz/V3AZ9bsC9Hos4x1O+hfj7gw8+cDneyWL/p3Lf2z3vXh9/J7H0ruahvLxcGxwcnDQf5YMPPnD5/Or7nuoY3b1zd9e6m7wBd2vgk6B7kbszlWtP9kz6+9/N83/e82A0zXOew2fO2O/Fj7skOHeMTf2/pKREKy4u1kpKSu75SxTXP3PmjEdGLhbtnj17PDIM/Tl3uvAm24CuEtnuBd2LZLd7kbx3J4l3rs4RjGZwcNDjue7+9iR8XdEHH3zgtJ7udNxToU9qDUx2T/3976WAmOyZPgkBdTvK1GchRP7bCgeVPG3GO9HAp0r6a3vKEr7djfhJLqZ7ee3btTY8vat7YX3cifXjao1MRRN1NwZ345qqFXI7477TYz9rjfeTuP+dvKe7veZU1shnZWV4Eg5/0D4HcM4DcIUNinj9qWBxU8EPXUUm6TOZrVary4id243e+LTCP+/2Wrfrp/D0rqaC706G7Qtfi4hMU491FXCgRlnpndS367/QP89Un0/1E6jraTI/wVTfo7t5uhu6W7x9qnvydn1fd3tP/f0nyzbXO//d3fduE1nvNf3BCQdPjOFuFvtUnJ12u52KigqPjsGEhATa29uJiopyithRmai7a98Lcsf41P89jeN27qE6c6fqhJ7smpMlVemFkKcEP7WQmnh3paWlTgEHeuewmhg3VaF+r0J2xToRPxUVFS4F3J04l293jJNFYH0aUTzu5uDTpMnmTe/8n+xad0Kf2Fy7Myn+K/0IWOmTdGpN5Vo3b97U3nvvPZeYsN4R7Op6npzA9wL/1c/PZFj6ncydOPd2rjEZvDJVk9vdvKqfq/4f/XyKz/U+hHu1niaDliZ7TtVH5u4ZPN1nKsUEpzLuqcJ+k8Eo92JvTuU6nwZU818VguO/k8/hs14InhbrZNi3p3NvJ8rCE00VV75TJqIKsakKhskcs3fDSMT1BwcHJXMdHBzUzpw5o7333nsuBaOrwAAxhqkqH658Ta6UA0/Xc3Vt4ZTWj2cqioN6X/Uad4KF3806FPf35Fi/2318u4rF3dz3s/IX3AvyJBz+4GCle51UpT9vMhPOFcwgYABXZRxU/4OAL1zRZMXsbgfP90TqWG/nunoISb3X7cAZevhIhXXuhIxGI1FRURw5cgS73c6CBQtob28nLi7O5fhEsURX7wqcoSU9hKX+rqio4OTJk7fAW4ATbKV/p/rn1kNGJpOJBQsWOF3TbrdPKc9BVzbBIywzFV/dZPfwNI6MjAzS09Pvej27oqnkqEx2nvh/KuQp6168k8ng6M8luZMa/5V+ptrP4U7hmds1yfXa4ZkzZ1yGyqoQzFSu6+mY29Gu3WlVrjS6qWrJtxNlc7vXuRewjj6HRP2ZrP+Eq/u6spLUc9ra2rTXX3/9lnd78+ZNrbi4eEqWoLtxuoIuJ1vTriwZV5+7e/7bockskbu9xid5/t1YHPo9LqzQqeTCfFZWB/+dYKXJ6E6x8NtZJHphMFWoabJ7uBr77S5mPbzhijG4EwyeFrinzz/44AM5J642inr+ZIlhU4E4bkcIifHdLrzj6pnF2AcHB7W/+qu/0i5evOjyfpNBOqog0OfJiLmcijBQ/3733XennB/h6Zmnct5UGOGnLSSmsi/u5t5i37tbE/dCYH4SdF84aFPD9fXH341T9nbP099P/1tvZbj6bCrPJhiMp42qaqruhIV6rN7SED+qhqsyYb0VIQTHVOPBJ5s3Vw5xPbN0NwdT0aJdaYn646bi1Pb0vK7Wq/psk82Rfiyvv/66HNNU14n+950GGOi/c7fWJ3uO2yV3a+FO7nO3z/1J053e+w9eOKSmpnqcgKkuElfnufp7qve6XXIlCM6cOSO1bVfQh6qJT6aZCabmimG7YgJT2chCCIhjVQvBlYbr7prqs6v3uR1hp59HV8/gag70c+pOQKvXdHf+VMaq3ut214m7Uhyu7qXeRxUMakUAd8qBOwF7rxigXjnwxLjv5p7untHdeNx9dztW12TXu9d0N0L0D144xMXF3ZYm5Gkhuvv8dib/XoWCqviyK/PUE/Ny5eNQN4rKNF0xcFf/u5oH/cZRBY6nWlHuhJfKlNTyFO6eRYR2TjV8WD3XFbkS0Oo54l24EnLuriX+Li4udumHmCrphdJkTM/VMWLOxJy684e5W1v3Gh93t1bFd67WkqvjPH13t2P2NEZX47jde96L+bzTa/zBC4fJLAdBnjb07Wz0qd7rdnBhdQyqdqhqxe6wcXearTsIyh3T1I/L03fimu40Tz10dLuQhIrfv/766zK2X389T0xSfQe3q/WpVpk6d/o6XLejUExlPJMxOlXjFxaQu1wHfbiuq3U0mYBRrzeVYydbM57OcaV0FBcXe/RT6ef5Tu5/O2P09P2d5JF8EgL3dui/lXBwt1FcMRRXx90JuTrPVby8el9PQsrd3660cT1Eosa96+EmldlNxtQEpOXuuA8++OAWpq2OSa/Nu2MAru6v1xY/+OAD6dxV7++JVK34Tiw5veBRx+KOAUzlf3ewkDvFxZMiIKxLd8+mvkNPPhhXz67/X7/OXB3javyTrSP1fFc+NVUYehqPeo3bYcx3ct5k1/u0zrsXBFRqf8jCQcBK7hiyXijcDeyjXld/fT3px+EqimmyczwxUz3j0h/j6m9PYXX6605mSrvC+tUxuRqvJ/+Iqi329/fL7/v7+7UnnnhCu3jx4m29Pz2Dd3eMfq7E/0KwuBIyekHsSnPUM0kBK+lhMv113c2XHl50p+zo59QV43X1zPrr6udHHYd+Hbsbv7tkQ1djmCxqTH+eu/FPhW5HWN7ute8FfRr3unnzpgY0an/IwiE1NdUlo1QnQfxWN7r6nbtz3H13J6asJyalac7WhqtN6GoMrjaUO63aHZNwNd7JxurqWBXmmCwKRz1PH1nz7rvvSlxczMXvfvc7rbi4+BYfzGTPMdlYhEWlv6aYfz3z1TNL/TtTzxXrTJ13fXCBOgZXz6H+1kNag4ODco7cOdynMu+umLo6NleCbiqCRnzuzlLVv3tX45zKPTyRq3NUX9Zkx7uai0+aPs17/cFbDosWLfLISFXSb/Sp+h9uZ6FO5eW6+86T5eDuGvqN68p68nSOK2HnySehH4MrJuOpx4H+WcU5AkYQOLPqwFX9G+6ex91zeILRhGVw7NixW4SB+gye5sudlSSurf9eL7DcRYzpfTrq3x988IH26quvai+88IJ27Ngxl+tmMqVCFSZ6n446Vv05t9P/xNX11Xt4Eiru1qSrY6dyDfUzd34MV/dUI72meu+7pU9DMGia9ofvc4iLi/PIAFSaKpN3tWhuJ+zQ01hux3y+E3IHq+k/c4efq8xlKuPUz4srAaWnwcFBmT2qMilVK1W1TndhsXrrydX7dbXp9c+p/pSUlGjvvvuuEwTkCt+eipKhJp+px7t6Fj1Tfu+996QV5WouhSXi7rndOe2F4FUFjYB+XFkhQlCKuXY3nskE8FTm63b+93QtT+folRJP61usU3fP+0nu40+DPAmHP4jaSr6+vk517t3R7dSs19e7SUhIoLGxcUq1UsQ57somu2ruru9LPVlpbU+k9gZ21cNa1Buqra2VdXXc1TLS1z0S86fOgyg9DhO1ZPT1iVw9S3t7O+vWraOpqUk+u8PhAJDzLPpNA4yMjFBbW3tL/X59OXBPvRCMRiM2m43z58/L3xUVFbccn5GRwYoVK9i4cSPt7e3Y7XY0TbullpI6d+J92mw2p/F5e3uTkpICIGtpnT9/nsrKylvmRV8q3eFw4OXlRXx8vHx2QWKezWaz07nqO05ISAAmajmdOnWKiooKrFYrVVVVNDU1OdXREmOvra0lKipKzqOowdTU1ERCQoKs7aQvQe2pHpLRaCQlJcVluXNP50+lntNUSmaL64vfrkrlu9tfZrOZTZs2uSy57aou2GS9Hf4r0R+EcFDr8nuiqRbhcrfAVQGhZ5KuruGuwYurMUwIcedzVQZ8u4tOX3xM/V8w55SUFBYsWHCLIBTF3FxtVn2hNz3jVT931+RHnBMcHExGRoZkHF5eXnKea2pqnM6ZPn26E5PVFyqcrICbGF9NTQ1jY2Oy+Ju4piiUJ4SFEExC+IiCfUII2O12ue4Ew7FarRw4cICzZ8/KsYtnEgK5vb2d+Ph4vL29ncaqX181NTUApKSkYDKZnISi1Wp1KrRnNBoJDQ11EvZiTABxcXF4eXkRERFBXV0d3t7ebN68GaPRyPnz5+V9mpubGR0dlYLDaDTK4ngGg0E+t6oMqORqXdvtE02V9MJNT56K17miqSh46rHuCvHplSdX+8xTLwZXe+eTKCb4mZA7k+K/0s/t1FZSyZ2Z6qk0gmqKejI53V1ffz13x7rCpadyLVfwkP5vcT1PcIs+9FVP7hyS4rqeQj7djd8d7OHqudxd1x0UId5rf3//LY5i8S5FQTzxHO6cusKB7conoT63iuuL99nW1ubxGdR7HD16VI5VhZfEvdX7qBCYOv83b074CN59913tvffek88ojtFHQKnn6z9z9Yyu3qGrZ9Jfz1Morzsfjqv7uTtGT+58YFOFria7/mTfu5qXzwNxp7CSwWAIMRgMLxgMht8ZDIbzBoPhlMFg2GUwGL5kMBj+S1sd7koiw62WiKuuX0L7Xr9+vdTsJrufq+upn6mkQiWqtubJEnH1TK60bLvdTm1tLYATHKLXrsxms9Rm9WWM1fEKiEace/bsWQ4cOODyWP0zCI1ahTYOHz58y3txByno59gTNOFwOOjs7CQyMlJq1QsXLsRms9HU1CSPF/MzMjLiNGZ1fENDQ9TV1d3yjALeFNq91WqloqKCsrIyzGYzL730Ej09PfI+ejhRfF5VVUVHRwfx8fEYjUZ8fHzk3+Pj4/LdinPDwsLkGPTz7+3tTWpqKunp6WRlZWE0GiktLaW2tpa4uDgnGE/c/9ChQ1gsFlnSW6wPAT2dOHHilrLegOymp7eqxT2EZaauWRXKTEhIoLKy0qmMuH6eXO0fT21oxTvTQ8L667paZ+pzT2a9e+rAN5Wy87fDQ+7mmKmSWwZvMBj2AG8AduDnwNeAZ4DjwDqgxGAwrLhnI/mUSc9U1Rfoqs68nsEJv4HZbHYraFQYR/3bHbNzNUZ1rIDL2vviGfSmufjfVS8ITdPkc9hstlv8ICqzU6EU0QZVxbhra2sZHByU48rKymLLli23PI+AGNRWqlar1WnjmkwmtmzZwsqVK+U56vF6yE1PrrBsdVwpKSl0dHRIPN5ms7F//34iIyMl4zQajbLfgxizgIqMRiNbtmwhNTUVLy+vW55P/G5vbycnJ4eenh5mzZpFd3c3RqORxx9/nN7eXnns0NCQ03nix9vbm9DQUCls4uPjaW9vl3Pe3Nwsn6GmpgaDwSChm6ysLPLy8pyepa6uzsm/4nA4SElJwWw2ExwcLGE8MZb169fT2dlJSkoK8fHx8n4mk4mIiAhKSkqc3oG4l4AIbTYbBw4ckMeI96J9BJ+qyoz4Xnzu7e19C9wpztMLYyGEPPVpNhqNREdHu1Sg1Ou62sPiupO1ufUEKbnyTaj3cHd/laYCS91r6MqT9v+KpmlrNU37haZppZqmtWuaVq9p2mFN054FVgGX78ko7pLEC74dEhtdv0BV68DdeeJYFYt05fRVr6dqVpP1vNV/pwoT4bRVj/MkiPTMXvydkZHhhKm7W9hi46mbScXHASIiIigtLeX06dNODEjfgMZoNLJgwQJSUlKkUGpqamLu3Lny3sLRqn8O4cAV99Zj2KJpkqqx2u12SktLOXHihJMfQMxhRUUF5eXltLW1ceHCBaf5bG5uZnx8XDJm/TwXFhZKTV7cU2ihYowWi4Xg4GBKSkpYtWoVR48eJTs7WzbrsdlsnDp1irKyMml9nT17lpqaGmJjY7l69ap8ftF3vLa2VjJhMU8LFiwgMzOTlJQUKisrsVgsHDp0iNLSUiwWC7W1tQwPD+NwOLDb7VitVilo2tvb2bVrF9evX8dut0urw2azMTAwIOdCnevg4GCeffZZqRiJZxHvWIwtOjoawElrzsjIcKn0iPdht9udnNdiPjMyMm5hfkJwCye6O9+A0WgkLS1N7kVViIjxuGPuQjCI63givVLi6jvVWlGfRz8uV9eezF86lWNuh9wKB03T6sXfBoPBx2AwxOq+t2ua1n5PRnGXNDo6eosmqWpBetK/lKk6wlTN19W13DFm8bfROOHgUzeIutD111PvKZ5PaKvunkFoOsAtWoQn89nd8Y2NjU6wjxi7alEEBwfzne98h+XLl0ury2g0smnTplvu29jY6GTRLFiwAD8/PwDp0LZarU4aW0pKCl5eXk6CV1UIbDYbR44cITQ0lMrKSieN1eFw0NHRwcjICJWVlZSVlUkBl56ezvLly3n00Ufx9vaW2rNgcD4+Pk7MUYXbNm3aJJnjqVOnqKyslDAUfGxxWSwW1q9fL6OKAOk4NplMfOc732HFihVSCKWlpbFgwQLMZjNbtmyRjEl9B8nJyZhMJqxWK/v27aOsrEwynPPnz7N3714cDgcRERHk5+dz/fp1enp6GB0d5fTp0+Tn5xMQEMDu3bt57bXXyMjIYPny5ZhMJtLS0sjLy+Pw4cPs37+fkpISUlJSSElJoaamRlouPT090oLs6emR700wa4C0tDSpeAAuI8NUuGZ8fJzKykoqKiqcLFTx3l1ZtxkZGYSEhEgnukr6dSf2pRpU4o6EoFSVEFf8xN1nnjR41XrSQ8eeuvndDtpwT8idM0L8AOuBFqDro/8XAkcmO+/T/FmwYMEtWaeTlarQO2r1WaWeHMCenMd6h5sn55nqgHNXekE4FNUaOZM5ZN05p/XJP2rtGnfXc5dhrHfcu3pmV0XzXDmyVWehcKqqDlX9uFVnrDhXTVRSv1f/V53R6vOqmdh6p72maVp/f7/Lyrji2q+//votx4jzVWd0f3+//F+fi1JcXKy9+uqr2tGjR7Xi4mLt2LFjcjzvvvuu9stf/lJ77733nJzhInlP/H3x4kXt7/7u77Rvfetb2rlz57SbN29qR48e1fr7+2Xm+Xvvvae1tbVpv/vd77QXXnhBa2hokONRcxg++OADra2tTf6vz7lQ5+7111+XpU30e0B18OvzI/r7+2/pM+Eu8U91aqs0ODiovfjii9rRo0c9Osn1wQHqe9Qfr65v/TqcimNcXTuuyJ1j2lM2vye6neP1ex0PDmmDNgkkYzAYKoEcoFjTtEUffVaraVrKvRNRd0fp6elacXExjY2NTlaA3W53gihc4dHnz593wjcFXrpv3z62bdsmz9efp5fQektBXMvV8ep4xHEqzAU4jVe1RCoqKtA0zcn6UEnAQK7MSxWbhQkNdnx8nKysLKe5Usfj6nnEZxUVFdJSUI9RIQYBE6n4vRi7iLnv7u5m48aNmEwmzp49C3wMX6WnpzvNkc1mY+fOnTz33HMA7Ny5kx07dmCxWG7B4MW558+fJz4+niNHjkgtXryD0NBQCgoKiI6OJjk5maamJuLj4zGZTPL7wsJC1q1bR09PjwxHTUhIoKysTDqKxdyJuRfWzPr16yUk1NTUhMPhkA7lFStWYLPZMJvNWCwW6uvrZcjp0aNHZbhpRUUFcXFxctxlZWX4+vrKMFxhRRw5coR169ZhtVp55ZVXeP755ykqKuLGjRts27aNlpYWYmNjKSgoYO7cuURHR3PlyhUGBwe5fPkyoaGhGAwGvL29SUpKks9rNBqprKwkOTkZgLq6OrlmjEYjp06dYnx8HH9/fwkpARK+Es8eGRlJZ2cn6enp2O129u3bR1hYGKtXr5brSl0fYs0K7V2sB/26tlqtLvOcxJo8f/68hBI1TcNgMEirRn+8K2hI3auCJtsb1dXVTpDUVMmdVe/peFe8zdOxAhJeuHAhDz74YKWmaemujp+KcCjXNG2JwWC48HkWDmrUgX4C9MxOkM1mo7KyEm9vbycmJ5yUTzzxBEaj8RZG7ell6Bmg+MydMNEzYXFtwazVz/WYpP58vWPO3fhgwsQX2K7dPhGdojLA5uZmpzkRQlQVIHr/gGCKBw8eJCoqCm9vbzRNY+nSpRiNRiwWi3RyWq1Wjh07xty5c0lMTJTMvaamRjJb8Yx6slqtEqYR14yIiKCjowOHw0FaWprT/IlnFZ+Ja1osllsY4OjoKBcvXmTbtm1OWL94ThHhYzQa2bdvH5s3b8ZkMklBKeamurqa4OBgQkNDneAFm81GVVUV9fX15OXlsXfvXrZv305xcTF5eXkAdHR0MDg4iJ+fHwaDgdHRUcl4Kysr0TRNMmEhwMQziedrbGzk/fffZ8aMGfzTP/0TeXl5+Pr6kpWVhc1m47333sPf35+YmBiOHj1Kbm4ura2tjI6O0tjYyLRp09iyZQv19fVy3UyfPp3x8XGam5vZtGkT+fn5bN68GbvdTkFBAatWrcJqtcr1V11dLQXD2NiYFIpCGJw9e5bk5GQ53tDQUCk8xLoTglGsZ08Kl6c9pr6Ds2fPMn36dJeCRt0jeqVH7ANV8QBc8gNPStrt0FSExe0IFD3fMRgMboXDVMJR6w0Gw1bgAYPBEG0wGF4FSqc0kk+JhFYgJsiVk9XVwmlsbCQtLe2WxagyAL2jyJPTRywkNRTWVQicCBsUTFXVtIX2qzqBxefCAQy4jBry5G8Q4xP3FZq58B+sX79eMko1RFOdY4E5i3uqmaZCoDU1NREVFUVqaqrc+DDB0Hft2sWsWbMoKyvjtddeY9WqVfj4+NDX1+eUfdve3i6f2xVuKzRou92O2WxmdHSUlpYW4uPjpW/i8OHD0goReHldXZ0MBrBYLBQWFkrGbzROJOEtWbJEOqBVwaDi4gJTF8fZbDan6C+Y8BEcO3YMi8Ui35fVaqWuro6kpCQcDgd9fX3s2LGDK1euMGvWLOrr6zl06BCRkZHARNRcWlqaFAwwEZYaFxcn5yg0NJRXXnmFF198kZKSEs6fP4/VaqW0tJTBwUHa29vx8vIiOjpaRmNZrVZ++9vfUlZWRmtrqwyDvXbtmkzOu3HjBna7nfr6ekZHR5k+fTrJycmkpqYSFxcnjxGCbu3atRQXF8vIJzE2s9lMRkYGqampdHR00NHRIddMWloalZWVVFZWEhwcTGFhIREREU57S/ghxJwL5U0NMHCF8es/q6mpobKyEnBOqNSTEADq/hIkfByqRQquk/8mi26aCk3mu1DHNdl19MdOZVxTsRx8ge8BawED8A7wI03Tbkx69U+J5syZo9XX18tNrMI1nsidtiFoMkvBndavniu0VqHFihA/4WxUNQxAaqB60kNPJ0+eJCsrC0BqXUKbVqEy/fhUWERfZkNvVYjxqXkc4li95aCeZ7d/HO2jmu/t7e1Ss7TZbAQHBztBAvpxgHutrLa2Fk3TiI+Pp6ysjOnTp8v5EAxQtRJUaE61lEwmE7W1tbfMubiGmCsh+OLj46mqqpKQ0MGDBwHYsGEDwcHBTmMvLCzk8uXLbN68mdOnT9PV1QXAli1bpNYt5q+mpobIyEjy8/NZs2YNf/u3f8vLL7+M2WyWlpJ4f3V1dU6Ct6enh1/96lesXr2a5cuXy+cVWv/AwABDQ0PSGjp8+DDp6elcu3aN5ORkLly4QHl5OaWlpfzgBz+gtbWVoaEhAgICsFgspKWlkZaWRnNzM8PDw3h7e0srIDExkWPHjrFx40bKy8vx9fUFIDY2lldffZVnn32W4OBg+f7NZrNcp1arlYMHDxIaGsr06dOZP38+FovFaQ8JgSqijSoqKhgZGaGjo4Nt27bJtTgZ1CuyzkXUk7BsPO0DV9dVjzl79qwTJKu/pzu6E03/TmkypOOuLAdN00Y1TfuepmkZmqalf/T350YwAAQFBWE2m6UGC7fWmlFJZRR60puv7iwFvVRXj1OPFRq6en0R4ge3ahiqsD579iylpaVSi1EZXUtLCxUVFRiNE6UTdu3a5RShI+bAarXK6wm4SF8HSI16MhqNUqvSl8MQTFXMnygZIc4XY29vbyciIkKWjhDaXnFxsYRwenp6sFgsHDlyRF5PjFcIVXCdt1BTU0NERAQLFiygrq6Onp4eYmNjnRiFEETiHPg4EUtYSmaz+ZaQWKEpCgEXHBxMbW0tlZWVcl5FGKjJZGLbtm1s3rxZRu+o1qCfnx9RUVEAdHV1MW/ePJKSkjCZTFIwCOsmPj6e4OBgtm3bRnBwMF/72tcwmUycOnWKnTt3OsE1Fy5coKSkhN27d7N7924uXrworYKSkhJ++tOfUlVVJX0Hs2fPZsaMGTJ0eNasWQwNDWEwGGTJjOnTp5Obm8vevXvZv38/ERER7N+/nxs3bkgBHxISwsWLFwkPD+fixYtcv36d3t5e6S/y9vZm/vz5pKWlYTabyc7OlpZCdXU1L730EiUlJfIdNzc3s3nzZlasWMH4+Di9vb3S8j179uwtyYkwYU2tXLlSCgZ17aoKjHqO2GcLFiyQ69ZmszkleOqTQNX9r7dQxD7z9vZ22iPuNH1PFs1k5M56nip5Qjomo6lYDunAi0A4ILN+Pmmfg8FgWAf8X+ABYLemaT9zd2x8fLxWU1Nzi3apOiZVxqrihu4wTE/kyrrQaxzqsXoNxB0eKZik0NhrampkTLxeuz116hSZmZlOzj8VF09PT8dqtVJYWMj69eulM1TTNNLT06msrKStrY2NGzc6CUS7fSI0UziJ9d+pWpLq41AtCLGphfVy6tQpUlNTpSNTaIRCExcwkcVi4dixY4SHh+Pl5SV9Feo82mw2ysrK6O7uZsuWLfKz9vZ2OZ82mw2LxcKePXt48sknsVqtLFy40Gk+amtrWbp06S3vVH0fJ0+e5OLFi+Tl5UlfidFopLCwED8/P4zGjx2kqjUTGRkpITox7r179xIbG8uiRYtobm7GaJxITtu/fz+hoaHSwjAaJ3wfaWlpci6rqqowGo2S+R4+fJiYmBj5Ph0OB11dXcTExEhYaNGiRRiNRurq6pg7dy4vvvgiixcvZtu2bTQ3N0sFQAh8Hx8fmpubyczMJDQ0VEJD06dPZ9myZbS2ttLc3ExgYCCBgYHMmTOH3bt388wzz0iL6Y033uDKlStkZ2fz2GOPSeFss9l46aWX+OY3v8nw8DCXLl1i48aNVFZWSs1brAWxzg4fPiwTKcVnrtaaSnpfo3ouIPd9REQEhYWFMtTalRWhrgvV3yfGoV5fKAriWVUrQj3eFa9xxR9c3f9e5i+o5MlymIpwaAG+DdQBvxefa5p28V4OUnfPB4BW4ItAH3Ae+JqmaY2ujk9LS9MEnijIFc7mjom7goT0pJ6rChd10dbU1OBwOCQDVM/Vv2BXYxCRSAsWLHDaCFarVTJ89V56p7d6PiBzFMxms5PlIZ7DarXS0tLC6Ogofn5+kpmXlpYSEhKC1WolNDTUKUrHXaanILXCamZmJna7nZdffpk1a9aQmpoqBYGIIBFQ0NmzZ2lqaiI3N1fCEOq7Uje+0C7BuQKt+P3rX/8agICAAG7cuCE1W+HcBDh48CCbN2+WkUKHDh3Cy8uLzZs3S2e8uKZ4B2Ie9+3bx4YNGyQ8IgSmYAYCIrpw4QJFRUXk5OTIORbRQAImOXHiBN7e3oyOjuLt7Y23tzf19fVs2bJFjmnDhg1cuHCB8fFxenp6iIyMJDExUTqQW1tbgQmIx8vLi+TkZAoKCpgzZw49PT2sWLGC3/zmNyxdupTly5dTVlbG+Pg4LS0tREREMDIyQk1NDV/5yleIj4+nsbERk8nEoUOHqKqqIjg4mC9+8Yt4e3tTW1uLl5cX4eHhMqBg5syZzJs3D19fX8LCwjh16hS5ubns3LlT5lsEBwfj6+uLt7c3S5YsAeCNN94gMTGRS5cusXbtWlpbW6mvr2fRokUyl0NAlWItt7e3ExoaSktLi6x4K/aGqlipDF8fxaju56nA0ELwC5hUVZb0e1i9nuATKqys3l+/rj35Mj8JwWC32z1GK03FIX1N07QjmqZ1aZp2Ufzc43HqaTHQrmlap6ZpduAA8GV3B+trIYmX5OozlUkKMhqNtzhy3ZmCRqOzU6qystLJmeqqpIK4vv6+6r2EFqrPXBblJQSkod5LD1elpKSQkZEBfJwwJJixcOip53R0dDA6OkpHR4esN2Sz2XA4HBw/flw6CUNDQ+Wm1G8Egb0K51x6erpMWqutrZWJXqmpqRKOgYnMVLVcRVpaGnPmzKGvr89JEIt7qCUMxEYT9X/EuxKCKTk5mU2bNjFv3jzy8vIkUxfHNTU1ERYWRlNTE1arlfz8fIKDg8nNzcVkMjE+Pu40Z6I2j8ViwWicqAXV0tIiM5z37dvntK7GxsYkPr98+XISExN5//33SU5OxtfXV8I0drsdPz8/kpKS8PX1paOjg5iYGG7cmEBtY2Nj2bBhAyaTiYsXL2K324mLiyMxMVHCcd7e3iQmJrJt2zaWLFki53Pjxo2sWbOGNWvWsHv3blpaWkhMTAQm4BC73c7Q0BCtra0YjUa2b99Ofn6+9AUdO3aM7u5uIiIiCAkJYXx8nIULF2KxWLh+/TptbW1cv36duro6HA4H7733HsPDw1y8eJGwsDBMJhO5ubn8r//1v9ixYwcpKSkUFxfT0NCA3T6R8d7V1cWiRYvYuHGjVFLEc4t3JmBZkXwYFRVFfn4+IyMj0pLTNE1ascLiho8hSbG3xfs5f/68nKep+CdFIqa6JoSCozrG1XuqfMKdNaLuZ0+Wwd1CS+KebsbgtqT1VITD3xgMht0Gg+FrBoNho/i5q5FOTnOBXuX/vo8+k2QwGP7EYDBUGAyGimvXrjmdrL50lamrJZH1BbfUQmzqeer1VM1bnCcwUZhYRHptvrq6GovFckuZY1djVK+tYucbN24kMzOT2tpa6X/Q18JRo4dUq0OQmr2rCrnly5eTnJwsi+y1t7eTlJQkw0k3bdokQzILCwudIquEsBA9B8TYRTlwAbmYTCYZ+VNTU+NUFlulq1evEhISQm1trWTEoaGhTpmq4hyTyUR2djYFBQUcP34cu90uy03HxsZiMpnQNI2WlhYsFgsHDx7kypUrEu5avXq1DM0NCwujr6+PI0eOYLPZZMSTYAZCIy0oKMBms5GamgogGYXwKwim5+3tTUhICPn5+YyPj9PZ2cnGjRsJDg6Wlot4hw8//DAdHR0yustun3AkFxcXy+xuu91Obm4uFouF8PBwWltbcTgcxMTEAMjw0rq6OoaHh9m7dy/l5eXY7XauXLnCd77zHf7+7/+e4OBgGhsbmT9/PmNjY1itVgIDAyWzTEpK4syZMxw+fJjAwEA++OADOjs7CQwMpKCggL6+PgIDAxkeHmbGjBkMDAwwe/ZsCgoKuH79Os3NzZSVlTE4OEhTUxOBgYEcP36cnp4e9u7dS2pqKomJibS0tDB//nynrPeGhgYJm3V2dsp3Nm/ePMlsBUwVFhYmS4gbjROZ5aLfhNFoZGxsTK6piooKWchPKAiqMiksbvG+9Uqhul9FlJO4r1AGxXl6hVT1Xeg/F3tf31vC1b1VJelOyNX5yhjcQkdTEQ5PMpEVvQ74o49+8u5olFMnV9LM6SE0Tfvnjxzk6UFBQU4HisnWM3VVQotoC7jVmaw/T48RqgtBZYriWurfgqmqDVRU0gsJfS0ioTEJ7UVcQzRhEaGLwux2pYXYbDap6aoCSzBuVYNPSEigo6OD2NhYjhw5Ip+5p6dHVqCFj0NTbTYbCxYsoKmpSWrPwvx39RwLFiwgLi7uFsFmMpnYuHEjfX19tLa2snPnTnp6esjPz6ehoeGWEEebzSZrFvX09GC32/H19ZURP2VlZRJXb2lpISgoiNLSUiIjI+UziI25evVqtm/fLoWKeB5RNqK8vJzq6mrS09Npbm6mqqqK2NhYUlJSWLFiBampqdTW1kpNVwjb9PR0li1bJudW5M/s3r2bsrIyLBYLr732GtevX5fWk9Vq5YUXXpAWVGRkJIcPH6ahoYGhoSEKCgoYHR0lJCSEgoICKisraW1tJSUlRVomN27coKOjQ1qBAL29vdhsNkJDQzly5Ajnzp0jISGBhx9+WFoNZ86coaioiMHBQWw2G21tbYSFhREUFER2dja7du0CkFDgpk2bCAsLY9OmTeTm5kpGKyzdn/3sZ1y+fJmjR4+ycOFCQkJCnOotzZgxgyNHjlBeXo6XlxeLFi0iICCAuLg46uvrGRoa4ujRo1itViwWC3/913/N3r17GR8fl88nIB/Ro0MoVKo1npaWRnx8vAxnVf0tNTU1jI6O3mIJ6BmquJaqcAnBJNaRmgs1Gen5jHo/V/eeDM6d7F6uLJPJoKqpCIcFHzHhb2ia9uRHP0/d1uhun/qAecr/IUyxyJ8KH8GtEyD+18M/eh+B/np6oSDgDb1/QT+Wzs7OW2rr6K8r7h8VFeXSwhBkMpnkAhVa+djYmMwtEJsCnCGrqqoqHA4HVVVV2O12Gd2kRvOo4zEYDJjNZnJycpwWsXgGkdX7zDPPyM8cDgeVlZXSOSy0aZVE0uH+/fv59a9/TWlpqVNpa7PZzKxZs3jnnXdY+FEzoM2bNxMREUFzc7NkBkKT37RpE6GhodLKSU9Px2w2yzwBk8lEbGysrFek31zCd+Nqrh0OB3V1dQD4+/uzY8cOKioqZD7Cvn372L9/PzabjebmZkZGRqirq2NsbIySkhLq6uokjCNwcQELJSUlERMTg5+fHzk5OSxatAgRUJGQkMC1a9fo7e2lq6sLk8nEqlWrWLJkCQ8++CCBgYF4e3sTEBDAvHnz+PDDD/Hy8pJBAKI09/r16yW0tW/fPnp7ezl48CB1dXWsW7eOHTt2cPz4cc6cOUNTUxNeXl5s3bqVP/uzP8NqtTI0NMTTTz/NzZs3peB/8cUXWbRokRx3W1sbAwMDnDp1ig8++ICRkRGSk5NJSUnh7NmzhIeHEx0djcPhwN/fn4CAAPbs2YOvry/l5eXyHa5evVrWqhJKm8jN2LBhA01NTZw5c4bBwUHy8vLIyckhLi7uligyQSJHSVBNTQ3Nzc1OTZbEPl6wYAHe3t6S0Qu+oCptrtaHEIRi76m1m243Gkm9nyvlVD3O0/U93fNOfBZTEQ5lBoMhYfLD7imdB6INBsN8g8FgBLYAR6ZyogofuZssAam4ksTipav9CVy9NCHtJ9MURkZG3DqjFn6UOCagIn2nMVfnqM8A4OPjIwu1qWNTfRyaprFlyxbpBzCbzTz33HMS1xWF6gSsFBcXh81m47XXXuPUqVNOeLo43mq1yvDNxsZGkpOT5cZKSEigublZamE2m022xkxLS+OJJ55g69atLF26VIaVCuZ/6dIlFixYwNq1a+Wz9PT0cP36dcrKyti3bx+nTp1ymnuhyYpxZmVl4eXlhdVq5eWXX+add96huLiYJ598ko6ODk6dOiXfr8FgkPkKQoNsbGwkNjZWMpKUlBSCg4MJCwuju7ub2NhY5s+fT2RkJEbjhK9H5AKMj49z+vRphDUrwlBHRkaoqqoiNTWVmJgYDh8+jMFgkDCLqJhqNBpZuXIl3/3ud9myZQsWi4WXXnoJq9XKhx9+yLlz57Db7aSmpuLt7c3w8DBr167lyJEjdHV1YbfbGR4epqGhQcIr7e3ttLe3s2LFChwOh7QAAgMDGRgYoLW1lYCAAP72b/+Wc+fOMX/+fKKiovjiF79ISEgI4eHhwETyYVNTEydOnKC2tpYZM2Zgt9t57LHH+PDDD2UY7oYNG3A4HDQ3N9PR0QFMFMfcs2cP8+bNo6amhmeffZannnpK5roUFBRgtVolPBYREUFZWZmEb4KDg/n5z38uocwVK1ZIqyA1NdUpCVGf+Sywf2HNqda1gEWFxaH35ekZsd6SyMjIcOp7Iva13sp1RSqsre5p/d/6fe/KQrlb6MkVeU1+CNnANwwGQxdwkwnIR/skQ1k1TXMYDIb/yUTC3QPAG5qmNUx2njs4abJz9JFEaqTKZOepUTwqiZcnHImqIBJRRQIrdTgcTpqKfkzif31UgxBy+sUlNokQPiIOfunSpXIsQuM3Go2EhYXJCB01Iuj555/HaDQ6RUYZjUbJLFSHn4BjxH3VKp7Nzc1ERkZKRiGuKY6PioqSORKCwarlM2JjYzEYDGRmZhITEyM3gQhpzcvLo76+nuPHj/Pcc89hMplwOBxyU/r6+hIfH8/Q0JAch+iPIKC6sLAwWYVVzEFERASVlZUMDQ0RFBTE/PnzuXLlCklJSTKTuaysDJhgwLm5ufj4+JCZmSkjdkT2tsPhoKWlhfHxcRoaGrh8+TJr166VobsxMTEybyUlJYW6ujpqamrw8vIiLy+P4OBg0tPTGRkZYfr06RiNRvz9/VmzZg0mk4krV65w6NAhqqur5XpctmwZiYmJlJWV0dLSQlFREdnZ2ZIRvvjii9hsNi5evCjhHpvNxpo1azh+/Djt7e309/fj5eUlhde0adPIyMjAYrGwePFiwsPDiYqKoqenh8LCQqxWKyUlJcTHx0sh5uXlxZw5c3j33XdpbW2ViolI3szPz2fOnDkYjRPhvSLBb+7cuXJMIkdBjQCqrKxkfHxc+pbS0tKc9qHYa2pZE1cIgVjbYr+I71Q+oo+AUhM3BSzqiueIPAjRh1pVavT8wxMCoRccKo8Qn93rcNepWA7rgGgmMqSFv+GP7tkI3JCmaUc1TYvRNC1S07SXPB37+9//3glO0juG9KQ6oVzhfsJZqC8brEpnwRSFtg8fd8ESGrPJZHLKhBYLLz09XeLaCxYskJovfKyp6DFGfVSDuojVJBz42HoSm0Et/ayWBbZarVJTFUxSlJoWpbWNRqP0byjvRjboEYJIPK963/j4eOrq6hgaGqKzs5P4+HjZl0E4BcUcCkwYcOqvLLB4X19fGbl18OBBrFarZJwdHR0kJSWRlZVFS0sLZWVlVFdXU1BQwDPPPEN0dDR79+6lv79fCiphaQny9vYmIiKCw4cPy3G1tLTQ29tLSUkJ3t7e7NmzR56blJQkQ0dFopnA2h955BGioqJobW2lt7cXh8PBokWLWLhwIYsWLSIxMZHt27djs9lYu3YtqampHD16lLGxMfkeHA4HXl5exMbG8sgjjwCQmZnJ8uXL5fykpaWRlJTEwYMHefDBB1m6dCkffPAB/v7+TJs2jaCgIKqrq2lsbOTixYvExcVRUlLCww8/TFVVFefOnWPPnj2Ulpaya9cu6XA+fvw4169fJyoqim9961usX7+e4eFhzp8/T0REBNOmTZPQ2IEDB2QpkoCAAMbGxsjJySEjI0Naow6HgwMHDrBq1Sqee+45mVgYHBxMS0sLYWFh+Pr6UlVVhaZpskR6UlISJSUlfOtb3+Kdd97h4MGDREZGOjViEmHBsbGx8jx1v4pIJjWyTViyJ06ckF3rxOfCKlb3ufhcVRzE8Wr/C1ckoDO1BpnKP1RHuis+pfIflVRlUr3mvaRJ8xzkgQbDLGCa+F/TtJ57OpK7ILXwngr3uCIxySL13ZWkF1qtHj4S5+u1D/U7u/3jJDQ9FBMeHo6Pj48MN1W1GrWapxAaQqgcOHCAsLAwVq5ceYvWoNdqxII5f/68TMZSI5cEDCT8DkLT1mshonSE0KbUZxKLVrWY9NqQwOGFEMjMzARg9+7dMnlNn09QW1srC+ipRf6qleqpojid2WyWMfBqI6D58+djMpkoKSmRBfl6enqYPXs2vr6+jI+Pc/XqVdkpbf/+/axfv56jR48SGRmJwWAgNTUVk8nEiRMnePvtt1m8eDE2m42goCDJqAEOHz7M3Llz8fHx4fr16zQ2NkontVgP5eXlMn8hKCiIS5cucebMGUZGRnjyyScpKipi/fr1MldB5IZUVVURHh5OcHAwFRUV1NfXy0gnEd45Pj5ORUUF/f39rF69moUfJfpdvnwZq9XKW2+9xde+9jVCQ0Opr6+nqqqKtLQ0EhMT+fu//3s2b95MQkIC+fn5rFy5kvLycmbPnk11dTVNTU0ym3vatGmyYq2/vz/nz5/nmWee4cqVK8ybNw+TycQ///M/k5aWRlBQECUlJYSGhlJbW0tmZibj4+MkJibS0NCAn5+fLHnS2dlJbGwsWVlZWK1Went7ZcCAsF7tdjt79+4lLy+PtrY2AJlEp5bVcLUv1TwfkcsSFxeHt7c3sbGx5OfnS8Ekkgk1TZNdCNV9LfiFSmL9CZqs0KcrfqFWNtYf5ylPwt01b+c7uMvyGQaDYb3BYGgDuoCTQDfw9mTnfRbkymRUSUy43W6/xSGtXkMNk9Nfd7J7qM5ilbZs2cKKFSuc4BmRK6EmdokKliL6RUTxiAWnt3bEPfXWxvXr12X8vup/Edq96ncQGpHQUvT+D3Au6yFgKX38OHxsCURERDB9+nSSkpIkXGOz2ejp6WHfvn2UlJQwPj4uM57LysoICQmhsLCQhx9+2MnBJ4SbaPUokuTExoyNjZW1eXbt2kVJSQn+/v5s3LgRf39/IiMjeeSRR/D19cXHx4e1a9dSUFDAe++9R1tbGw0NDWzYsIGVK1eSlJTEkSNHsFqtJCYmEhMTQ25uLps3b8bX15d//ud/5uWXX8Zms7Fx40ZWr14t8zocDgcOh4PTp09z+vRpqqqq8PX1JTU1leHhYX7wgx9w6dIl3n//fdLS0uju7qa1tZWDBw9KqO6dd95h7969lJWVsXv3bqxWK3FxccTFxRETE4OXlxdZWVmkpaURExODyWTi+eefJzs7m/379/Pzn/+coKAg6YuKioqirKyMzMxMzGYz586do7+/nxdeeIHs7GxMJhM9PT2cOXOGnJwcAB5++GG+//3vExUVxfz585kxYwavv/46aWlpBAQEMGfOHJnn0NLSQklJCYODg8ydO5eSkhKuXbvG6OgoXl5exMTE0NLSgtFo5NKlS0RGRtLU1ITBYCAyMpK0tDRsNhu7du1ixowZFBQUAM6dFrds2UJhYSEw4WMTCoK6p4WCIPb32bNnJWQjlCdh5WmahtlsZtu2bSxfvpysrCzS09Nl1VqxP9WgFiEYVC1eLV6pVkP2hP+rVr/gAa4Eg4CMhY/EE8ztSTDcjR9iKrDSj4BMoFXTtPnAauDMHd3tEyQVZvHUilMwfnf9EMB1D+nJ7uPO/BMmrf5c+DicTcUwMzIyWLFihVMrTbFJRIcsd/dQP/fx8WHOnDn09vY6hdGK0D/RiUxk/J46dUqWchDCRy0MqI/2UaE3q9WK1Wrl7NmzGI0TUVcdHR3ExcXJjN7Dhw9z7tw5duzYQUxMjKyHJKp6VldX09XVRU5ODsePH5elJw4cOEBRURGVlZUyvFZ0HCsrK+PXv/41+fn5hISEEBwczMqVK/Hx8SE5ORmLxUJycjL+/v4YjUaJZZvNZik4Vq9eLTFru30iZDc7O5tDhw7J/ghqAT+Hw8H27dv5t3/7N6qqqrDZbJSXl8u8geHhYVpaWmhpaQFg7ty5Eg40m8089NBDrFu3jqVLl5KUlMQLL7yAl5cXhYWFDA8Pc+bMGWbPnk14eDg7duzg6NGjHDp0iOHhYQlbiaivw4cPExoaKoUlwPz58/nXf/1X3nrrLZnFbLPZ6O7uJioqiszMTEZHR3n99dfZu3cvFy5cYPHixQQGBnLkyBHOnDnDunXr6OjoYO/evdTV1fHggw8SFRVFeXk54+PjbN68WUJbg4OD+Pv7s3nzZq5du0ZAQAADAwM0NzfT3d0tFQJAJiSKDH4vLy+qqqq4cOECgYGBXL58mTlz5sh13NPTw8svvyyVuSVLlpCens6FCxfYu3evjBBTo4wcDgdWq5Xi4mLsdrtsrdrU1CTrWakMWjiRBaNWQ7VdtblVYSV9i1HVT+YJKvLEsFU+oiIXrs5xdw2Vv7iCoadKUxEO45qmDQJfMBgMX9A07T0m8h4+N6RpmtR4xUt2xfxVSe3pxbkj/UtKSUlxKlXhqly2iMYBOHDgAMePH3fKqlQzO8UYVaEhFq9wKAtrQ8VVVVxTfc6ZM2dKx6s4VkAfKmwmSmzDRCMXNdZbn1AnhKKA3uLi4jh48KBkJDabTYZ0CqYYHBzMqlWrKC4u5ujRo3h5eUn4wNvbmy1btpCRkSELtgkymUzk5eVx+fJlRkdH5XMKf0ZqaipPPPEEubm5HDt2DLvdzpIlS5g+fbqTf0Y4x6uqqmS7UJgQoNnZ2U4wgAhLDA0NZfbs2Rw/fpwTJ05QVlbG8PAwNTU1DA0NUVVVxcDAAOXl5RQVFeHr68szzzzDzZs3ycvLY/v27cyZM4eXXnpJ5imEhYXh7+9PYmIiO3fu5C/+4i8A2L59O1u3buXRRx9l1apVjI2NsX//fgC2bdvG+vXrGRsbw8vLi8DAQAoLC5k7dy43btyQxd/q6urw8vJi+fLlPPXUU9jtE2GzCxcu5KmnniImJoYTJ07IAAkvLy9WrVqF3W6npKSEsrIyHA6HhNQCAwN56aWXpEBNTU1lyZIl9PT0yGzm7u5ufve73zE8PMzOnTvp7e2lu7ubrKws6Rdoampizpw5nDt3jgMHDlBYWIjdbufSpUsyws3X15ennnqK1NRUDAYD+/fvp7CwUCbjmc1mWXcKkH07kpKS8PLycko+HR8fp6+vT0amiTpS4vvGxkYZBltRUSGhK3Xf2+0TDvv169ffwpz1+1LlLYLUhFRxPXcMW+UV6n7ToxX6gBdPAkMfIi8+U30pU6Gp1FY6DmwAfgoEAleBDE3Tlno679MkfSc4dz4BV6ROlN7k83RsRUUFo6Oj+Pr6OnUrU+8pjhd4vtjEgJOZ6qrJid4HIEhYEvpr659BmMXqsfoxqR3hBPZvt9slo9GX/VbnQQglMSZV0yktLcXhcMjeyELTHR4exsfHh7S0NFlorampSfpgxH1ELSlRGE9lfvHx8Rw8eJAbN27gcDjYvHkzfX19dHZ2smHDBid/kbA8tmzZIv0mg4ODssaP8IOIiKOYmBgaGhrYu3cvX/rSlwgJCSEkJIS+vj7Zwa28vJyAgAAJc6WlpdHT0yNLUVssFo4ePUpQUBDvv/8+6enplJSUEBAQwMyZM1myZAlms5n29nYqKioIDg7m+vXr+Pn5kZKSQlVVFe3t7TJqKy4ujl/84hecOnWKH//4xxQWFrJx40YGBgb4z//8T7Kyspg9ezaxsbFcuHBB1i0SUUPr1q3DbDbzn//5n/zjP/4jX/nKVwgNDWV0dFRmOPf29rJq1Sqam5spLS1lzpw5JCQk0NraSmtrK6GhoXzwwQd0d3fz1a9+lcWLF/PGG29w+vRpoqOjaW9vJz09nbi4OAoKCli4cCFpaWmEhYXJrPeamhqampoYHh7m+eefx2QyybUp1qlYN2qdqaSkJMxmsywGuWXLFqxWKw0NDbeUIoGPu/6psKjeHyZCuEV3O7WEvT4/6uTJk9IHofoG9ftS3XP6AoGuCn3qz3P3v/q5PqpS5TOTXUP1par+i7tt9vNlYBT4FlAIdPApRCvdDmma5jKUzJVkVklowaIstso4PUlkoY16eXk5pdMLEi9MbQYCE07UrKwsJ0d4QkICnZ2dcpMIcoXnC/hIWEiqRiGew2q13lJiA3DK2xDaT21tLTU1NU7P0NTURHJysgwzVbUedS70mpGoNCqsFlHX3263y+5l2dnZrFy5Uoa9iiglNY9C3E9gxWfPnpXJhiKfY9u2bSxbtozLly9z5MgRfH19ZdSMcICfPHkSgPDwcDk+ETs/MDBAfX09drtdFqEbGhpi586dJCYm8qUvfYmBgQFCQkIoKSmReH9iYiLZ2dkEBgbKlps2m43vf//7/NVf/RVvv/02DQ0NzJkzh2vXrrF27VpCQ0MJDAzkrbfeYnBwkKqqKlkd1mKxMGvWLIqLi7l+/TpVVVVkZmayefNmRkdHGRkZwW6fqFYronS2bNlCSUkJMTExrF69mr6+PkZGRrhw4QItLS0cO3aMn/70pxiNRtavX09HRwcWiwV/f3++/vWvI5Qob29vgoODCQwMlFZdX18fS5cuZdq0adLi0zSNgIAA2traSEhIYPHixbS0tGAymXj88ccJDw/niSeeICMjg6GhIb761a+SkpLC+Pg4RUVFWCwWCgoKOHXqFCkpKTz99NM0Nzc7raX9+/djsVikNeDr6yv9AyKXRkSm2e12jh496lThQI1QFMxPhXnEOhX5NyrzFElsgrHv27ePffv2yf1YXFws92VNTY08Vs9nBLyqt7QFVKxWN1DJFbqh32vic3fh8lOxBozGj32pOrqz2kofVUf9naZpv9c0zaFp2v/TNO0XH8FMnxsSyUuuJtqVCadOeHp6uoRr9AxXfy0Vb3QHTQmy251ruOhxRBFOJwRNSkqKxNOFb0EweUF6+EiMS1zDYDBQV1cnmYq4v91uvyWLVJTj0GsSIpNaPO/p06ed/DdCMIgMaDWBTHyvL/Uhupc1NzdjsVhkPH9CQgLl5eW88sorWCwWbDYbJ0+epKCgQCbBtbW1OZVJsNsnqsn+6le/YseOHTzxxBMsXLiQXbt2ERUVJS2gEydOYLVa0TRNzonRaGT58uUMDk4sXxGRBTjN1dDQEA6Hg+7ubnJycigvL+fb3/42r7zyCnPmzGFoaMjJOrl58yYffvghY2NjdHR0kJ2dTW5uLufPn2fv3r14e3uTm5vrJJQCAgKIjY2VOPvChQudGNfo6Kh8Z3FxcXzrW98C4NixY7S1tdHa2srs2bOl09fX15eQkBDa29uZPn06hw8fxm63c/36dV599VVGR0fJy8uT2dNdXV309fXh7e3Nm2++yY0bN0hMTGTp0qVEREQ4lZKoqqoiJSWFL37xi3R1dWEwGJg/f75sJrRixQpmzpxJbGwsK1eulI7/0NBQ+vr6yMvLY/Xq1WRnZ9PQ0EB9fb10INtsNjo7Ozl48CD19fXSsjYYDHR2djr13q6vr6e2tlbCc8nJyRIeEj6qmpoaTp06Jd+leA6h/IlkOaNxwskswq2Fv2zbtm2yd7zZbObZZ591qgIg3pGr/a72StGTq6TcyRi6K8avV3ZVHufuHHDv/MZDbaWpwEpHgD/WNG3Y44GfIbkq2e2K9FCMO1NMmIaezEf9ca4sFmHCimNVTaa0tFQ2OlcT1kQlVvFbH4qqfx71vhaLBZPJxOnTp/H395e4ryglLsL+BJWWlt6yaER3LtE17JVXXnHq5iWeRb2mGo4nnluFi0Qi3MWLF6mpqWHlypVOfYTnz58vawkJxiN6SguY6/z580RHR7N8+XLa29sJDg4mODjY6V2oz3DhwgU0TZPtLcvLy2UIpBDOhYWFrFu3DqPRSHl5OYmJiXR1dTkVwBNRSP39/RgMBh5++GEGBwc5d+4cZrOZ+Ph43n33XR555BF8fHykxnvw4EHOnTtHVFQUs2bNIiIigsWLF8uaQbt37+ZnP/sZwcHBMiTzjTfeYP78+fj4+EhMWxTXu3z5MmFhYcBErwaLxcJ3vvMdEhMTmTlzJlu2bKGmpoaioiKWL19OX18fMTExLF68mHPnzuHj48P8+fMpLCwkODiY7u5uAgMDKSoqYu3ataxZswZAVpgVEN7Y2BjHjx8nMzOTI0eOsH37dtauXYvdbufHP/4xS5YsYfbs2SQlJXHu3Dn8/PxkUUCj0cgrr7xCZmYm165dY82aNfziF7/ghRdekM25qqsnem2L9a2HmlSmp0KG6h4QsKAIUS0oKGDjxo1OperF+QJyEvutoqJCJviJiC79PhbHivvqYR3xtyAB2eqT3lzxCFc8xtMeV6/nio95OscV3S2sdAOoMxgM/2IwGH4hfqZw3qdG+iQtQa6k52TOHaEZq85lfcSCIDXpS08iwUVcU+04Jl6WqFmvWjft7e3SghDlsoWWpT6TXkMQhfCsVisXL14kIiKCpqYmamtrWbBgAcnJyVRWVsrucoIRq3HaQjiJYoIiTFJfF0rAQiJCRIWlxHOPjY1JzU2UQxgZGWHHjh2sXr1azpmXlxdms5mUlBSWLl1KWloaFotFRpkYjUZ8fX3p7e2lqamJ8vJyoqKiZPy/zWbDarWyb98+Tpw4wYkTJ3j11VcJCwujtbWV+fPnYzQa8fPzIy8vTzIco9Eo8fiqqipOnjyJ3f5xlV0RvZSSkkJqaiqXLl2iqqpK+ge2b98uey4/9thj0vcwNjbG0aNHmT9/Pi+++CJms1lCYDbbREXXnJwcnnzySUpKSjh06JAsc/HBBx9QVFTE2NgY8+fPlxVKExISWLNmjfSVABw/fpykpCRaW1t5++23OXDgAG1tbcyfP5+lS5cSExPD6dOnuXDhAt7e3gwODrJ7926ys7OxWCzMnTuXhx9+mL/8y7/koYce4ty5c1y4cIGOjg4uXbrE1atX5Tvu6enBZDLxk5/8hMDAQKqqqgAICQnhypUr1NfXU1JSwunTp5k1axbDw8OyRMfzzz+Pv78/ubm5NDQ0yJ7aaq/tlpYWysvLZQn1wsJCXnnlFU6cOCE75Qmns0oCShJtS4eHh2UkmqgHpUKrAlYRe1s0A4uJiaG1tVXWylL3ulBQRDSgqoyoPEMVHK6qP+uZNbiuAO2J9PdxlxEteIk4507DWadiOXzD1eeapv2/277bJ0RpaWnaL3/5y1sSstwlurmSuvoXr08am6xLlOoUE8kxtbW1knGeP39eLm6hXatp81arlR//+MdcuXKFH/7wh0RFRcmFeuDAAdmwRr2fOk74OONZdNgSYwSkpp+cnCwjOETzG2GdCM1KPIsYvysrSmyKyspK2dNYTUhSndxlZWWy57KqtYlnqKiowGAwyHcloKO6ujquX7/Oa6+9xtatW3nooYfo7+8nLi5OdpbTNI3r168D4OfnR0REhCwJ8fbbbxMaGkpGRoaEIITD89ixY8TFxbF161ZMJhMWi4Wuri7Gx8eJiYmhvr5eJtFlZmbKRKzGxkaZvNXQ0MDmzZtpaGigo6NDJtpFR0dTWFjI7Nmzeffdd3nwwQdJTk6muLiYpKQkFixYQGJionz+I0eOsH79el555RVmzJhBXFwcFouF4OBgCf/4+vry9NNP09fXx/Xr1zlx4gSzZ88mODiYvr4+tmzZIq0etQudyWSisLCQ5uZm5s2bR1hYGIODg7S1tTFt2jQCAwNlDaPt27czMDDAnDlzMJvNMhzX19eXkydPsnDhQtkkKDg4GH9/fxYtWgRAfX09FotFMv/58+cTGBhIcnIy+/fvJzIyUjY1Wrx4sVQ4Tp06JeGpvLw8CgsLaW1tJSsri4CAACens0gIjY6OdurdbLPZKCgooLq6mu985zsYjUa5dsvKyvDy8mJsbIwlS5bQ3NyMpmlOZWdqa2sZGhrCaDTKIAr9/gZc7nFh/ehL24j9oVrVKl/y8vKSEVSi6KSe9NaFO0vB03murBaVDAZDlaZpaa6+c2s5GAyGEx/9mfCRr8Hpx+PoPgPSS2G73S7xakFqVI0+/lddEGpoqclkkuGN4jP1HFVLEFbG+Pg4RuNEnRihIakROSLmXR2D2Wzm+9//Pq+88gqhoaHy3kajkby8PBmOKpi4cH4JPF4cX1tb6wQfCadzfHw8WVlZsviY8EMUFBTI+42NjcnSFBUVFQwPDztZWsL3IBaf0ThR2kLUwxH5EypUZbfbZbw74KSJibLhKt4v3pPoIrZs2TJycnJYt24dwcHBbNq0SXYkS05OJi4ujtLSUgAiIiLYuXMn//RP/4TdbudP//RPSUxMlBaauI+ox7Nu3To5r319fWiaRnh4OK+99hoOh4OcnByp8Qu6fPkyMTExLFq0SEY3wUQRO19fX1paWmhsbJSC4rHHHmPFihWEh4fzgx/8gISEBEpKSnj11Vc5ffq0jNARTvf4+HgsFgshISFYLBa++tWv8qUvfYmnn36aS5cuERcXh5eXF9/97nfZunUrM2bMICUlha6uLmntRUVFUVdXR319PVarlaNHj8qcnJCQELy8vPDy8mLt2rXU1NSwatUqduzYwZtvvklgYCB79uyR0FJsbCxDQ0NcvnyZ8PBwli9fzrx58/iP//gPWTfq3LlzDAwMSKdyYmKitDpEEh9AamoqCQkJvPrqq1itVmw2Gz4+PmzcuJGkpCSuXr0qq7Q++uij+Pj4EBsbK9e50TjRxEi0UFXLWNTV1bFjxw75ubCIRVmUkpISABnmDshKuOnp6axZs0Zmtou1qO5vlbEL34XYY+4a9tTU1DA2Nubk8xBjEvCYUA5cld9Q+ZQrS8GVD0O1SvQwmJ4+OtbH5Zd4hpVmGwyGlcB6g8GwyGAwpKo/Hs77TEg/gSKzWJiXQusQL1fF7fRwj+p4FlCPKiD0eQwiMkJEQwinl1o3Rb2X+tLU64lwSPG/zWajtLRUOuaEoHE4HDLKorKy0qm2i1i04j6ijpPaX0EsyNTUVDZu3EhHRwe1tbWkpqYSGRlJS0sL169fv6VooGCuYp7Fdz4+PtIJreaXWCwWmpqaWLVqFVVVVbz88ssSH87JyaGgoAC73U5aWhrJyckSAjCZTKxevZrly5dLpimSp8xmM2lpaRgMBpqamjAajTz33HMyHn7VqlXMmzcPh8PBW2+9RUNDAyUlJdjtE9VbMzMz8ff3l2UfRA8M0cHOarXy9a9/HV9fX06dOkV6ejqtra3cuHGD48ePs2HDBjIzMzl37hy1tbWUlZVx5coVKisrCQsLIyQkhM7OTrq6uhgdHZUlrsX6Gh0d5fTp0+Tl5UnhPG3aNCwWC6dPn5YlKrKzs7HZJnoqWK1Wuru7uXDhAu+9956sSnvw4EHefnuiWMHY2BjJyclUVFRQVVXF8PAw1dXVlJaWMjo6yre+9S0eeeQR2traJHRmNpvJzs6WpdkFIxN9I+bNm0dLSwvJycksW7ZMZilnZGQwZ84cFixYQGxsrMwFCQ8PJz09ncTERHbv3s306dN56aWXCAwMpKOjg/Lyco4fPy6tPtHMp6+vj6SkJJmE1tbWht1ulw5+keV99uxZ6urqOHFiQm8VikZnZ6f0ix0+fFhGFIlaXWazWYbPqqSuZ7FmRVMgoQjpYV9RwkMtgSPWrcqEjcaJarI+Pj4YjUYn6FVNthN5UO7KY+ivqSqoet4lnO8iSnIy+ujcMXffu4WVDAbDJuB/MFGVtUL3taZpWs6URvApUHx8vCa0AEFi0lQTTjXfJnMkucsRcPUbPnaIqp+ppmdpaSkpKSkuHV6q30IsAAFFjY2NkZmZKR3UotyFeix83EtZPVdl1KrDVsBa6oK0WCyEhoY6he2JInOu4Dar1cqRI0dkUpo6fwBFRUWUlpaSkZHB+++/z8aNG+WY1eJ7qamp0kchiqipTknRntRsNjvFi4vxCEhGKAQ9PT3U19djMBioqakhLCyMqqoqHn30UZnXYLfbeeONN6QGvX79eunDCAkJ4fDhw6xdu5b29naKi4tZsmQJM2fOlImC5eXlvPXWWwwPD9PV1UVCQgKpqanYbBPNdTZt2kRDQwNFRUXMnz+f4OBgxsbG+Pd//3dWrFjBv/7rv/LVr36VJUuW4O3tzc9+9jNCQ0P58MMP+fDDD+nr6+P73/8+r7/+OqtWreK3v/0tP/jBD+js7MRms7FixQrMZjO7d++mv7+fP/uzP2PPnj08//zztLS0yGirpqYmKQxPnjyJw+EgPj6etrY2goODeeihh+jt7WX27NmcOXOGBx54gAsXLrBo0SKZHNjQ0EBMTAzj4+N0dXXx1FNPUV5eLhsC5ebmcubMGc6ePcsLL7wg18jhw4fZvn07JSUleHl5YTAYiI6OdlpPIox4fHycy5cvs23bNiwWC3/1V3/Fpk2b6O3tlY5l0bfbbrfzN3/zN/zwhz+ktbUVTdMwGAwStqyrq3OqgaT6EIUmr/bwViEgo9F4CySsBpGI/abuGz3yoB7r7nuVXEHc7kiEsusrvOrH4mk8+ms9+eSTFzRNc6nsu7UcNE07pGnaY8DLmqY9ovv53AgGmMBE1YcXODZMJJsJfFG0udQ7mYVjS4WIVCtBT3pLwGKxcODAAU6dOiW1FaEtiOuIFoqq6SdgIpjQWETvBKGJqI1IbLaJPsZWq9VJOKkmr5qZKSIwxE9tba20moSlI5zTFouF73//+/T09EjrJD4+ns7OTicoSTXj29vbnUpLGI1G2Qa0rKyMy5cvs2PHDv7oj/5IbnCxqcSGTkpKor29XeLRwmku7nf48GHMZrPMqhW1ZsS7NplMrFu3jsrKSiorK2lvb+fVV1/F4XAQFhZGQEAAjzzyCM8//zyZmZlUVlby61//GoDExETWrl3L7Nmz2bVrFxaLhdHRUVmtc/fu3SQkJMgSJKmpqRiNRhm2u3btWr761a/yp3/6p6xcuZLGxkbZQ7mtrY3ly5ezbt068vLyOHfuHMPDw/zFX/wFly9fJiUlhejoaIaGhqivr+eJJ54gJyeHxx57jFWrVhEWFsZ//Md/MH/+fB566CHS09PZs2cP+fn5shz4L3/5SwAeffRRgoODmTlzJna7ndjYWNra2mhra+PatWvMmTOHM2fO0N7eLktQzJ07l/Pnz8ukOV9fXwnf/dVf/ZWcH+H8rqqqktaGcBh3d3czbdo0jhw5wocffsjKlSs5deoU3/jGN/jBD34gI8mys7Pp6enh4sWL/M3f/A3vvPOOzFCfM2cOHR0djI+Py7IZBQUFfOlLX2LZsmU4HA4Zkisc18HBwfz0pz+ViYRjY2Oy8uqRI0eIjY112tMCCYCPG/uMjIw49YI+efKkzG0Q60vsXRVGdcVk3fkzVYGjwteueIkqGAT07er4qVgZqhWkH4/+Wps2bQL4vcuLMYVoJU3TfjTZMZ816XvCqpFBYrLExIqCcaopqEJRgnGqv/XCQMX1hNDJy8tzKqwn7i2uk5ubK6tlioSZAwcOUFZWRm1tLZGRkXR3d0tzWixetTOV0IJFuCF8bFoL81ZYIZqmyRwFmIgo0jRNbkybzSYrUQpISJ0bfdkB9V4iGUhosir8FhkZyYoVK9iwYYPElUVCmyiQJhII6+vrCQ0NdWouLyAFo3Gib0RfX58UQmIeBPZ7/Phxzp07R0tLCwMDAxQWFuLv78/IyAi7d+9mxYoVdHR0SIfn3LlzZWOXhoYGXnvtNby9vcnIyJDHjI+PExoayvbt2wkNDZUx72LOhLBYuHAhCxcuxM/PD7PZzMqVK8nIyJDhpqovadWqVWzZsgVvb29WrlxJVFQUXV1dlJSUcOPGDebNm8e5c+doaGigrq6ONWvW4O/vz9WrVzl79iwREREEBQWRnJxMVFQUK1asoLq6Gi8vL7kGL168yM9//nOKi4vx8vJi06ZNLF26lJqaGmJjY/nyl7/M5s2bsdlsXLlyhejoaCorK/nxj38sK8fChJKSnp5OWVkZqamprFmzRjr8Q0JCpD8FJoSGl5cXb731FqOjoxgMBp5++mmZ3yAUtDVr1lBcXMwjjzzCpUuXGBoa4p133uFnP/sZ06ZNo7e3l87OTnp6eujq6mJgYACj0SgLDRqNRierTygkubm5sm6WUBREHSfVT1ZWVsaBAweAiTLn06dPl2HewqIOCwtz2ueu8H5XPMAV89X7P/VQtJ5UwSCUTFe14QRULWDyqSa/uQt3/Whdu02Cm0qzn/9SJDA98bcgu90uS0SrTlD9ce40AzHJgGzWk5GRoUpgp+NVyKi2thZN02TvgevXr0ufiCrtRSlrkXmt1owBWLlyJXa73Wkj681kMQZRymDJkiXy8/T0dNnKUxSV6+jowGh0LkSohrKKjSDupVaiHBoaksImKyuLqKgoed3Ozk5CQkJkmQyBwQr4Ly4uToYHjo2Nce3aNRYtWuQ0J6LhfUdHByaTySkfZGRkhMbGRulYvXz5smTyDoeDDz/8kMuXL5OUlER+fj6jo6OUl5fz9NNPYzQaZYN7kXvQ3t7OmjVrqK+vJysrS9ZSio2NZcOGDVRVVXH8+HHi4uK4ceOG7A8BE/4TX19fWbrCx8eHnp4eDhw4wNWrVxkZGSE7O5v09HQsFgvvvfce2dnZREVFce3aNV566SVSU1N54IEHWLFiBZGRkfzud78jKSmJkJAQzp07R09PjyznffHiRRnddeTIESIjI5k7dy42m01GObW1tVFcXExHRwcvv/wyZrOZw4cPc+rUKaKjoxkeHiY+Ph5fX1+mTZvG4OAgq1evpqioiGnTpvHLX/5SOpm3b99OfX09fX19AKxfvx673U5HRwddXV08+uijtLa2cvbsWZ544gkCAgKIiYkhLi5OlkTPzMxk1apVFBQUYDAYmDlzJs8++yyVlZVs3LiR8+fPc+DAAbKysli1ahVGoxFvb2+pKdvtE07gsrIy6uvriYmJ4fLlyzKKD5BRd+peFL6BzMxMub5HR0epra2Ve0TsSxWCUvex+FucAx9Ds2pfEKG0iKg78bmr/AyVxD0ET1AVIT05HA6nplCTQVGurqPL43IbrjqVPIf/UuQJ4xP+FSFAJsMBVVhGnCfO1bcZVZ3d4lixUIVTWCRNXbp0SUJNgrkqklx2htOT+CwrK0vmGghBoWooot2igHPU5xGlRkTPXiHgBE5bWlrKwYMHnRodAbLy5djYmIwWuXz5sjTjYcLxt379eqnJHzlyhOvXr1NXVycjiiIjI6mtraWlpUX2TxAJUgUFBZSXl3P+/HkJ1R06dIgZM2Y4zacQMNHR0URERFBUVER1dTUNDQ0YjUZycnL4m7/5GzIzMwkODiY3N5fs7Gy+/vWvYzKZ2L9/P/39/TLvYcWKFWzevJlLly4BEyGxmzdvJjY2lldffZW6ujpSU1PZvn07DQ0NzJs3j2nTppGTk8Py5ctleKdIWgwJCeHo0aOEhobyzjvv0N/fT1lZmZzPL3zhC4yMjNDe3k5RUZGM1unt7WVoaEjmMGzbtg2bzYafnx+jo6OyqdWSJUtISEjgP/7jPxgYGGDRokWEhIRw8eJFli1bRl9fH0uWLOHpp59m586dlJSUsH//fpYtW8bMmTNlbsmVK1fYtm0bDz/8MK+//jpWq5XHH3+c1NRUdu3aRU9Pjwx1LigoICAgAJvNxiuvvMJ3vvMd3n//fQCmTZvGzJkz2bZtG2vWrGH79u2sWbNGZj83NDTIUNuIiAi8vb1lvaWgoCCMRiOBgYFs376dwMBA6urqeOedd/jd737nFMmzdOlSUlNTmTZtGqmpqWzZskX6MASsKaxoFQ4V31dUVGCxWLh48SJjY2O0tLQQHh7upISpZTf02rlQMGEiP+PgwYPSUhFQtZrbJParm7IV8poikklY3+pe15MowCmUR1fWxWT/uyru54o8OaR9majIOv7R/7FALnBR07TDHq/6KZPa7EfvtJzMMeOOxKR6uh58LIVVB68KfbS1tcmoKXEdIQiEf0Ftr2m32/n1r38t4+9VZ1V7ezslJSXSUhFjsVqt5OfnA5Cbm0tnZyfNzc2yRLF4HiGIhJXhyhGmCkM1W1s4a1977TWZGCdM8tLSUlkkD5DhmTChsdlsNlpaWhgZGaGzs1M+m3o/MWd1dXXExsbS09NDaGgoZ86c4dq1a0RFReHr60tcXJzcFKKMN8CFCxcYHx/H19fXKaciODiYV199FX9/f5qbm/nSl75EUFAQ4eHhHD9+HIfDwRNPPCGvKeZyw4YN8h0ZjRNx8yKxb/r06cBE9vLBgwdpaWkhJCSE6dOnc+PGDeLj42XBtt7eXs6cOcOCBQuIjo7m2rVrkvlmZ2fL93/16lUKCwuZNWsWycnJTJ8+na1bt1JdXU1raysrV67knXfeISAggJycHHbv3k1KSgrnz5/nm9/8Jm+++SaJiYlMmzaN3/3ud/yP//E/+Id/+Ad+8pOf0NzczKFDh1i4cCE3b96UTL20tJR//Md/ZHx8HG9vb4qKiigoKODVV19l3rx5/OpXvyIgIEBq9r29vVy7dg0fHx9ycnI4d+4cgYGB2Gw2MjMzyc/PJyAggMTERGJjY9m1axeJiYkygzo/P5/AwEDJANetW0dJSQkOh4PZs2fz/vvvS1iupqaG3t5evvWtbxEcHCxzd4QS1NPT45R7Y7PZ+PWvf42Xl5d8d3b7RETX5s2bAaisrKSlpUUqRmKdi/2rFuAT+1coQvrgFJvNxq9+9SsGBgZkboW4h1r1QIWuXEE7gseoza1cWS1CwVMhK1e5Ffr8Bnd7XHz/4IMPus2Q9iQcTgH/Q9O0NoPBEAWcA94EEoBzmqZ91+WJnwEJ4QC3Rh9Nlp4+Galag75Uhj5BTmgBIsZavAD9wtJfXxxnNE4kxOzfv5+4uDgZd200GrFYLHzve9/j+eefJzQ0lAMHDshaQiKySAgQteyE8CtkZmbeUj7A3byouGt1dbWEn0TrR3VjCSYtNoQauiuead++feTm5tLa2kpzc7NkxqJekij/nJeXR0tLC5qmSWGsH5canVRUVERPTw8RERE4HA46OzuZP38+iYmJlJSUkJOTQ29vryxcZzKZKC4uJi8vT1ZSbW1tlaUjxHjffvtturq68PLyIi4uTs5hS0uL7ElgtVrp6uri+vXrHD9+nCVLlvDAAw9w5coVYmJipBP15z//OatXr8bLy0smRIlKrzabjWnTpnHo0CHy8vIICAggKSmJ5uZm+X1qaiqNjY1s3bqVV155haysLAYGBpg2bRpLly7lF7/4BXFxcQQEBMjoo2nTptHa2sq0adOYNWsW8+bNk1nYfn5+zJ49m7//+7/n4YcfBia00Tlz5jAwMEB/fz83btyQEJWIlBPd8P72b/9WJiFeuHCBmTNnkpOTw7//+79z8uRJtm/fzsMPPywL4wmBrWkaMTEx1NTUyByMJUuW8MUvfpH+/n5aWlrYuHEjwcHBsvyJOHd0dJTLly+zYcMGCgoKiI6OJjY2FqPRKMu0iL0XFxcnS3qPj49TXV1NTEwMV69eZdWqVRQWFvLEE08AH3duE4qEKPsiyvCLCKn8/Hwn35Mgq9UKTAgOtWubnhGLTGz9mhb8yRVvccXYXQkOvcI72f/6Pb5kyRK3SXCehEOdpmnJH/39I8CsadqfGQwGI1Apvvs8kLvaSkJiu5vkqUw2fFygTc2SFp8Ji0FoCGfPnsVgMMjywu78Ga60CSFsgoOD6e3tvQW6EhmoYkELoXP69GnZIQxwskoiIyMpKChwOxZ3z93e3s5zzz3Hj3/8Y0ZHR0lJSZEOVtUUFqVLhIYlHNlnz57l4sWL5OXlcejQIZlBLa6hWk1i7kTYqqh4KhiBmtVts9no6OhgcHCQzs5OWXzOx8cHh8NBY2MjQ0NDfOUrX2F8fJyQkBD27t1LSUkJ//AP/yDr+NhsNtkzYevWrVRWVsrxtrS0yExps9lMWVkZSUlJ7Nu3j+7ubmbMmEF7ezsLFixg06ZN7Nu3Tyb0paSkEBQUJOPhhSVRVFSE1WolKCiIpUuXMjAwQE5ODmazmd7eXv7hH/6B2NhYTCYTly9fJjc3l5dffpnvfe97vP3222zZsoX8/HyeeuopSktLeeONN1iyZAn+/v6sWbOGX/3qV4SHhxMWFsalS5cICQmRkJDamzkuLo60tDTpZG5ra2PGjBmsXbuWw4cPy2zsmzdvSuipsbGRmJgYNmzYQGBgIAMDA4yOjnLy5EmeffZZLl++zH/+53+SnJzM3LlzGRwcpL6+nu3bt7N3716SkpI4f/48QUFBXLt2jdWrVzN79mx6eno4efIkf/qnf8rRo0dl3oSA5IQAunjxImvWrCE0NFRaDvn5+TgcDuLi4sjMzJQ9OIKDg53CysvKymTNpebmZsbGxli+fLm0FozGj7u4AU7WtbBM8/Pz2bx5s9u6S+JegoQ/QhQMVP2B58+fx+FwSCtI8ABXyqMnpON2URB3AuJOLYdaTdNSPvr7DPB3mqblf/R/jaZpC6Y0sk+BVFgJPtbY1ZIVKjMU2r1aFkKYkDU1NVITEbCK0FaFEBCN7oUjy2AwEBERIcsNCCZoMpk4deoU3t7esj+CWgZg7ty5LF++XI5NLCp3gkh1fInFLYrSiYJvvr6+t8RpC2hI3ENvdiYkJEitVsVb33nnHR599FGpke3atYsdO3Y4FeETG7C5uZnIyEgppES0i5h7cT8xbrFx9CUzOjo6GBsbw8fHR2r7FRUVUvP19fUlNjaWffv2ERISQnd3N1evXuWLX/wiiYmJtLS0EBAQwH/8x3+QkZGBv78/4+PjXLx4EZjweUyfPp2QkBC6urokQ66trSUgIIChoSHi4uKw2yei0BYvXsypU6fIzc0FYP/+/Xh5ebFmzRouXryI0Wikvr6eiIgIQkND+b//9//y+OOPy34EYWFhBAcHc+zYMc6ePcvTTz/NtWvXGBgYkLkFzz77LMeOHcPLy4vs7GwqKytpa2tjdHSUWbNmsWzZMl5//XVaW1v5xje+wWOPPYbFYpGFAy9fvsyePXv4yle+gre3tzy3ubmZ5cuXU1JSwuOPPy4dsALys1gssq5Vd3c3vb29PPTQQ5SVlfHDH/5QluI4ePAgvb29zJs3j6amJmJiYvDx8aG6uppt27axcOFCampqpE+qsrKSr3/96yQkJMiyJMPDE3U7vb29ZQ/rxYsXc+TIEXJzc+nr6yM+Pp5r164xY8YMZs6cCUxE64WEhMjugEIQiKrAgLTkxD4V+0fd9yIHQrVKhUavlsEQNb3UFr6hoaESxtILAldMV4Wa1SAY8Z1QikRJGyEoXBXxVPeZJ6vCHU0GLXkqn+EpWqnWYDD8PXAJiAKOARgMhgCPo/mMSDB9EUUEzhmQKgmBqDLbtrY2kpOTMRgMTslV7e3tMoNUMNLm5mbCw8Nl7L7dbpfN5pcvXw4grYr29naJeaovPy8vj/z8fOx2O0FBQaSkpMjvxLjg1kQvlcG2t7eTnJyMpmm3JOyoFoHI2l6wYMEtafXCrBVRPgLKqq2tlZm9IpJix44dHDt2TJr1whkoWk8K57iwAsLDw2VyltFodIK1BOMXYywtLZV+EkGiB4N4jx0dHURERGC327ly5QohISEkJCTwxBNPYLPZOHr0KHPmzJECXhSqmzNnDidPnpSCzWab6Fm8fft2mpubuX79OgkJCezevZuMjAyGh4dllvKePXuYP38+r776Kjk5OcTHx2MwGBgYGKCrq4vg4GAiIiLw9fVlYGCAxx9/nEceeYSSkhJGRkb42c9+xpe//GUCAwNloT/B2NRaW//8z//M+Pg4ra2t+Pr6Ul1dTV5eHv39/fT09ODt7c2GDRt46623pGVQWlpKb28v3/zmN/nKV77C0qVLOXLkiBSaERERtLe389hjj+Hv7y97O4yOjhISEkJQUBB1dXWSkX7zm98EJgINDhw4wOXLlykpKcFsNjM4OMj8+fPx9vamo6ODvLw82ebz9OnTmM1mHnjgAaZNm0ZiYqLsmyHyV8T7nzdvHkajkcHBQVJTU0lNTWX37t0MDQ0RFRVFbm4uR48eZeXKlXR0dMiS2nPmzJFhrcJaP3HiBB0dHWzduhW73S6TwxISEjh16hSXL19my5YtsvaSiIQTzFnAR0J5EftOJFCq+0WsdQGFqnxG3WvwcdUEo/HjyElxjFpAUAgIu93uVIdNT2p0kTpWdxC1Sq6OVZVC7rB8xjeBASAcWKtp2uhHnycAf+/hvM+ExIsQYZPqi4GPo3mMRqPTSxHYuoh8SE9Px2w2S5M/NDRUan1Cm09PT2fFihWSURuNEzVf/Pz8nKIBTKaPK5w2NzdLplBdXY3ZbGbDhg1cu3aNiIiIW+q9V1dXyxLc+hagCz+qzZSQkIDZbGbp0qVOjFZoRGKxiL4NaoVKdd4AqfWLz0R/CPF3Y2MjZrOZLVu2SGZ54sQJCS9dvXpVNtapr68nKCiIrq4u2XZSQFCiZEV+fj5lZWUSjomLi5POyIMHD1JZWcnAwAD5+fkkJyezZMkSNm3axPTp02UbyIGBAdkMZvfu3cyZM4eoqCgZ1urn58f8+fMpKipi4cKFXLp0ibKyMsxmMzt27ODq1at0d3fzr//6rzQ2NpKRkSGtDGEJPPnkkxIaWLRoEdOnT8fHx4ekpCTmzZtHSUkJbW1tsne0r6+vLIWRkJDAX//1XxMcHExqaqpsD9rT04PVauXYsWPU19eTkJBAeHg4f/d3f8ecOXPYsmUL27dvx2w2S8GYk5NDREQEiYmJjI2NUVpaSmBgIA899BC7d++WdZpmz55Nd3c3MFHvadGiRTz88MMMDw9z7do1tm7dSkxMDH5+fnzlK18hKCgIgO7ubnbv3s0//dM/YTAY0DSNmzdv8uCDD7Jy5UqmTZvG6tWrCQoK4n//7/9NSEgIjz76KD09PSxatAhN05g2bZq0vnJzc2VugoBq5s2bx65duzAajXzve9/j1KlTUukwGo2cPn0aQBZ/VGFVPz8/adEdPHgQi8VCS0sLN27c4OjRo3z3u9+VPgCYEHBr166VgmHWrFlybTscDiorK6moqJCVilWYNy0tjfj4+Fva9womHhERIQWL4CEij0etwqo6nPW93wXfEc/oylcgfqsQmH7fqse7y3twZTEoUVluy2d4ypAe0zTtZ5qm/bmmaTXK56VAp7vzPksSDkt99rOoUaTWIBKMT++YFbDR7t27sVgs9PT0kJeXx/Tp0295ieKl1dTUSEGgQkJGo9EJNhGNQoTTNjg4mC1bthAcHCzzIcT1g4ODZQluYbXoLYLa2lpZBVM8Z2NjI5GRkbJWkfgMJkJk1QRBMWe1tbX4+Pg4aTmALJgntDWxwC0WC08//TSrV6+WyXNqRc3R0VH6+/sZHBykt7dXmtKqoz4qKorR0VFefvllenp6yM/Pl8IrKiqKtLQ0fH19CQsLk5ZZVVUVaWlpREREMDQ0xKZNm1i/fj1Xrlxh6dKlLFy4kKKiImbNmiWVgNbWVhwOB4GBgcydO1c2HOrt7SUkJISqqioWLFjA4sWLpcYukudOnDhBd3c3K1asYGhoiHPnzsl5PHfunAzJDA8PZ2BggHnz5jE+Ps7u3bv5whe+wJ49e2Toa3l5OQ0NDXh7e/PKK6+we/duli5dyuXLlwkODua5554jMzOTyMhIrly5Isfj5eVFb2+vhKlEKHRoaCj/3//3/xEYGEh2djYZGRmUlpYyNjaG1WolJSWFNWvW0NDQwODgINXV1WRmZvJv//ZvhIeHM3/+fPr7+6V19eUvf5kdO3YQFhbGunXreOGFF7hx4wbbt2/nyJEj+Pj4cPr0acbGxjh16hRnz57lzJkz/Pmf/zk5OTlcv36dxMREiouLGRoaoqurC4Dk5GQ6Ojo4ffo0DQ0NBAYGSmXi0qVL7Ny5k/b2dlkTq6Ghgblz58q1XVlZKS3rgoICWaKkoaGBxMRENm/ezNDQEN/+9rdlwyiTaaL3eFdXF/n5+TKS7uDBg9jtEzW2kpOTZYl4EVQhFMja2lqampoIDQ2VhSjFvhgdHZWKjQiXFYw2Pj7eqd2u2LMis1+Q0Wh0amGq8h9xHzUjOyEhQRaIdEeerAl31/2I3OY5uIWVPuoCtxmYCxRqmlZvMBjygBeZMEUWuR3pZ0AC43elZRuNRpYuXSqzItWaR8I3ofZ4NZvNPPfcc7IQnjAHwRmzV81Qu93u5KAWJO6xdOlSJ61ewEDq4hCL02SaKCH9zDPPSCeYmoAnFtrAwABvvfUWzz//vFxsUVFREuISZUWEsFIdY6ozTGXaai0qEYIryly3tLRgMBhkqClAV1eXLIyXnJwsIQSBicOEWSw0YAH9ZWZmYrVaOX36tMwgf/XVVzlz5gx+fn4YjUZpyTQ3N8sEqqSkJI4ePUpAQADDw8NcunSJtWvXMjo6KmEeo9Eow1G9vb1lD2nRe/rw4cPMnj2byMhIQkND2bx5M8HBwSxfvpzo6GisViszZszgwoULvP/++wQFBbFmzRpZeO/cuXMUFxezatUqmWuyatUq6uvrSUpKApDhpydOnKCxsZGenh5WrlzJ9OnT6ezs5MqVK8THx7N27Vqampp47rnn+N//+3/j6+srC94J2EVYY5qmcePGDbq7u8nOzpb1khwOB319fcyaNQs/Pz+ee+45mYkvaiuJUtT9/f3YbDb6+/v5xje+QXR0NAUFBaSlpVFQUMDFixfx8vLikUcekUle4icqKgovLy/mzp3LlStXuHr1Kr/5zW9YvHgxfn5+/OY3v+Gb3/wmmqbJUihZWVkyvNrhcBASEkJzc7Ps+yD8Un5+foSHh9PQ0EBhYSGLFi3i0KFDTJ8+nfLycnbu3ClzErZu3SrLxIt1YjKZCA0NlQpbR0cHsbGxjI6OUlRUJDvdifWo1gUzGo2yWGZjY6MMl7Zardy4cUPeq729Xb4TYQ0L+Mlmm+iIuGHDBgoLC9m0aZNTqKnKOwCnz8Ue1MO94n99pQZ3cJI7a0KFo6aS3yDIE6z0L8AOYCbwC4PBsIcJOOllTdM+V4JB07RbJKLe+y8cjKJshPoi1Jo9Km4ovhfaNXBLkTwBXwmsUy/hxQsS18zIyJAwktVqlRq/0IgOHjyIzWYjISHByfEr8E41gMDPz49nn31WOlRFuey8vDz8/PxITp4IKBPmsbAaROVGUfpClPUWbTXj4+MBZJKcyCVISkqSTkqz2cyuXbucelOL5LzKykqKi4vZtGkTW7ZsoaioSGaWioRAgM7OTlktMzQ0lGeffZZr167JJMD09HQyMzNlFFJbWxsnT54kKChIavF5eXk0NDRIoTU0NMTChQuJjIzkwoUL2O12Lly4wMGDB+nq6iIqKorZs2fz7//+75w5cwYvLy9ZBqSyspLCwkJMJhNvvvkm2dnZBAUFsWHDBkJDQ6Vy4efnx7Jly1i4cCGLFi3C29tbJh5WVVWxcOFCvLy8ZAJcUFAQDzzwAP7+/mzatAk/Pz/Wr19Pb28vBw8e5F/+5V9ISkoiLi6O4uJi9u7dy9mzZykpKaGqqkomXonnW758uYRJQkJCOHv2LJcuXSI6OprW1lZOnz7Nd7/7XZYuXcqyZcsApCa/ceNGKioqOHHiBG+88QYlJSU0NDTQ1tYm+z2MjIxw5swZRkdHJYTj5eWFr68vUVFRXLlyRUbMpaSkYLFY2LZtG3/9139NV1eXhH9ERdmjR48SFxdHUlISxcXFWCwWioqKMJvNDAwM0NjYiMPhwGKxsGHDBmbPnk1fXx/Lli3jG9/4Bjk5OVy8eFFmSBuNE9n5dXV1GI1G1qxZw2uvvSat8srKSq5fv05LSwvLly9n06ZNZGRksGTJEiorK6mqqnIKMMnKypLMWfjyrFYrhw4dIjY2ltjYWKn4VVVVyVamgISoysvLZSkakYckeIIrP4EqMNSaaK6ilvS8xJ01oCf9PYXwU5EVT+RJOKQDX/wonyEX+CqwSkQsfZ7IYDBIx6qYbP2EqbWVVCxTkGC+Z8+edWLaglTNwh1ur0p49Tv9CxKtGoUforKykv3795OUlCQXoFqADj6ugiryGcS1hWUjmG5lZaV05IliafooCwFPiCKBwldTUFDA2NiY7KkrIojy8/NpaWkhJiZGLvirV6/yzDPP3FJLSmw24cMxm81ysxw6dAir1SqL8zU3N0vIzGazERwczIYNG/D19ZVzrZIowhcZGckXv/hFGelVVFTE6OiohLcsFgvz58/n4sWLxMbG4uPjQ0xMDDk5OQQHB5OVlUVgYCDx8fHs2LFDWnFCCF66dInU1FRGRkZkCKNghMJJ3tjYyM6dOzlw4AC9vb385Cc/wWQyUVVVRWtrK3l5eQQGBkrfyCOPPCJLkBuNE1nc27dvZ8OGDSQlJfG//tf/Ynh4mISEBLy8vLhx44aE6IRg7erqIiYmhpUrV5KQkEBiYiIPPfQQOTk5LFu2jJUrV8q1+o1vfIPg4GAKCgoYHx9nZGSE/Px8UlJSePHFF9m5cycGg4Hf/va3DAwMEBgYyMyZMwkODqa+vp6jR48yNjZGeHg4ubm5cgwOh4Oamhp+9rOfYTKZZM+GgoICjMaJQnv19fUUFBSwatUqAIaGhqiqqsJms8kQ35ycHFJTU9m8eTMBAQHSKjGbzYSHh3Pt2jXGx8fp6+tj69atMkqtu7sbq9VKSUkJQ0NDMjhhyZIlUpsXuTLj4+PY7XZ6enpkqPX4+LhT+XpAFrU8efIkzc3NhIaGygCNxMREWZbDaJzIIxofH5cMPS0tjbS0NPz8/JySOw8cOCDXuidmLoSEKixU34n+HFfQkSdrQM+L1HYEk5GnaCW7pmm/B9A07YbBYGjVNM0y6RU/A1IZt5goVx56tfOa+rnw3J89e5aWlhaGh4fJzs52ciyLMNTJogTcfScYvRBSajP52NhY6urqMJlMZGZmUlZWdsszNTc3y8JiQiDoTVGYYPwCJhKRV6pDWIWRVKe1yWSSuRDCXBbOvDVr1tDY2Cg1QIGrqr1/VRLXEBBSfHy8HH9nZ6fMbRAJVqJev1oKRPhdxP8i8/lrX/sapaWlslAaTDAab29vyQhCQ0PJz89n9uzZdHV1ydBe0bPbbrfzwAMPsGfPHhlGunHjRjo7O9m0aRN2+0SPANHzobCwkNLSUrKyspg+fboMFvizP/szgoODqaqq4vHHHwcmOqJFR0fj4+NDbm4u1dXVVFRUEBUVRU9PD5cuXWLevHmyIOK1a9fIycmhqKgIk8nEe++9xyOPPCIFXGdnJ97e3miaJiEYUcJCJMTNmDGDt99+m6SkJAmbbdy4Ebvdztq1a+X7Hx0d5Uc/+hGJiYlERUXx4IMPkpGRQU5ODr/5zW/42te+RktLC6tXr6a6upqmpiYCAgJYtWoVxcXFUlmaPn06f/mXf8mVK1c4ffo0ly9fJiEhgZ/85Cc8+OCDrFixgrVr10r/n7B8UlNTZUTU//k//4eHHnqIxYsXywglkccgSoIMDAzg6+tLV1cX/f39jI+Pk5eXJ9eOeP/x8fFUVVVht08kfkZGRrJkyRJqa2tlf27ht9q4caMsEy/WYVNTkyylAh870GNjY53Cne12O5s3b8ZoNDrxBuAWJSk8PByj8eMabmrEkVpvLT4+XkJcYi8cPnyYLVu2OKEXeohK7AtR80zAhq5gJ/V4wcOmQp6EQ5zBYKj96G8DEPnR/wYm+jmkuD/10yVN05wEg4rtwcfMRi3KpeJ0wuqYPn0669atY8+ePWRnZ8sXok9TV0nNktbjfuLlicWrJsYJBltZWYmmaRKyAGSugjo2TdOcfCD63AcV4oKJCInIyEj2799PRESExGbtdrtsnZiSkkJNTQ3Xr1/H399fJpkJ6wqQlVFFKKW6AYTGJTK11VBaNWu7qalJFhsUXfJUgVlXV0dzc7PcILW1tfT09PDSSy+Rk5MjNXiYsM5MJpPMpG1paWHRokXSChHvODIykrS0NAkHCp+P2OSiNLXYyDDhwxkYGKC0tJSFCxfy7rvv8vWvf52enh4Z3RQREcGFCxf48MMPZXkOHx8fWdJ7wYIFXLp0icjISOrr6/H29mbhwoUMDQ3xwgsvsHXrVtasWcPu3btxOBxkZ2fLaCeHw8G3v/1tCgoKsFqtspT5+Pg4nZ0TMSCdnZ0EBATQ1dXF6tWrWb9+PdXV1WRnZ1NcXExgYCAzZsygqKiIoqIiHnjgASIjI5k2bRobN27E4XDQ3NzM6dOnycjIkEl4Fy9e5MSJE8TGxspOdKKN6JtvvklaWhrd3d1ER0fzwQcfcOTIEUZGRsjKyqKzs5MHHniAgIAAFi5cSH9/PyaTibi4OLq7uxkaGmJkZIRz587h6+vL+fPnuXr1Kn/yJ38i81oCAgKAid7d06dPx2azsW7dOi5dusTcuXPZtWsXixYtYnh4mP7+foaGhjCZTE5KQWpqKpqmScszJSVF9rtuamqS79lkMkk4KDk5WVrLRuNEpNL4+LiMtCorK5NhsHV1dTJfyRVCoO57EXYr9rnwhYg1KPwagFNPFCEg9HzGHSoRHx/P4cOH5Xj1fVzUMenLb3z0t1v0yBOsFA/80Uc/ecr/eR/9/tzQ6OioU4SQvqqigC3UsDU97CSiaaKionj22WelNi0iEQTT0ZuIasSSWnhPkFh4Xl5e5OXlYbc7Nyv38vKSobF6Bi/GXVtb61TVUWXKejNVHKMW+zIYDFIYwEQOhsD1RfRLREQEp0+f5qc//amMkDIaJ3rqpqSkcPHiRYndi7LbRuNECLDQzFUYbGxsjAMHDlBVVcW8efNksUFRVkFguna7XbYaFRViU1JSuHr1Kn/+53/OlStXyM3NxWic6KVQWFjIa6+9Rnt7Ozt37uTs2bPU19dz/fp1aa1UVlbK5xetT4UQt9kmen1cuHBBPo+o2CpCKZ955hny8vJ4+umnKSoq4oMPPiA4OJi4uDiam5uJjo4mKiqK1tZWqqqqiIyMpKqqirKyMvr6+hgYGODcuXO0t7ezaNEi0tLSuHHjBn/xF3+BxWLh+PHj+Pn5MXfuXCwWC3V1dTz44INERETIPIwvf/nLvPnmm7INaUREBDExMTJU1WAwkJCQQENDA/n5+bz99tv09/dz8uRJsrKynJoHhYeHyzXv7e3NF77wBdk8SZQB2bhxI+Hh4dTW1tLZ2Ul0dLT0e+Xk5EjoLTQ0lO7ubtasWcP7779Pe3s7V69epaenh7KyMlJSUqSjOCYmhsbGRhITE3nggQdobW1lZGQEq9UqM60jIyMZHx/n3LlztLa2EhQUxLFjxwgMDKS7u1sqE1lZWaxevZr+/n7WrVsnaz4JCyI3N1eGos+dO5dXX32Vo0ePylLsGRkZJCUlceTIEbnmNE2jrq5OWtXCWhehwMJCUSulCjhWrHM9P1CDTgQJHlFVVcWBAwewWCzSqhJ7V93DS5cudeJfniAgEV4uxqfeVyUVTVGVTmCau2t7shy8gYc1TTujfmgwGJYDlz2c95mQiqmLDEd1ImACbxQSXS+FBTMRmGVTU5PEm8ULdzgcTo3B1WsLvB+cY5SFFQAfZ2SqDTtcSXn4eEE1NzczMjIixyYgMJEzoZag0EcgGY1GnnjiCanlixIUojCZsIbUxf/www87LUyYWIDbtm0DkEl+amKRGKOoSrpw4UJSU1Oprq6WWu/atWtlaeykpCRaWlpYvHixHK/opKa+y4GBASorK0lISGDFihWEhYWxaNEiFi9eTGdnJzt27JCa5Z49e1i8eDEGg0GW2xDvPDIyEoDQ0FBMJpMMYY2MjGTDhg10dHQwb948mWHd1dVFa2urDC1taWmRFk5JSQmBgYFs2LCBtrY2xsfHqauro6GhgdjYWObMmcNbb73Fww8/TG5uLiaTiSVLljAyMkJdXZ2M2Ll8+TJPPfUUJpOJAwcOkJeXJ3NJtm/fzqlTp2Q47/j4OG1tbRw7doyQkBCioqKkcB8fH+fBBx9k+vTpLFu2jG9+85u0tbUREBCAl5cXN2/eJCUlRQo+gP7+fllevKysDIfDQXR0NIGBgfzxH/+xzMZOS0sjKSkJm83Ga6+9xoIFC3jnnXf4whe+wIkTJ5g9ezbDw8M89thjxMfHc/ToUZkbVFlZyejoKIsXLwaQVlZAQADf/OY3Zbnz5uZmFi1aRHR0tIw2S0xMZNWqVdTV1XH9+nWOHj3K2rVr+dWvfsWsWbMwm81ERkbKvtnV1dW0t7eTm5tLS0sLHR0dbNiwgf/3//6ftBYEVLh+/XpgQhMX1qQ+AU1Y96KApK+vr6wmKxQOUVFBjVAUe1OtyiD8BDBRyn3t2rWyF7qwEtR6aGoBTsCpZpOaua3yDBV+8lRtWv/5Rz69Gy4PxrPlsBP4wMXnYx9997mh6dOnO0lffUkQFa5RhQZ8DC+pkyqaqojyu0bjREST6Cqnn2QRjSRgm4qKCkpLS51KWIhrqJnM6thU7UAIHbPZTFxcnKwCKj43mSaa84gwU0Am4djtdmkliWKEMNGYZXR0lLNnz1JQUAB87AQTEVY+Pj5OzmuRvCMsCeHArqys5NChQ8ydO1eayAaDgfz8fEJDQ+UzTZs2jUWLFsmidePj4+Tm5lJfX8/p06f5yU9+wokTJ7Barbzxxhu8+OKLHD9+HLt9oiNXTk4OP/rRj2TCodCShTZ19epVYmNj6evrk9YeIBMV7XY75eXlzJ8/n/3798sEtGPHjsmGNUajkXnz5vHaa685RT0JjXP58uVyzoOCghgeHiYzM5O2tja8vLxkBrBwZp86dUqGxu7Zs4fdu3dTXl6OxWJh/fr1LFiwgGnTprFs2TKuXr0q33tNTQ2HDh2ipqaGU6dOERQUhK+vLzDBzMPDwwkPDyckJARvb2+uXbvG/v378fb25o//+I954IEHpPUsniMqKor6+nqqqqqYP38+UVFRREVF8fDDD2OxWPD39yczM5OoqCj8/f2ZO3cu5eXl3Lx5k8uXL1NVVcWePXs4dOgQM2fOxNvbm/r6em7evMnq1atpaWlh5syZZGRkcO3aNXJzcykoKKC9vZ3e3l5aWlro7u6mu7ubtrY23n33XcrLy3nzzTcJCwvD29ub69evc+jQIQml2Ww2hoeHpTbf29vLnDlzMJvN/P73v8fhcGCz2fDx8WF0dFS2IV2xYgXHjh1jbGyMOXPm0N/fzxe+8AUJhdbU1DA8PCxL16hJb2LvC6tS0NjYmCzfUVBQILPzRVh3XV2d7Fttt9ulL0GsKxW1EFZ6UVGRkx9QCAbVjwHIvaxGUgrLRkQa6klvYahKqqsgmo/2v9tOcJ5qK9Vrmpbk5jtZlO/zQKmpqdqvfvUrp+qorqSn/nMVh1MZolosy9N19Azd0+fV1dWEhobKipEiOU5cT81fEOepBf/Usaj1WQBp1QisVEA8KSkpUrMRtaBULUMvINUFJ+ZRLd8hLA9V2xIVKePj4ykvL8fX15fk5GTZFzozM5OzZ88yNjZGZ2cnSUlJsm+wGkd/4sQJ2WO4rq6OkZERDAYDFy9eZPbs2RgMBjo7O8nLy6OgoIDt27cDE/2cRWE2UX9Hdc6pvbFFRJTVaqWsrEyWnI6MjCQxMRGTySSjkXbu3Mlzzz3nNEevvPIKiYmJWCwWrl69yvbt2xkYGAAm/F5paWkcO3aM0tJSvLy82LFjByaTCbPZzOnTp4mOjqahoYGSkhIeeeQRYmJiKC4uZsaMGTz66KO0t7fz5ptvSvy4t7eXiIgIGR0WEBDAa6+9RlZWFt7e3rKR0rVr10hLS6Onp4e2tjZaWlpYsGABa9eu5dVXXyUiIoLHH39chnI7HA6Sk5OJjo7m2LFjzJs3j4yMDI4dO0Z6err0XVgsFq5du8bs2bNlHsff/d3f8c1vflPmoNhsNhITE2loaJD5BqKg4T/8wz/Q39/P7Nmz+cUvfoHVamXLli04HA6ZNBgYGEhQUBDl5eUcP36cP/qjP8Lb21t+fvnyBEiRlJQkO/+J3JTq6mreeecdcnJymD17NhEREdTV1UloZWBggJkzZ5KVlYXNNtEzGSb8USLSTWj7ZWVltLe3ExYWhr+/PyEhIRw7dkzWTxscHJSlQwCp+ZeVlQHIsjMC8xd7SkRyCehHCAY9LxFh5SIyrqyszEmZFccKPyXgxEMET9DXihKhvV5eXkRGRt5SF81T4T1PsJJbLAoP9Tg+CxKhrHrGDLdq5Cqp8JJ4SSKyRi8YVMYvCnSJHg3iZajOWnGOWAxqlzSxwNRrqxq/aGOo1lQSQkyFuMQ9xWIU4a+qiSwY8MaNGykvL5eZ0KKGvLiGCON1OBxcunRJmtaigY+wVkST9tTUVCksrl+/jtFolI5AESEi5kJs1sTERFJTUykpKaG1tVVWUN2xY4ecE1G8raenh9jYWHJzczl8eKJ9iHCsnz9/nry8PC5dukRHRwfr1q2juLiYsLAwMjMzZUG5iooK2tvb5bOIjnLCIdnU1MSf//mfU1tbi7e3Nz4+PnJOnnnmGZnsNmfOHKKjo5k5cyZms5mhoSESEhJkLoT67AMDA6xYsYLFixfT0tJCcXExTz75JGVlZbz55pts3rxZWjkFBQWkp6dTUlKCzWZjYGCAuXPnkpGRwZEjR2QkVE9Pj3Q8j46OYrFYWLZsGadOnSIqKoqgoCBOnDhBZWUlkZGR+Pn5kZeXx5UrV2TLUeE7aGpqoqurS/Znttls3LhxA19fX8nsxNzGxsby3e9+l7/8y7/kwIEDJCUlsXjxYtkJ7vjx4yQmJsp+08PDw/j6+vKP//iPcu0UFxfLMOjo6GgWLFhAQUEBN27coL+/n/j4eF577TU0TeO5557jzJkzxMbGcvnyZX7961/zve99j4aGBvbt24eXlxd/+qd/SlFREQ0NDRJSE420jEYj06dPJyUlRead9PX1SZ+bmvQmYFsV8hFWht0+0ctaRHoJyFjTNLZu3YrRaJSJqt3d3bJmE0zAy3a7XRbWFFn+gtSgDXXv7du3D4fDwdatW2lqapJRh66goNjYWBmgAM7KogpNiWfz8vKSpUtEcq/gY3hoE+rJcvgNUKRp2uu6z/8HE7WW/n/uLno3ZDAYfsBEXadrH330oqZpRz2dI0p2C+YKOBX7Un0F4L4uiRqdpJfuqoWhRijBx7i//hzR7EdoDVarVb4YsQgFsx8bG5N1fdTYenUxwceVW8UCVa916tQp2tvbiY+PlxmqFy9eZMuWLVitVnbt2sXSpUvJzs6WURyCIVZUVFBdXU1iYiLJycmSuQqsU9M0Gdq5d+9etm/fTlNTk4RkRDIe4HReXFyc9DWIzbd//35mz54tax9duXKF69evOyUnxsTEEBwcLIVeUFAQ77//PgsWLKCoqIiZM2cyY8YMLl68yPLly2UUSE9PD8899xx/8id/QnZ2NvCxFSS0PJHF/Mtf/pKgoCApgEU2uihDUVNTI0NmRWXdFStWyMSuoKAgFixYQHd3N6mpqVRWVuJwOPD29pYtPa1WK42NjZw+fZqvf/3rhIaGUlJSgr+/P/39/fT19XHjxg3pX4iNjZXrbXR0lEOHDvHVr34VPz8/qqurMRgMrFu3jjfffJPp06czbdo0oqOjgQn/Snd3N+vWrZPwnqiO+95773H48GGSkpKIiYlhfHyc/fv3yxyMxYsX09TUREJCAn5+frIK7oEDBwgPDyclJUX2VvD19ZWZ6SaTiYMHD5Kbm8uRI0cYGBiQIbf+/v4MDQ2xaNEi+V4PHTokLTWAhoYG2ft88eLFMrO9paWFuXPnYjabeeONN4CJhL+NGzdKxu9wOAgPD6ewsBCHw0FSUpIMIS0qKiInJ4eGhgaWLFkiE9cEHxAaveiWaLVaqa2tpbm5mbCwMEZHR/H396e9vZ1t27a55BnCVyQUDoE8iOvX19dLK1DlK/oWAEIxFEqVei/9fdWKr4KXqGiH+p3KN4QVoy877sly8ORzeA540mAwFBsMhlc++jnJRNb0n3s4717Q/9E0beFHPx4FAyC1KQGniMzOiooKFixYQFZWloRgXCWZqFi++K3/Xg2DVcPKjEajTAzSWylZWVnS2SvwRSEQrFYrZ8+elZVKRZkDtW68fpGIcdTW1lJbW+sU7WA0TkRWbNu2jbS0NJqamjAaJwoCAhw7dowdO3bg7e0tIzQAqSmLqrACnrDb7TKyKCUlhXnz5vHDH/6Qnp4eWcMmPj6evr4+nn76aS5cuCAtFxEmWF1dzaFDh0hNTWXDhg10dnZSVVVFaGgogYGBxMbGcvXqVSIjI2VRu6SkJIaHhzly5AgWi4XGxkbmzp3LgQMHpHDKyclh3rx5/OxnP6OyspITJ05QV1eHzWaju7ubH//4x+Tk5FBXVydblJaVlTE+Ps7Jkyd5+eWXKS4uxsfHh9DQUM6fPy/9ETCBNQ8PD3P16lWJe3d2dsr3YbFYyM3NZXx83ClLvKOjg0WLJooHlJWVsX//fvLz8+np6eHJJ59kdHSU9957j4MHD+Lv74/FYuHGjRvcvHkTmFBozp07x7e//W0aGxsxGAxkZmZKZ+iHH35IQkIC/f39ZGZm8tRTT6FpGl1dXfT29srQ0V27dvHjH/+Y9vZ2mTT2/vvv89xzz/Hkk08SGBiIt7c3W7duJScnhxkzZhAWFiYtopSUFLy9vaWjuKGhgfj4eDRNkzWe1q5dK3tKi/Bn0dnu/PnzFBcXy+KLe/fuZd++fVy4cEE6vw8fPiy76AnB0NHR4dS9sK+vT2Yei5wREfQg5iQ4OJjIyEjmzZtHf38/L774Iq+88oosnClav2ZlZTnxgc7OToKCgmhubpbCRgRrjIyMcO3aNZKSkmQwg9i358+f5+zZswBSEInkTvg4d6i+vl4GRYh929jYKCOVRKkPsYeNRiPJyclOiZ9qBJOAfFUntt4fqlZpEDCVeg29YHDnuBbkqfDeFU3TlgI/BLo/+vmhpmlZn7dkuAcffJDCwkIiIiJYuXIlq1evZtu2bbJaKUjPPKGhobcU5wPnwnsqqdq96KssSDiv0tLSXDYQt9vt0qkNE5mMwoTcv38/drudyMhImbEpcgXEPYUzS3UswUSWakREhFNCixijCjUJC8BoNEo8X9ScEdqwcGSrdefVHJGKigpqa2sxm81897vfZWhoiO3bt3Ps2DGqqqoYGRnBbrdz8uRJ+vv7Zc38tLQ0tmzZIvM3RM8DAd/ExsZy7Ngxenp6OHDgAAcOHJCx8GfOnOHKlSscPnyY4OBgrly5wo4dO+jq6pKhvWazmb/+678mLS2N3t5e6Zw8evQoxcXFWK1WvLy8iI2NldFioryE8MVMmzaNqKgorl27RlxcHHv27MFiscjS1s888wyhoaGySqrAlRMSEmhpaeHcuXOkpqbKKBZRTdTX15fU1FS2bt1Keno669at4/3332fWrFkEBgbKkMzY2Fjmz58vW6iK95ucnCzPWbp0KT/60Y/w9/fn6tWrzJ49W0ZUGY1GZsyYQW5uLiEhIbK8tmiU8+///u9ER0dTXFzM0qVL+Zd/+RdZMbeqqor09HSWLVtGTEwMZWVlbN++neLiYsrLyyW0umXLFhYuXEhTUxO1tbWSwYlObRaLhYGBAaxWqxQISUlJLFu2jGvXrjFv3jyuXr2Kw+Fg0aJFJCUl0dbWhsPhICYmhrVr1+Lv709dXZ20Vmpra2V4M8Dg4CAmk4mVK1fKcNqjR49Kx7W3tzddXV1cuXKF9evXs27dOpmgmZeX55QRLbKDIyIiCAgIkOHJohzHhQsXOH36tIw0E9bXvn37qKysJD4+Xr4nHx8fmdSq7mGj0Si7CAIy4TEhIUFGTAUHB0tFVITCi4oJgo+IfWixWDh06JDkBepxKjwlSAgi9W9VcVV5iyfyBCuZXX7xEWmaZvX0/Z3SR7DSE8B1oAJ4XtO0910c9yfAnwCEhoamXbhw4ZYmOYLUiRGwjCpF3ZEKJ4n/XTUIEhaLGp8sIh/UFp0C3hJlvOHjZiKdnZ2kpKRQVlaGj4+P9COINpriGqID2rRp06S5KyAxAeOoTmgBaQnTdf/+/bJwWWxsLIWFhU69IkTPXdURLgTP4OAgPT09EhYQXdLa29vJzMykoqKCvLw86uvr8fLyks8bFxfHzp07WblypTTxs7KyZGmOoKAg/P39iYmJoauri7lz58oKnJmZmbKTl4ABysrKMBgM+Pn5yTpQMJHoJLq0iW5qx44dY9asWRK3P3z4MMuWLWPfvn1s27aNmpoa1q5dK7vPqcl1WVlZWCwWOjs7MRgMzJ07l5KSEtatWwdMRICFh4dTVFTE1q1bgY8DEKqqqqT/47e//S0RERGcP3+eLVu28Oabb2I2m/nqV79KX1+fdHb29PTIFp0BAQFERETg4+Mjo8JefvlljMaJsN+hoSHZx0A4WrOzs3nzzTdZsmQJ2dnZ9Pb28vLLL7NlyxZCQ0P5n//zf/Lyyy/T1NQkK80ODw+zaNEiOV51/DCR8W2z2aQDemBgQDpun376aQ4cOMD27dsJDQ3lxIkTDA8PExgYiKZpsomN3T5R32rJkiWS2Q4MDEi/z9e//nWuXbsmI5TGx8dJTEzk2LFjrF27Fphwzl+/fl2Gog8MDNDb2ythMlFqxMfHh7S0NAnL6mFiq9Uqe0kLx7TqJ7Narbz66qs8//zz9PT0yDBVAfGKAnsiU1rARGqgh3hmAUGLPCeRDCsqAwg+IToNigRQUSJfNPNqa2sjLy9PwqylpaXS2te35j106JBTqLw+UEblT42NjXfcJrSLiXKuBpzLuooM6Qj3bNUzGQyG40Cwi6++B5Qx0UdCA34EzNY07SlP1xOd4PRNMcDZn6Bq5a4iBgSpoWZw6wSLz9WucWoMsupH8PLykiWD1fuI38KktdvtslOXwEHF9wLTNZlMTlFH6gITC1csFrHBk5KS5KI6f/48g4OD5OTkyIqZ4tyKigpGRkZoaWmRuRHqHAqMVlRHnTZtmvQhiKSzpKQkzGYzZ8+elRFLwhcjNHLRV0LMm81mo7OzU0aHhIeHy5yHw4cPy6gkIfAA9u7dy/j4OI8//jhXrlzB4XCgaRoREREcPXpUhkkK34Laj3jOnDmyuUxKSgoREREsXrxYYuGi37EIhX355ZdZunQp4+PjVFVV8aUvfYlz587h5eXF7NmzOX/+PAsXLsTf35/6+np8fHwICgqSFVHfffddrFYrP/jBD7h48SJ+fn48/PDDHDp0SGqddvtEWG5ISAhG40TP7ZiYGBYvXsyBAweIiIigp6eHdevWYTKZqP//t/ft8VFV1/7frWSAMAKGh+EVIOGRACGQBHnIWwqISpFSfl7rtWq9tbXF2mtbq97W2l770GK1VCyVVkvRcpEixUgjzxACCSQBEl4JJAHCIxGSFMhAyCSwf39M1mbNzj5nzkwCwTbr85lPMmfOfu+91trruX8/+vXrpzy2CwsLVQrOTp06oaKiAvv378fly5exc+dOvPDCC0oXd/nyZVy+fBkJCQkYOnQo1q1bh9tuuw1lZWVo164dHnroIRQUFKB3796KGSJ9S69evfDTn/4UAwcOxH/8x39gwIAByhqMdF4UJuXIkSOq/jFjxmDjxo1wu33Rd3ft2oWNGzeibdu2eOyxxxRT4XK5kJGRoZStkZGRKC8vx7BhwzBs2DDs378fdXV1GDlyJLZv3658QCi/NIW+6dKlCxISEvws6rilT11dHc6fP4/27dsrM3Gv16v8FiIjI5WFG+kTqa78/HyleKfIBosXL8ZTTz2lYjCR1RAZldC6UTwxnh9+48aN2LhxI6Kjo/HQQw8hPz9f+V/wPA76eeS4i+eo9ng8irHjuFDXm1LZtm3bBk8cbgYQQvQDkGJlUktAxAEwy9JIFEEHftWqVcoUjSuRSGmjpxvk3DngU9KZQkYA15xWuHs8LQ6ZfFrVy/Pg8jpTU1Oxc+dOlVFNJ2w8BDk9W758Obp164bs7Gz84Ac/UEo34npyc3MbOfEAPmLEzd1o7kghTbeFQYMGYd26dYiJiVF5fymNo8lZhxNV+rt69WpFDDjyX7lyJfr27Yvi4mLMmzdPERWXy4X09HRcunQJBw8eROfOnZVDHyG/srIyFfDtjTfewIgRI1BeXo4+ffrgxIkTGDRokAoXMnDgQJw8eVIZA3Tq1An9+/fHgQMHcPfddwMANm3ahJEjR6KwsBCdOnXC+++/jy5duuDRRx9VBJnEQhRwjyxdIiIisGLFCpV0hosC/vCHP6jQJPn5+fjv//5vZGRkqJzUCQkJSEpKwgcffIDIyEicPHkSQ4cORVJSEpYtWwbAZ7115swZjBs3DsuWLUOHDh1w4cIFzJ8/HxUVFejRowf279+v4jR16tQJ58+fh5QSJ0+exMiRI9GpUye89tpruP/++5VsPyMjA+vXr1eI+Rvf+Iaf7LuoqAilpaXo0aMHTpw4gSeeeMJP+V5SUoLCwkKl2N2/fz/uvPNOzJw5E1lZWcpCavjw4Rg/frzyVRBCKOszCtBHeRvCw8NVnog+ffrg73//O374wx/izJkzqKmpwd13361uxnS2c3Jy/ELl19TUICwsDP3798fKlSsVAab9Q3nDy8vL1Zmk2zgxOvw80z4nnYuJqayqqlJl8/LycMcdd+DMmTMKF1HyIDrX6enpyhSbzh6/SXBFsx4miJ81/aZghRuFEMGbsgoh+kkpj9n8LgD0klKetHonFBBC9JBSljV8fQDAfqdlTYOnZ0QE3W7/nA8Nbap3i4qKVPRWTn2JI6A8ByalNQC1gUxWTxTXJjY2tpG5GQClaCJZJy3+zJkzlcmk3i71Ozc3F2FhYUrmSRZLZKJIYycETKEqBg8erAJ/AVBiJrKE4JuXkDnFeaK6Tpw4oTg3AGrjE/J0uXw5NM6fP69MVqOjozF9+nQcPXpU6U7o3b59+2LChAkYOnQoiouLceHCBTXOY8eOYfLkyWjfvr0KHz5kyBClSP/973+P8vJyPPLIIxg1apTKfUz6B8AXJXTcuHHYvHkzxo8fr/RVgwcPxooVK3Dq1CmMHDlSHURKJXrp0iWMHz9ehWamNeTJ4gFf9NR169YhISEBgwcPVlwo+W/U19fjzJkzGDhwIB5//HGl9zl+/Dg8Hg/atWunTIHnzZunvMlJATx48GCEhYWpG9aJEyfwzDPPKJHD66+/jl69euHkyZOIjo7G2bNnMXToUAwaNAirV69WoTj69++Po0ePYv78+ejbty9eeOEFtGnTBp06dcL06dOVBU9aWhr+9re/4bPPPsOMGTOQmJiIqKgoZGVl4fLlyygtLcXSpUtx6tQpfOUrX8F9990HACr50fnz5zFz5kzk5ORg4sSJcLvdOHr0KOLj47Fv3z6V66F///6IiYnByZMnER4ejv79+yu/GRJHRUdHY/z48UhISFBJjSj6MAHdFCnuUm5urhprr169kJ2djWPHjqG+vl552vfv3x+rV69WNx8S51KQPgqbwX2geP4XLnLme8HtdqvoCxQHiURlBw8ebJS/+tixY8rCifCWy+VSpvAcdxGDqVs1mggDx1FOlNGAvVjpQ/gU1n8HkAufaWk7+PJJTwFwN4CXpJQbArYSBAgh/gJgBHxipWMAnmTEwgjJyclyx44dxmsTp66mSeNWAFTGRG05h24VjI+3RxyW/jvnKni9JG+lpCK0ybjoiG48dldM/j7JUslZht+gCBETAqc5IIRAorCtW7fi+PHjyuqJxEhjx471WwOPx4OdO3eiY8eOiImJQWpqKmbOnKkSn5D4KDY2Fh6PR4l/2rdvj3HjxqlIo6NHj0ZpaSnmzZunxFipqakYNmwYxo0bp/QUffv2xd13363m7+TJkzh37hx69OiBu+66S3GOpOQkE2GCiIgIJeqqrKxUHsKEUE+cOIGYmBisWbNGmWmeO3cODz74IBYvXqxuY1w8mJGRgdOnT6Nz587o0qWLQn719fU4fvw4OnfurG4ApCim6KmLFi3CnDlzcOnSJVy8eBGDBg3CkiVLMGHCBISFhSn9ClmaDR48GAcOHEBhYaGSu2/evFnN+YEDB/DAAw9gw4YNOHv2LJ566imcOXMGOTk5yoy0sLAQkZGRmDx5MkpLS+F2u3HmzBlcuHBBmTsPGzYMLpcLpaWl+OijjzBw4EDMmTMHRUVFeOGFF/Dyyy+jrq4O3bt3V+eBuH2yTiJHvRMnTiAvLw+9evVSaVCrqqrg9fp8JkiPQnuSRKgk+8/IyFA3lk6dOiExMVFx7HSrHDRoEA4cOIANGzage/fuePTRR7Fq1SrU19fjjjvuUPHPxo8fr8Rd06ZNQ1paGjp37gyXy4UzZ85g+vTpygmO9IF0SyScwLM80vkCfJKFgQMHKiLCccrGjRtx+vRp5Ruh3zRoLDreoj1G55uSctFZI7zATfJ13EPA67YTK1neHKSUXxZCDAHwFQCPA+gB4BKAQwDWAXhFSmkZlyNUkFL+ZyjlyMqGI3b9ma6TIMsh7lVrAppYkl+SeIBz/bQBCKnzkMB8YbKysvyis5JiicpwCyTeV7rxANcWl8slOSdL3NKhQ4cUd09j520RFwT4NjT1qaioCNHR0YiIiEBSUhLi4+P9Ql6TiSvftB988AHq6+sxd+5cJR+nXA5er8+piHQl5PPAD53b7Va+EuSzQmKX2NhYP7EZ6RSoD5WVlVi+fDkeffRRTJkyRelweAKn0aNHw+v1Ys2aNRgwYAASExOVEhrwxZR65ZVX8P3vf185ye3Zswd9+/ZFREQEZs6ciZ/+9KcKAZANO33/4IMPcPnyZcyZMwenTp1S8Z2EEAgPD8e0adOU8xf1/b777lPKysceewxpaWlo27YtwsPDkZKSomTq4eHhai+dP38eYWFhWLlypdpTRBimTp0Kl8tnWv3kk0/i4MGDOHPmDMaOHYvNmzer/UM3u127dmHnzp0ICwvDjBkz1D5btGiRMons2bMnNm/ejPr6eggh8PHHH2PYsGHYu3cvXn75ZcTFxSE9PR3nz59HXV2dCsx47733Ij09HWfPnsVdd92FgQMHwuPx4Ctf+QoqKiqUvmnlypUQQmDbtm249957/XRypIgnxWxpaalSulOyo2HDhqnYWCQOplvn6tWrlV6HAhhOmjQJR44cwcmTJ1UKWCIQZ86cUefD7XarTIgxMTHKoZIMLoip5no+On8PPvggAJ+lHwX0o5vGtGnT4PF4/BxoSSIBXGNSTYidR4UNCwtTuihSQHu911IQ68FHebZLwi8NVlThRqQHew9pSCkPwqck/twBIWtOGPQAW3Rd43kErMJpeL2+kN7R0dFISUlRnIG+Mbh8k98MpJRISEhA+/bt/cRS3O1dl2ly4kPPSW8B+BTidCjmzZun3idTQM65cKuGnJwcxMXFIT8/X+keiIi43W5Mnz4dixcvRteuXZU4hnIKkGiHrr4kLomOjlbXdLrqEwItKChAz549UVhYiKSkJDW/xPUtXLgQd911Fzp37ozk5GT0798fL7/8Mp5//nml/zh48CAiIyOxZMkSjB49WokM3G437r//fhV+2uVyKfNEWlOyGqNELlJKvwxr8fHxyuxx8+bNytlt8+bNiImJUYf3xz/+MaqqqvDMM88oBeO6deswbdo0lTsiLy8PXbt2VUSfIDc3F9HR0SgpKUHXrl3x7W9/G48++ih69Ojh50D50ksvIS4uDgMGDEBVVRUOHz6s1rW0tBQ7duzAl770JQDArFmzcPr0aeXFnpGRgS5duijlLnHZY8aMQWpqqpob4k7vuOMOTJ48GUeOHFHevgDQpUsXHDt2DJ06dcKyZcswYsQITJ8+HV6vF++8846y2EpLS0NZWRkOHjyIuro6tG/fHvPnz8esWbNw/PhxDBo0CDNmzMCUKVPUrZSMGT766CM899xzuO222/DnP/8ZL774Ii5duqQQal1dHQoLC5UyvHfv3qioqMClS5fw5JNPKsU8KewpWx1Z/Xi9XrRr1w7l5eVIS0tDr1690L59ewwdOhQJCQlYs2YNzp07h/3796OmpganTp1S54WLj+rr61FcXKwYFLfbrRxHaV8Sc8ZDctMcm3SPbrdbEQOSGOigSyMoCRTtFbJKJNE1t47k4cIJB+oOwF6vl55ZMvg3tULaKZBYiStmdSRPohsSl+hU2UoeR6Igkr1TljXSC3CxE3DNVJb7DVAd3KMZaJwLgsqTfoNb9pBya9++fcq1nnuDc0UVV7DTd9pU/DuJenjMeZozuu6TWSplQSOERyIrup0MGzYMe/bsUTJiui1wJ0DqL49bRcHWCLHTja6qqgonT55UCVHo0FKOCOKi+CHLz8/HxYsXVfgRuh2RopEirdJcl5eXKyRKB5v6RAiFMowBPhFbUlKS8uWIjY3F8uXLMX/+fJSUlKCyshJZWVl48skncebMGZw7dw4dOnRQyZySkpKwZcsW3HXXXVi6dCnGjBmj8hHTWpWWliIvLw91dXVYvXo1hgwZgtjYWISHh2Pbtm0YPHgw9u7di+rqaowcORLR0dHo2rUrwsPD8frrr+PHP/6xCujHA8ZRROL169fjzJkzePDBBxEXF4f3338fX/7yl/H++++jV69eePDBB1XOZPJSTktLU7fKTZs2AQDuvvtu5QW8d+9eXL58Ge3atUP//v1x9uxZxMTEKKLLz0lVVRXee+89pKSk4Nvf/jY6deqkGJTjx49jzpw5StxE5q87d+7EJ598gltvvRULFixAWloa+vXrh0GDBmHlypXo06ePSppETE52djb69OmjREMRERFKN9K5c2eF/Inpo3wcumUd7ceVK1ciLi5OWfjReSOmMzY2FitXrlQhMEi3eOjQIb89SoSHxLJ0FjkO0nERERr6TTfRpTNNCneSBpj0k1Qv4akuXbocklIOMb1ne3P4vAG3INBjJvGgdhTkjt8sCPSF4aIfWlh9w/Ny1K5OGEwyQB52QxdLETdBHpc8AB5tYvKx0PusR44lhRhtMooVQ/bTwDWvbwK32xeCmCMvUqSTcmz27NlqI1KojlmzZqmDRA5I5OyTlJSkosW6XC5ER0dj4cKFuOOOO5CQkIBJkyb56VZoXkj2TPGkDh065BdmgOy+6cZAHN6oUaOULmTlypV+ehyyZ+/bty+mTp2KZcuWobS0FJMnT1amkW63W3mwA0BaWhri4+MhpVTRcNu1a4fDhw8rjhUAjh07hkGDBiE/Px9du3bFvn37cPnyZXTr1g2rV69W4TUofwLfX0RgxowZg5/85CfIz8/Hrl27MHnyZIwZM0aFrrhy5QomT56MsrIy9O7dG4sXL8b06dOVtdu2bdvUzTI/P19xnRMmTFBRU8lZLyoqClOmTFEyfJfLpYLvRUVFKQJfWlqKuro6dOzYUTEOiYmJ6NevH44dO4Z+/fohLS0N06ZNg9vtVpF4pZQoLi5WeqJ58+ap9kePHq0IcFVVlfJEX7NmDS5fvowJEyYoa7E+ffogKioK9913HwoLC3H48GEAPgu1rl27KjFWfHw8hBAq5SjVnZaWpsK+nDhxAkOHDlU6JvJ9mD17tiIopFtzu93KwIN0ITQnLtc1pTE3yqCzSFIHkg7ExMSguLhYMZOUrTElJQW33XYbevfu7WceP3z4cHVekpOTG4XeINxDBIjApLPgOI45ytUakSn+RW4OFFvJdAswKal37NhhNEO1K8ffIzC9w4HL+vRQ3VzBrSug6PZACJ3kk+RxqV8niYsgRMY3DbVF3E9sbKy6PfG6SUlNNx4qx6O/cnM6U5wWmh/iBPltic81v21t27YNUkp06NDBz2nK5XKpuD7c8oTs0rlCPCcnB927d1f29rytzMxMVFRUYPv27XjqqaeQkZGhZLQbN27EsGHDlKNcWFiYSi9J4gByxiOFPI2d+3bs3r0bp0+fxvTp0/HBBx+gTZs2GDFihMpb0atXL+XX0LVrV2Vqu2jRIowfP15FCKU90bt3b2zcuBHdunVDWVkZOnfujGnTpqm6Dh48iN27d6Ndu3Y4ceIEfvSjHzW6tS1duhS7du3C/PnzkZGRgX79+mHevHk4efKkkqtTiIfY2Fi/CKalpaV4+umn8bWvfQ33338/Dh48CLfbjVdeeQVdu3bFs88+C7fbjf/93/9FYmIi8vLyMGHCBBXvinQU0dHRCA8PV7oZ0juR8vv06dMKsRKjU1FRgZkzZ6pbCZk5U27rxMRExdUTeDweZTjgdruVnsDtdqs8FsePH0fXrl3RuXNnFBQUoE+fPujWrRt69+6NkydP4vz580oHRToqfvOls1JfX+/nI0E3aW7ufeLECXUz4YwonaeYmBiUlJSoWzFZKL766qv4n//5H0RFRSlJR3JyMnJzc1Wq0hUrVvgRJl3Swc1pObOs4wPCLbfddpvlzcEuthIAQAgRZnjWNVC5GwnEZes3AeLEdeTNYyHRgaT4OFbl6F0iHAD8bif8PQ4JCQl+hIjeIW6R3NypLmob8CE9UmzTAlNcFsrxTBy/1+vFhQsXsHLlSqSnp/uNB/BtXvLNoHERd01ipdWrV6swDuQ3Ul9fr7KrRUVFoaCgQFlikTKWb9C8vDxFGN544w2Ul5erZOv0LrnzHzx4EBMmTMC0adNUmRUrVqggaXPnzsXEiRMxevRolREsKSlJERFah969e+Oll17C6tWrVf4J6tvFixcRFhaGyZMnIyoqSoUeJy/kyMhIzJ07VyFpkue+8cYbWLNmDVJSUjBu3DhlLECivcrKShQVFcHl8kUCnT59Og4fPowzZ86gX79+CAsLg9vtxsWLF1Xuh9mzZ6Nr164qn8aTTz6pku6kp6cD8MV1ioqKwsSJE3H27FmMHz8e+/fvx549e1BRUYGlS5eqtJp9+vRB27ZtAfjyTsTHx+ODDz7A8uXLUVtbqzLY9evXD3369EFqaioqKyuVOHHYsGGYN28eevbsib///e/Izc1Feno69u3bh/79+ytCHBkZic2bNys90NGjRwFcs/iaMGECxo8frwhD165dER0djTZt2ijjBdJlFRcXIyIiAps3b8a5c+eUfsHlcqF3797YuXMnSktLUVJSgkuXLqmcCfv370dqaiqWL1+OyspKeL3XAimSWfXevXuxc+dOVFZWYs2aNdi2bZvi5OfMmYNu3bphzJgxePTRR3HPPfcgNjYWmzdvRmxsLO6++27MnTtXheLYv38/7rvvPuzevRs7duxAQUGBuj106tRJ3XwPHjyouPq4uDisX79eiZ9cLl9EYoqg4HL5EgUVFxdj+PDhSk82YsQIREZG4qc//SnOnDkDwGc0QGe1rq5O5TGh5EUUZ0qPv0RhNujM03mm90g3wZioGliAnZ/DFAB/AdBWCLEHwNeZ38N6AIlWZW8m0AmD1+v1UygBMGZX0gmDvkFMtwyu+AWucRNc5ghcu3FwUY7eT57hjQgQ+WCQMo479q1evRq9evVSMluqkxM8IlLcsY1ntSO5MgDF0REizsnJQWFhoXqu59em8B0kbnG73Upx27dvXyXu4bJSTlxJt0KWHllZWTh//jxmzJiB3bt3K5NNAq6riYiIQHx8PMrLyxEeHo4//OEPykHu8OHDqK+vV+bFhLBJrg5AmUgOHjxYBbujw01hC86dO6fMaDt37ozc3FxlXeX1enH06FEkJiYq8RJxZqWlpejZs6dSEk6cOBGDBg3CqlWrcO7cOXTu3BlRUVHYtm0bunbtioyMDPTt2xfvvvsuEhIScOnSJTzxxBOIjIxEXl4eHnnkEWUNRf4LtC6xsbEqUFyPHj3Qq1cvvPfee4iJiVHip/T0dGzfvh2jRo3C7t27la5gzpw5mDRpErZv344tW7Zg0qRJaN++PbZt24acnBwl0wd8YUr69++vFMXjx4/Hzp078ec//xkDBw5ETU0NoqN9ARRKSkpUNsDLly9jyJAhKjR8eXk57rzzThUz68SJE/jKV76CtLQ0TJ8+XSXOWbduHXr27Ilp06bhwoULSpy0adMmFaZj0KBBeOONNxAREYExY8aotKFkbOJ2u9XepT1O1nS0B0mcRPoZACq3OenYKLkTAL89RGds4MCBflw9iV3p1k24h99uPR4P3njjDTz11FPK6MPlcilRNBl/APDL48GdaWmM3A+C6yVJp0aicSdgp3N4FcAMKeUBIcQ8ABuEEP8ppcyCTQzwlgCaUKAxkuVAyJsUnNy8y66cy+XCuHHjlAiI6w84p08bgBCvbn1EREG3QtKV58A1PQHXaXAFVHh4uApqB0DJYcm5jcdsHzFihF+2K+58w4kcv91wvQWNX59jjuQBKNEUJRehOojAcILA6/F6vX5Epby8HFlZWcjIyEBcXJyKrZSYmOjnlMhFVtxjedu2bSruPok2SHlJMXHOnz+vQo5v2rQJU6dORXx8PNasWYPExER07twZ58+fR0VFheKk9+3bh549ewLwceokYqqpqUF9fb1SVJO/CqWaJU6OPKdPnDiBrl27oqSkBI888ghcLhcuXLiAnJwcPPbYYzh16hS6dOmC8vJyZTU1depUxMTEKKJy9uxZjBo1CikpKcoXYsWKFRg8eDA+++wz/PnPf8awYcPwk5/8BC6XC4cPH0ZiYqLaB4cPH8aUKVOUKIUy3x09ehQVFRXo2LEj4uPjsXv3blRUVGD48OH42c9+hqSkJAwaNAh79+7F8ePHcebMGUyePBmjR49GRUUFOnXqhLq6OpSVlSEmJkYpy/v06YOsrCwMGTJE6XRcLpdyDCST2gsXLqBfv36IjIxUa0WIuVevXli8eDG6d++ugtjFx8cjMzMTQggVc6pfv35Yv369yjFNImed4aPvpJylKKudOnVCbGys0hVt2LAB+fn5mDp1qooNdvHiRZSUlKh6yFqLiAFx6CQhiIqKUuH06XfCGSNGjFB5Fjh+IeW6y+VSRIHnSTFJRfgZpt+2bduG48ePIzY21k/X2nCeLU1Z7Zzg8qSUCez7UACrAfwQwI+klDfNzSE2NlYuWbLEDyEBZm9B7uvAwXTD0GV5/FagWwKQyInL+wB/XwXeH50gcMStZ36j+k05JShoHxEjLtulZPXctI4OAuduAGf6E26Sy+O5ANesLngWOiJQdOuaM2eOivPE287MzERdXR0mTpyoFH69evVCjx494PV6lZ07N83Nzc1VTmbx8fEqyCDgOwyjR49W1iPkZbxnzx488cQTao6mT5+OAwcOIDU1FQsWLEBUVBR27NihnPJIIUhOe5cvX1aetuQfsWHDBng8HjzwwANKRLR7926V7e7OO+/EG2+8gXHjxmHIkCHYuHEj5syZo6KQUvykU6dOqT54vb5QFBTUzuPxqFwcZKxw9OhR5cxGweNWrlyJMWPGqPAuly9fxuzZs5UoEvAp70eMGIGTJ0/i8ccfV+v93nvvITY2FomJiUqfRBwqzeeuXbswfvx4pa+4dOmSqqu0tBS7du3CpEmT0KFDBwwaNAgA8D//8z/48Y9/rMyWaf3pnGRmZuL8+fN+gRLJuojEH8QBu1wunDt3Di6XL7nSxYsXkZiYiPfeew8DBgzAyZMnMX36dJw9exYVFRXo2rWr2iOkkOdcOd16KXFXTU2NyvlOZ2bTpk3IyMhAUlKSMt4gc9vBgwercVFAPcB366VwINQ+GX9QetEGvOUX+4zOIflRkTMd6deo75ypJdyl4yuOt7gOTccpbdu2LZBSxjUqCHvikAPgPh6eWwjRG0AKgBgp5W3Ggi0ASUlJkmKs6+IeUwAq03tcvKM/A3yLRmk+9dsG+SroJmqkRDZFgDVxMrQxdM9qvQwh/KqqKj/LCcC3cSsqKnDmzBml/IuKilJelAD80glyO22dqBLoBIb6wN/JyclRjnM8+BeVS09PV56hPDDYkCFDsG3bNpWhjlsHkbLU7XZjx44dfodt3759yvKDoswmJSWpg0kIHrimRKZ3Dh48qGL9U3gHihFEY6L2Bg8erJSdtI6kICTzSMqwRYrIiooKHD16FKWlpXjhhRewZ88eAL5kPOT9zT1tydQ2MjJS7T+Px4Nly5Zh8ODBGDlyJDIyMtChQwcUFxer/Be0FtRnEnuNGTMG58+fV7GUsrOzVWylnj17Yv369Thy5AhmzJiBrl27Yvjw4UpxO3LkSKSkpOD2229XyJViXVEyIvJQb9OmjbLgWbp0qfKHoNSt8+fPx5YtWxAeHo7CwkIVoZeCztE+IkJPe4WMIig6Lt3GuIUaMQhnz57FypUrMXv2bJw8eRJuty+kN0UPDg8PV/osAHj11VcxadIkTJgwQfWB+sHPP2+nqqoKR48e9UumA0ARTzLpnjNnDgoKCrB//34/8Y7L5VIxy7iebvfu3SgqKlJRkEn0SeeD94+YM1KA67ceMpnVJQCBJCpCCEsPaTuF9A8B3MEfNMRRmgzglzblbjjoIhjg2rVLl22TElN/D4DiVPgzen/IkCEoLS1VymGqj4uqSE7pcvnMRSlvgK6kpncA/8WjNvVbDb1DSIOUTm63W8k4uZJ75syZylN5wIAByovS5XIpszwSK1Fob6pbV3JVVVWpZCakPOdKZZqf6OhoLF68WAUaGzBggEpm4na7MW3aNDz44INKAUdOQwBw6tQpxaGT82BBQQHOnz+vHNWSk5NRV1eHQ4cOIT4+Ho8++qhSwrrdbmV/fuzYMWWNs3v3bhw6dAjl5eUoKipCUlIS3G43IiMjkZaWBq/Xi8TERNx11104deqU3zwTYSgoKMDly5eVnNvtdqvw4VVVVYiKisK0adMQGRmJUaNGYfDgwTh79izmzJmDqKgouN1u5Z19+vRpzJ49G6WlpUhKSsKkSZOQlJSExMREnDx5EtnZ2SgvL1fJiyIjI1WKzPLycgwdOhTz5s1DmzZtsGfPHixbtgzp6enIzMxUOQM8Ho9yTlu4cKEKNFdWVqbEUffddx9mzJihuGQSWxQWFmL//v2YPHkydu/erQjgnDlzlGivpKREhWyvr6/HL37xC6xZswaPPPII+vTpo3R6lEGvU6dOkFJi8ODBmD17NsLDw+Hx+CepIl0AjUFKidLSUqSkpCA+Ph7jxo1Ta0fnjtahW7dumDt3LiIjI5GcnIx58+Zh6tSpePTRRzFy5EglcqZUs5MmTVIpXVetWqXOcH5+vgoKuHz5cqSnp2PHjh3Izc3F0aNHlUf0kCFDUFBQgJ07d+LChQtK1DNnzhyUlpZi+PDhKvsh5YEoLy9HSkoKSktL1Rki3YgebYGfHRNzmJWVpfQIJGqmrHgej8fP+IPmWQe+z+EfcdsP7JL9bJRS5hmen5NSvmJVriXA6vajy7b5Ipjeq6ur80PWNPmEVIkT1gkNITtSPJPIx6o9AqqDuAlSTHEETQtMCT8A+MVXInk+R+Ber1chYQog6HK5kJmZqW4bWVlZyM7OhsvlU6J5vV689957WLlypULauhKc32Z0whsZGakU0EIIhfypP7r+hCLEcjPRN954Q8m+KS0l6VUI6cTFxalAa0QU6HcSFblcLpVn4o477kBqaqoaU1VVFTZv3oz77rsPY8eOVWaEU6dOhdfrMz2mCJ3FxcVITk5W4qq8vDzFzXbv3l2ZuXbu3FnNF9nzR0REqNtdbm4uysrKMGvWLL8kL4DvFrJv3z4MHz4ccXFxWLFiBTZv3oxu3bqhoqIC/fv3x9ChQzFz5kysXbsW+/btUxY+NJeUbKq4uBhDhw7FsGHDMH36dMyYMQO//e1vceTIEcycORPl5eUoKytDSkqKKk+QmJioRGVRUVF49tlnFadLRGP//v2IjY1FUlIS1q9fj6FDh6JHjx6or6/HwYMHERMTg5SUFLhcLrRv3x4ej0chfrICio6OVp7qxJUT504+HnfccQeWLl2K7t27qz1DjAYhwPLycqSmpqJ///7o06cPxowZo7zxc3NzFXEhZoOsfO6++26MHTvWLzc66abIQ5ysmoYPH46xY8ciKSkJycnJ6kzHxsaiuLgYYWFhSq9YXFyMIUOGKKQfHh6OYcOGoW/fvigpKUH37t2xfv16PzNVGlt6eroiUuTLQzcHTkSTk5OVgp3A7XYjOTlZ+WP069cPhw4dMjrYUhuEc/Y2IYf0SinlfCHEPpjzOQw3FmwBiI2NldwZzAqs5Ov0nJyp+M3A5H8AwI9b5/JpLrKhd+zk+Xq8J55nmtokj2sSUZnEXsRNmeJHUTgPyocL+BNMIk7cntrkuU3XXu71yeviojziBHl8KW5dlZmZiZ07d6psXKRv4ESE1oNClpD4LD093c/qg+aKvHcp1/HQoUNVAD2yER84cKBK6sN1QxTzitu10zpz2XdBQQEuXryoRBy8/b179yIiIkLFg/J4PEhNTVXBAEk3xOeOxFckjszMzESvXr1w+PBhFTSwU6dOAHzxnEiBTf4QlPEMuBaYjfrj8XhU7omJEyciNTUVx44dUxZKgwYNUpw9GQSQSI7vf7rBAL7sZ9HR0UrvkpaWhrq6Oqxbtw4/+tGPsHv3bixevBhf//rXUVFRofw93G63UhxfvHgRR48eRX19PT777DN85StfQUZGBgoKCnDLLbdg2rRpCAsLw8CBA1FVVdVI3JKVlaVyeVNUXo5oKyoqkJKSgu9973u4ePEiEhISGq0v39P0P4Vqeemll/Diiy+qMCEUMJIzhpSzxO12Izs7GxcuXFCm0DT3dO54EiUAylfB5fLlut62bRumTp2q9BQUMoSHvOB6Oq6zMd0uTGVorsiqksrb5ZC2Iw49pJRlQoi+pt+llMeNBVsAyAlOB112SGElAGudA/9Nr4MilhYVFamEPCQL9HqvhebQ69CRnl0/9ecEPCQG/UYIl9rWdQZcj8Ete3QxF9ePFBQU+DnncJGc1+tVjmkUypj0L5w4cWVjUlKS0sdQEh1KmFJcXKxkxTpB5tmtKHwyIQQyi6UcEEVFRYiKisL+/ftRVFSEadOmYePGjRgwYIDy6CVvaZfrmjLSlJ2P2ly+fDkANEouT85ZdKvh+qSioiK8++67Krxzx44dceXKFVy4cAE/+MEPFDEBoOTHtBa0l8ijOzU1FbfffjsuXLiAZ555Bi6XL9Uqyes3bdqkrJgolAVFwt2+fTvKynyBjGfPnq08uCnrHuWBJh2Cy+XycxzjiKW8vFzlPmjfvj1qamqQlpaGp556CqtWrcLu3bsxe/ZsHD16FLfddhseeeQRRaQWLlyIJ598EmlpaUoZSzcWKSV69eqlckPQbdjj8eDkyZPo3LkzVqxYgaeeegoRERHKcRW45mTJGRjaM1lZWX6MCIXFoLq5cpqvNw+R0b9/f0RFRaksgOfPn8epU6caZVWkfej1etWNm9aH9hp5WdMe8ng8SuTZpk0b1NTUYOTIkXC73X6KY45DrJhUO10qxz1ZWVnYsmULFixYoBT9dN7s8jn8S3hI82Q/BDrHTsiKLxR/18mtg5AdiVu4OSVgjs9E5QAY29b7wG8j+uJzZRNH/Dwst94XutVw5EvBBCn/A71HCEpH9LyPOoKlOik9IQ83zkN78/FR/0xt0v96TCnqz8KFCzF+/HgVrptCRGzevBmzZ88GAEUs6MCRXJ0zBzRmalP32aA2+fgp01lsbCwGDRqkLGtI/LJq1SqMHz8en332mRJnRUVFKQLFs+xR0qLS0lK0adMG8+fPx759+5SV06VLl/y8wo8fP67yXNA8btu2TeV1WLt2LaZOnYo9e/bgb3/7GxYsWIDz58+rNuLj45WllZRSKTYJIZKiecCAAZBSqjSaeXl5yM3NxYMPPogpU6bA6/Vlx3vmmWewcuVKREZGomPHjhgyZAhSUlLwyCOPqDlLT0/HmDFjVOpbTnzKy8uxZMkSPPbYY8qCKyIiAtnZ2bjjjjuUrwPtDzJDJqTKY6RxZocT3fz8fBVU78EHH4TX61VZ7srLyxsh26ysLBVCRGdS+Fmg80Pmq6NGjUJVVZWKu7Zz505kZGRgwYIFKnYZ1bFq1SpMnToV69atU9ZZ5F/Eb+UmJM/PPj8XNO66ujo/HMPHQKJmr9erLPICEQcnHtJzhRBHhBDnhRAXhBDVQogLgcrdSNAJHE2eLsohhbEOgQgD1UnZqXgiIJ2w0ILo3LkdEeZyQJ7ulERY9A73fuTjo3HRLYa8o6kP/H/A58NAclQ6XGvXrvWzvaY+8DrIY5vapoPucrlUgiA6cLm5uX7+J1TnihUrVEhuUtbT2KqqqpRnNnm9ezy+mFK0uRcsWKByEQM+j+ITJ06o9kk3VFpaCgB+Zok8qdOOHTuUIp7rk8h6atGiRdi2bRsyMzOVroasbUiBTHoHOqSzZ89GVFQURo0ahaioKDz66KMYP348evTooeT5fB1Onz6NefPmqdsJ/SalRHh4OMLDw5WX8qxZs1TwvR07dsDr9Sr/Bmrb7XajW7du+OEPf4i8vDyVSnT27NmIj4/HyZMnkZSUpCJ6kvyclL2UyY/CtA8dOhTJycm499570alTJxQUFMDlcuGee+6B2+1Gu3btlKNcXl4eLl++jN27d6ubNIlTJk6ciLi4OKxZs0bN5YkTJzB8+HBERkZizpw5SE1NhcfjwYULF7Bx40YVrnv58uVYv349+vb1CTCOHTumkk8RkaE6SSQM+MSBpLe677771B6ndLTch4DOUVhYmJ83M9cN7du3TynMExISEB8fj4kTJyoLodLSUqUPCw8Px5NPPqmU5LRXSbdVUlKCvn37wu12K8KQnZ2N3bt3q1hMOn7gZ9Hl8oXVX716tWI8hw8fjjZt2jQ66zQGfsN1gu8ABzcHIUQRgPullIdsX2xB0NOEWsn4de7cyY2Bg4mT1nUTpnpNckAd6B2i6hyp6voIXoZzNxzBcJFTfX29ktHr9t08uiTn3E0yTf32QuXI6Y/HdcrOzkZMTIySc9L4OQHiNy9qXxf9eb1ev3FnZmbiyJEjmDt3Lnbv3q08ZLluhIgqOSFRLl9CoPwdXadCbZApKDmCkbxaX0Pygo6KilJiE0qVSo5UlNuB6iQxHHBNd5WTk4NLly5h0KBBirun8uSoFh8fj1WrVqFr164oLy/Hgw8+qMKiUyBFChNCehky9yWx3vDhw9Vc8Fsb7RVSvFLIjPHjx2PJkiUqnpJ+Y6R9uW/fPhw4cEDl/KacGvX19RgzZowSpdTV1eH48eOYNm0aFi9ejC984QsqxSfpk7iX+cqVK/HJJ59g3rx5mDFjBqqqqpSDm9frC9FCxJ9EUDwmF93ahBDo378/IiMjlb6AbpV6hFXONNGe5aKYzMxM5eBIZtbcr0fXy/Gb+IoVK9CrVy8AvnhPDz/8sPqNzLhJXMVF0bRONN8vvvginn/+eURFRfmJxqzEwiZc02SxkhBiu5TyLtuXWhh0sZIJAeviGi6zIzDJ7J0SDzukb5IdmtoCrl2LrRTbhND5eAD4JVOnMfLc0DQ+aodk1Dz6KQDFiRA3adV/OsyEaD0eX/CzmJgYTJo0yU9Uo+s5dFEAXdO5HTu1x5Oyc8UeiRq6deuGGTNm+OXToLFzJb5+LQeu5UPW9wDVT2V4f7dt24bNmzdjwoQJ6NixI1wul+JGb7/9dpw9exazZs1CYWEhhBDKjp0Tb5KR6wYFmZmZKuuey+VSCMnj8cVC6t27N/bu3YvDhw/jxIkTSE5OxsWLF9XNo7y8HEuXLlVWYxwpmYg8zQsP1ULzQnNXVVWFjz76CN/85jf9+k8Ikde/bds2DB06VKUABa7lAz916pTfuIYPH45ly5apLHY8817Xrl3RrVs35WPRuXNndO3aFWFhYairq1P5sQEoAwrK20DiI8CXgAnwWfeRPooMMjIzM3HgwAG0adNGedfzvUFiUYokTE6adOZIVBYXF4cPPvgAgwcPVmeGzhD55JDzpc6YZmZmYtKkSX7z7nK5sHXrViURIBGTx+NRjoqke+O55rmDqo4PdFzEcUmXLl2CFys1iJPmAsgRQvyfEOI/6FnD85sW9INAZlt0ELgIAUAjUQw39dKveCawIwx0xaZ+6YQhOzvbzx6ZuBMKiMeVUxQqm0xdidPJzc3FxYsXlbgmLy9PKWo5ECHJzs7G/v37/TJI8bESJ+nxeBoF8CPC8MYbb8Dj8SgusqSkRJk1AtdCgHPOODMzEzt27FD9oDHHxcWhrq5OBUPMzMzEpk2bkJubi0uXLql4QXl5eWouioqKMHHiRNU/mlda16KiIqVg57cigvT0dKxevdqP86K6qqqqkJWVhYULF+K9995T+4Ic7JKSktC+fXsMHz5cRfWcPn06evTogVmzZmHdunWor69HYmKi0iVQCAdyNiM5cHZ2tkpdmZSUpHxBACixW2lpKXr37o0lS5agrq4Ojz/+OBYsWIADBw5g2rRpak64OTExCPwvPwcLFy5EeXk58vPzVV4Lr9eLrVu3Yt++fTh79iyqqqrw0ksvoba2Vq1hTk4OysvLsX//fixbtgwff/yxqquwsBBvvPEGsrOzVSjyhx9+GKNHj1Zez263G+PGjUNERAQeeeQRDBs2DIsXL1bK32nTpiEnJwcXL16E2+3G/PnzVRiM+Ph4lJWVYdeuXejfv78SqblcLnz22Wfo168fvF6vMk9+6KGH8NBDDynzUjI6AIAOHTpg7ty5fnHSCHJycpCVlYV9+/bB4/GoWEv8tjdx4kRlLRcTE4P6+nqsXr0aHo9HJcgqKipC//79cerUKTX3xCTwWwGdTRIddejQAfHx8UbdAwF3qCNxminPDMdF3CyWcAnsaICNtdK7VoXgM2V93Ob3GwomhTRwDfkSB05XQlKSEmdGwDlEpzcHakO3JCLQf9PLUh+4KEdP1sP7w7lBzrV5vdfCa3OTUZJnXrhwwU8xp8ektyKCPKw4v1qXl5cjIiJCccCEPIk74xwLjZW4MQB+MWL4bcXl8ilri4qKlMKOmx/y21JeXh4uXLiAu+++W/2mzz+ZipLVFF31KRlMeXm5n+VS//79sWTJEixYsMCP26dQHBSOIiYmBlJKpKenY9y4cQgLC8PIkSMRERGBjRs3or6+Hh07dlQhl+vq6tCvXz+88sorePHFF3H48GFlxktZ6err61V4Dxovv70VFRUp5S2JYIQQiisnI4lt27apZ+RrsWbNGgBQil9SFpOI4pVXXsHhw4dVNFIS+VRWVqJLly7KAIBMQin0SHh4OHr16oVTp04pyycyNCDPZ0ppSmIYAhLvZGRkqLhEFOmV3uPxyi5cuIC//vWvGDp0KJ555hkAaGT0wG/M6enpjcxC+Tu6UQnn4AHfLTE83Bd6iHK72yXmovUiR1C6jW3atMm4R/nZ4gm5TMYofN9TGxQyhsrwHPO8bl00xc1tb7vttuBvDlLKx2w+Nw1hAOyd4DgH7vV6lQUIL8eRAPcotCIMOiLlaf4IuROxsqP+RPEBKK7B6/X6KU6pLs550AanTQRcC7/tdrv96vR4PEhISEB4eLhCFm63Lz9uQUFBoxsTnw+X61pYca/X65c3lxS+nGOfOHGiIgx8jmhzu1wuDB48GFJK5ObmqpuClNIva9iYMWPw8MMPIyoqSm1+Kl9VVaXMTEeNGqWQFnFF+jiSk5MV10eJkwCfUrG8vFxZNZGS/ujRoyr5DLV76NAhzJo1S3Gh8fHxGDlyJKZNm4ZnnnkGI0aMwObNm7FixQql+C4tLVW3KBKxnDlzBt///vdx5MgRbNy4UYUbmThxIubNm6fSWn7ve9/D0qVL/faJ1+tLz9qzZ0+l2B0zZgzat2+vcnMTkS4uLlbOgJs2bUJhYSHmzJmD+fPnq3WjIIbEYRPCaNOmDdxuN6KjozFw4ECcO3cOYWFhimAlJiaqNSGdzMmTJ7Fv3z6lZyBP+SNHjsDlcmH+/PmYP38+Dh06hMzMTKSnpyu5/M6dO9GmTRvU19cr5y1yZMvJyUFUVJQymZ46dSp+9atf4amnnlJn6siRI4pB4rdGEhnGx8f7+dpwXZt+s6X9QzdUCj5IDmZECOhsE2GhM84JA08T3KlTp0biY5frWvIsfubpLJPntH6rP3jwoDLnJi90qo9ExHRuc3NzkZmZqYiK1+tv1NKw5pZOcE6slaKFEB8LIc4KIc4IIf4uhOgfqNyNhEuXLllyvhzxHzx4UC0IgEbZk7jYx6o+vli0KblFAidIvG0qa9U/kj/rEVM5cbPzUOb9o+90dfR6verQU/+JiNAccEUjud8D/uIh/i5tXuJoOAHQ52hvQ+z5rVu3Ys2aNcrzlOqj/M70Pg8dQPJ5aoOHBad3uGUXFzFR/0k5Rxm/yDM8KipKeTlT38lSiEQoXq8XNTU1WLduHbKyspCVlYX+/furciUlJSgpKcGCBQswcuRIeDwedOzYEQ899BCGDRuGvLw8pTjv3r07/vnPf6Kurg7du3f3u/lRFNKoqCjMnz/fzySUxl5UVITx48djzpw56NChA7xen8K3sLBQietyc3NRX1+PAwcOKP1IRUWFitZL+4zMfQ8dOoTRo0ejqKgIw4YNw0MPPYTIyEjMmzcPp06dUsHh1q5di9LSUiU6Wbt2rSJu48aNw0MPPYRx48bB7faFJ4mIiFCe72TlROHuyVJq/vz5CAsLU45fhMTpBieEULGkyOjgxIkT2Ldvn0LQxOTQHPH9SjG6OCNFNwYdWXMGk7yUExIS1LvEmPHcKpyho9Ana9euxe23365CdHCcw0XVtJ50y+FMWFVVlbIepDXTbzx0hvh54zcE2st1dXV+Flg85lMDkWhvRHRwQBwAfABgJYAeAHoC+BDACgflbhiEh4cbRQr8f5pk4hj41VB/T6fWvD6Xy6XkxWR+qbfNkSTVZafD4Aidm8/x/uh903/ntwzSSbjd1+K787wNNH5OVKjdqqoqlaRHBypD3Bkh8+XLlytzQuobJ3YUGEwIobgdajsnJ0flxAZ8ijR+dfd4PBgwYIDi5ggRccsqHh5kxYoV6jn1r6CgAAMGDEBxcTHq6ur8AvtRmGZag+TkZEycOBHjxo1TBH7ixImYP38+hBDYv38/Dh8+rNJPEiGPiIjA4MGDsXjxYqUjSUlJQUxMjApFvXTpUvTp00eJOsh6paqqSqV/9Hq96Nr1Wi4teofmweVyKR3EqlWrUFdXh8GDB6O+vh67d++Gy+XC3Llz0b59e0yYMAELFixAZGQk4uLi/MI20HwQIiRCuXPnTkX0yPIqMjISM2fOxOHDh5WJKcWIor3JES43ZyZ9WFZWFlauXAmv16tCorhc18ywKcyGx+PB/v37sXbtWsTHxyMuLg6pqanqnI0aNQpjx45VyNTlcil9W3p6umJsXC5fWBEuOqI9zhkJ2q9cIU+Egpfh+5nqJ6SdmZmJmpoalJSUYPz48VixYgWio6NVOY5zuGUhxUXiRI2IxtSpU/3wAEVg5nVxU3raG1x/OW7cOEycOFERM05ASDcJ4HKjg94AToiDkFL+RUpZ3/BZDptgTS0BXAyjixd0xK//NZl6mZ5zJE+bkpy+OIfMbwm0SHpyGw468dB/I1ki5851pTaVGzVqlPIc5ptQr5eXJYJC/Y6IiMBTTz2F0tJS1aY+j/zaq3OEZD9OV1cae0JCAhITE9G+fXulOKe+kJUHAJUVDPBZVC1cuBA7d+70S1BCYoONGzdi+fLlKiPY2LFjlUUMKXrJOYj6IKVUB5JEWAD81pYTa5o7t9utgs+NGTNGWa4AvtDLeXl5cLl8lkskiurXr58SQ3Xp0gWTJk1Slmbt2rUDAPTr1w9btmzBypUrlXI8Ojpacegulws9e/ZUZrKECAoLC3H5su9cU3BCwGe9Q9FhAeDEiROKGO7du1eJKPPz8xEXF6d0MSUlJRg3bhxOnToFwGc33759e7VPCgoKVDt5eXl+yIwQHSXnIVPs48ePY/DgwRg7dqwKMsfT0NItmRIheTw+D+bBgwcrAuJ2uzFz5kzlB0F7jp+nDh06qCCJH3zwgbpF6WeOxEf0of1JfeF7kjNk/NxwCzPARwCLi4tVrgwyCjAl3MrJyVEZHE03FrodREVFYfPmzao/gE8KoM8Bjc3j8Xl3U2w1PaKr/r5+A7cCJ6asvwRwDr7bggTw/wC0BfBWw+CqLAvfIND9HPTrlQnsfrMCKmMyiyTllG46Rr9xW3+revW+c2UvIXkT0dLr1eszvcPfpU3J6ya5pilLHnGzPHMczUteXh4qKyuxY8cOjB07Fp07d1bWHoT4KHyzKZSJrsDnXqD8Pa/XF8qDkudQXbqJKL3PZctk4sf9J2iuyGaf56imOdTNfMvLy1X4agBK/6Gbj/IYU1VVVUhJScHkyZOVJ/XSpUuRkJCgEgmRDJpMdymOEnlkFxcXq7hLiYmJCokcPnzYLzhhXFycEmkRZ0t+CHo+cR5+g0wkudk330+kcNaVoLR2HMmRSIkMJHiICNqXpLgmWf2gQYMQERHhl62Q3uXGGHwv8H3u9Xr91pDOpo44SS/BCQRZ4+mhY6gOOoc8HL3H41HWQxQ3iZ8dep/6l5+fr0RpJvNzbnpNbRPTZQr/X1VVhQ8++MBPd8SNR0xA83bbbbdZ5nNwcnP4fwCeBLAFQBqAbwJ4HEAugMYmQi0MgZAhYO3F7LRukuHRM6LKJnt+4Bp3EqhNE5dCXBK/kurjMNXDI7uaxsv7b+KwyGFJ7xe/xtKYOMeVkJCALl264IknnlC26oDPRDc2NlaFq+ZiLt5vXYFP2bH099xun3cpeSTr3BEvw2WuhJg8Hl9SIS6GoLUlxSifM5fLpSJ05ufnq6ifhNCPHz+uRHGEHKkshZT3er1ITU3F5MmTcfLkSVy4cAFnzpzBU089hZ49eyIpKQlJSUno0KGDUhh7vV5ER0ejvLxc5eeIi4vDxIkTMWbMGGRkZOC73/0ufv3rX+PSpUtISEhAREQEYmJiVPTa+vp6lJaWYtCgQepWM2fOHIW8vF6fuezMmTP9kC7dELkJsdfrVVwqcC1CMAAVvyo3N1ft+fr6ehXOghTdK1euxNatW5Gbm4usrCxIKdXN7tKlS1i8eDE8Hg+Sk5P90vmuWLECpaWl6iZNHvVcjwRA5fvQb9pcHEN6k6ioKGV2y/UxXPRE+51uRkRoKOIueclz8Q5P90mhOVauXImdO3cq6znSJRLHz/UhnCGKiorC6tWr1T7Wz3FBQQH69Onjd4O0Yvp1vGUHAYmDlLK/zSc6UPkbDToiNCFjK3ESr8MOidPE8zaIE+EImThVssoxcf12hEp/lyvAdPkuiaAAKIUWIXCd+6N+mQgZ/X7s2LFGNuCcGJHyMSoqSvlekEdyQkICqqqqlDz+2LFjflya3bwHWgtdvEV918vyKzm3slq7dq2y6+/Xr59CIjSfycnJyuSShxzn83Tx4kXFxc+cORMTJkzArFmzsHjxYixdulTpB7jXMRG02bNn49SpU7hw4YIK3kecOo2J9C8DBgxATk4OUlJSEBUVhcjISD99j9frVbF9nn76aXTp0kXtw1WrViEmJgYTJ07E3XffjUcffVQFhSMDALJmycvLUx7ey5cvV2tJfhA1NTXweDzK8sXj8WDLli1Yvnw5PB6P8hPyeDz44IMPsG/fPqW72r9/v+oPBS3s27cv4uPjkZSUpLhnQlYUJLG4uFiJvyhcSN++fXHy5EkVQ2vt2rWIjY31M244ePAg4uPjVb5x2gc7duxQ60dc/8yZMxEREaFC9dO+pDPFdXgkiqQ1onWIj4/Hfffdp3yKaK15VkSXyxfCfM6cOSr5EDF8tCe5BZW+/0tLS3HfffepW57OtAwfPhzdunXzSwRkMq3X/ZYafr8EC/iXCrxnEqeYRDF2QIiTrrNWohjgWjhtPbMZv3pSP7i3MNWhi0BMHLqpXd4/+n7x4kXlXUuyf+7OrwcTI9tsXQzGRVkmERl/TldhUpRxkRC/+pODE/eX0OeXREq6Vzh/lzh7k+cnX4sBAwZg5cqVfma11A7lAeBZ8SjtKYUuoKB3FL1Tv97z8dF4kpOTlSMYH1OHDh38xuP1XvMHmTVrlsowRqkn4+PjsXPnTmzdulXlHvB6vX6e3F6vz1+ETGxJX0BrU15ejldffRX33HOPn0ULed1zhTCtI3lEk1cwZSnr1q0b2rdv72c5ROG7+/Xrh549e6p1Ba75LlD2PSKKhKSXL1+Onj174syZM5g7d64SsXBfBQodT17hhw8f9ktMxNeSE1adieBzxAPcZWdno6amRoVEoZsDxZzSRVA8eCNnsLjingJy7t69W4Wq4cEj+dnVRbVchGTCFWSsoPs9mHADF3nRM57Cl6IbU/l/i6isO3bssJTJ88Nqx7XqlBawF03RoeKHny+4HheJX1f5+xxpc0Ski3p07l7Xe9Azvtl27NiBoqIiv3DDhNysHG30KychbgpvzeX7PK0pzRevG7iWYY/nCeBzqx9qUzRaQsIXL16EEMJvg9M7hNhI9DF//nw/nQLvn76umZmZCAsLQ3R0tIquScif1tPj8eWe7tatG06cOAEAeOihh5TToZ4Dg4+HLLYo7j8RuoKCAhXSgZzlKMCfSb7M5de5ubkQQiAxMRFu97VQJjk5OaipqcHo0aP9ciMTUeD5v6kfXq8vX8Xu3bsVIvZ4PEqnQtFfSQyyb98+uFwudbukDxcxEujrpDNwOTk5SuRI/aeop4WFhRg2bJjSv1B9uhMY7VHuBOrx+MKfd+zY0S/ul74f9HWiZ7zeuLg4xWBlZmaq0N9z5sxR+4UcJckfxikSp+c87AY/UzpuMJ0hAq4nor80H3QD4uH9/y2Ig55dSQe7W4QVMibkpx9SvpBSSr/J1t/jyJ+u7keOHFFcDEc+pKzTN5beP05MdETOiRDnRkwyRhNx4kpAHckRmDgeeq4fJuoTR7SmudTjyOi3Ezoo5O1LiJ+vE3l9kw1/YWFho5zexLXpnvPUFy775dYgy5cvR2xsLGJjY1FSUqIU6xQ/hzh80zzTGCIjI1UQO45MeeA3nk8ZuHZL5N6zhNyjo6OxYsUKDBs2DBMnTlTt80Q0dFNJTEz0C6dObdNNy+VyKe91SoZE8+31elXoaeoTiTBycnKwf/9+JSaiWFgxMTFo3769EtUB/km2yFksJiYG+/fvV1w8KWPp9rBq1So89NBDqn+UE4S840ePHu2XV4WIe0JCgiK2RFhozaOjo1UKXa445rcN8q0gYqgTIp1B42dEZ9p0bp/fEPiZzszMVPiEnzWTcQMn8FbnWr+RUNC/u+++2xFxcKKQhhCilxBinBBiIn2clLvRYCc6crnM5qlWv7lc1+KPcPk1laMYOybCoFN1l8ulwkjHx8crwqDLDi9duuRnwmjVd6qPvDWpDpJfRkZGNpKVm/QavD5SqJNjnNU88WfUBulaaJ64tyspfvntRp8r7gBFiJTM/Ui5SW2XlJSgZ8+ejUIrR0REqMNLhPHIkSPqHe6YCFwz++Uerya7dBo3yXQjIiKUySIRBhoHd5zTYcSIESr9psvlUkpVPcd4XV2d8g72er1KKctNbLljJA/Xzj3Z9+3bp2T15HRGN46DBw8qh62oqCglL6eYQGQy6fX6rH5SUlIQHX1NvUj9oP1CYb/pXJBvBxFTfQ/TnqisrERKSgoSExMVYaB3uac23RovXbqklPtklkznBYDKGEgxlM6dO+e310eNGoXo6GiVZ+PQoUNK37C3wQdg7NixKlDitm3bFAHo1auX334AfCbENMfc5BmA0tGQWS2dD/rfdKYpXzY9ozL8nNP4af+acB4RG75n3G5fVATKKmjaozo4MWX9FXwWSwcBXGl4LKWUswPWfoPAKrYSYC1K0kU5VsC5WCflOJcPNDYB1eWQOsLlsmwnY9C5F+LI6BrNkQzgz9XoZa3Gy7ls3n86lKtWrcLMmTP9UjZyObZuVsj1IfSd2jTpDkhBTPUSh6snNiFiQroCGq9u+sjDgge6VQE+2fYPfvAD3HvvvbjjjjsUZ8ejyQLwu/nx+aRESHo0Xd3klRBgWFiYXywfXX7MTYD5rYwfePIZIAJG0UVJdJaamoqpU6eqdKmcw6S6aR4o/0JNTQ0SExNVffwmExMTo+qMiIhQNwgAGDZsWCORIp8HEnVRMiCql8SDc+bMQWFhIbxer+LmuTiK9vmlSz7dKkUtfeONNzBu3Dh06dLFL6YWFxFx4GeyvLwcixYtwrPPPgsAjW4OtE/p5sHNX/laUn9IfMdvgfq54+bhuuiN94/ATj9I71rdbqhsSGlC1QtCFAIYLqWstX2xBcEu8J5JlMQPpm7fz8vaiajskDc/yHwj0IbW48XzcrqyVidGduImepaeno7w8PBGtuVr165Vpoe6LoLmhW9QE9LgQf14mGyaT55Lm2TdXIFMCmFCllSGK9j5Idi0aRPCw8P9xE46AiMERTkLSH5NfSNbfN3XgQiJTqzpik8EzeW6FvSOUkGaDqoujiLgoj49TLxuXEDAb1H8fcpGqIedp75zpHXx4kXFkbrdbpVjIzIyUukNvF6f0pwQHInm6EZUV1fnl3q1b9++aNOmjVK0czFcREQEMjIy1B7j80PfaZ1obikwYkVFBbKystC3b1889NBDyjDA6/Wic+fOiI6OVkYNfL9y8RwPPU5iXCKc1D73c6E6+BxzcS3hCU6E+Fj4GHWmh86inh/CxJDRu/ra6u/piJ36r+fn4ERD3/scT7hc9vkcIKW0/QD4BwB3oPda8pOUlCStoLa21u97dXW1fOedd2R1dbWsra1t9Du9s3PnTsvf9frpXf15Wlqa3L59u99v9L9dOf196k91dbVfffSbXn779u1+z2ms/Bn/TvVVVlbKtLQ0WV1dLbds2eI3T9u3b1e/Ud/1+iorK2VGRoYaA72rz2tZWZlfedM46HlGRoasrKw0zhN/h9qqrKyU27dvl5WVlbZzROvD9wH1qbq6Wr799tuqLmpLHw9fK/qft0tlaG55HXx/6WthaoP6lpaW1qjd6upq+e6778rq6mpZWVnpNw7ag/QbvUe/0RxUV1fLjIwMuW7dOlldXS03bNggKysrZXV1tVy/fr3cvn27LCsr85szfZw7d+5U49TXkPpRVlbmt0f4s7KyMjUP1B/qG983ZWVlql79PJjmTZ9nmh9qn68ZrTnv45YtW9TZo+f6WvF55+ea7y/9N6s9rb9Hv+k4iZ7xOeV7ju87mi+9TgC50gKvOtE5XAKwVwixRAjxW/o4KHfDQNrcfnTu3+VyYeDAgQCuhUbgHA5xxNxxTdc5ANeCoZHskAPVN3bs2EYKI13Ob+qffjPg78oG5xoSj3CHPOoPt54iMQz5IPD+8Ssy+UYQlzlu3Di/Ky4PcwD4x4Ci28rq1av9YubraUa5ByhPs6q/y+eCgp/p80t29YB/VFzKuMYd2XTQ55z0MUOGDFF5FyjkhJRStcPFfcTpUS4GwMfVk4PY3r17UV5ejlWrVin5fnl5udHnhTi8qqoqv3AmXOTF19+kkyLTXC6KcrvdfnGI3G63ei8/P1853blcPsewmJgYdOzYUYlIKFbTpEmTlHxbNsRA0ueQ9DU6t0trmJSUhOHDhytlMdURGxurTGQ5h+92u/3ETKSzi4yMVPkfdLm7zhUD/j4LmZmZSvdC++3SpUsqcF92drayPuSxlqhfXB9H75MfBJ93fvPIz89Xuofc3Fyl/OdOqnyuqO+61RvfAzoOiYiI8AshxHV2XKelR49ukLaENzogDeBErPRV03Mp5Z9tC95AiIuLkxTbxgmYroRWZqMm0ROJX0jzT3XQglr5SZiudVZ9s/rOTdX4JuHiJ27CVldXpyw8uGket3TQ5eDUrj43RGxMpqvkJ+Byufyu7DyHgkmsEGg+TOsFwM/CiTvYAVAmrXaiQ6/X65eSlQjXBx98gPj4eAwePFghI7KR102BufUMPdu9e7eSMXNiWFVVpeLZtGnTxi++EDdv1i1T+B7yeDwqnwIR7h07dijibRJH6MiHENbZs2cxYcIEPwsm8lmhcR89elStE6XGJLEazYMuJtUt/Ph+Gz58uJ+YhcZDiZ7OnDmDadOmKTHS4sWLVfIivv6lpaXIyMhQsc1MVob8HHDdCEf6NMfcC5vmSd/3OmNFbfA1pHdIdMVzS3i91/RhcXFxfqIgvlZc8cx1anbnQv9fF5VZnTGv14u2bdvullImGRuwulLwDwAXgGENnzAnZQLU92UABwBcBZCs/fY8gCIAhQBmOKkvMTFR6hBIHOT0XZP4RUopy8rK5DvvvKOubXStNIlTqCy/FlqJlPSrnwlM107eP9OVVn/PSpRj6itv991331ViHn6Npus/iS242EB/x8kYTX1KS0vzu+7zuSSRAxdt6ePVxQEbNmzwE7lRG7SWVNeGDRsaiXeoTRI3rF+/XqalpcktW7YYxQ4kxiHRDI2F7xtePxd78TWnOaT6SSxitc66iGTDhg3y+PHj8rnnnlPjJ+Bimw0bNjQaC4mZ+D4g0Q+BLrqivpv2ZlpamvzNb34jjx8/LhctWiT//ve/q3K8PRIdkYiHRFG8Pg5clKeLePT5oDbeeecduW7dOjVmKzEn1cfFZ7q4iurXxdN8HuzEiJWVlXL9+vWW4ifeF120a/W/aX9IKSWAHGmFp61+kNeQ9WQAxwFsBZAO4CiAiYHKBagzDsBg+GI1JbPnQwDkwRfYrz+AYgC3BqqPdA66LC4UBKR/p83EEQaBLmekjW2nZzC1pR/2QO/zMlb9tiNAVJ7rFALNBT2zO/D8OSeU9NyJHsfqNyKcJv0BrQNHbtQmvUPryGXjixYtkp988omfbojWlyMf0zroSJCQtL4utC+2bNkiN2zY0EjPobfB99KGDRsUcdX1SDS3hKA5AtXnhyPCF154QVZWViq5PQGNh4jXokWL5PHjx/36xdvhRFXfZzoB0c8DjaesrEzpdnSGgs7c9u3b/RA2J95W4+VnUtdX8fngejXStwWqX2eC9Db5HuHrRHoX/TeaU16W5t+kn9L7wpkJq/GSvtB0fppKHHIBDGbfB8FGiRHMx0AcngfwPPv+KYCxgepJSkpqhAydUFQOdsiUc4p8U/B2+MbWOS47QkWHkiuOdOSu10GbyvSeiVsxjZE2odUtxDQ/dGArKyuNhMV0CHUFnv67jiBNijiaZ1N5QuycQBCSoz7q5Wle1q1b54esaS2OHDkif/SjHzVSrvL+cEJC9esHXUd4+q3Gaq05QqE69HIbNmyQb7/9diNiY7pZ8fr5rY/+15XJlZWV8pNPPpFvv/22XL9+vR8TZNrX+lryOTH1nSNKnbvnc8vbpLUmjtoOcfI9QwjftAf5LYXvC1pD07nTmR5elwn4XOvI2XRmeb/571Z4hJelc8lvnKZ2+JibShzynTwL5WMgDr8D8DD7/kcA8yzKfh2+qLA5UVFRfgtvhVjtCAD/a/eb1QHRF8JUh6lu3XqntrZWERfThufIRn9GV27O1enELBDitWt3w4YNctGiRXLDhg1KJGE3t7yfpue8v1aHnA4WR/T0XEeg+nj4POqIjBAUIQjOAPDbh1V/dEsZTmDoHZ275POr94H303SI+fgIUVpxiVwcxkUc/D0inmSJxJkTapvES3xP8Tp0oqRzxqY9pO83K85eF5lUVlbKLVu2NGJoTHtP37N8H/D9qM819Y0jcVOdpvHp/dXHQ3Out29VL59XfluzepevSaCbDxet2TH6ThD4nxqQ9OSGzzsA3nVQbiOA/YbPF9k7OnF4y0AcvhSoLbo5mCaMJsT0v5Sy0UTqh9DOpMy0UFZ9sHrOD4wJEerlrJCtFcdjkm3q/3MkrctkTRwNP9xOxFs6MeO/WV3F9fKmK7mUUokkTIfTJIbhc0TIXOe29PXX949pDuj2x5G63h99Trm4SZ9PnevmfSEEpq8jzQftIxqrjky52IYTNKtbsIlLJ2LAzU3tdElUhq9VZWWl3w1Nb4OvG82vbirM94hp73NEr/eRP9d1Sfq+t7rR0l+9jL5/0tLS5Ntvv+231k5whxXjYEdQdVGT1T6Usuk3h7YA/hvAagAfAfgugLaByjn5NJdYKTEx0RJh210T+aajjcOVnvSOPqFOkX6ga6AVQbPjEExXU86BWvWFy9x1AqDLPE2EVR87IRUr+2q+MYkAmYgaR3h2h8A0F9XV1QqxE1emH3henhTHOvdmpdCV0qzU1Ik3JwQcGdP/vD86B84NG3h/6F39dqLfDnX5Or8FcAJjEjPwOdD9D/gam/YUJ4C6+IcD3z9E4DnSNvlF6PuDyphukFysqBtDBLoR6PteXyfeB/186PPORcOm8XDiZRqrXsbuDJjOmQk/8fUxtVVbW9s04nA9PwbiMFRTSJc4VUjzCdG5JB0hmDa5lXiCiy907lefaJOox2rRrYiH/q7+u5WCjzhBvQ7+v+nQ60pUq/7qB2T9+vVy0aJFct26dX6I2orLttJv0G+LFi3yQx6mtTLNjW4xRAfeSjRgIlDUD50I6PUQkMiJ3uN7i/YJKXYJ8eviQ97m8ePH/YiJCWlR/VZMAPWVREl8zUz7lo+XM0acuybmydQXnSkwITNeniNjjtStGBr+jJ9lnfPWbwZ6Wf6eXpbPld6eXp7+WiFiqzNEv9nVZXpHf5/3z3RzMI3dignlv4ckVgKwsuHvPgD5+seqnJMPgAcAnARQC+AzAJ+y315ssFIqBHCPk/p0D2nTxFktCj0zHTr9IFshcnrfJI6x4xasNoDpXd6GSbZrknFbER86tEeOHJEvvPCC36Ex9U3nQGpra+W6deuUpQ8944p4aoesUazEIPQeF9XoFmJWm5sTJI5EdIRtp2fic8UVtO+8846yLtIJBvdG1g0Q+M2BW+HwZxyREmHgXL/JFFfn7vX11NdKX0P+u763+XzS/OtIjxMtfX75R2dQdGaBl9MJkdU66WJfvX4rBMjHrs8dnXndBN3EvPH5pPHb4QLeLu0l2t+muaUbka7HM9XH/7ciwlbEzdTHkG4OAHo0/O1r+liVa4mPKXyGzjXYTS5tFLv37JCU1f+EHHUEY6rbjvPQ27NabCukYALOzZrmw4Rc6XfazCZlot5Xq3APVua+/B39tqK/W1tb6+eDYIX47Lgq/g4Xt+nmlfwAEmHgIkl9XCZuWh8LNx8l4qpz0/S+lehCv7HZEUMuWjRxyyaumD7cl4Mrw3md/KZkWjO+XrxPdmtttX70l5glE8PEiSr3z+Ft62PUdZC07iS2XL9+vZ/uwHQe9TXg+4ifB13PoZsJ8/EH0n3qjJUd/uPQVJ3Dr5w8a8mP6eagi5ZMHHwgMZBeJ/8rpVmurbexYcMGP7t7rrjkC2ulOOL/2yFifexOiI3ppkTtWJmgcg44EJj6TDbXJicf0yHT+6Zzd8Rtccscu0NkGrveXx3p6cidzwEhdbpl6OPSiZY+VpNBhN4nfgsxzQ0pjflvJl0BjYH7dfD9os+b7j9B9epzzesnDl2/adJNkOz39f1hQtqm9TN95zcQfS31W5zpvOp16GvAzVBpDui7lbjZdD5N50qfA9O8m255+vzp4yawEisS2BEHJ7GVvmB4do+Dci0GehwSctun/KnkAu+bm2tldBd5vU5yzac69NzMPC4OgZQSKSkpKjTFvHnz/HLFUhwZPdaQ3hbFhvF6vSouC4/5xCOVmnIf6+MiF3tejs8ZjxLK5yUvL882zDnFdOGhAHg9w4cPx+DBg9GhQwe/cVIcJL4+egwZACokAcWPofzUx44daxSfRx+XHueJf9f3wfDhwzFq1Ci43W4VD4fCINC6U1TZmpoaFWa7Q4cOKswIX0O9H/Sc547Q+8jXc+3atX7ryOulLHRUhsJVU6Ie/i7FR+JpL2nvcaA9QKEuaC0KCgr88m/ocZYKCgpQX18P4FpcI8AX18fr9frln+Bxr/geo3NJe0HPe6B/d7vdxpSzFE+M3qe9y/ubk5ODHTt2ID8/X4XR0ENMuN1ulUfB5XIhIiJC7Q09T4g+HtOccuDRpPnZGz58uFpPHrNKPyc8PhNfY3qXIjLbhOEQlj9wBOn3gxDfBPAUgGj4dAAEtwHYLqV82KrSGw1OMsHxmDWmfAs8fk+gfA2mWCV8gfTYNvoz6k9WVpYKra3HNtL7RIiZ4ubr+RP4mEz9pwPDQxr3GzAY/7e7HHmnqtE27Ba0D7sV7Rr+um4BqirOIKpXJDq7w9Eu7Ba0ERKflZYgLjoK58+cwqSxyZBX6v3Cei9fvhwDBgzAmDFj1OHk48vJyUFRURHmzp3rF8eJ5yzgcW3s5oT/zvPs6nVQOVO9POaOKRw5hUSmsMf6Wi9fvlylhuQxdCinBk/5aBczi/YE5X7ggdz4/tUJCO8TjYtiJFE2N32fUjhyPo86Qeb7lgceNO1nvgaUw+PQoUMqSRHFbtLzXZhi/fD8HhRWnvaKab70UNS8Lv48JycHdXV1jeIV6YhV3yN6yHQ91lIwoO9vACq+lynuV0FBQaMQ8RS3ifqqpxbm3ymnRPv27RvFeSMIKU2oEKITgNsB/ALAD9lP1VLKqqBn5jqCXQ5poHHwPH1x9d/tgrWZvut5W02JfjjQAT106FCjdJem3BNUt9frVUlwiGvltxedUOl9pWB18SMS8dfsk1iy7SiqLtahR2cgPKwDLtddRU3dFVyuu4Kauiuw2Bp+0PaWq+jWsT26tZUYN7gHXNWnMaiLC3dP9E91yDcvPeMEnXNf9IwixXLEbAV8zKbx83o5oaRAgElJSSp4ICFm6qOewIevFUfaPAeECYE43UumgIEccdIe4AloeL/03MS8beImecpPnveD8jrs3r0bRUVFmDNnDtasWeNHAHUESsmeKE8H5UCgNgg4UbICPm5C8AUFBZDSP0mOTkhNZ1VPDWu1Bnw9+R7i+Vj43Oq4wYpY8LnXx0VrnJuba5wTun0SkeVBM03pdPW15edAHzeHJueQFkIkAJjQ8HWblDIvYKEbCPrNQeeUAt0E9KQ89NzE1eiHVY/+aOJ+TXXqHBjndPS+U3J6nvOYH3Y9Gqe+iVT99Vfxtz2n8PbWYyi/cBnjB3TFXbH/xDfHz1TvUN/j4uKQt/8gevftj4IjxYgeFIs6eQvO19ThyPEybM/ZC3eXSLTtGIFzNVeQd/osys4DUgJCAAO6uTEyqjMSo27HyKjbMaC7G1fq6xpx/fTdKluVVQ5vneu1uzmZ1tKEvOjGoEfyNHFdtF78wFOiJD2RDKV01RM48b1kxc2bGAVKYpOTk2PkOvma8wjB+vhon8TFxeHQoUOor69HfHw8Vq9ejV69eiEsLAwTJ05UxKJ9+/Z+4iTeL1PGPZ1x4hF67QgEZbfja8qJF9/7ppuDfhvi7ekMginRE+fSTUwLb8+OkaTbCt0eBwwYAAAK4VO4fasc9Kb6TXue98+Ey6zA6/XaZoJzopB+Gj7P5p82fPYBWBCo3I38cIW0SQEZSNHsVKFkZzVhqlf/bmfxRHbYuge0rngz1aMruPUxXbxUI3/+183yrl9ukn2fS5FzF2+XO4oqVPlfb/+1TDmQ0shxi9e3qWST3zjIwoasZSorK+XHhzbK36avl69/ekg++qedMuHlT2Xf51Jk3+dS5NAfp8qH3smUv1p3QL69Jl2WflZl6ejjxD7bzhhAV4aaLGH0ciZLHd1XwqTo1q2idAW0yTyU3uX/c5Ncu/1LTnO66bUVmPrDf9MV/Hwc/F3yTrazKtL7a5p7u3NAbXOzTF6nXVgL/p7dftINVaz2jdX49D2inxmqh/6SBRqF/+CWTqYxmubQbp7136xMYU31Nvg57JZNsFbKB9CBfe+AZoqt1FwfOz8HJ2C3wUybTJ9ku/qcEimyfOB28joyMSFN06Gn51euXJVr956Sk1/bLPs+lyLv+U2a/P3f0+Xly5fVe5tKNqk6yNZeRzyphal+dRMhqa2tlSkHUuSGDRvk6x+9LmtrfZYcb617S9bW1sqrV6/K/cc/k699uFU+v2qvnPVmuox+/hNFMCb+apN8ZsUe+c6WArnv5Dnprb8ScG5pLkxza7Kg4XOnOxDyOTc5EHLkYTIR1JFebW2tXzgME5HX11Ifk927fJ0CIRJTu1YE0Wo+6ffKykpjED7TfOv9DXQ+TN+tiJ5uHmzlB2P3Xf+f1lYnfKbytMd0ayrdzJn7G3ECwAmCEyIWyIrRitDazbu+/wEclBZ41Umyn30ARkkpLzd8bwcgW0oZH/DecoMgKSlJUgavUBRFJtDFBqYrnZX8kV+H7XJGm9oEzGIRu+uiXq+UEhsPncHC9YUoKK/GoDvceHpKDO5N6IW6ujoA5ms2Vxq7XC5Ud63GlH5TsHfvXvyz8z8RFhaGPWV78Oy4Z9X8LNu2DA+OfhDvbX0PD419CKmpqeg8sjPmJMyB1+vFkvVL8Njkx1S/z3lqsCY9F5623ZB/qhq7S/+JCo9v3O3CbsHwXp0xsm9nxPe4DWHnT2DK2CRb8R5/zpOsmHQ3/BoP+GTgdXV18Hq9OH36tJ9IiK+Hrsfg4hrSWwghEBsbq2T1Dz/8sNJZ8JzFulKRr4XV/rMTkeliG9Kf8FzeunhRF6mZxKN8/Dk5OTh79iw6d+7sp1PhbZDIU8/jbNIB6uN08h5/n4urTGJHfZ6s/qfvlDDJpCw3iXWAxmvGRWpOctRb9UXXG5pwkK54thKlW+lh+H4QQoSe7Ae+uEp5AH7S8NkL4JlA5W7kJzY21pYbC8RZmMCKI9frCMRpmCKDOmlb/25nq0xw+fJlufnAaTn7dxmy73MpctKrm+WaPSdl/ZWrjcZl16fa2lr5y62/VDcGPkYuXvrtx79VnNDrH70u31z7pqysrJSbSjbJ1MJUmVqYKt9c+6aqh5elz9WrV+WLqQvl2r2n5E/W7pdf/F2GHPDCtdvF2J9vlE+9nyuXbiuRucer5OW6elvO2TR//D2dC6Q4/ia/DbsrOnHU9L9+86PnJFbQ2+VOdybOkId2MI1P5zCpv9z+XrdxpzKmkBF246V6dD8PnTvWb1uBfEkIeDiSYMCqv/qtyG6/cxEa94fSQ5A4ObemPgQjitbfswuyqc+/3U2Ul9XrQlNjKwFIhE/38B0AI52UuZEfygSnT44eKZPeceLtbPpuet+uLlpgJ3LSQBDonYzCcjnj1VSFUFfsOq7ENKa6dEStt/HLrb+UO3fu9BMh6XWQWOHX238tUwtT/ZDMW+vekr/c+kv17Nfbfy03lWySr2x5RaYWpspvv/9t+a33v+XX9qaSTfLX238ta7z18g+ZG+SSLYfl9F//nxz7842KWAx44RM57ser5X8tTpWrc47Lks/OyaysrIDraeVEZOUkZCdmoPr0cCVWuiuTKIO3r4tnuAe6LkrhRMWEaKlOK0JCdTpJSMWBhzC3O09835sc03Tdmh6Z1TRnVmB6z7S2VmuvB+vToxNbiYAC9cn0v5TWMah4f/W5stLX6KI1vWwgj2r6jqaE7JY+4nA7gOENRCIRQKKTcjfqYwqfIaX0Cy6nc1A6WG0AJwRCf4/XpcdusVqkYDkTKnuo7Lz86p92yr7Ppcjkn62XS9OPyMt19Y43MhEB2mzE5VNAO3qP6ttUskkRlsrKSvnr7b9W7/x6+69ldXW1fHrF07K6ulq9S+9XV1fL6FeiFYHgc/DWurdUe/Q+b7v8fI38x74y+Y0PUuXc322Tg19cpwhG8s/Wy68vy5ZvpxXJrOIKebG2rtFB0rO28cOmEwB6PxBHa8UV2s23SUHLYyrx9KEmBEF/rZCzPlZ9L/L0nvoetCKEhMCtUnNaIWnTfND8c2Kgh7Wwy2ynz6XVuaN51eN96W3obfN5tIoSwOsJ1Cc+bitlfm1trQo9wn/nZUze23Y3G6v+6uWbdHMA8DMAJ+CLoLql4bM5ULkb+bGKrcQ5LdMmMZUx1eH00OsLzvvAbzKm94KB2tpaefjkWfnIWxtkvx+myPiXUuX3VqfKS7X16neda+MIl/dZR9JS+gjD9Ceny5+v+LnqHymZCdm/vOFl+f3F31fjeWvdWzLlQIp8a91bjWLrbCrZJH+59ZdSSik/2vuR6gvVlVqYKj/a+5F8esXTsra21k8MlVqYqtrmff/2X78jdx4+LX/6QZpc8EGunPTqZkUsop//RM56M10+/7e98m+5J2Th6SpZUVGh5sUqMxgHu4QpVM7pulkdaJ2B4JwqlbOKqGoVvoJ+50RCb980bl38ooOer0BvN9A5Mc0B769VWAs7BB0IYQciLvyMmuoOFIXZKTNJ79qFnLEi+PSxS6TkpC/6e/R/k24O8EVHdQV6ryU/pmQ/UjY2LQwFnG54q/c4N2YyOQ1kOqfDpZrL8tvvbJADnk+RA1/4RL7yyUH5z4u1jTh0fWPrxIHa098hxPxhzod+/eI6CCIGZWVlCqET4Ug5kCIf+OMDymqJENWba9+U1dXV8oE/PiB/ufWXSoRUXV0tf/vxb+Wba9+UKQdS5Ed7P1KEhoC3qz/j763K+4fcdKhcvpZaIB96J1MO/XHqNVPaH30iv/rHLPmbTw/JzQdPyws13kZzwf/aiRQIOQcSI+ncn/6OzkAEWh96pofX5jcEXo/p5mcHvL92iJf6YEqJyt/j5UzWf/w3q/EHuuWZ+tfU30x9wsZJsQAAOplJREFUdFqnHR6wYiDt+kD/B9I5Bppz0w2jtraJOgcAfwPQPdB7LfmhZD/6ATTJPZsL7LglnSOyQgz83UDcFz0/VHZe9n0uRca+mCJXpW613BRWh4ja/vX2X6t36fbAv/N3+a2A9Aj0js4NvbLlFZlyIEU+veJpWVlZKX/78W/lN5Z9Q77+0euyurra7+bwxJon5Bff+aJMOZAia2tr5Yc5H8p5r8+TZWVlyjRWSqmICJ8f6vPTK55W/+s3jPorV2VB2QX5lx3F8tn/2y2nLUxTxKLfD1PkF15Pk8+typPLd5TIVRu2y/MXLsidO/2jeNI6muZXn3t+S+W6ATumQEfc/B0rhMDLrVu3zi+vsgkJO8lFQv13qoDVCR8nFlZKbeqLnTjODjGbzhMvZyUdCHS29H7qa2XqswmcnmFerx4J1qpMIEIVqD1dTEbQ1JtDMoBT8GVlW0ufQOVu5CcpKSkgZb4eYLcRdYWRfuhNC2XHVfA6lm4rkX2fS5EP/WGHvFhb16gOXk6X3/PUjk9+/KSsrq5WSmdOJAjZckTBkXDKgRRZXV0t578xX+kXqqur5cRXJ6rbAhGg2lqf6OT1j16X4385Xj6++nHVn1c/fFXW1vr8Jea9Pk/+fMXP5Ud7P5Lxv4hXB/KXW3+piA2Ve2vdW6o//MYU6DCdu+SV6YfPyNc/PST/c2mmHP6Ta456w36cKh/8/Xb5zNINMmXXYbkjM8tyX5nWi9bbFHrZxBTo66oTDStRAkF1dbVctGiRMdKpSbdhmg9dzMUz0jk5O/p4ArWhh8Y37XMevto0ZiviYxUu3PTdaiwmZs4Uzt9uHpwC7REr4sP3FP8eLE6jdkxz2tSbw4EGS6UpACbRJ1C5G/khnYMTit0c4ISrMv3lvwciDCanKw7/l10q+//Q5+187pJPRJJamGpptkfObrrDT1pamjJBlfKalRJtKELCvG8kCqqtrZWPr35cIeeUAynqhvD0iqflrL/MUt7X33r/W4pAEFKvrq6W816f50dc6DdSWm8q2aQsbB744wONCB8v98V3vqjMa99a95Z8ecPLjW4TVDYjI0P+9uPfysuXL8uCU1VyVc4J+cLqfDnzN1tlvwZiMeLlT+Vzq/LkhvxSWVNzuVEdOvdP7VgZHpg4eKt9YKUQNSFFE2KxImomYkTlA+lZQgGTItaOUSJLLcowaAKr53oipVDGYFL+B5oPfS8EAzQHdsYApmx8VnVZ1W9FgJpKHLYGeqelP1bWSjQ5Tq96Tp8Hs/GC4Vj0gxwoZ8K6/NNywAufyJlvpMszFy43ao9z1QSE6AkJZ2RkyLKyMj8kSj4Ken0kWtIRF4maSBlNYiAiSFysVFtbKz/a+5Ec97tx8ok1TyidAREL3saba9+UH+Z8KHv9qJesrKyUqYWp8pUtr0gpr+lQPtr7kZz/xvxGeaArKyv9bhu8TGphql/WNx1hpm7cIr+59A/yqeXZcsiP/iH7Ppcix/x0nfxD2hFFiOldnbPkCNckPnHCMJg4/1CQnhU3avpu4poDgRMmyU4MRH/1euj2ZaU/seuDEw4+0Nk2GQ3YAScgwcwhZwTsxH5O19FEoEzMCy9vRxyc5HPIFUL8QggxVgiRSB8H5W4asPNQ5PHQAz0HGseT52WCqT9QnV6vF2vXrlXhkk313xPfA0u/OgpHKzyYvyQTK/M3wuVyYfPRzdh8dLNxzDMGzVB/XS4XEhIS8Iutv0Dfvn3V+/X19ViSsQSfHv4UGacyAAC/Sv8Vjh8/jkcmPIJdZ3dh1KhR2HJsC8rLy3Hbxdvwm6zfYO7IuXh5w8u4eOkilm1bhrq6Omw5tgVtbm2Dr078KpZtW4Zfpv8SC1MX4r6u9+Fno3+Ge4fci08OfoI3176Jry75Kvbs2YPu3bvjrd1v4cqVK5g5eCZ+96XfIbsiG3f1vAu5ubmoqqrC1P5T4fF4sKVgC748/st4ecPLfnP38oaX8fyk5/H+jvfh8Xjwq/Rfqd8OHDiAny7/qfKapnwNtBZ3jU5GbPca/ObLw5H7oy/gtS8NQ/fOHfDKPwox5ueb8PzqfBw8fUGVadOmjV9AuiFDhiA/Px95eXmWwd/0OPw5OTkq3wjtB/K4pTrdbncjb3y7vWfK6WGKFGtq01Sf/t3qjPC6TQEveVk9iB8AREREIDY2VvXf4/Fg+fLlKo8JtUm5DXheE6txEvB8CPq4+Bzwv3ZnncbCx2uad6tyNAc+PG0GU6h4Ux4HHniSPOypb7yMk7UD4OjmsMXwuelNWXVqaqK2Vs+CedfEffJ37Sh8oLpNpm0myD5aKYe9lCpH/e8GuXB9oTxUdl5evXrV8taggy42Ij8FHV7Z8oriQFILU+WrH74qR/xohCwrK5MpB1LkpNcmybKyMmWZxOuk20Vtba382h+/Jl967yUZ86MYefz4cfn6R6/LhasXyiNHjsj45+Pl0FeGysrKSvm1P35NLly9UD6++nH51rq35PR3p8s5r86RsxbP8hNV0VzR7YW49jnvzJG/+vBX8vWPXpe//fi3fkr0+5fcr8RgC1cvtF0Pupq/9/dN8rt/zZGD/2edCmC4Zs9JWfnP843mShcz6euo12+nBLa6WZpSbFqNwQrs9hbfw1ZZ9uwgkOVToPHytX377bf9LMjoHW5iy8diJ8O3OlehzJdpHFbjtcIR+v92fdf7ytfGql7TjcbJzcFRyO6bHShktwmsQtya4hzpoX4DxfTRY+zocfV57Ha9HV6/k/gydv0FgIOnL+C/V23H4bKruCqB6K4dcE98JO4Z1gOf1eZgQu8JxiRHBJuPbsaesj0Y2WMkxvcaDwBYlLMIz457FpuPbsad3e7E9z/6PgQE4m6Pw2OTH1OxZygejcfjwXc3fRdD5BB8a9a3sChnEQBgWNdhKC4uxhN3PwGPx4M/bv4j2rRpgyn9puCPB/+I7LPZ+NEXfgQA2LNnDx6Z8AhcLhe+/OcvY1a/Wbjc+TK+M+o7yK7IRk1NDU6cOIGvjPsK7nv/PvxH///APbH34Htp38M3J34TCR0T8JeMv+A7s78DANhybAum9Jui1sHr9WLppqXo2bOnLwlK11F4f8f7eHL6k3C5XFi4YyGeHfdsozmuqqrCe1vfw9Gao5gSfy+qzg3C8qzjOFZ5CR1dAg+N6Yf/HNcfvTq39yvr9fqH8jbF0+F5B5yuP4+To8ffMZU1rbkp1Db/jecm4XGr7DIB8jbtQuUHijvEkzfR/FM9/GyZ4kF5vV6sWrWqUYIm07m3C4HNf+f/81DhwZxbJzjH1HdTXfyZHlrc1AfAfJtqcj6Hmx0o8F4gsNsIfDPn5+dDStkoYBlgTiBj9dxqoa3ad7q49N20MU9XVWPz4Sq8n30Qhad9hCIqIhz3xEciouNxPJo8BXl5efhn539ixqAZxnY/Pfwpbqu4zS9g4JL1S1BfX4//mvZf2Fi8EadPn8YTdz+hxE4AsKdsDxYkL1DB9raf3q7a2FC0AUkRSVjw1wW4/fbbMSV2Cp5d9ywWzlqIiooKPDb5Mbyd+ja2Ht4KeVXC1daF+0fdjx0lO5BdnI3w9uGYGzsXX5v6NQDA8u3LERMTg3h3PJIWJ+E78d/BIxMewT3L7kFFTQUOPXsIERER+PTwp5jSbwq+/9H38cq9r2Br6VYAQHFxMWpra9GuXTu/wID6vD+76ln8YvYv/ALK0Xz9ozAVba8k4JWUbTj6T1/a0zkje2HB1IHo1TFM5aPYt2+fba4GnjDIav1Nv5mCvZnK8pwOvE2rZDkmxG4ViM4OrBCxVQ4Sq/Z1AgrYB47UCZ6pz4GYLd4PLq6hZEt2TKapvJ1Ym4Im0vh0htJqHvXvVmOy64Nd4L1/SeJgt2AEpsQkVjcHJxyCk3Y4WPUxEGcJwI9j1DNB8UNQ6anFhoOfYd3+cuwoqkD9VYlendtj+pBuuC+hN4beEY78/DyMGDECGacyMLX/VCzcsRALkhfg95/+Ht+Y8Q31nMsnH1z+IJbNX4Yl+UtUhNaMUxnYU7YHw7oOQ319PUpKSlBXV4evf+Hr+NOWP6G2tha7TuzCL+7/BaKiorDl2BYV1XNn6U6MjhqNgwcPYm/5Xh+XeJsbW85twcFvHcTmo5tRUFCA9Mp01NTUYHbMbADAN2d+E263G+Xl5fjPf/wn9p/ajyf7PIncU7n42r1fw6y4Wfj+R9/Haw+8hnWH1uHIkSPYdWIXHp3xKCZFTcI7G9/BoEGDUHCuACN7jFQRZzcf3Yyp/adiTd4avJf9HpY/uBzvpr2rbhf3f3A//jbvb1i6aSmeuPsJAMCpczV44i/LcepcNLz1V3H/8B74xvg+qC47akzlyLlyuxudCZHSvqC6XC6XJTKn/wl4/Tx1biBEyZ+b3g8E+tj1vloxS6YzqY+NbhCUa3vevHmK2FoROqccv07E7SLBBiqv/6a/Z5pXfkM0EedANx+qg0DHLW3btj0kpRxiGoOtQloIcYsQYpzdOzcDXLp0ye9aFkjZ4vV6Vfhm/r7VQQGsldqBwOr6bcdJ6IuZkJDgx8VTsnYaA5XlKUMBoIu7LR68MwpLHx6BHT+YhNfmDcfgyNuwfOcJfOntHZj8egZSTrdD3mkPJvedAgAK2T8+5XG/PvK5eXL8k3C73ViQvEBx1+N7jceC5AVYt2cdvjDgC3hs8mMqKfvgwYPxndnfwaL/WIQXP3kRG4o2YMagGRg+fDju6nkXDhw4gPr6elS7qxHmCkOnTp1w+fJl3HPHPXC73Tj4z4PIPpmN057T+M6072DIkCFo06YN3k17F58e/hRutxsPRD6APU/swbBhwzAuZhw2HtgIr9eLV+59BQCw6cAm3HrrrVjy1SX4woAvwOVyofhSMb4w4AsY1nUYAGBkj5GKMHxy8BP8Ne2v+NPcP2HX2V0YNGiQmoPvjv0uMk5loLpDtUJC/bt3wj8W/Bc2f3c8ZvZvi5R9pzD799lYe6odamSYmjtd0UnPTGvPkZGu5HS5rik/AfgpQr1eX2Y5UtRSvylbIq+DxLH6ebHbn6bnds/obHGlun4u9PPFEZ6eP5srVrOzs5Gfn48hQ4YgIiJCEQZ+pvX26Fkgjp8TT8B3locMGYKioqKA+IW3T33Vf6O+0F9OJDgIIVTZvLw8dcb1duzGlJ2dbVx/ADVW43CSzyFTSjnW9qUWhmBvDl6vVyX2Jgh0nQyVOAQLTq62tDlMqUCtOA8u0z5fU4f1+09j/aGz2Hr4LLz1V9H9trYYFlWPh0cOQ0rab9Cnd28MGjQI9w65F4BP1ER6A9qYSzctRd++ffGPvf9An9598NzE59Tm23JsC/6+8+/44ugvYm/5Xjw38TkAPlny3vN7UVdXh/0V+/HsuGfh8Xjw1u634Kpy4cODH6Lbrd2w6D8W4bWM1/DyzJfx/o73kXcmD6/OedUv3j4AbCjagOLiYlS6KnH2zFmUlZfhzqg78eQXnsRLqS9h4G0D8Y0Z3/Cbjxc/eRGzRs7ClH4+gkg3ANKx0Hjv6nmXrfWOHWd9oqIaS7NOY2XOCbhuvQVfG98f/zUxGp3ahxnLWHG3etx+u35wJLR8+XLExcX5ibP0nCCUBjUhISFkUZGVyCaQOEYfu1XbTkRQgLWYKVTQdS76mJ3oXKgfhJSTk5P9Ugk7FQHpdZlSlzrpB2+TxmCnc3BirfQygC+hgZDcjB87Pweuseff7Vz9g7XKcPpOKGDXF6d9NNWhnOAyMuXfco7Lb/zlmhXOyJ9+Kr/yxxT5zsfb5MVLNY3aIOczCqan100WQ69++KryW6AQGeR7QGEvuO9Bbe01T2qyOKH3v/X+t1R7vK03174pX/3wVfnbj38ry8rK5M//+nP56oevKosl3QrkrXVvyY/2fqTGwfvPrVjeXPumrK2tVWHGCch3gyy66B197DS/azZtl08tz5Z9n0uRw3/yqXw7rUgFSORgZaFit8b69+rqxhFZ9d91yx4rj2L9mZU1nRM/Brv37Nrh6+LU3yAUnya7+kxWQsE62FVXV6v8HKY6g+mjE8so/puVNzntEzTRCa4awFUAdQAuNHy/EKjcjfxYRWWlv1ax5WminEyoHViZKPJ2ApUPVK/T9+xMBE1t8ncv1tbJlLzT8qn3c+WgF695CT/87j/k5oLPVKgOHlWV/5VSqpAZFA4j5UCKCsKXWpjqRyw4YXh6xdPyiTVPqD4RsSACwpEwHwMhQYrj9PMVPuJw/5L7lUktzQk56RGB4I5+PBRIamGq8gBPOZCinvOxkuMS7Ss7z9ra2lr5p10bVGj1O1/ZIDOOnFXjsGNSrDzeTeaJVJeTdbdr16pt3RSSExertgJ5DpuYFk5QAu19u/r4d6tz7aRvToiyXT9or5hMSZsCToim1W/UlyYRh8/Dx5RDOpAtsum9QBNqB/oBtjrQVn0I5AEaiNugT3MFG7xUWy8/3nNCfvv9HBXdNOb5T+Sc322Tv1h3SH6676Q8bxHZlICHkeDIlZA+AYXA4PW8ufZNv+B79Jwj52+9/y2/cBnHjx/3y05HXtZz3pnjtwcowN/C1QtVWSIwprHofdMDE3JOjCC1MFWFLNiYnin/mF4kZy/apkKK/0/Kp6puu/AJvN96P+wCtgUCK+bI9I4JWVPZUJET/WYVD83kZW5i7uwgEB6orbUOShiISeTzx4M06mWtiHigMQQaq129TsoT2BEHJzoHAeArAPpLKX8mhOgDoIeUcpdtwRsIJj8HpzLH5pBNmvIO6xYodrJVLlcNJucsL8utF3QrplCAlJphYWGITxiJ3JPVWJGbg5KTt6Lk3BXUX5W4RQBDenbEnf26ICmqI9pdOIkJoxP9+rj56GbU1dVhSr8p6jnXX3i9Xmw/vR3r9qzDaw+8pt755OAnKCkpwWOTH8Ous7tQV1eH4uJiVHeoxojIEVi3Zx1eufcVbD+9HWFhYcgozsCBAwfw9n++jeyKbNWeSSa9dNNSPDja53eQcSpD9Y90Dy6XSymm+byTzFdKia11WzGm7xiM7zVeWZHwOb9Ycxl/+kcW9nk6YEvhWdRdkYiNvA3zknpj9oie6H5bO6UHqK+vV7oB0zroVj6kb6J80VZ5r+3WVreasrKo0fUHgayanMjA9fUw1UnvkSk4KZmpH7q+za49ky7ESmdhNzb+nNdTVVWFgoICS12AnS7QNAY7nWegenl5K90kh6bqHN4G8BaAQw3fbweQHajcjfwE0jk0J+ick84x8vec3kj4u8FwYXbXfSccod3vxFWZxG6Xautl2qEyuXB9ofx/S3bIQSwr2/TXt8pH//wPuXbvKfnZ+Rp1UzAl7CFRzkd7P1K3Av6prq5WNwEp/cODU04ILmoivcZdv7tLvrn2Tb80pfxdK09xJ56pqYWplrF3rl69KncfPStf+vt+OfKn62Xf51Jk0s/Wy59+fEAeONXYi5rPdaD1oP5xsYtVGk4n+cbtArnZcdyh3AT4/3YiXtM7ppsDvWPVd7tnTb1Rm+aB5j2Y/tiNwarPgW4z/F2+R+3aQRN1Drsb/u5hz/IClbuRn1CJQ7AbxbQ4dte6QGG5reo0vWuF9E3l7OS1Tq7LwUSYrK2tlRk7suT2w+Xyd5uPyIeXZsm4hmB1fZ9LkZNf2yJ/8GGe/L+dR+WJqouNylOQNRPCTi1MlQtXL5TfXPZNWVlZKee/MV+F+5bSnMCIkHfKgZRGWeSIUAUat+k3HThy/ex8jfz+R6nyCw35Iga88In85vIcufFgufTWX3Fcp91zvV2rd02iE9M7gXRketA7p4HorPaalWjHKvRMoKCTTpGnU/GQEwhmj3CRkt2cBEvgAs29KR2yXZmmEoedAG5lRKIbJxQ3wydQyG6riQw1NrqT302cgVWbTrg3KZ1bbfA67eI+WYGTqJJ29dXVX5F7S/8pl2wtkl97b5eMf+laRrbEn30iv7tij/zrzuOy5KxHXrhwwVZHQnoDkj/TDYAU33qf3lz7pvzmsm8qhbLeT57uVC/r9LZVW1srt+3Ikqtzjsuv/mmn7P9D39i++LsM+e62IvnPi9ZrZoU06LdAiMxKPm76HogI6O1xBoT+0jM7qyY7CDReymjHobq6ulE+Zad1m9qwY+BCMT4x/W9Vrx0Bd0I8gulnba3zxEQETSUOX4Evwc8pAK/Alzb0y4HK3cgPpQltykI3B+h9CDUYGr1n4p6CIU6ETJworXgZJ9xhMJYkV65clXuPV8h3M0rkk8t2ycQGkUvf51Jkwo/XyQcWp8hlO47KgrIL8sqVq35lKfWonlcitTBVmZty4AmL9Hr0vnJLKBJlmG4wNN6Ll2pkVnGF/OHf8mXs//j6P+bnG+Wv/nFIHvnMnOTdKtCbHdKwAjr8dgyH6bvdmloRFl2EFUwoaqu+62BFBIhoOCWkdkhazxnupF9Oma9QbyRO94EToxq9vWAYSCmlbSY4R+EzhBCxAO5u+LpZSnkoYKEbCKSQbqpyuTnAiTu7kzoyMzNx5MgRFbDNaTmuaBwwYAAOHToUUOllp3i0mtOqqipERERYKvlMjk7Ur4SEBJw4X4ddR6uQWXwW2cfOofzCZQDA7eFhGNUvAnf2j8CY6C6I69ERt94i8OnhT1W4ccCn1D58+DCenP6kCvHhFCiQoK7I5+Mm+OzCZWwtPIv/y92HI+W34sLlerjaAGN6tsVjU4Zi4uBI3HqLsFxvPUyLqQ36zS6Amsm5y8rByUoBGso+5E5TJuW1k3rtHNP0IHYmpz8nDoBWQGHZ9ZhMproInJ7bpuCbYOaN/rcLj2GltA7UXpMD7zXkbxgPQALYLqXcHbDQDQS7qKzXC5x6rDZl8+hWR8FsKIpqaRdBM5CliZWXqMfjwYoVKzB37lxFIAJtYjvkJqXEiaoa7DxaiV1Hq7DzaBVKqy4BAG5r2wZJ/W5HclQnjB3QHfG9OsHV5ha/8tyyyG5eaAzUx7Pus8oDnKDuylXkHv8n/rwrB8c+C8ehsgsAgO63tcXkwd0waVB3TBrcDS5xNaD1iD5/gTyB8/LyHBFyekbERK/biQdvKGBF9J1YO5ksowJ5Wzf3WbKzzLIK7BdsO03xzg6E1O3W1a6s3To1iTgIIX4M4MsA/gZAAJgD4EMp5f/aFrSv88sAfgIgDsCdUsqchuf9AByCT3QFAFlSym+Y6uCQmJgod+++cfTKziTueoXacMKh6/0gU7ZQN6oe2I0f2vT0dF/IawtkBjQOkhZoPBxKz17AnlPV2Hm0CjtLKlF89iIAoH3YLRjRpzP+X3IvzEmMMvZ9zZ5TyD1WiasQqL8iUVtfjzNnK1B3FejYqTOuSMBbdwVXJFB/VaLuylXUXZGov3IVZecvw1Nbj1tvAZKibseU2DswaVA3xPW4TcW4Mc2RVUIbU9gHu5tVMISch8Pg0Ui5+acV8W/qLdsOEepry28HVkyEXp+dOafdvFj11cn86sxYsPMRyDw42D5azQEQmHg5uU0ATScOhwCMlFJebvjeHj7ldJxtQfs64+Dzul4C4HsacUiRUg4Lpr64uDiZl5d3Q0VKVhsdcB7hMpQ2OZiIBT2jNptCrOyQSSARiZODYlW/iXCUVXmQc/yfSNlVgEMV9YjuehZ/eOxBYx++v3I31uafRAdXO4S1uQVtbhG+z623wNXmVtwqAFebW9Dm1lsQdqtAm1uu/b0sz+LBxBG4M6ojigr2B5w7uxDWThCn3bv8uekvccP6PFPAODuxYbDI1rQ+ToiZ3XiBawwE2eLzZ/R/sHNp1x+r3+zmxGl9wd4cAt2c9HeC7acT8VJT/Rz+AaAz+94ZPgTeZEUygDQAyex7PwD7g60nMTHRkfLleoITy4XmaIPbsVsps/QYOs0JwSjUnb5vZbVh9X9tba28fPmysRyN3SrZvElJbDU2U3wiu7E6hUBzY2c9pI/Jri59/QNZ2uhzoz/nZYLxztb7aFK2ktVSsCazgcbkpG/cMiuYMk05W3YhU0ztmb47NU7h3/U20URrpTXwWSq9B+BdACcBrADwWwC/DVQ+QN0m4nARwB4AWwFMsCn7dQA5AHKioqICTkxzQKh1NieCcWK10FTLklDrDmVjB9rogRCFyXKHp5c01W2FZHUbcbvQCsGAHSIOdICt/tr5O1gRQqt+mYir3ZibA6Hq9elpSO2QvhUzEcy+dzJmp+WDhWD6ajXWQATKbn9xaCpx+Krdx6bcRgD7DZ8vSmvi0BZAl4b/kwCcANAxUB8DxVZqDmjuG4CTup0gxFB+bwrYIQ/dzNKOa3fCIerIPpj+Bbo90XOObE1mok7Xygrs3m/K+uqxe0xceW2tOSYSf8/OD8aOYPO2Q0HI+nM7AufEmZT6ZXICM7UXrO+PHYRSNlRmUF/fQIxiIGgScfCVhwvAsIZPmJMyDuv1Iw7B/k4fu6iszQlNXQh6zwkhcMpZNqUvgfppVZ8JGfCDaYc4rDhhK2gKV2dCnlY+B3pf7Q6ek7kPxPmGUqfVM1P9fEyBxmFVv2ne9UBzoUZPtWtHXxsn4UConJOw2KH0M5j+NxdYraGJEQgVmnpzmAzgeIOYJx3AUQATA5Vz8jHcHLoBuLXh/+gGcVZEoHqaM7ZSsAeXfg+GOwyGkATzPFBfnIK+Ke2crOzed3qgAz1v6sHjhIHHwuJj0sNFOI1RpLcT6EYUaP70d4OdTw5NFZdYldP1DVZ7wynBC4b4OTmLTt9tLrieBIiYrmBiNwUDTSUOuQAGs++DYONV5+QD4IEG3UUtgM8AfNrw/EsADgDIA7AbwP1O6msu4hCIiwlUVodQDmdzQHPcKuzEMlacarBtWM231XOnddo9MyFgfvicctyhcONWfaBnduKhUIluMIgrFCWz1f+BGKZQwso3ZV+Y6mouMM11MIQyUJ9CYQycQlOJQ76TZy35aembg1U9dvJyqzqbKr910qem3lz4b029qVgdqFAOWqjEncvQ7eqn34iYhKL0D4Q0Td/5XyfjCfSO6XdTXoLmHg9/7jSqqt33UNoOVC5Y4MyESTTptL3mPJvBQFOJw7sA/tggXpoM4B0A7wYqdyM/FFspVLheVNmK+7ZCdnYhwPX+hrq5rRBgMHWFwhU5bcsJRx6sLNnJoQwUP0hfv0CiI1O/A/XHSchwu/LBcNRWNwen7wb6PVBfTNywaV+Fol+zYjIClQumftN3J8r9UPa+6b1QRY06NJU4tAXw3wBWA/gIwHcBtA1U7kZ+EhMTm4QsQxUbOa3ftJgmxSh/HqjdYJGg/l4whzBYrjCYtkOBUA623f/64XZi52/VD32tnVhlUdt2uUECQVNFmHZjDEVvYZoDPtdO59QpwTOVC2bdrOp0GlnZqr9256ypZ6A5xNYhEwcAtyAEp7Qb/Qn15uCUqjcXQrNCFnbtOpXNBnsQgnkvGDn09SS0wdSjIyWT6aepv1YHLhjfDivRgqms3nYowMfaFLDiRENhGvRxbd++XaalpfntZ6d7iv4Go+S36mOw+9nKjDYUBoV/b+qaUflgxYA6NPXm8D6AqEDvteQnGJ2DHRW/XqZvJu7HqQNMIIsZO84qVKLmlHszHfJgOcxQ3zEdLhNCtxLr2dUfzM3BqeWRqf9cd9EcjAf/Hmo9ThGW3djtCGGw+yMY6yen+6mpe7S5mMVQOX+OQ5rKFDSVOGwGUA1gE3x5HdYCWBuo3I38OCUOps3WlEMVKjftdNMH4uScbNJQxmS14Uxct9MNHgrhCvSOjvyD4fj1dvicBuMVbXovmDmhTHjBWO8E2ktNQVyhWizZPQvmd/2dYOakuZW+TvsY7Pv6OQoG9L0V6vkjaCpxmGT6BCp3Iz+h3Bzo/+bSVQTi4K2QTTBcKX8eKEtWU6ApylYT2I0lEDghoPRX75tThKHHqwrFEklvzym3G8hs1qqMXRuh7gk7xsCujFPmpKkIvLluDqa6muscWfW7OUxwrdYn1PMnZYjEAUA7AM8A+B2AJwG0sXq3pT888F5zcP/BcnAmjtrqUASjcLR6XlZWFrSDVqA6A73X1MPTlL4GQip23LMTpKG/w4P2Oe2nKTaQEw4x1HlxMiehtBdMf3TCavrdDikG08dARCOY247dfgnUl+tB2IKBphB+E4RKHP4PwPIGwrAGwJtW77b0h4hDMJvEbhKbeuhM71RXVzs2VbUDSq24YcOGJhGxYCBYzr85DoLpAAd6n4OVNVigftL7wYhXTDF9OFFoDqsS09xbER279QrF+cyuP8HcHJz00a6c3RlzShisiLWTebTi3IPtRzBlm7s+HUIlDvvY/23gy+HQ4oTA9OFiJSecYiAIdUPb1Wd3cwgWmisaZjBgOkwmrrA5CLRVm1bPTO8EGnNtbWBHLKf6CpMYKhiE4qQNKyQVTFgF05ib25Ev2HpCqT/Y9psyXhPT0Vz7W28nGAV/KPWZIFTisNvu+8300YnD9Vg8Xv/noVxz12Gqy2ojB9NesO8GY2NuVw9HrMFw36b3TLbwVv1y0j+rdvTvdgTOCvQYUqZYU077E+xtLhgIJH4NhTkKZk1D+f161BvKDYnAicWcXSgkXzJeMyQIIS40fKoBDKf/hRAXbMq1KLhcruuSppPXfz3L8WxvlOlKzwDnFPRsW00F3h+e9YraoHkPlHHLVJ/VOxzs1tbpXFHWsfz8fCQkJACAsZzeFo3Z1Kfk5ORGWdL4u3oGtEB9tWpH/663HagOyhxHv7ndbsybN0+lFw12rwUaQ7BjtOonPcvMzHS0p+k57VG+L3lmvFD6TW3rEGj+Qq3XlE7WyRp5vV7k5+db7gOPx4OcnBwACLesxIpqfJ4+zRlbqSVBlwlz7qwpoqym3qasREfBXLGt+tBc12hel9UVXR+D6TereoOJ0hpIHBIoqN/11JvZmSgH650dDCcc7DqbxDlvv/12QF2Sk70ZzA3UCTgVHTZlLkN5z8qBj/vXwObm0OKIvTk+wfg53MzAxQTNgdxDuYab6rDzH2iqCMnptTnY63VzEh2qozn2jxNFd6hzYvWbiWhatdFc8xaonlD28pYtWxzV4YSham5ccL2IeVPasfPqp3pgo3OwEyv9S0FTRTSm+ppaxiTKIDGBfh0eMmSIrWgqkCjC6iodaBwmUQ6/9gcjZrNKEG8lgrF6z4kIRB97U0SNNM5gyptEZV6vF0VFRRgyZIhtWSeihED72STmonkAGouEaH/k5OQYRYXB7He9b6b55/0zlae/vI5x48b5lbNaD3put16hrmVz1Gcq62R/BitW0kVzvD0n/f23IQ6hbnQThEJo9DJWdZgOkMfjsVxop/2hg+/xeNR3u3J2CLu55tLpodDbO3jwYEAEa6ojFGjqWpuQs8vlCqpO0xyFMnf03a6sj5n0Lx/sHNgRAw5WOqfs7GwlE8/OzvYjEFblrheEoosBgmcenRCGYJicZtG9Wl0pPk+fYD2kr4cZnlOzR7vvVmWaKs+k3ynwmZP8yk5EH801l8GC07ZD1ddY1RNqGTtxWqD+X89QFk7rCbWuUNozpZu9kf3R2wjFDDnUcoHqux5jRlNzSN/sn2AV0qEgaTtoDuc2u/40FwLkhy0Ymb3pN36AWwqcINbrmY2vOYhOc8TGspLpN4e+4EZCcyPV5oBQ56K59931WhM74vBvI1biEKp5mBVwk8Cmgukaa2caunfvXmOZQLJGJ+IIO5AN4ofrZTLsBALJlEeMGAG32217vQ6kB7ICEn+EYqrJ+2inS3Kq0zGJ+azECoH6FaoYxUndgYCvWXPVaQdO1yiYPUHgdrsD6gmDgZY4Z/+WxIFDMLI5u03SXISB5OlOkJkVAgxVTq7XbwUulwujRo1q8pxdbwhECJ3qgfj7HIQQjuq1AjuloalvdmDSDTgxADD1x7T/SFdlN5bm0AM0B+PmVGHrdI1CeU9f2xtxDpq9DasrxefpYydWas5r3fX2vHYSt+V6mLw1RQTTXDLz5oSm9N9Oxh2MOWawZqZ274Wy7qHK6k2/B5O+1kkbwQDVFUwQxOY+I6G+F8r6hQqhtoF/V51Dcy7KjZCvNzfSD6XtUIjK9VIchoLkr+dBbIqehiAQAQ5lHk1IqbmcHul7cyDnYPvDCYMdcWpuHWKoEOwaNXc/Q6kPIYbP+NxDc9i309/s7Ozm7JoRnMqXmwOsTGiD9VuwspvX6w2lf8HYdJP8v1lM+CwgkJ+JE3NiO7GhXR1W75vKNMXUWNc5UP1O59NO1xGMiIi/b6fTsxr/jYZQ9iv3KXFSJhAEq19qAGn1w780cQBCd3bRD4mVfDnYepsLmlJnU5SOOgSymw8EVn3ghMfuPYL6+nq/sk7KhAomxb+TOTApXE2/O9Xl7N27F4C1H4QVwgpG59BcOrlA9ZiYFf5+c8yZUwhl39j1w6QLGjVqlGVcrEDlnUBz6ID+5YmDU+CTqR8Sl8s6wFkw9TZXP5tSZyDuNVS4XnPDrbHslKJt2rSxrbs559/k4AY0z80vFA7dqowJYQW6nZiIVzAIzI7x0Ik2d8g0WdsFMxfNBU05W8Gsg937en90RslpX1qd4KR/JrimgFNFYTDvBHqvuWX8Te1Pc0JzzCGXO4eaHKa59RDB7pNg67zecD0Uxvx/J0YKlZWVluHCW9pH4EboFp2GDm+u4JlWgH91Pwcu8jFd+Z2Clbu/qc5gOAynppRO6gnELer1B9Of5gSnY3PKSQfyVzA9D0U04gQChYVwAnYiTKemtKFCc+qtTDenQPWPGDECERERfnoEfqsI9WZrZRJsJ9sPRk8W6k3dVL9uem4C/bxfz1QEJviXIA4Edld++t1UJpQ6m2uxgq3D6buBkLPTjR7Ivt0Krsdmbkpd10uRH2odViJMOz1BU8STwZajvpnKBqNn0cuRngQw6xEC6WUC1W13xpsyp80t93fqk+SUEbku+jWrK8Xn6aNngtP/t7qWBXO9M/3fFLhRts+htO3UhPBmhevti9IcJqJ2e6q5zYKd9FvvD4/5z8s2VeRzo/c7jcWq36GYSze1T81Rr14+1DWBjVhJ+H7/fENycrJsyGrUCIgyk0LHZO7VEqZvN6ptqzbsntN8uVwueDyeZvH+DhWCnaNA622q22kbwSie7foVzHqEAnpdgfpt6hsvw+dp7969GDJkSIvuiWAh2HW2Kn+9yzQF7Nqz+00IkSulTDb99i8lVjJBIDl9SxGGQG03t/hCf24nu+fy3uuJBIIR6Tktxy07AonVAlnXmN4PFYIxdbRq3wmYrLQC9TuQNY2uu/k8EQYON8rasKkiwFCgufSafmB1pfg8ff5V0oQSNLdndzB13whxVzDtNMX712ndTr3Dr6fVixMLn1Ct40Lpd0uEPbke0BxjCcXa8GYSu9nViX9nsdLnFZpyLTWV5VdrwJm45XqDU5GVSUzS3P0LJPa5Geq7WcQUnzcIRmwYigiTi9lCqUNXTt9Iq6R/a7HS5xWC3WD8f5OVFhehNGfboQJZ6YQiWroe/bse5q7Xy3z2RsC/CmEAgnPiC0b8QiJY2scmkV4wbbaEuaod/NvdHP4VOKJA3Eagm8PNMv7m4OhupvF8niAU5XqguQ5mLW7EbTBYaA6Fta68D4TsW3rcrTeHBmgJRVFzgxNuI5BDWHP1o6nlAzkBObWy4Tb5wbR/PUC/sV3v9kIBrze0wG9OFPxO6rNSmrfEHIVyI9X7qZ892ttObgFWBgrXE5zW3yLEQQjxmhCiQAiRL4T4SAjRmf32vBCiSAhRKISY0ZztNue1raUOu1Ni0BQI1YoomPrtnBWdtuHUMqm5+++kXidjbClwuZwFftMRp51Xb6CzZVdXS4lTroclErd+u1HWUder/hYRKwkhpgPYLKWsF0L8CgCklM8JIYYA+CuAOwH0BLARwCAp5RW7+m60Qvp6KY7sxEE3Cm7Uddh0FTe9AwQXoCyU9psTrMbV0uKDYMFuHwS7/1tC0RoImiJmtduvzeEHcr33Cq//phMrSSnXSykpxnIWgN4N/38RwAopZa2U8iiAIvgIxU0F14PTsVMkXw8O1wqach0OBpzefJyOP9j+XC8fE9O4bibC4FQEZ7cPgt3/wbx/I25X/FyFsi5WZXQ/EKciNqf1Nxc4rb9N4FeuOzwO4P8a/u8FH7EgONnwrBEIIb4O4OsNX2uFEPuvWw8NzcMmSYZD6AqgwkG9+jMnbdu9IwC0B1DjoB4dTH0OpQ/BQCjjJwimv7z+UOenOeoLpc/UjpN9Ed7w/yWH/XECofZZB5qrywCuNkN9VtAVQCUCn7VAz+2Arzts6uV7w66d5ppjHfpa/XDdiIMQYiOASMNPL0op/97wzosA6gG8T8UM7xsnS0r5BwB/aKgnx+pqdLNCa5+vP3ze+gu09vlGwOetv0DL9Pm6EQcp5TS734UQXwVwH4C75TXFx0kAfdhrvQGcvj49bIVWaIVWaAUraClrpZkAngMwW0p5if20FsCDQoi2Qoj+AAYC2NUSfWyFVmiFVvh3hpbSOfwOQFsAGxoS9WRJKb8hpTwghFgJ4CB84qZvBbJUaoA/XL+uXjdo7fP1h89bf4HWPt8I+Lz1F2iBPv9LeEi3Qiu0Qiu0QvPCv5WHdCu0Qiu0Qis4g1bi0Aqt0Aqt0AqN4HNNHIQQXxZCHBBCXBVCJGu/XbcwHM0FQogRQogsIcReIUSOEOKmc/jTQQixoGFODwghXm3p/jgFIcT3hBBSCNG1pfsSCOzCy9xMIISY2bAXioQQP2zp/gQCIUQfIcQWIcShhv37nZbukxMQQtwqhNgjhEi5ke1+rokDgP0A5gJI5w8bwnA8CGAogJkAFgshbr3x3QsIrwJ4WUo5AsCPG77ftCCEmAKfF/twKeVQAL9u4S45AiFEHwBfAFDa0n1xCBsADJNSDgdwGMDzLdyfRtBwnt4CcA+AIQD+o+Hc3cxQD+BZKWUcgDEAvvU56DMAfAfAoRvd6OeaOEgpD0kpCw0/fS7CcMDn4Nex4f9OuPl9Or4J4JdSyloAkFKeaeH+OIXfAPgBms8j+LqCTXiZmwnuBFAkpSyRUnoBrIDv3N20IKUsk1Lubvi/Gj6Ea4zAcLOAEKI3gHsBLL3RbX+uiYMN9AJwgn23DMPRwvAMgNeEECfg48JvOg5Rg0EAJgghdgohtgohRrV0hwKBEGI2gFNSyryW7kuI8DiAf7R0JwzweTljRhBC9AMwEsDOFu5KIHgDPsbmeoYTMcLNEFvJFpyE4TAVMzxrEa7Rrv8A7gbwXSnl34QQ8wH8EYCtZ/n1hgD9bQPgdviu5KMArBRCRMsWtocO0OcXAEy/sT0KDCGGl7mZ4KY5Y8GCEMIN4G8AnpFSXmjp/liBEOI+AGeklLlCiMk3uv2bnjgECsNhATdNGA67/gshlsEnTwSAD9ECV0cdAvT3mwBWNxCDXUKIq/AFBDt7o/pnAqs+CyHiAfQHkNfgbNkbwG4hxJ1SyvIb2MVGEGJ4mZsJbpozFgwIIcLgIwzvSylXt3R/AsBdAGYLIWYBaAegoxBiuZTy4RvR+L+qWOnzEobjNIBJDf9PBXCkBfviBNbA108IIQYBcOH6RIpsFpBS7pNSdpdS9pNS9oMPoSW2NGEIBDbhZW4myAYwUAjRXwjhgs8AZG0L98kWhI9D+COAQ1LK11u6P4FASvm8lLJ3w959EL4cODeEMACfg5uDHQghHgCwCEA3AJ8IIfZKKWc0IQzHjYb/AvCmEKINfGGKvx7g/ZaGPwH4U0N4dC+Ar96kXO3nHYzhZVq2S/7QkKjr2wA+BXArgD9JKQ+0cLcCwV0A/hPAPiHE3oZnL0gp17Vcl25eaA2f0Qqt0Aqt0AqN4F9VrNQKrdAKrdAKTYBW4tAKrdAKrdAKjaCVOLRCK7RCK7RCI2glDq3QCq3QCq3QCFqJQyu0Qiu0Qis0glbi0AoBQQhxpSFy7H4hxIdCiPCW7lMoIIToLIR4in3vKYRYdZ3bfE8IMc/wXLUthOjSEC3UI4T4XYD6Vgkhohv+P0ZRZoUQkUKIFUKIYiHEQSHEOiHEICFEPyFETcP6HRRCLGtwBIMQIlwI8b4QYl/D2mY0eA/rbX65IZLpluaYEycghIgXQrx3o9prhcbQShxawQnUSClHSCmHweff4Gdzfz0j3jZz3Z0BKOIgpTwtpWyEuG8EaG1fBvAjAN+zKyOEGArgVillifZcAPgIQJqUMkZKOQS+sCF3NLxS3BD5Nx4+T+b5Dc+/A+AzKWV8w9p+DUCdoemvAXhKSjlFa/e6+UlJKfcB6C2EiLpebbSCPbQSh1YIFrYBGCCEmNzA7X4An1NROyHEuw1c6J6G8N4QQjwqhPi7ECJV+GL/v0QVCSEeFkLsauBqlxAhaOCgfyqE2AlgLG9cCJEmhPiNECK9gZsdJYRYLYQ4IoT4X/befzdww/uFEM80PP4lgJiG9l5r4Kr3N7xv1//VDf0/IixyWDRw8b9qGM8uIcQA9vNEIcQOIUQJ3SJ421LKi1LKDPiIhB18BYApntgUAHVSyt/TAynlXinlNv5SgyPoLlwLkNcDwCn2eyFF3GXj+jGA8QB+3zBnjzbcHj8GsF4I4RZCbBJC7G6Yuy+y8RUIIZY2rMH7QohpQojtDfN4Z8N7HYQQfxJCZDfMO4/s+jF8nsGt0BIgpWz9tH5sPwA8DX/bwIecvglgMoCLAPo3/PYsgHcb/o+FL3dCOwCPAigD0AVAe/hycCQDiIPv8Ic1lFkM4JGG/yWA+RZ9SQPwq4b/vwNfCJIe8HkUn2xoJwnAPgAdALgBHIAvAmc/APtZXep7gP6XwBdSvR2A4wD6GPp1DL6geQDwCICUhv/fgy9u1i3w5T0o0ttmdTwK4Hc267AVQLzWZlcATwP4jUUZPsZ2ALbAl48DAEYAOAMgE8D/AhhoM+fJrI8nAUSwPdGx4f+u8IXHFw3t1sN3W7kFQC58HvYCvtDeaxrK/BzAww3/d4Yvf0WHhu93Afi4pff/v+un9ebQCk6gvfCFG8iBD2n+seH5LunLlwH4uMu/AICUsgA+JDqo4bcNUspKKWUNgNUN794NHxLPbqj7bgDRDe9fgS84mhVQDJ99AA5IX5z+WviQeJ+G+j+SPo7c09DmhABjtOv/JinleSnlZfhCsvS1qOOv7C+/8ayRUl6VUh7ENVFPKNADoQU5jGmY40oApVLKfMB3u4Bvzl8DEAHfWsQ5qG+DlLKq4X8B4OdCiHwAG+G7ldAYj0pffKur8BHoTdKH9ffBRzwAX8TcHzb0Lw0+AkaipDMAeoYw3lZoBvhcx1ZqhRsGNdIns1bgE3PjIn9kU16P0SIb3v+zlNKUw+KytI+FRaKPq+x/+t4mQF+swK4Mb+MKrM+NtPiflw+lbwQ18CFPHQ4AsNOdFEspRwghegBIE0LMllKuBQBGPFcLX5TdWQicdYyv+1fgi22WJKWsE0IcY33U14avG82hAPAlaU7a1Q6+MbdCC0DrzaEVmgvS4UMUFLE1CgAd+C8IISKEEO0BzAGwHcAmAPOEEN0bykQIIaw48lD6MqfBGqcDgAfg05VUA7gthP47hf/H/mYG22kHcAjAAMPzzQDaCiH+ix406GIm8ZeklGUAfoiGpFJCiLuEELc3/O+CT+x1PMg+dYIv50Bdg54m2DX8FMCCBqU6hBAj2W+D4BNDtkILQCtxaIXmgsUAbhVC7APwfwAeldeUmxnwiWz2AviblDKnQcTyP/ApNfPhy5vcozk6In2pIN+DT/m6E8BSKeUeKWUlgO0NCtLXgui/U2jboET/DoDvBlOwgeN+HcCjQoiTwpzb+BP4dD1+0CCqeQA+IlwshDgA4Ccw51dYAyBcCDEBQAyArQ1j3gOf2NBOnGeC9wEkCyFy4COuBUGW/xmAMAD5DQr6n7HfpsA35lZoAWiNytoK1xWEEI/Cp8z8dkv35XpCA3JPllJet/wWDTevLQDuCiB2+9yDEKItfAr48fJaPu1WuIHQenNohVb4nECDQv8lfI5yNTcBogD8sJUwtBy03hxaoRVaoRVaoRG03hxaoRVaoRVaoRG0EodWaIVWaIVWaAStxKEVWqEVWqEVGkErcWiFVmiFVmiFRtBKHFqhFVqhFVqhEfx/sbnP8nbUskcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = centerline_df['pmra']\n", "y = centerline_df['pmdec']\n", @@ -527,7 +669,18 @@ "cell_type": "code", "execution_count": 57, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862'" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "point_list = skycoord_to_string(corners_icrs)\n", "point_list" @@ -560,7 +713,22 @@ "cell_type": "code", "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT\n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(ra, dec), \n", + " POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))\n", + "\n" + ] + } + ], "source": [ "query5 = query5_base.format(columns=columns, \n", " point_list=point_list)\n", @@ -592,7 +760,18 @@ "cell_type": "code", "execution_count": 60, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'[ -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176]'" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s = np.array2string(pm_vertices.flatten(), \n", " max_line_width=1000,\n", @@ -613,7 +792,18 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "' -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176'" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pm_point_list = s.strip('[]')\n", "pm_point_list" @@ -638,7 +828,18 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "query6_base = \"\"\"SELECT \n", + "{columns}\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(ra, dec), \n", + " POLYGON({point_list}))\n", + " AND 1 = CONTAINS(POINT(pmra, pmdec),\n", + " POLYGON({pm_point_list}))\n", + "\"\"\"" ] }, { @@ -658,9 +859,31 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT \n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(ra, dec), \n", + " POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))\n", + " AND 1 = CONTAINS(POINT(pmra, pmdec),\n", + " POLYGON( -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176))\n", + "\n" + ] + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "query6 = query6_base.format(columns=columns, \n", + " point_list=point_list,\n", + " pm_point_list=pm_point_list)\n", + "print(query6)" ] }, { @@ -676,7 +899,28 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n", + "\n", + " name dtype unit description \n", + "--------- ------- -------- ------------------------------------------------------------------\n", + "source_id int64 Unique source identifier (unique within a particular Data Release)\n", + " ra float64 deg Right ascension\n", + " dec float64 deg Declination\n", + " pmra float64 mas / yr Proper motion in right ascension direction\n", + " pmdec float64 mas / yr Proper motion in declination direction\n", + "Jobid: 1616771462206O\n", + "Phase: COMPLETED\n", + "Owner: None\n", + "Output file: async_20210326111102.vot\n", + "Results: None\n" + ] + } + ], "source": [ "from astroquery.gaia import Gaia\n", "\n", @@ -695,7 +939,18 @@ "cell_type": "code", "execution_count": 65, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "7345" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "candidate_table = job.get_results()\n", "len(candidate_table)" @@ -719,7 +974,19 @@ "cell_type": "code", "execution_count": 66, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'point_list': '135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862',\n", + " 'pm_point_list': ' -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176'}" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "d = dict(point_list=point_list, pm_point_list=pm_point_list)\n", "d" @@ -736,7 +1003,20 @@ "cell_type": "code", "execution_count": 67, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "point_list 135.306, 8.39862, 126.51, 13.4449, 163.017, 54...\n", + "pm_point_list -4.05037121,-14.75623261, -3.41981085,-14.723...\n", + "dtype: object" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "point_series = pd.Series(d)\n", "point_series" @@ -772,7 +1052,20 @@ "cell_type": "code", "execution_count": 69, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACO1UlEQVR4nO39fXRU15UmjD9nUnU7EhUgZWyX+ShAKqwqRR9YJRmJGEjATegshVZrePXTEF6HTHuSHne7h3ecdqcnvfrj7ckkr6eZHz1eP6eT150QD01rFI1C07RHsQ02gqiEpZJRFZFKpiSjMuAyNmWDL1J8q9Ln90dpb517JRH8Ib50nrVYUt26H+ce2fvss/ezny2klNDQ0NDQmDv4Vzd6ABoaGhoa1xfa8GtoaGjMMWjDr6GhoTHHoA2/hoaGxhyDNvwaGhoacwyuGz2Aa8GiRYvkihUrbvQwNDQ0NG4pRKPRt6WUdzqP3xKGf8WKFejt7b3Rw9DQ0NC4pSCEGJ3uuA71aGhoaMwxaMOvoaGhMcegDb+GhobGHIM2/BoaGhpzDNrwa2hoaMwxaMOvoaGhMcegDb+GhobGHIM2/BoaGjcVLMu60UO47aENv4aGxk0Dy7Jw8uTJGY2/XhQ+HmjDr6GhcVNh9erVMAxjynF1UdALwEeDNvwaGho3BE7jTYZ9uu8AwDAMrF69ms8zTXPGczWuDm34NTQ0rjtmCumQYe/t7Z3WoFuWhYGBAQQCAQwMDCCdTtvuQ4uBxtWhDb+Ghsas4mreO4V0VGMfjUZnNPr9/f0oLS2F1+tFIBDAoUOH4Pf7YRgGMpkMWlpa9E7gGqANv4aGxscOisNfLVlrGIYtXi+l5O+qq6unxPkty4IQgj97PB4sX74cQ0NDME0TiUQCK1asgGEYME0TkUhEG/8ZoA2/hobGxwYy5L29vejp6YFlWQgEAjN68JFIBD09PQCAyspKGIYBKeW0Rn9gYADBYBCxWIy9+rq6OrhcLhiGgerqaqxfvx4AEIlEMDg4CNM0+dl6EZiENvwaGhofC9TkbHV1NUKhEKLRKJ555hns27cPmUxmCiPH5XIhFAoBAAYGBmBZli38Q+cahoHS0lJ4PB4OB/X09MAwDF4w6B8AzJs3D1/84hcxODiI3t5emKZpSwjPdQh1e3Wzorq6WupGLBoaNx6mabLxpVCN6p3TZ9M0MTAwAL/fj0QigWAwiOHhYYyPj6OgoAA1NTV8/sDAAFavXg3AHv6JRqOQUqK6uhoAEIvFUFFRMWU3cPLkySn5AsuyEIvFEAwGbecPDAzwAjIXIISISimrnce1x6+hoXFNME0TbW1tSKfTU7xo1YvPZDKIxWIIBAJIpVKoqKiAz+dDZWUlCgsLUVlZCSBvsJ1JXkIsFoNlWRgfH0c0GkVvby8uXbqE7u5uALB5+KWlpTajT7uOsbExxONxdHd3Y9++fbAsC6WlpbZQ0VyFNvwaGhrXBI/Hg61bt2JkZIQ9ezKkPT09ME0TnZ2daG1txdjYGH+fTCZhWRY8Hg+qq6vh8XjY4BNUVg/F6+vq6rBgwQKEw2FUV1fD5XIhmUxOidtTiAiws4UKCgoQDodRW1uLQCCAeDzO10zHHJpLOQAd6tHQ0LgmqOEdADYvmxCJRFBeXg7DMBCLxThMo56v3i8SicDlcqGyshL9/f22eL36TPrdNE3E43EOAXk8HpimydeoY1OvNU0T/f39qKmpYQZQRUUFh62A/A7kdgsD6VCPhobGNWE6z1cN66iGGbAvAC6Xiz16KaXNqKr3pd/J6Hs8Hjb+5Pk7z1eN++XLlxGNRmGapm3H0dPTY9s5EDweDyeRKecwMDDA7wWAi8LmguevDb+GxhyHGjYhQ6gaXrVadrr4OHnu/f39bFyBPD1zYGAAADgOr3L76RzysD0eD2pqaniX0NPTg0gkAtM0OafQ39+PXC6HVCplCwvRTkG9XoVpmjh48CBM04SUEh6Ph717Cjklk0nbOKebo9sFs2r4hRBnhBBxIcRJIUTvxDGvEOJ5IcTpiZ+fns0xaGhozAzVqPb09CAWi6G0tBTApJeuJlCz2Sz6+/uncOOJlplIJJibr2rr9Pf38zMsy2JjSx62M3xkGAZCoRDcbjcAMLe/pqYGmzZtws6dO7FhwwY+n7x+dYeRyWT4PT0eD7Zt2wav18vhHvL4aSexevVqDh2pSWvLsmz3vh1wPTz+z0spVytxpm8COCylXAXg8MRnDQ2N6wwyyGNjY7Asi71lNflK3m8sFkM0GkU4HLZRMclzr6mpgdfrRXV1NZ9DRrm/vx/j4+M2lo66oABgQ5vJZPj3ZDKJYDDIOwEy0M6Yvur10w4jEAigvb3dtjuhnQV5/36/n9lDAPjexEiKxWJc/SuE0Ib/I+K3Afx44vcfA2i4AWPQ0JjzIK9aSon29nabzAJ9Tz+XLl3KFbIA2ODT4qAmUcmTpmsrKyvhdruZVUO7hnQ6bQsFdXd3o729HYFAgEMxxOKh+yeTSTzxxBM4fPgws4hozHSNYRjweDwIBAJTwjaWZSGRSGDr1q3weDw2mQhiFmWzWXg8HlRUVMDlcgEAKioqbLuTW50OOtuGXwJ4TggRFUJ8beLY3VLKNwBg4udd010ohPiaEKJXCNH71ltvzfIwNTRufzgNu2VZSCaTqKurQ2NjIyzLQktLC7q6uqbw8p9++mksW7ZsCndeNazkSft8Pva2ySOvq6tDOBzG+vXrsX79ehQXF6OjowOBQABAfoEoLCxEfX09vF4vX0eet2VZyGQy+NGPfsT1AKZp4sUXX0Q6nebKYAopGYaBtWvXApiaWKaw0cDAgC0nQeMIh8O8eNAugt6Z8hktLS22UNKthlmlcwohFkspzwsh7gLwPIBHARyUUi5UznlHSnnVOL+mc2pofDA4WS0UyxdCwOVycegkk8nA4/EwrTIUCnFIRL0+nU5jeHiYk6hEfaTfA4EAvF4ve8Ld3d2oqqpCIpGAlJINKMX2T548Cb/fD6/Xy/cCJitrY7EY3nrrLSxcuBBSSjbi6XQaXq8XQD50k8lkYBgG9u7di+3btyMej8PtdttE3pyUUHWOent7YRgGVwTTzsE5l0CeqgoA4XCYF0214vhmxA2hc0opz0/8vADgpwDuB/CmEOKeiUHdA+DCbI5BQ2OuQPXknRr1/f39EEKgvLycjbfKdHG73TaGjVPXxuPxIJfLgRywQCDASV41nk78/Ww2i8HBQVRUVKCmpobZM2SE/X4/UqkUgHyYx8n+KSoqwssvv4ySkhJUV1fDsix0dXXh2WefRXd3Nz+bFgHKBdTV1U1R9nRW9VKylr4LBoPo7+9HJBKxFXbR7ki9Vzab5eeS0Z+pd8DNjFkz/EKIeUKIT9HvADYDOAXgIICvTJz2FQD/OFtj0NCYK1CNmhqKISpmKBRCeXk5SxiQZ0tMFzKWlMxUOe10j5KSEr5nIpHA+Pg4+vv7OSRDoZ9gMMjSDJQopjG2tLQgnU7bwjwUj+/v70c0GkUkEoHH48Fjjz0Gj8eDaDSK/v5+VFdXY8eOHVi/fj3vWCjxTJELZ42BM2dBOYlcLsdJYa/Xy/NDMX3aDVB9AIWALMuyLXKAXU7a+Te5WeGaxXvfDeCnE/rZLgD7pZQdQogeAK1CiN8FkALwf8ziGDQ0bktMV6HqNPZk5EpLS5n/PjY2htHRUdTW1gKALaxjmiYGBwdhWRbmzZtnE0QLBAJc+ETSCyrWrl1rWxSmk1Y2DAOrVq3iBccwDHR2dqKqqgrJZBKhUAiGYaC3t5cF2UioTQ1BOe9ZUVGBWCxmmxuak56eHgghuEqX4HK5ePEzTRPt7e1YtWoVx/eBvMIoJavVJHZ9fb1t3kl7SIXzupsNWrJBQ+MWA3mjFDsnqQPV0KjhCpIlUCUXyMBSGEWlOjpj3RQqunjxIu644w7U1NTY7juTOqYqh6AWb6nSCU888QQ2bdqE8vJypFIp286Bzg2FQhxPn8mI0juZpoloNIrTp0+jubmZjyWTSV686J3V+ZquIpnejVhGpmli//79CAaDAICCggKefyEE75rouptB/kFLNmho3CagEAXx6Sls4TSMXV1d3IqQDB0w6eW/++67rLhJ59B3apgnFouhuLgYFy5cQCgUgmVZaGtr48SqU2wNAFf4RiIRm5InAO6i5fV68fjjjyMcDiOVSsHv96O9vZ2lGAYGBlBZWcnxdOeCpj5T3emEw2E0NjbyXCQSCRZpGxsb4zlQ50sNSanzXFpaing8jkgkgng8jpKSElRVVaGgoIB3ITU1NbwY0HVUDKaOUQ073Whow6+hcQuCjFQ0GuWEIwAbhXLt2rVsAIktQ9el02n8/Oc/h2maHHZRNW5UYy6lhNfrRXNzM7xeL6t0kuomMJkMpgrXbDYLIB9SoTALGVoKE9FCQ1IJPp8Pzc3NCIfDNvkEel9aSJyVtdONO5FI8Fgo7GRZFlcCq/h1xtjlciEcDqO8vBwbNmyA1+tFZWUlkskkN5dpb2/H0aNHp+xw6P69vb3o6uri8d9oaMOvoXEL4Nd5i5FIBIcPH8a+ffvQ2dnJxiWZTAKALexgmiaOHDmCL3/5yzhy5Ajf1xn2VatyiddO8Hq9Ni4/GXXy5ilJqjKFgEkGDCVOAbB3TAsBFWLRGMjAR6NRLgIjJhBp76ic+oGBARubSK36pRi+unjM1JmLdhAUwz948CDPFSWkDx48CADYvHkz5s2bZ7vWKTNdXV09RfLiRkEbfg2NmwjOUAYZ/N7e3inNw8mQ1dbWwjDy+vMNDQ1wuVyc7FQ1cdTdwLZt21BaWsqeOzDZ85aeQcZXjc+r43Tq4JOBo8InYuM4i6cA2ITV1Li4Gl7q7++3FXCR103X+P1+JJNJLFu2DE899ZQt9KTG6+knVR7T2GkxpEVEXTxozLQoUULaufht27YNlmXh2WefndLtS11I6TixnWYKW10v6OSuhsZNAjUpSElNNRlJSVEyIipzZDqoRiiTyWBwcBDj4+Nwu92oq6vjc9RwjRoLl1Ji4cKFzJrJZrMIh8O2pK3zOWprxp6enikeP42ZjK0zKay+G927s7MThYWFtiIrSuBSKEvl9NNC6eTz09icz7Isi2sa1LCXlNJGG50usWxZFjo7O5FIJLBz507b/U3TtI2J5oPuQ3/r2WwHqZO7Gho3Ochbtay83nw8HseVK1cAgL1o1fsmMTEKXQCT4RknOyWZTKK4uNh2jGLgdC5VzI6NjeEXv/gFRkZGmL5ZUVEBACyJoBZCqfkFNenrNPoE2kk4Fyznu6m7BdLPJ2+9vLycWTttbW1T3tfp0Ko7FDUZTKJwqkdPOxd1vqcLB9HYCgoKsH37dht7KhKJoL293baLoDCYqnNEIaNYLHZdJSC04dfQuEFw9qoF8saktbUVw8PDKCkp4bhxKpWyNQ4hA5NIJJBOp7Fnzx6Ypjmt928YBnw+H0ZGRuByuThcQoaIDBuQN05r1qzB6tWrsX37dtbNoapY8oDpOblczvacrVu3YnBwkD179f1M00RLSwuOHTvGWjfqu6jjoBg9AJw5cwbApKEk8TbKO6ghGDLwVBOgjo0WVZJsJuNMi6dzkaLwD7F71PdRQ1OkTKqOn/SP+vr6mCpKoSBa+GhOEokE3n333SlqorMJHerR0LgBICO4fPly1pV3xvXJEKXTafzlX/4l/vzP/xw+nw+APURDCwiFFSjMQaGGdDqNp556Co888ghXwtbV1dmeoXLsi4uLMTQ0xOEglaevctsTiQQsy8LatWttcXMqvlLj92oIh3Yo8XicFyG6lqCGgTKZDLN8pgvVOD9PVzzlDGcNDg5y0nY6bR56LoV/iMfvDOWoLRzV59A4vvOd72Djxo247777cOjQIaxYsWIKs4jmgOCsJ/gomCnUow2/hsZ1hGqgMpkMGw41rqwWBRUVFWF4eBjLli2Dz+ebYoQzmQz27NmDDRs2YP78+QiFQhgcHERxcTGeeuopPPzww0in0/D7/WycWlpa0NjYyEVNqrfq9Xrx0ksvYcmSJdi0aZNtvE7DSoVNzmQpGWpVkM1ZY2CaJvbt24fi4mLMmzcPwWAQiUQC2WzW1o5RPV/t4TtdodVM+QL1e4KaA3BSMNV7qTkLuoaut6x8f4H58+fzeCn8lcvlEA6HcezYMbhcLn5HOkfNVQCTjWza29uxYsUKrF+/ftp3+aCYyfBDSnnT/wuHw1JD41bH+++/L0+cOCHff/99+d5778n3339fXrx4Uf785z+X77//Pv+jcy9evCi/973vyeeff37a748fPy6ff/55+eyzz8r33ntPvvfee/LEiRPyvffek1JK+cYbb8iXXnpJvvfee/LixYvyRz/6kbx48aLtezompeRzRkdH5Ysvvmi75sSJE3wejZ+eRT9pfOpnuu90eOONN6a8k/M91bmjd1HnS/1+pjmn8TqPqfM43d/AOabjx4/brnvvvffk8ePHeX7U933ppZdsz1avU891fn/x4kV5/PhxHq/z/A8KAL1yGpuqY/waGrMINXyjxplbWlrQ2dnJbBnV66SfHo8HwWAQZWVlAMC8d/o+FAqhoKAA69ats/Hf1R62pL2TTCaxZcsWjo1nMhmkUik+RmGhbdu2wefzQQjBMXuVs55Op3Hy5ElbdaoaOwcmFTYplk4KoATTNGGaJjo6OmztDdUQh1NDH5isDZATTdzVxLJzB0A/qW8vJYrJc1dRWVmJiooK2zvQ9Z2dnXy+yqiivw/F99VdGGkV0bt1d3fbnuesQqaKapqDUCjE1c4qPfXjxGyKtGlozGk44+FEy7QsC83NzbZzSWEyFArZGpFUVFTg4MGD2Lp1qy2RqjJ11JCAU1BM7WZlGAbfu7W1FV/84hfh8/ng8Xj4OgpFjI2NTdHv37JlC4aGhqbEpC3L4jHSu1RUVPA4iCIJTOY2mpubsWXLFsRiMZw6dQrl5eWoq6uzjdsZ9ybDS2wbSk47Y+9qqEZl5tBPqiqmReDSpUsoKChALpdDVVWVbT6TySSampo+0N+9uroamUwG7e3t+PSnP42enh6+L82zmoegEFRXVxcSiQSWL1+O4eFhAJPidx83tMevofExQ/VgS0tLkUgkcOXKFZimiaeffhrf+c53YJomuru7EYvFmD5YXFyMgwcPIpPJcAyZWCvA1IIgr9eLQ4cO2Qq7nN5hQUEBGzjyXC3Lwi9/+Us8++yzTCFU49/pdBrnzp1DUVERM3nIk43H44jH45zcBMASDpRcpupUdayqB7t8+XIAwPDwMCoqKhAMBhEOh/l8dZegJrBp7MSuoYVU7Yalesjquc4CLTo3GAzyuyYSCdYYou9pYSXJBZWBpNI8e3p6bH+3VCqF+vp6+Hw+7Nq1Cx6PhxvZU2xfLZCj/wZ27NjBzeRny+gD2vBraHwsUA0TabKQ4a6oqGBaZllZGTZu3AjDMJBIJFBUVMT3SKVStl6wKnWzvb3d5vFTG8LNmzcz+6azs3PKuMhoCyFYSCyZTOKhhx5CU1MT+vr6WMjt5MmTSKfTePrpp7F27VqbnMPAwACqq6uxc+dOZgSpAnCk22MYBsrLy5mKSSBuvmmaPBfksRcUFACYlGdIJpPYunWrLVy0d+9edHV1AcAUauWKFSuYQqqGh9RwlNoshiSZiQnV2NgIn8+HsrIyW29dAJg3bx7vvGgx6enp4UVU1fc/fvy4LaTn9Xo5FARMLtzRaJTHq9JZqcUjhZFmy+gDmtWjofGRQdv6+vp6pktms1nU1tZyCEKlJJIB2bt3L4qKirg6Vo1xqxWuajxYrZo9evQoU0FTqRS+//3v47HHHrOxdPx+Pw4dOoS77rqLJZWBSdEzom/6fD4bjZFooEQfVdktdG00GkVJSYmtOlUN+xBlUm2RSBLSRI9U2UBOo63ec9++fWhqauJnqV3F1OKyXC7HrRfpPnSPY8eOMVNJZU2lUilbC0UnNdRJIXXmFVR21a5du3guKcznbNGoLpZXo6h+HNCVuxoaHzPof/hEIoFPf/rTOHDgAHp7e7Fy5Uq43W709vYinU7z/+Sq1jyFcBYuXIiioiJbVakaJqIwgxquoAQkGX3TNPHcc8/h61//OhtGup5CDoWFhbaiJjKcoVAIqVTKZtTIKFPylQw0eaiZTAYDAwNYuXIlnnzySRw9epTpmfF4nHct4+Pj6O3t5dCNZVksIQ1MSiOrtE3VAyYYhoEdO3bYFhhKrJI2EFU2U+tFNQzT29uL7u5ujI6O8rWVlZUIBoPo6OiA3++3LbqqQSedILXjlnoOzYlhGHjwwQenzL+62Kvhp+nefTY9fCd0cldD4wOCjFIkEsHg4CAaGhogpcTnP/95AHkVxy1btuDll1/Gnj178Pjjj3Nhk5zQf6E4MPHXg8EgYrEYrly5AsMwkM1mudHH2NgYJ0zVBUQ1joFAgL1zgsq4SSaTLJE8ODiIXC6HbDZrS/xSGIOailBSljxXw8gLo/X19aGqqgperxePPvooN1kPBAJTtHyEELaOWxRmmY6jTsaS5qmyshLd3d2sfU/nq3x6dR5IywiArYiMflZVVdnqDlavXs0idZQzcYJCbk4dH7WZCxWEkVgejdOp+U/jvRm6cmmPX0PjA0Cl/JWXl2P58uW2WC5RIr1eLxYsWIANGzawR1pRUcHVomoBlJzQi1+6dCnmzZuH8vJyuN1u9tDdbjcbUNJ1cXrfzlaIBNpd7NixgxeOUCiEcDgMt9vNxovCD+RFk4eqJqiPHj2KlpYWHDhwACdOnEA6nUYqlYJpmmhtbWW2DKGgoIBlkMmzDYVCvLtRtX1UL19tMnPmzBncfffdNkqomv9QZR8oZ0DnAPlCK9IXUvMQZHy9Xi9TVZ1yCcQkor+ps2pXDVOp+Rc1dj+dgb/RRh/QMX4NjWuC00sF8jH24eFh7NixY9qyfwJ5pariIxlcYnn09fXhxRdfxNe//nV4PB7E43GmUaro6urCqVOnsHPnTlucGABXtk7nTZM3T20MSQGUxqK2K1RbKqq7C4/Hg3Q6jfb2dhQVFeHChQtobGyEx+PB4cOH4Xa7UVBQMEXRkuZCrUxW5SiGhoZ40Thz5gyLrwGTFbsVFRXskVO+xO/3I5VK2Rq2qPOtxvcHBgbg9/vh9XqnNbwzxfKd51pWXoCNqovpe/XYbKptflBoyQYNjQ8BMlpOqQQgb8iCweCUEAEZTef//Go/W/qphjVM08TQ0BAGBwfR1NRkS6aqhrC3t5e9d9Xov/vuu3jwwQdtYRsywpSMVeWYKYlLY3YaOtM08cwzz/Dnhx56iA2uKt5Gz1L19aebOzUpSmOi4iYKQ9G1al1De3s7Ghsb+Zk076rchSpxrCZSCZlMBvv370d5ebktHOU08OqCF4/HubaAvqN5c4aMCDMtGDcKOrmrofEBQQYNmKTtqR2bqqurp40LA1Mphyqdcd++fYhEIgAmwxoejwc+nw/hcJhVHIky2dnZaTPMzlj/wMAAli5dymEXghCCE9DENAImmSUqV56McSQSQWdnJ1fFfvKTn8TmzZvxyU9+kmP8qVRqyvuSF+9MetLcAXljTvUEtBAlk0lUVVXxOwH5MFgwGOR5qa+vt7V5pNAYVfCqtE21ilideyC/uJSUlNgS1U5KJf3tTpw4wVXPdA8KLREtVGVdTZccvpmhPX4NjRlgWfmSfaJlqvTHjo4OTvY5PUsnfY/uRV6x6rFPRyOkpik1NTUwTRODg4MsvpbL5VjQS60GjkajuHLlClNDiUIZj8cxODiIO++8E3fccQezYIDJHQh5ywDQ3d2NsbExPPDAA0gkErjrrruQyWQQCAQA5BPXGzduhMfjYU+citDouWTUqcLXqVyp7hTonYl66vP5bEZV3RE575PJZHDo0CFbaAiAbbdFOyTKofj9/imevrqDsywLFRUVaG9vx+bNm+H3+23/PQD5sI66c7qZoT1+DY0PAErgJZNJdHd3s9HP5XKc7APs9EPyop1yA0DeQFAoZO3atazvQvdQPVAy8MBkAxbixNfV1bERVJ02l8uF9evXo6ioiD3qRCKB8vJyNDQ04J133uFmJul0mu9tGAYnjKPRKNLpNI4dOwbTNDE2NoaXXnqJk9DJZBIbN27Ec889hxMnTmD58uW88BEllapX4/E4jh8/zkVeNAfAZBtIOkY7CaKPqslXaoji5Pn39PRgaGgICxcu5M+0i1JDcrFYjPn6R44cQTqdnjEcQ2Ejj8eDxsZGnD17dkquxjAMm7TErQrt8WtoKHB6f0VFRXjttde4WlXlY5NnaRgGe/OWZdkKqFTPkyR4yXA4i6KcCUm6L3n3qnwzsXhUSqFhGNi7dy8AYNu2bRgaGgIAhMNhHlc6ncaTTz6Jxx57jN+lp6eHu3Pt3r0blZWVWLp0qY0yqXrGqg49He/u7kZVVRXnHUzTxPDwMGsP0Vjpvfv7+zE+Ps6UVZXlpMbrS0tLp+yQ6Jlq0ZRhGLxLAia9fnomJaY7OjqYwklhISrmclJE1RzJrQrt8WtozABnHBfIe3+5XA6vvfYax5JJRRGY5JxT+GF8fBzd3d1cik/fE5WQOPoUZ89kMmhra7MVBqkGhrzi8fFxDA4OsreeyWTY0yej5fP5OD4eDAaxbds2pFIplJeXQ0rJEgFk/D/3uc8BAPbt24dMJoPx8XEcOHAAALBu3TpW5ySou5quri72xClEY5omXnzxRQCT3nYqlUJlZaXN6NN9aBej6u6rxUxqvB4AawQ52TsejwcbNmxAPB5HX18fU2Vp7qPRKFpbW9Hd3Q3LsuDz+ZhqS/ceGBhAZWUlN65R/xa3utG/GrTh15jTUEMsaojBsizmoVNcnOLgKkWQkqNk0IuLizmpaxgGyxuTXg8tIqoejQq6jrjzANiAkvxCKBTiuH46ncbBgwe5+rSgoMBmSNeuXWtrmWhZFnPrf/nLXyKRSKCsrAzLly9HIpHAggULUFtbi3A4jP7+fhYWIwbOyZMn2ZDSfPl8PpaKoN3BdFWpaoet6dg/kUhkivS0YRhoampCXV2dLcbf09ODWCyGNWvWIJfLcfJXFbcLh8NoampiLSA6rt6fxmmaJvbs2WMTcrtdjT6gDb/GHIYaJiHGDSVXDx48iLvvvptZMxSqiUQiiEQiME2Tk4+RSATDw8PIZrMYHh62qS6qxVDhcJhFv2i34GSfqF5xMBhEQUEBDMNAOp3GyMgIlixZAiAv9HXp0iW89tpr+OUvf8lhHbVAStWWB8BiZ62trUilUigrK0NRURH34q2oqLAZWCrmAoD29nYOfZH6psqEcbKbnEad4u1qg/eKigrEYjFWvXS73TYZZdM0WapY/ZuRN05zO3/+fDQ1NTHTR/3bkrQDMJlLUeeZxun1erFr164ZWVq3G3SMX2NOggwLGTkKYQSDQSSTSQgh8E//9E8sqQuAY+GnTp3iQiNgeu62s32fKidA39MC4WSr0DUDAwOsl79nzx489NBDOHfuHLLZLMbGxlBQUAAhhE1DXhVBUz3pbDbLu5J77rkHf/M3f4MNGzYgl8uhvr4eQ0NDHHoBgLa2NhtriZKx0WgUY2NjWLduHQCwtr4zXEXzS8wjuoczKTpdS0Xy6MfHx+F2u228e+e8qpRK+vuQSJrzb6Nq4KtjvZ2hY/wacxbkmar/Ojs7sXv3bjZGa9eu5QSix+PBgQMH8NBDD9k8wMrKSqRSKVRVVaGxsZF3A8AkQ4b+qRWvxAYCJsMXFP9XRcCcEr0+nw9PP/00AKC5uRkXLlzguP358+cRDoexfv161nqPRqMsgkbiapaVb6oyNjbGzT3GxsbwR3/0R2z0PR4Ps4XofbZs2cKJZCpY8ng8KC8vx7lz5/hdiOap6tWbponOzk7s378fY2Nj/DdQ6xromMfjmdJHlxhQbrfb1vTFOa/Ovr/j4+Noa2tDOp3mkI9zF6U2qZnL0B6/xm0NivuOjY3B7XZDSom1a9cCALcbVEEVnsuWLcNv/dZvAQBr62/YsIG9WJJeIKiermXlZYRJymE675POJRCPfWRkhGWGaYyGYWD37t144IEHsGnTJj6uFkw5DerevXuRSCTw+c9/Hm+88QaCwSCLlNFYaGEgATLi/vf19eHMmTNobGxENBrF6OiorXJWjZWr3jRJK0SjUVhWXolz3bp1tl0D7UgoMUzMGrVzGN23q6sLQghks1msX78elmXZdiJ0HS2ixcXFaGtr474DJB+h/n3mGrTHrzFnUVFRAZfLhfLycgghOGwxUzzX5XJxKMOyLFy5cgVDQ0M2GiOpRQLguDV5l2r1rJOiOV2fWNoBDA8P49KlS4hEIjh27Bj27duHRCIBwzDw2GOPYdOmTXyvwcFBHD582FZDQPeijlhSSrjdbmzduhXr16+37UgIapLZsvJdtlwuF2vwbNiwAY2NjdyXlySI6d3UhYBCOjTX8+fPBwBbPD2XyyEWiwEAF0dRAlkdF+3CSkpKcObMGV7oqL0jjYPCNlRfsXPnTlRVVaG2tnbOG/2rQRt+jdsWqmwA/c+fzWaxf/9+lkFQQWybhoYGeDwe9Pb2IhqNQgjBLfiIldPe3o7Ozk6YpsnURzLgqVQKDQ0N7NVmMhkuZKJziYdOC4XH40FxcTEKCwshhEBBQQGampq4IxR597SDufvuu/H8888jk8mgo6MDTzzxBDo6OtgQe71erFq1CgDw3HPPIZ1OM32Unk/eMgCbhMTatWs58ay+FzApv2BZebGyvXv38lzSokIhMZWqSd/V1dWhoqICpmniqaeestFT1b8DYWRkBJs3b0YikeBdhdq2EJjMOxDa29t516EmzzUmofX4NW5LUGy9uLiYJZGj0SiqqqrYE1bPpYWBCoe8Xq9NDoH0YciYNTY2shyC2vCcaJ8kY0ChjFWrVsHj8aCoqAiWZeHIkSO4cOECNm/ezLHqjo4ObNmyhfXtDcPg8AkJqpFXfvHiRQD5xe38+fNobm7mePzIyAiqq6vx8MMP8/s5PXsaG0kq53I5lJeX2xYYGvu+fftw55134p133mHvv7S0FCUlJchms3C57GZkOh16NZFOYR1i0Xg8HtsipCZgx8bGMDIywjkS6rAFTCbIs9ksRkdHkclk4PP5ONms0nM17LjmGL8QYh6AX0opfzW7Q5oKHePX+KCgBK7KvpmOgaIyQ8jgOGPYamiGqmaJ9gnA1qSDjOYLL7yA8+fPo76+nqWDLcvCE088gdWrV+PkyZN46KGHuIGJGmoJBoNob2/HihUr4HK5sHTpUnz7299GQ0MD1q1bx+cVFRXh9ddfx+XLlzF//nwUFxdjZGQElmVxHoPi6GR4VWlo+p4StCRvUF5ebqtsPXbsGEZHR9HQ0MCLT3d3N+cB1LzBdH+HSCSC06dP2851nk/evKrLQ9eWlJRgeHgYlZWViEaj06pr0s5H1c3X+BCyzEKIfwWgGcCXAdQAeB/AbwB4C8CzAH4gpTw9ayNWoA2/xtWgeuyqDAJ9Vvu0OmWSydsmgwbkwx5U5NTV1cVeJhU1kYY9JRqByUWBErOxWAxLly7Fa6+9xvcCgMOHD7NKZDqdRiAQsCVTSXZANWoU6jl//jySySSKi4ttiVN1HgiqEBsA7lmr7kzUuSMjqwq9UahKrUsgCYl4PI6SkhJbf9mr9a0lyWkg38BmOpon/aSCKgAssEbj6erqsgnNqXD+fTU+XHL3RQDFAP4EgE9KuUxKeReAdQC6AXxXCLHjGh78CSHEK0KIQxOfvUKI54UQpyd+fvpDvZGGBuxFT2pHJzqWSCTYIDq9eLVtnspOGRwc5BixGpOnwiEyTlu2bGGaI5DPH0SjUUSjUQSDQbz66qt45ZVXeIwA2Fj7fD4OQxQWFqK+vp47edH9VeqnaZqoqqrCjh07EA6HMTo6yto/ZGj37duHY8eOsUwELWzEsDlx4gR6e3uZQupEOBy2qXtSuEd9x1wuh76+PliWxbsLNck6ndRxNBrF0NAQS1bE43Fks1lYloV0Oo2WlhZ0dHRg//79iEajnBM5duwYqqurbZpAQogZx6+N/rXjajH+B6WUWedBKWUGwP8C8L+EEO6pl03BfwAwCGD+xOdvAjgspfyuEOKbE5//+IMNW2OuQ/Uo1TgubfXVPrIq1CIelRFC51Fyl3YA5eXlAMALCD2HQgtbt27lHQUJufX398MwDFsrQnWMan6BtOdJa0elTJqmyWEir9eLvr4+7utK3ruT4+5yuVBcXIze3l4IITgssn37ds5HqHF8CvVQaEcNYx08eJDfj96dvHWVcqqC5l0tspJSoqKiwibsRpXQp0+fxuc+9zmcO3cOJSUlPN7Nmzfj2WefxZo1azA4OIjx8XEUFhby7knH7T8arhbqKQSQJeMvhCgB8EUAo1LK9mu6uRBLAfwYwLcB/EcpZb0QYgjA56SUbwgh7gHwkpSy5Gr30aEeDRXTGSwAtnADfU8hBQKFY9RQSDQa5TaHJMUcCARsSU8yeBSDplZ+ZJhVHjoZ7t7eXjZY5eXltnASgUJR6XQae/bsYcM7MDCAixcv4utf/zoGBgbw93//91i0aBG+8IUv4Pz585xQdjY3p+dSMpRonACQSqXw3HPPYdWqVawnTxRVtZMY3WPp0qV4/fXXuRdAZWUl+vv7uRcwxeSLi4sxPDyM8fFxAHk67Nq1a3kRzOVyNv16+vtR3oPm28lcGhsbY/4+Jbm1V//B8GFi/J0AfldKeVoIEQDwMoC/B1AK4GUp5Z9cw0PbAHwHwKcAfGPC8L8rpVyonPOOlHJKuEcI8TUAXwMAv98fHh0dvYbX1LidoZb8qwVDqhGn39W+rF6vlw0NtR8kr1ZtX0hGiHR0MpmMjftOcefppJSdPVupIMswDBw7dgxvvPEGmpqa2OslWWKK7RuGgSNHjuDVV19lo71ixQrccccdyOVyuHLlCh544AEb44fi30VFRbwAAfn8QjAY5HwBja+trY1ZQwDQ2dkJIB+imj9/vi2pqhZP0Q4lHA4zw4mSwMBkc5bXXnuN54PyIdO1Y1TnSw27OQu4AEy5TuODYSbDf7VQz6eV5O1XAPyDlPJRIYQBIIp87P9qD6wHcEFKGRVCfO6DDlhK+QMAPwDyHv8HvV7j9oJpmmhpaWFvVTW6ZCRUGiAZfQrHEEPF5XKxsaFQhmEYU5gnaictMlRO3XZg0oNVFxQKu7S2tmLx4sV47bXXUFKS39QSLZRYNVVVVRgcHIQQAvfffz8AsE49GViXy4WFCxeywVbDMvQeW7ZsmcKKUSuLPR6PjfFCnn5xcTHcbjdCoZBtISVWkAoy6EA+AR6Px1FeXs769moS27LyEgpOo+/U2lfDbs4CLuezNT4+XC25qxrbjQCeBwAppQXgX67h3p8FsFUIcQZAC4CNQoh9AN6cCPFg4ueFDzFujTkCMtKGYaC5udnW/Jp6ylLiVO1/SnLBW7ZsYcnegYEBFBcXIxqNwjAM1mYH8vH55uZmZpSonbQoL0C67c7CINM0cfr0aRv1EwACgQDcbjfuvfderFmzBvF4nMMk9I8Kt4qKinDq1Cm8+uqr6OzsRDabxeuvv457770X5eXlLC2sJlIpl7Bt2zb4fD7uU6tCTbI6mTzl5eX4zGc+w0Vp2WyWNW7U3AH9pHmguR8bG0N7ez7qS0lgOj8ajdoS6+rY6aeai9GG/friaoY/JoT4ayHE/wUgAOA5ABBCLLyWG0sp/0RKuVRKuQJ5WugRKeUOAAeR30Fg4uc/fsixa9zmME2TW+pRWGM6Noeq96IaX8uyOARCRubUqVPM4lEVHwn0Oy0KmUwG/f39tkpRteMVhYcoXKM25C4rK0NhYSHmzZsHy7IQj8cRj8dhmibS6TTXGnznO99BS0sLpJRoampCKBTCZz/7WSxbtgzt7e1oa2vjBUNFLpdj40/JWGLJUFiKFgmSiiABMyBPqzx48CCi0SgOHDiAkpISXkxpXoghlclkbNIKhYWFWLduHRd0qaCdAYWC1L+ZumjS30yVuNC4Pria4f93AN4GsALAZikl1USXAvjrj/DM7wL4TSHEaQC/OfFZQ8MGKhIKhUIoLy9nT5uMGrFFiHZJyVZgUikSmPREAbDBIkYMebZqxajf78fAwAAb0/b2dly+fJmfbVkWSktLWbtG9WLpXh6PB8uXL+dmIOFwGCMjI/D7/SgpKcGRI0fwzW9+E5lMBvfeey9WrVrFuxm/34+dO3dyU5OSkhIWHVO15AFwgxVafLZs2YLXX3+dNftVmqsQglsVXrp0ieejpKQE1dXVzGTKZrOspRMIBHDixAmmvGazWV58iEs/XZUuAH73/v5+7gGsUmhp50DhnukWdI3Zw4yGX0o5LqX8rpTyP0gp+5XjXQBGPshDpJQvSSnrJ36/KKXcJKVcNfEz8+uu15h7ME0TL7zwAo4fP85NQIB8wtOy8lo5S5cu5cQjdacyTRPBYHBKqIJ+J4NFi4MavggEArYkaTKZRHV1NdxuN8ftgUlZBvJWqY1iJpOxdd/q7u5mj5wSsK+88goAYNeuXbAsC8899xxTJula2omcO3cOa9asQVVVFZ555hns3buXufUEYs6UlpbC5/MhFAphwYIFAMD9altbW7F06VJ4vV48+OCDLEA3MDCAcDiMqqoqpFIpmKaJwsJCpmoeP34czzzzDCzLQk1NDTNzSNdHXYRm4tWHQiHWGwLyCzG1PqRQl5ZVuP6YMbkrhPgEgCYASwB0SClPTSRs/xOAAgD3XZ8hasw1WFZeZOzxxx+3GfDe3l64XC4YhoG77roLL730Eurr67mQaeHChYjH49xQZDpGCP1cunQpzp49a/P4idFD3rvX68Vf/MVfYPXq1aitrWUDRl59IBBgLvrmzZvh9Xr5Xk6++/DwMO655x5ks1k899xzyOVyKCwsxGc/+1mMjIzYjCEZf8o5ZDIZ5ucDk/IGuVwOLpeLi8wymQxz9anCuLq6GuPj43juuefQ3NyM9evX8zyUlpaiu7ubu28lk0lb8Ra1nlRj9+l0GqdPn2Z6Kr2v2iCF5puam2/btm1a9c3pfte4Prgaq+fvACxDnsb534UQowDqAHxTSnngOoxNY47Ayc4hDj4pRJLRoHCPYRi444478MADD8Dj8bBRPH36NB9zUivVxuiZTAZPP/00HnnkEQCTbCDy6On8CxcuoKGhARs3bmRuvd/vZ/YLMVlI28br9SIajTLbhUTPgHwv3ng8jgcffBBAnt2zZs0aAMDQ0BBrANHz1V6wyWQS27dvh2EYfP977rkHd9xxBxdE9fb2IpFIcO9cWgw8Hg97+HQ/lf1EHH41ZAXkjfGGDRtsrRhN00RHRwc2b97MiyR1z1LZT0QnJdE5yn1oz/7mwdV4/KcAVEgp/0UI8Unk4/0BKWX6eg4Q0AVctzNUPj7Ffy3LYk+R4tfTFWk5Od+ZTAZDQ0Nwu91cCEVJRPKA6RpSu6TrKYa/YsUKVFVVMV+eDJtK6czlckxdJO88nU7D5/MhnU5jaGiIFwPyiLu7u3Hp0iW89dZbWL58OQoLC1FSUsLG8dSpUygsLLRRRQFMaSdoWZOiaQ8++CAymQzPh1OrhrzuVCo1pbCNdjVdXV28iDnn1XlPyheohWhdXV026mckEuFmN6pOkubh3xh8GK0eS0r5LwAgpfwlgFdvhNHXuH1BBpmShsR9f+WVV7jhhjP8Ql6504j09PTglVdewZUrV9iDVWPQ5AETnE1YSGrZ5XLZ5BlUo+/xeFBZWYlwOIyBgQGO7SeTSezevRupVAqHDh3iMIjX60UsFkN3dzcSiQQ3Bd+0aRNKSkowMjLC8f2CggJUVFTYdj2WZeHy5cs4dOgQ0uk0Nx/ZtGkTGhoacPz4cS4SA4B4PM7vQ7mHp556is+h8E48HudEdXV1NYeZnIwbKvqixGxvby/i8bgtnk+Nbeg6l8vFixfRaKf7e2ncWFzN8AeFELGJf3Hlc1wIEbteA9S4fWEYeX174uYTG2Z0dJRZPRTyAfLGrL29nXu7EizLQigUwvDwMF599VUWEVPDF+piQNfQPcloeb1eVFRU2EIuAFg0LJ1O29goQ0NDXLH6q1/9CoZhYPny5TAMA8lkEn/xF3+Bu+66C+vXr8fOnTuxYcMG3kkcOnQIV65c4Xkg/j0ZWhr3ggULUF9fj+HhYVuc3OfzYevWrUilUmyoT58+jUwmg6NHj2L37t0AgIcffhg+n4/nitg2JE+t0ilVTXyq6t26dSvH+IPBIBfAqXUM8XicQ2k1NTV8vg7t3Ly4Wqhn+dUulFJeNw0FHeq5PUEGxKlxY1kW+vr68LOf/Qxf+MIXUFtbazP+asEPeaVUgUvyv8RAoarawcFBNDQ02LR11J8U/yapZVVOIBaL4dKlS6y5Q9oy+/fvRzAYRG1tLRvPoaEhXLp0CSMjI0gkEti2bRsLqxEikYhN7kB9HsX01TkB8hRVWrzUGD0wWT1M15IGjmEY2LdvHxoaGtj4q+ErujeF2tQ5feKJJ7BhwwYUFhbyXFKYiBYvmjNnGE3j5sGH0eoJALhbSvlzx/F1AM5LKYdnZaTTQBv+2wPOClI6RoYrEonYGDmklePUqFcNIp2nJhsty0JFRQVLIQSDQfT19aGgoAChUMimNukckxr7J5ZMZWUlANgEyizLwokTJ+ByuRAOh9HX14cXX3wRX/3qVzk/AeQ9bLWDVzAYxP79+7Fz505m7JDRVw2wSuukWP2hQ4ewYsUKXkjUfAeJzzkXxaeffhqf/OQnsWPHDk4Cj42NoaqqiiUrqFuYyloiw64adTLy1PBFzaNoo39z4sNo9exBnrrpxPjEd1/6WEamMSdgmiZ3bXJ2wQLAkgElJSVsfKhxB12/f/9+ZsvE43FO4hKtUGX+DAwMcEN0r9fLKo9kyOiZljXZUIVCNBTuoC5YNMbi4mK0t7djyZIlGB0dxfLly1kfvra2FmVlZcwyAsC7C7fbzX1mAdj0giifQBWzsVgMRUVFrDFElNBUKsUhHzK0fr+fF8CxsTHuTkXz6vF48NBDD/FiQMa9v7/fpt1DyVnKAaiaRLTo0TMvX76MlpYW3Hvvvfy30Ub/1sPVDP8KKeWUWL6UslcIsWL2hqRxu4EMrtvtZmmDnp4eCCGY5x6NRnHq1Cm43W4Og6jePyUOS0pK2FiSkSODaVkWNwoPBAKIx+M4ffo08+GBvMwBhTtooVBDLbRrqKiosLUK7OzsxNjYGI+fGqqQ2BkAZs80NTXZktKUtH3yySfx+c9/Hg0NDTahNWAyhAXkY+1EIaWdglod3N7eznUMfr8f9957L3K5HAoKCnh3QcacFg6V0koe/HRFbk5xN1IRLSgoQGVlJS9q2tjf2rhaqCcppQx80O9mAzrUc+uCPFsKyahsGjLYUkqEQiH09fWhrKyMKZlO/XXymE3TxMjICIcmiJFCsWvATltU9eqp6jSbzaKsrIxj3yrfPxKJcIEVNVf527/9W5w8eRL/6T/9J7zzzju8mxgcHJwSPlLfOxKJwDDy2jVEb3SGR0zTxN69e1FeXo5wOMyVyWpYx0mxBPIU0bKyMpw6dQqJRMLG9adFsbu7m3c7M+UGrmbE1aIwlVLqHJPGzYkPQ+fsEUL8u2lu9LvIyzJraEwLlQ7Y2dnJjJgnn3wSL7zwAitAejweDid4PB5IKTE0NAQpJevTOKUA9u7diwMHDqCoqIjL/QHwvVTaYiKR4AWnp6cHpmmirq4O4XAY2WwWhw4dQiaTYUNGIZ5cLoehoSHuoOXxePBv/+2/xTe+8Q10dXXh4sWL2L9/P/bv34/Lly/j+PHjNo+d0Nvbi6GhIYyNjfHv9E7Oc2k3Q6yh+vp69q5VBg2Nx+PxoLa2Fj6fD7W1tdyYxTDynb+6u7vR3d3NlEp1rnp7e9HT08MUUSfTSU2yU4/fjo4OW09cbfRvbVzN478bwE8BWJg09NUADAC/cz05/drjv3VgWRZ6enq4GxOFbqjLFHnGqndODbzVKlLivpeXlzOrBMh77CtXrsTrr7/OIYmenh4OX6g0TQrZUGjk/PnzLNBGScrh4WEOOVG7wmw2i2w2izVr1vCO4/DhwxgaGsLmzZs5tk7/vvWtb2H79u1Yt26drdgJmEwWE7soHA6zF+7cHdDv5O0DsDGCVGNLOxTa1ezbtw+hUMjWLIXm19m1ikTu1NaRxNOnHIDad0CtY9C4tfCBk7tSyjcBrBVCfB5A2cThf5ZSHpmlMWrcBiBuPqlmqi0Hh4eH2WNUHY5cLschE2LRuN1uBINBjvcTg6W8vByDg4PcJ9cwDFtDdFp0Tp06hZKSEhhGXscfAI4dO2bT8lEbmtPYKeegFiuFw2GcOnUKIyMjGBkZwYMPPojCwkJOVH/7299mkTVixIyMjLBsASWO3W43TNPEz372M5SVlfFckAEnlk1zczMsKy/jTF2sSC5C5eTTNdu2bUNTUxO/j7pQOj1zCt3kcjnm6BOcTWKcsX+N2wdX8/i9034xgeupqqk9/lsDToqkmmikgqzpWD1qGEPVrFHj0nRvisOrcX6ncTNNE8888wyWLl2KxYsX8zm0syCDa5om9u3bh+XLl2P+/Pm2RuR0n9bWVjQ1NSEej2PJkiUYGBjA/PnzbdRJtX/siRMncPToUdTU1OBLX/rSFAoqja2oqAhdXV3YtWuXjT5KTKDu7m729um6p556Crt27bJpGNEcTlcPodYo0P2pW9fw8DBCodCULmPawN9e+DAx/iiAXuVnr+OzhgaAyVDFyZMnuRIWyCtUjo+PsxGqqqqyGX06X6UbqnF6kj8GYJP1pUKrd999l9k8FLcG8t7psmXL8Pbbb6OoqIj15SsrK9mLJoNMXbKKi4vR1taGv/3bv0VnZyd/HwwGudr1woULbPSp+QjlBqLRKLq7u1FYWIiHH34Y77zzjm2xooRsMpnEQw89hI0bN2LDhg0YGhrincrQ0BAvID/72c94Xvft2wfDMGyLBGna01ypRr+3txf9/f3cW4AkF5LJJLZu3Qqfz4fKykouRKPrtC7+3MHV9PhXSimLlJ9F6ufrOUiNmxdq+T4pSgYCAfT397P3SzTJwcFBAJPJSrUJh8oWUe+tGnw61tbWhlwuh9raWl4oKioquMjLsiy88847+OIXvwiv18utBeneavvDqqoqFBQUcAtEl8uFbDaLaDRq230YRl5Tv6KigusGKJwFAFeuXEEqlUJJSQkCgQBTSGlxoQWqtLQUXq/XppoJgMNbNK7lyycL53O5HPr6+pidFIlEMDg4yHRR57xRwnxkZISlo+nvQ2E3+jtR8lddPDRuf1zN49fQuCb4fD5Eo1GbZ1lZWYl169bh8ccfZwNIzbfJ4JOxAfJJW2oPqFblkgdMCwwABINBPPTQQ+z99vT0oLu7m0XTLMtCfX090uk8/4Bi5FQk1tfXZxsrhXjWrVuHhx56CJs2bcLKlSvZqPb09KCjowO7d+/G/v372Xs/ffo0TNPktpAkCUGGFciHi+LxOMbGxhCJRGyLhWEYuHTpEvr7832OKHzk8Xiwfft2JJNJGIaB7du3o6CgwOaNU46CPHx6H6KrUg0AkNfSoVAptVJMp9O2WgO6RmNuQBt+jQ8Nomvu2bMHx44dQ2trK3uWhmGwt06hjjNnzrDxcnaRklKisrKSDRnFtaPRKPbt24fe3l4OSxQWFtraKRYXFyORSCCRSGDLli0YHBzEyMgIGzW1qbeUEolEAj/72c8A5EMmHR0d3Fs3kUggk8ng+9//Pu666y5OOi9atAiPPfYYF3tRoxQgr1Dpcrng9Xp5jEDeyJLBraqqghCCdx80f11dXVi2bBmi0SiHoADYGrN4vV7b4uVENptFf38/N32n8BktDmrryvb2dvh8PnR0dNgE8DTmFmZM7t5M0Mndmwcq7ZAabpw4cQJut5t17AlEqSwqKoLP52NPmUTVqAI3l8shm81i3bp1Nq0dVT6BvHNVM15NIluWxSqfzgIj2i3QtalUCt/61rfwN3/zN1MKrwgdHR2YP38+h5ToPsS8oUbs9JmuVwXjSN+fkrSkra/q43d2dqK2tpbncib9etXgq5r3zuS4miCm/gaq5g/p56u7Eo3bFx9YpM1x8QMAVkkpfySEuBOAR0r52iyMc1pow39zwLIsdHV12Vr+UUMSwK67Qwbp6NGjGB0dRWNjIxtZMjr0OzUWISExJyOFPH96lhqCyeVyAMCVqlQJrMoOqOP3eDxIpVL4xje+gb/+67/G2bNnUVRUxKJjBFLDjMfjkFJCCAG32829c/1+PzNjaHdDiWdaoMggO5U3KXyl7lrUzli061ENu7pwqXUQquFXZTBIAK69vR2bN2/GkSNHmFaqQzpzBx/a8Ash/hz5wq0SKeW9QojFAH4ipfzs7Ax1KrThvzlAQmtut5ulBUgLxtnqUKUIkreu6uCo5xPN0innQNeTrDJp4KgGEJhccHp6elhUzDDySpTZbBYulwvLli3Dc889h/r6eoyMjOD8+fPYsmULjhw5gvPnzyMQCKCqqgqJRGJKFywVVAlMYm3r1q2bQptUQznxeBzhcJiLoki3Z/fu3XjggQewadMmvi+FaLq6unDq1ClW8FTvqbainG5RUOeDFt558+bZdhMacwcfRp2T8DvIN1bvAwAp5XkhxKc+5vFp3OQgSV4A7HnHYjFcuXJlip67avTJKJJhGhsbs3mrAGxVt86fAwMDCIfD/EwK/VAeQAjBBUtUyEX3VwXQqHqXFqq3334blmXh/PnzaGhogGEY6OvrsxWWOXv1qgtNY2Mji7M5m4wD+XDMK6+8wvNFYnP0/aOPPspKmxSScQq30TPVdoeknqkqjNKc0NjouGHk++aqxzU0gGtL7loy/3+DBAAhxLzZHZLGzQYKLYRCIRQUFPDx6upqbNiwAcFgELFYjJk5ANjoE9+cQC0GaWEgpo7KTlH1Y1RVSuKnW5bFht3tdvO96b6XLl1CJpNhaQKPx4PNmzfjgQceYHXOn/70p0in0xwDP3HihK1Juco+ol0LsWFaWlqYQkrvptJaDcNAeXk5PvOZz6CkpISNO+U4ADCXnp6TSCRsonLV1dWIxWLMJkqlUpwopjGapomWlhZ0d3ejs7MTkUjENlZnrkNDg3AtoZ5vAFgF4DcBfAfAvwWwX0r55OwPLw8d6rmxoHBMTU0NTNNEX18fNwanRUFtIEJGmoqfVAOkdm5SQyTqM8joO7tk0fUUjlHDI729vZBSori4GP/lv/wX/OpXv8KvfvUrFBYW4v7770c0GkVtbS1ef/11NDc3wzRNvPDCC1i+fDnuu+8+Tsqq6pnODlOWlZeXvnjxIrZs2cJhH7X5uBp+IWlol8vFQmcUZwfyuwKSpnBKSQCTu6xly5bhtdfyKTXa3dA9aDHp7e1lRVG19kBjbuOjJnd/E8BmAALAz6SUz3/8Q5wZ2vDfeFA3rGg0ing8jm3btsHr9SISiSCbzdqkf0tLS1nwjIy+y+ViiQA11u9k3wBTk5TqIhGLxTA2NjZtFyrC0aNHUVJSgldffRUrVqzAwMAArly5AsMw8Nprr8Hj8aCpqQl9fX0A8nTIoaEhlJSUwO12I5vN4ty5c6zHT4Vcany/sbERAFjSQZU+AGBb4JzhF8pFkFGnnYeaJJ5uTpzhIlViQWX2aIOvQfiohn858qyeF4QQhQA+IaV8bxbGOS204b9xIOZNS0sLVq1ahfLycjaYtbW1NiVI1TOna8nAA7B976Q2TkddVHcQqiElaQTacai7CQJde+TIERw+fBh33nknFi5caPPqaTFLJBIoKipi+QQhBMrKypjpozJwKOaeSCTw7rvvYmRkBDt37pyWPkpxezV+D0zqEZmmydo5KsWTxk+7CXXxUHWBaAHSSVuNmfBRWD3/DsDXAHillMVCiFUA/lZKuWl2hjoV2vBfH0zHHSePWjWwmUwGra2t2LFjB5+rXqcmRdV7kvEm40lGj4qUphsP3UttIkLNyj0eD+84qqqq0Nrailwuh+LiYhZdO3DgABYuXIg77rgDK1euRCaTQWlpKY4dO4ajR4/iwQcfnCKGRqGkaDTKzdXp2ep8UI0Cjd25UNH3pNRJFczqwkY9d1XQovjUU0/h4YcftlExTdNkdc2xsTEsWLDAlijX0FDxUQz/SQD3Azghpbxv4lhcSlk+GwOdDtrwzz6cNEz1ODBVC/7o0aMIh8MYHBzE5cuXuVuVYeQbg1MRkXodGWwypJQvePHFF/HYY49NW0w1Xcjk8OHDmD9/PkKhEE6cOIHh4WHs3LmTxxqPx/k5Pp8Pr776KsrKylh/3jAm9fjJaPf29uLKlSsYGhpCMBi07WZIn0cdD/1OzKZ58+ahoqIC0WgUdXV1ME0TJ06cQGFhIe8iiAarhnui0SjH9ml3RD8ty7J5/JFIBGNjY9z2kaCNvsZM+DDqnIT3pZQcQBRCuDDB8NG4fWAYdoVHgmmarKHjPJ9a8o2Ojtq46x0dHfD7/ejv70ckEmG2STwex/HjxzmeTU3QH3vsMd4JqEqWlDNIp9MsmmaaJkZHR1FcXIzBwUFOjlqWxSEol8vFbJnXXnsNyWSSm4sTDbWyshI+n493MdXV1airq0NJSQmqqqoA5GmYQgiWcaDxZDJ5RXKPx4OKigrmyVuWhdOnT/OOiPIGdXV1cLvdGBsbY1YS9ROwLIvbOJIevtoQncJRQJ4KS6J3NG5t9DU+DK7F438CwLsAHgLwKIBHAAxIKb8166ObgPb4Zw9EeaQGH2oFKfHfSXZgpkQiGSc1jKNW6RLD5+WXX8axY8fwhS98AevXr7eNQw2hqGEdGgMVS5Hnq1YMp9Np9PT04Oc//zmqqqpQW1vLIR11nCTvcOnSJWzZsoWPq3PR3d2NS5cu4Z133uHG6hRPJzYQ7RzUXr4k1EaFUplMZgr7iZqqAPnm8tlsFolEgkNTqvBaJBJBSUkJ9uzZg02bNjEfn+ZWQ+Na8FFCPQLAw1BYPQCeltdR5Ecb/tlBJpPBD37wAwwMDOCJJ56Ax+NhzRhq9uH3++HxeKaVJCCjSFRKCldks1mbbk5nZyfOnDmD+vp6XiAAcGUthUbUcIrK2KG4NhV6qYtTJpPBE088gffffx8VFRX4yU9+gqKiIjz++OM4c+YMgMkkNABcunSJG6CoiWV6j/Pnz+PEiRP46le/infeeYfZRSQZMTAwAJ/Ph9deew1jY2PM/lErmNUCNPqnUj7VCmPLsmwN2+kYxflffvllbNy4UevqaHwofCjDL4T4VwBiUsqyGU+6DtCG/+MHGeRTp06hvr4eXq8X8Xgc2WwWBQUFzFtX9WMA2PjudB8CGWXivathI1WnxslTD4VCLHZGC45TjI1+J9Di0NHRgWw2i8LCQtx3331Ip9N45plnsHbtWpw9exYulwvbt2/nlo40RjWfoCZkyeNftGjRFG0gNWl75coV5HI5fOYzn4Hf7+fxqJW4Ho8HR48exUsvvWTLYajCbNXV1TZhNZqbVCqFZ599FrlczibdoKHxQfChYvxSyn8B0C+E8M/ayDRuCCiOTqyU9vZ25seT0fZ4PGyAqUKVZInpHj09PTajZxgGQqEQe7pUmUvSyLFYjJ/t8XhQU1MDj8eDrVu3clcrp9Gne6hj7+/vRyqVQmtrK9xuN1atWsW5hV27duHOO+9Ec3Mzdu7cCa/Xy89RGUTqGNWk8vz585HNZqcUSdGYKyoqEA6H8Ytf/ALPPvssSzpHIhHufHXw4EFYVl4x9NFHH7XtZkieWkoJ0zRx6NAh7pZFobIjR46goaFBG32NWcG1hHqOAKgB8DKAK3RcSrl1doc2Ce3xf7yg5OPixYuRSqWYEROLxVgR0gnydEmmwO/3Y2hoCJcuXcKFCxfQ2NjIDJ/h4WEAYH47AOa1x2IxTqaqhl019mooRw2Z0O/Hjh3D2NgYFi1ahLfffhuhUAhdXV343Oc+hwsXLnDy1O12c8hpujmgRuWqV0/MI9ohkEBcKBTiqlk6p7W1FevXr+cewNPVHZCm0Nq1a23zQGMyjOmlknX/W42PAx9FpO0vZ2E8GjcAZEDj8TiKi4tRXl6O+fPn2xgiTjolwTAMZp0EAgG0t7dj8eLFcLvdXERE1ajbtm3DqVOnbKwT4uKrBp8MpLNSlQq91DHv27cPCxcuhNvtRkdHB37jN34DjzzyCC5duoRnnnkGq1evxpkzZ2ycfLWxiZOOGo/HObSkGm2Xy8U7EQAsEKdee/r0aZSXl6O2thYtLS145JFHOFTT39/PstU1NTWcHyCjTmEzKoirq6vjRUENkWmjrzGb+LV0Tinl0en+/brrhBCfFEK8LIToF0L8QgjxlxPHvUKI54UQpyd+fvrjeBGNq4O82e7ubmSzWYTDYQwPD9sMcTAYtImJqfF5wzDYKBmGgebmZlRVVeHcuXN8vRq6UcXcVKNHhratrQ3JZBJ79uxheiQtBrQQRCIR9pgXLlyIf/zHf0Q0GsUnPvEJLFq0CEeOHIHb7cbDDz+MRYsW2RqgezweTjY76ahkvGnhaWtr43AN6esD+SQsJYX7+/uZuVNfX4/nn38eP/nJT7gFJL1bKBRCOBy2zVU2m+UGMzS25uZmWw4BmBRf09CYbfxawy+EeE8Icdnx73UhxE+FEFdruv4+gI1SykoAqwFsEULUAvgmgMNSylUADk981phFqEZPSslNvYUQbPxaWloQj8dZTZPaBqbTabS1tbHxV/vaplIpZuqQgSaPndoo0oKjhmqSySQ2btyIN998Ew8//DBGRkaQyWRs59FYqcPXHXfcgd/7vd/D4sWL8Yd/+If4vd/7Pe5Fe+HCBdTW1mLHjh02iiWFlFThNyAfpyeqJvH7PR4PLl++jMHBQVvrQrpPTU0Ni5/19fXhn//5n/HlL38Zfr+fcxBEPVV74AJ2RVJ1HGorRTX8paEx27iWAq7/BuCPACwBsBTANwD8vwBaAPxwpotkHpQVc0/8kwB+G8CPJ47/GEDDhxm4xrWBYuiZTAbhcBgbNmxgT5MMDRnCuro6eL1emxja8PAwh0QymQySySSzegKBAGvKU6JSDdOQJz04OGiL0wcCAbz++uvI5XLMdOnr68Mrr7zCdQXAZLz/6NGjuHDhAv7u7/4OCxcuxHPPPYcDBw4AANauXcs0Shpjb28vNxWnZGlLSwsXYRGFkgw0LRbnzp3D3XffzQbZMPLicmrBFACsX78eTzzxBFcm0/saRl6nPxgMor29HZ2dnbAsi3dBaoGaU9eIrtfQuB64luTuCSnlGsexbillrRCif8Kjn+naTwCIAggA+P9JKf9YCPGulHKhcs47Usop4R4hxNeQ1wiC3+8Pj46OfpD30sBk6CSdTmP37t3YuHEj97Ul3r2afHVy2tXmKpZlYe/evazKCWBaZU6iMdJzvV4vjh49irq6OjZ23d3dHIun8wzDwP79++H3+3H+/Hns2LEDlpXv8FVYWMgFZh6PB9FoFCUlJbbeshQ737dvHxYvXoxFixax3DGQr3otLCzk2Du9k5pETqfTXJylsnCIdknvrN4DgK0FJNFhqQG8sz0lhb1myqVoaHyc+CjJ3X8RQjQBaJv4vE357qqrhpTyVwBWCyEWAvipEOKa6wGklD8A8AMgz+q51us08qAiIIo1L1myhL8jtcxoNAq3243q6mpbgnU61o3f78fo6Chefvll3HHHHaisrEQ2m+V7El2T7llUVMRGdN68eRy7N00TL774IqqqqtjYPvXUU3jkkUewfft2xGIxuN1umKaJoaEhvP3222htbcWSJUvw+OOPw+PxIBwOs4dPuQMaeyAQwJUrV7gIjXRwnEaWFh31Wq/Xy2EfZ8iJ5pTkpQHw/KoLCVXn0uIXjUY5T0D1Bjqko3GjcS2hni8D+D8BXADw5sTvO4QQBQD+4FoeIqV8F8BLALYAeFMIcQ8ATPy88IFHrXFNID38ZDKJ5uZmuFwudHd3syFyuVw2TXxnUheY1PDx+Xz4+te/zkYfANxuN1wul+1cKSU3JCfPmRYaIL9AkDZPJBLB8PAwHn74YQwPD8MwDBQVFSGbzaKtrQ1vv/02ampq8Du/8zvYtWsXhoeHOUxCP1UDbRgGysrKEIlEcOLECQCw8ffV3Y0aTgLAnb/UxY6eQYZ+YGAAxcXFSCaTME3T1q2LfqrVxYODg+zxl5SU2GL9Gho3Etekx/+hbizEnQCyUsp3JxaJ5wD8PwA2ALgopfyuEOKbyMs9P361e2ke/wcDGW41rABMhmZcLhdTCFWefEtLCxobGzk8onZ7IvYLqVuqMWoyZJlMhjtJkQQBJXellBBCcJhE9Y4Nw0BnZyfefvttvPzyy/B6vVixYgUikQiWLl2KTCaDRx99FGfPnrV1l3JW3hLS6TSGh4enNC6h8yhXoTZtn65hurOmgKqPSV9flZ7u7OxEQUEBQqEQyyaXl5cjHo+jpKRkSghJQ+N64EOHeoQQ9wL4HoC7pZRlQogKAFullP/511x6D4AfT8T5/xWAVinlISFEBECrEOJ3AaQA/B8f9GU0ZgaFeIhLrho/MuSA3eBTKGfVqlW2+5CUAFEVqdiJNPJVY6vq66vaPhQeURkyQD7MtHLlSjaub731FiKRCO6//36cOXMGBQUFWLZsGReXpdNpGzNGNfpOOWkyrpTLoFAMjZuKs4DJmL0qkKYuFmr1cjKZhN/vZ/qmuqCQFlEymUQoFOJCNSklRkZGtNHXuKlwLcndo8izer6v6PGfup76PdrjvzqcHq/q8avGT90BqF4uKU5u3LgR6XQafr8fr7zyCguQOQ0WXU+8drUtITUxIVCSGIBNq/6ZZ55BKpXC5z73OYyMjOAXv/gFlixZgqamJvzoRz9CbW0t3njjDWzfvn2Kd93T04Px8XGsX7/eViVLNEwShaPWiaqBBvLGnhbBnp4e2+5kup4EBLXa16lUOt3uyrnQamhcb3wUPf5CKeXLjmO5j2dYGh8VFJt2xuXpX3V1NYqLizlUk06n0dvbi2g0yhIKw8PD2LJlCxv94eFhrsidTooZyHvT4+PjKCoqsoVbKOFLx7LZLEzTxLFjx5gjTzmHBx98EKtXr+ZaAJfLhfPnz+Oxxx7Dl770JWzfvt1WHEX3DYVCrHdDIaNMJoOWlhaYpomCggK+p8qdn874VlZWIplM2qimMxlpSv6qC0lPTw8vgOp7U+5D3T1oaNwsuBbD/7YQohgTDB4hxDYAb8zqqDSuCTPxwQE7f3/Pnj3o6+vDli1buA0gkA9jVFdXc1OS0tJSjIyMoLi4mCtvKcnpXFyKioowPDyMAwcOIJ1OIxKJcNKYnk8qlm1tbRgaGkJDQwOzfzweD8bHx/Hkk0+iv78fGzduRFVVFcbGxniHoRpk9dlerxfNzc1TKl5XrFjBFbuJRAL79u1jPr8qtEbcfErmkodvmiZaW1ttxVfqc+keqqgbFXapSWIqYNMGX+NmxbXQOX8feVplUAhxDsBrAHZc/RKN2cZ0CUk6TgaHYtMbNmxAbW0tgElqolqYRDx1MrAjIyO4++67OcRCxhHIGzaibG7fvh1AvtUhtShUQysUk89kMhgaGmKKJu0K3njjDVRUVOCNN95AcXExPvOZz+DJJ5/E/fffD5/PZ6srcIZgKNewevVq7ljldrt5HtTFjaqR6Xpi3kwX0snlcshkMkin06y9Q2Gyffv2IRAI2PSAaCxX+5toaNxsuBatnhEp5YMA7gQQlFI+IKU8M+sj0/i1IKNMHqpKQ+zp6eHz5s+fz0YpFAohmUxi2bJlTIckQ2xZFqqrq1FUVIRnnnkGfn9ejZvu2dvbi97eXrz99tvch5a48sFgEIlEgseRyWT4/qlUCkuWLMF//s//Ga+99hosy0JVVRW2b9+O4uJibNu2jcXi7r77br6PauRV0TY6RoabNILq6uq40OzAgQOcW6AFTL1+up2EYRjw+/147rnnWGNfpWwWFxfz4kJhHpKZUMekjb7GzY4Zk7tCiP94tQullP9tVkY0DXRy1w7LstDV1QUhBLfvKykp4fZ8QD6pSl68GhLyeDy2ClXDMFicjFocbtq0iROmJCNMTJhMJoM///M/x3e+8x0uoKJdwNjYGNxuN7LZLM6dO4f6+nr4fD42sl1dXdi/fz8WLVqENWvWYNOmTQAmQyiDg4MYHx9HVVWVrXWjYRjMVHK73TYuvJOqSQuUuvug+6uhKGLyqG0eAXDLw1OnTuGFF17Arl27AMCm4a8yllRFTQ2Nmw0fhs75qYmfJcjr8R+c+PwlAJ0f7/A0rhWqd0kerdM7Js/d6THTd1RcRXx8YrXU19fjwIEDsCyLDR0ZRRJ08/v9+Na3vgWPx8O8fo/Hw+JvQF6UbPPmzUilUnwfEnd77733MDY2BpfLhTVr8kogTzzxBDZs2IB169ZxwVlpaSmOHTuGc+fOobm5GaFQiFkzJH0MTNYaEFWzv7+f3109RueXl5fbPHJ6P1rgSJaZGq5bloU/+7M/Q2NjI7Zs2WLbaahhIw2NWwkzhnqklH8ppfxLAIsAVEkpH5NSPgYgjLxYm8Z1BoVyAKC6upo92oULF7IejHoOkPemI5EIjh07xuEfMlykrUOhFa/Xy1WqamUrLTLkPR8/fhyWZXHXLMvKNxpZv349amtrUV1djddff51DRT09PTAMA/fffz9qamrwqU99Cm+99RZOnDgBwzCwYcMGTiarYZnR0VFs3rwZAHDw4EGbPHQ4HLblKZwLFDF0KNlbV1fHDVYINE+0MKoc/L6+PlRVVcHn8+FP//RPcccdd0yZW7pWQ+NWw7WwevwAVC6fBWDFrIxGY0aoBs4Z3nA2+Va9+/7+foyNjWF0dBTLli3j47FYjKmLV67kG6sZhoFwOIzu7m7s27fPljugeL3aJtHj8XDLQEIsFgMAXLx4keWcc7kc0uk0XnrpJXzve9/Ds88+iy996Usc19+0aRPWrl1r0+wHgOLiYpw9exaGYWDr1q1IJBK8eBGtU5U2HhgY4F0QSSSruQaqqKXraYEBJgu1vF4vgsEgkskkjh8/jkgkgjfffJMLvKZjUGlo3Gq4FlbP/wDwshDip8hTOn8Hk7LKGtcB5Gk6i5iEEGykyHOvqKjgFolqJ6lMJoOOjg6mdI6NjSEWiyGXy2F4eJiFz4C8Bk8gEAAwqdqpxsHJSNI9KWxkWXl5ZlooaOyXLl3C6dOn8Xu/93v4wz/8Q3R1dbGCpdOI0q6iv7+f2yYaRr5PrloYRu+vxvtpjL29vQgGg1i+fLltsVSrh1V5CTVcQzufhoYGHDhwAA888ABfo8b3tfHXuJVxLayebwP4KoB3ALwL4KtSyu/M8rg0HAgEAtxKkMIdwWAQg4ODtnCNaZrIZrOsSU8GyufzYevWrUilUqioqOCQzPr169HU1IR4PI6uri7EYjGUl5dj/fr1Ng+XFhtKnmYyGRw6dAgPPPCArbiKFhrS2z969ChGRkZQWlqKn/zkJ/B4PMjlcrj77rvR0dFh48wD4PuTZw5MVgrT7+TtO/nzatFYLBaDEAL9/f18XX9/P2KxGPcczmazzLd3snTI87csC+3t7YhEIgCgjb7GbYEZPX4hhIcaqUgp+wD0Xe0cjY8famXq+Pj4lO+puTlV6Kp6OadOnUJrayuamppYkEw15JFIhBkyHo+HfwdgY60QG6i3t5epjZZlYWhoCB6PBy+88AKCwSCLvpEhX7ZsGRYtWoSuri7MmzcPbW1tuP/++7mBy4ULF7B161YAk4lZYhgJIVBSUoL+/n5cvHgRCxYs4OeOjo6ivr4ehw4dQmNjIxKJhE0CenBwEOFwmMNSauEWefxAnudPeRJaTKhnMDApTT0wMDBF+kFD41bH1UI9/yiEOAngHwFEpZRXAGCi3eLnATQh34mrbcY7aHxoqOEcSjgKIWCaJrxeL/PKDxw4gIKCAqxdu9amJ09Giow9kA+BUAMWamtIRl71nlWvVk2alpeXs0GkmDlV4wLA4cOH8b//9/+G3+/HL3/5S8Tjcdx33314++23sXLlStxxxx0wDIOLyQzD4LAMjaOmpoZlHe6++248++yzePTRR+H1emGaJod/Vq1aZSs4I3YRzRGFtQ4cOIBAIAC3242xsTEUFBRACGEz+hTOop65NP9OrX8NjdsFMxp+KeUmIcQXAXwdwGeFEF4AWQBDAP4ZwFeklOnrM8y5BzVsQsZWFQkzDAOpVAoNDQ28EKhtBBOJBFwuF+vCV1ZWssGmuLm6KJARdWrLqOETkmsmDjw1O6Gcgsvlgt/vR0NDA1599VXm3Xu9XmzcuJHvS8JxoVCIK4nVKl1V+vjRRx+Fz+ezvTsAZjGp8tJAvlq4u7ubVUKLi4tRW1sLy7Kwf/9+bNu2jbX/CbS4ZTIZPPPMMygrK9MNUzRua1w1uSulfBbAs9dpLBoOqPHraDSK06dPo76+nj1sKqwib7itrY09/mAwyKGT8fFxNs6kkEmJUrUN43Qa+0De+y0oKLDpz6hGN5vNwjDyss+5XA6nT5+GEAIPPPAAotEoqG0mXUsLEDU2OXjwIDZu3Ai/32+jZqoaOtTrF8jvXMh7d/LoLcvCz372M26BqH5HHH21Y5bK9b98+TLXDdBiqqFxO2LWGrF8nJgrlbtqIRZ9BuzSxmSUqdlILpfjIiY1rq0WV6n3a2lpQXNzs011k65Lp9MYGRmxFYD9Ok0gYuAQQ+f48eMYGRkBADz00EO8A3HKGFAyFshz9//+7/+eO3Op7BnAngPo7e1lgTjnQkTjOnz4MNatW8fjo05YwWBwivwyXUtzTaE0DY3bAR9FllnjOoAUMDOZDH/u7e1liiQZ/J6eHqRSKTz11FMoLi62Va6qRpB47/QZyMf76+vrbSwaACxrfOjQIRQVFUEIgd7eXkQiEfT3909r9E+ePIl0Oo1YLIa7774bu3fvxg9+8AO8+uqrqK+vR1lZGRdLTWf0qU4gEomgs7MTa9asYcPe3d1t23mUlpbymLPZrM3oRyIRm14OABQWFtrCRhTmIqMPTO4m1Dkj2qiGxu2Oa+Hxa8wySEvH7/ejvb0djY2NNsaO2sc1l8vh9ddfxyOPPGJL4hILB5j0kNUm4SRJ0NbWhrNnz2LXrl3w+XwAJqtdA4EAvF4vN0uZSWyMziVtn2w2i9raWmSzWZw9exbnzp1DWVnZtOESGmMul+OCMYrXG0a+5+6hQ4dskgnd3d148cUX8dhjj7EQm9pQRvX2Lcviit5YLMZ5CPqOEtwU7tHQmIv4tR6/EKJWCPEp5fOnhBBrZndYcweZTAbRaJS9amKrFBcX49y5czZ+eiwWQzgc5gbi1HgEyBu9trY2WJbFIQy17SJVpe7cudPWuJwqfylmT886ePCgTfGTfqdaAY/Hg8bGRtx3330oLy9HQUEB3n77bdx7771YuXIlOjo6puws0uk0Sx4QR35gYIDHaFkWhoeHuYUhGfWqqio89thj7I2r1brz5s1DOBzmHZLax3dsbAyJRIK/A/L5Ba2vozHXcS2hnu8BULn6VyaOaXxEmKaJH/7wh3jllVfYCJaXlyMajWJkZIQNIIV/xsbGbAZrxYoV/LthGJzYpVg+hYpUr9jj8cDr9SKXy6G/vx+maSIWi6Gnp8cW7yfmEOn5EL308OHD2LdvHzo7O/Hiiy9i9+7dOHHiBObNm4etW7diwYIFeP3117mal5DJZPDkk09yAtflciGRSEyRQBgfH+euWzRH7e3tU1g4aqIYANrb2xEMBnlRBPJicbSo0e5HG3wNjWsz/EIqGWAp5b9Ah4g+MsjInj9/HkVFRbam3qRv7/V64fP5WHPm1KlTSKfT6OnpQTQahZQSsViM8wOqcW9ubsbatWttHruKuro61p+hLlz9/f28WFAYqbS0FIlEAr29vQiFQliwYAGamppQVlaGt956C+vWrcN9992HcDiMdDpt25GozzUMAw888ACHf9auXTslDGOaJrdUBCZF1FTOPh1TfydevxqaooIs2k2o4bLp5kNDYy7hWpqttwN4CZNe/iMAPi+lbJjVkSm43Vg9Ko2wu7sbtbW1NjYO6elcunQJw8PDKC4uxn333YcnnngCRUVF2LZtm00fXq0+nek5KouHjjl1Z1SPn+5nWfmmKiMjI+w9U9hp6dKlMAwDbW1t2Llzpy1kQ6DPXV1dyOVy3CA9k8lwPoOK09xuNy94gJ35o45xpt+BSW0hYFLPZ6a+BBoatztmYvVci+G/C8B/B7AReZG2wwB2SSkvzMZAp8PtZvgB2Iqt1OIpOk7cfcuyUFdXB4/Hg0wmA8vK6+lTiGQ6WqKzmIsMrWr8nYsFGc6enh7m9AcCAfT19eHMmTOor6/nfr2Dg4O4ePEizp8/j8WLF+PYsWP4kz/5E2bNqAlUGlMkEoGUknchVF9QVlZmW1TU8ahCbDMZaueCp743Qd0taKOvMZfwoQ3/zYDbxfCrHmxnZyd7+iqv3Gm8CXTdyZMn4fP5uCesyrWnatdAIMBVrrRgPPHEE6ipqcGiRYsATDYwoXGRDj7136XYP+nmAEAikYBhGAgGg4jH4yzhQKJm6iKmjhmwNy0nA0xJ5K1bt9p2MM4diLozUe9DOxG15mCm3Yzz3hoacwEfmscvhLhXCHFYCHFq4nOFEOJPZ2OQtzNM00RLSwsikQgymQxeeOEFdHd382KgGvHe3l42vMeOHcO+ffvQ1dUFy7IQCARw5MgR1sEnxorP52PjTZr5qmrm2rVr8dZbb6GkpARSShuHvr29HX6/n+P9QN7I53I5lJeX49SpU9izZw+WLl3KRpb69A4MDPAOhXrzqiEfdRFQGUbUtlFNAjvzEYYxKStBC2Fvby+6urpw+PBh7N69G2+//bbtfLr3dBo72uhraORxLaGeowD+CMD3pZT3TRw7JaUsuw7jA3B7evwUeqGYs1qp2tPTg5qaGliWhWg0yp51NBpl5Umv18ua8j09PfB4PGhqaoLH47HFttXKW/J4KTFMwmsAWMETmNTEJ++fZBDeeecd1NfXY2hoiD1+4uBTnYB6H2fIB7A3Oe/s7ORn79ixY9pchdOLV9/j2LFjcLvdcLvdvIOZLv6voTFX8WF67hIKpZQvkyTvBHIznawxM8gzJl2YTZs2cXtAMpaWZdkMJenLWFZeDTObzcLlcqG6uhrJZJINd0lJCYdbaNEAwMYSyHvxUkpbm0ZacFRjTcqVapOTRYsWoaamBqlUig0+MBk/p+IvlZ6pykwAk4VqVGxGuQO3231VI03eO11HSeFNmzZxvkANdxGjSCtramhMj2uhc74thChGPrELIcQ2AG/M6qhuQ6jx6mXLluHo0aNIpVJM1QTycf99+/bZiqVoEfB4PGhoaEBtbS1XvVJRVjgcxvDwMDKZDMsXUAtEMujUlpAonHRPp3TB2NgYgPyOJBaL2WLqZ8+e5ZASAESjURw9ehR79+5Fa2srtzkkTX5qfEKfBwYGuFrYMAw0NzfD5/Ox1DKFudT3V3vc0jgXL17MjWcAMH3U7/dz4Zk2+hoaM+NaDP/vA/g+gKAQ4hyAXQD+/WwO6naDasBWr14Nn8+HDRs24Ny5c1i8eDHi8ThLDSxevBgAEIlEWM8GAGvMq1x31bDlcjn09fXxvSgGD8CmuqlWvdLY6DPdu7+/H+3t7bhy5Qo/p66uDkVFRThy5Aj36nW5XKirq8P27ds5zEQhGQAIhUKoqKjgz36/H9///vdx+PBhdHV18fPJ6Jumya0bnY3hVSxcuBDBYBDRaBQtLS38DqlUinMb2uhraMyMa2b1CCHmAfhXUsr3ZndIU3ErxvidzJbpPtMxlUnT3t6O5uZmAMCxY8ewYMECpjNmMhmWYJ6Olw8A3d3dqKqqYg1+Ci+p56uJ15aWFgQCAVRXV6O3txcLFy7En/3Zn+G73/0ufD4f34fi+JQEVt+lp6cHuVyOdfrp/iQTTeeq7+zU9o9Go4jH49i+fTs8Hg+HnKYz4Op9AEx5Nw0NjTw+MJ1TCPEfr3ZDKeV/+5jG9mtxqxl+lctO7f4sy2LWjUrNJINNxkvloff09CAUCk2hWhKc1ElKmBYUFNium65Qyyn1TItOY2MjSxNHo1FcunQJd9xxhy3ZTE3Km5qaOK+g5hRUHX3DyCtuXrp0CefOnUNjY6NtHuhZ1ATloYcesrGCpuPcE0MqEAiwvpCGhsZUfBjD/+cTv5YAqAFwcOLzlwB0Sikfno2BTodbzfADk15pd3c3d8NqaGjA0NAQXC4XampqkMlkMDw8zEVKaqwdmFwEyIBScdVMzVOAfIgoHA5PKQ4D7EnW3t5eGIbBCwl581RMRf1uU6kUe+Hqu5mmiVQqNUUzn57jrEcgzX5aKJx9AwzDwNNPP42SkhKcO3cO9fX16OjowLZt26bUCdA7OOdLQ0PDjo9SufscgH9NIZ4Jpc6fSCm3zMpIp8GtaPiBSQNLSpSGYWBoaIgZMarRI4qlsxesSpFUK25V46kuBP39/dN2pVI9/Ok6bTkrdylBnMvlUFtby03QaYFSm6Ooxj2XyxO+wuGwzfvPZDKckDWMSUVQWvwqKys5TAWAdwEAsGfPHjzyyCNcsawrbzU0rg0fxfAnAFRKKd+f+PwbAPqllMFZGek0uNUMv2pEx8fHMTY2hsOHD0NKiS1btrBeDYU5LGtSywYA1q9fz/dRjTRRFFUaJp2netnA1KrZrq6uafVwKG9AvwP5+Lvb7eaFQl1snOEmdQGgZ6nSyM6KWvoci8WQzWa5niAcDqO7uxtut5vj/mpnL8ptTLewaWhoTI+PwuP/HwBeFkL8FHlK5+8A+PHHPL7bBuRdk+KlZVmIx+PYtGkTAKCqqop5/PPnz+ccwNq1a2GaJlpbW1FVVcVevhqbJ6Pf39+PUCjEBlRtLELfq8aRKnedcfhMJoOnnnoKDz+cj9p9//vfR3l5Oe644w5bYZba5MUpb0y5B7VQS9X6ITVOp6euNn6nn263m58LAJcvX8aTTz6Jxx57jJ/pqCfR0ND4EPi1dE4p5bcBfBXAOwDeBfBVKeV3Znlctywsy8KVK1fYO00kEgiHw9i4cSMWLFjAapvnzp1DcXExotEo9u7dy/F8KkBS4+XqvWnRiMfj6O/vR0VFhc3oU3hmOlDTE9oppFIpNDc3o729HQcPHkRDQwNOnjzJ15PBJvZPNBrlhYpAhV40BsodEKc+lUrxDkXl5qutJYn7T4Vc9G/NmjW2BiyUk9DevobGR8M19dyVUvZJKf9m4t8r13KNEGKZEOJFIcSgEOIXQoj/MHHcK4R4XghxeuLnpz/KC9xMoGQuSRpQr1cyZHV1dVxs1NzcDK/Xy5W3VOhUUFDABpz0eejeAwMDKC4uxvz582269wC4w1RFRQVWrlxpC/sAsBl8Gk8gEMD58+cBAPfccw8sy8KuXbuwbt06DAwMcEEWADQ3N7M37hxXNBrl34mHn0qlcP/99+Ppp5+GaZq2nYvf78eJEye4J3AgEEAikbBVCpumiYMHD8IJbfQ1ND46ZrPZeg7AY1LKEIBaAL8vhCgF8E0Ah6WUq5CXeP7mLI7hukA1sG63G9u3b+dqVADcuFzlzpPn6/F4sHPnTpZgoNi4qn1PKC0tRSqVYn6+imw2C8uycOzYMfzxH/8xUqnUtA1HyNs2TZO59I2NjfD5fCguLobP5+MdByl9kvEnzzyZTNoKywYHB1lGuri4mK83TdPWG5hyDS0tLRgaGkJDQwMAsBSFatRJwE2t0NXQ0Ph4MGuGX0r5hpSyb+L39wAMAlgC4LcxmSP4MYCG2RrDbIJkCMiA0++krQOAjweDQe6WBUx2lFI9cFU+Qe1L29/fj0wmg56eHpteDfH8ySi6XC4YhoH77rsPd9111xT9H0JpaSn6+/tx7NgxXLp0CdlsFiMjIyguLsahQ4f4veh6aoOofm5sbORetolEAsXFxQDySeEDBw4w1ZLOp3mgUE1ZWRk+85nPsEhdZWWlbaEkeDwe/DrygYaGxgfHddHjF0KsANAJoAxASkq5UPnuHSnllHCPEOJrAL4GAH6/Pzw6Ojrr47xWUPeoVatW2XTtnY0+VKplKBRiz5dUNcPhMGKxGMbGxpjpQ9cRNTKbzcLtdiObzWL9+vWckH3kkUeYc69y/YG85g8xg3p7e5HNZm30StM08cwzzyCXy+Hee+/FggULEA6HWQmUEsvThYuAySYpFO9XKZ30mb6n9yWNHrqezvt11ba6GldD48PjhjViEUJ4ABwF8G0pZbsQ4t1rMfwqbiY6JylM+v1+ZqwQVCOlFi9R1S4xaSgHsHPnTliWxTINziIp9fdYLMa6N36/Hz6fz9ZKMBqNYmxsjNlDqv7N4OAgJ1/VCt+xsTE2+rR4qGqeZMBJjkFlClFox3kcAC9sAPDuu+/i5ZdfxqOPPjrF+KvXpFIp+P3+j+ePpKGhAeAjNGL5iA91A/hfAP5eStk+cfhNIcQ9E9/fA+C6tXD8qCBjFwgEMDQ0xIaVoBrFnp4ePj8ej3PM+6mnnsLKlStRVpZvZ0CJXnWXoN6LwkBU2FVaWmqrfiXPfGxsDEePHuXrSalTDcWoCdna2lrccccdKC8vZ54+3Y90dizL4jCMU1MfmNTZcc7RwYMHWbr5zjvvxNe//nWkUikemxoeA/JG/w/+4A9Y9VNDQ2N2MWuGX+QJ138HYNCh63MQwFcmfv8KgH+crTF8nCD2yuDgICwrr41P3bGo8Ili79FolCmRKu/dMAzs2rULPp8P1dXViEaj6OzstC0YbW1tvEtwdqOi0FFXVxcni+naTZs24fHHH4dhGOjs7ERrayssy0JRURHa2trwT//0T9i7dy/S6TTa2toAgPV8MpkMUyuBvG4/VRRTYlddNHp7e7mWAIBtnJSU9Xq9vGD5fD4EAgHWzSeaqMry+e53v8s9hTU0NGYXs+nxfxbA/wlgoxDi5MS/LwL4LoDfFEKcBvCbE59veliWhXA4zMJkDQ0NWLduHQKBAOLxONLptM14Uvhk7dq1KC8vZ6NOBh3IM3GSyaTNuKuywk5hNdLUr66uhsvl4uNkeD0eD1Mrm5qasGHDBng8Hvzyl7/E6dOnkcvl4PF4WDGTWDvxeBxjY2O2Ii0ag9/v5x0Aeeyk6z84OIhoNMpcfzWsRb8D+TwD1RfQ4kgMIXoH0zRti4GGhsbsQTdbvwaQGuRdd92FBQsWwLIsjI6OorGxEYaRbwE4OjqKxYsXY+PGjTbJAqJvrlq1CkuWLEEmk+GKVjJ8FGqJRCLIZrOora0FYA/3AJM7CufxdDrNOjak+UOqlZZl4ejRo8jlcrjvvvv4uapCJslFOFsYZjIZ7N69G4899hgsKy+UpiaLgXz9QTAYRGtrKwBgx44dAMDJabqfs2pYlZ24liSvhobGB8cNS+5+HLiRhp8qapPJJF566SU0NjZyIpSMZ39/P+6++2688MILaGpqgmEYXMFKejeWZeHgwYPYuHEjzp49ywqYFDunhGsikYDf70cqlUJJSQmEEMz4yWQyaG1tRSgUYvojLUo0LhVkSKmbFoWfkskkGhoaONlKHncikbBVxtKYysrKbEqZ0WgU8+bNY80eNYmtyjRTOEhthUg7E7q/NvYaGrOHG5LcvdWRyWTQ1taGgYEBHD9+HJs3bwZg5917PB6EQiGcPXsWixcv5hxALpdDMBhkmQSv14utW7diZGSEu2MJIWxhnvXr12P79u1YsGABioqKUF5ezt22LMtCIpHA8uXLudqXrgsEAhx7V/MDVKiVTCYRDAZRUFCAsrIyrpRVE9Nq5aw6ptraWu5sZRgGBgcHYRgGgsGgzWgbhsH3pFBWKBSytUJ0hni00dfQuDHQhn8GUKz6gQceQEtLC+6//368+uqr2L17N9LpNBs3SvTmcjlugBKPx22tFgkej4eVKGk3oLZCpAUiHA5j3rx58Hq9qK+vZw+5oqICLpcL8XgcPT09yGQyfJ8DBw7gjTfeQGtrK7q7u+H3+9Hb28sspFQqhWXLliGVSqGsrAy5XA7RaJS9fSkle+4nT57khLVauEUCbOFw2Gbk1cQv5QUGBgY4n0AGPhaL8Xc6iauhceOgDf8MoORqIBDAww8/jHfffRe1tbUsGqY2Ka+pqUFVVRXmzZsHwzBQUlKCN998E319fVPYORRao9CVmsAlb52UKk3TxKFDh2ysm3nz5iEcDrM3TaGo4uJiLFq0CA0NDXC73Th16hRyuRzGxsZY/O3IkSPw+XwYGRnh8VAx2rJlywCAG6IfPHiQWTbOBDNp8gBgzj/NGfUGpr68wCTrJ5vNYnh4WCdxNTRuMHSMfwaQwaMQypUrV7BhwwYA9i5XdK6zaYra51YFNWbp6+vjZCoZzH379iEUCnHilKiZtbW16O7uRkFBgU3nXq3WpXCQqltPMgzOvAQxecrLy5FIJPDGG2/gnXfeQXNzM+90/H4/XnnlFRQUFNgSxc57AOAiLhozafyr80Kf6RwNDY3Zh47xXyOm49BXVFRg3rx5APIGNh6Pc5gEmJQvVncCJCVMsXZVfycej0/RoKFYfXl5Ofr7+1mtk85TG5mrYyMBuO7ubrS3t/OCU1NTA5/Ph8bGRgwODiISidgKvkhTqKKiAvfccw8zlMjoG4aBI0eO4OLFi2zwe3p6kEgkWJbC5XKxSigtRhT6olARib3RQqqNvobGjYc2/ApUrj157SSORslMwzBQVlbGXjklUClp6Ux4+v1+NpZkFAFwZavqsRcUFHDoqKKiAn19fRgeHp5C4aS8AfH66+rqsH79ejQ3N0+RkPB6vQiFQjbePwmj0ftUV1dzDD8QCODAgQMAgHXr1uGNN95Ad3c3YrHYFJlpkoV2yktcvnwZra2tiEQiU+oRNDQ0bjy04VegFlCRhs74+DjLEJBhp+5RkUgE+/btQ3d3N8sXq0YwnU7jwIEDXBxFBre8vByHDh1CNBpFJpPhhaO4uJgrZSnO39TUBI/HwwwhtbqVPG/VqKpNTrq6ujg0Q9IKsVjM1gKxp6cHwCSlU11gtmzZgu3bt2P9+vUsGUHPoDE4q41jsRgKCgrQ1NTEC5s2+hoaNxd0jH8CZASFEOzVEmuG4uP0k6QbmpqaAGCKCBowWfS1ZMkS3HfffUilUhzrpu9pcQkEAggGg6y2SfcghUtS+CwuLsaBAweYKqrG/Ht7e7nhutqEXeXa0ztSa0Qq+KJ+t2fOnOE4Pxn5np6eaXV6gEk1UgC2fAftUIi7rw2/hsaNgS7gugY4aYnOhYASvcFgELFYjJOezkQuXU98deo/q8od03n0zFgsBsuyUFFRweep41ElndVCKbUZO2BPnNK41FARJV7Ju6eFgCSZDcNAd3c3CgsLUVFRwYsHvT8ZcxqXWn1Lz1QbwWujr6Fx46CTu9cAtRLWsixbTJtAOjbkSVN4g4y4ym33eDysqEmUSpUdQwJtdD/qwkXyxNFoFE8//TT279/P18RiMbS1tfFuRO2Q5VxQKO9ArRJN00R7e7utpSJ581JK3s1QwZf6nnRfWpBOnjw5JX5PFcK0EGmjr6Fxc2JOG37Vo6Z/0WgUK1asADDphROogAnIa9EQt15KyTLIkUjExmHPZDKswklGt6enB0eOHMELL7xgq2KlxaGjowOWlReF+8xnPsOyygMDAygqKkIul0NbWxsOHz7Mks+q0ae4PXnd1L7QMAysWrXKxu6h6y5fvozvf//7KCkpwY4dOzgkBeTpq5lMBi0tLdNq9luWxfUAV65c0QZfQ+Mmx5w1/OS1kqom6eePjo6iqqqKDVo0GkU6neaYfH9/P4C8p0wJz1AohEOHDuHSpUsYGhriwi3ysEl4jfj0lZWVmD9/Pnbt2mXTtgHA0g5kPOvq6jB//nwA+WRuOp1GY2Mjtm3bhsLCQpZ/UN+LNHnoHiojSW1xqCZo58+fz81SnPH606dPAwCWLFlia+moJpIHBwfR2NiIDRs2aMOvoXGTw3WjB3AjEQgE0N7ejvr6evZwqSmKZVmorq7GsWPHsHv3bixfvhxbt25Fvs2APaxCzVTocyKR4HOIYqlKOxDbhYy+mksA8sniy5cvY3R0FDt27OBkLFUSU9vHkpISnDp1yqYGSolgGsvAwMCUcA0AfmYwGER7eztWrFgxJU9B8Xx6t3Pnztl0g6jto5pA1tDQuPkxJ5O7ZNRKS0sRiUQwb9481s1RvVn6nbx9qoKlRUI12qraJn2nJl6pgpV67dJioPLg1fh/PB6HZVmoq6ubwpWn8BAVglVUVDCzSK04Vnvx9vb24q677mIFUTLylNegil1nr11nshgAWlpasHz5cu3da2jc5JgpuTsnPX41KUkyDFR9SwZTZaWQZ07xcfU+1IXKMAxW2yTPu6ioiBcTVawtGo2ipKQEHR0dXDcAgGsDqCIWgG3xOHz4MAoLCyGlxPj4OFwuF4du6Nmkj3/w4EFs3boViUQCwWAQ7777LlpaWrB48WLE43G+jsarPofYS1SvQMadFiDaxWijr6Fxa2LOxvhV+iN5vdFolBOYZPzUgilqKkIwTROtra3c5pDoj9MJktG/cDjM323ZsgWJRAJdXV2cKM5ms8zFJ0bQwMAAUqkUjh8/jpUrV6KiogKjo6MQQvB9g8EgALDK5rZt29hQx+NxVFVVoaioCNu3b2ejn8lkWEpCFVuj+5imyS0egcmdkjb6Ghq3NuZUqEf1XgE7p508XvL4e3t7cenSJYyOjiIQCMDlciEYDHKnK2eClAzp0NCQbYFwhk1oQSkqKoLP57MVPNFCsmPHDpv2DVUOP/DAA8hkMkyppHOIUbNq1SrceeedME2TdzQk2FZZWckSCnV1dbAsy9bAJRKJYHBwEDt27IDH40Emk0FfXx+SySQfm24ONTQ0bl7MeR4/sU9M00Qmk0Emk8GePXuQTqdtYY5kMgkAqK6uxrp167Bjxw5UVVVhfHwchw4dgt/vRzQa5YbnQN6gHz16FLt378alS5f4GDCZB6Bnk3fe0dHBQma0SxgcHOSmKqq4G3nwfr+fQ0ZU0EWx+cbGRqxcuRL/9b/+V/h8PlsYh7j64XAYLpeLjwcCAb5PeXk5s3+oG5fL5eKOYtPF/DU0NG5NzAmPn7zsK1euIJfL4ejRo3j88ccBgOP35DmrBlWVTLAsC8FgEF6vFz09PQiFQojFYhBCcEes7u5uzJs3jz1+up7GoCZPM5kMM2OcSWHy0Ck5OzAwwO0YKUGs9sZVdwzHjh3DmjVreNdCMg7E9gmFQrZ+u2pFLh2j6mQy8v39/bYKZg0NjVsDcza5S7IFaqWty+WyxakNw0AqlcLTTz+NXbt2cViDYuiU5BwYGIDX62XqJNE9W1tbEQwGsX79er6fZVkYHx9Hd3c3pJSYN28ex+EJ2WyWi8JUA07PBfKevd/vR0dHB7Zs2cLhl/Lycl5I6L1isRjuu+8+HDx4ENu2bbPRONX3p7yBmsBW72NZFvcLUOWgtdHX0Lg9cFuHepzKkVQdW15ejlgsxuqVpmniyJEjePjhh7kxOACbBLHK9KGqXQCYP38+mpqaWFyNFDoty4Lb7eaCqqVLl3LLxHQ6zYVdtKBQotU0TZtQm2maGBkZwZYtW+D1euFyudDQ0ACv18sJWWqVKKWE1+vldod0D3ofmg/A3vmL0Nvbi97eXlRUVKCgoIC19p0KoBoaGrc2bvtQD3HP29rasHXrVliWxd7z0NAQd4+ipC6AXxvPdiZrLcvi+6vSxX6/H6dOncKpU6c4OVxVVcUdrNTnUTinra2Ndw+WZdl2DBUVFYhGo+yFk4AaVQhTjYEzdEOgEI4a3qLnO8NP6m5IQ0Pj1sScDfWQcd64cSPi8ThOnz6N+vp6liZQqZbApFF3tlckkKFXC6Asy8LWrVttMXwKp9TW1qK2tpavUWsIVAOtqnFKKTkvkUgksH37dn6eyhgiuQbS+FELvQKBgC02T/elc0humRYdUg8l3X81HKSNv4bG7YXb2vBbloWuri72uKk5CBk/Z9ESMOkVUz/Z8vJym4Z+NBrF6dOnWdqB1Dybm5uneNiqgSfvXK2sNYx8hy5K7no8HjbylEPI5XK2XYT6DGLoUA6DEsO5XA4ulwuhUMgWpqEEMgDkcjkeV1FRkS3hS+PWRl9D4/bEbR3jNwwDa9euxc6dO1lxUvXgyatNp9MspUwFUOXl5SgpKeE+trRQhMNhNvqE5cuXAwDfS5V2pn/kxas0zUwmg0OHDmF8fJzPo9aMhIKCAn6X0tJSxGIxVt8kDR+iqkajUYRCIdTV1aGyspJVOQnk6TuPjYyMcJ9dygfQMzU0NG4/3NaGH5iUO55OgIy47B0dHfD7/ayc6fF4UFdXB6/XyxLN5AGr9yIPm0JFPp8PTz75JEzTZD5+T08PotEo35cSxKtXr4bX60VzczOqqqo4KUwicLTQEB0UAHv25LlTiAfIe/BjY2O8cNCugprCk5Y/efrUg3ft2rVcV2BZlvbyNTTmAG57wz8d1DAGySCnUiluUKJKFEgp0d3dzcVWdJzuU1lZyZWwZ8+exZo1a+D1ermpCjU6V1k6tBuge6hhFpVJpLJ2nAnnnp4ertilQjK1FSPdi8JBAwMDWLp0KcLhMI+L3pWYQJq9o6ExN3Dbs3quFapsg2EYiEQiLIZG7J/y8nKEw2EbB14t8ioqKsLw8DBXyqrxfPqdtG9UcTj6Xm1zSB66s48u5SecImoqS8dZ1OXxeJBOp/HUU09xnQJ9pxO4Ghq3L+Ysq+daoXalolAIec/r1q2znaueR6EZEl6ja1QjTVo7W7dutSlvRiIRZumo7RuBfL6AaJV0v7a2NvbMiamjVvdSzoJ+qn1+fT6frTjN+c4aGhpzB9rjnwFOMTKV0UPCZgTVaydDTLx+YgeVlJTYdPwBsEia2oXrao3KVVE5IC/vTDuQQCBg4+eri4GakyAZB9qVaGho3L6YyePXhv8aoPLtiXlDlEkKw6jaPhRa8Xg86O7uBpCnXgohbDr8lmUhlUrZvO6Z1C9pDNSBa8mSJRgdHWURtelCNs4iLdqFAJqxo6ExF6AN/0eE04gC+V2AWoVLeYGKigpuZ+h2uzm0Q1W3d999N958801ufag2Nnc+E8CURYFUPun5M+0Q6BrTNHHixAkcP36c++pqaGjc/tCG/2MGeeAkoLZt2zYAeYVOklsAJhu90DVqvH8mTx3ILyrd3d3M1KFdhfO8q+0QAODo0aMYHh5GcXExVq5cyXr+2uPX0Lj9Mef1+D9uECXU5/NxwhUAzpw5w8Z4YGBgyjVEnaRiMrUlIy0MxL9PJpNYtmyZTcRNLb6ie6o7ELoPdfSaN28empqaUFdXh0wmM6W6WENDY+5h1gy/EOKHQogLQohTyjGvEOJ5IcTpiZ+fnq3nXw+o0sn0k6p6ValjJ6YrJjNNE52dndi3bx8sy0I4HEZTUxPS6TSzcwKBgM3Qq9dnMhlWIgUmWzBWV1fbFhmn9pCGhsbcw2x6/HsBbHEc+yaAw1LKVQAOT3y+reA0rOSlOz11y7K4YIwMOgAUFxcDyNM5yViTBHNfXx/LPaihJDLoFD4CMC1rR3v6GhoawCwafillJ4CM4/BvA/jxxO8/BtAwW8+/GaB6/aqxzmQyiEQiaG9vh8/nQzKZhGVZrIFPTdad+YEXX3wRpmlyRS+FhYB8IVlfXx8ikQhr+dBuwLnoaGhozG3ManJXCLECwCEpZdnE53ellAuV79+RUk4b7hFCfA3A1wDA7/eHR0dHZ22c1wMqI4c4/gBYroH4//39/bb2iCoHP5PJYHh4mPV2hoeHEQwGsXbtWtYNogIywF7Bq6GhMfdwQ1g9H8Xwq7gZWT0fBSqf3kkTjUQiLKmsavicPHlySs6A4vlqYZiq86/ZOxoacxs3C6vnTSHEPRMDugfAhev8/JsCzqpf9fe6ujrU1NRwXJ+YQWTE1fBPPB5He3u7TUCO7qONvoaGxky43ob/IICvTPz+FQD/eJ2ff9NDNeyqlo6zeIwWicbGRiSTySl0T230NTQ0ZsJs0jn/AUAEQIkQ4qwQ4ncBfBfAbwohTgP4zYnPGleBUy/Imaz1er1M99QcfQ0NjWvBrKlzSin/zQxfbZqtZ97OmK5VJOkHORPBGhoaGleDlmW+ReCM2+veuBoaGh8WWrLhFsJMBVna6GtoaHwQaMOvoaGhMcegDb+GhobGHIM2/BoaGhpzDNrwa2hoaMwxaMOvoaGhMcegDb+GhobGHIM2/BoaGhpzDLdEz10hxFsAbiZd5kUA3r7Rg7gJoOdhEnouJqHnIo+bYR6WSynvdB68JQz/zQYhRO90UqdzDXoeJqHnYhJ6LvK4medBh3o0NDQ05hi04dfQ0NCYY9CG/8PhBzd6ADcJ9DxMQs/FJPRc5HHTzoOO8WtoaGjMMWiPX0NDQ2OOQRt+DQ0NjTkGbfgdEEL8UAhxQQhxSjn2V0KImBDipBDiOSHEYuW7PxFCJIUQQ0KIL9yYUc8OppsL5btvCCGkEGKRcmxOzYUQ4i+EEOcm/rs4KYT4ovLdbTkXM/03IYR4dOJdfyGEeEI5flvOAzDjfxP/U/nv4YwQ4qTy3c0zF1JK/U/5B2A9gCoAp5Rj85Xf/xDA3078XgqgH8BvAFgJYBjAJ270O8zmXEwcXwbgZ8gX1S2aq3MB4C8AfGOac2/buZhhHj4P4AUAvzHx+a7bfR5mmgvH97sB/NnNOBfa43dAStkJIOM4dln5OA8AZcR/G0CLlPJ9KeVrAJIA7r8uA70OmG4uJvD/BfA4JucBmLtzMR1u27mYYR7+PYDvSinfnzjnwsTx23YegKv/NyGEEACaAPzDxKGbai604b9GCCG+LYR4HcCXAfzZxOElAF5XTjs7cey2hRBiK4BzUsp+x1dzbi4m8AcTYcAfCiE+PXFsrs3FvQDWCSFOCCGOCiFqJo7PtXlQsQ7Am1LK0xOfb6q50Ib/GiGl/JaUchmAvwfwBxOHxXSnXr9RXV8IIQoBfAuTC5/t62mO3bZzMYHvASgGsBrAG8hv7YG5NxcuAJ8GUAvgjwC0Tni8c20eVPwbTHr7wE02F9rwf3DsB/CvJ34/i3y8m7AUwPnrPqLrh2Lk45P9QogzyL9vnxDCh7k3F5BSviml/JWU8l8A/L+Y3LrPtbk4C6Bd5vEygH9BXqBsrs0DAEAI4QLQCOB/KodvqrnQhv8aIIRYpXzcCiAx8ftBAM1CiN8QQqwEsArAy9d7fNcLUsq4lPIuKeUKKeUK5P9jrpJSpjHH5gIAhBD3KB9/BwCxO+baXBwAsBEAhBD3AjCQV6Wca/NAeBBAQkp5Vjl2U82F60Y9+GaFEOIfAHwOwCIhxFkAfw7gi0KIEuQ9mVEAvwcAUspfCCFaAQwAyAH4fSnlr27IwGcB082FlPLvpjt3Ls4FgM8JIVYjv2U/A+DrwO09FzPMww8B/HCC1mgB+IrMU1lu23kArvr/RzPsYZ6b7r8JLdmgoaGhMcegQz0aGhoacwza8GtoaGjMMWjDr6GhoTHHoA2/hoaGxhyDNvwaGhoacwza8GvclhBC7BFCrJ/m+OeEEIduxJicEELsFUJsm/jdLYT4rhDitBDilBDiZSHEb018d0YIEZ+QhjgqhFiu3ONbE4qYpB67ZuJ4i6P+REODoQ2/xi0Bkcc1/fcqhPACqJ0Q0ZrNMX3iY7zdXwG4B0CZlLIMwJcAfEr5/vNSygoALwH404nn1wGoR76IrgL5wiHSg/ke8kJ6GhpToA2/xk0LIcQKIcSgEOIpAH0AlgkhvieE6J3wcv9yhku3AehQ7rNFCJEQQhxHvpSejs+bEFfrEUK8IoT47YnjhUKI1gkv+n9OiI9VT3xnCiH+byHECQB1QogdE975SSHE92kxEEJsFkJEhBB9QoifCCE8V3nPQgD/DsCjisLlm1LK1mlOj2BS3OseAG8r17wtpSQZgGMAHpyQD9DQsEEbfo2bHSUAnpFS3ielHAXwLSllNYAKABuEEBXTXPNZAFEAEEJ8EnkdnS8hr5joU877FoAjUsoa5DXl/6sQYh6ARwC8M+FF/xWAsHLNPOT119cAuAjg/wPgs1LK1QB+BeDLIt+c5k8BPCilrALQC+A/XuUdAwBSDvnvmbAFeYkEAHgO+cXwVSHEU0KIDXTShH5QEkDlNdxTY45BG36Nmx2jUspu5XOTEKIPwCsAPoN8gwsn7gHw1sTvQQCvSSlPT8gI7FPO2wzgmyLfJeklAJ8E4AfwAIAWAJBSngIQU675FYD/NfH7JuQXhZ6Je2wCUIS8SmUpgJ9PHP8KgOX4aHhRCHEB+XDO/omxmRPP/9rE+/5PIcRO5ZoLABZDQ8MBvQ3UuNlxhX6ZELf6BoAaKeU7Qoi9yBtrJ8Ydx2fSJREA/rWUcsh2MC8pPBN+qWisCAA/llL+ieP6LwF4Xkr5b65yHxVJAH4hxKeklO/NcM7nkZ+LvQD+b0zsICbG8hKAl4QQceQXmb0T13wS+bnQ0LBBe/watxLmI2/8Lgkh7gbwWzOcN4h8+ATIK6muFEIUT3xWjfHPADxKhl4Icd/E8ePId0+CEKIUQPkMzzkMYJsQ4q6Jc70TjJtuAJ8VQgQmjhdOqFZOCynlGIC/A/DfhRDGxDX3CCF2OM4bB7ALwEMTzypxMHdWIy8iSLgXwC9meq7G3IU2/Bq3DCa6fr2CvDH7IYCfz3DqPyOvmggp5S+RD4X880RyVzWMfwXADSA2oSz5VxPHnwJwpxAiBuCPkQ/1XJpmPAPIx/Kfmzj3eQD3SCnfArATwD9MHO9GPuR0Nfwp8uGagYmxHMBkuEp95hvIKz/+PgAPgB8LIQYmnlOKfB9gTCyM4xPna2jYoNU5NW5LTBj5einlux/i2k8AcEspfzmxUzgM4F4ppfUxD3PWIIT4vwBcnklGW2NuQ8f4NW5XPIZ8ovbdD3FtIfLJVDfycfx/fysZ/Qm8C+B/3OhBaNyc0B6/hoaGxhyDjvFraGhozDFow6+hoaExx6ANv4aGhsYcgzb8GhoaGnMM2vBraGhozDH8/wHqjA2NwogvXQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = candidate_table['ra']\n", "y = candidate_table['dec']\n", @@ -854,7 +1147,20 @@ "cell_type": "code", "execution_count": 72, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEJCAYAAACdePCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACk4klEQVR4nO39fXxcV3UvDn+PkvZCSFtIbEmmFCjhhhDLaQkpcQAbAg69D7ED5ZbGgT4PlgJtsST7Pm0iOaEFajsvNG1/2KHtjRPb9HMhtuUWSuwUsEYklz4kodgayXZeoO/xaEYjGfrrrwm9ja3Zzx/SOl6zZq299xlJsWOf9fnMx9bMOft17fW+1k6cc8ghhxxyyOHcg5bTPYAccsghhxxOD+QMIIcccsjhHIWcAeSQQw45nKOQM4Accsghh3MUcgaQQw455HCOQs4AcsghhxzOUTitDCBJklcmSfIXSZI8kyTJ00mSXHM6x5NDDjnkcC7B+ae5/y0AvuGc+9UkSX4SwAWneTw55JBDDucMJKcrESxJkp8GMArgDS5yEAsWLHCvf/3r53VcOeSQQw5nGxw6dOi4c26h/P50agBvADAJYGeSJL8A4BCA9c655/lDSZL8BoDfAIDXvva1OHjw4Is+0BxyyCGHlzIkSfIv2ven0wdwPoArAfyZc+4tAJ4HsEE+5Jzb5py7yjl31cKFDQwshxxyyCGHJuF0MoASgJJz7rszf/8FphlCDjnkkEMOLwKcNgbgnBsHcCxJkjfNfPVeAE+drvHkkEMOOZxrcLqjgHoBfHkmAugfAXSe5vHkkEMOOZwzcFoZgHNuBMBVp3MMOeSQQw7nKuSZwDnkkEMO5yjkDCCHHHLI4RyFnAHkkMM8g3MO4+PjyG/fy+FMg5wB5HBOQK1Ww+HDh1Gr1WbVjo+YW79Vq1Vs374dR44cyfRe7HgqlQoqlQqcc3Myz5xhnTuQM4AcTisQsanVanWELPQ8PcPf14gWEchHHnkEt9xyC44ePWq2FQOcmFOf9O/4+Dh27NiR/p/abWtrw6pVq7B//35Uq9WG8R05cgQ7duxQfwutSbVaxdatW7FlyxYcOXIER44cSefZLCGvVqvqeLJAzkReGpAzgHMYtEPKv5vtIY55n4jN0aNHsXXrVmzdutVLeCRx4u/T97zf8fFx3HXXXfjGN76BD3/4w7jooovS8cQSOt4eJ+bUJ/0LAF1dXQDQ0O7ChQuxZs2adF2pzUqlggcffBDXX3892tra6vodHx/HnXfe6V2TtrY2rFu3DjfddBP279+PhQsX4p577sGCBQtShkTvhvaDfm9tbUVnZ2c6zmZAW1ut/7nSzHJoEjhCnumft771rS6HuYNyuew2bNjgyuVy+l2lUnF33HGHq1Qq6f/L5bKrVCpuamrKVSoVV6vVotrnbdVqtfRf7f9TU1OuXC67crlc1z5/1vc3Hxvvl+Y4MDDgli1b5lavXu3GxsbUtjSo1WpudHTUbd68OV2HkydPutHRUXfy5ElXqVTciRMn3NDQkDt58mRDu/T+HXfckf5La7t582ZXKBRcf39/3R7w/env73cjIyMN8z1x4oQrFAquVCq5Wq3mpqam3OjoaLoOfN/oXb4uvv0ql8tuZGSkATdiQO6HtS/098jIiLvuuuvc6OhosM3QPmXBzXMNABx0Ck097UQ9y+dsZgC+gzNfMDY25np6elKCKMcxNjbmRkZG3NjYmLvjjjvc0NCQSUC0A8i/k4xl8+bNbnR0NDi/ZphIqVRyIyMjbmpqKiWMJ06cSJnAyMhIcG2ozXK5nBJv+j8njrVazQ0NDZlEjOZKDILWlJiItg4xRHTv3r3u9a9/vevq6qpj1nKdtPasNedz7u/vdz09PSrz8e2ZZDJyXOVyOV2DO+64w42NjaWMyxonb4MzOl+/1vw0IeNcgJwBnGYIHR5CYC4tbtq0yQ0NDTUg+2z7ItA0AIKxsTHX2dnpuru700O6adMmk2hTW2NjY2rffExTU1NuaGjIbd682XtgnXOqZCsJHvVNhLmrq8v19/fXEW0f8dBA036IcJVKpXTdKpWK27hxoxsYGEilcTlvvnYjIyNuxYoV6b5qaxUioqQBDA4OuuHh4TriqTESvgYaSGbKiTTXfKgdqVnwdiSBleOqVCquv7/fdXd3u2KxmD7LNS06A5rmOTo66q677jo3NDTUMNcQca9UKm7Dhg1uw4YNKqM8myFnAKcZ6BBrEo+UYulfn2QZ01dIwrYOQK1Wc4ODg+4tb3mLW7NmTXqofIeFE+GQdM+l4hAxtiTbqampVDsZGxtz/f39rlgsumKx6Pr6+tzAwIDbtGmTKxQKbmxsLHjIfaYmIjxEPDgBrNVqbmRkxPX09JiEhZuBxsbGGsw+zZi55Nr41s4i2HxsxIy19R4bG6tj7hpDke1Ya1wul93w8LDr6elxw8PD6Xpy/KF5av2cPHnS7d27123cuLGhn9B6SCYRsz7y/Zcqw7AYQO4EnmNwTne0tbW1oaurC5OTk2mUhgwPdM6hWq2ira0NLS0tePe735069GR7Pmhra8PKlSuxb98+r4MzSRK0t7cjSZK6cVerVRQKBfzCL/wC1q9fnz5D/2rQ3t6O9evXY8mSJVi1ahX27dtnhj2SI/Xxxx/HxMREcC7kkKR+AODIkSN44IEHcO+99yJJEnzkIx/BX//1X6OtrQ0f/ehH8f3vfx+XXXYZ7r77bkxOTqbOYQK5T9JpyedbrVaxb98+rF69GuvWrUN7e3vDWrz85S/HihUr0NraWtcWrWdHRwe6urrQ3t6OBQsW1M3R1zfHiYmJibrnWltbsXLlSrS2tpprR33y9iossqharWL//v1YtWoV2tra0ndoHm1tbel7k5OTaV+dnZ1obW2tw5l9+/Zh6dKlqNVq6r5Xq1Xs3LkTLS0tuPDCCwEAzz33HKrVKmq1Gp577jksXLgQLS0tqUO8s7Ozzjk+OTmJH/zgB/jABz7Q4DSnscvvCSQO0/NAo9Neg5iggVqthtHRUZTLZXUNLPpw2kDjCmfq53RrADESgM+s4ly9SYObQriEySWYGNtmaKy+cUszAUlIY2NjXlXeBzSvTZs2RZkdQiCl0tHRUXfrrbe6G2+80Q0PD5s+AbKzkw+DS7VSuvRpQ5ZpgUu9fB+5pC7xQdPOfGtB75Nfo1QqNUiwPru/Zl6KMYNIuzufn2aGo2f6+/sbcFjuOe1LqVRyPT09qaNbWyc5Rm2efH9C/g7tPMWuXYyZaXR01C1fvtz19vaqaxCiD/MFyE1AswcfMbbUZR8ScQcjj4LhyDsXaqdv3NJ2bxFGPlZrLFme5c9nUb3JfDQwMOCWL18e5dA9efJkGjGT1Y7tIxjlctlt3rw5NUVp5i954GOICO+HCGOhUEht35IwklBh+Q34mGW0lTUebc0lc5P9b9q0yY2MjJhzs4QNDee1PdDwqVwuu97eXtff31/HlOR6ZFl7357Rnlu4zXHNx9At+qCt11yYnHIGMAsISRXOhQkpf46knlKpVBc+SBAr9fsklRibcq1Wa4gEks/S4R8ZGUkJ3GxsznyM2iENgZQiuQ/B2iculYXGxiVkfug5wZNMhP/NHb4aseVCQsi3Qms/NDTkTpw4URd6yp/nBNoi6hZDILzV5htaV94/RUfxd7m2y/c71ifBncCWf4HGTw5lGqOGHyH8pHmWSiXX29ubngk6s7RGPrzV+tA0mJBjXtuz2UDOABjIaJAQp43ZCE1qkG2SREcqL8VAj4yMpM9y52aMOm8547TxasinhYLKd/jB1SQ2/mysdFsuT4caFgqFOYtyovWQ4apTU1OuWCy64eHhoEOYmKKM9uHtS0InD7gW9y/f585kS8MgXLDyBKz1iDFzcELFPxs2bHD9/f2qg14yGmpX02hpHQi/tZBXjbFwCZ7jqXYueP/FYjE9V5pGxPvj7UothoQdvu+Eq9S2D8epHW52DO1HrCA3G8gZAANCTELGUNILRz5LCorZLC5Nl8tl1UbNx8bfkwgkD4Q0S2gqqnbouTRqAZ8bEQkr2scaq5TGKMy0r6+v7iBaZghtHvI9IjpauCqX7EMSlUaoaTxZCLLEFe17bY58fj6bsbVmMUxY0woJH8jcJKPPNClemjG5pM6JoUb8pf9EEmQubIyOjqb+BSldj46Our6+vrrwX9mf1EY0hsPzNXj7JBDIUGQf7lgagO+duZD0LcgZAAMZW05JL9ah5sRjNmYLLbxNHtiTJ082mIU0BJKMgjMXngiljYMjfoy5hgM3dWnx2hrxkQyXm0Eo0Ug7BNbB0KQ2adrQiK5Pe5HtEzGUznAfQeYQIzRYIJmaRdClQKGtY6x0yefly5eg8VAiF/2fmCIfry+pkcbOncsWE6T/F4vFusREmZxHe6X1pwlWfB0sM5OkD5rkbvlFYvd8LiV9C3IGYECMxMSf0WyL2vM+lVwyIJ7wFUNgarWaK5VKrlAo1JUfIILM8weaVS9j3pMqtcUcY8oUxGgA1rpaDjkuZcpDvXnz5jRvQDML8bZjCKqEkZERt3TpUtfd3e1twzdvKTBIJyyPvCEzHjEuiyHI+dH3hHckPPhMZSGc5cQ9FDRhnSeNgUpfC/cThLQdLsX7ntP2QtMEQ3ivneNYWjMfzOCcZwCzWVhNcvZpAJIwyY3nyFGr1ZcS4PZGiyiQyiu1Fn6oOHGzmI+cm6Uh8PIF2rNZpJ6YfYgZU0x/FoMgxtDT0+OWLl3qenp6TKalOV1jgHwrxWLRm8ClzYn7EKQDXoZh8npCxWIx1aqs8FBrH+jvkZERt3z5cnVN6DmuAWh9cMYbigSzzkqxWHTd3d1pdI8cc5bzHDqzIfy1BA8fHmo+wZGREdfd3R20NsyHOeicZwC+hQ1xZkmwQ5KqLHXApXOSHDhyWNESUmol6Z4OvSZh8P6kg9k53XRkxXWT/banp8ctX768TqLjz1rrl+WQWkxWG5N0zsa0qf02NjYW1ABiJf+QtmLZoOn7Y8eOpQyDh1yS9EnRZVq4JJf8Y0OQrXlYzla5LiHJO3bvec4IF4C6urrc2rVr3eDgoDmW2D5CZlVN2wvhTlZBp1KZNiV9+MMfdmvWrFGDLmL2p1k45xkA5/Jykcvlcl0qvwTLLEOHpVgsNqjTXIonSY1LOVkPDxF1X4ghl7pOnjypHmR5GLJoABSKKImYtX6WBK6BxVC0CBFJFHnbWer9WKDFcss99I2fIIYh03uFQsEtX77cDQ8P162xFqBg7VOIeNA+dXd3B5mnBSEGkQVofn19fa5QKDT4FEjIsc5lLJMOBVZIRkp/x/pEYpgBaTVr1641NYD5kv6dyxlAnUQrkapcLqdImGWTKb68p6cnmPwjJb5mkMlSRUlS3rRpk9u7d2+agasdECueOmYsFoJaZisu3WWRGK1xyoPKnekElrMvNDcOQ0ND7o1vfKMrFArqmKQtXhub1GS08EA+FirvPDw83LCnMiRTEi/SKmPMEj09PV4ThA9oP/v6+tI4eZ9JJrTOlcp0cAX5L2RboZBLvnZDQ0OuVCqp+KkxdClkSJMVD3awanJZ2rocH9fMQvPJNYB5YgBcApOSs7RphoA2lkvZVmifPASSQGnSXKwEIA/KyMhIHcHQGIYswharRjtnS9dWG1wD0Ii19S5/z2c/18YTY7v3aSa12ikHuyQokgloZrpQmQXfWlEMPtcUffHsWmST5piMJag+qNWmfVUrVqxw9913n1u7dm2d5qvhbgifY7UJizDSvAqFQgPD5r8TMdfWlvZy8+bNdcITf9eqyhurFcberaAJPlnOpw/OeQag2QGdi3PoEEhpKwbZ5feSaIUIWgzwOfiQjVRuaZ6KZTrNMihLQrTa1KKGtAOhScJaqK02LksTkvthJeXNJhFOWxeLOPsIQKXSGMKsjS/rvmlA2si2bdvSAIS50AAsoUDG3mumICLszz77rNu7d687ceKE2j75eg4cOJCGq0ohQ3Naa1odAeEGr83Ex18un7qXgoQRC2f42ZdjmIu9cy5nACahl5K7j4ByhJKE2kL20CGQCBCz2bJNTniOHTvmOjs71SJpzk0fGh6J4BufL2LIN78YQugjpNykZIUJyj74gZ6Nk1IymA0bNqQlJLJAaH48oSn2chytjxjpci6kSG7O89X7iRmzxvwkjnZ1dbnly5fXmWRkn7SOhUKhLuBC04r6+/vdmjVrTLzXhC+JU/xckiavhboS3siIH6l5alqIFrE2nxrAOVMOmkrnOuewY8cOHDlyBFu2bEG1Wq0r+7tr1y4899xzahtUPjZJEuzfv7+ulHGSJGhra0tLADs3XfYVQEPJ5Rq7wJxK1E5MTGDfvn1YuXKlWc6WQCsfnCQJdu7cie9///t4+umnsX37dlSr1YZn29vb8YlPfCItx+sr83z06FHccsst+MpXvoKpqam68sDWWIBTd9neeeed6Twr4nJzem9iYkItSf38889j9+7dePLJJxvWmt7fuXNnOnfam46ODnR2dqb7ZZWvtubNv29ra8Pq1atxwQUXpL/zMfLvrPnxu4o10C6M1/qw5nDFFVekJbutd7W5+vrgv9Hcjhw5gsceeww33HADrrjiCixatAgA1EvrfW1zfOG4r92h/OlPfxodHR1IkgSLFi3CokWL0jlQ26tXr8YTTzyRlrOuVqvp3dKEW+3t7bjpppvQ1taGj3/843XlzYFpfKWy2IRnNPfOzs60lDc/lx0dHfjDP/xDvOtd72r4je5p/vjHP56eM/qel2nnpbipj4ULFzbssa8M+6xB4wpn6mcuNACS3rVQQilpZJXquZbhC+W07Lqx9lmtf5JgXnjhhTqHVzOqOW9z79697r3vfa/bu3dvdAIXaRkUbaKp8Np7fP1I9dbU79AcmlGbY/daa1vOT5NCtfBN6YfiDkm51r758vfL5cZSIBpu+daI/8bnpmXrZi1h7sNdrmlyE5Cm8fJIMGstY3BeWgZmY3qRGo0VKGDRl7ky92iAM9UEBOA8AEUA+0PPzkUYKI+WCBHcrBvC+/AdQsvPQCqtjKaJAR9z0caoIaB2SOgGpt///d9vcOb6iCZf2yzOPu1AhMw5oXZifud7HbtG9H8ZciujwGT79LcWdcId+VpBMc1UxAkxJY3JvuRtZprPQTPJ+ASTrMTWAu2c8WCJsbGxuuqclcq074NXdw3lpFiQVcjzta+ZIfmzHC80vJqvCCDnzmwG8NsAHpxvBkDgczBKCG1KLPLIxDCrHUq6sjJ8ff1oh1d7Tkp3klBY4YVaDgMnWj7nuUVcQyDHMFeSkTYey2kqCbXWjmS62kHXpEEtOZA0VFnjh57XcIgkZrKFa1oaJ0Zy/+l5uc7aXvmYo7Z35MM5efKkl5H4tALKTi4UCipTkvitaSUx0nkMXpbLds6Q7IP2lJ6Vvh9+rixaNBd5Lc6doQwAwGsADAF4z4vFAELSQha1TJP0NBgdHU3NKNpG8oMoC2tZBJATkJCEzNvnWoisj6IRd9/FFdzUw4uD+Q5zrFbFD9NcS0ZEMHlhMYsZSEJtjdEiJr75WnO0iL1GDDiOxDgRNQLOtWJJwHzRbsQceSE2OX6KoR8aGgqaAS2BizugY/CGzIfSEcyZtdxTbZ+08ZBDWd4/IBmRHIf8XebIWDgek9cSA2cqA/gLAG8F8G6LAQD4DQAHARx87WtfO6tFcC5M4OXfvkiYWAYQqwFo0oxlC+YHnpDbis7QGEmlUq9GS2TX5qYd2GKx6Hp6etJwOO3SGC5Fx4TZ8rnHMjnZTohpaJm5lrQvCXWW6zKtsYSYhNam9pwPR3xz0tZdEkttzSWujo6OppFSRNz53vk0AO3sWZm/2hnx4RLXTkPRf771tnw7kqHwecv/a/Pg7/s03LNWAwCwEsCfzvzfZAD8M1/VQH2IIAkh39gsm9MMkfCFpskDPzp6ql46P/zWganV6kMIObJrEol8nsCn1vJ5+BggtW8lL0nmFVLXfWq6b2255KoxU1oj2bY87DFapKaVWYzbR6S4NkPx5nKt+Lr6cDbETPgYaF8og/nYsWOqpOsD2VastieJu0ZkSZNu5upFSzPj+6iN3ee4zrLG2phmC2ciA7gLQAnAPwMYB/BjAF/yvXM6roSUDIBvfGxZBQ2kJqFVCdQIi49YSGSVGoJPvdWkG94vVTKUdWQs7YUDjcUXPx6SVEMSM39mbGzMW1E1RAwkM5VrFtIAQgzBt9YcOKHzjZm0GaqdQ+YJrT+6hU4zKfi0DvJN8Fr8d9xxqvQ416SyMgDJsEJm2ZB50hJEQnOkPeBnPga/qQ2uUYfmHFqbGAEhC5xxDKBuEKdJA4glCNozsYfTAk7wxsbG6hiAVc5Akx6s8fJwQi1xzSKi2pylrT/rfLWDro1Xm5MlHWmEWK6Pr4yEb6xWldBYfAkdWClJWs+TJsNLImtAe10qlcznJSGPNSnQnIlxDA8Pp3cUVyoV9Va70NmQ+MDxmWuisRqW1b5FqGVbcr/5+GM1TxKSfFWDY8cqBYTYm+x8kDMABWJt+BrI0DSCEEHjz3ECzcMILccPPzihyBSOsD7CG0PMpeNLagyxRFKTpkJjs4i2Rihk+9Kk5CPMfDzWgdPWVkqGsUyGmxiojr+mZWaR/nxzjN0X61kqpTI8POxWrFjhhoaG6n7nQsvIyIiXcVmMOuRjsXIqsmgemnDT29vruru768ynpN1L5hQbYh1LW7Q2YwWELHBGM4DYz1wwgNhNCiGTJuVwopMlRV8SQW6ntVRiLTLFqk8i5xLyXVjPy7h0KwkoJhrFJ5FyFV4SQT5HK0mM9kereWRpT5bKHUPoLcYQAlrD7u7uOtNBDPGIFTRCoOGSJiUTQaTqmJqjn/ZMC2H1MRj+ro/Aas/xsVIYtVZr3wJ6Z3h42CvckKbgu1WsGQZgaQBzsbcccgYwA9phJTWW17sPEQx+KPjBIeJH6rgPGWM2mogEETN5qPi7Wn0SDcFGR0cbpDiO9PKieM3m6tMAtIMsD8TU1JQrFotucHCw4RJ3ubb84FNMeG9vr5fgWr4by+ZutWNJfT4pPUaipjXQGLZlg5bjkheq+8AiNKOj9XdMaPjI+6JoHk1KHxsbc8PDw+ktaKE1jFlL+Zzsm383ODjoli9f7kZGRrxrwfuUuG6Nl59Dy0/VjCDg02BmY6GQcE4zgJCaSIRz7969DXfpanZKatN38EOOKuf89wYQEJEgM4FVEZF8B5KgaMisReVwib5YLNaZt2LmYq23HCeXyOmmsb1796q1//mecQmUm8tCBFpj3FmkKv68LyrLUuGtZ3zfS01D06hoDzdu3KiWKpbAr6jUJO/QWvK4fktaHx2dvh+D7kHWzkVI6JFjsrQFjTj39fW5gYGBuogkC3w4rTFwYjK+svEh3NJ+1zRJojUac2oWzmkGEJJAeB0d6+o4KTmGzEfEHEqlUoOvwJI+fMTEigaQ49DU9xhC6NMAYphhiKhKqZ6r1LJcrpXNTOOzbMBzCdr6UD187puxmLbMHcnqL+HvEdEhcxlprHQBUIwGQJfUU6CBlLgpjFE6vznBDmkLXFixzhvhJ+WP0LmgfujylltvvbXOCctxUwpdnDhTeWwrgovelSZCH/AzFRv67ROCLE1ahjzz/Z4tjp/TDCCkARBoBNiSWHwMgLdDJgsu+UqkDtkerfHGPO9D2BjmoPkjtFozsSq+bx+4qYEzCv6vLzkslhFp+6lJmlzy5mMLMSwiLtxp7sMta7ySYFAkDq0Pv0s3RBy4dsj3j69pKMchJMHSnCwfCo1jdHTUDQ8Pu+XLl7tisVh3JmgcXV1ddfkltBbS6S+FCo1J0Dj7+/tdZ2dnaqKKidrhgkqWTHbtOa4Fh3wufE1iL5TxwTnNADj4NjAGweWzlrSqEVCp4nHCwm8qi0Ewa2xyDr6IopDTTXtfEkZr3UL9WGP3XVgj17xcLjcQ6RAjGh0ddRs3bqy7/UmOR2N0PkYk51cun7p6UUvM860BB81vwiXCZpyEcv/4mnLi6dPG5JpKxukjbvS3zCuQWonlY+BOWL4PoTWo1WquUCi4q6++2nV3d9cxFepbEyoqFTsbWJ5vbV00ocdaa03jJa2MysM0CzkDmIEQsfIRcw1CEhJvw9pokno4MsYcaq1decB9N6FZV91x8JXCiAGNYWjtEsT4Rfj8texhKXnyOPkNGza4gYGBVJLWmJhFDKx117QJMv/FRI3Q+ydPnnTFYtENDw8Ho5xIgs1aYTV2/6x9C70f6s/6m+71JTy1cNtn3uTEWbtISN4NLLVbLnVbGg2tDeGHvC/YYohyHYmx9PX11WmVFEZLZjTue5lNOYicAUSAdfB9SKxJ+FKiCyGudZgtgiaRko9bSq4+DcbSALIySR9YzC+kWcX0rR1OvuZEwMh0QpmyRJi19bZMCM3MPyThy+eGhobc0qVL3ZVXXpmaQKx3yeHa09Pj1QB9Y/AJLLy6KMfbGK1R68faJxoD3etLTJkIn8XgrXUkQapQKNSZmDQGoq1NzP7ysGgpRGlnXcspoDUpFAp1kXtDQ0Nu+fLlbu3atSljmE3FAYKcAbh46YVLAbSB3Pkla+j4ENQnQfgQUX7PCZq0h1K/5LwN3dVqrYeM9+eMzRp7bPvaexZRsMYn19o6GNS25jy1xkPth7IuQ0Sdz8syZ1jzlBqAz2lsCQ0x+yPx3DJ7dHd3N/gxYrRG2W+l0nh3sRxvqVSqk4TJ9p3lQiC+9hSGfejQoTT6ydLUYpzzGi5zs5XcF75/lnbhXKNZT2oAMYwvBnIG4OJKKTinbzYPf+PIHFJxQ1IGP8hWRiRFaPB67xriykSYEILLA0H2/pGREVUC0+ZnRTZojFSuubUf1oHhbWgJPPRMsVh03d3drlQqmQdeMxFI4m1Jxz7GJYldDFOJhRj8jRFyeLKWFtpYq9X7YiTTDQk8cu+mpqZcoVCos2NbOMjX1/KHUQiszwFO7ReLRbd06dLU7m+tqRQEiAHRPnPTJJ83X5NyuVxHH6w7CUICYsw+ZoWcATg9o1UDucEcUUPJKlklZAotHBoaaoiE2LBhQ53ETwfSkoqk/ZyckTIln8YoiTs3Z0nJxJLASOvghILGUSqVTP+BdtDpWU1llntIUSSFQqFBm+rp6XFLly5NE4L4WKlscUzWaUy5DW1eMrqE44uGWyFCLnHQYoyhgAQ+L4okksyAay4aI/RpdXxtZKBDyFSira2Fg5TIuG3btqBphBIOZXKatT70HRFyeZmLLLRXLpfrkjRDmovsV2rzvmdzDeBF0gC052I3wXrOkoA3b96cxnLLSAiqrc8JpQ9hLOncqoqpOTF96qpvjXgbvF/+DG+TH3QulfLIGm3MZM8vFosqcSDtQIsW4VJtTHRLyEcSIsghAcEigtZztP9WEbyYaCtr7zlexYbZ+jQAKdFrWgZ/zpfEyHGDzGQ8gzxk2pHrF2NSkoxDYwrONWZt81wKH0Pm5reQKdSHJ7GQMwBnS6AWMlgEK0s/BNr7PsnNasc37phxaMDHppl0tLZ8bXPJTTKykGZlSU40Rm4rjp2ztc4haTyUQ2ERSt94LMme7NZaPXmuuWrMP6QBxOCLZoqUjM3CDR/ECl2UqEZZxPyeZYpk4zeMyYt8pBao+cg4k9P8HlooL19rze8i15c75zXzqYYzoXOaawBzxAA4SCTRIEQgfG03E12g9e1LnsrSpm8uvC9+JWVoTjHz51KcNk4uQck+NJOUZb6jOXCTVBbGp81PaimSYIRu2uJt+Agg4WJnZ6dbvnx5Q85GSIINaZ0hbc65xuJ5WruWZufTpkJx8vQOlUQfHBysI/Sjo6N1a235bnwagGS0mn9BnjftTgnrDPDveaipFkCh4Yzmu2uG7vjgnGcAFpLE2OqyStzNJOhI4IST/rUkMkmstUNnETu+LpJYZ0XEENPS2uCEx3JKExHwEVL6nZciDkmdvsMq910e/tiDSe2EashIDUD+xvFPY0aawBGjofB9IP+I9bzcX27zDmXFS+ZlrSfPiZAx+s2epywCmQ/PJC5rfhKfwKP1WavV0pBV8lnx8Vpl57PCOc8AYri39V5sFEcWKdkHErksp6hkAIRgZCe3bmnSiL4l5WaZT+ig+QiVJhnxJDYfEZDrZUl5Enh9HA0vtIzZZqSyWG0htGaWRC/HExMlI/vKsm7yXa1omWyXNEtfZvRcgEVkfQzN96z1LjFMGWDB8Tnm3FQqjQ5yvnaFQsEtW7YsqsKpD855BmBtpM/OS++VSiU3ODiYZhBm7SPr+GKkzVrNdnbKNHvfgfMdAm6HzUq4CDQCJqVtTrD4oQlJ/Vofcjw+7Y3MDrxCJn+PfBdaFmeMRMnnG6olb81Hw4uQ/Zg0J0qq0oi8z4Ed0jh8a6wxKa6dyeeaZQDauSU8krWBrP2PEXCsZ3h1VRkZmGVuvmdJcJhtFrBzOQNQEZUfch8SWFmXWh/NIjVHNIspyaxj341Y8m9JPDQiLDOaeTiqNe/QIQsxBef80Urlcv2NWVkkPN62Zp6w3qODNzIy0mDvtg64Rij4d76aTHI/Ypm1JW1K/NH2k8w20qGrzUPzD1D/0mfE8UwzkfjWSwNrLbT1pO/IrEe5BxTZxNvQoo60vqWZWNN6tLNojT0rc4g1P4fgnGcAcpPo7/7+fpPDxkjCPsndB1mINT3Dkd6HHD7EI8lMRijItqXkauUDWKqwb95SGtaINHf6UmKNvKM1Zn25U1gjRJxY8nkTYRseHk733qdNaUybP2f1w308WXEn1uGtaQBWrXltHuVyue7OagI6Q/z72PMQYnyaJsHfJQLPo8E4zvT29rply5a5QqFQJ+RRu7I8iM9/wffG0sI0rUljzpbZ1to/nwCTBc55BtCMBhBjgpCSe6zJJOZwcOTXCGeobZ8jSkZTWAQsRKAs6V3rk/4NaS7O1Wcl832KcWjycZE5zMpq5jX++Z6Uy9NhgHRdI0nKPCRRk/ZDmamcMBYKhfQSkxMnTgSlPYkXWcsEawRW0340k53Wl0X4Qn3w9/mecGLHtTCNsPo0U8kgtLWnkhsHDhxI7x6wzkqMdiaBxi9t+7LabUhDtaLyssI5zwAs8G2opu7J32QEgJSIrDZjEpH44coiCVjSB4cYbYUfwiw1WThwuyyXPkMmI8mgfIQlJOFaay4PqeyDrhnkB1Da12PXXBLW0dFR19fX51avXu2WLVvWwIB8e2aZ8SyIEXbk+ksJPgvhi4244aYlyWSI+EkzFb3DM3K19q215PtE0TcDAwOZwrZ9v/EcGIkPNCYuQHBBxZpDbPCAD3IGMAvQNslSBYljW1fNjYyMuL6+Pq/EoanPMeFgWaWvGAZEWkes9C3b5QQzxnwTy5hk4o+0cTczVgnlctn19fW5QqGQMgifFpaFaFBbw8PDbnh42Mwctdrg+xNipoS/mi3cN74YZ7DFjDkOWvvOhRrNz8C1SzprmibiYzpWeC+tfU9PT0PNKKvN0G+1Wq0uf0HLJuZjsiKvYoXELJAzAAU0JLee00wyGnJTm/ISByn1aXHqPokrRgMIEc9YKY63xWvGNEPANdu3r/9QVJY2D6kBzKacM/+dzEDcb5Q1zFcj1BJ3Qvb/kLZpmUK4kCLNnyGCp81Vw08fTmhCkm+tQ1p2uVxWo7J8e+oTFnj4pY+RWfshf5MaZaVScb29vWpynxQG5d76xtYMNMUAAFwD4E8AHAYwCeBZAH8NoBvAz/jenY/PXDIAIsiytkfoHXkQNcShdrkpiBCPIhOkQ1MyI+3v2Uq0WVR6mgePJY8dQ6wtW2uzGSLrm2doTr53m9kDrT1JqCVh9El6NGYyxckic80wO61/H+5p7YWIu69/DWLw0YdX1u9SoOBnmCfKZYndj5kDjadUKjXcs+zcqVIT2r0PUpOYizORmQEA+DqA7QBuAPBqAOcDuBDAlQB+B8CjAG6w3p+Pz1zWAqJFlU6mmPctScS5U5K6rBroYx482YtLKs2WEbYOkzZ/n9QZIgIhAmO1zYmHnLdFdLOow5Y0RwyXSntr48uiIcSATwOI6YNLrFbkTjNjkhpI1qs1YzTnLBDad03TkOukBRdoSZRW27NJ+vMJMtp6Ug4Kmf98jOu0aAAAFli/ZXlmLj9zVQ00RgLmIA+MtEXytkJefR/B5AxlNocsRmLIoi1w4PPzSdoxBI4YqQzD1Q5PljBJay6WxJ0FF2L2l9t4ZbsxfZEpQVa6zMJwY7U1KQ3HaKPNniMfSAIu913TNPi+ciarEXYutGlmWx/xtoQ9vi6cNvgEPUknfKHNMebQWDjnfQBcEgvV/6HnfequRgilrVVCiGA26/SxJN4sUktsG3ze1rhrNd1ZqvXBNQCftNwsMY15LlbFrtUaw/I0LY6IVqzDUtuLUB0fa+8kc9Xs5TF7I4kgJ8483NnSSnzrru0pJ6Yx+Se8HUlAaewUAkxStJX85sN9jqNaRjhPrJPOXAl8TXn2u7XHIyMjDddaNgtzygAAHGnmvdl+5qIWUEx2q3M6odOIT2wNlRiJPgshmguJTJO0JTLGMAY57kql4rq7u+suZbHmx6WcctlOKtPWzxqzfC9WEraIqeyPEwIpqXKp3Rc+LNdTPsuTmjSckGspiSGZ1zRHruWY1NZEOtZpXDKjWDNLaXkXUjLXNBftjFpnkKJ5+IUvlKtRKpXq2re0N21fQ3OhPRoZGXHDw8OpUBCiFVKo9GkWw8PDaamS0+ED+JDx+e8AJq33Yj8Afg7AIwCeBvAkgPWhd+aiFpCV1Ss3LsQACGKJb4jASkecNX76V6t3LplBzJpwqcsnTfna04hasVisK3GrPSfb52qx3BuKoOrt7a2TvskcFxN/71xYrdaYYogI+TSUWKYvCamPucUyQy0xsVY7lSR14sSJIHPUmDtP0KJ49xMnTjSUn5BSMx+jpo3TPm/atKnBN6fhITEzKuhHfdE1kMPDw3V7Y50xLuVbeM7phyyZIjULLd/EZ6LTBA0etjsX4aDNMIATAL4IYKfy+XfrvdgPgEUArpz5/08B+AGAy33vzEUUULlcH29sqZF8U5qx61vPkWouVUauZoZqp2gEgL4LORstqVabdwwBC83X17fWn7aWNEZK29fyMWLj23mGsdbXXM1fjj1EWHy1mWLatJgrz4uQmqosnOZbD+nXkAIDj1qxxqMJKlqZBV8Gu6YBUKw9OXsHBwfd0qVLXbFYdM7pfquQpsv74DhglUzRNBvL56Ttp0xIzGKujoFmGMAhAB3Gb8es95r9APgagOt8z8wFAxgbG3OdnZ2pmUFKJZp0kDXlnt6zEEomLNFmU8KLpRqHkEiqzRLZpbMv1G4WbSJm/s22J7UkXlufZ16GCLpzumlFY57NjlnThnz7pv0+NTWVlomwEgpjhQ7Cr1Kp5Do7O113d3eKazwLN+Rkl+tARJWXyIh1WGqapyYAxMxTI8KyvDIfa4y5Vs5b+j+seVoMIdRHrVZrYKBa37OBZhjAMgCvNX67ynqvmQ+A18/kGPy08ttvADgI4OBrX/vaWS2Cc7YGYEn6UpWNkVipHyvFWxIcbrfVJIYYSVQ7VJpkEqpL72snixQSK6XGEjPeLp8DNxtZ9mSN4YWSqizJNzROS8K05qppYENDQ27ZsmWuq6srrYRKseSx0qAMIywUCu7qq692N954Y9qOrLsTixfWWbHek3OOfTeG+WpCjrXunCBrzMYSAK2zF8LdkHCiPSsd87PVQAnO2CigmdyCQwA+FHp2LjSAGKLtc9rxw+Lj8Bph0toKOTHpuSySgEZULAk3pq9mJPdYwp6lbbJpUwlfSrWX6fw035GRkYaLw7U909ZHjit2rzRi45urhhObNm1yAwMDrlQqpXXnqRqn5vfRgJsqCGf37Nnj1q5dm/oEYgQZPkZ+TWIMQ9QYsHP1Z8MKyY3N6vZJ9Fk0Ct8ZswhxCCfod24S0ky3WYWrZqDZTOBrAXxlxkn7JIC/APBu3ztZPgB+AsA3Afx2zPPzzQCs36Q0ReozJXv5pA7N8y+l0dAhlDVFQnPTDlWsGatWawwTjJWWmoHYQ8rVZErk0jKuiejIOvBEdEqlUpSpwhqXj+nL/dQOOw9v9JkceVQJtwcTQfSFXzqnJxKF3rHWn/C2WCzWmU99+0XvSc2CM2ceMmtpdFowAQEX2LSzJPcqdPYtnLaYg+yHMwK517T+kolbprcsQlsMWAygBQYkSXI9gB0A9gH4CICPzpSB2JEkyfut92IhSZIE05nGTzvn/ni27cVCtVrF9u3bceTIEWJCfExob2/H9NBOwdGjR3HLLbfg6NGjSJIECxcuxOTkJHbv3o0kSVCtVrFlyxaMj497+25ra0NXVxfa2toa+qtWq9ixYweq1WrDexMTE9izZw/27NmDiYkJ79x27NiBo0ePoq2tLZ1HtVrFrl278Nxzz9U975zD+Ph43TokSYKWlhY8/PDDqFar6Zz4ulSrVWzduhVbt25Vx+vrQ/4t19xah/HxcRw4cAD9/f1417veha6uLnR0dGD9+vW4/fbb0d7enr6/f/9+rF69GqtXr8bixYtRrVbT/o4fP479+/d715GPi/qmNWhvb6/bQ239q9UqkiRBkiTYsWNHimtJkuD48eO49dZb8dWvfhVbt27Fli1bcPjwYZTLZYyNjWF0dBS1Wi1dD74+9Nm5cycmJycBALVaDYcPH0atVqtb3yRJcMUVV6Cl5dQRb29vx/r169N5aaCtP+HtwoULccEFF2D16tXp/MfHx7FlyxZUKhWMj4+jVqul+9vW1oabb74ZS5YsqdvfnTt3orW1FTfffDM6OjqwcuVK7Nu3r67PBQsWYOXKlXDO4fDhw+l8Y/br8OHD+PznPw/nHLq6utDa2orx8XFUKpWGc0rrBQCLFi3CokWL6s4/Ecre3l6sW7cubYv2s7W1FRMTE/jYxz6GiYkJbN++HdVqFdVqFffeey+2b9+OiYmJdGzOOdx4441oa2tDtVrFvn37sHLlygZ8ojN21113RZ2zpkHjCjOH5VEAv6B8fwWA/229F/sB8E4ADtN1hkZmPu/3vTNXGkBWp64Mp5N+BM3eL9U/yeGtGiWWdBIrlWuXX1jhb5bJK+Qo48+EsmotU4pl8rHWIcZurI1dqt9ZJaos49X2RO4/JQBt3LjRFYvFtDZUT0+P6+zsdEuXLnXd3d0N4ZOyyimtO11sQs5Dy48Vo7XQ+CwNSWubShrs2bMnNbdlTXbU1pC0FZ/Gpo2V1oqHC9O4qUAjDzOONeNYpsBiseiWL1/uCoVCWmJ6bGzMnThxwg0MDLi+vr70nAwODqZOeG3t5Xq9GBqAj0A/08xv8/mZq2JwsU4oDrTxPOxMEmPNyWQRX26jzTJmQt4YG7XP5CTXgc9BhqNqGZvSgU19yDabtXlmsd/KPZLrT3/H+HgkZMkbsOYh14BHIhHRKJVKauEwud6hi3xCc5TjkWumOc01ExSNb2xszN14441u+fLldVUwJc5YkW2W2SXmjGr4rRFNLqCFktM47lhMnT8/PDzsurq63LFjx+qi++iiIVqToaEht3z5ctfZ2dkwp9gzMRtohgEcaua3+fzMFQNoZsHpHUrP7u3tNaUcKd1oSSZako6vX7oPgOyvMQRSk8atiCbOQOQh4e/RYSKnpIxy4gdXEhef38CnOVj7lZVJxErH2rpY48jKmPjftNZZLu4JCQ4+SZva8yURaslbJFGTT4WPZ2xszK1du9YdOHCgDpclzmhRRuVy2SxnHbOuPmZmPWPtIX/GYj4+TUUKPDJhjBz7zz77bEMZDkuImEvG0AwD+L8BPKR89gH4V+u9+fycrgthOFjZlT4HkpXcEpIe+TNaBEFWsCQx+i3GlFEuT8eU79mzJ1VvQ+1Qar6v9LZPW7GkWhnWGiJ+1uGX5jWL6Mfsl9aP7++sGsjJkydTjSEL0+Fj08x3Fg7T96VSqc6hSZotXaoiyxVInLFMkNIkY0nxoXnyPnyBF9payExyTTOOYTBS2+f4SLiqxftbOBCLbzHQDAN4l+9jvTefn2YZQEj6tCCk/hNIqUr2bR1wq32LQDQjFcX0KQlnyE5LUmihUIiS6EdHR92KFStS+6j2jm9uXIWX0urevXvTw8uZbazN27nGax4tRhK7/lKqz8IQZOy4NLH5cC12PQk4gQkRSjknGsfatWtdZ2dnGprLiZ/P1CSJPD1Dey01A2s+WmIf9UWCGjEvec74WspIpVgNkK+jrGGkvcs1g5A2kiW5LgSZGcCZ+GmWAWgbbW2mRuhCdnpLqooZV5bkJUkMrDb7+vpcZ2enGjqn9SkJZygrVB46zYHG++FMpxmpRps/rRPVjeH2aR/h1vrnjlmtdk0WiV9qfBbxtBzjnBlpzmvNpxRD7LWxxgoXck60ZrwQmixrLLU20gKpZlB/f3+do1ZK8lJQsDREMi/x2kG12nQ9oDVr1rj+/v668GFJgENmyZjf5d7wv32VV7XzzM1ioXOYBZrRAD4AoJv9/V0A/zjz+VXrvfn8zFYD4KqeD6Ek4YrJ5CMgyVSafLQDZkUxyFR2fjhiJFC67JpX4rTGoTGvWMnXh8gh6SZWA+DSuEX4iNjEmJcs6Z6YgE9yt8ZrMTvetyVhyjXRcC4k9VuMSht/iKlp62PhqfQZEX4Sc+B3X3Otsb+/3w0ODtbdne0TnOQacSFJ679Wm470W7ZsmSsUCinzoXMVEupi8Zr2pb+/3xQcOEMn5uMTnMrlU/dQZ6E7IWiGAXwHwM+xv0cAXAzgtQCGrPfm8zOXN4LJw0GEu1gsRjtprD582Y8+ByRnVBpzitUusjCuGOJhaSrWWoZUZYuISUmOv+Orj2RFWmljJZBmJctRac1VaiP0r9xnH7EPrQnvX5OKQ3jBhRErOsdiEKS1jIyMqNVWQ2fpjjvqrz8l4lcqlRrWPdYPxjUmzffjE95o3lY1YK0/TqCtfZfnVe4VMR9u/+eFCLVwcMsCMBtG0AwD+J74+wvs/09Y783nZz6dwLTwvoy/2A3QDjoRBs3hRdK3JklZdtQYiCUuGvHWEN1XKiGmX5/Pgw6SVQeeCIiUjJuJnjh58qQbGBhIiVNIu+L9cOKgOfx82baaJB+rZWjrahEqDac4UZF7rBE66biXJhZrzDxrvVQquZ6enrpMbR5EETKRWIzOYvixGk9WgYa/wy+Zofe0M6o5wE+ePNkQQq6ZmeV8Y5hkCJphAH/v+e0frN/m8zOXGoD1e4wtP4YhSCQjE8OmTZvqDj8/oFYInlX/xScBakwoy7glQaSxkLrbzPpYBy8ULcLfzfKsZU8eGhpyl1xyidu7d2+UVmURB4sx+NZFG09oLyxmoUmgFs5woskJvzSNyr5JIybJneZnjWt0dDQNk6a2+/v704QuqifU09NTx/D52DS7vlwP0gLkdaLaekvGxdeC/s8FAR9zkcRYWwu+x/J5GXDgCzSJwalYaIYBfBnAJ5TvfxPALuu9+fzM9kIYK+Y6VnKI+c1qk+qAFIvFOoT23QHAEViLCJBEMSTlNDNuORZfcbuYNrR1DlWi5O/GSEX8sGoRJSTdnjx5smntTrvMJEZ4oDnHaC7a2DStgNaPzBu8WJ6mQRBB4bZxLZSWMwfrDmzn6s2bJOHLMVDGMpmU+vv73fDwcHqbF2lOGzZscMeOHXPbtm1zt956a6qlaetNyVaWPZ+vMxc0OMMmrZ8EG8ufZAlb2r5b5kHn6gVBi7D7BLtmoRkG0ArgMUzf2vVHM59HATwOoM16bz4/c3UlZKxkah0+X7ik9Zx0zFrSibXZIVUxRtqPJXa+5/i4LSIcS+CyjjOkplsSsk/i9uGFBiRha2GKoSiq0MGmsZDkq9nr5ZpL6ZvjSEiDoPBcHv7Kb7fiWqkP17WCbbJvnr9AUm9/f3+aUMjLXRcKBffGN77RDQwMpMyiq6urzpTkXLicCv0dw+g0Rp5VINSc0RxCIb4xfTULTYeBAngPgN6Zz3tCz8/nZy6uhPQR9KwqubVR3N5PiGFF9si2JPIQ0sgr90Jjmw2E2gqpptZB1BBee1YzhzkXLg9gEfMQQ9M0w5AmJCXScrmslkrm7YTWlcbCK5lmMTHJJEVpb5fvaQSJzDNUN8dX8ZbWnBgi3xdNU+HmHrrL98CBA667uzutkVOpVNyJEyfqNDQK6ezu7m7Ye2195RoRoxscHFTzAWLAYgz8t9ANXla+icTVGIaUFc7pPAALskr+0gxjPRu6I1R7lxNJTvyy5CL4iFwWbSCkKVhjt5ir5tzmv/H5VirTYbDbtm1L/SX0PZkJuH1VW3sqpUwQQ3jl+GMYKn9GY06SuVgajPy/NClwZyl3gofGzYmuL4pK+gSImHEhhvISpDbBJWgZYaPNi+ZBTKO/vz91yNPlN5LIU8G5wcFBNZnLcm7TWAnPisViVBkNC+99mm1MDo3mBwz1wfdwNsLdOc8ANE4ae/CliudjGJVKnE3b6p8jEz8wPqnFR5B5e/Sd5fjLMk7+vSbZ8zWTZgR6nn6Td9MODQ259773vW5gYCAl9pyBaHXV+dykrTo2xlxK7j5nID0jCTNvw9JI+Ppw6V4SV75/Uisol8upZqnlGGhJSRauS8cnnxdJ47If7ZxwB7A2L3pv06ZNqTmIX9ojK4DKOvr8HgIfblr4GjIZNSMo0Huz8eWFxphrAHPAACQnDRE1SwOQMcRSAsmyWT6JwiKsWh+a1CCjJbiEraW/ZxmnJjn6NABJEDVNgL9PklJfX5/r7e1VC8719/e7QqHQkF3M18eysfI99knJIemSmJVld/dJlPygy7XifVB70i9AmuKePXvqSgzzPQslJMp1sDSHLImNPMwxJODQnOU6kMOYBAM6c6FzFcPw5Rpp+OgTEH39+jQHDce0vYi5tKcZmBUDAPA6ACtm/v9yAD8V895cf+ZSA5Cb75P6CDTiaR2irOOxntGIqGRkPs1GthFKmvKNQzKcUqmU2mqbace3LlR2W5pz6JnR0VG3cePGtH+a29jYmCsUCmmJCG2eFsPwEQANX4jIct+ORfR8BefkuCROav8nJvnJT37SLV26tCHrO6vmJwlxFq2IA2lg2l3YGh5o68B9Ez6Tihw3tRV6R47DEhQsn1MsY+DPa+spmS4x+jOKAQD4BIDvUew/gP/6Us0E5sA3X5Y61hJ1iHCWSiU3ODhoVsK0iImEkPSvqer0PRFHbh4JITs/HLNRJfkY5WUkMe/EEATaA4uA0zua9N3b2+uWLVvmtm3bZpq4JFGNYYg+zZAzDK0tGtfy5cvTsWrx3zGJcpJgDA8Pp2UDtPFYmo58JsZBX6lU6mr4aGtCZ6hQKGQiwiEhyFpjKs/O78mYTW4HB9I0yREuBaAYQS927vT/uSwAx2E2DGAEwE8CKLLvjoTem4/PXDuBpVRE8cuapMadPDzqwZKOLVWP960hnYZcWh88okJrRzs4xWJRNRf4xmOtW1Zk9R0aLvnyC3dCkTmSYE5NTbnh4eG626m0Z2u1miuVSqkdWhYma0bCIyKqOeykacRaDyI4PFucnpVJeJqZSwoKcv+54MC1iM2bNzfgERFXWdaCf2fhquab8K2bjwjL56QGTP4BidOhPYyR7mm+0v+QFT9iwGLEc9XXbBjAd2f+Lc78ez6Aw6H35uMzm2JwPmLL651Im6eUKqQJxTInyAshYqV9GcqnzYU792I1jFptukjcsmXL1CJxWaQa6+D7JOmYA84JqMbYQmOUhJK/y6OpKpWK6+zsdK973etcoVBoIHRZJTx6njMVTkg1O7q2HmNjY66rqys1e3FCxE1IGqG38JLbt0dHR92tt96aVoql8EjKiOZtjY6Our6+Pm/sPU+ok/spncqWZkTCkvStaEKVPGMW4+BrbgkQkgFYBFj6m5qBGCIu92uutY3ZMIA/AHA7gGcAXAfgqwDuCL03H5/ZlIPWFpcjCj8omh3Op55zpNWkMe1d6ltzMmoaBs/MbEa1rlTs1PkQ8bba9vkmmoEQc7MkRosI8mcsDeDEiRNeH0qWcRcKBbdixYq6Yl+VSsVt3LjRbdu2rcFsKPuhcEcyOXCmwQmWJiTQ78QkiGEcO3bM9fb2phe2DAwMpCYTHpbIiTDhZagwoi9EmY/Xwg3t/PG5kiaUdT84Y+E4ysdkMRmLRlhauZXzoY3Hdy4sGpHVX2eBxQBaEIYNACYBHJkpA/HXAH434r0zBtra2tDV1QUA2LFjB6rVKgAgSRIsWbIk/a2trQ0tLS1obW1taOPo0aP4nd/5HXzlK19BrVZLv0+SBO3t7UiSJO2nra2t7v8TExPYv38/JiYm0veq1Sr27duHlStXoq2tDdVqFTt27AAArF69Gq94xSvS53bs2IGjR49i69at2LVrV/oOB+ccxsfHUavVMD4+Tsw7/c05h66uLlx77bVoaanf9mq1ip07dyJJEiRJElxPmvPExES6nm1tbVi3bh16e3u58JCOi4/H1+6iRYvQ0tKCnTt3olqt1r3P15rWpVqtpv+fmJjAokWLsGjRIiRJgkqlgjvuuAOVSgUtLS244oor0NLSgiRJ8LM/+7N473vfi+PHj2Pnzp2YnJwMjs837iRJ8MQTT+C2227DwoUL69blHe94B/7X//pfeOaZZ1Cr1dI5jY+Pp8855zA5OYkLL7wQbW1taG9vx6pVq7B///709+eeew7OOUxMTGD37t249957U1yemprCU089hS9/+cs4cuQI7rzzTtx///145plnMDo6Cuccrr/+elxzzTXYunUrOjo6MDExgXe/+9244YYbsG/fPgBAV1cXOjo6Utx9+OGH6/CW43VHRwf+8A//EB0dHXXrQWPkhKanpwc33nhjOn9atyVLluDmm29Ge3t7urcA8Pzzz2PXrl3p/ELA8YTGuGTJkjoc5c/S3lB/9I4cB6cR/MwRzj366KMNeCjHzNfMAotGZDmXTYHGFeQH05E/b4p5dj4/81UMzqdiEkxNTbm9e/eatUdibZjWd1YUBq+CGYpQ4lEE3Aln2UmzjC/2PSntNKPCWloVX6dQQpRzLnUQFovFBqlOalXWlYCxc+f7d+LECbd371534sSJ9Lc9e/a4t73tbelYpIStaWi8D7oTmqR+iQuDg4PuNa95jduzZ0+63z09Pe7YsWNuaGgoLeZGeJA1QU2Ox2eq5GYTqn0/NDRkFqnTJGmfmTWLlM3bkmG2lv/M2mP5m/R1aFpBLDR7BmMBzWoASZLcgGlH8Ddm/v7FJEkemh92NL/AJUgOnENbXLelpQUf+tCH8Ed/9EdYvHhxnVTrnMORI0ewfft2VWLR+pXfcQmA+t65cyeefPJJ7N+/H5OTk+rY5RwWLlyI5557DgcOHEg1hcnJSRw+fBiTk5OqRE7aC0maAExpJjQvKe3ESD8ENDYAqlYFTGtit9xyC5588sn0GXquUqlgdHQ01dCWLFmCrVu3wjmHLVu2pPOmvTp69Ch27NgB5xxWrlzZoPlpa0Ug14fv37e//W3cdttt+Pa3vw1gGnfe8Y53YPHixVi4cCHa2tpw/fXX44EHHsDu3bsxPj6OarWK66+/Ho8//ngqBfJ5PfXUU3j5y1+ezleu+5vf/GZcd911eMc73oFFixbhtttuw8c//nG0tLTgiSeeQEtLS6pZTkxM1GmSUrPavn07HnnkkTpNl+a8fft2HDlyBIcPH8Zv/dZv4c4772yQricmJvD888+jUCggSRKsXLkSjz32GFasWIHe3t46jZf2gP6tVqupJrho0aJUWl+zZk3de1I7JDxpbW2t2zN+liYmJlIJX1oEtL32nQHSDD7+8Y9jyZIlcM7h8OHDqNVqUWdH4lcMjZgX0LgC/wA4BOBnUB8F9JJyAjs3d0kdtVpjdAS3OcbYLGO4vWVnD4VykrRIkqX825KULEnbSuiJBZ9UZNlhs9pKnZuWOjs7O93y5cvTWivUZl9fn+vq6kozTHnWJkV1aaG/3Cbu80fIv0+ePOkGBwfd8PBwun7Dw8Pp3bk0Xor4KRaLbvny5W5wcFCNFacQUnLWamtlraVWx58nG2mazN69exuupeS+LAo/XbNmjdu9e3ddCCr5LnjiWrlcbsjp8GkAHHiYp5ynhi/aWbQ0Z96WpvVl0YJpnOS7i7EGxOD7bLQKDpiFD+Ckc+7f5o8FvTgwPj5eJwVakl2I61arVezatQvPPfdc+h23OUr7tAQ3I4HK33m/jtkoW1pa6qThlStXYt++fQ1SF5ckWlpaUttttVrFF7/4xbQtKVHTuwsXLsTKlSuxcOHCVCIliZavXQzw8dC72pzlOoW0BVqXhQsXNuyPcw4vf/nL0d3djcceeyxts7W1Fe973/uwcOFCHD9+HA899BCuueYadHR0oKWlBR0dHVi9ejV6e3tT6RFAKilef/31ePDBB9PvaU70jNwvWv+Wlhb09fXh6NGj6TyffvppTExM4PDhw2htbcX69evR2tqKiy++GK961aswODiY4g+td1tbGzZs2IDf+73fw/e+972GtZISLwHhCt9D+j5JEqxbtw7t7e3p2MgnUa1W8cwzz2DDhg145zvfiUsvvRRTU1Opj4Xbw5MkwR//8R/j0UcfTf0ZAHDzzTfXnYUHHngA3/ve9+rGR/hO+M3xnMPChQtxxRVXYOHChXXvJUmC1tbWBs2N5v3QQw/h8OHDOHz4MHbs2NHg45F7ZuEb+TIsoPVbuHAhtm7dittuu63Bj8DPA8f5trY2dHZ2olaroVKp1FkU5PNcQ5pLiGEAR5Mk+QiA85Ik+a9JktyL6TLRL1mwCLTFGPj3bW1tWL9+PW6//Xa0t7er7fsIGXf+8sNrIQkH7jTTHFIaIZVjkQyO3iVT05NPPpke5KymG3JAEzEYHx9PD9DChQsb2rPWSdsHN6Ni33nnndiyZYu6Nj/1Uz+FSy+9FF1dXemhqlareOKJJ7B69erU1POd73wHX/nKVzA1NYWJiQk8/PDDaGlpSR2GR44cSVV5yWw4waxUKhgbG8O3vvWtOvNftVrF448/jttuuw0dHR0pEd+8eTMApCYsMk384Ac/wI9+9CO8733va1iLJEnw6le/GosXL06d95x4EbM4fPgwPv/5z+Pw4cOpILBkyRKsWrUKu3btwtatW1NHJTdxygAJ5xxWrVqFyy67DN/+9rdxyy234JlnnkFnZ2e6H+3t7Vi0aBHWrVuHyy+/HIODg3X4Qnu1ZcsW1Go1tLe343Of+xyuuuoq88xYsGjRItx+++1IkiTd00qlglqthqNHj2Lfvn11jtMkSdDR0YG3v/3tePDBB/HAAw9g6dKlqTNd7iN9197ejvXr19eN78iRI+jt7cXhw4fr8HtqagqHDx/G1NQUnHPo7OzEokWL8Au/8AtYtGgRqtVqXTAGF6A406I9uPfee9P9AdDw/PXXX4+LL74YnZ2dUecxE2hqAf8AuADAHZjOBv4egM0AXhZ6bz4+c2EC8pVC4KFgPBzRF6PM39PMJ9Y4pEkn1Ic1p5icgNh1sVRN33z4/GUVVJqTL6NXa2doaMht3LjR7d27NzUvjIyMpLXjuTmL/qV682RWkTdNFQqF9EKSvXv3uje+8Y2pqUhzCFOpifvuu88dOnTInThxou6iEzIZdHV1pZeP+2LTaW5kjuMlmuV1lyFzGV/v4eFh193d7YaHh11vb68aalkul9MER+ueaG7CobXjZivtbIyNjblnn33WDQwMpA7vSmU65LO7u9t1dXW5YrGY7uULL7zQ4DiWuKWZ1mQSJq+pQ7j1wgsvpI53cqgTPpAjnOcr+ExDBLwKKeEE4SddcC9NaTKUlq+pljxHJlpK0CPnOs8FOW3VQAGcB6Dge+bF/MxFJrDPdioPAR0obtPjB9mykWvx0RpRsDIxY+x+dDDmAjm08Vm2Sm1sdIj5hd8WA9X6421SZMW2bdvcJZdc4oaGhtzY2Jhbs2aN+9jHPpbeqMaZJx12qitPxI4Ta85QKIHphRdeaEjWo309ceKEu+eee9xP//RPuxtvvNENDQ3V2XiJqA4PD7uDBw+63bt3u1tvvVW1IcuburSCX5zQWXZ9+o4Y1S233OI+8IEP1M1Zi8qp1fTbszgR5ExIq3BKz9HZ6O7udp2dnW7Pnj0pM+Vtks2fl0QvFApu6dKlrqenJ50jnRXKnZB+FyLmtE+8SinHuW3btrmLLrrIbdu2Lb17d3h4OH1eXsbuXFz1T8JHXnNKXnDPCTv3l8i1lbRCY7qc2YV8GFmgKQYw/R4eAvAzoeea+QD4bwC+D+DvAWwIPT8XYaBSYracP5ZkzZ0+FpHXNlwjgpVKpe6iGJ8UwdvnByNGuo7RKORh0Ii+JLwy6Y2QnyO0T2viNZhkGC5Jli+88IIrFAru6quvdl1dXXVORNqjYrHo1q5d69asWZMmUfExcoJ53333uWeffdaNjY25wcHBNDOaxkgXmReLRXfLLbe4VatWue9973vp9YUk+fJa+QMDA+41r3mNW7VqVd2Vn7QOg4ODqZO3v78//ZcXTJOETuKMxI2xsTF33333ude+9rVu27ZtabilxmTpHl5KfOPVNSlzmhy//MpGWmvusH7hhRfcwMCA+8Y3vuGWL1/udu3a5QYHB1PJWxMgSIP75Cc/6dasWVNX159CZo8dO1a3V319fQ2X63C8JAc1aXvPPvus27Ztm7vllltcsVh0nZ2dbtmyZSlTGxoacseOHVPv6ZB9yLFryWrac5bWZxWnk1qVDACItQTEgMUAYnwA/wfAkSRJtidJspU+szU9JUlyHoA/AfD/AnA5gJuSJLl8tu36gOyflPwTCnHkSUX8+/b2dnR0dKC/vx8XX3xxahslu+Lk5CSuuOIKJEmShhwCjTb1trY23HDDDXjiiSdShy23v/OEHKDeNtjW1oabb74ZV1xxBRYtWpT+zm2PzjUmHFngC9/kYaKtra0NY5NJNO3t7Vi3bh3WrVuXvt/a2pra1mls5KTka0N20T/90z/FoUOH8O1vfxsHDhzAb//2b2Pjxo1oa2urc8jeddddcM6le9Ta2or29nZ0dnZiwYIFWLNmDYBpZ+L3v/993HLLLejp6cFdd92Fr33ta7jkkkvS8Nj29nYcP34chw8fBgD8j//xP9DT04ODBw9i3bp1+Lu/+zvUajU8+eST+Pd//3fUajWsWbMGb3jDG/CWt7wFF198Mfbs2ZOus3MOzz//PF71qlfhkksuwUUXXYQf//jHKBQK+MhHPgLnXJqoRvvJk5f4utDe12o1rFy5MsW33/3d303DGK+++urULi3xMUkSvPnNb8a3v/1t9PT0oLu7G1NTU1i3bh1uuumm1PG7YMEC3H///emaOHcqrPP+++/HF7/4Rdx+++0477zz0NvbiwceeCDF882bN6dJZxxnxsfHsXv3brS0tOD9738/vvvd72JiYgK1Wg1f/epXce+992JycjINS21tbcWPf/xjbNu2Dd/61rfqwlFbW1tx9dVX45vf/Cbe//73Y8GCBVi9ejV+9md/FitXrsT555+fPveZz3wGHR0dmJycxBNPPIHjx4/jueeeS9eXwkJlshj3D3C/G9CYSMpDkXlQANnvtXMszxz5VCgJUkt2nC84P+KZh2c+cw1vA/D3zrl/BIAkSXYD+ACAp+ahLwD1kROtra3phqxfv151qtLmaDA5OYlCoYBCoZA6jyQRpUiaVatW1R0GjijOuTTGGQA6OzvTsRJSaSB/o2gL6ueGG27AwoULsXPnTnR2dqZOPE4sfe1p7e/YsQOdnZ11CA8gJTj8XWJK9PsjjzyCjRs3YuvWrWhra0vHxQk/QWtrK1avXo2pqSnce++9+PGPf4znnnsOy5YtSw9rV1cXJicnMTo6isnJSSxfvhyHDh1K1/Wpp57CgQMHsGLFCjz00EPYsGEDPvvZz+Jzn/tceiiTJMHTTz+Nu+66C8A0k7j88svx6U9/Oo0auv322zE2Noaf//mfxx//8R/jq1/9Kv7pn/4JP//zP489e/bgIx/5CPbu3YuXv/zl6O3txaJFi1JH6OTkJF7+8pfjhz/8YTqvDRs2YHJyEh0dHRgdHcVjjz2G8fFxM5dC7tXx48fx8MMPo7OzEzfffDMmJibQ2tqKyclJbNy4EW94wxvw67/+67j22msb8H1iYgLf+c538O53vxs7d+7E008/jSVLlmDJkiVobW2Fc9PO5eeeew4tLS2o1Wr41re+hW9+85u44YYbsGvXLvzgBz9AX18f3vSmN6GlpQWvetWrcODAAVSrVfzt3/4tnnvuOdx1112pM3THjh1Ys2ZN6oTfv38/brjhBrS1teHIkSO499578epXvxpJkqTZyIsXL8YHP/hBfOlLX8Lv/d7v4aqrrsInPvEJLFmyBOPj4/jSl76E//N//g+cc/jCF76Qri0A9Pb2AgDWrVvX4Oiu1Wq48MIL03Nm5arI6CLCdedcnaPbigZzzmHnzp11uUXaXsozZGUnU7CIL2KpWQhqAM65P9c+c9D3zwI4xv4uzXxXB0mS/EaSJAeTJDk4m3T9mbYaQs5CyUy00ZLIUekDknJpA1tbW1MkoDCvhQsXolqtYuvWrbjzzjvThJFHH30Ut956K44fP56OhSJDNK6vRSrw8Vx22WW4++670dbWhgcffDCVFolAhLQeDaQ045xrCAm1knP474ODg7jkkkvSRCjJ6Hh/R48exf79+/Gv//qvePrpp9PyDc451Go1vP/978fU1BQWLFiAT3/609i1axf+6I/+CFdddRXa2tpw9OhRfPazn8UPfvADPPjgg/je976HZ555Br/4i7+I22+/HY8++ihaWlrw6le/Gtdeey1uu+02PPjgg1i3bh3+5m/+BgcOHMDv/M7v4KKLLsL999+Pz3/+83jHO96BzZs345577sGf/dmfoa+vD729vbj44otx5ZVXolwu47zzzks1xmq1iocffhi//Mu/jIceeghPP/00jh8/nhJwSvj7yZ/8SfzoRz/Cli1bcMcdd6TaB+FkrVarCxulMEzSVvr6+vDMM8+go6MDn/70pwEAv//7v4+jR4/W4TsA7Nq1C9dccw1+9KMf4Z3vfCcWLFiQSsIAcPfdd6fa6n/8x3/g6aefxsaNG3H8+HEsXLgQra2teNvb3oZ/+Id/wB/8wR/g3nvvxYIFC7B+/Xp89KMfxcte9rJ0DylShwSGhx9+GK2trbjhhhtS5rt48WJ85jOfwT333JNqMPv27cOTTz6JJ554AuvWrcOmTZvQ1dWFffv24ciRI2kY7ZNPPglgmtD39PTgqaeewvbt2/HMM8+kIbcUHUW42N7ejptuugkPP/xwGhaqnVue1MfxmTOCRx55BFu2bElDnKmd7du3Y2JiImUw1tmQ//eFhmvlLOYKghpAkiRHAMhA2H8DcBDAZufcD5vsW2NlDQG3zrltALYBwFVXXRUuKGOAxmHNgTHOTOYTqQ1IKZeeozj9VatWpbHQJDmvXr0a999/P3bt2oUkSfDYY49hw4YNaS0VQgYr3EuTGEiya2trw6/8yq/goosuwqWXXoo/+ZM/SYkNgHRMPP5frof2HSHw9ddfj4ULF6px0TwL+ZFHHsHjjz+Orq6uVPqi0FkAdcx269at6O3tTfMTkiTB+Pg4du3ahdWrV2Px4sW44447cOmll+L48eN46qmnUCgU8Nxzz+E//uM/sHDhQlx33XW44IIL0NbWhoMHD6aE7TOf+QwKhQJuvPFG/PCHP8Tg4CDe/OY3p2Ou1WoYGRkBALzpTW/Cy172MnR3d2P58uU4fvw4vvzlL+Pxxx/Hhz/8YVxxxRVYsGABLrvsMrz61a/G+eefn+71gw8+iOeffx6f/exn0dHRkUpqXHq77LLLUK1WU63xIx/5SGrquO+++9IMYcoMbmtrSwnNo48+ijvvvBO33347rr322joc6OjowIYNG/DYY49hwYIFuPbaa3HZZZfhmWeeweLFi+v2k/Dn4osvRktLCzZs2IArrrgiNS8553DBBRdg9erVOH78ODZu3IgFCxZg69atWLhwYcpIvva1r+G6667Dm970Jnz/+99P8eryyy/H9u3b6/YWOKVdk/Cwf//+1Ew3MTGBQqEAYJppvfGNb8RHP/pRLF68ONVIvv71r2PNmjVYunQpvvSlL+Gmm27C3Xffjb/6q79KQymPHz+Ou+++G7/5m7+Jxx9/HG9/+9tx4MABTE5OYvfu3QCA3bt3Y926dViyZEl6HkjCl+eWm2wI/1euXJme56NHj+Luu+9Gf38/FixYgH379qVmqve///0p/vKzQSZQ6oO0cwrB3bdvH6655pp0THzvsmTTZ4UYE9DXAUwBeHDm79WYJt7/BuCLAFY12XcJwM+xv18DoNxkW0EYHx/H1q1b6xJguKnGYgyxi883GkCK6Pz99vZ2fOpTn0oJKBXB4sSWkMJHlJ2bjrPevXs3Vq9ejYcffjhlUO95z3tQq9Vw0003YfHixSmhobFIws4ZG18jYm6UWEOEDgA++MEP1q0HEaXR0VH8/u//fiqJ8vZpzbmaTH1+4QtfwMaNG3H++een37e2tuL48eN4/PHH8cMf/hB/+Zd/iUqlkrZ94MABXHnllfjmN7+JD37wg3jooYdw0003AQC++MUvYs2aNWhtbU2J8te+9jVUq1Xs3r0b73vf+zA5OYlPfvKTOHHiBO6++26cd955GB4exmWXXYa3v/3tWLZsGQ4dOoTly5entva3vvWt+N3f/d3URLB48WKsXr0aDzzwAC6++GJMTEyk+0cmQTLvtLS0YNOmTbjkkkvq1m3BggU4evQoOjo6cPvtt6drTlLhY489ht/6rd/C448/jssvvzxlDKSBvfvd706JUGtrK8477zx897vfxeLFi9M9IG1r3bp1cM6lBedaWlpw/PjxVLP40Ic+hCVLlqS5BWT/Jg2CSh7s2rULAPDEE0/g7W9/O3bv3g3nHK677joUCgX09vait7cXk5OTDUla2ll605vehJ6eHnz9619PGfXx48exePHilHEUCgUcP34cAwMDaTkJANiyZQt6enrSEi3U55vf/OZUaucCC82Jm4BJeKFEQZqrTL4kxsWL4JHWfv/99+Pw4cP49Kc/jeeffx7bt2/HhRdemGrs4+PjKZHfv39/nfkTAFatWoV9+/aleyzPZ9b8iWjQPMP8A+A71neYxcUwmGY+/wjg5zF94cwogMW+d2YTBcSjfWRcru9C52YgNm5eRgX4Ign4s+VyOS32pV29Fwpvs/qyiqDx0D4KtdTKCJRKJdfZ2emOHTvWELrGI2J4BMzg4KB73ete5wYGBhoiIk6ePOn27t3rrr76anf55Ze7++67z5VKJbdp0yY3MDDg1q5d62688UZ36NAhMx6bRyXR+Ht6etzw8LA7cOCA++QnP+kOHDjgjh075gqFQhrtwctnUHG1Q4cOpRE0hDMUK75mzZq6sFMaB0VDUXvDw8PpxedDQ0Ouu7u77qYwPn4LL3m7/Hd5ZzWPAuKlonlbFHdOF/DIWHdZ+JBwj6J0SqVSetkNldygvfVdVMNDOml8VAr7wIED7uqrr3bFYjFdE3kLHoX+xhTt43tihTtTmxRdZIUsW33w0FkeQSjvEYkpdS7/notoIMwiDHQUwNXs77cBGJ35fzH0fqDt9wP4AYB/APCp0PNzVQuIEzoefx17l6jVLv3tqx9ubagWX299z8PyNKSwYoctRLL6lkCx3HT4ZWgrrSuFR3JiTkR0zZo1KQNx7lQY4H/+53+msdvDw8Ouv78/TXLatWuXW7NmTRqaODo66m655RZ39dVXu0svvdR9+ctfrrtti6/B2NhYSqQobr+zszOdAyWIUT4GxV/zCqrUFtX7LxQKrlgspoR8z549KcEiYkeETR54anfPnj3uuuuuc4ODg+oNdDLkUO4DJ9r0LNUUkhf+ENHmt1ppbfKqs/JmPA23eLgvCQh8zaw8D1qfnp6eOqGMPj09Pe7KK690w8PDdfjDc0x4wp5GNOlveRkPD83kf1P+h5Uo1yxYjFCuqa/PGIEuBBYDiAkD/TiAB5Ik+ackSf4JwAMAPpEkySsA3DVL7eOvnXOXOucucc7dMZu2QsCdveRMJRsf2fwWL14866qQvNSDVa5BCxkjH8KRI0fqnKykhh49ejQtN9DW1oaPfOQjqZqqzRWYtsNqzlrqj+YTCjejMVJZhauuugoPPvggnHMNUQrr169HR0cHVq5cCecctm7dii1btmBychI333wzWltb8cEPfjB16D755JM4ePAgnnrqKdx7771Yu3YtvvCFL+D555/HD3/4Qxw5cgQXX3wx1q9fn5rvlixZgje+8Y0oFosolUq4884761LpaQ0ozf7uu+/Gjh078IUvfAFJkuCCCy7AW9/6Vuzbtw8XX3wx7rnnHrzrXe9KwzAB4Omnn04rqFJbTzzxBH7zN38TTzzxRLrGx48fx6FDh1L/ApmHdu3ahXvvvRctLS11ocTU1sGDB7Fhw4Y0WkdGfnATEjlUac+ofAU9S05C5xwuueSSupr7wLTf5fbbb2+IduNAjk+a75//+Z+n/iVqywlzJA+EoPFeeOGFDcEVHIfpbCxYsADOOdx44411YZDt7e3o7+9HX18fJicnsWXLFmzdujV12lIwQ2tra13NoVqthkceeQQPPPBA3Vncv38/rrnmmrR+Fjfp0N9kco2puuujBRpw03CtVsP1119fR1/cjDn385//fN1Z5f3Mpw8gi7T+MwBeGfv8fHzm6k5gkmLk7VoWp5Xf+6T5kJQtv5cSCN1Ry6V7S2rxJYFZCW5aUpo0FUiVmkulo6Ojrr+/v+6qQC0RjP4eGxtLTStjY2NuaGjI9ff3u/7+/vT/dGNVX1+fO3DgQJpwRQk8dDXhoUOH0gvQDx065C677DJ3/fXXu127djVknXKTSKlUqstOJhPG4OBgekcy359KZTpBj5eioHc11Z7PkWtpmgbAzQU8A1mrOMold0rOkmYcbsKkuWmVTUMSLZfstUQ02mfLTGL1pZm0uIbFE+cIRkdH3dKlS93VV1+dltjwlSqp1WqpyYpXgpWarTTHaCaaY8eOucHBwbprPbWzINc3a9Y+p0HyTmrZz+k2AbUB2A7g6zN/Xw7g5tB78/GZKwZANlQ6UJZ9kEB+zw/dbFVFbl8nIhYqCUAI1d/fb96f60MaSz2XGaDW89K8JBkqjYe3Seu8efNmVywWU1/A8PBwXdkBSXTI7NTd3e1Wr17tXv/616eZ07KmjswA5iYJud605mQykQdOy3SmuVC2scQHyZDL5bJan4czTM2cIRky2djXrl2rXhXq2xtJsDT/FH3Hs4mtfabSCHTZSwj/SRCRvirLLEXMYXh4WDXrWUIUz6iX+6ytBWe8/LvOzk73cz/3c66zs1MlvnL9OFOUdxDz8RHecwau0SANTy3BLAvMhgF8HcCv4ZTd/3zMwvk7m89c3Qgma5tIYqvZQCUR5GUGQhqApSVwwkW1h3j9nFAb3IkWqiFjrUWpVKq7MzZ014DVrsYUK5VKqi3weZEPo7u7W5WcOUOmomyDg4Pu4MGDbnBwsKGol8bMfDZxAo2JaPvICTI538nX4ZOYLV8NZ5jEOPitZJpGtXnzZrdnz55UY4m1C8t5aDWBRmcuh+f+CJ+9mgrzaT4FiSOaJsrXQGpIvnn5xiTxkggsOco5gyTNTGp0mgYg+9Q0AOlnsM47xw+LwUoaQ/hxOhnA92b+LbLvRkLvzcdntgxAQyBt0Tds2JBeLkIHRR5Kn5psXVIhn+EOMV/hNOcaDxJHEMmELKmLgIrQkSS3bNkyNzg4qB4Kjelph9NifBqj5QSQTC1U3IvPh97h1wnKuUppmh8oKxqLjzVESPmzxDDIqdzd3V0X4UNRQNqB5syGvt+8ebMbGBhoqAtkaXxkCuMaQBYNlPok6Z2bysgcZ9Vv4sSTtFV5aTt38vo0Dr62/GpKvmYxFwhJkJcYcSbLz54svMaZboi5xAh4WRiV3B8+HtIs5sIxPRsG8CiAiwEMz/y9FMD/Dr03H5/5uBNYEgPiuJoGoPkNJAPRpBqfBiAPgHVgpDTJmYicD5kqyMwi/QDcXkqHn5hBT0+P6+zsdP39/Q0HRDNzaJKMBtq8uERKdmVeHI6IPQ9vpN806ZtUaorm0EIiJdG3CI4mtXEmzPeDboPq7e01Gcno6GhaTZTmtHfvXnfrrbc22H8tnOG+Ax9OWyDnxPeX76NGfEmb6+rqStdYEjwpCfPfNAKvPc/7s4Q1K5R1cHBQrXjK39Hs/xrTnQ3EMA3rPT42MrfNhal5NgzgSgDfwXTi13cwHbZ5Rei9+fjMlQ+AAxG2mDwAS6XnbYWqeErIIj3IA6u1SfMZHBx0a9ascWvXrm1wKG/cuNFt27YtreFOTGPt2rWus7PTdXd3NzgbqT9pj+QSFR0wSXg1SYxAhh+Wy/Xlc+Wa0DpwaZXaId8CaRWc4IaIvqWlcY1DXsxO39NdBKVSycQhGp8sUUzSuGSgmukkpF1aOOGT5jWCr/UjQ4A1IcqS2rmAIM+IRdw0wcI6X5y5cj8Ah5CmFwMxhFx7JkvfGq7PdtzOzYIBTL+L8wEsBtAB4Cdi3pmPz3wwgCyLbNkzeVvaQdCIiTQPWHcLaO3z36RkTQeHSh1v27atwcbOY9+pLWJu0ikrpRjJACQxkdIwOfuIqUiTgUYcpM3TJ8XxNSYNgGs0mgZA4COemsaimeGkliD3WjIZmRjGtRqOHxquSW0zxMS08Wlz4WPWNFhaq1Dggza+WI1La0fTBLVYfZ8vxzo7Gj6ECHwMIfdpLjFSPBeIQuuUBTIzAAAf8n2s9+bzM18MIMaEQc9mUe0ksktCQQdKu1sgBIQoxWKx4d1K5VQY46ZNm1JzCfVP4ZibNm2qk6BHR0fds88+6zo7O93w8LCa5EUMQkpZhPilUimVhmltiQFwrYHsm5rd2ReOahGhkAnDtz8+bc53kCXh5NoLZQvzkElLGpY+D/msZZIJEVVN8CDgDIBHAVn3OMQQMT4mLq1n2Q9uZpXromnWfI00E23MWDVG2QyD0J5pdg3nwvHLoRkGsHPm8zCAfwXwlzOfHwH4ivXefH6aZQBZD3rsuyFnq0Qyfvi55sGlwRhOX6udsuMXi8UGE4qMe+ZZlPQ9tyfzsQwMDLjXve51bs+ePXVtkfmDHJ9yvfgh4r4CTVqn/qxwQmvNa7VT/g3LDDEbSSnrYdWkXB4dFhsdYv3NGSVpcVJC1CR/Au601iJeNEakfR8ipppGx238nAH5nMJci5MlLjTJn2tUZBbkmmbsXmvzn4vQSxpjyNGsjYui83gI82xgNj6A/QAWsb8XvdQYgG/hfQgZepcYgCV18INBMek88cVSk+X7GmMhwsDt5Nb1kJxRkZTEk7m4ZE2lGTZt2lRHxCzzgGbzl0kvGtBzVuy0BaRRyBDEWGLlg9m0QXvFiZVlw+YSbEiDlExkdPTUdaOyT00r27BhQxq6SnWcCoWCNxxRzol/r50Xwh8Zzso1Ou4w165npP58/gLtfHGG06zUzOdJZ4VKfVhmSJ/pyhJMsqx1yNycFWbDAI6Kv1vkdy/WZ740AJlEEvNujN2R3h8dHXVr1651V155pevu7lbVdu1icItAasgYg1wUx07XA1KEkJyjTAzy2X3JAccjYHxjid0X6zmr7bnWAJp9zke05DxCvidtrlwD4I5UIsCcQdP7JP3zYn4ymixWyh8eHnZLly51w8PDDXPR4u453pEQInErZLePDQmdCxywtHrLNBMS4uTYNH8Mb18TDuZiXrNhAF8A8E0AawB8bCYx7N7Qe/PxmS8fAK98GLvY5Oy0kowIaGMpm5NHkMhoCO1fX7mHLFqDc/VRTJLxSInOcmTKfmS45XxAFtU5i9OsWYIfOui8cqUlFIyMjLhbb73VHThwwBWLRTXW29cPl7pLpVJa1oIYvGZ2on4tAuYDGsvg4KBbunSpGxwcbMARy8SpaY9Su4nVvEjwosTFGJzwaRkx7/DvtSi4UBQWf07zx/D2Q/6eZmG2UUC/AuD/mvn8Ssw78/GZDwbgXL1UZamRcnN5tUgJPu4tNzr0ryUxcOlO2uot1VFDUG5SsJ7TEHAukDIWtEgn65BkISYxc+BJc/RcyGxoCQdcCtywYYPr6upyXV1dbvny5d4yxFqOglZKuaurK3XS8/pAZKas1fw2eAt4f5SwZ5Xu4HOUDntp1ggxbe3sDA0NuXe+851uzZo1ZqiyZDCcSWkhxFkgBhe18WdltLFCXSw04wROrN+yPDOXn/liAASVSqXONi5/C0nF8llLcvOFhEqwfpP+B64xyNr4FuLwg+1DaO0gxpph5gJ55Xr6DkksMYkZG9cOechsiHFYwgHfe2LelHDoy/aUOEN7T/vPs3NpTzg+cJ+Jb+wWc6hUbP+SfMcn6Vp2bUsoksyFtB4qiUE1mTQnKxcIZBSRT6uWY5LPWOvnE0qyMBpLYJytdt0MA3gUQC+A14rvfxLAewD8OYA11vvz8ZlrBmDF0Pvs6JZErj2rbSL1waW0UJsaEkhbJT88Vo0gCc1K9tYzofaaMdNo82/mUMixhUwB9I50tse8GzIjZHmH/2bVxKf3pAmG1lr7XhM8SBuUDlrffLV19eG+j6jybHAym3LmyLVcYmo+E5TsV9OksgpxWRhDFjylZ6VJtRkmokEzDOBlANbOZP+WATwF4J8A/AuA+wH8ovXufH3m6kIYAgvhfe83k5ihSbA8vM+yC1rvW/PR5pWVUFkH1neQLQlOPsulsmaQOvZAxWg2lUpFLcMr24klfKFxhghhiOCQ7Vsre12r1VJTVWxUFWkJWhkSEhyaqZQr10wKAFpIcLlcdsPDw27t2rWpP4TniGglKzR/Ai+bEIMrs9nDmOdjn+F7USgU3NKlS9MM9tOmAdQ9BPzETPjnK2Oen6/PbBiAttkS4X2E2HdAidhwNV6T+rVa8lmiZWKiISTxo3GHmExozeT8ufYk+7A0Gi2GPQvEhMbVatOOzs7OTrds2TIzuY6eC5nLQmaLWFzxraVz/hpQ0tRH68v3lJg+N1X5gMZglSKWtvLYsMRK5ZS5iHCbry+P8+cMolAo1JXmlrkknBjKqD0aG1WWpXDTLJq6tp8yxHm20rj1PgVnFAoFd+zYMdfd3e0GBwcz+WlCMCsGcKZ85loDIJCMgCObJtVyqFQqrqenJ3XkkWQvzS/8YPD2Y0xKvC958KUpKItTLsuaSemNOzplH5aNtZkDxMcQQ4RIsu/p6XGFQsF7iDTtRGpZxCSsZL9Qu/w7Wj8Np3zEQfav4Y7GQGIkVt6G3G/K6qachph14POUbZMQxIkz9cmj0UIapbyvmI9tdPRU1VRfQpimEcr15zWG5kIatzRnbtKSuRRzBec8A/CBRljpO5+5gqRtuseWDsyKFSu8dlQrS1IDTUrhB0tKiL4wM1+Ruqwqc6lUcl1dXa5UKtX1oV3Cos0l5nvZp2VC4NqUVc46BNoYSBKN8dPEAGdgcj8sLU+bc8y60fh9eRyybXkOeIkSn8ASs69yH2P2xTqDktnxv4lpa+Wq5d762qSzTXdJh7R0bW1jzxPtARH+ZrT1EOQMwAOWxOaT/J1rTEWXt/5YffH45xCRsiRTSbgtu7s2Fy3KQmOCvnXSpPFarVanyscCZ2Jy/D5JTa6ljFSZrcqelUGG2uKEydLItDE3qzlJR7EEySAkkSeJOqRVxGhmzYafSnu/BnJ9uOZG+Cyd+Vb0ErXB59TM+mtjsoQXS0icSyaQMwAP+BiAbwM0qT4kHclDF0Ku0NhCGgLvU/7Nib32ro8A+iRmOmixRHNsbMx1dXW5vr6+OmZkJTNpWprmT/FJzz6YjdRttUdOSop0sRgtLy1tMfCYvmMZupZtbs1R8+FwxhYyzWVxuGrvWfui4QfPh6nV6m9Ck4KDht+cAcQyL59gRu35gg74fM+EYnA/B2A3gL8BcDsvAw3gr6z35vMz3yagGKnLh6x80zU7qPZ+VuZDyOuLfZaHXh6cmDlIKd9HUCwCFSs5aRoAJ0zEWKS0LAmSpgWF1t8aj7xcncCnkfn8RD5GxdsZGhpKS2vItc4iicYyqizEbWhoyL33ve91e/fubbi+MhRbLx2qHOT+8rHLYINQjSkLT3k73Okq6xZl8c/4+ibNhd/1bTHKEAObC2iGAQwC+C0AvwjgXgCPAbh45rei9d58fs4EDcAiRhyIgJAtPEaTkAdd64NLkvywWGqjJi2HkFgyAFk6QrMBN8MsnbMlSslELe2KE1b+b7lcbihDIO3cUsOR+0cEgjQZasNXOkM6jK0AAmu9KpVKXYVUWmsiZtzPEaOd+Ihu1r0rl8uur6/Pbdu2zW3cuLGh2qtMRNMYsUa8aW25Y1gTamj+VPrCmr9P45PEtVQqNUSyxWjxFsi5Eg2Q13hKQSWLFtYsNMMARsTfvw7gSQCXYOZ6yBf7M19RQFmelxK4BuVyOS265ePgUkrlBz1E8Pi4Qt9LIuibnzxwMrZcO2TNIqtWhoJn0YaItSW1Sfu61g53xGvET2og2j2ychy87AInJlI6tgizVWZA+mosKVgS85GREbd06dK0AKG2fz7tja8hF2poPnJMvLqsDFLgd15r0rVmjpT/p2e1shna/CXI88CTMWlMVmVVbX8soPXiAQn8rEjc8jnqOR7Mhhk0wwCeBPAy8d0KAH8PoGK9N5+f2TCAGEcVBx8yhTYkJInIPgj5Lft7qF8i1Bs3bqxDJJ8ZxEf85IELOSqtA+uDWk2/41YLL52PzGHfwZNaFZe65VhkBIpkSBSWyG2/FhG3cFSaRCypXvZfKpUaSpBbfWt7ypnd1NSpKyGllC/HJLVI39WWWQQKGtPGjRvV6r2xGietD12aJC+Ntxi8FhWVFTcl3sWcnRBji4FmGMD/F8C7lO/fAmDQem8+P7NhAL7ibRo0w3Vnq2U0y+l9kpF2wGKkDt945PccQX3MQRuzHKuWwRvDrKzvQ89oB9iaj9aWpsVwIMJ56623qiYl3pYklj7GpUn00kyn2eVPnjzpBgcH3fDwcN0ah7QCjjNZfD0xggzXEkKCkGRMWYCvL8crMkNaSYo0Px4VxddDmmt959j3m3UmmglkkHDORwHJzZ+tSkWgScwh4iffnW3IF7Xjs09bSBWTXRwCTQr2EQcLqbVnx8bG6jIj+ZpZhMDHkCRoEqrFQLS2QmaBSmXalLJt2zazzo7FrHzSKD1PGbtkmuE+EO2eC0pu4k5mqSGG9qwZx7oPeBCANAeF1iAEPm2E/+Zj5JZgQngoI3aaldh9jHc20r9zzWkAfTP/3gtgq/xY78V8ANwD4BkAhwF8NbbExGx9ALJIWmxWbCzXloSNfiOElgSaSxFZnKgxUnWIufj6zop0IQlQEvuQqYObUKg2CtmxfZKXtj4hYhFiABxinKra3EdGRlKzBd0VHBMGHBo7MZfBwUHX09PjSqVS3by1SqZ8DkTIZbx/CL94lEso+MC3NnKPrMzf2TCX2DMRYuS+UhsxmlsM0HsyhHUuhNVmGMCqmX8/pn2s92I+AN4H4PyZ/38OwOdi3pttFBBt4sjIiGlWkMBVTi6Z8N8tqY1+o4MmU9hjibRPwuUgbZw+Iu7rO6sKm3UeIQZA60VSLL83WOsrdEisw82ZE2fOvnXndW5CB5PakUXVtAzgrMSOj50IBpVH5sSe2+3lOpN/Q9bNkeOQz9NHOsZ9TM06J9o6xvjrYtdKe047o3L95XvkZ+P3QmQdSwg4vsxlCKhzZ7AJaOaymS/HPDtbBuAzVVhAUlYzBabkd1q9E6t/TXKW32vhZJs2bUolPC0CYbaI6pOoLNutRVB8EqYlEWprFCJgmnpP60VCwOjoqFuxYkVqMvH1p5lBLGewrODpI/SEa9b1pNqz1CeZgrhzt1abTtLq6+urq4vD36WIqaGhoYZLXmgfuERKe8S1aRlRpc1P2vmtsOJabbqcyNq1a82CaHLvtN99a23tI2c8MUysWfBpmKOjo+6FF15I92OuwGIALQhAkiSXJkmyLUmSA0mSfIs+ofcyQBemr5m0+v+NJEkOJklycHJysulOnHOYmJjAkiVL0NLSgiRJ0N7ejiRJvO+1tbXh5ptvRmtrK/bv34+VK1eira3NfF5rl74777zzcMUVV6ClpQXVahU7duxAtVqtG+P4+Hj679atW9P36fcjR45g586dSJIEExMTaRvVahX79+/H29/+duzevRv33nsvjh8/jp07d6Z9hPrU1kz+1tbWhq6uLrS1taXtHT16FDt27ACAht+q1WrDmlhrT223t7ejvb0dLS0taG9vr5snh0qlgk996lN48MEH6/ZFzrOjowN/+Id/iI6OjvTd8fFx7Nq1K32vo6MDGzZswIEDB1CtVtXxJUmCRYsWYdGiRWhvb0/nCgBHjx7FLbfcgqNHj6b9T0xMoLW1FUmSYHJy0lwPPv9rrrkGd999N44ePerdn7a2NqxatQr79+9P8Xr9+vVYt25d3To8/PDD+OVf/mU8/PDD6Xrwd51zuOaaa/DYY4/hySefxPbt2zExMYHOzk4AwI4dO8DPHe1RkiR4+OGH0dLSgpaWFnR0dGDVqlXpfLX5Oefw9NNPp2tD+8zXsVqtYvfu3fjXf/1XbNy4MV0HDoTrq1atUs8i33+JC8659P87d+4EMI2zra2tmJiYSNeZ4znffz4vuTe+s8R/Hx8fV/F5YmIC+/fvx9/8zd/g7rvvxpNPPqm2M6egcQX+ATAK4JMA3gbgrfSJeK8A4Kjy+QB75lOY9gFE3Sw21+Wgs4DFtbNKBT5zCR+jFT5nZUxqarrPNquZW2JNUDFziVmXkOnI91ytNl13aNmyZW5wcDCzpqMFBfALV7JKelwD4HZ2Lb7cNz6qhU/Sn28PYrRIiRNyjfj+c0k+FBsvk/ik1qBJt2RC8fltaKx0U5qlAcTMm/DE55eTmojlFwyZkkJ7xX+31kizFMwVYBaXwh8KPdPMB9O+hMcBXBD7zlwkgkmzwmwjcOSmh5BTe94y6cQS1VhCqo2DIka0ZC+fCWkuxsJNHj5/jCRWlcq0M5iiXEI3n/na1IiCNEuE3tfa8xWmswgFmTayRpJZpkL+njTBWMxSG4M2Xrl3pVLJDQ0NuVKppJpOyBQm/RS8vVg/WxaQ5iLpD6J5hEpZSOFLW/vQ+YhNJJsPyMwAAFw08/kspm8GW8S+u8h6L+YD4L9h+oaxhVnem4tSEIRosnzAXGkGIYmN6oPwSyYksYghtL45xczF14c2Jjk3a54xY+FMwhfNI9vkxCHrGsWuhfa39p1P+qvV6mvpyzlb0vjY2FhdGWPfGPnaxCR2EQMoFotBLce3HlxK5RI9JUnxW+i4dE23r0l/jaVJcGZKCW38zDRzNjiz52fNcsrLNdGcs6Fz4NuT0LrPJTTDAP4JwD/O/Cs//2i9F/PBdDbxMQAjM5//GfPeXDAAKaGeOHFiVg4X67BoEnC5fCqdnl8MIwkCR5TYiAjJWGLG6msvJFXORgOQxDI0phgpOJaYNQvy8FplG2jePGtUa0eLdfddPiMJGZ+fllFt4WWpVErzKrIk12nj4Iybm67GxsZcb2+vKxaL6Vy1W/Oca3TQa5qZvC2MCyEh4UE65zVtOzZ6zhcy7MsQp+e0MxVqP2ZPYqBpE9CZ9JmPYnChTM4Q8AOt2Ro5IlFS0/DwsNdmzf/mGcw+RIiZR0gCyQKzVctj341RmyuV+msC+WGzIpNmO+aQ5GfV0veNy4qMoXcpyitUmsMH5XLZ9fb21l3LqI0/JKX6soGpnAeZe7SoKWpLY16yL35RuhX5xqOYrESqmP/7CLUPfyyNUDMrWhqmVS10Ls7tbHwALwPw2wC+AuAvAfwPiBpBL9ZnrhmARMCQJOmTinlcNN9k7tCxOHys1OF7TiOUUmIPSSC+dZKSv+Y0y0pgYyR3S5KWz/Ici0rllFmE23b5+jUTEhwz9lgikUVr4bhUKBQaiERIG5H46iNwMQEEvvWYmpqqO1OW70Guh2/9iNDzMFPSKsbGxtJb+KgUCs/b4fOx7PWaXyDGD+PTiOU50TQ+3r68xcyHD83AbBjAAIDtAK6d+WwDsDf03nx85ooByM2RXFsjsJyoaL/Lg6URMItI+wizD8lCoEk5sdnPoXY053EsgZPtSscfP/CxWaqaqi9vw+JEijMMn2ofs+6xzj1JuGKZMa3TyMiI6+npaagyK/GW5kPzDzk4tXasNjVTJF+fSqXeLEMaLC9Ip70nx8CJtxQ2SIvp7u6uuwtYagAyaMAi6iENwMJT6/vQHDWNj1dTle+dbgYwGvPdi/GZKwagbVwMIc4iQdOmajXHOQNpRiqMZRqaupz1HmKt75DUo0k5vn4sRhwyUYQIr7WelUqlzmwQcu6F5mKZ3yxiQoddaou+/SiXT9Xc55E0Wh9c6h4dbbwq09IQfHvrYwASh7lTlZucNCe+NQZ+UbrEV+7Q9p1H33w4jvGIQC0KyzJj0fMUhRY6V9a68aQ6Ob4Y/IuB2TCALwJYyv6+GsCfht6bj89cMQBN/bfS6WO4r/ZMSKrUvgtpIBwhLG2EE3rNYcjnaklzs42MonYsc4L2HJeIQ4yQ2o0xD1ljq1QaI1msffGNZ2pqyhWLRVcsFhsYkbZP2nxjtLNy+dTlPFpmLschmXNgSbQ+YhcjrfM1sLQ0Wp/h4eHUKcyJmhX2ShFRFEmlMYnZhHDzc8IFD9KY+P0FloAmBckYf5OGV5KxyH2Yi/DR2TCApwHUAPzzzKeG6bsCjgA4HHp/Lj9zrQFwRCT1Wl4FqBFlCxF8zzTLSORvZMu0TAiExNxWnFWa42YDX1kEHzPj66IxFCk98QiYEOPgkpOP0IXWN1T+IWbPfM53nhDma4MnSVlMl+8Z/78mQGh5FZIoc5OJ1E58Zk7NaevD/1Kp5Do7O113d3ed49kag9ReSJCJDbX0QehMcoLsq/lkMSB+n7Mk6jFrZdET33mNhdkwgNf5PqH35/IzWwagbVyIsGpEQG5QSFrUpA36PkZK5hBCek3KlwgUw2jK5bI3SUsbh7Uu2tyIcFJoH79Ny3f7ljX+ctm+x5fekXsQCv+LWWsZfisJsk8T4wc+VAMoRiOR2bZ83a2b1mQfpVLJDQ4OulKppJoQu7u705BMH+5SHxTCOTg4qGo9cgwac5PjkP1mOTu+CrKWw1iuP2+H9z06Ol1qu7u72/S7NCMIZr3LRIM8DNTNXRikTyXzERKJMFziijW7WETVJ91YEkRIrSdiIpHZYlwxRIq+l+nukhHHMEU5R18URSjhLEajkaBpOHz/qd8YRjmb4mYE3PnLiWy5XK6Lpfe1wa+R5L4RInqDg4Mpw4vRFsj0I5mspQHErLkvy5qAn1Hel0+bCJlV+dhJMOJrRJftHDhwIKrSsLZm2txPqwZwJn3mQgNoxsYpgR+sGKKhqemccBGxkwcmZgy+QyD798VuW1IpRclYtk6NmJF9Xkudb8a/4NOqYhzoPskvS58SNCLmY8Qak4shfJzRaPZii9HTd8Vi0fX19dXdSGb1xaN2ZF16Hl4Zk3gYSvKSGqbvfPJ90dZOfsf75v/3CSZWToLEH/639Mf09/enzDNWKJL7zM9GzJrEQM4AZsAiBlmIBG1kMxc3+BCwUCi4t7zlLe7qq68OOjalFhITESOlYEut1RCXiLoWPSXNBCRJyZj1Zggxf4+bSKy2skryFkGJYS5ZNUr+fOhdbV21CC6ZKKg5fKkMA98HywRULp8qxGZJ59xG7pu7L9eC5sQT+EgKp3DIZoQyGo+mAcQKVXKN5bpabddqjeUitD23ooW0+WbFMQtyBjADlhTqk05jVLOYjQqp7z09PW7NmjVmHXQOXCqU4WsWIhERtebou4gihnjTM2QyKpVKrre3N7VdNivN1GrTiV4rVqxokCZ9Wo2vPb5Omkkh5taurMyGawyh8g2aZqW1WywW3dKlS9M4e2lKshicj6FRjkShUDC1ZV+bsYRMjpdwkId+hrTa0JyyMBHO4HxmO9+518YlTZo8wkkyRy2fZbbSv3M5A6iDrMgSsqFzld5XytU6BGNjY25wcLDh4g7f2AlRiODy+HAtzNMimHzOPmdxDDLKZ7T2Ym87knshyyRraxp7YELvhIiLD398vgbOhOnyFi4NynHFEC7NuRtK/ArhP621vGDGtxaaWZDmppm8eHv8txAj0fbQB9aZ086Cb32scxKDG3IM5XLZdXZ2umXLlqWZ6/Q7N1fNlfTvXM4AosAiICEnjLWB1GZIMurp6XHLli2rk7isrGEp6ZONlxygMgTUmmcM0ZHzjkFI/owMg6xUKq6vr8/deOONrlQqefdCEhFNKpNzofGGbt/KIhWG5siBHNGFQsEcK2fahGvW+scQFw2/QmsVygMh7U2z8Vs4oZkFaRwhv08zTk7fuYrVRqwchBDzCQkAcj81ocsqQTPbEiUW5AxgBkJShWbbtBiD5gQM1RWRwBOJeF17Lb6cJEguXXJkJoKrRcPESjAcOEHjCOnTcqSGwqXIWu3UJS4jIyNR+yQd0L5DzpP5Qqa5kBSsrV0o7JAzIEuq1ZKmLIeqZM6+SKGYOXDmw6OFONAZsEJqfVqiti+kkXITiLVuWRiAnFeWgAhukuH/t6K5rDWV39P5JOYeYrSx+DcXkDOAGYhFDg1JJWGVsew+omFtqCWBa4RCG5vsx6opz/uhcr2lUsk7tlqtvsgaQUxUBfUnzRG+rFEJWiKVJuVKKTTGOa9JrtZ+xEqylmZFBI4YvRwbVc/s7u6uCxWWIcM0hpCEqo2J51lw86EkcBSNZkX4hPrlcyV8ldFklnDVTGavJLqhtZHnmN6XGeGyDYtuSAGM40vIp9ZsolgzkDOAGWh2MclJy6Uimc3KN02T1vkYsiJ9SCLhBM1ycksNIOaSe80UFUqgknP0zc3HkC0tSDIWTQrlkqf2jLV3GhHntuxY3JHr3d3d7dasWeM+9rGPpVEu1D6ZA4rFYoOj3hIkYgkFXy+f5M7bs/bEiqbh34+NjbnOzk63du3atD8ePipxQmOUmu/KJ6RIgcAH8hxzzcgX4CCFEY5jvqKDWQVD7XffGYmFnAHMAjSCIn+Xm8mTRaR0T2p2KIyOE1Eyu2g3J9Gz1qUbcpyEXLH31IbWxkLoGMSVJgONSGt+kJAphK9xuVw2w/O0uv0EseGDPqA9LBaLaSVPLUac+pOSqI/BxhAK+p7X1Nf22DKN8GdJU+HmO64ljoyMqFc/WpqR7FczmYQEHznP0PeaYBKD+/LMSvzSzr+23r4zYa1TrgG8CAzAt8gxm6ZJaFYoYRbpeMOGDakdnkvtGtJpB9Q3jxipT85VXnXoW6OsiBsr6cS0y9eY1H4eLUPMT9PeYqTK2LlxLSK054QzvBhZsyZE7bmQ0MElcGqXS8WlUsl1dXXVOfBpzHQ3cyjbWvpGiDlbOB1rirEgxr8Qw+itsVv7SWUhent7VdziZj6OGzyAYi6dwTkDCEAzRJ6/Z0UU+ByHMeotXXjR19eXZmhaSEe2fatmiCYNWdK3tUZdXV3uda97nSsUCg3SqybxZEHeWHU/y0GQ2pu052tEhxPtWKFAG1ssoyegNaSorpCGaPXrWwcplXO8lMEBUtMKmWhCY5HrSu3xInEhCT2rVkbM33duNFPjbIku7SUVhpPtcLpBjJlro1mFsxDkDMAAqyaJBhph8DEH/o62eTEbS8+Qeu0zfVhEyJpXViTnGkCpVGrQJjQJMwvyxhKQkJbi08S0/fIxxph+iFhayUOEXyE8I/s0aXya81tGrmhtxeCBFFykhhIixNYa+b6Xkq7lE/DV+rE0Husc1mq1tNJvf39/A+4QTlMBvCyaRqzQFDLhab6ErMJZCHIGMANyMYn7Dw0NBSVP6eWPUVmzEODQwaX/S3uur53ZMqDYg25Ju1mQNzSemPXSJPOQU5wTw2a0D8lknDsV3nvgwIGUoBOeWXMkabVQKDQweu64DxUQ1NbR0li4KSwm+5mvaWyV2FqtlvpAfHdbW1KzpQFUKqcu9iFTnrYmfO00AY3CXkkT0XwgMbimQSz+872fjc/JgpwBzICU4inr0XdTlnV4NBvxbCTe2HfJvtjT01MnFXHVOhRFQv2HiHaW+cTAXGokFrEJSfjyXR9By9oXwejoqFu2bJm78cYbXU9PT3oznFUGwrl6bVTuCxExuk6SO/ulmTEUfaKZxGT0mG9ukmGGpNVKpeK6u7vdW9/6VlcsFuvmzHHQd8GPduZqtVpa5bRYLJoagM8Mx5kO+SJ8TKSZCKUQPpOWQncmzNVZ45AzgBmwEMki6PydGHU3ZKO0QigtG7rVhqYBaJpJaG4aYkviGEuUY9bJYijN9JO17Iavv2YOs6+PqakpNzg46NauXesOHDhQt69W/ghvzxI6tDWkv2PKbHCJV0awSCYhGYRF5EPaQrlcdsPDw667u9sNDw83MDYai7zbV1trKaRRKQwrpyWEB3ztfI53y78W0gxjNASeoFcqlaIrAmeBnAEI0DZuLjh6aNNlElWM9BM7D4tI+S4GtySbLM5Lbe6c0VEflFzkc4rFMAYugfoIsBZFkVXLiNVYtOeIuNHl5TTOUA4CxdNrWgI9pzl0ebKXD4e5BmARLumY5GPNwjy55iIzw+n3vr4+NzAwkEaWabgQCjJoVnjTMtY1sM6JDwetffKdT7qPYenSpQ00IstZlJAzAAOyEIRYju5DOCm1UpsyHj1240OEU6a4S7Ayc8vlcoNdOwuD5IyuXJ6+GFwSwph1s4iBJila2pX8f2wZad/6SuBMSZofsuSPUFu+y0ksgselSfk94UII12u1+tIUmgaQRUMk2zYxM83RXCgU3IoVK1KNSNPsaE14xFDMWlog5xA6az7i7TsjPq2OP0/rTGs/PDycmvt8N93FQs4ADIg94M7NLjTMOjTNEIGYMcUeUinZcFU7S40VCVICD0mdsfPzSV3coW/5AKz3s2gg2vc8iSsrLmlztAgS3x9NCs8SqqzNg+MdN4tIZilNRFKLidkvKfyQI1peQ8rxJyZ7XRuHBMvfIveF+rXWwVprOXZpWvJpB5yRFwoFd+utt87aOZwzAANI4rHU7SxgZa7KgxmrScxG9dOQU/tOMgD+TKhuj3ZYmhlvVi1Mk+Ap6mZwcDCYJRy7NjGEWDJHXxIUb5+vewzRCDl6fTgVwxxk35TRawkg3LQTGkcsE63VpqOFuru70/sN5NrGhNPyd0KBHSMjI663tzd1vkqJvb+/33V2dkZL4TFMgb6zBDzCcWKElATq8+2EIGcAHtASQWKBb7ivdk3MgQj91iyEzAZWfxax5b/zwyIRWiOgsQdEG79PY6K1t0pqxxJ9DtxBaWkGvsgbba1I2i2VSmbBOr6WJD3Tv1oZ6dBcmvktZHOXZRt8TCYLWOUmeL2ekP+Hj0cL9uB4JP0mfB7l8qlS675EshCEhAstcomvpa+qaCyckQwAwC0AHIAFMc/PFwOYTc0XTrx8GkAs4sRoB1nbtaS1UHu1mn6Bi2aD1xCa+rWSemLnErMmWh0dzpAtKczXLrdfNzs2eZjJ2c8jgHzmMs5guLPSkmy1NY3FqZh5WZJ1s3gr/7ZMMxLnQmG+1DZvw6dpSbz3ZYrHzi30uxUMkLXdGDjjGACAnwPwTQD/croZQDPSYdbnYsHHjGIOtXbA+DV7FmiHo1KpuFKplCbwEPhqDnFpjRxaPKStGUkxy15wSfHEiRPpLWLN7HFMv1ZIrkUYtf3l6+kjpD6pUQJvpxkctbQuH7EN9cEJq08goO+501dzRmtztdaAj1EmdGrv+SLnLAjtnXTQy3Dg2WpPPjgTGcBfAPgFAP/8YjAAH4JqIV6zkWhmYwv3JSTFHGo5bvpbi07xmWboPU0DoMgEIuzae3RouQYwW6mUr5MmPcs15OaC+WA4NF9ZJTLWNEMgL3aXxDbWdm9J1iGpO2aOs83doHZiI8sIR3mhOP53jAZprR/HbcsEQ31pZZ6bERhknxrucu2q2aAJC84oBgDgBgBbZv7vZQAAfgPAQQAHX/va1za9ABryEVgxvjGbLaUIThCyhFDycVgmB0JMH2LEMCRJtHzzCx0OK2KDDpalgjfLOMnUQ31Kv4vsn9+QFqtmZ2FOctwxEnIMQdYYmY/o+Yi0FCqyMl9rTlYAgcVsY02t1lr5zrBvnBqz5GvCCa/EAd6X9p0Ea46SoVlngGiK71a2ZuBFZwAACgCOKp8PAPgugJ9xEQyAf2arAViOo2bUWg1p6B0pPYQkewKNEWn9as5WH3PRDkCMc1b7ntriVUqt28d46J7liPXNS4PR0VG3YsWK1Nlr5VVQGzH+D/kelQc5ceKE+c5spGgfAZaCBY988RFOi/BYGmBWfNfACiHmjIv3GXLcyjH7zqnGbPh7fD1CvjlNmAsxZesZX0CJZGDHjh1zN910kzt27FjDPM9aDQDAEgATM4T/nwGcBPAsgPbQu7P1AfgQXPvNJ3GEDouWlBSSXGITdTRn62yjaKxDpzGPSmU6MqG7uzu93Urrr1yeTgBbvnx5MMIqFulDjrMY6drXPzHv6667zu3du9dcV229+D5KrUD7W5urFCxCiXwE3CxnEUjf3GPwyHqP2uaOWs3Wr1Vl1c5VjCbIz5Qk2qQlrlixwgwA0OYQo81JjUS26wuQoHpD9NuePXvcK1/5SjcwMGDOczYBKhzOGAbQMIAXSQOQYEm2XKLPIrVI4MiRVUInCG1+rHQ7m7586j/P8KRnZERL1hyLLIc1Zs7cSUuEOVSOYmxsrCGiyDcW+f7o6KjXL0DPahqPJNzlcmNGtjaOYrHoli5d6rq7u+v61DRUOe5m8Egbgy/kUjNDagw0pClL5imZLbW9adMmt3fvXjMAgPfHtQZuXvThIh+LD5eonQ0bNrje3t660N5jx465vXv3uhMnTphjDF3yFAs5AxBgSbZZ4qslkOmAI10WCUw+Y6mTXArPGh9sqdFZGZ0lCc0mp8I5O/7cuey2a+fqb2Yiwky2VV85iFgNT0p6XAPwEamQpGsRcOs5YrRWgUAuict2Q6bHkCDCx+AzQ0nhysdALWZHobD8ak3tLGuMRBP6OHMdGRlxy5Ytc4VCoUGYscBiZFKT4HcOxDj1CXiAwGzgjGUAWT7zoQFYTs5mbG9DQ0PujW98oxsaGkq/a4ZoEYTsuhpxyMKwuNOZDgInVhqiau1nsbeGgEvGMdKr7EMmZvG7E06ePJnWWaEL2EMaWog5h+r7+7J9fXPT8NBnkojNGNZMaKH9CTF1GmuxWFQZicWMrHZ8THHTpk1uYGDArV27tq5+v8aEQ0RWzlsS25iz62Nk/L2YNbS0lGa0Mgk5AzBgNiGgErgGQJBFE4gFH1KEpDEOmurPCbCmFXDmwz++WPcYVZofYOvWMd+7NAaK+hkcHGzIfbCYi48wWGPXNABrfXkUlGUC0frhZjY+Fk1C5r9J27j2HMePWG0nJAnTvctWNF2oH2mSsX6nGH3K0uVZvJYDOuYMxjBh3/P8e/mejzb4BKycAcwxA5ALqjEAifDNOGJCB157Rn5n/c6RS4uDr1ROZZz6TDGh9n0aAK0brR0fE5d2YjQquQdk96RLPnzIL7UhkuLow5mbNRZLEqSKjM1GYnDCE5LmNRwrl8sNN1VZNnJLE7CIE49Sy8KgfXOV/h5OkDlz9dnNQ45iPk95iQq9v3fv3roLnkg44I71WCIr14bvk890ZkVIacKU77tmhVEJOQOYgRhVXEohzdi1NWT2OcI4YaX4ei3ShUuxlYptc4/NKNb+tr6TbfD58LloEVA+BJaSMr8+MASW1CZvvMpygKgm+5o1a9QktqxgaR58DkQo+e8nT550hULBDQ8Pq5Eu1nhCY5WaRIgxhnxNUguTxEvG0odKXfuEJjkHnlhF67hp06a6O7QlI+Bakk/L08ZEYch0PkMMgAQQjTFrwl4W5pQFcgYwAzGHQ7vfNaTua/1ooXBaPD4vc1sul9MQNl7YjLfr0wBix8WlstmYwUIEKQaBuXqsrX+o75BkGrNn/DmSLulu2lgnuaW9cenYYupU9bFYLDY41GWpABqflbwYY2uXeyY1KT5n6kuLEuJ4rt1pEdJgY/dEgnUmuYZD9wXz8dB5I/ORZp7zAUUKbdq0yRWLxQaNR2rPFlOUQsVcaGE+yBmAAlkQ1JLSrHa077XnSCLiF11MTU25QqEQrN8Tmov2jGYj1XwBMWOn8c9WReVaTBaGNpu+LWnTsq9zJ3mMuUAyMklgNdzq7+9vwAPNl0LPkr1dEn4t2ibkFJVtUDgkvxNAYyx8nvz3ZrTKLHvG10LOmcYks9T5nGOuz+R9cuZLDEaWy9a0G0tD5espTagazPac5QxAAWtRte854pD0QAQzVuLSGAQ3V/DfffbFLHORz/huw/LNw2rfd6jpN18mK5eOfSYj6yA1a6PXtDEyH2jrYzm8rTFKDZATEkvACBEB3oa2ZhpzkYSSj9syQfB1yELUZRsxoZkxoOGnxC0tqknDu9A+SKD1o2gvznA0v07MHnJBkphJKPQ81wBeJA3A+p4jYX9/v+vq6krVde3gcYhhNLESd9a5ZHkmhphnGQ8h+tDQkDc9XjOLyUMkn/MRtpj5a/1Ios3f0aTr0Nr4NL5mbnrTJGCLMMt3pATrm3dWIimBBA1un/dpWDQGn3PYx+Csyp3WGoWyyeW4OEOMDY22vpfroAlls5X2NcgZwBxBrXaqvPKxY8fMcsOaZOT7fzObPlupINTmbNrnGhOlwMc4pPm7lrTK/85CpCwmwqVWWYfeR3wINBMaB5kdnUXy1LTQENG31pXakAyIynrwW7isMcSAT2L3CUlW5VjfmnFBQ0YPSR8HPUMRctLHloWQy7HHWhJkW1p4qPRBzcX5zhkAg9kSTnqfh1rGEhctLM5SV62+fQ7F2c6Xj3s2kkgWKcs33hh1OHacPibNU+5lVFKIYNPzVsXRZpKAtLHyccQQJcvcJ+djlRuYq3MSIrDauLTz5KvLxc+Vhg+8zAMv9WEx2KzzbMYc5JyOG+Vy2a1du9atXr3a9fX1zYkmkDMABj5kygJSsrOQXWaNauqepoJrbVUqFdfT01N3gYhPCiQbYzORNXOhAYTMY7Ht+A5q7GHzwdjYmOvt7U0vAKc8AJ/dX0qaljYSCsmNMWP5BAwNfO3KcWcRPmL20sLfkK8s1IY2H19JDv7/crm+ppJWcqTZ+Tnnr4zqO0uaBlAul11nZ6dbunRpWpZitpAzAAYcmbISqBgkkQhIErvvOjt+CH2HvVY7lSnLkUYDUqv7+/vrIiI0FXkuIYu0mlXat9om4hI6cFabFBpIDKC3t9d1d3d7r1/UHPVZpUgpjFjj9gkF1rqFbOpZQ1tjTBraGkhhQDLKWHzU5iwTHuV4aH2lj4CfDSsowqddyXWQuBDSSnxMUeJjzgDmmAE4F2+n1BAqi7QWI8HK70Kqs4VMGtGgg6YxmCwOVF8/8hlpk/URDi6ZhSRtrS1OXLQD54uM4W3wInG0ZvJeXh8DiNUGtPWi56z4/hDE4phczxgBwIeX/HeLuDvXqAGVy+W0MibtG+FjrKZK/crcA+1sWBFQMgInRlPRGKvcQ58mIs8wjyaS+5FVmPBBzgAMCEk4GkLFhuvFSrUx71jta2PU2rOiPLIQqxBCUj+UgGMVW+NMguyxWn6F1m+sJBySsPhzROxDZaJjGRPNT8b1h9aVx/fzS3Y0gh3Cl2bKl2hzi8lglWbG0BmiSDoywfCy4rFCiTY/62zGmmp9QoM1F/ldFuFM9mtFoOUawDwyAA6xxLpZzhy7oVnbD42xUvEnMpEEHLoi8tixY25gYMCdOHHCO+7YhCmS+kNS32wOQohhh5hnbP+cYBJzo3IEsTHePMlIXuFImcJWddGYeRHEFnezzJBS8+GSe0zdI74nspxC1jPCJWgLl/h4NbOd3Ae5NyFzpqUBhPZB9jtfJlnncgYwp9AsQfJJsnPRfowqahG80KGtVCquq6vLve51r6srd93MuH0HZi6lHgKfZBerNWTpSxJDrllkIQh8Tajwmcz+tfDHp9XIyBP+vEXo+N+ciPL50nsxCV+xexJaIxqLNCfxvnmZZx8D0IDMVVRwLjQfn5Z4OiFnAGcAhAjxbNotl6frsZPj0ifJx5gRNFU21vns65PAmv9crovsP0TYY0wAsX1pqn1IM/IBN5tw0wsRNcvHo2l2WokJfmNVaO19OEQ5MnycMfjGIcs+aHWb5Ds8wkuL/gmtO4X4xjCk003oLcgZwBkGc4kwdIB7enrqbkoK9SMludnYH2MOtM/MQt/F+CKahdCcYqTq2LFJLUerI5VljWX/5XK5rux1oVCoK8HNTUramCUxtpze1hgtpt7f3+86OzvVS1UsDdjSNmJuvJNMVmNeEs9jMrF983wpgsUAWpDDaYEkSdDe3o4kSWbdVltbG9atW4fbbrsNn/rUp3DFFVek7VarVezYsQPVajXYRldXF9ra2hrG55xDpVJBpVKZlhoU8PUj25btA9OCyJEjR7Bz504kSRK9Ls45jI+Pm+MiOHnyJP7iL/4CJ0+eNJ+Rc+btVqtVbN26FVu3blXnyJ+nuezYsQOTk5NIkgQdHR1YtWoVnHPpOoX2xjmHsbExDA0NoVarIUkS7Ny5E+Pj45iYmMAFF1yAD3zgA3jFK16Biy66CPfccw86OjrSebS0tDTgGI2zUqlgy5YtGB8fb5g7H5c1Rvm9cw61Wg0rVqzAwoUL0z753vP/+/rIcjaozY6OjgYcI2hvb8f69evR3t6enpV169apz0qYy3N6RoLGFc7Uz9mkAbxYMBe+hpDU5JOOs/TBy/dmeS/GZLR37173yle+0v3ar/2aWiJYjl3TiGKdyWQX1y4YtzQAS6Lu6upyr3/9693Q0FCDKYtXT7Vs7tJGT39Lh7J2kUpIA+BaA5moZASTBTHmoLNF+j4TALkJKIdmIQvxy/Kb7IOr8b73YkwcEk6cOOEGBgbcN7/5zToHKDE3Mp1pYY+8zxjzERHlEydOqPWFNJDOSVrzZ599tiHyStrwQwxYhgBrtXPoDgpiNDHABQOKXsqaw5DDiwM5A8hh3mAutAz5bIxPIWsim3M68aQIG+seZN6n9GPI6BltfDHjlAzAN0dtLDEM08fMmskbkIwnl9jPXLAYQDL920sDrrrqKnfw4MHTPYwcTjM451CtVtHa2oqJiQm0tbXNykbrnEtt4W1tbWqb1Cf/fnx8HFu2bMFzzz2HCy+8MLUzy/HFjFO275ujNhbtuxxyIEiS5JBz7qqG73MGkEMOzQExDufc2e8szOElDRYDOP90DCaHHM4GSJIEixYtOt3DyCGHpiEPA80hhxxyOEchZwA55JBDDuco5AwghxxyyOEchdPGAJIk6U2S5PtJkjyZJMkfnK5x5JBDDjmcq3BanMBJklwL4AMArnDO/WeSJK2nYxw55JBDDucynC4N4JMA7nbO/ScAOOcmTtM4csghhxzOWThdDOBSAMuSJPlukiT/O0mSX7IeTJLkN5IkOZgkycHJyckXcYg55JBDDmc3zJsJKEmSAoB25adPzfT7KgBLAfwSgIEkSd7glKw059w2ANtm2pxMkuRfmhzSAgDHm3z3pQr5nM8NyOd8bsBs5vw67cvTkgmcJMk3MG0CenTm738AsNQ5N28ifpIkB7VMuLMZ8jmfG5DP+dyA+Zjz6TIB/RWA9wBAkiSXAvhJnHvcPIcccsjhtMLpKgWxA8COJEmOAngBwMc0808OOeSQQw7zB6eFATjnXgDw6y9yt9te5P7OBMjnfG5APudzA+Z8zi+paqA55JBDDjnMHeSlIHLIIYcczlHIGUAOOeSQwzkKZz0DSJJkT5IkIzOff06SZIT9dluSJH8/U5Pol0/jMOccrFpLZ+OckyT5bJIkY2yf389+O+vmyyFJkluSJHFJkixg352Vc06SZFOSJIdn9vhAkiSvZr+drXO+J0mSZ2bm/dUkSV7Jfpv9nLV7Is/WD4A/AvDpmf9fDmAUwH8B8PMA/gHAead7jHM0z2sBFAD8l5m/W8/mOQP4LIBblO/Pyvmy+f0cgG8C+BcAC872OQP4afb/dQD+5zkw5/cBOH/m/58D8Lm5nPNZrwEQJNN39f0agF0zX30AwG7n3H865/4JwN8DeNvpGt8cg1Vr6WyeswZn+3z/LwB9AHgkx1k7Z+fc/8P+fAVOzftsnvMB59zJmT+fAPCamf/PyZzPGQYAYBmAqnPu72b+/lkAx9jvpZnvzgawai2dzXPumVGTdyRJ8qqZ787a+SZJcgOAMefcqPjprJ0zACRJckeSJMcAfBTAp2e+PqvnzKALwNdn/j8ncz4r7gT21R1yzn1t5v834ZT0DwDa7d0vmZjYZmot4SU858B8/wzAJkzPZROmTX1deAnPFwjO+XZMmwcaXlO+Oyvm7Jz7mnPuUwA+lSTJbQB6AHwGZ/mcZ575FICTAL5MrynPZ57zWcEAnHMrfL8nSXI+gA8BeCv7uoRpGyrBawCU53508wO+OSdJ8kkAX3HTxsK/TZKkhulCUi/ZOYf2mCBJkvsB7J/58yU7X8Cec5IkSzBt9x2dtmziNQCGkyR5G87SOSvwIICHMc0Azuo5J0nyMQArAbx35kwDczTnc8UEtALAM865EvvuIQCrkyT5L0mS/DyA/wrgb0/L6OYe/gp6raWzcs5Jkixif/4KgKMz/z8r5+ucO+Kca3XOvd4593pME4MrnXPjOEvnDABJkvxX9ucNAJ6Z+f/ZPOf/BqAfwA3OuR+zn+ZkzmeFBhABq1Fv/oFz7skkSQYAPIVp1arbOTd1OgY3D2DVWjpb5/wHSZL8IqZV4H8G8JvAWb/HKpzlc747SZI3AahhOvLpt4Czfs5fwHSkz+CMtveEc+635mrOeSmIHHLIIYdzFM4VE1AOOeSQQw4CcgaQQw455HCOQs4AcsghhxzOUcgZQA455JDDOQo5A8ghhxxyOEchZwA5vGRgpprrAuX7G5Ik2TDz/+VJkgwnSXIySZJf9bT18pkyGecpv33R9+6LCUmStCVJ8mCSJP+YJMmhJEkeT5LkV2Z+e3eSJP+WJElxpiLkt5MkWcneVdciSZKFSZJ843TMJ4czC3IGkMNLHpxzDznn7p7581kAazCdKeqDLkxnS89bvPhMBvps3k8wndT3befcG5xzb8V0Tstr2GN/45x7i3PuTZiukPmFJEneO/ObuhbOuUkAlSRJ3jGb8eXw0oecAeRwRkGSJK+fqX/+5zPF3f4iSZIL2CO9M1LtkSRJLpt5Z02SJF8AAOfcPzvnDmM6WcgHHwVAdVaSJEm+kCTJU0mSPAyglY3nrTOawqEkSb5JWcdJkvzSzPgeT6Zrth9lY9mbJMk+AAeSJHnFTIG6781I6h+Yee68mfe+N9PObypjfA+AF5xz/5O+cM79i3PuXm1CzrkRABsxXSMntBZ/NbMGOZzDkDOAHM5EeBOAbc65KwD8PwDWst+OO+euxHQBuFuaaTxJkp8E8Abn3D/PfPUrM30uAfAJAG+fee4nANwL4FdnpO8dAO6YeWcngN9yzl0DQGoR12A6+/o9mC7c9i3n3C9h+p6Ge5IkeQWAmwH828z3vwTgEzMp/RwWAxjOOL1hAJdFPHcQ0xVycziHIWcAOZyJcMw5952Z/38JwDvZb1+Z+fcQgNc32f4CAP83+3s5gF3OuSnnXBnAt2a+fxOADkyn4Y8A+F0Ar0mmb2X6KefcYzPPSXPToHPuRzP/fx+ADTPvPwrgZQBeO/P9/2fm++8CuBjT9VxMSJLkT5IkGU2S5Hu+x3xtMJgA8OrgUzmc1XCu1ALK4aUFsj4J//s/Z/6dQvP4+x+YJsS+PoFpYvrkjJR/6stT9w1Y8Lxo4787574v2kgA9Drnvulp50kA/z0doHPdM07wg5533gLg6cD4gOn5/0fEczmcxZBrADmcifDaJEmI6N4E4P83l4075/4VwHlJkhAT+DamKyueN2Pjv3bm++8DWEhjSZLkJ5IkWTzz/r8nSbJ05rnVnu6+iWm/RTLTxlvY95+cMTMhSZJLZ0xDHL4F4GXJdHlvggtgQJIkVwD4PQB/4hkPwaU4VTU1h3MUcgaQw5kITwP4WJIkhwFchGl7fxTMOGdLAD4M4L4kSZ40Hj2AU6alrwL4OwBHZvr63wDgnHsBwK8C+FySJKMARjDjH8C0DX9bkiSPY1rK/zejn00AfgLA4RlH8aaZ7x/AdCXH4Znv74PQaGYquH4QwLuSJPmnJEn+FsCfY7o8MMEyCgPFNOFf55wbiliLazFdTz+HcxjyaqA5nFGQJMnrAex3znXMcz9vAfDbzrn/d5PvX+ice27m/xsALHLOrZ/LMc4nJEnybQAfmNFmcjhHIfcB5HBOgnOumCTJI0mSnNdkLsD1yfS1hOdjujb9mjkd4DxCkiQLAfxxTvxzyDWAHHLIIYdzFHIfQA455JDDOQo5A8ghhxxyOEchZwA55JBDDuco5AwghxxyyOEchZwB5JBDDjmco/D/Bzh5b09xl8ABAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "x = candidate_df['phi1']\n", "y = candidate_df['phi2']\n", diff --git a/_sources/05_join.ipynb b/_sources/05_join.ipynb index 094a8d2..15a5e0c 100644 --- a/_sources/05_join.ipynb +++ b/_sources/05_join.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "---\n", + "title: \"Join\"\n", + "teaching: 3000\n", + "exercises: 0\n", + "questions:\n", + "\n", + "- \"How do we use `JOIN` to combine information from multiple tables?\"\n", + "\n", + "objectives:\n", + "\n", + "- \"Write ADQL queries involving `JOIN` operations.\"\n", + "\n", + "keypoints:\n", + "\n", + "- \"Use `JOIN` operations to combine data from multiple tables in a database, using some kind of identifier to match up records from one table with records from another.\"\n", + "\n", + "- \"This is another example of a practice we saw in the previous notebook, moving the computation to the data.\"\n", + "\n", + "---\n", + "\n", + "{% include links.md %}\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -44,7 +71,9 @@ { "cell_type": "markdown", "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "source": [ "## Installing libraries\n", @@ -58,7 +87,9 @@ "cell_type": "code", "execution_count": 28, "metadata": { - "tags": [] + "tags": [ + "remove-cell" + ] }, "outputs": [], "source": [ @@ -133,7 +164,17 @@ "cell_type": "code", "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Retrieving table 'gaiadr2.panstarrs1_best_neighbour'\n", + "Parsing table 'gaiadr2.panstarrs1_best_neighbour'...\n", + "Done.\n" + ] + } + ], "source": [ "from astroquery.gaia import Gaia\n", "\n", @@ -144,7 +185,20 @@ "cell_type": "code", "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TAP Table name: gaiadr2.gaiadr2.panstarrs1_best_neighbour\n", + "Description: Pan-STARRS1 BestNeighbour table lists each matched Gaia object with its\n", + "best neighbour in the external catalogue.\n", + "There are 1 327 157 objects in the filtered version of Pan-STARRS1 used\n", + "to compute this cross-match that have too early epochMean.\n", + "Num. columns: 7\n" + ] + } + ], "source": [ "print(meta)" ] @@ -160,7 +214,21 @@ "cell_type": "code", "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source_id\n", + "original_ext_source_id\n", + "angular_distance\n", + "number_of_neighbours\n", + "number_of_mates\n", + "best_neighbour_multiplicity\n", + "gaia_astrometric_params\n" + ] + } + ], "source": [ "for column in meta.columns:\n", " print(column.name)" @@ -204,7 +272,15 @@ "cell_type": "code", "execution_count": 33, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + } + ], "source": [ "job = Gaia.launch_job_async(query=query)" ] @@ -215,7 +291,38 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=5\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idnumber_of_neighboursnumber_of_matesoriginal_ext_source_id
        int64int32int16int64
        67459389724334807041069742925668851205
        60304667889559540481069742509325691172
        67564880993081696001069742879438541228
        67001549947150460161069743055581721207
        67570619413032527361069742856540241198
        " + ], + "text/plain": [ + "\n", + " source_id number_of_neighbours number_of_mates original_ext_source_id\n", + " int64 int32 int16 int64 \n", + "------------------- -------------------- --------------- ----------------------\n", + "6745938972433480704 1 0 69742925668851205\n", + "6030466788955954048 1 0 69742509325691172\n", + "6756488099308169600 1 0 69742879438541228\n", + "6700154994715046016 1 0 69743055581721207\n", + "6757061941303252736 1 0 69742856540241198" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -234,7 +341,17 @@ "cell_type": "code", "execution_count": 35, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Retrieving table 'gaiadr2.panstarrs1_original_valid'\n", + "Parsing table 'gaiadr2.panstarrs1_original_valid'...\n", + "Done.\n" + ] + } + ], "source": [ "meta = Gaia.load_table('gaiadr2.panstarrs1_original_valid')" ] @@ -243,7 +360,81 @@ "cell_type": "code", "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TAP Table name: gaiadr2.gaiadr2.panstarrs1_original_valid\n", + "Description: The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is\n", + "a system for wide-field astronomical imaging developed and operated by\n", + "the Institute for Astronomy at the University of Hawaii. Pan-STARRS1\n", + "(PS1) is the first part of Pan-STARRS to be completed and is the basis\n", + "for Data Release 1 (DR1). The PS1 survey used a 1.8 meter telescope and\n", + "its 1.4 Gigapixel camera to image the sky in five broadband filters (g,\n", + "r, i, z, y).\n", + "\n", + "The current table contains a filtered subsample of the 10 723 304 629\n", + "entries listed in the original ObjectThin table.\n", + "We used only ObjectThin and MeanObject tables to extract\n", + "panstarrs1OriginalValid table, this means that objects detected only in\n", + "stack images are not included here. The main reason for us to avoid the\n", + "use of objects detected in stack images is that their astrometry is not\n", + "as good as the mean objects astrometry: “The stack positions (raStack,\n", + "decStack) have considerably larger systematic astrometric errors than\n", + "the mean epoch positions (raMean, decMean).” The astrometry for the\n", + "MeanObject positions uses Gaia DR1 as a reference catalog, while the\n", + "stack positions use 2MASS as a reference catalog.\n", + "\n", + "In details, we filtered out all objects where:\n", + "\n", + "- nDetections = 1\n", + "\n", + "- no good quality data in Pan-STARRS, objInfoFlag 33554432 not set\n", + "\n", + "- mean astrometry could not be measured, objInfoFlag 524288 set\n", + "\n", + "- stack position used for mean astrometry, objInfoFlag 1048576 set\n", + "\n", + "- error on all magnitudes equal to 0 or to -999;\n", + "\n", + "- all magnitudes set to -999;\n", + "\n", + "- error on RA or DEC greater than 1 arcsec.\n", + "\n", + "The number of objects in panstarrs1OriginalValid is 2 264 263 282.\n", + "\n", + "The panstarrs1OriginalValid table contains only a subset of the columns\n", + "available in the combined ObjectThin and MeanObject tables. A\n", + "description of the original ObjectThin and MeanObjects tables can be\n", + "found at:\n", + "https://outerspace.stsci.edu/display/PANSTARRS/PS1+Database+object+and+detection+tables\n", + "\n", + "Download:\n", + "http://mastweb.stsci.edu/ps1casjobs/home.aspx\n", + "Documentation:\n", + "https://outerspace.stsci.edu/display/PANSTARRS\n", + "http://pswww.ifa.hawaii.edu/pswww/\n", + "References:\n", + "The Pan-STARRS1 Surveys, Chambers, K.C., et al. 2016, arXiv:1612.05560\n", + "Pan-STARRS Data Processing System, Magnier, E. A., et al. 2016,\n", + "arXiv:1612.05240\n", + "Pan-STARRS Pixel Processing: Detrending, Warping, Stacking, Waters, C.\n", + "Z., et al. 2016, arXiv:1612.05245\n", + "Pan-STARRS Pixel Analysis: Source Detection and Characterization,\n", + "Magnier, E. A., et al. 2016, arXiv:1612.05244\n", + "Pan-STARRS Photometric and Astrometric Calibration, Magnier, E. A., et\n", + "al. 2016, arXiv:1612.05242\n", + "The Pan-STARRS1 Database and Data Products, Flewelling, H. A., et al.\n", + "2016, arXiv:1612.05243\n", + "\n", + "Catalogue curator:\n", + "SSDC - ASI Space Science Data Center\n", + "https://www.ssdc.asi.it/\n", + "Num. columns: 26\n" + ] + } + ], "source": [ "print(meta)" ] @@ -259,7 +450,40 @@ "cell_type": "code", "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "obj_name\n", + "obj_id\n", + "ra\n", + "dec\n", + "ra_error\n", + "dec_error\n", + "epoch_mean\n", + "g_mean_psf_mag\n", + "g_mean_psf_mag_error\n", + "g_flags\n", + "r_mean_psf_mag\n", + "r_mean_psf_mag_error\n", + "r_flags\n", + "i_mean_psf_mag\n", + "i_mean_psf_mag_error\n", + "i_flags\n", + "z_mean_psf_mag\n", + "z_mean_psf_mag_error\n", + "z_flags\n", + "y_mean_psf_mag\n", + "y_mean_psf_mag_error\n", + "y_flags\n", + "n_detections\n", + "zone_id\n", + "obj_info_flag\n", + "quality_flag\n" + ] + } + ], "source": [ "for column in meta.columns:\n", " print(column.name)" @@ -299,7 +523,15 @@ "cell_type": "code", "execution_count": 39, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + } + ], "source": [ "job = Gaia.launch_job_async(query=query)" ] @@ -310,7 +542,40 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=5\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        obj_idg_mean_psf_magi_mean_psf_mag
        mag
        int64float64float64
        67130655389101425--20.3516006469727
        67553305590067819--19.779899597168
        67551423248967849--19.8889007568359
        67132026238911331--20.9062995910645
        67553513677687787--21.2831001281738
        " + ], + "text/plain": [ + "\n", + " obj_id g_mean_psf_mag i_mean_psf_mag \n", + " mag \n", + " int64 float64 float64 \n", + "----------------- -------------- ----------------\n", + "67130655389101425 -- 20.3516006469727\n", + "67553305590067819 -- 19.779899597168\n", + "67551423248967849 -- 19.8889007568359\n", + "67132026238911331 -- 20.9062995910645\n", + "67553513677687787 -- 21.2831001281738" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -375,7 +640,15 @@ "cell_type": "code", "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + } + ], "source": [ "from astroquery.gaia import Gaia\n", "\n", @@ -388,7 +661,48 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=10\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_id
        int64
        3322773965056065536
        3322773758899157120
        3322774068134271104
        3322773930696320512
        3322774377374425728
        3322773724537891456
        3322773724537891328
        3322773930696321792
        3322773724537890944
        3322773930696322176
        " + ], + "text/plain": [ + "\n", + " source_id \n", + " int64 \n", + "-------------------\n", + "3322773965056065536\n", + "3322773758899157120\n", + "3322774068134271104\n", + "3322773930696320512\n", + "3322774377374425728\n", + "3322773724537891456\n", + "3322773724537891328\n", + "3322773930696321792\n", + "3322773724537890944\n", + "3322773930696322176" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -428,7 +742,21 @@ "cell_type": "code", "execution_count": 45, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT \n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE 1=CONTAINS(\n", + " POINT(ra, dec),\n", + " CIRCLE(88.8, 7.4, 0.08333333))\n", + "\n" + ] + } + ], "source": [ "columns = 'source_id, ra, dec, pmra, pmdec'\n", "\n", @@ -447,7 +775,15 @@ "cell_type": "code", "execution_count": 46, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + } + ], "source": [ "job = Gaia.launch_job_async(query=query)" ] @@ -458,7 +794,70 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=594\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdec
        degdegmas / yrmas / yr
        int64float64float64float64float64
        332277396505606553688.781780201833757.3349365305831410.2980633722108194-2.5057036964736907
        332277375889915712088.832270571445857.325577341429926----
        332277406813427110488.82060921880337.353158142762173-1.1065462654445488-1.5260889445858044
        332277393069632051288.808433392903487.3348531622999282.6074384482375215-0.9292104395445717
        332277437737442572888.868061081822657.3712877312759393.9555477866915383-3.8676624830902435
        332277372453789145688.813086028134347.3248857449205951.34995462741039-33.078133430952086
        332277372453789132888.815703292087437.32230197723248551.93899884989518450.3110526931576576
        332277393069632179288.80507367703317.3323714722065832.2640148344763111.0772755505138008
        332277372453789094488.812416515405337.327864052479726-0.36003627434304625-6.393939291541333
        ...............
        332296211898335603288.761096377229497.380564308268047----
        332296352773258598488.788137017048237.4566968897595241.1363354614104264-2.46251296961979
        332296177538596902488.797232158623697.3597565529065352.121021366548921-6.605711792572964
        332296208462531251288.782867563138687.384598632215225-0.093507178109964871.3495903680571226
        332296293932269260888.732893578186797.407688975612043-0.110029347835697041.002126813991455
        332296376825076057688.75924440359617.469624531882018----
        332296345901311180888.803489318428457.4386999012048710.800833828337078-3.3780655466364626
        332296335593562636888.755285075860587.427795463027667----
        332296328721614988888.76581649321957.4157263708865572.3743092647634034-0.5046963243400879
        332296201590414387288.747408222716437.387057037713974-0.72011785332501120.5565841272341593
        " + ], + "text/plain": [ + "\n", + " source_id ra ... pmdec \n", + " deg ... mas / yr \n", + " int64 float64 ... float64 \n", + "------------------- ----------------- ... -------------------\n", + "3322773965056065536 88.78178020183375 ... -2.5057036964736907\n", + "3322773758899157120 88.83227057144585 ... --\n", + "3322774068134271104 88.8206092188033 ... -1.5260889445858044\n", + "3322773930696320512 88.80843339290348 ... -0.9292104395445717\n", + "3322774377374425728 88.86806108182265 ... -3.8676624830902435\n", + "3322773724537891456 88.81308602813434 ... -33.078133430952086\n", + "3322773724537891328 88.81570329208743 ... 0.3110526931576576\n", + "3322773930696321792 88.8050736770331 ... 1.0772755505138008\n", + "3322773724537890944 88.81241651540533 ... -6.393939291541333\n", + " ... ... ... ...\n", + "3322962118983356032 88.76109637722949 ... --\n", + "3322963527732585984 88.78813701704823 ... -2.46251296961979\n", + "3322961775385969024 88.79723215862369 ... -6.605711792572964\n", + "3322962084625312512 88.78286756313868 ... 1.3495903680571226\n", + "3322962939322692608 88.73289357818679 ... 1.002126813991455\n", + "3322963768250760576 88.7592444035961 ... --\n", + "3322963459013111808 88.80348931842845 ... -3.3780655466364626\n", + "3322963355935626368 88.75528507586058 ... --\n", + "3322963287216149888 88.7658164932195 ... -0.5046963243400879\n", + "3322962015904143872 88.74740822271643 ... 0.5565841272341593" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -518,7 +917,23 @@ "cell_type": "code", "execution_count": 49, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT \n", + "gaia.source_id, gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, best.best_neighbour_multiplicity, best.number_of_mates\n", + "FROM gaiadr2.gaia_source AS gaia\n", + "JOIN gaiadr2.panstarrs1_best_neighbour AS best\n", + " ON gaia.source_id = best.source_id\n", + "WHERE 1=CONTAINS(\n", + " POINT(gaia.ra, gaia.dec),\n", + " CIRCLE(88.8, 7.4, 0.08333333))\n", + "\n" + ] + } + ], "source": [ "column_list = ['gaia.source_id',\n", " 'gaia.ra',\n", @@ -538,7 +953,15 @@ "cell_type": "code", "execution_count": 50, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + } + ], "source": [ "job = Gaia.launch_job_async(query=query)" ] @@ -549,7 +972,70 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=490\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_mates
        degdegmas / yrmas / yr
        int64float64float64float64float64int16int16
        332277396505606553688.781780201833757.3349365305831410.2980633722108194-2.505703696473690710
        332277406813427110488.82060921880337.353158142762173-1.1065462654445488-1.526088944585804410
        332277393069632051288.808433392903487.3348531622999282.6074384482375215-0.929210439544571710
        332277437737442572888.868061081822657.3712877312759393.9555477866915383-3.867662483090243510
        332277372453789145688.813086028134347.3248857449205951.34995462741039-33.07813343095208610
        332277372453789132888.815703292087437.32230197723248551.93899884989518450.311052693157657610
        332277393069632179288.80507367703317.3323714722065832.2640148344763111.077275550513800810
        332277372453789094488.812416515405337.327864052479726-0.36003627434304625-6.39393929154133310
        332277393069632217688.801286825748247.334292036448643----10
        .....................
        332296235950148108888.850377229082717.4021627170535842.058216493648542-2.24925532255858410
        332296239386122854488.821082349761557.4044425496203-0.916760881643629-1.111331905386144110
        332295583115125491288.746203477995087.3427286191458550.1559833902071379-1.75059845595973410
        332296211898335603288.761096377229497.380564308268047----10
        332296352773258598488.788137017048237.4566968897595241.1363354614104264-2.4625129696197910
        332296177538596902488.797232158623697.3597565529065352.121021366548921-6.60571179257296410
        332296208462531251288.782867563138687.384598632215225-0.093507178109964871.349590368057122610
        332296293932269260888.732893578186797.407688975612043-0.110029347835697041.00212681399145510
        332296345901311180888.803489318428457.4386999012048710.800833828337078-3.378065546636462610
        332296201590414387288.747408222716437.387057037713974-0.72011785332501120.556584127234159310
        " + ], + "text/plain": [ + "\n", + " source_id ra ... number_of_mates\n", + " deg ... \n", + " int64 float64 ... int16 \n", + "------------------- ----------------- ... ---------------\n", + "3322773965056065536 88.78178020183375 ... 0\n", + "3322774068134271104 88.8206092188033 ... 0\n", + "3322773930696320512 88.80843339290348 ... 0\n", + "3322774377374425728 88.86806108182265 ... 0\n", + "3322773724537891456 88.81308602813434 ... 0\n", + "3322773724537891328 88.81570329208743 ... 0\n", + "3322773930696321792 88.8050736770331 ... 0\n", + "3322773724537890944 88.81241651540533 ... 0\n", + "3322773930696322176 88.80128682574824 ... 0\n", + " ... ... ... ...\n", + "3322962359501481088 88.85037722908271 ... 0\n", + "3322962393861228544 88.82108234976155 ... 0\n", + "3322955831151254912 88.74620347799508 ... 0\n", + "3322962118983356032 88.76109637722949 ... 0\n", + "3322963527732585984 88.78813701704823 ... 0\n", + "3322961775385969024 88.79723215862369 ... 0\n", + "3322962084625312512 88.78286756313868 ... 0\n", + "3322962939322692608 88.73289357818679 ... 0\n", + "3322963459013111808 88.80348931842845 ... 0\n", + "3322962015904143872 88.74740822271643 ... 0" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -589,9 +1075,121 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT \n", + "gaia.source_id, gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, best.best_neighbour_multiplicity, best.number_of_mates, ps.g_mean_psf_mag, ps.i_mean_psf_mag\n", + "FROM gaiadr2.gaia_source as gaia\n", + "JOIN gaiadr2.panstarrs1_best_neighbour as best\n", + " ON gaia.source_id = best.source_id\n", + "JOIN gaiadr2.panstarrs1_original_valid as ps\n", + " ON best.original_ext_source_id = ps.obj_id\n", + "WHERE 1=CONTAINS(\n", + " POINT(gaia.ra, gaia.dec),\n", + " CIRCLE(88.8, 7.4, 0.08333333))\n", + "\n", + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + }, + { + "data": { + "text/html": [ + "Table length=490\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_mag
        degdegmas / yrmas / yrmag
        int64float64float64float64float64int16int16float64float64
        332277396505606553688.781780201833757.3349365305831410.2980633722108194-2.50570369647369071019.943199157714817.4221992492676
        332277406813427110488.82060921880337.353158142762173-1.1065462654445488-1.52608894458580441018.621200561523416.6007995605469
        332277393069632051288.808433392903487.3348531622999282.6074384482375215-0.929210439544571710--20.2203998565674
        332277437737442572888.868061081822657.3712877312759393.9555477866915383-3.86766248309024351018.067600250244116.9762001037598
        332277372453789145688.813086028134347.3248857449205951.34995462741039-33.0781334309520861020.190700531005917.8700008392334
        332277372453789132888.815703292087437.32230197723248551.93899884989518450.31105269315765761022.630800247192419.6004009246826
        332277393069632179288.80507367703317.3323714722065832.2640148344763111.07727555051380081021.211999893188518.3528003692627
        332277372453789094488.812416515405337.327864052479726-0.36003627434304625-6.3939392915413331020.809400558471718.1343002319336
        332277393069632217688.801286825748247.334292036448643----1019.7306003570557--
        ...........................
        332296235950148108888.850377229082717.4021627170535842.058216493648542-2.2492553225585841017.403499603271515.9040002822876
        332296239386122854488.821082349761557.4044425496203-0.916760881643629-1.111331905386144110----
        332295583115125491288.746203477995087.3427286191458550.1559833902071379-1.7505984559597341018.496099472045917.3892993927002
        332296211898335603288.761096377229497.380564308268047----1018.064399719238316.7395000457764
        332296352773258598488.788137017048237.4566968897595241.1363354614104264-2.462512969619791017.803499221801816.1214008331299
        332296177538596902488.797232158623697.3597565529065352.121021366548921-6.6057117925729641018.207000732421915.9947996139526
        332296208462531251288.782867563138687.384598632215225-0.093507178109964871.34959036805712261016.797899246215815.1180000305176
        332296293932269260888.732893578186797.407688975612043-0.110029347835697041.0021268139914551017.1863002777116.3645992279053
        332296345901311180888.803489318428457.4386999012048710.800833828337078-3.378065546636462610--16.294900894165
        332296201590414387288.747408222716437.387057037713974-0.72011785332501120.55658412723415931018.470699310302716.8038005828857
        " + ], + "text/plain": [ + "\n", + " source_id ra ... g_mean_psf_mag i_mean_psf_mag \n", + " deg ... mag \n", + " int64 float64 ... float64 float64 \n", + "------------------- ----------------- ... ---------------- ----------------\n", + "3322773965056065536 88.78178020183375 ... 19.9431991577148 17.4221992492676\n", + "3322774068134271104 88.8206092188033 ... 18.6212005615234 16.6007995605469\n", + "3322773930696320512 88.80843339290348 ... -- 20.2203998565674\n", + "3322774377374425728 88.86806108182265 ... 18.0676002502441 16.9762001037598\n", + "3322773724537891456 88.81308602813434 ... 20.1907005310059 17.8700008392334\n", + "3322773724537891328 88.81570329208743 ... 22.6308002471924 19.6004009246826\n", + "3322773930696321792 88.8050736770331 ... 21.2119998931885 18.3528003692627\n", + "3322773724537890944 88.81241651540533 ... 20.8094005584717 18.1343002319336\n", + "3322773930696322176 88.80128682574824 ... 19.7306003570557 --\n", + " ... ... ... ... ...\n", + "3322962359501481088 88.85037722908271 ... 17.4034996032715 15.9040002822876\n", + "3322962393861228544 88.82108234976155 ... -- --\n", + "3322955831151254912 88.74620347799508 ... 18.4960994720459 17.3892993927002\n", + "3322962118983356032 88.76109637722949 ... 18.0643997192383 16.7395000457764\n", + "3322963527732585984 88.78813701704823 ... 17.8034992218018 16.1214008331299\n", + "3322961775385969024 88.79723215862369 ... 18.2070007324219 15.9947996139526\n", + "3322962084625312512 88.78286756313868 ... 16.7978992462158 15.1180000305176\n", + "3322962939322692608 88.73289357818679 ... 17.18630027771 16.3645992279053\n", + "3322963459013111808 88.80348931842845 ... -- 16.294900894165\n", + "3322962015904143872 88.74740822271643 ... 18.4706993103027 16.8038005828857" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "query_base = \"\"\"SELECT \n", + "{columns}\n", + "FROM gaiadr2.gaia_source as gaia\n", + "JOIN gaiadr2.panstarrs1_best_neighbour as best\n", + " ON gaia.source_id = best.source_id\n", + "JOIN gaiadr2.panstarrs1_original_valid as ps\n", + " ON best.original_ext_source_id = ps.obj_id\n", + "WHERE 1=CONTAINS(\n", + " POINT(gaia.ra, gaia.dec),\n", + " CIRCLE(88.8, 7.4, 0.08333333))\n", + "\"\"\"\n", + "\n", + "column_list = ['gaia.source_id',\n", + " 'gaia.ra',\n", + " 'gaia.dec',\n", + " 'gaia.pmra',\n", + " 'gaia.pmdec',\n", + " 'best.best_neighbour_multiplicity',\n", + " 'best.number_of_mates',\n", + " 'ps.g_mean_psf_mag',\n", + " 'ps.i_mean_psf_mag']\n", + "\n", + "columns = ', '.join(column_list)\n", + "\n", + "query = query_base.format(columns=columns)\n", + "print(query)\n", + "\n", + "job = Gaia.launch_job_async(query=query)\n", + "results = job.get_results()\n", + "results" ] }, { @@ -634,7 +1232,20 @@ "cell_type": "code", "execution_count": 54, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "point_list 135.306, 8.39862, 126.51, 13.4449, 163.017, 54...\n", + "pm_point_list -4.05037121,-14.75623261, -3.41981085,-14.723...\n", + "dtype: object" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "\n", @@ -654,7 +1265,24 @@ "cell_type": "code", "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SELECT \n", + "source_id, ra, dec, pmra, pmdec\n", + "FROM gaiadr2.gaia_source\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(ra, dec), \n", + " POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))\n", + " AND 1 = CONTAINS(POINT(pmra, pmdec),\n", + " POLYGON( -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176))\n", + "\n" + ] + } + ], "source": [ "columns = 'source_id, ra, dec, pmra, pmdec'\n", "\n", @@ -676,7 +1304,15 @@ "cell_type": "code", "execution_count": 56, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + } + ], "source": [ "job = Gaia.launch_job_async(query=query6)" ] @@ -687,7 +1323,70 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=7345\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdec
        degdegmas / yrmas / yr
        int64float64float64float64float64
        635559124339440000137.5867169164674519.1965441084838-3.770521900009566-12.490481778113859
        635860218726658176138.518706521717319.09233926905897-5.941679495793577-11.346409129876392
        635674126383965568138.842874102638619.031798198627634-3.8970011609340207-12.702779525389634
        635535454774983040137.837751825543618.864006786112604-4.335040664412791-14.492308604905652
        635497276810313600138.044516021375919.00947118796605-7.1729306406216615-12.291499169815987
        635614168640132864139.5921974814583618.807955539071433-3.309602916796381-13.708904908478631
        635821843194387840139.8809403481508619.62185456718988-6.544201177153814-12.55978220563274
        635551706931167104138.0466558603819219.248909662830798-6.224595114220405-12.224246333795001
        635518889086133376137.237422920783718.7428630711791-3.3186800714801046-12.710314902969365
        ...............
        612282738058264960134.044576818923518.11915820167003-2.5972485319419127-13.651740929272187
        612485911486166656134.9658276904706319.309965857307247-4.519325315774155-11.998725329569156
        612386332668697600135.4570104832309318.63266345155342-5.07684899854408-12.436641304786672
        612296172717818624133.8006028696066818.08186533343457-6.112792578821885-12.50750861370402
        612250375480101760134.6475471246677418.122419425065015-2.8969262278467127-14.061676353845487
        612394926899159168135.5199706001384418.817675531233004-3.9968965218753763-13.526821099431533
        612288854091187712134.0797073348935818.15424015818678-5.96977151283562-11.162471664228455
        612428870024913152134.838424285329718.758253070693225-4.0022333299353825-14.247379430659198
        612256418500423168134.9075297273992418.280596648172743-6.109836304219565-12.145212331165776
        612429144902815104134.7729397950954318.73628415871413-5.257085979310591-13.962312685889454
        " + ], + "text/plain": [ + "\n", + " source_id ra ... pmdec \n", + " deg ... mas / yr \n", + " int64 float64 ... float64 \n", + "------------------ ------------------ ... -------------------\n", + "635559124339440000 137.58671691646745 ... -12.490481778113859\n", + "635860218726658176 138.5187065217173 ... -11.346409129876392\n", + "635674126383965568 138.8428741026386 ... -12.702779525389634\n", + "635535454774983040 137.8377518255436 ... -14.492308604905652\n", + "635497276810313600 138.0445160213759 ... -12.291499169815987\n", + "635614168640132864 139.59219748145836 ... -13.708904908478631\n", + "635821843194387840 139.88094034815086 ... -12.55978220563274\n", + "635551706931167104 138.04665586038192 ... -12.224246333795001\n", + "635518889086133376 137.2374229207837 ... -12.710314902969365\n", + " ... ... ... ...\n", + "612282738058264960 134.0445768189235 ... -13.651740929272187\n", + "612485911486166656 134.96582769047063 ... -11.998725329569156\n", + "612386332668697600 135.45701048323093 ... -12.436641304786672\n", + "612296172717818624 133.80060286960668 ... -12.50750861370402\n", + "612250375480101760 134.64754712466774 ... -14.061676353845487\n", + "612394926899159168 135.51997060013844 ... -13.526821099431533\n", + "612288854091187712 134.07970733489358 ... -11.162471664228455\n", + "612428870024913152 134.8384242853297 ... -14.247379430659198\n", + "612256418500423168 134.90752972739924 ... -12.145212331165776\n", + "612429144902815104 134.77293979509543 ... -13.962312685889454" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results = job.get_results()\n", "results" @@ -715,9 +1414,122 @@ "hide-cell" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "SELECT \n", + "gaia.source_id, gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, best.best_neighbour_multiplicity, best.number_of_mates, ps.g_mean_psf_mag, ps.i_mean_psf_mag\n", + "FROM gaiadr2.gaia_source as gaia\n", + "JOIN gaiadr2.panstarrs1_best_neighbour as best\n", + " ON gaia.source_id = best.source_id\n", + "JOIN gaiadr2.panstarrs1_original_valid as ps\n", + " ON best.original_ext_source_id = ps.obj_id\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(gaia.ra, gaia.dec), \n", + " POLYGON(135.306, 8.39862, 126.51, 13.4449, 163.017, 54.2424, 172.933, 46.4726, 135.306, 8.39862))\n", + " AND 1 = CONTAINS(POINT(gaia.pmra, gaia.pmdec),\n", + " POLYGON( -4.05037121,-14.75623261, -3.41981085,-14.72365546, -3.03521988,-14.44357135, -2.26847919,-13.7140236 , -2.61172203,-13.24797471, -2.73471401,-13.09054471, -3.19923146,-12.5942653 , -3.34082546,-12.47611926, -5.67489413,-11.16083338, -5.95159272,-11.10547884, -6.42394023,-11.05981295, -7.09631023,-11.95187806, -7.30641519,-12.24559977, -7.04016696,-12.88580702, -6.00347705,-13.75912098, -4.42442296,-14.74641176))\n", + "\n", + "INFO: Query finished. [astroquery.utils.tap.core]\n" + ] + }, + { + "data": { + "text/html": [ + "Table length=3725\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_mag
        degdegmas / yrmas / yrmag
        int64float64float64float64float64int16int16float64float64
        635860218726658176138.518706521717319.09233926905897-5.941679495793577-11.3464091298763921017.897800445556617.5174007415771
        635674126383965568138.842874102638619.031798198627634-3.8970011609340207-12.7027795253896341019.287300109863317.6781005859375
        635535454774983040137.837751825543618.864006786112604-4.335040664412791-14.4923086049056521016.923799514770516.478099822998
        635497276810313600138.044516021375919.00947118796605-7.1729306406216615-12.2914991698159871019.924200057983418.3339996337891
        635614168640132864139.5921974814583618.807955539071433-3.309602916796381-13.7089049084786311016.151599884033214.6662998199463
        635598607974369792139.2092002308950818.624132868942702-6.124445176881091-12.8338240271006111016.522399902343816.1375007629395
        635737661835496576139.9332755247393419.167962454651423-7.119403303682826-12.6879474976337931014.503299713134813.9849004745483
        635850945892748672139.8654288847211520.011312663154804-3.786655365804428-14.284156007182061016.517499923706116.0450000762939
        635600532119713664139.2286994961681618.685939084485494-3.9742788217925122-12.3424266233842451020.450599670410219.5177001953125
        ...........................
        612241781249124608134.375583506519418.129179169751275-2.831807894848964-13.9021185736135971020.234399795532218.6518001556396
        612332147361443072134.1458472136365318.45685585044513-6.234287981021865-11.5004641956950721021.384899139404320.3076000213623
        612426744016802432134.6852280506107618.77090626983678-3.7691372464459554-12.8891674931188621017.828100204467817.4281005859375
        612331739340341760134.1217619690225418.42768872157865-3.9894012386388735-12.605044105074411021.865699768066419.5223007202148
        612282738058264960134.044576818923518.11915820167003-2.5972485319419127-13.6517409292721871022.515199661254919.9743995666504
        612386332668697600135.4570104832309318.63266345155342-5.07684899854408-12.4366413047866721019.379299163818417.9923000335693
        612296172717818624133.8006028696066818.08186533343457-6.112792578821885-12.507508613704021017.494400024414116.926700592041
        612250375480101760134.6475471246677418.122419425065015-2.8969262278467127-14.0616763538454871015.333000183105514.6280002593994
        612394926899159168135.5199706001384418.817675531233004-3.9968965218753763-13.5268210994315331016.441400527954115.8212003707886
        612256418500423168134.9075297273992418.280596648172743-6.109836304219565-12.1452123311657761020.871599197387719.9612007141113
        " + ], + "text/plain": [ + "\n", + " source_id ra ... g_mean_psf_mag i_mean_psf_mag \n", + " deg ... mag \n", + " int64 float64 ... float64 float64 \n", + "------------------ ------------------ ... ---------------- ----------------\n", + "635860218726658176 138.5187065217173 ... 17.8978004455566 17.5174007415771\n", + "635674126383965568 138.8428741026386 ... 19.2873001098633 17.6781005859375\n", + "635535454774983040 137.8377518255436 ... 16.9237995147705 16.478099822998\n", + "635497276810313600 138.0445160213759 ... 19.9242000579834 18.3339996337891\n", + "635614168640132864 139.59219748145836 ... 16.1515998840332 14.6662998199463\n", + "635598607974369792 139.20920023089508 ... 16.5223999023438 16.1375007629395\n", + "635737661835496576 139.93327552473934 ... 14.5032997131348 13.9849004745483\n", + "635850945892748672 139.86542888472115 ... 16.5174999237061 16.0450000762939\n", + "635600532119713664 139.22869949616816 ... 20.4505996704102 19.5177001953125\n", + " ... ... ... ... ...\n", + "612241781249124608 134.3755835065194 ... 20.2343997955322 18.6518001556396\n", + "612332147361443072 134.14584721363653 ... 21.3848991394043 20.3076000213623\n", + "612426744016802432 134.68522805061076 ... 17.8281002044678 17.4281005859375\n", + "612331739340341760 134.12176196902254 ... 21.8656997680664 19.5223007202148\n", + "612282738058264960 134.0445768189235 ... 22.5151996612549 19.9743995666504\n", + "612386332668697600 135.45701048323093 ... 19.3792991638184 17.9923000335693\n", + "612296172717818624 133.80060286960668 ... 17.4944000244141 16.926700592041\n", + "612250375480101760 134.64754712466774 ... 15.3330001831055 14.6280002593994\n", + "612394926899159168 135.51997060013844 ... 16.4414005279541 15.8212003707886\n", + "612256418500423168 134.90752972739924 ... 20.8715991973877 19.9612007141113" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "query7_base = \"\"\"\n", + "SELECT \n", + "{columns}\n", + "FROM gaiadr2.gaia_source as gaia\n", + "JOIN gaiadr2.panstarrs1_best_neighbour as best\n", + " ON gaia.source_id = best.source_id\n", + "JOIN gaiadr2.panstarrs1_original_valid as ps\n", + " ON best.original_ext_source_id = ps.obj_id\n", + "WHERE parallax < 1\n", + " AND bp_rp BETWEEN -0.75 AND 2 \n", + " AND 1 = CONTAINS(POINT(gaia.ra, gaia.dec), \n", + " POLYGON({point_list}))\n", + " AND 1 = CONTAINS(POINT(gaia.pmra, gaia.pmdec),\n", + " POLYGON({pm_point_list}))\n", + "\"\"\"\n", + "\n", + "columns = ', '.join(column_list)\n", + "\n", + "query7 = query7_base.format(columns=columns,\n", + " point_list=point_series['point_list'],\n", + " pm_point_list=point_series['pm_point_list'])\n", + "print(query7)\n", + "\n", + "\n", + "job = Gaia.launch_job_async(query=query7)\n", + "results = job.get_results()\n", + "results" ] }, { @@ -733,7 +1545,73 @@ "cell_type": "code", "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "<MaskedColumn name='best_neighbour_multiplicity' dtype='int16' description='Number of neighbours with same probability as best neighbour' length=3725>\n", + "
        \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        ...
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        " + ], + "text/plain": [ + "\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + "...\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "results['best_neighbour_multiplicity']" ] @@ -751,7 +1629,26 @@ "cell_type": "code", "execution_count": 60, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "count 3725.0\n", + "mean 1.0\n", + "std 0.0\n", + "min 1.0\n", + "25% 1.0\n", + "50% 1.0\n", + "75% 1.0\n", + "max 1.0\n", + "dtype: float64" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "\n", @@ -772,7 +1669,26 @@ "cell_type": "code", "execution_count": 61, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "count 3725.0\n", + "mean 0.0\n", + "std 0.0\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 0.0\n", + "dtype: float64" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mates = pd.Series(results['number_of_mates'])\n", "mates.describe()" @@ -861,7 +1777,20 @@ "cell_type": "code", "execution_count": 64, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEJCAYAAACdePCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABmGklEQVR4nO29fZSdx1kn+Kt2AgHMx4Cl28oGJbCQDFhSyBe2d3GTBDnDYsvZQMJJgFlLChhwd9u7rKNWyMJykI0TyEyOlDADmZEUzhliYoVPywu2ukkCS5wQSfdeqU0CAyHBfe/t2/IZhoEwC+q+tX/cW1fV1U9VPfXx3tvqrt8575H6vm9VPfX1fNVTVUJKiYKCgoKC7YeJcRNQUFBQUDAeFAFQUFBQsE1RBEBBQUHBNkURAAUFBQXbFEUAFBQUFGxTFAFQUFBQsE0xVgEghPg6IcRHhRCfE0J8Vghx2zjpKSgoKNhOeN6Yyz8O4A+klG8WQnwZgK8cMz0FBQUF2wZiXBvBhBBfA6AJ4Jslk4ibbrpJvuQlL6mUroKCgoKthgsXLjwnpdxh/j5OC+CbAVwBcFoI8XIAFwA8IKX8kv6REOJeAPcCwO7du3H+/PmRE1pQUFBwPUMI8UXq93GuATwPwCsB/Hsp5SsAfAnAUfMjKeUHpZSvllK+eseODQKsoKCgoCAS4xQASwCWpJSfHvz9UfQFQkFBQUHBCDA2ASClXAbwrBDiZYOfvgfAn42LnoKCgoLthnFHAc0C+PVBBNDnARwaMz0FBQUF2wZjFQBSygaAV4+ThoKCgoLtirITuKCgoGCbogiAgoKCgm2KIgAKCiqGlBLLy8sot+8VbDYUAVCwLdDr9XDp0iX0er2Rl93tdnHy5ElcvnyZFAI5BUSOvIrA2j4oAqBgrFDMptfrsZhOKHOSUqLT6eBjH/sYHnzwQSwuLkbnxaXF/L1Wq+HAgQM4e/Ysut3uhm8vX76MU6dObXgXg263O8wrtn56HgVbG0UAFKzDqLU/xWwWFxdZTCeUOXW7XZw4cQJPPvkk7r33Xtx8883ReXFpMX8XQmDv3r04fPgwarXahm8ff/xx3HXXXRvexaBWq+HQoUPDftTp8PWter9z585hHsUK2OJQnXw9PK961atkQT70ej3Z6XRkr9cb/tbpdOTDDz8sO50O6/uUsvTf19bWnO/V76E09Ho92W63ZaPR2FCvlPq4aNfzdZWhaGu320H16XQ6cnV1VTYaDdlqtTakVX3YbrfXle3qWzNdo9GQR48ele12O6RJrPTGtjE3jxzlbGUAOC8JnlosgE0GOUINnNJga7XaUFPVaZEeV4WPbpu2LITA5OQkJiYmMDk5CSGENZ2UEt1ud6gpc9pJCIFdu3Zh3759GzRwVbZZJhcq/crKygaNX+Wr6Ff+f72dut0uTp8+DSEEmwaV3yc+8Qncf//9ePe7372hTVUfTk5OYnJyEgCGmj1lhZjpAODRRx/Fl770JfK7EJj9HjO+9Txsazkca04O3IGdTqdYNgqUVNisz/VsAXA1FF1LW1tbk81mU66trVVSlk87bTab8qGHHpKdTkd2Oh350EMPyWazSX7fbrfl0aNHZavVYmnyXOhtoLeNT5utAj4rxtWOx44dk81mU7bb7SHdMW2iWwD1el3W63Xv+AhpK2WVtFqtoWWSYoWZ3/rGkS+PZrMp77jjDtlsNp3lUOh0OvLo0aPy6NGj0e1/vQIWC2DsTD3kuZ4FgM0sN8EZ7NyyYpljr9eTjUZDzs3NyUaj4XVlSHlNADQajeAJ7oJeF9O1YnOf6EySK0C5DIRqV19a1Zeq/026YwU2t59DGB2Vp+pb5Q6ivgmpA+Ve4qaPVYpUGXrbc+dkKI2bEUUAjBlq8OgaoA9VWwA2dDodOTc3J2dmZtg+YN0frphdDu3cVRcbA1S/LywsyDvuuEM2Go0NecQwUxstoWnN77mM3Pwu1oJwrTtQ6xrtdnuoDKytrQ3T69+EaPa6QFFpW63WOqEwCmYbOie5/cxp31ELkSIARgSONriZtAjKvDddANR3LqRoaSF0cy2AVqu1wYowJ32KO8a2gG3LN8SlYlo9sa4XBdMNYoPpilxYWBgyeMoNp1s5IRaJysO0CmyWH5WXPg44fcJtq5jvfO07DtellEUAVA6TsXDNSldeoxASXG00ZOCOYpCHlEGtI6T0TwgNqW0Rm95mLegavMuVZjJpxfx1xmoyWx/TdQlDM1/KVUNZF+12W87Ozsq5ubl1Qim3FcqN1oqxsFx55eIDRQBUDHMRlGNW2jTlVN9uiBVi0mCbpCHhipyBmzq4OZq1AlebDC2T0/6pFmGMNUX1l00gqHHrsgh8NNqEqtkOXKZs5qfaQAUk6FD01+v1dW6pUKvMRw/HagrBKJQHHUUAaKhCwzYXyjhlqEVe3UcdwmxjtXX9fehAjDGxXXnmWiw26dSRq7+5NOe0lmKYAJXGbAOdycYuSpt5m0qPXoZi4FTb2QSrnp9NEKpv1RqCWqfgCCxX+5hlhO7X8GEUSpKOIgA0pEjWWK2bghrUuo+aS9va2tq6jUChWie1kMeps84EuYt+Nm3dptWFIKTeqej1rkVHuRbHQ+hIsRBSxqLLmuGMQY4FpjNyF/O3jQMbTVSft1qtoSuIsjR848Ql3KseV6NAEQAaUjo0p1lG0cM1+c0Q0U4nLL46th66BWBOtFAXTA43kE+IcBhVCExLj0tnFQyE0+fcsqnIHFeeet+7hImPBq5VZRMGlCVDKTW+8e4aSz7LkipvswmNIgAyoeoIlxALwPTdhyx85RigNrcCV5PLVZ6LeVDl6Ywz1JXFbbeUOnMZi860bHXhlq0EwNLSkvWICT3PY8eOyYWFhQ0b9ELKlNI+n7iWD9fa4bhwQi0qffxRY4yyQnK7krgoAiATqrAAdNgGiYspmN+4JkaIdhZSdmheMd/o2h6HHlteurDMGS1C0UppyC6YtJkavjn+dCGQssFKfddoNOTU1JScmZnxastcC4DTTqqOKm3IfhluGbn7OMQC6PX67sPp6emg/TW5UASAAyGSOUZzDk1j01rV5qaUTStcbY3SYG3MModmw9GYlba4tLSUfFAZV6hR9HHehzJFnfHpGj3HzaZ+MzdTxdTDXFuKzYcLtcdAPypDCTNzL0pKGaaVMWoXTafT31z5lre8RR48eFC2Wq2RlKtgEwDb8jA4KdcfSKWODD5x4oT3aGD9oC8p6cOlqPxDjh3WD2TTf7vrrrvwyU9+kjw6WJXZG5yrbzvS18ybKsukWX1z880346677sLOnTs3fMttPxuo8kyaVlZWcPbsWTz33HPr6uxqextch9BRefj6kDoCWs+Xm15KiQMHDmDPnj2YmJjYcIy0EAK1Wm14OJ5e1q5du/DAAw8MD4AzIWX/QL+TJ09a6ZiYmMDLX/5yvPCFLyQPqFNtAyDpID293k899RRuu+02nD17FgBw4MABPPHEE3juuedw+vRp9piy9b0aNysrK+vKdR1Sxx1HnO/UHHzrW9+KHTt24MYbb0xut2ygpMJmfaqKAur1erLVag1DyELyoeKDqfyVtpF6lolNa1F+bbVjs9PZGFEU6org+pN9bqvY8mzfKK2dchNwzH1fWaarieNrVm1g01pDLICU+HDfGEkJvdXdTbncKdQhgrHWma3tqPFptpPZNtxx5HIhmnRRIbejAooL6BooX3mIz1EfoKGML/aANw5Nps/YN8hDESq8cvheXW3pMu1dzMPXDrF+aJtCEIIYQcgR0ty8XVBKxvz8vNdFxAW3vq55Ztt9z3Er6nnpwo1Dl2oP2ziiFInQtsjlqioCwILQTtLTxEzyKqOIOFomJ47dhtB65xi8rjL1dxzrQKeLo8mGrm3kWAsJAdU2Vfq2Vbvl3hXrg02wUtaDmc63kUyHre1sjNl3FpXroiBbPWMsWg6KADBAdRJ38lQxyXLmSVk4Kt+QOHYz7agXznxlUhqefuwyx+Xiq0vqBKyaIY+jP1KEXAzNtjJtY5ma275xz3GdcRmzTankWp7FAqhAANjcIVVIW6o8H3KWredl5htCVyxN4xQUNrdcar4xLgopR3/6Yw4lpkpFaBRzjCrDJwBc8ySUMdtciFzLswpsewHAYYS5GJfq6FB3SS7G5Ru8ofmEWkmjZnrjLt/mopAybUyFpNWZjumXpvLhutZciGnnUVjZMXOboyCGllsljwnFphUAAG4AUAdw1vdtTgugSnQ64dfeqXRVM65UrU3/vy2vcQ1ybvk5BX0VVodCiPWmux1M5YPqM4pmSuBz6l9FP+s0h66b5aDLNbZzWHscYZETm1kA/BSAD1ctAGIRYyrHdm5VDFVPn6rZUHnFHKkwTnCEWGg+uUExGld5LqvP1v9mfjmt5FjrkSpHRc4tLCyw0lLt5JuTXNra7bacmZlJtvb0ueOal7mCRjalAADwIgALAF4/LgHgGwjjMpWrSG/GIecQLHroaWg0lS/vEG00Ju9YgUjlk4seBYquHMyAIyhi9lnY5o3tBjEqja099d3CXO3aJzx9f9vyabfb6+7K5rSz7b2aO679AbnCxjerAPgogFcBeK1NAAC4F8B5AOd3796d1AgUfAPBNelSNXsuclkQtvPaucyPyl+1z+rqqpVpxIBiICGIbbMqTHFfnhyN1fZdjvJt9FDC3JaXjbm7LAAOE6bK5SgHocLG1t762g4lEHxt6Oor27zUsWUtAAB3Afh3g/9bBYD+bDYLoGrETlwbrVxmZ/udiqTguA048GmjoW6I2H7L0d+hY4jbD7Ftq5efEg+vvwuNcXeVw71S0qxPVWdT6XTp+YSMjZD2oL7NrYhsRgHwCIAlAF8AsAzgHwH8J1eazbYGUHU5ocw1ddDZylWgBEDVZVLguCFyCaIY5BKKMRaab2d6rEvB1FZdh9SNSnGxCYxUIW67GyHn/PMht+K56QTAOiLGZAGMirlzwHEDuExzW5qQ8nx5pLaXq44hvn7F6Mxzd8ZprZm05Q7n5cB0WVCIdSmotl1aWpILCwvy6tWrVitHMVCfn1zBV88YQZgylnT6dfdMCJ1cGmzaf+6osiIACKQwjNzaAOd7Uwuj6ObWaRzCj9KmYtcMKGaXUqeU/tL/XyWz4uRV1VEUSnDU63W5f//+DRE5umBpt9vD6xlD3CU2JYCrJMS0paJ1enp6na9fX6Dl9m3MOKC+q0KR2dQCgPuM0gKI0UpSGEEOurlnuVcdV8353mfN+PrGdfJmDM2h/aV/H6P5ucrN5VbLBZ0htlqtdSfOKphtEBJtptL6Fvx9fRRyzIlCq9WSMzMz8uLFi+vopfZIhJ4LlWIBhFrFPhQB4IBiiFevXl0X0x7KoFIYgQ8ctwzXv0t9pw9wc+CFTiwOM/UJITMPm3C1tUvVmrjNAqDyClU0Qqy4lKMFuHXudK4dNb66umpdZ4jdIKUzPBeTtZWhfq/X6+yDDlWZ1CU6o9LKdTqocRQj0GzY1gLAN9AVQzxz5syQMfpcFC7J7fuNS5cO2wDUBwlXs6e+010qpibmO3WRW68QC8nMw8b0bfmMQjO2waQpVRjZxlWz2Vx3N29IniF06YLGdSMdpy982q1L8NvK0Meu8ttzhBo31DVU+7fB1wcmTZwb3rjY1gLAN9ApC0DBxki40tkVORPi/06lg5O/zQIw6TUnTYgmGWshubS/cTF6G3IzENVurVZrnYX60EMPyTNnzrAsAJurSe9zV/uqOaKubqT6ntMXio56vS5nZmY2XI3oY/i2tlXuQJfCZrqlcsb0c2DjBea8U3VQ/a322KSM8W0tAFKYRE4B4GOkMbT5BnGqBUJN8NgNZanMuiozPBYuS8e3EzUkf8UYGo3GOguVYsjcvEy6bOf8+4S2j0Hb6KjX63JqakrW63XW97bxa7rAbN93Ov07efUL2W3hniZybcay8QxbG6p51mg0kpW8bS0AUuAza0MiE0LMzljaOCaz+o6zy5ZTxqi0cJsrZLO4evTfc0QomfmbjChHnvo4jrGwuOPNhKpLq9WKtoJ14cURgCYj1Rmya266hFyIcLDNG9tmR9UfOVxBRQBEwjcBQjQ7V14pGmKMRqZcCL7JUxWDzZUvp924wjoUPgvAFaXEodW3IBpTl9R2DxUI3Pxsbkf9d87YVr+trq5uYMwms9b/tlm3VDm6sFhYWFgXUBGipHQ6neEajnLzrK6uykajIev1etaAkiIAEuDSeHN0js2VE5M3N43PtE5xG3HKyyHwbO1mQtcUcx/z4EJMHbm0xuRtIrSfuVZjTDk2t6JeHqftVTqTMevvzDJczN5Vn3a7vWERnsrTZYUrOtXi+sLCgpyampL33Xcfa3GfiyIAEqBry0pryOmLdrkSRunzdmlBqTRxLROKHkpoKGbEWQDNaQH46q8LpZjyfG6BnIqHqy42RsaNOgotxxZY4NscZvtdtwBcVgZ3Idil2VMH3nGPwTYPU6QsgBwoAkBDjJmqmL5+/HEOV4Jr81Yq4/JZFrYFQdfidBWuB5eJbBMayn9br9dHGhnky7vT8R/HEIucCoHPTcWxALjujpC+5/SdOh6au/8hVNApOvS54/qOUgi5feUTZLnGcBEAGjhaHEfap0I3AanNWxyN3AUbM7K5GUI0zFQ3kf6NTg+XmaiFsUajMbJNO5y6pGqVru9CtWEXzDGgaPZZLlS/5Wx708qj6t1sNuX+/fvlmTNnohZfOe/MuWMTmO02fT8Ad/5w5nYOYVAEgAaOFmdqwlVolZ3OtR2W1EDmaOQuhFoA+jvfwAzRqqi2Mye6z51j0qXaJPa46BzIIaA56SimaGvLUNr12HNzI6Bvv0eoth9Cl6kY6C7YVqsl5+fnh+MlxBKxCWeqbq1WSzYajXX+fVOhMkM7fUqUbRy72iuHQlMEgAGOVqBP7JBOCNXsYrTsqsDd9cvVqmzMPdT0TxWGVSCHgFZMmOuOocZhjnGkM0fbjWBV9gGllOi/6S5YkwauJWKziKnv1bg1w3BNd63Ztno+rjxD2rBYABUIAA5D90nzlLx9yK1dceuSa2exgq7FhdKth+mlxFvnQBXaroJiTLa7Zn10cPKPGY82Ic2xwkKhj5PQfTe+vjEFLccCUNa5Pm457UiFlrrypMqO5TsuFAFgIJeWniuNCa5Wwy3fpZnkoj2WSdq+0Q+tC2FiKe2UmmcMlPZNWQA5BE9ugWgKgpzhtVXcAR3TdxyhQgkTl8Jjy9NsP53eXApZEQCRqHLi22AbXNyJTJnqVWgVtnJD28qWbnV1dbhJhutyov7OQW9VbeZDiiJQNapk2jlh67uUPm236TsPFEMPiVAyrQKdriIAxiwARjXx9XJSJ7ipoaXkw41o0csNbStbOm475HJxxH7D+S5n2+QQ5uMSaLmQwzJKmWeKMavon9g+qWrcmCgCgMBmmgT6YMxFV+pAVL7pKmLaOXRSGmboxE9tS8qacn1nayff+1hXY+x9AKHWT66d6qEIUQ5y1Ikqm7PuQJW9mdx3RQAQcPnrpBytgMgxWFJgG8Apu1pTyra9D9XaQhgv9X+1o1Q/tIzqF98ita8vY9xR+l6IXBZAiCKQwxXla3/b2TxmiKarThQ4tOv8ISZWnyrDFTYaSycHRQAQ8GlQXO2vKlTp6zUH3qgGIocW1/tQl4xvU5Pe/5SgUSdIqrBY21EgscoEh07z25zHBJvwKQI+BSXU6tTb0jyd86GHHiIveEm1TDnav16XWOWHUgpMAeDy8XPp5KAIAAs47oNUX3osXbk6n0IoQ99M7jIXQvrMZNqUoDGP4lWMiQrl4ygT5ruQfjAVkiqsslwuM059zF20OjM0hYNJoz43QmmuUpnRmT7HLeTad5OTziIAEhDjY3b9HnKCper83Aw4VJPmTrRxC4oQq41DqxnXHXtEc+p4MPPgWjgh2nhMv7ksSV+eJsM324FrpYa6z1yb7lLQ660/2sXmqjJpUY/vCIwU2ATABAq8EEJgcnISQogN77rdLk6dOoVut8v6fXl5Gb/wC7+AEydObHino1ar4fDhw6jVas78YuGqkw69XA4NqXRKKbG8vNzXTiJQq9Vw6NCh4f9d9aPawCx/ZWUFZ8+excrKCrrdLk6fPg0hBJmvLb9Op4Pl5WWSHpXX6dOnrW2maAIwzF+18+LiorW9bX1BtXFov6k8lpeX16XT28CX5+TkJB544AFMTk6SbWu2py0/c664oMp57rnncOrUKVy+fDl6rFF5P/300zh69Cj27NkDIQSee+45vOMd78Di4uKG75eXl3H8+HGsrKysq0O328XJkyexuLg4rFPKnHCCkgrqAXAbgF8GcAnAFQB/A+D/ATAN4Gtdaat4xmUBuGDTUmzSm3t4VKqZmwsxFgA3uoJ6n8PsteXBod9lecX0Acdf7bMcXEdpxFgAHNcEp14+SyunBcKxvjjrFHq75T7WnRor6nhn6rRftZfAHBum+yvHnECoCwjA7wM4CeBuAC8E8DwANwJ4JYD/E8DHAdxtS1/FM24BwBnQvo0bVB7UJE9d6KoKMUzU9p5iHtyJHEKj+ntUJy+a+aWs5ZjrFLYyQmi2jcGQ9s29PuXrd87hhK5IJdtY87lvue1ifqfPAZdCwjmaIseYjBEAN9nehXyT8xn3GgDlp6OkemhkBjXJq5hkOcDRRjjanN6eJnOjykjRgnzaai5NleOzDmUoHD9wTo2e0776t7kEZgwD18ERINx7PEzm7UpnjmVqgT62jXIqI8ECYDM+oxQAeuNTgzDFzWAra9Rb6nNoOrbfOGl97o1YDZVDsw4u87PRa3tHKQPccRMitKj62RgXR+v1Qf82RuGx9S+15yQXE+z1Nl4Kz6FP9attfKh+UuGq3IhBTr1yuH4UbAIgahFYCHE5Jt31BH3BSS3QTE5ODhelbAtP3MVVKs3KygprIU7K/sJip9NRllgUqAVetbBny5eqH3cB0fxOCIE9e/bgwIED2LlzJ6TcuNipl6sWyEzaVDqKZinlsA9tfcJdROx2uzh79iwOHDiw4VvXO05ZZtuo7wB4gwyotqnVajhw4ADOnj27Lq2tr7jjltOePlA0CCGwa9cuTE5OrlvY9tHV6/XQbDbRbredc0EIgZ07dzrrpcaQXqYQAnv37iX7TDHRO++8E2fPnh2mM7+lxidnzoQsbkeDkgoDQr/f8vwAgCu2dNwHwDcC+BiAzwJ4BsADvjQ5LACuBpTbF5xCm4lc6wOUFhmz5yHFeuD6SjudjTH56l1I/H1VloRPq41pm5DfqbaznV+fsrvbLEctpl69ejXouG6bu6bZbMpjx46xjw9vNptyampKzszMkPs5zHJt9Q2xAl2eAQo+F90oeA0i1gCuAvgQgNPE8/e2dNwHwC4Arxz8/6sB/AWAb3elySEAbB3tGgBVdFCqK4WKmc6xZjBqwceZCLqZbXOpcHfgcidtLuQ0412wCVelKOjx5krIh9yra7opzUtjXFebUqDaxdeXFJSQq9fr5I5uW9twFT6XoPXNFbPNXALCdjNgrvkYIwAuANhjefesLV3sA+B3Adzh+maUFoD+e+5wMSnpgZSy4ziXVZALOQWJPpFsm4W49+Xa2jqnrznEkkxRBDi0qPZqtVpyZmZGzszMyFarte6aRU45JlM1Bak6M4ljAdjqmGKFuxQJl7DxzZUUCzLEqrAJ0FwKRIwAuB3Absu7V9vSxTwAXoL+HoOvId7dC+A8gPO7d+9OaoQYKOnsOi7ApXlyGJNPK+Vo9zktgBz5VKX5hlpwtgls9otvonMnvqsvbVo6lzmlMMRGoyHvu+8+OT09PezbECFjjosQazVWmIWMIc5cjLW2Y+kPSWs7THBsFsCoHvT3FlwA8P2+bzfDfQD6oHQNUN2cTQ2bHKV2n6usKlxJNteXydBDtUGKXp/G69PoKWuOKptqJxszCGGI1Dit1+vWYwlcUDRSazC+dL7xH8q4be+5bRuDGCuO+10V84RClAAA8DoAvzVYpH0GwEcBvNaVJuQB8HwATwL4Kc73VbqAXKDu+dTdEa7zwrkLbS66qMW80DxCBuk49x+46ORqyy5mwHVV2CwAl5vOFDy+s21ssIVW6nn6xhUlBGNdjLoAUS4kbjqfm0lXlCiBzR0POevrKof7nqI7JCw4N2wCwBoGKoS4E8ApAI8D+CEAP4z+MRCnhBDf5wgsYkH047pOAvislPLfpubHRcxZNYuLi3jwwQexuLg4DLlbXFwcnl1ChW+GhoO66FpZWcETTzyBiYkJZ36uPLj1VuF4u3btig7z0yFl2Nk+LjqpsDjubyrfZ555Zni2jwuq/wCsC02lwvwo2lUIoX7ejJmnmoSdQUjv2toams3msDwdUsphm5w+fXoYKtnpdHDp0iX0ej2Sfr0PY8MKVbqdO3fixhtvZI+LWq2Gt7/97di7d68zBPeuu+7C448/ToYjm2cNUXSpkFTzDCIA3vr6xqfqo0OHDqFWq234vtfrodvt4p577tEVW3IcSynxD//wD+vKGkmopwuUVBgQ+HEALyd+3wfgE7Z03AfAdwGQ6J8z1Bg83+dKM04LQNfATc0mVGul6EjV3n0a5yh8nlT6UA2nKp9rqEWmkOKHtrlAdHdSs9kcutwWFhbk1NSUnJ6etu6ONneaNhqNdYuHVBu46hDS3rZvueOTM75NdxN1THIOehRCtXuzH1T7LywskOGxrrsARglELAJ/LuZdlc84zwLSO951xKsJm0slhjG6XDMcVwhnElJb5kOElTnIYxl6TDpfm8b4YH03ffngEsyqrefn52Wr1SIPDvMJLpO+UF94TJvF5OE625/Kn8Msc7hPfGPC5wpcWlqSCwsL8urVq1bFJ1b5yIkYAXAh5l2VzzgFgN7xoYuktkkZ4mvvdNyLsxzm5vLJmlqpqfXo6Vz55NJyYia3j1lxhGQOOrh5KMboisWPtaByrD1xy/dp4q5zeLgWcgztsd+E1Nm2zqDnqfJrNpvB4bK5ECMA/iuA3yOexwH8rS1dlc+4TwOVMm6R1DYIQ90LqYuzXE3M58oI1ehitPkUl1WIa8DXrjlo57o/KJgaPpeeWMER6k7hWBeuyKkcbhwXXO2g+r7RaKwTwq65YMvDdaKn6kO12Stkw1wuxAiA73Y9tnRVPikCIGZApZr/sTSlDP6UCevSHkOYmgnKHM5Vtxit3kWfr7yU/Dj5+lw63LqF0h5r6egWX07Bl2p56WPZxqB1q9oWqcShw/YNNe59FoAuUEZxI9jImXjKkyIAdDOM26DNZnPk0prSrkOZ7bFjx8ht5Zy03L0LIaDM4Zi8qbQ5LA6b4Iul1adBuvI1x5ypYebSjF00h3yv7w3wadt6/j5XYQg91Ld6/i4Bz9lgGaow+YSPK892uy1nZmaGQinXPIyxAN4IYFr7+9MAPj943mxLV+WTagG4/K1Up4zDAqAYeKirKNbMdFkAOcAxl11mdNX7E8x2zuH+4QotBWrMpWrDIeCOAcq9w3EHqTooBu2K8jFpslkWVPu4LJMUUMqM6eLS6el0rq2XmecnUf3Zbl+7MXCsFgCAPwHwjdrfDQDfAGA3gAVbuiqf1DWAVH9lbtiYQ4oFIGUewVWFG8rFyHxmdBXnMZm0clxyoa4LM22MEMshmLmWktneruNJOIzb5s5Q6Tmbtcw25QhqV5ulCHadXttvpsWm2pJqU59wi6XXRIwA+Izx9we0/3/Klq7Kp8pF4JABGZJfiGZj/j4KrddGU8phaTZm7hJMnLZIcQnY6OBo16ZG59p96qKz00k7ZsPlyvAJGYpu1ccUQ1K+6larFWTB6OVTEXMmrZyQarNtQ+YF1WYxFpVKow7S0+mlrAK9vroQNOl20ZKTJ8UIgL90vPsr27sqn1FEAaUwbh2cQcbRJjmhn7lC/nS6XWatDzEWQCi41hzFKHQ/e2h/2yY7t79TBLpNOzQvEKfGjMmY9fYxo2D0NlQMb3V11cnk9HfUEdSUQDG/DZlTuqUSOldd/WB7x2XGZnk26yVkE2kOr0SMAPh1AD9G/P7jAB61pavyGXUUkA0xzN1lbrsGkzmBKN8w1z2SIpRytN+o+kCfrBQzTHGR2YSB7f+5QTEY3cesNiraol50hrK6uioXFhbWXcBiKhWK4ZlhwDoNpr/dJXQbjcY6LX5paWm4+U3lr+haXV3doEHrbezbQ+GCbfy4BKhN2fJZRCYfUHT73GvjXgPYCeCT6N/a9W8Gz8cBPA2gZktX5ZMjCihF+0zpGKr8EEZBRSRVYQFUiZzlczX33C402zhyuQFy0uzTvkO002azKffv3y8XFhbWMVVdSJgXwFA0cTb/ra6uyvn5ebm0tLSOVnXJT71eH9Z5YWFBfsu3fItcWFhwWsEcJUtKWuC7FB2fC83XJzbYhCslhHKvd0WHgQJ4PYDZwfN63/dVPrktgFCGFNrRMWXZBvW4dhDmANd8ptKk9FdqupC89LFhswY448fF8Hx1MZmXTXtWoPYcKGvCXB9wCQBO+5r1UmUvLS3JmZmZ4T0FUsoNFgD36BWbyyRHODe33X1rQJzFa1MA5Ri/234fAIVQScvtiBQJbqatQhsYNcyJ6bNY1tbW1l1XaAqQUJ/oKNrQNpl1NwXHTeSzAHx56HXVmS7lJnRp0Gabc92MNvrMeik6W62WnJ+fl3Nzc9aQUPUt199vKhpcl1+KgmFG+oQKbwVqrOYYv9teAFQlWW1lxbpkuGZtLC0xbpFcNHDioKW85po4c+bMukgdxfhjLibhaK+ctvd9Q2n8IWfg+GAyeNvBfeZ6ACV0OVaL2Xchyo+rjjqztlkdep1C/P2x4zWlT8xYf9uY8dEW4q4KwbYXAD7TOgdCOyp2wIWUQ1kUqYfZpU4wnwavLAC1OGlOKp/PObZ9ONaXyTSpg/Nsi6U+Gjl069+YlpKtXrb0lLDyMW4fQpidlPRlS1SsPUcAhQorX7oURU6HrW1dFlduHpUkAAC8GMD+wf+/AsBXc9LlfnJbANQ3KR0eOnFiywsppwoLgMvIffn4vrVpfa6JnqIthloALg3crCOn7r5+NWltNpvrInhc5al+p0I+fe0QUo8Ui4EqI6RN1LehmwZtZXAWtzkIEbpVbURNWQT+MQCfUbH/AL71et0J7AOXsYZqV7npis07F01VaytmORzNSv9NnbrIXTDP1Z4u4crpQ9/F4Hp7q/wajQZ7Q5Tv4DMOfBaOem9ekGIDV6DY3pshqCkWgPm9yptzXEUMquIXFFIEQAPAlwGoa79d9qWr4qlaAHC141BtLrVzcw0Ol4CLKaPqQRtavq7lhoRDmppebL10JmtqtJwdoLb+MbVDfUepTQhTbdNqtWS9Xh9eOOPT9F0bomzauc8ysSG2zW1aeqpg0b+pWtHh0pOCFAHw6cG/9cG/zwNwyZeuimcUO4Eps54Ljqln+17/jRsFEgpX2lD3FZV37pj7UHDNaLOuJhOJbQvz6lBbeVKGrQGYv3OUC8riaDab8siRI3JmZmbYRpRVoiyRubk564aoXq/ntFhs4ai2ulF+f8444tbfRIhVPQpFJ3X++ZAiAH4RwE8D+ByAOwD8NoCHfemqeKo8DE7/JvbgsRBGb/teaZFqkpp5VKGN5GDeNu13FAg1/U1BnSs6zNb/NsEQAi7jNS0EM/Jqfn7e6jIxQz7r9fqG+Hu9ji6mpQtV19ighHYOZkiNCZfLpWoG7ENV0T8KKQJgYrAOcAbARwf/F750VTypAoDLoLmamInQDrNpgY1GQ87Nza0TAFztNoauXBPOdQxBlXAxXl/8t0rLWcj1wSXodQYYov0rmAzVrO/q6qo8c+bM0PVihlaqzVRLS0sbwkIpF5NN2XAxUf0bfQy7xganLVIYIVdgjULLd8GmDOYSSqlRQF8B4GWcb6t8qrIAuA1dpZZg00o5W/FdeUkZFzaZWwvOhRBafTtAVTubkTGcOriYlL6TVb3Td7PGTHZqsVOv7/z8vHzxi18sH3vssaHg05m6Sq/y4GxQ87lFfAve5vlCrvDOkB20IaDmUg7B4iszh5K2WSyAuwH8OYC/Hvz9HQB+z5euiqeqNQBuQ8daBhyYg1yfRKG+UTOvmHC22ElXtSblsuLMIwN8rpdOp7/eY0bScOpg669Op7PuLBvqe0p4uFxwHBfS0tKSPHTokFxaWiLroJehu3oo5q2iqPQTQE202205Ozsr5+bmNlgItgVvys3j20Eb6j6j+s42Zlx9Ego9PXfujNLqSBEAFwB8rREFtGUXgWMQyixDzF7KVPctUJuba2L8+1xNcNSw0dJut+WhQ4fk1NTUOo3fx3h96z1coW9aAOfOnZMXL15kXeaumK6tX5Ulow5t49IZo7D0etdulHOFcrbb/Zur5ufnrZu4OLT5LIBGoyGnpqZko9Eg623CnIuu8a/TFRvz77JubO0bKijMdDGwCYAJ+LEqpfw7xnfXDaSUWF5eVsIsGbVaDYcPH0atVmN93+12cerUKXS73eFvQghMTk5CCLHu74mJieHvtVoNd911Fx5//PF1aU2srKzg7NmzWFlZQbfbxenTpyGEGObtgmobAMNyKXo5eahBlrOtXdixYwd+9md/Fnv27Bn+pvdNt9vFyZMncfnyZUgpIYTA3r17h+8pWpeXl3H8+PFhmyjo/SWlRLfbRa1WgxACExMTmJiYwJEjR7C4uLjhexM7d+7EbbfdNuxXk449e/Zgbm4OTz755AY6qP5SUP126dIldDqdYX4uWoQQeO1rX4v3vve9+K7v+i689KUvxU033bThu8nJSfzQD/0Qnn76aSwuLmJ5eRmnTp0CgA1zQUqJlZWVde1qjm99nJt9um/fPuzYsWMDDRRUf+/cuRPLy8tDuq5cubKh3fQ+o9Dr9XDp0iX0ej1reaqN9Xqb7av3pz6XTFpdcyR0DrJBSQX9AXASwA8BuIT+JrD3A/gVX7oqnlwWQNV+ah8o7T7VDWX7JlRzoNomlDb9TJeYM9tdmqtvd7DLjaPS//zP/7w8c+bM0Edv1l0/fsJ17pDSHM19B7obhbMZzbQAqD6waaiutQFVXyqckwPKlWXWnzo+2tS4U07jtI1l35hUbdhoNMh9IZSlYOZH3WEQY7nrfRRz53OsFa8DCS6grwTwMPq7gT8D4CEAL/Clq+LJIQA4jZnTH+iCznBiwjtzDAwqz9i6m75el6/Zl4/OQE3BojNom+vA5vrp9XryzJkzJGPTBYxibGp9wHad39GjR+Xc3FxSFBHHHWLLs9VqyZmZmeFuVUp4t9vXLl4JOU7cXMzW87MdMqfaRBc4iulRawomQ/S5ymxHJ1y9enXDwrvqy6WlJbIevj5S6w/1en3dmHAJDXNtQ41bVwQXZ60qVWGNEgAAbgAw7/pmlE8OAcCR/JwG5w5U1/f6YV6h4Z1qgFcVex/CxCgG5gsJ5fih9+/fPxSOc3Nz6y4N0Sca5T93+VoVY7t69aqVIan7F5S1oTM21Verq6vrQittPmaTsXOEFqdf1tbW1h2l7FIGOBFRNu3abMujR4/K6elpeejQIdlqtTbkY9tBrC5/0a0YU8t2KUJ63maoqi7UTSHVaDSiLRDKKtSFnW2e6wqDfpcH1c56hJat3ikKqZRpFsDvAfha33cxD4DvRT/C6C8BHPV9n8sC4Haiq8F9nU91MmWGHjt2LOjcGj0tFcHCqTM3f67WYX5LaYGh+euaYbvdljMzM+Tl4kp78oW5tttt+eyzz8pz587JZ599dngsgrnfQteozcmsGIpyCynXgop5bzQa69pYTex6vT78Vy2cUkKfGj+2dmu320MhubCw4Fx8XVtb816qoudr7kNRY00JxkajIZ966ik5NTU1DDv1CfRGoyHvu+8+OT09va6dlDBeWloalu8SZDYFTrcA1HhREUqUJWPSZxN4vnq55hVlDdjaPLclb8ImADiLwP8fgMtCiJNCiBPqSV17EELcAOCXAfwvAL4dwNuEEN+emi+j3HULNKELuApUOrVQs7KygsnJSQDA5cuXcfLkSQAbF8dqtRruvvtufOpTn8LKyoq3TCmvLSbVajW8/e1vx759+7Br1y5ywUn9Xy2EhSwgmfXT8/V9W6vVcP/99+P+++8n21XRdujQIWu7T0xMYN++fZiYmECtVsOP/uiPYnZ2drhgBvQXTxcXF8lFSr0sVe+f+ZmfwT333IMHH3wQjzzyCE6ePIkvfelL6xYor1y5gkuXLuHKlSsQQmDHjh34zd/8Tbzvfe/DysoKer0ennnmGfz93/89er0eDh06hJtuuglXrlzBo48+6m3jf/zHf8S5c+dw4MABSCnXLTCrsbmysmLtL9XWAPDJT34S73znO/Ha174WO3fuxC233IK1tbVhXdR4XFxcxIc+9CHUajVMTEyQfann++ijj+LKlSvD9yr44MMf/jA+/vGP44knnsDNN9+M2dlZ/Oqv/io+9rGPodFo4OGHH0an09lAc7fbxW/8xm9ACIE3velNeOKJJ4aL3c888ww+9alPQQiBu+66a7iISi1eqz6/88470ev10Ov1hvW44YYb8PrXvx433HADAODGG2/E2972NtRqNVy5cmU4x6gxbC6w6n/7Fsypd6p9d+7cicOHD2PPnj0kj1FtPjk5iV27dq2bxyMDJRX0B8A91ONLx8j3NgBPan+/E8A7XWlGFQYa63OzWRcuH7hL+4ihSy9TX4xNNSFT/JAcq8sFmw9VuQ/q9Tq5jb7dbg+171arJS9evCgPHjwoL1y4IFut1lArPnbs2NCSMn3JCwsL8sUvfrF8wxveIKenp+Xhw4flLbfcIt/61rcONcxWqyWnp6dlvV7f4PYw/eW6Jq6sDeVCUhogx2Izv2k2m3JqakoePHhwQ2imuX6h2tM85ZJqM/W+1WrJw4cPyyNHjgz91UtLS3J+fl4eOXJE3nPPPXLv3r3yqaeeIl1h1GYs3bJot9vrrIyFhQVy8brT6ci5uTl5+PDhIZ2mZWi6H00r3OUulJJ/g5itT2LX81LnqAvYbBfCAHgzgP+o/f2vAXyA+O5eAOcBnN+9e3cljWOCawJy0oZObBdz5DIG5bvWIzNSB1fKAKXM9hCT14yiUAxI+VZbrdaGia37qmdnZ8koGUWLvpai2k655VZXV+Vjjz0m3/GOd8h6vS6XlpaG/+r0mK4kqu6qLHNxULmwOBefm1Dv1aXrBw8elLfffvsGf7fehnq5FG2tVmtduypalftKucCU26vVasmnnnpKvvKVr5T33XffOgbPEWKrq6uyXq/Lc+fODYWAzb3Z6/Xk/Py8nJqaGq4J6fNLT2u6BfX35i5lar+NrR62uukunRABbo6LKhAtAABcRj8EVH/+GMD7AHyDL70j37cQAuD9rjTj2AgWqq3qWo05mHx5hTBGl784dp0jxd/JoVVPa2sLSvgqBqGOMp6bmxsydSnX3yBmhiMqTd/UPvVydKGi8lK+dfO9bdLbrDy9HHNs2DR0Pa3vaGWTWdl8/brWr2vjqo3UcRg2y9FULNRdvsp6WlpakhcvXpT1et163IUNzWZT3n777fLQoUNyfn5+Q7SQOS9sGrreF3r4LsVs9cV91457qh6UQqPWlJaWltaNOcoaMq0Ec1yY4yYHUgTALwJ4BMDewfMwgF8AMAfgcV96R75jcwGFNG6MBWAbTL68uIxaSklqcbY0XAbsmrTqHfcCEqpddIFli4gxBeaxY8fkY489Jg8ePDjcEaq0O+Wi0E17innpbWUyOUowm1ctKmvCpqHbhDbVD+a3rjGh6KJ25LoUAFf7m+4JVbe5ubkNYbe2+igGrCwlPX3MuF9dXZUf+chH5MGDB4cRTTqDN9vfVndbmRTDNr+zjUeOotTpdOTs7KycmpoatocZtGD2qSlcuQpSLFIEwJ/YfkPCxTDo3yvweQDfhP6FM00AN7vSVLURLHQy+ZDqQ/QNhF6vt4EJhg6eGAtAbSoyj6rmpFc0qbBFPcLENTkXFhbk1NSUfMtb3iI/8pGPyNXV1XXx2bbJpDM6XfvlbFyi6HCFteruFarOlJBV5fvCHm3jMkRZcPWRqpvtqkgKSmNVVpG+lkJFtJlWCtVXyl3XaDTkxYsX5a233irr9fo6GnVtXgkfzjgPccPGMF7d8lJRSDarM9TC59DMQYoAaAK4Rfv7OwE0B/+v+9J78v4+AH8B4K8AvMv3fVUWAGUGpuSdko9Ne7ctntmYtY+pucq0QcWdHzlyxOvvNunQLxnRBYheP92MVvHT9XpdPvXUU/K+++4balSdTn8h8NChQ/LixYtW7dt0AVEan40BU/1A7Tno9XqyXq8PQ0dtfWbSpSy3mAV6G1Nz7Vrm5MllOJSQ1ZUSs3zTctB3iVNhkPV6Xd56663DvqUYqW3/hwlzTPoYfA5mays/VqvPYQ2kCIDXDNYB/nrwXBoIga8C8IO+9Dmf3GsA5kTVN2zEwsecbTSobyltUh/w+kRy0UnlYxtI3AGma17UxRWmGa1oUDtldSZP3Zo1Ozsrb731Vnn48GF59OjR4aFk6mIS/SrDc+fOyVtuuWXdwqHZ3qbrgGpP20KjeeSETetUwkgXar721MeIz+q0KQAUU6vX62Q0Uihs9PvcJTZLSKXVmbZayzH3Tkgp5dWrV+Vjjz0mL1y4MIwE8u3C5So3uRm8D6aCY67PcKyCsVoAww/7J4J+Hff7Kp6cAoDS1LmM0OcqCeks0yVATQzdQtEZgMsfbxMkKRYAxRh1+sx21BcLTX86dXwCZQE0m025tLQk5+bm5MWLF9eFUM7OzsqlpSWrxWWbXIoBnzt3Tk5PT2/YzWoKOps1odOtT2x90lPl6wLc7FsTel+7zvxRY8fmew6BbTz4LGUqnW4t6IJaX5cxy1EhrTMzM+uO4nDNOY7VzRnnIW4aPU8OfdQ6hmoHV5+N2wVUQ/9AuN8f/P3tAN7uS1fFk1MAUJo6t6FDtXwXTHNaN41d2o5+yBflRqhK03FNcrMd9RBJNdHVBKNizW1ot/s7Ow8fPjw87jnEZWGrQ71eJ48aNhmKzoQprdUU4rrgpia3/r3ufzejg8z2UjH4Lk0xhHmZ7cFRAFyCjYK+/mJzqZmMz3c2jgnbXDZp5Ch4Zp/52sYnFHX69Cs2zTHAjRiKRYoA+H0AP6j5/Z+Xsvib8uS8EcylDbsW/NQ3IX5+F4M06eEsSqq/leapx2tT34bQlutbKWn3iAIVxWTLf21tTdbrdXnhwoVhmGEOuBgNNVZ0DVufuLb1BBtDNie2imwyQxNN99Njjz1m3W+QglCFxsW8zT70uYViBBaVjzluKOFrzm3O/PMJDddcNue7uWbiUqT0No5ZJzKRIgA+M/i3rv3W8KWr4qnqTmDzG1cYF8fk85Vrag3mBiaKRnMiuQaITeuy0Wb6ozkhmhy4JrhqR33dxZa/PpltkyGEmegTLaROehmUMHApDZSwMQ9zczGQZrMpjxw5Yo3AioE+lrkuFMpi0WG2p2u9yiVIUuqjW06U+0/f9OdboI2xpGPz0tPpPCKHFZ8iAD4O4BsAXBz8fSuAT/jSVfFUdSew+Y1tMnM1f5sGQFkA5gSwTRhTANgGSK937UJu3ffuolUXRCrunHv8bcwE0aEPep9Vph6q3mpiq7UF14I+VSZHoOv0tdvtoTuI48fV/doqD8XU9U1trrJDIrs4sLW9Lc92+9o1kJyNb2YZtvJDAyZssfouVwml4bu09hTE5qX3se/k2FCkCIBXAvgTAH83+PcvAOzzpaviGfedwPqk92nVse4hrvZgo1lp9EqzpGjlCCROhApFrynAfG1LMR7Ogpop2Hq93rrdqWfOnLEeAUyVw+kzXQjrdHN81sqNZe6Ujd1Yp8Ch2yVYQyw918JtaNm+d9R703I2LWqXqyTUeh0XbN6CVLqTooAGfv+bAewB8HxOmiqeqgQAt5Fd/kwdvglnahwc7YtbltIi1NHD1GR11Te1fHVAm2K8FNOgtDGdCXPiyV3CTx0L4Ttmm2N96KDccDbN0ydkUq0prrD0acZ6O/hcWTHCPEawmXQrxh6yW9dFmy1NTisgFma/js0CAPD9rseWrspn3BZA6gDRGYDt/1woTdtcAFblKEboOnc+RCtTgsXl59bpUoxXRfCokzP1drCFxtk2NPnaicMUOXXlfm8yTnNB2Nw34CvPrJ+rPpwxw9GM9XI4riwXUse0GmPmJjmbAONaxT5auYIyFbH05UCMADg9eJ4A8LcAfnPw/BcAv2VLV+UTKwCqluxcDUTXdlO1frVJSr+v1OY/9O0Q1cvXmbNOm2IOnDhzva5UVJPNAvC1p0sI5ejjFIFguifa7fY6dxqnn7kuDy6tShibxxO4yk+JyjH73WcFm+h01q/j+DZomkySa6GbdFCCsgqeEcLUY4+TsSFlDeAsgF3a37uuNwGQW5rG5K+iRlJ3aaryzB25avJQzNnmu6bo7/XWRxfp/6eYCMU0XLSkwpZ3jj5OyYPS1m0MnZs/16KxMSvT0pqent4QRZSL0enauyvwwGWVmGPJJQAp2kMEgC2fKq0Bl4BNHSs+pAiARePvCfO3UT1VWQAxk0CX0Jz0jUZD3nrrrXJ6eprlDuC4abgHTVHajkubNN1LrigNiiGnapIu2PIepQUQW1ao1cctRykE5oKyaWmpzXc6g4wVSpSw0cMrOe4m39jiCkAfbSHwuc3MMkLLtLW3+XuKh4BCigD4AIAnARxE/zaw34fn3P6qnlEsAnMbu9FokLtIbTAjRXwTzzcQTbq54NSPU7bPjTMuVGG6m/C1O4cGM6LMZ5nZ0Ov1o5/UsRZqoxjFPKgyUhlYyDgwaYnZA5DqGvEpJ772MOufS4D6XGNj2wncT4s3oX8BzPsAvImTpoqn6kVg7oYYKddfHp5SJldTosxfjl+3CtqkHG1YXYjWlZsuiuH42ofjilCL4/oJpzF+fqV5q+sq1S1Z1L0HsXAJEZfmStWZiqIKGbtmlBmHZh2UxRqC0DDnHBiLBQBA2N6FfJPzqfpGMGVKczampHYK18SzvdPDK0cd31ylG4ZCiNaVk4Ze79piu4/h6OAIALMNY+jWlQAV9qvyM+894ORr065d7W2mcX1ra5eQuitLWh0YyNXU9bJSLNZRKj45ESMAPg5gFsBu4/cvA/B6AL8G4KAtfRVPVcdBx/rzUsrhbEO3pZfSfdxD1VoJ149pQyh9VfQThxEohcC3n8BHb640Lu07po3Mb5R2rSLLYiwuFx0urdxcD9D7h9qoRq07pdafg6rnVqqAsiFGALwAwH2D3b9tAH82uA/giwD+A4DvsKWt6kkRAFTHjUqaUxpsSHhgqHsgV71C/ZW6Ky20PqMGxxUwKoVA0eNTAkyfOdeK5OYXsvjvqosOjoBot9vy4sWLw6O5FW3UmT261WNGnoXMKYq2cUGnNdVFZUPqGsDzB+GfX8f5vqonRQBwmGhu94E5OWN397kYq21C5dAgQieIosW3cSfX7kYfHT7tb1yL11S7+hY3bVqyzjhC+kp9z70QJ3ZuuKwW/e/5+flhUIVi5tRdAJ1Oh9zlrdOsTleNPSJDIXcsvg1639oujklFkgDYLE9uC8BEDo3At0M3NNqIok/365quINeiX07Xi0uLtfmdx2VxxSJFw3blF7Oz12c1xPatPl7M+uqMKLVNbXVXv+ubvXzjzrYuo4SAOjXVd3eCr724C86x0NtE3zRYxR6EbS8AOMgxyW1+VDP/mAlFTVpzMTh32KgtPbWg52u/UJdSaB62ndCx/anXN4dQcS0Ou9ogR7vZ4BqTOgOMoU9HSvuZaX1HTNsu7gmhxxSAoQhtE92CCVm456IIgBGAM2hS3UF6HpR7yef2SBlYevrYXZcUQvKyab2dzkbfaS6tNZcFENtmKcqCj15XHbkuEA59se6UGFedEgKukFNf+6SOb6pNfDRQSkwuIWATABMoyIZut4sPfehDqNVqmJjoN62UEsvLy31pO/jm1KlTWFlZweTkJFZWVnDq1Cl0u92ksoUQqNVq6Ha7w7KobyYnJyGEiC5DpZ+cnMQDDzyAycnJFLKDUavVcPjw4WFdVdvVajXcf//9uP/++1Gr1TZ8GwO9vqltByC6zWLqobcN9zuzjhMTE9i3b99wLPd6PVy6dAm9Xi+YvpWVFZw9exYrKysb3plzxKTv9OnTQ5o6nQ46nY51jEsp0e12sWPHDms9Ad58SYFqk507dw7rtry8jOPHj2N5eXlIg97eapydPn0aly9fXvdtZaCkwqBBvhHAbwD4YwA/De0YaAC/Y0tX5XM9WACmNm5qAhxNxKed2FwTuX3sMbTlKickHWdxfJT05GqbUdQh5LuFhQW5f/9+5x0LMT531xzxWXm2vEw3ClW+aw0lh7Wsjt9Q+zM4+yDU/30HOIYCEWGg5wD8BIDvAPB+AJ8E8A2Dd3VbuiqfzSIAQhh0zEDqdOgNaRTDc5mNqYOYoiOnkPG5Bbj0UwzEDB0M8aGr/KiIG5dpnmOnq6tevjxzMzGTFnXRzurq6oa8beOCIxiowwRjd7+HtI8+/nIrT0pYzczMDA/gs81f2wVHo3ABuQRAw/j7RwA8A+B/xOB6yFE/VUcBcb/nLCDFaF/6AKGOpLCV6/s9dlFpbW1teKeAzlxzhU9SURYxk5JiRrrgsjFS18Xm5jtdKHB3uoYyFQ4Dd+Vpvsu5TtMz/Oo+y5ZDr+19iIIVAlMx4ygJZhtw55FNWJlji1I2Usq1IUYAPAPgBcZv+wH8JYCOLV2VT+59ALHf55LOZhk+y8GnyXLvSg3VrKn7d2PyM2mmFsypyJPYfRMcRkpNPMqq4txG5RLoMZYMBV8EjF5OTgFg5her5FDvTYWCkyZWodGVi9BjX6jwzFBazHHnGj9mmhTrJEYA/B8Avpv4/RUAztnSVflsFgugqjKqcBlQ+cZq1jH5hQ5q6rAtl6bOoc9VN19MfowGS33DuaKSQzclfKtyAcbQFwPTUrXtTchVDpWvS7Ca9JljxRQkLppjPAtjsQA247NZ1gBsiDX5c4V85dLKcpabOqj1fQ5cIRLSDz4XRA5tdG1tbXhJPbU/JAQmbc1mU87NzQ03PnHj5VPLzglTw9YZbQ7t1yyHot+16ctmrap3tkvqQ2nOzQ90xFgARwb/vh/ACfOxpeM8AH4JwOcAXALw22AeMZEqAFJikVMYq08L5h5BHUrPZgBl4ocgZvNUSPtUaRnqjE1ZAK1Wi+168EFpn+fOnZMzMzNyaWlpHW2KqS0sLFSuQecAleeoxrqPN7jaclSWfApiBMCBwb/3UI8tHecB8AYAzxv8/z0A3sNJlyoAYrZ26xI+djHVpwWHSvwqBggXMYM7hd4Qd04Kk8i56cn81ryghXvFoQ/qexUyqO4C0N0aCwsL8tixY0EWjo2hucKbubSmCOsc6WLzt7XlKMrOgU3rAkL/splf53w7DgtAaVncA6YoxHSoa8LEnsWfY2BxJ36IGyUWpusgpF9MmprNpty/f79XW85hXfgswpjxpVxBZow8VZZeDqXVm+1JWWGhc8lmycW6CF1txRl7PsHncw2mwEfTpnAByWsM+qUAPgjgKQB/qB5fOu4D4HEAP+J4fy+A8wDO7969O7oBUjUN/ZalUWgdoROGwzxyaG3cdhyFleK6E4GbVrUvFfI6aqS0d4irzcYgdWVHz4cai6H9G3oZjC9/V7vYBJyejoqM04MNqnRx2RQWRWuoS5iDFAHQBPCTAL4TwKvUw0g3D2CReN6offOuwRoA62axUYaBmshlwnIHbuiEqcIC2GyuG5Nxqbj0VAFQheZlc6OEWkSjdPfpTNAX1aIsgNXVVWs9dYRu+kthwK62Nt1yqs8VU7YpeDmtZ5srebNaABd838Q8g7WEpwF8JTfNKMNAuQidoKmmK4WqtJWYxdtQ5saxqijNSU+b6gKqgsmaebq0Uoom129mGo5LkMtclBDgWJPqtjRqw5zpOvEJaxdzzDm+KYFAWT22+qZ4AEZ1vwCFmEXgrx88P4f+zWC7tN++3paO8wD4XvRvGNsRkm4zhoGGMmrfVvYYjIKB5UynMyMus6EWU2OEpYueKsx9igHbBGtMm3c69Pk4NgFknpLJoZ16t7q6OlwU9VkLnU5Hzs3NydnZWWuoqrIkKGHearXkzMzM8LawnH1lCjyXhc1pOxdS3FqpiBEAfw3g84N/zefztnScZ7Cb+FkAjcHzK5x0VQiAUUrlGB9fTlfKKKwKTjp9IuSoX5UTJzdSNF2bhUDFqNsE0NLS0pCZcsug6DddRS6BrNNouozMyDyq/Eajse62sNRd6GY6rjUYEpIcY82FWIah2LRRQCFPFQIg160/HJdJqN9Uyrjt9zbktBRSaMktiDqd9TttY91XowDlzuLC5oYI6Vff8RBcLZW6qD0kskiBo4Ctra3JRqMhW60WWa5yRal5xfGhu5itbey4xqLL5ceFLf8c8zZlDeAFAH4KwG8B+E0A/zuMM4JG9YzTAvAxFZspbn4TGsGjT9jUgZBTW8pxLgoHXJeSfk0gpy9yupBiECMEbS4z2xgO1UJjmZ9Jo55HaKQWhwmaZc3Pzw9DeLkWtqv/Y6wMjgUQU++YvCikCIDHAJwE8LrB80EAZ3zpqnhyCYCYBvUxlRALgDNRqXepAyE2PaXd2c5FidkpGjL4bd/qbevri15vvd83p2XkQ+zYU21O1cvGsEJDl13t4HpnulD0Ml1Hefjqaut3Pc+HH35YtlqtdZZ16O14PobvGvPU9zGIETohSAoD5fw2iieXAIg1z1LdCimMJkQQ5DYluWW7JpULVX3rykMxKdeibCqotkpxDVBn5VDl6Awr13oT1/1hClf1t3nXra7FU3VxuchS9n/YaLYJDn3e207VtfULFxRvya2UpAiADwG4Vfv7FgD/zpeuiieXADC1RX1QVhn6mCLVKS3cpo2lHDWQS/PIZQFUQZ8+4VM33XBOkdTzTqGfwxzNMkLbNmb8Uye46mUqH369Xt8whl1j1XfKaUq8vE84U23tsww46zocpSCHsmkiRQB8FkAPwBcGTw/9uwIuA7jkS5/zqcICMP/v8x378qsK+qD3rUWkxCvnslJiv41lXqHlS7nREqC0P19+riCCqiLMUoWgy0IMWTvR09kEnQoXnZubk3NzcxuihlxM3CckQsdqiOVsMndqXJi0q7qurq5aaeAoBVXwkxQB8GLX40uf80kVAFTH5bYAYjWuXJeGUOXHMuYYhprqyuFaOhTdLm3e1y5UWZy2brVasl6vD2PUOXVM7SMbuC4cF116SCk1FnR3h2vsqjLU4vz8/Hz0vLLNjVBLwKUcmXPfbEtb++m/K2XAdeT3KK1wHSUMVOaTrK4OCmWCSuPiuiJiBkcII6LScX2bHOHBndShAsg3uX3tG8OUfRqqS9MOFTYcmlzHh3DPubFFnan2VTtm1XeuoAhlAYQGPoTCp1Xr4dcua8JVH70M3bLT24tydW0WFAEg84VacczDGAugil3COk2u2G1XupCYdVWnRqNBHqwWI4RTtSaXcEgp07avg5O3aWly3ROcxVFdAPR6/R2sc3Nzw0gcrgAwhbG5uJvip7b1SYxgoGjRxxl1zajPAqDKoCwAs83b7fa6tt4sKALAg1B3Q6dz7Rz22K3hZp62I31dNIQwHVP7cZm5MWWpMnSrJjYvHTF9w2UqNmbMOR4gxaLkCl+TobkigCg6O51rxzCoceoqu9dz334Vq7VTY406eM7mXvHBrBNlAeRai9HzM/P2bbQbF4oA8CBmcId2NkfzMi/1sCF0onC04NTBa7oJUi0tThobo+QyZcr0N9sqxIXGtVZsTFanixMX7hsHMdaG0phD/Pa+PG1uGvO+Z5umHVt+itCywbU5kzMmXH/7BHosigCoAKEMwDag19bW5Pz8vJybm4sSJhzGzRlMZj4xVobPjE49UMsEl1GG0My1jDj0UOVxLL0QqyuUYfryVncjcK1RKf1WRcwO4xwM0CZ4UvK1uclseZs0uP62/T8VRQAw4GNgHLgYkm3gqduoYiIlpMxniZi/x1gELo1UuSMOHTpkPYwsFFT7VnGeegw9FFT7+I4frqJs9d7lutTbkJoLMZp2TkZGIVSIpNLjagPKdWjbx7AZLIAJFAzR7XZx4sQJnDhxAt1uNyqPWq2Gw4cPo1arDfM8deoUut0uhBCYnJyEEGL4vZQSN910E9773vfi277t23D69OngsicnJ/HAAw9gcnISUkosLy/3pbsFy8vLOH78OJaXl9f9TtFHodfr4dKlS+j1ehve6fXX667eve1tb8POnTu9ZXCh06zKW1xcXFduCDjtx6EHwDAfPU/VPvv27cOuXbsghICUEp1OB51Ox1ouhy5X/0kpcfnyZZw8eRJXrlyx5qHacGVlBbt27RrSaL4325aqt4I5J3JC1cvW32abqP44dOjQOnpC+t3Wzt1uF48//jjuvPPOYZ8eP34c3W533fdCiOH8kFKuy8/2/8pASYXN+lwPFgCVJ9c3WpXJa4K7ld5lsXBOUI3xh/rA0fZCLADKSsnRH3o+entTsebqvb5RypWfrx1c9Ng2ventwY2GoUCNLa6GHtPenQ7vQhedPipKJ8UqMMeditRyuTtzrG+EAMUFNHpwzOWcZp6rTOqbkPBOHTmjKkInXuzEsQke2/kuIT51X9mK6Zw7d05OT08P/eoqf8VwVegsJ3oqlLaQcWbLm3OYobq8hTr2weYWtIVUcugOHcvtdlvOzMxsWNvglkMpLjbh7BO0qf0RgiIAxgBbx3E7NFRQhDLmcV5Rp5DTAjChM1hTG9Pf2fLL0T5KAKhY/OnpaWs8fsjF9DGKAzeNzQqgLD/l91Y0+ywAilmqsqi1Ca7lw/091so36fBZivodBqlju1gA16kASO1Qn3ZkIvRymxjNIrfFUiV07XBubm54ExbXTZRD8zK1fBfj0d0ZVWwIDKkP9S0lEHXXEsfdY7rAlHDkbqwM7ZNcEXIuC4BCs9mUU1NTcnZ2lqSVUu50Kyb3PCsCYEzg+j9taV3akYlQjTXW55pjF/SooNpQ97+Pyvcaqm2a1kLooYSc/LkWZYi1EGOR6UqNufaRMmdMKOHv2l9DCZXUvlcWwNLSElmuXiY1p3IoHzqKAMiIXP47TidzXBW5aA3Jj2KkqYO2CgGitGqXhpqD0VPpKTeBz/JQ9M7Pz69zH1DpQ+j2adKhGm5oW+jv1NixWUUp44iqh7473aeN56BBhy0fUxiHbtYLRREADoQ2dsjgSNVmYgaCnia3JuGiK3XQVkGrYgAuDS+1XJsGqU9q3VXC2ShmrgNQ6VNcOpRA4Ox+jm0L2ymjOmLOVuK4iLiWmC5kc0UDcueE6UrLjSIADFAMgKtlb0ZXhw5K84wVILmR07znluPT8FK1XddxyCbDdTEXV35U+thwV5vGyTn/KKQcvS1mZmbkrbfeKhuNhjVt6BqWyjvFkqH4gE9hyA3VH7YDFHOgCAADFAOIDYvU4RsoMfcCp9AQk2+s9mcrK7dFwqmTr5wc7e0qQ01qajHXpnBw24bjVvClp1wiqePGhl6vJ+v1upyenpYXL160atYpFoBNGPraVL3XF945At0sP7addMEb6+bloAgAAzEujByMx9RycgqfGHoocE1mV1l6W6nFPuUCqJLxKtiu/cwJjpXhYrS2PQi+NrLVh9vXnP51WcWxViX3tNsYZhuaRm/rlLOZUhWaTse9kS12LpooAiADOJ0dagHYJlpqx3OZiS0dJZBizGmV1+zsrJybm8si4EIFsc9NwM3TBd19wO3D3Ewlh6AzLRffYj+nTI77S//OdomMz+IKqbtZh9i5lsMCcCkDamNdakRYEQAZkEuT5JjaNu2RixBtkHJDUJpfCGMy65j7iI3Q8n2ullRNTm3iOnbsWDLjrspi4UAfd7b9CHp/unZS63mGuLZs91bkPOTPJpRG1fbmnKDGqIoGO3LkSPIFM0UAOJBrRyyVT+yEyGUB+NK6tGMfY6pCII4iD64FENIHlAXgKtNmLZnfK6bnO1EyF1SdfXsRbIqCqy4+Wns9+o5lvW1jLVrb96Z1mqoIcOFT8JTLLPQmOxuKAHAgJvpAQR9gVD4pEyIXXOW53vkmg+89xUBTNEQXYvLw9UOIFcbJ6+GHH5atVks2m03ZarWcbhRTG9b/tQmNnLAdZeDTxlPHtu+4Ce7d2Qq+dtLXp3Slp+ojxfW5UVVb6tiUAgDAgwAkgJs4329GC0AfYFwLYNTgWhyhGnAMA61KIMZM3BgBlkpfo9GQd9xxh2w0Gs5Jb2r+amxxLnbX84ml29Y2qYLHZ0XqkUB627sihGx15Yxf6r0SOLkVCtv7UVgdm04AAPhGAE8C+OK4BQCFELM1J4NPzY+aYBwmFjLhuRaFMun1qw+rFog+V4yN1liE5uFTElzMwGxbjsWRi1H7fufmaTJW17jTj4nQdw9zLUjb76oOtsi7Tsd/fSoFX99RG/x0eqpUEjejAPgogJcD+MK4BUBOt0SK1ugaJFyYdNsYOHfrua1t1AQxNW5X+VUMdErghWjKqcjtvqKYfEhcukKIsIhFaL4UY/Vp7/pBcfrfHIXE1n6q7VToJbW+YrMMYq0us0xXm6nycx4IuKkEAIC7ARwf/N8pAADcC+A8gPO7d+9OaoQQEyzFnPNtsrGBo72G0mVj4CkRRromR0Vs2KIbuNptCMw8zfK5DDq2/KqsCF2Qpe5MrcrFoPzn6oBCH01cV6tNePk0c+78NpUE9d53GFvK/KSsDh8PyRH+qTByAQBgHsAi8bwRwKcBfK1kCAD9SbUAfCZhDnPPpj1wJmGIkIhlBi4aQ8DRTs3DvjgaUozF5bJAuG0TaqmMyrLgRr646OHSGlonUwC42lBXGnx9HDJPOQqGLx2XOXOsyxDLrNVqydnZ2Q33Y29pCwDAXgArA8b/BQCrAP4GwKQvbaoAyDFJqvg+JK+YQTdq6BMqNIomNfoiRZO3xbZTcAliTmy5TwiHtofJjEPrbjLAkHSKNl3DN9vHp73reYYoJ6GC21cfTr+5BA7Vb7Z86/W6nJqacp6PlAubRgBsIGATrAFIOV4mmmqZVOWGSM0nxtKooh+4zJRyBfjypASxefywzZ3AOaLYx5TVd7b7Ijj9qoSH745oX1vYNOiQcRCiQXPr56NbF2D6jWwcWmz10tOafa3eqZDgKo8rUSgCwIMcHRAbTmorO1UwhJSbi/Gm5lPFRNAZs8/E55ZNhSWaFoDrcDEfU+QKI993nP7wWQ++dqEYWigNnLJ0NxJHSPtg0tVoNOTtt98u5+fnZa/XY81nzhxV7h7XcdhVK6CbVgCEPOM+CsKHlA1lFEIFQygo89l34YiPGVStyfjgolmvG7cNbfVRfb2wsGDNJ9Utw9GafRoxR2PmMnifJlyv16OtEM63nU5HHjt2TC4sLKzbSJerLHXujvLJc8YIt7xQyyY3igCwIGfDuzSGnOVUYQEomKarLRKiSldZSv3a7f4VgL6zU1InLufo4hQBYKtLKrOm3ucQ6p1OZ3jvsl7f0L500U9ZAL4w5BAaQt1LPmvFdC9xNolWJQiKALCAM2BiXDtmHtyBaZqO1GDgfBMLX94cmlKRwjjb7XZy+Fyu9k3NR9VFvzM3VZOsyv1gujnUb6H7Wrj0K8bvOoxO/d+1iYxTpg2ucWq2KVeZqkrBKgLAAs6EiL2pyLyL1jTpKRdMu92WDz30kNPM9WnpMXWO+cZGUypG4TpxIUWLDMnTl7c6j6derztdddz8bEitm8loTaZXxTWHKm/XWoD5jW2ROnbsusap2U/UoX7FAtgEAoBCLgvAt+1dMSulOanBurCwIPfv3y/n5+dJRpaqWVJ0pGqFuTTl1LxyoAot2TWGbMzM/N08F8hGTy6Nnus2UbSYi8BV9iNHEJptrtOjM+9YOjluHZclEFJualsWAUCgakbDYWydzvozT3q9fvTB/Py8nJubi/Yfu+iJ8ZtW2VaxkyIFodoXh+G4wLEAXO4MPQ/zmGBOX8VadJwoJEULN2Q1Z9+66HS1eer6jC1/n3JFWR6ciKZUoV4EAIGq3CchaWwuixwD1IStvpw65XTxmGVzjm7ILZBsk9e2WcnGpEPqqQSIzUXlq5MtD07fxFp0IUzdJSSVpZD70nMXnb6gjFy74UMErdletvONOGWFoAgAAinukxC/5qgETZV5hqblfm9zi/mO0khtU9vktd1G5VpIDGkbZfH5Fql9zCXUanLV3ZY+lklSmm3MvOGCM2ao+scK8xC6fFaJS+nIiSIAMkHXZPQBznEfVDHwR+EuiQHXvOVMEuo7HzN30eRjvJR27aqHbyctpfX5mKrPvZDS92beZvy7iwYOKAZb5VjlWI36N+r/5smcuWnkjGOblZLDQtFRBEBGUAPcNVlcprH5DaezQzWYcQgKNbBtkUwuhJjRUvIZFVdIhy4Qqu9tpnwOC9BkCDmtuUajQZ5JkzpuRjXuOOXojFZX4mwCNpWGFEGv6Es5sddEEQAGcgxOrhaqm78xkRs2hsfRrrk+xtzg0piSt89tFJun0oiXlpZYtOsCnqIjh3WYwwVmQ647sRW4LqZRgjNmuHRS35lrdqbLy5Y31fbKLcS5O4CLIgAMpJq3rk6xmfy2C759+VKDl8s0zAij0LrEokq3F2eNILR8PV91sFqM4AwdV7HWy2bRrjkuPB/zjamLLU3I7xzXEQUqnSkATCvDVpbLTZTzXuIiAAzETiDOhKX8jSmmZswkVL+bwoczAVJQxeDVwZ20MXUzrRaXwLYhtP45XTtVwNeOMZq1UkwUw4y5fzeEodpga2ufNU7Vj5pnHA+B65uc87MIgEyIsQBCtP0YhAqlqujQtZ6YSc0tI9ZM930XwxBseVKBAjb4FIZRjCFXXUKUD05bmdYW5+wmDl026zCkPr5vfApdCtNOtWJdKAJgCyNkUMdq5r3exrNeTKgBzL3FajOAw3BDJqIpBH2bu8zfXK4KKqwyt4ANBdVWnPUYlc52j0FI+ao8dYyK6e7UaQzdX8Ox0DhKBLesquaMTQBMoGAskFJieXm5L4UTIYTA5OQkAFjzVN+srKzg1KlT6Ha7QfR1u1088sgjuP/++7G4uEimqdVqOHz4MPbu3YuJiQlMTk5CCMHKf1xQNNdqteFv3W53XRuptrPVRUe328Xjjz+OAwcOYM+ePQCAgwcPDiecmbeZP1WWohHAMC1FtwkpJTqdDjqdjrOd1Xftdtv7LVVfs62EEDh9+rRzjKl0Qgg88MADw/Gr6OGOjW63ixMnTuDEiRMAgAMHDuDs2bPryl5eXsbx48exvLzMrpee9pFHHsHx48fR7XbJ/vH1HxcpaaNBSYXN+mwlCyCnBqe0lEaj4d1padNWfKY8xwIIwWbRYCnk0uJ0iyiHZWT2l3KhtNttubq6SkaTcEIJ1Xezs7PBYYcumkL83SY93AgydWBeq9Wy5qvfvWt+74Me4rvZrVkXUFxAmws5zT19osfuUE71P1b9/bgRUz99YZCKO09pA5NpLywsbDixNsQdozNu34mVPprMOwH0966duabLjeMe4igSutuHKxT1trmexqkNRQBsYXAnOpWOO9F978el0XMnaKjmF7O4qUPX/ns9+nrB2DbTGbZ6lpaWWNYZZy0oZlFT0VSv162HGFLWkasMjr8+dFE3dq5c7ygCoCAJPkYwLk2Jy6CazaacmpqSMzMzLIabwyLyxYHHtpmZV0jfmG4pqn4xioHrrCQfTbYytor2vRlQBEBBEjbrZMxlAdjcELa/OTCPHwixsFzfU9+6tFrK9cI5EpyDEH99wfhgEwAlCqiAhbFEKDDApWtiYgIvf/nL8cIXvpD81hf5Q0XvAO5Im5WVFZw9exYrKyteOs38beVRtPkib/SIIZXWjNLiRBVRUOkmJyc35fgocEOYg3Yz49WvfrU8f/78uMko2IKQUg7DKykmZnuvQgwBkOGMrjxd+YekDS2rYPtBCHFBSvnqDb8XAVBQEA8p5TC+vGjABZsVNgHwvHEQU1CwVSCEwK5du8ZNRkFBFMoaQEFBQcE2RREABQUFBdsURQAUFBQUbFOMTQAIIWaFEH8uhHhGCPGL46KjoKCgYLtiLIvAQojXAXgjgH1Syn8SQuwcBx0FBQUF2xnjsgB+EsC7pZT/BABSypUx0VFQUFCwbTEuAfBSALcLIT4thPiEEOI1tg+FEPcKIc4LIc5fuXJlhCQWFBQUbG1U5gISQswDmCRevWtQ7r8AcCuA1wB4TAjxzZLYlSal/CCADw7yvCKE+GIkSTcBeC4y7fWKUuftgVLn7YGUOr+Y+nEsO4GFEH+Avgvo44O//wrArVLKylR8IcR5aifcVkap8/ZAqfP2QBV1HpcL6HcAvB4AhBAvBfBl2H7SvKCgoGCsGNdREKcAnBJCLAL4ZwD3UO6fgoKCgoLqMBYBIKX8ZwA/MuJiPzji8jYDSp23B0qdtwey1/m6Og20oKCgoCAfylEQBQUFBdsURQAUFBQUbFNseQEghPiIEKIxeL4ghGho794phPjLwZlE/2qMZGaH7aylrVhnIcTPCSFaWj9/n/Zuy9VXhxDiQSGEFELcpP22JesshDgmhLg06OOnhBAv1N5t1Tr/khDic4N6/7YQ4uu0d+l1pi4K3qoPgH8D4GcH//92AE0AXw7gmwD8FYAbxk1jpnq+DsA8gC8f/L1zK9cZwM8BeJD4fUvWV6vfNwJ4EsAXAdy01esM4Gu0/98P4Fe2QZ3fAOB5g/+/B8B7ctZ5y1sACqJ/V98PAnh08NMbAfyGlPKfpJR/DeAvAXznuOjLDNtZS1u5zhS2en3fB+AIAD2SY8vWWUr537Q/vwrX6r2V6/yUlHJ18OenALxo8P8sdd42AgDA7QC6Usr/PPj7fwDwrPZ+afDbVoDtrKWtXOeZgZl8SgjxLwa/bdn6CiHuBtCSUjaNV1u2zgAghHhYCPEsgB8G8LODn7d0nTUcBvD7g/9nqfOWuBPYde6QlPJ3B/9/G65p/wBA3d593cTExpy1hOu4zp76/nsAx9CvyzH0XX2HcR3XF/DW+afRdw9sSEb8tiXqLKX8XSnluwC8SwjxTgAzAP5vbPE6D755F4BVAL+ukhHfB9d5SwgAKeV+13shxPMAfD+AV2k/L6HvQ1V4EYB2fuqqgavOQoifBPBbsu8s/FMhRA/9g6Su2zr7+lhBCPEfAJwd/Hnd1hew11kIsRd9v2+z79nEiwBcFEJ8J7ZonQl8GMAT6AuALV1nIcQ9AO4C8D2DOQ1kqvN2cQHtB/A5KeWS9tvvAXirEOLLhRDfBOBbAfzpWKjLj98BfdbSlqyzEGKX9uebACwO/r8l6yulvCyl3CmlfImU8iXoM4NXSimXsUXrDABCiG/V/rwbwOcG/9/Kdf5eAHMA7pZS/qP2Kkudt4QFwMBbsd79AynlM0KIxwD8Gfqm1bSUcm0cxFUA21lLW7XOvyiE+A70TeAvAPhxYMv3MYktXud3CyFeBqCHfuTTTwBbvs4fQD/S59zA2vuUlPInctW5HAVRUFBQsE2xXVxABQUFBQUGigAoKCgo2KYoAqCgoKBgm6IIgIKCgoJtiiIACgoKCrYpigAouG4wOM31JuL3u4UQRwf/nxJCXBRCrAoh3uzI6ysGx2TcQLz7kCvtKCGEqAkhPiyE+LwQ4oIQ4mkhxJsG714rhPg7IUR9cCLkHwkh7tLSkm0hhNghhPiDcdSnYHOhCICC6x5Syt+TUr578OffADiI/k5RFw6jv1u6snjxwQ70lPQC/U19fySl/GYp5avQ39PyIu2zP5ZSvkJK+TL0T8j8gBDiewbvyLaQUl4B0BFC/M8p9BVc/ygCoGBTQQjxksH55782ONzto0KIr9Q+mR1otZeFEP9ykOagEOIDACCl/IKU8hL6m4Vc+GEA6pwVIYT4gBDiz4QQTwDYqdHzqoGlcEEI8aTadSyEeM2AvqdF/8z2RY2WM0KIxwE8JYT4qsEBdZ8ZaOpvHHx3wyDdZwb5/DhB4+sB/LOU8lfUD1LKL0op309VSErZAPDz6J+R42uL3xm0QcE2RhEABZsRLwPwQSnlPgD/DcB92rvnpJSvRP8AuAdjMhdCfBmAb5ZSfmHw05sGZe4F8GMA/qfBd88H8H4Abx5o36cAPDxIcxrAT0gpbwNgWhG3ob/7+vXoH9z2h1LK16B/T8MvCSG+CsDbAfzd4PfXAPixwZZ+HTcDuBhYvYsA/iXju/Pon5BbsI1RBEDBZsSzUso/Gfz/PwH4Lu3dbw3+vQDgJZH53wTgv2p/TwF4VEq5JqVsA/jDwe8vA7AH/W34DQD/F4AXif6tTF8tpfzk4DvT3XROSvlfBv9/A4Cjg/QfB/ACALsHv/9vg98/DeAb0D/PxQohxC8LIZpCiM+4PnPloWEFwAu9XxVsaWyXs4AKri+Y55Pof//T4N81xI/f/44+I3aVCfSZ6TMDLf/aj9fuG7DhS0YePyCl/HMjDwFgVkr5pCOfZwD8wJBAKacHi+DnHWleAeCzHvqAfv3/O+O7gi2MYgEUbEbsFkIopvs2AP9vzsyllH8L4AYhhBICf4T+yYo3DHz8rxv8/ucAdihahBDPF0LcPEj/90KIWwffvdVR3JPor1uIQR6v0H7/yYGbCUKIlw5cQzr+EMALRP94b4WvhAVCiH0AfgbALzvoUXgprp2aWrBNUQRAwWbEZwHcI4S4BODr0ff3szBYnF0C8BYAvyqEeMby6VO45lr6bQD/GcDlQVmfAAAp5T8DeDOA9wghmgAaGKwPoO/D/6AQ4mn0tfy/s5RzDMDzAVwaLBQfG/z+H9E/yfHi4PdfhWHRDE5w/V8BfLcQ4q+FEH8K4NfQPx5Y4XYVBoo+479fSrnAaIvXoX+efsE2RjkNtGBTQQjxEgBnpZR7Ki7nFQB+Skr5ryPT3yil/IfB/48C2CWlfCAnjVVCCPFHAN44sGYKtinKGkDBtoSUsi6E+JgQ4obIvQB3iv61hM9D/2z6g1kJrBBCiB0A/m1h/gXFAigoKCjYpihrAAUFBQXbFEUAFBQUFGxTFAFQUFBQsE1RBEBBQUHBNkURAAUFBQXbFP8/FX9mwh3ud+8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -912,7 +1841,18 @@ "cell_type": "code", "execution_count": 66, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "3.5835609436035156" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from os.path import getsize\n", "\n", @@ -971,7 +1911,18 @@ "cell_type": "code", "execution_count": 68, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.7606849670410156" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "getsize('gd1_data.csv') / MB" ] @@ -1000,7 +1951,20 @@ "cell_type": "code", "execution_count": 70, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ",source_id,ra,dec,pmra,pmdec,best_neighbour_multiplicity,number_of_mates,g_mean_psf_mag,i_mean_psf_mag,phi1,phi2,pm_phi1,pm_phi2\n", + "\n", + "0,635860218726658176,138.5187065217173,19.09233926905897,-5.941679495793577,-11.346409129876392,1,0,17.8978004455566,17.5174007415771,-59.247329893833296,-2.016078400820631,-7.527126084640531,1.7487794924176672\n", + "\n", + "1,635674126383965568,138.8428741026386,19.031798198627634,-3.8970011609340207,-12.702779525389634,1,0,19.2873001098633,17.6781005859375,-59.13339098769217,-2.306900745179831,-7.560607655557415,-0.7417999555980248\n", + "\n" + ] + } + ], "source": [ "head('gd1_data.csv')" ] @@ -1034,7 +1998,118 @@ "cell_type": "code", "execution_count": 72, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_magphi1phi2pm_phi1pm_phi2
        0635860218726658176138.51870719.092339-5.941679-11.3464091017.897817.517401-59.247330-2.016078-7.5271261.748779
        1635674126383965568138.84287419.031798-3.897001-12.7027801019.287317.678101-59.133391-2.306901-7.560608-0.741800
        2635535454774983040137.83775218.864007-4.335041-14.4923091016.923816.478100-59.785300-1.594569-9.357536-1.218492
        \n", + "
        " + ], + "text/plain": [ + " source_id ra dec pmra pmdec \\\n", + "0 635860218726658176 138.518707 19.092339 -5.941679 -11.346409 \n", + "1 635674126383965568 138.842874 19.031798 -3.897001 -12.702780 \n", + "2 635535454774983040 137.837752 18.864007 -4.335041 -14.492309 \n", + "\n", + " best_neighbour_multiplicity number_of_mates g_mean_psf_mag \\\n", + "0 1 0 17.8978 \n", + "1 1 0 19.2873 \n", + "2 1 0 16.9238 \n", + "\n", + " i_mean_psf_mag phi1 phi2 pm_phi1 pm_phi2 \n", + "0 17.517401 -59.247330 -2.016078 -7.527126 1.748779 \n", + "1 17.678101 -59.133391 -2.306901 -7.560608 -0.741800 \n", + "2 16.478100 -59.785300 -1.594569 -9.357536 -1.218492 " + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "candidate_df.head(3)" ] @@ -1043,7 +2118,122 @@ "cell_type": "code", "execution_count": 73, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        Unnamed: 0source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_magphi1phi2pm_phi1pm_phi2
        00635860218726658176138.51870719.092339-5.941679-11.3464091017.897817.517401-59.247330-2.016078-7.5271261.748779
        11635674126383965568138.84287419.031798-3.897001-12.7027801019.287317.678101-59.133391-2.306901-7.560608-0.741800
        22635535454774983040137.83775218.864007-4.335041-14.4923091016.923816.478100-59.785300-1.594569-9.357536-1.218492
        \n", + "
        " + ], + "text/plain": [ + " Unnamed: 0 source_id ra dec pmra pmdec \\\n", + "0 0 635860218726658176 138.518707 19.092339 -5.941679 -11.346409 \n", + "1 1 635674126383965568 138.842874 19.031798 -3.897001 -12.702780 \n", + "2 2 635535454774983040 137.837752 18.864007 -4.335041 -14.492309 \n", + "\n", + " best_neighbour_multiplicity number_of_mates g_mean_psf_mag \\\n", + "0 1 0 17.8978 \n", + "1 1 0 19.2873 \n", + "2 1 0 16.9238 \n", + "\n", + " i_mean_psf_mag phi1 phi2 pm_phi1 pm_phi2 \n", + "0 17.517401 -59.247330 -2.016078 -7.527126 1.748779 \n", + "1 17.678101 -59.133391 -2.306901 -7.560608 -0.741800 \n", + "2 16.478100 -59.785300 -1.594569 -9.357536 -1.218492 " + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "read_back_csv.head(3)" ] diff --git a/_sources/06_photo.ipynb b/_sources/06_photo.ipynb index 3200197..0037403 100644 --- a/_sources/06_photo.ipynb +++ b/_sources/06_photo.ipynb @@ -1,5 +1,36 @@ { "cells": [ + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "---\n", + "title: \"Photometry\"\n", + "teaching: 3000\n", + "exercises: 0\n", + "questions:\n", + "\n", + "- \"How do we use Matplotlib to define a polygon and select points that fall inside it?\"\n", + "\n", + "objectives:\n", + "\n", + "- \"Use isochrone data to specify a polygon and determine which points fall inside it.\"\n", + "\n", + "- \"Use Matplotlib features to customize the appearance of figures.\"\n", + "\n", + "keypoints:\n", + "\n", + "- \"Matplotlib provides operations for working with points, polygons, and other geometric entities, so it's not just for making figures.\"\n", + "\n", + "- \"Use Matplotlib options to control the size and aspect ratio of figures to make them easier to interpret.\"\n", + "\n", + "- \"Record every element of the data analysis pipeline that would be needed to replicate the results.\"\n", + "\n", + "---\n", + "\n", + "{% include links.md %}\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -178,7 +209,20 @@ "cell_type": "code", "execution_count": 50, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEOCAYAAACEiBAqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABU6ElEQVR4nO29e5DcV3Un/jkgtWO7IYmCeQSQFZATacAzxhplLZFgQx7rEMoQI1iyC0sBFW92F5ZkN7shmwfZkK0iZHlUoHCCAvaSSlkQxSEKSxwri2RHslCm5WjGZiTjgcVeg4zNzOaHOjbTEpzfH923dfrOfZz7/X77NX0/VV3d/f3ex7nfxzn3PO65xMzIyMjIyJhcPGXYBGRkZGRkDBdZEGRkZGRMOLIgyMjIyJhwZEGQkZGRMeHIgiAjIyNjwpEFQUZGRsaEY2CCgIg+QUSPEdH9jnO/QkRMRM8YFD0ZGRkZGW0MUiO4FcD19kEiej6AnwLw8ABpycjIyMjoYGCCgJnvBrDiOPVBAP8FQF7ZlpGRkTEEbBhm50R0A4CvMfM8EcXK3gTgJgC49NJLd2zbtm0AFPYfzIwnnngCl1xyCWLXYNSxnsZSNZgZRNS9RhdffDGe8pS18zBTLiOjHzhx4sQ3mfky+/jQBAERXQLg1wH8tKY8M38MwMcAYHZ2lhuNRh+p6y9arRZqtZr3/zhjPY2lX/Bdo1arhZMnT+Kqq65Kvob5umdoQEQPuY4PM2rohQB+CMA8EX0VwPMA3EtEzx4iTX2HedlbrVb32Hp6gUNjkWOeZPiuUa1WKywE7GcqIyMFQxMEzHwfMz+Tmbcw8xYAjwC4mpkfHRZNg0DRl33YKMtkRp1ZjQpdRZ6LcX2mMkYHgwwfvQ3AMQA/QkSPENHbBtX3qGHcXtgqmHgRZmX66zeTHnUhpcG4PVMZo4VBRg39PDM/h5k3MvPzmPnj1vktzPzNQdGToYdk4mWFgRaGOTebzb4z6Tyjzph05JXFGSoYIWAz5X4xaMOc6/X6QJh0FgJ+jLOmlKFDFgQZatgz536bVEw/48SkQ9diHBnqejCbZcSRBUGGCoYRSKZcxqSyHhlLiGmOK0PNZrPJQBYEGVGEmFhRISDbGzfm6EOIaY4zQx1HmjPSkAVBRhRVMzHb+TyOM2UXYou6MkPNGFVkQZChQtVMTNr/x3WmLFFWoK0HQZgxvsiCIKMUqmBg4y4EgPL+kvWiFWWMJ7IgyCiMqhjYeplFFxVoGiEyamPNWF/IgmCdYBCMwu6jCrOOXDim7VfWWy8MMiYE1tNYM0YPWRCsA1TNKFxM2ddHWbNOrVbD1NQUFhcXkxi+7XAeVyapoXu9+FEyRhdZEKwDVMkoms0m9u/fv0YYlMmMGUNo9XAsJLPVaqHRaGBubm4shIG9KlsrwLMQyOgnsiBYJ6iKUdTrdezZswf1er10H2UZnbbe7Owsdu7cOfLM0r4ekzTTHwchPcnIgmCEMayXxyUEiqCKSJpmsxmd7ddqtbFgpq7rMQ50l0X2cYw+siAYUUz6yyOZ5vnz54dNTmWIMf71eL8nSfMZV2RBMKIY55dHpo6oQpht3LixCrJGHqnXa5yExjg+x5OELAhGGKPy8qQwHMnMyuxjYNoBgNnZ2TXXYhCpsAcNn/CfhPDZjOEiC4KMIFIZjmFm8n8RpiWZoosxmvbWG0MMjdUuN64aY8bogZh52DQkY3Z2lhuNxrDJmBjEkqnZZUxIp5zJa9ooSlPVbY8a1vv4MgYHIjrBzLP28UHuWfwJInqMiO4Xx36biL5GRCc7n1cOip4MPWKrXl2zVnuCoTEPpWoMGvrWA9b7+DKGj0Gahm4FcL3j+AeZ+arO53MDpCejJKQdX5oparUaZmZmehiYz8RRtWN5lLGex5Yx3hjk5vV3A1gZVH8Zg4HxB9hM304Z4bJpV+VYHgdMgqDLGF+MgrP47US00DEdff+wicnQQTI2m8H5HJkuJm9rEq1Wq9J0EaPCeLNzN2OUMWxBcDOAFwK4CsAZAO/3FSSim4ioQUSNxx9/fEDkZfhgGJsvT5AvZYQd7eMCESXTowmxHLZQyEIgY1QxVEHAzN9g5u8w83cB7AXwo4GyH2PmWWaeveyyywZH5AQjxjg18e52eRkS6jIFmdxBKSYibYbSfphmhi1cMjKqwFAFARE9R/z9OQD3+8pm+NEPZuRinKFZd7PZDDqDDexoH59pKTVhXShDaaxMUWS7f8Z6wcDWERDRbQCuA/AMAN8A8O7O/6sAMICvAvg3zHwm1lZeR3ABhhn1w/5sx+r7+jHlXN8a2prNpjPR3TjEz48CjaNAQ8Z4wLeOIC8oWwdwMYJ+MAe7TV+/kvnbwsHVpikPjJ8dfdhMuJ8TgYz1h6EvKMvoH7RpCarsR5v6IGbmkSkpxs3MMgqmoRyNlFEFskawTjGImWqoD/ucNP+EtIOUVBajgFGjJyMjhKwRTBgGwZxCQsAO2zQLzEIhnbFdykZhBm4jC4GM9YAsCDIqh8s85AsbDTF2+/wwzSCjJHwyMqpGFgQZasRCQyVktJH8L3/XajVMTU15GfuobO04ippIRkaVyIIgQwWXSSfGHDUzfjsnkY1RML3EBFZGxrgjC4IMFULmHoNms6nKOWSfH3VoBFZGxjgjC4J1hH4zqlASuWaziX379uHYsWNBB7BxGEuk5gMaNEPOIZoZ6x1ZEKwT9NOO7WtTppWo1+t4wxvegF27dq3xD8h25ubm0Gg0es4Zs4tvDIOMHPK1a6+hyMhYT8iCYJ2gX7PWEHNeXFzssZ3X6/U1KSls7WDnzp09SeXm5uawsLDQjccP7VnQz3G6+tJkNM3IWA/IC8oyoii6AEyT+sIVVRRrp5+LuDR5kvIisoxxRV5QllEYIWdvSj2jAdhags+U5EK/Z+SabKVZCGSsN2RBkDFQ+DadsdNY22GqKyvtXU6rNg2NeuhqRsYgkAVBRhJk1E/qrFxuOmO3ubCw4HQa12o1bN26FQcOHECz2axsHKbfbO/PyMiCICMCO2Kn0Whgbm4OKysrhZiob5bNzF6zTL1ex549e1Cv10sz75R1Dnb5jIz1iiwIMrxwRezMzs5iZmYGS0tLPTP41HYlTDSRbMuOPqpipzFfJJOPrqwxZEwKsiDI8MKX66der2Nqaqo7Q7fXBYQQ2sfAx6iryjcUEiLavjMy1iOyIMgIwsc0ZVrpUAiyi+GHonFc58owYkOjS9MI9a0Ja83IWC/IgiAjGTJH0OLiImZmZtSz7FgMfmxPghQYbeXYsWM9YashrSR0vgrE2hwlM1SKlpcx3hiYICCiTxDRY0R0v3X8HUT0ABF9kYjeNyh6MspB7i3g2njelLFn2akMtgxTNj6NXbt2dX0QLrpidFcFTTbWUfFJaGkZJZozimNgK4uJ6GUAmgA+ycwv7hx7OYBfB/CzzLxKRM9k5sdibVWxsjivDh0MNKuCi6xQrqLfsqiCrira7Be0tIwSzRlhDH1lMTPfDWDFOvxvAbyXmVc7ZaJCoArkWYwfZSOA7HOhKB1XGddagRiTcUX7SAd2P+63WSVt6HXR4ELqauxhQkvLKNGcUQzD9hH8MIAfJ6LjRHQXEe30FSSim4ioQUSNxx9/vFSnORrEjVSGGSuv2W9A3otms4n9+/dHF47ZPgcXDVLTrWq9gF3m/PnzmJ+fd66KzhONjHHCQJPOEdEWAJ8VpqH7AXwewDsB7ATwKQAv4AhROelcfxCKlJHqv++3q2yz2cTi4qJa8DabzR6fg8vEYyeDK2Jussv6EszF+gUuhL66vjMyRglDNw158AiA27mNvwfwXQDPGDJNEwnD6ELnTBimvcjMLmsidEyY6datW4MMVsIWAi7Tkr1tZNnEcBqNwbeeQTqgJb1ZCGSME4YtCD4D4BUAQEQ/DKAG4JvDJGhSoY3v1zBNk1jOMO2lpSWnmURrWpIzcLmGQQtNWQ3jDq1CtunNZqGMUYD2ORxk+OhtAI4B+BEieoSI3gbgEwBe0DER7QPw5phZKKN/0Mb3x8rJxHL1ej1pAVksth9A0kbytv2+CoTa9K2QzsgYNFKew7wxTcZAEDKXSLt6yFZvHuiYPV+WP3nyZDcdRhXQtpnNQxmjAPs5HFUfQcYEIDQzsc8VsdWHylYpBGT/sTZdvpOMjEFDOxnJgiCj79D4HwCscVb7wkQ1jmetP0Eb/2/TnIJsKsoYdWRBkDE0yMijWDqKmCPWFdkEILiOwSw8k4vCYikgiiAkCLNwyBgFZEGQ0Xe4GGxs1bEvXNPHrKVmYdcNMfdz585hfn6+q2nE0lQX3SVNm5QvI2MYyM7ijIGg7KIvTT2fs1ljTtKUT10cp8GgnMrZeZ0BZGfxusY4zChTF33Z2oOmnm/dQcz5bAsBaS6SCIXCuuiMYZBCIGseGSFkQTDmWI8vuRxT6t7IUgiY/ZVTHcLSXORr327H9lHE+hvkfYtFWmloWE/PV8ZaZEEw5iiaQM/HnKpCUVs6cGFMrVYLBw4cCKaoCLUxOzvbsw8BsJYBu7QNe/8CF3zObABr2vf5NFIWxpVFLIdSLLJqvU02MnqRBcE6QBXhjFW+7DKLaJlIm3q9jj179hReB2Cbfcwxw4B9QsFVz9W2L/eQPO5j+EVSZfQDGm2h6GQjY3yQBcEEwsfEUl92HxMzDLxWq6l3uQrRWuVsVDJgOyQ1tZ+Qr8LVn11mVJirRlsYBToz+occNZRRCFWlWpCROEA4BXZVDCkUdaRJW1FEAxsGI43126/xZowuctRQRqUwJo+YeSPGiBYXFzE1NQXAH+9vhIDcdaws7TYdMVpNOZdJLbW/QUCzOE6jAWUhMBnIggCjExExKnTYCJmAypg3ZN4ejamkH9qr1lkq6fWtfh4l+K6nbywZk42JFwSj8jKPCh02fCmXq0rDYPspfO3UarVoJE8ROmLRO67oIFk3lkZ7mHAJgdCmQhmTi4kXBLGZ07Dp6DdiM2FjunGFYFaxV6/LzBIKudS2qaWj1Wp51wyYPkP3JRSa6uuvKMo+k1kLyPBh4gUBEJ85DYuOqlDUTixNN7KOPG6HSqYwGnsRloxQqcLkpK1vdlQLtVdFv9rnqp8L0IYtBEZJY8q4gGRBQESXEtFT+0HMqGA9zZxCC6jKMG5fFI8vGscF2b8r/l5Lk7Y/Hw1yR7WyCLWjud4hbWjcn8lRNX9mKAQBET2FiP4lEf0vInoMwGkAZ4joi0T0+0R0Rf/JHDzG/YUzkCteXS9ikdWzKXH3sUgb6XhNESKybZlG2kQX3XPPPd3/MfqK2viLMLQiC9W0dctgEMx5PQiz9QqNRnAIwAsB/BqAZzPz85n5mQB+HMAXALyXiN4Ya4SIPkFEj3X2JzbHPkVEJzufrxLRyWLDyDCwzS0GMj+/JkzSwLXwzHzLXP++mbmrnJ3O2ScsQsLGtG1CWI2/AgCmp6e7wkrmGnI5vEM+jpC20Y+9kA0G7XyuMjQ3hiwERhMaQfCTzPweZl5g5u+ag8y8wsx/zsyvBfApRTu3ArheHmDmf8HMVzHzVQD+HMDtetIzXJCM12Vz18bKS8YagstpLNsxxyQtrvUHrrBM+7ir7Xq93nVmm7L1er1r7jH2f5825PNxhMZkFsH1O1dQ1aaUUDvjuLA0ozoMdGUxEW0B8FlmfrF1nAA8DOAVzPxgrJ28slgHn7lFW09TP1RWHrNDFmW9k4l7CNj15+bmQEQ9tn4XXTEa5THfquki10aDkGmszD2U/xuNhtcfUrSfjPFC6ZXFRPQgEd1ORO8mold3mHpV+HEA3wgJASK6iYgaRNR4/PHHK+x6/aIsA9HUD5W1j7li2H12Y40t3Xzv3LlzjRBw5cjRRoe5oqVc/Wr8F5rZfMyhnwpf36FJXxYCk42UqKE/AvAogGUAPwPgfiK6j4h+h4g2lqTj5wHcFirAzB9j5llmnr3ssstKdjfeKGoqKOLYrYqGFCeozRBDfTWbzR6TlykrndplafL5CjShtxpoTFKub0178ljKgrxRRo46qh4pguCNzPzvmPkjzPyLAH4MwOcBfAvAB4oSQEQbANwInZ9h4lHUbuxy0spzgD6qI5UGWwuQx+xyto+i2Wx6HZky3bWpbzaj0dKpGatrcxvttdJeJyO0bN+DvA4nT55Ub9RTJupolBlt1X6TjA6YWfUBcBeAaevY8c73vco2tgC43zp2PYC7tHQwM3bs2MGTjNXV1TW/5TGJs2fPdn8vLy/z8ePH19Q/fvx4t5wsr6UhVs7Xp++YHNPq6iofOXKk57js36bXVy5Ec2gsq6urfPTo0eh19tVNKW+377o38n8/4Lo3VbRZJapub5IAoMEOnpqiEfwbALcQ0ceJ6B1E9BEAJoooOtUgotsAHAPwI0T0CBG9rXPqDYiYhTJ6YdvCfaGM9gYxS0tLzkgXE8WzsrKC/fv3Y2VlRU2Dppxr5uzbD8H2URiTBnBhdm1HDRmYui6/gCZE1TXLlAvOitj9U+G6JmaMZiV3LO13GRSN9ff1G9JEi2I9mLdGDi7p4PsAeCqA1wF4D4BfAvADAC4F8Bsp7ZT9TLpGIJGiEdhlXLNwl9ZQljZfny5ab7nlFueM19DoG69mJmvPts1M33x89TVahY+mQUI7m6+aLqOphJ7BqrWMjGKARyOIho8SEXGkkKZMlcjhozpoQxwltKGRmr5dYaE2XXZfzWbTGbJpwjnNJjZlQyCN7V86UF315cY5sXBW33gHCU3YbZV0hkJtU+jKGAx84aMaQXAY7cVef8nMD4vjNbQdxm8GcIiZb62S4BAmVRBoXya5iEvDwIwzVppBBkFvClNKid+vmj7D5LRrG6rou5+ouu8qr0tGf1FmHcH1AL4D4DYiOkNEi0T0fwA8iHbY5wcHKQQmBfZM3Wfjlr+lzRvQpZOo1WqYnp7G7t27KxUCpu3Y+RQhoGmzKvpMn8YmX0W0igz/rNpunoLYuKtubxSifIbd/6gjKgiY+dvM/FFmfimAzQB+AsBLmPlyZv4FZj7ZbyK1WC832/Xy2EzTdnLOzc3BaEmpGUUXFxe7fQwaVYeqVgHZZ2zhW4xOm/mbNjXbfPr66Rf6ca2LOp+rxKgIo1GGOsVEJ8vouwA8ycxv7ytVEbhMQ6Nio5UooxJr7fsy3txeWKWx0Zels2wbIZOP71w/zEQpdGnKusxz2useOt7vZ3wczDhFaByHcQ0CVWxe/ycA9gN4WafBFxPRJyuirzQGPfOIzS7KzkI045BMx8zqzX/f9fBpG3aZFBQdayj81TUrD9WperanDRd10ekzz9nXOcTsfaGsVTzjofGMOrMs+qyN+riGjRSN4O+Z+UeJ6B+Y+SWdY/cy89V9pdCBYTuLtTOzQc5C5KzU0GZgM1L7mN1ObGy+GXDKWO02QhqBfczQ7xpz1ddb4wg19GjrDdO5WvRalRlPkTZj9YDM3Iugw7N32MdTNIKvE9EPAeBOgwTg4oroGytoZ2aDfFBlX0YImHQLZkGZZjYV0iTMtyvVQSpTcdng7TI+bcYe87Ds0MY340KqL0FT19QvipCmGKvno7msNlh0PFXb/CfBf9AZo5NnpwiCXwKwF8CziegtAPYBuD9YYx1jGEwndk4yylarhdnZWczMzGBhYaHLsLZu3dp1UvraDJmTjKPTt0pZA8OMQuNxveghJtaP+6HZfMa133ERQauBfV1SmJc0qWn6tk2Hoese0x5dKHMdqhb8vufNJ/jGFZ3r9aTrnGaryp8hoh9k5q+iHUr6HwC8AO3cQ2+qjswMH2IzMpMUzbwgrVYL+/fvR6vV6m7SYtI0LC0tYevWrQAubCoTg824NakOAETb9vUvX3RbYPXD9OP6b/wuIWFXq61dd1F2xh+CfV1SZsUpkUoaP5LdtrYdTT0NqnwOXILFRXtZLWZE4PQFaBaU/TGAqwA8C+39ik8CmO98n2Lm71RIpArD9hEMA6FIEteGI64Vuua4WSlrmF1KxlFNFBIArKys4MCBA9izZ49XYMRW7RohZ286E+o3BfaYXP+rjoRKqe/7HzuubVtj96/iGo+rLV/rtxonFF5ZLBr4JQBXAPgigB1oLyZbYebnVUinCpMoCEJIdT66HK5F+3EJCHNs69at2LRpk5cGTf8hZ2wVDmIt002tU8Yp6xJOsRQOWlrtfkLtVumEr4qBjjsjHjaqCB99CzP/+87isrehvavYkcoozCiMGCM16qxUaaXN31Z/5XesH5+99qqrruoRArZt2xUaatNt2i9im9ZCCi/Xf5um0FiqoM+YcKQjvMzis1AoaqzdmC9H03+MjtT2+mGaGXNTTyVIEQTfIqJu2BEznwDww9WTlFEGPoZkOwvNCy6Py98h55mrD1lGRvZIGmzmViayxu63DDTMXR6zx+JjlkXNQjZzNj6ZIkIlVC/UrmvSkAJb2FcltKuODov53yYFKYLgbQA+SkS3ENHbieiPAJzrE10TizIPn2/2DwCLi4s9EUMAugzbzAyBC6GnPudZs9l07thl4HtZ7bY0M9EUk1UZuASV3b+cQbtQ1UxVe/3s30UdsiGzUREmLjUr31qWlHY09JaBb3zaych6ERZqQcDMXwKwG8Dn0HYcnwLwyj7RNZEoq/ras3/7pdy0aVP3oZcvgB2NIjezMVE9skwsZFLDfMqYHCQ0IZ4GKWYv1xjMDNpVt8qZaszUZ7LFxjS4EEIzYJdg1LZp0zGMNQaxtm0UNT32k05XX/0srxYERDQH4GMAngvgEIA/ZeblpN4ygqhqJuwKe/RFPxjGIstdf/31OH36NO666y7s27evKxSM0NCGTLpmrhIhldyn2djlYiGesmyj0VDv+RuCzydg+uk3mLlntp5qOoqZvoBiM2+NZlWknaqQyri1E5p+O69T6S4ioFKihn4QwHTnMwvgZwF8k5kvV/dWESY9akiadrThnKZOo9HA9PR0DwOdm5vDzMwMarUaGo0GmBkzMzPdurVaLRo9YvdpHkYzg3aFuGqcxan9+tBqtXDPPfegVmun3S4SgRPrU465n8zBDrvVXgMJ3zOy3iN7QvduFGiuij5f+dJRQ8z8dWa+g5nfx8yvR1sY/LG2PhF9gogeI6L7xbGriOgLRHSSiBpE9KPa9iYV0hnrYzg+e2ez2QQzd+3dCwsLAICZmZmu7dssPqvValhcXOxqAbFZt8u0IulzTThi7WlmXD6B5ypn9lxw7YAWg8b0VdUMMaZJSQ1Ao435aNUc07QZ0iyqQJWOXB+TDfm9BoXQtSuiVaUgxTS0Wf5n5lMAXpTQ161or0yWeB+A/8bMVwH4rc7/jABs2762jkkLsX379m5dY2Ko1+tdRi8/MrKoSPiiNBHILSGLtBGDtJn7mKLrmmmiRlKYW1mnqLT3axiDS/jY9apgcKFr6/JHaQS0hj6NGavIWGy4/F4x2qrGoExNLqREDX2KiB4hor8joo8S0QcAbNdWZua7AazYhwE8vfP7ewF8PYGedQftjlWhB8XXhmH2p06d6qqNRhMwpgafHR9I2+wmleYQ5HhCM1KbTh8Td9n2Y1EjoRe0DKNw0SZNdlrGIP0TNr1VztB90Uz2NdcIW6mlxuhzRXAVfR5dtLj8Xr6y/UbZiURhuHa0d30AbOl8bwXwc2iHkz5PW9+0AeB+8X87gIcB/F8AXwNweaDuTQAaABqbN2/m9YazZ8/yLbfcwmfPnlXXWV1d7X5CbZjzq6urfPTo0Z7z8pwLy8vLa/pz0dEPyPGsrq7y8ePHvX3J43ZZ+R1qI9Sm73xKe5o+Yv9D7Rw5coSPHj1aqI1QGTnO0PXX3h/7mKbNKp+x2Fg1tFUJzXPmO576/AFosIu/ug46CwL3Oo5do63PbkHwBwBe2/n9egB/q2lnx44d6oGPE1KEwNmzZ/no0aN8+PBhPnLkSLeuSwgcPny4R1gcOXJE9fAsLy/z3r17u4zYMBpbkJRlhi5Ieu1jKfXtYxomkIJ+MooigiuFEcs6sX405TTPb+r1kv2mvB9F+pX99OOZDvVZpYANwScINNlHX09E7wXwNCLaTkRPFac/VkgNuYA3A7i98/vPAKxrZ3FMjdNGshgTwvT0NHbs2NE18Rh7v132wQcf7FHbjT00Zps9deoUtmzZ0jVT7Ny5E9PT01hYWIjahLVjdpWXKrkcT4ra7FPzQ/0WMQOUDfWNtZ1iAvH5jWL2fSBu+ouZqjR+pCLXWAYrFPFTpfRbNBw31nfonH1NtaZLeb4SuKQD987inwvgXwP4JoC/BvAVAPcC+CyA47H6Vltb0KsRnAJwXef3TwA4oWlnHDWCqmbOpv7y8nLPzMU2jUiYmZRUd80MPzYLdGkYsp7WpKAZk88UUNU1K6qCl0W/tCZt3/Lbd973v0hfobaqaj9VOxjWtffdd9e5QTwnqMA09FLxexPaGUgvTah/G4AzaKeleARtH8OPATiBdlrr4wB2aNoaR0HAXA1DO378eNdkc+jQoTWmE9/D5LKbu+zJoTr2OLQmBfkt6fTRpRmPq4/QGMqYFcoglRGHymr6sY+lmpZSrnUVk4BYOy6E/GmjYNPXlq1aUGpQWBAAeHfnezeAp8XKD+IzroKgLCQDNXZ7eU7j0PP919h9tXb3kBAyGoUUQjEmVkZYmTFUPdPSCr/QjDA0K3QJ+FB/oX5SkHJPyghoV5sp8AmBfs+offdsWEjtu4wg2NX5/jSARQBfAvAZAL8DYE+sfj8+kyQIQkylrFovhUpMi3DN3OVxaX4KRa7Iej56UscT0358ZYq+wDHGa1+PUH0XjeZ+2E76Ku99CFrBUlWfgxLQVbXhm4D1q79QvRTTK3MJQbCmAnARgKvRdvT+j9T6VXwmRRC4mK/vnK9+6JyJAAqZTlwvvmFOJhrJ9lX4fA9lx5OC2Ng1WommfVc9+5pqhZ4cv4zuCml//cIwZ7kuDIqeIte2rBAo+x6ntF+Fj+AVAD4O4P0A3tLxEVykrV/lZ1wFQZGHK+UhSAnrNMzQMJlUs4IJX/Ux9RjNg1SxfWML0aJt11dPCoMitnJbUPdTA+hnm1X0PwjB56OjqFZatD/XOd/kSQs5IalCEHwd7YVkrwPwHgB/CWBJW7/KzzgKAp85IFRWLuYy8M3cl5eX1zjQYox8eXnZy6xSZiqhMZWZzVRRp4j6XBU9ZV7eUP0i1zpWrgqGk9Kfr3+NZlqmn5Q2Up6dfjnGZR37GsXeb7vO0aNH2ReZmZJiYomZ/4KZ/4yZf5OZX83MWxPqTzRk7p5YTHOtVsPWrVtx4MABrKxcyMqxsrLS3StAotVqYWlpCTfccINqLUKz2cS+fftw7733dvesLbKM36QVaDQaa5J2aXP/uI77kBqHHksPEaJFC01CPG12VB9NoTxCseOufnxptFPSUqTcA5NKIvbMl9mSs4p0ENq8SS7aNeXKrlWR1yiUmqPZbHb5hKSNOZBp2iUdXB+0tYBfRid19TA/46gRSGhnBWbGbmbcPi3B1WZMA1leXlavMPbR7NMIbLOTjy55rKqZu2/25CurMU9VrU3E7lXRoIAqzRix+51iqjGzUdfzphlbqL8UTVuDKjTYqrVgXxsajcAujwpMQ7ejHTH0KID/BeC/A3idtn6Vn3EXBC6Ym+XLE2T/dtV3vVQhG3XKgy1fNhfDkv2vrq52U19oBEhVL7JNk8Y+HzMFxJheKlP0lXcJxiLt9wtlTUe+57MKk4pWmJRBP8xEg4BNj08QqDemMSCii9FOP/1iAC9m5l9JaqACrLeNaYzKuHnzZtxxxx3Ys2eP18RjzB3m2xw7duwYNmzY0JPu2bRrzD8p9PjMNmbjmp07d/act/uPmVwMbcZc5urPNoloTCzNZrNnrNp6ofKxNqrowz4vrw0Qvz6DQNE+Q/WqHoe8dvZ7UDZthJZW+92039dBQ/ZdemMaA2Z+kpkbzHzrMITAeoTxCTz88MO44YYbvLlcjF3QZR/cuHFjd5cx2a7JnaJFyIZs0vVKYWPKbtiwoad/mffGZc829s7QHgHGF7KysuL0QdiQ6bSL2v5d5X3j8NXR5LSJnb9K7D1tw74+g0JVaZ/LthmCy15fNG216x2IlZHlUlJt9wtaAZSyMc2DRHQ7Eb2biF5NRFvKEJhxAcbZa2burtztc3NzWFhYcDp3DYN2MfwiM9XQxvI24zaCZufOnc7+jTPZMC35ctiOQSPspFNsZWUFt99+O5588smecnYef5P0bGpqCkCxTdNl+65jZZyxGlrsMr79mFMcq76xDAKmn0FvthIS5lpoHeYxIRdLYtfPe5HknHbZi1wfAL8C4KMA3g7gDwE0AdyH9grjjdp2qvhofQSjYqcLwWVzddHtcry62kntV/5PTR9gfAAh+/7q6irfeeedzjUH9pgPHz7Me/fu5TNnzvSc9zmdXT6GMjZs+zr4ymjbkv811zN1XYXWXi2vXxEbdhEb/urqqtdBXCWK+A5S7mPZexCrO+iFgSiahlrgjcz875j5I8z8i2gnjPs8gG8B+EBCOwNBFeFk/YakMWYzNnsK28ftdlL7NZDqs0uVdrVNRGi12pvCHzt2rMckI+sQEaanp9eEQ9rq+44dO/CqV70Kn/3sZ7uaAdBOz+26PjKFsjwm69rjdo3Fvg/avaB9cM3gNaG4LpNGSj+u82ZvamNaSzWTFJ0Zu8yIvrpFETK5uLTGImYaTah3URQ1WWnh4SvuPTld0sH1AXAXgGnr2PHO95pNa/r5WY8agfyvWUlaRRRHSlkfTWYmbzKh2jly5OY2dj27LbOS1qSu0M7GJH2xvEn2+aLXb1AoujGPhO9aFtFwfNerCG1lZsTyfvr6L6sR9LNsKoq8365riwrCR7ejnTL64wDeAeAjAI51zt2vbaeKz3oMH5WIrRwcBvOKqeDmvFytfPTo0e6+CZJmaTKQ5h/b1GTMSSHzmda0Jun0mUlGTRikbNWZiqImotBK9KJ0FEUZc1fV6CcNRZ9TVzmfIFCbhpj5FNo7iN0B4JkAlgC8ioguBbBP207GWtjmlPn5ea8KqzEnDcIcZpsBTIicdHpv27YNBw4cWKOmT09Pd8NPpePYRB2ZcTFzj7NZrlA1vxuNRk+InqHHB2NOsh2Zo2JKlP3X6/VuKHERM0LMpJHans/5WebaFXGg2vfZXhVdNTRt9tPMY49Pe609tDhNQylRQz+A9gbydQB/BeCPmHmZmf+JmX9X205GL1w3loiCD5aMJAkJiqpgM+FQiKkMV920aRNuuOEGbNq0qWvHN9FPsrwvzNXYl5m5J1IGuMDA25Mct03Y0C5h6LDTYmhf5H6GbLqua9GtOjXPQRGm5fPvaJlgStRVSvRWlcLcnpiVZLyVwCX0UtEZw8XOky41wfUBcDeA30J7l7G7ALQAnNbWr/Kz3kxDPtu7y65+9OjRrj1eqoxSbaxSPTVmgOXlZT506NAac01sXLa6HNtQx3xC6artPuzfpv6ZM2e8ppWQPyF0LXw7Y1WFKkwlVbRVNeR9jV0/1zNgnw/VLUvnKG08kwINzagg6dzTmPl3AHyDma8F8PMAbkkWSxlr4JrdHzt2DPv27evOwo0JZHp6GkTUnVXLRHbSnKSNYw/NcI3Jxph6arVaN/pHo4bbsxdX9JNctzA3NwezYtxeJ2FfK/lfzuqNmWhqaqq7QM/Mqu02U+O7jalmEDM/H3zX3Be5E6ozKLRa7XUwAFTrH3yRaxqUvTdFordGAbYmFdBi3KkkXNLB9cEFx/BxABd3ft+VUP8TAB5D7+b1MwCOob0e4a8APF3T1nrTCJjdDiHpNLZn4/as3Ha6mggcc8w1u7JnuK6Zupy9pe53EDvu04Ri5UMahS8iKGWWF5uNFnGyVuGQLnLNq3BiVjHLls9jP6/BekAVjveARlA6aui1aG9a/5/Q3oj+HUjYjwDAy9De2UwKgjkA13Z+vxXAezRtrRdBkKLKLy8vrzGx+MIkz549u2ZjFF8yOztvue9hSmGmmpc1tYwmYkW7yY5hTKG+U8ISQ+dMXyYba9kMq0WYxCgw3tjYU0wxwxRq/Ua/BV1hQYD2zmSXWcfeBOB9AF4Uq2/V22IJgm8B3cR3zwewqGlnPQiCkB3cLnf27NmeWHyfrVVqA6FZqO9h07yAWsaYsvWl/G0fc43DVdZcI5m6OzSO0IrXkNAJIXRdQ/fCLjdqM94qaPE9O+ZcbB2Ij6ZUzaxMptt+3BPNpKVK+ASBxkfwtwDuI6KvE9GdRPQ/0I42ug3tENIyuB/ADZ3fr+sIAyeI6CYiahBR4/HHHy/Z7fChCQkzxwHg8ssvXxM5YGfZNCGYs7OzPWGYLhuny/4aW0kMrF1p6QpzNbTEIprs8MOVlZVuqKgsa1YtSx+Aq60rrrhCZfev1WrBFa+aHDGyvVDkkaHXdS9cdl1g8Ll5YihLixybr32TZM+XX8nVnnaVsPGDSX+UK8JMM4Yq/S2hCKh+9emFSzpw7yz+7QDuBfAutM07vwDgDwAcAvBorL7V1hb0agTbANyJ9kK1dwNY1rSzHjQCG6HZksaU4WtDqw1oy8iZmE8ziY3HPr+6uspnzpzho0eP8p133skHDx7sti9n+vZM3o5Aim1Cc+jQIdVsUDMLM2O3Nw+KmdNCfVVtEtJiENqH5nkIbbwUqheCL9LL7ld7z4ugzH1NrRtrD0U1Amb+CICXou1t/hCAcwDeycwvZ+ZnlxRCp5n5p5l5B9oaxpfLtDeK0Erz0OzU5G2xZ5O+mYQsE8opFKIllG/Hnr3Gsp7a/dsz4XvuuQef+cxnsG3bNuzYsQNf/epXuzPper2OG2+8EUtLS2i1WiCibpvz8/PdaKqQFmK+l5aWorPI2Hk5+5+amsLS0hK2bm3v2GqinjRrE1yL30Kah2zXB+2zVjROvgx810AujjTXMyVmP6atyEV5dn3Trx3ZljKGGGLXN9Zm6JlwaeI+y0IULung+wB4OoDfRdvJ+89S6rJbI3hm5/spAD4J4K2adsZFI+iXvdfMjE1OnhBcfoQqoG1Hag2+2a/JLySjnHy2dFsj8WkHsm9ZxtWWi1bXOFz3U9q0tbbnUD8uyPQbsTY1M8yq4+TL1E/1U6Ui5KtK3Y2uKPqlcRWxAKCEs/jH0V5R/AEAf422GecwgFfG6lrt3Ib2YrRzAB4B8DYA70R7+8svAXgvlPshj4sgYK7+IZAmE9fiLsnsXIywigVRRRiZa+tK+VvmKIq9kLbTzzWumOnA14fv5Qo5GYvc4xSnqPZaa+mo8pnsF/OsArHn3Xcvy5oOR+1aSHrKCILvAvgHAP8FwJZY+UF8xkkQVAkzM5TZOeWLaB58225tt1EWq6urqugcm27XOgQZ6rq8vOzd9N7u3zV2eU5jmy/i2wghlQGMgn+gCowyfanPe8okJHS+n6vPy8AnCDRRQ/8WwFEAPwvgOBEtEtGniOg3iOg1ivoZFcDYwLdv346NGzcCWLsC09hDgQuRJ8bGaCInYttWauzQc3NzOH36dDS6w6bbzpszNTWF+fn5np3XnnzySczPzwfbM/4Je+zGli7H77KXmnLz8/Nqe7lmnPZ2mjFookOMHXtUMer0pWzTCsQT2MV8bDInVuhZGPZqbxsaZ/EfMfPbmflaZn4WgJ8G8D/RNvG8tt8EZrRhHsBNmzZ1HceGqdmO2fe///3dEEygLQRkugofNI5DE3rp2xrTVd7nBDRbXMq2Lr744jV7L7vak84+ewymnD0e+d+1aUqZhF4AcP78+UL1fGGnAw0fLIBh0tfPPmMJ7DQO6ljYsfa6DeraFtm8/hFm/hwz/x4zv6kfRGW4YcfR2xk0gfZDeN1116FWq/Wcu+KKKwCEd1zyMUJXvHwKszQvRmhc5tu397GkxexlbGLJXW25IkLkbM38j0VembY0MJpaaj2736rWFPSb0ZQVnEUhta+i9MfqlR2b7x1KaXuQgjZZEGQMD3a4nZzVyofl2muvRa1Ww/nz59FqtbCwsIAdO3ZEGTLgD0FN3eLPBU24m8+cI8/LsM3FxcWeBUOzs7M9fdnjkdfADmN1IfYySiEpQ3y19VyQjKKMEHAJSnm+CkZTRnCWEVRmm9Qi9GvrlRmbqz95L3ymJ7v/gQlal+Ng1D+T6ixm9qdzsFMirK6udkMyTbSOLyJHGwVRdkGNq89YuFssuieUc8lHgx0FFLsmIcfgkSNHetJdh2jwjTFWXgtXYEBo205tuGsqDUXDWH1lQk79og76FOd/KB+XFq4tUsuE8Rath7JJ50bpM4mCQBulIJmbicAx20WaiCK5elObm6cM3fYLkBqO6RN+8nwoFFBeI1+/9osVi9s35Q4fPtzdktOmK1bX/l8mDDNVuPQz0kfbtjbiTJOsTsvYtXscrK6udu+reW+0/YT69/1Puf/2+5OyjWUWBGMIe/bg28jc90CdPXuWDx48yB/+8Ie7AuDw4cO8d+9efuihh3qEg6stu70y9NttGfqKtG1ezljmVLOJj2T8mhfG1NW+lHLmGFunEZrJFZ3dptbvpxCoqj+tRpaaHNAnBFzPj5kMpIRKl0ERjcB+tmN0ZkEwZrBvqjT/xGZ/8vvgwYP8wQ9+kD/3uc916z744IP8m7/5m11NwdenPF6EScVoLLJQytSzc9K4GLxcdGePpWotSN4n+7jrRS0qBGW7ReqX1Tzstsr2p2XMvnqu+15W8LiODVp4avp0aQNZI1iHsG9qzLThOnf27Fl+6KGH+Oabb+bDhw93ZzcPPvigqk+7bVdZ38On2ZIwdt43W/PR4SrrSt9dZKFR6Jy9YE4el8JIjqmKFd4a+uzzVaxSThEo2jQPLoGd2ncRwTOK0F7fFG2A2S8IctTQCMMX8eKKJpEpdmVo3fz8PB555BG8/vWvx5VXXomlpSVs3rwZR44ccUaUuKKGfHHuoWgiE+YZi46JResAWBPp5KPDR+f+/fu756emprCwsOBcTOaDJrro/Pnza9qs1Wo9acHNMUNn6mInGykRSpJ++7647l1ogZvpWxsC6XsO7MVbdp+hOP5Q36FEf6O8LsPA9865YIdGa5LnOeGSDqP+mRSNoAikfdv+yFloKN2vdpYR0wg09bTt27NqiVjkkM9c42vfR4Mp50tw5+pnUHl4UjQCl6lNo+2VMUelltOYOVz1+xn4MAiEtKRQHfl+h64DskYwGbBj6c0xM2MwqRhMSmagN6W1vVYhNLuKpQLWpB6OLdc3aD/D7jTRRlPyjcOVgthcH1PetC/ptGkFgHPnzuHEiRPOdBLz8/NrYsVd6zZC6yRc/zWQ2pVrtm+voLZptLUz1yy9aFy7tryt4aRCQ1/VMflVaReua2xff9d9lddKLpZMvk8u6TDqn6wRrIXG2SVnCcZXsLy83BNdw6yz7VcVA51Sx9ZqZDvLy8u8d+/entTcsaRyPru5HJ8dNmhmXK7ZvyvDaix+XBNf7qPfPm7vi5wyg0/RDAaBUZ6521p27N3TtBdrR5aJ+VZCQHYWr1+kOJbkTl9GCJhvF7MNtZXafxWwXwypCp85cybIUH0mIFdZ41C+5ZZburun2Qv3YhFCpl2XMJH9+iKgXGMPMQzbJBhqy9e+7/ihQ4dGIqNmigmsX/0fPXq0K/B99yL1fdAKa4Oi9wLACc6mofWJWMZEg2azife///1YWVkBEaFWq4GZUa/Xe/Y5trMnSnOHz9SQqooWVal9eYOmpqbw8MMPr1Gx7T7PnTvnbFPS32w2sbCwgFqthuuvvx5f+cpXekxZ9Xq927dtCqrVal3zlaFL7ozWbDa711amy7DNMj6Edo6TTmmzo5nmnrjuqX3+9OnTOHHixEAcrWXSfRR1Bmvr2KldfPci9X0IXXu7jCYQIwB2HcyCYJ3AF3lh29Kvu+46bNq0CdPT06jVati+ffuaKBv5IDebzW7UTSh/jTZawZfjpshDLaOoJHOWbc3NzXVpX1hYWOMLsPs3kVbnzp1Dq9XCl7/8ZWzbtg27d+/uefFdAtPUlxuwG7oMrXZmylimSoNms9lNse2DfR9dY0yJEDKo1+t44xvfiF27dvU9702IHo1PqYgPI1WAaHJAaXIJFaVL63tKQRYE6wj2i9Bqrd3r9tprrwUAnDhxAnfffTc+/elP49FHH+0y+Lm5ORw7dgwAuiGXZs9XF/PzOWhdsENCbeegL0FabMwhZ+b58+dx4sQJAMDs7Cx27969hiYp7ABg586d2LVrF1qtFs6fP4/Tp087x+HqT2oNzWZzjQZgyph25H8fpHBKuS6yfqvV3hvafh60zNPc/34jJYAA6BXgrvNaVJ3crYpQ1di18KVYL9JnFgTrDPZDY2bAdiTGhg0bcPXVV+Pyyy/HAw88gKmpKQDAzMwMNm7ciJWVFezbtw/Hjh3raVPOYI2gMRE0MROVPC+ZoW92rYEUIq5IkyuvvLJ7DexoIcnQ9+zZg1qt1p11t1otHDhwAFdeeWWPycW0Y2b8PtOA2QOi0Wh0r62Lbt/M3W5v586d2LFjh4pZSTNRq9XquT/btm1zRgj5+h4GtAzZvvdFTUJFIpRc7UgU1U5saLUfqSVErgU5j7ocB/34AHg+gEMATgH4IoB3do5vAnAQwIOd7++PtZWdxXqE4sfNXsKHDh3qyd8jt47UOOc0zteQU61sQi+XY1Ru6ykjicw5F13GiW5HCPnG54pekpD1YwnhYpEooWvqc1qac8aJrHF2+45XBW1bqeXK0Bi7jxoaRmW9SKjM6uoqA1jkYUYNAXgOgKs7v5+G9ob1UwDeB+BdnePvAvB7sbayICgHOzrIPDhnzpzplrEXTWnDCs1/O5Gd70WxE8i5aE0Zl+zPxchjL61LMLjyFblSf2to89F76NChnqgfVx1bmJn+XTSGxiTr232lhrOmQNvWoBmrfR9jgiF0L4vSkEJrqHysLQD38jAFwZqOgb8E8FMAHgDwHL4gLB6I1c2CIA0+RiiPS4YsGaDREGS4nDlvJ3WTM3zZlk2DTZdvs/oUhmCX1WYA1bQrP/b+Dpr2fGOTM3Wzd4RvPDY9rtTjRcbm6qsqjaAMwxxkOfv+moy8Ws0shQ5X3yl5p2LjiE1yfBrBUHwERLQFwEsAHAfwLGY+AwCd72d66txERA0iajz++OMDo3XcEVodKsMll5aWcMMNN3RX4e7cuRPbtm3DwsICvvCFL+D8+fPd7SGNExXoXZErHaXG5u7bKcxetetydKXYWaWNNBZep3HO2mWNE/3EiRPdnd9M+KirvZAD3YyTmdFqtXDixAkwczAk19SZm5sDgJ5cReZeFnFQunw7Wl+N7ai1z/kiXjTQhr1qxqspZ/wE5tndtGmT89lzPZNlHLUp/jHXexSjzT4P4EnnSZd06OcHQB3ACQA3dv7/o3X+/8XayBpBGjSzCNciJ/N96NAhPnPmDO/du7frN7DNGLI9o0mY/1qTRdHUzK6ZbdX2XmlmkvmajGbkMtu4ZunSlGO0LXm9QuNypdX21Qn9Nv/tFeWufkMz4JhprKxpR6sJVtFWFbSmarCx+1O07RAwCrmGiGgjgD8H8KfMfHvn8DeI6Dmd888B8NggaZoEaGYRcna5detWnD59uhv/bhafXXHFFd0wQrkAzYaJ2TcznFBcuISMv5dthWBrFmX2+rXbkMfNwjVD58rKCu677z48+eSTaDQaaDQa3fUK9jjshUAyI+ni4iKmp6d78iGZmaUM9TT3SEYDueAKyXXNiGu1WnctiWvWLuuEZsahdRBF4vnlb81svyoNo4roHq0GazS7Y8eOOcNebQ3DFXJdNQYmCIiIAHwcwClm/oA4dQDAmzu/34y27yBjQLDVzVarvYpUHn/iiSdw6tSpnvBFWw02/2u1Gnbv3o3p6WkAevOOUZFthhhjBq4wOs2YXcd8i9xsATM1NdW9Rtdcc013vDLhlyvFtGSesi37mho6zKI227SnvS5bt27tmhzssN5Wq52Mz9DtEgZy5bavD/ltX89UE1UVCe5c7WqOVQVJr29dTK3WTk++YcMG73n5vJWZ3GgxSI3gpQDeBOAVRHSy83klgPcC+CkiehBt5/F7B0jTREPGmBuY2b5ZSdtsNvG1r30N27dv7zK3Rx99FLfeeiuOHTuGlZWVbjtyBruwsIB77rmnR6C4hIf8bRhSKjNIeUFCtmsZhx2KTTcM9NJLL+32HdorwjVe839+fr6rTci0FLVaDRs2bHDakH1ai9320tJSVxjIscuxhWb02lXPNszCRDMuDVxj0l5HH3zCvexCr1ifANYsUrRRr9e7aSpc0FyHSuGyF436J/sIqoG09fvO2+sJzp49yx/+8If5gx/8ID/00EM90UG2LdxOgmaSdZn27GiJmC1U62vQjFtzPuZ7kBFUmjbNugZXG/K33Zf0S/jaTtlTQHMNXO1oy8pd4EK59bW+Dlf7Wl9ILANtWdh9ayPXUtqtsjxy9tEMFzQMzGZOZstL5rUb3PicXEZYyNBSmfU0RpP9krkcqTadZV54F00uxhYTphK2cNT0LQVoUcaZctxVrkwmTXmt5BhiAj9lrUcoPXMVDtaiQqlMfyl0+yYqLmRBkFEKNvNj5p6IF8PkXStu7Rz5cm2CPUOO9W2+fTn9be0j5WWSv10M316kViRCycWwDHzx+0WFWkhTsBcT+uiUdJSBS2AWEWy+skW0Dm3bZfdALnrvUsr5nkm7HZ8goPa58cLs7CzHMjFmVA9jXzU27EajgSeeeAIbNmzA+fPnsbS0hNe85jV4+OGHu3ZtO0vi3NwcZmZmsLi4iK1btwaTmcmoI5dNXPoegAs5fswubOaYdlx23L6BOef6bxywLlpcWFlZwaZNm9b4ZYxN2ay/MD4T2Y8WNj2+67SwsIBz5851s4qasiZiiZkxMzPT9Q3J89LxrKUtFgdfFK77F+o7lY4ydMt3JrZHdRG6Go1GTy4s+c7Id9CcJ6ITzDxrt5WTzmWoYUeSzM7O4mUvexl2796Na665Btu3b+8uxDGORqA3yZsJRTV5+H0IhS/aL7VxstoOOq0QsKN3DFxhe3YUh6TTpIp2bWMJtIXAhz70ITz66KMA0FNWLsJrNBqYn5/vJqtLcW66om9M3yZk0QjL6elpbNiwwRliOjs72xXYMprJOJpXVlaCYy2KIm1JR7+rLVc4Zqwfe5+JonA5+13Q0mWfNxN5eb/t0F4VXGrCqH+yaWi40JgTJIwJ6c477/QmfHNBJr+TdULqr8tJGRqHb1GUPZaYTVtjbmFu53OS6TpcDkUzhqLJ0FwmJ7PT2sGDB3tMZsZns7y87Nz43GXKkXmOtGYrjYmljBkm5h9IsePLNBNVQWMG0z6vruc0lo7EnEP2EWT0GyG7+ZkzZ/jmm2+OMkobrqR0voffZshamuU389qVwXZZHzR9rq6udvMKuWg15w8ePMh79+5V5UzyMQDbn7O6emGLUgnjtLe3X9Qyr5TVtL7jthB1CeKQz8f1zJXxD7hyDVXhK7GRcv1sGkK0+d5FnyDIpqEMANUsspEqujQZtFotPPDAA3jhC18IQGfqMOc3bdrU3RjH1ZdR22VsvG9Bl49m+W1s8y5TUchEINdBaMY1Pz8PAE6zwYYNG3DNNdfgVa96VY993m5Hrj+Q19qYgO6+++7uDm3GZDAzM9NdDGewadOmNdsv+kwVtskpZeFXKGZemhzN2OxnqL0mdS3MmLX9aWDnGurX+oPUhXM+elzPaspCtCwIMip9yIVTquf4xo0bsWvXrjV2S2OLlS+8TY9vtbF8KRYWFnoWT6XCXqylFSQGmhfaCIsdO3Z0ma69aKtWa29CAwB33HFH135vM0Wgrc3Lfs01mZmZwY4dO3DJJZdg+/btWFhY6Nmchh0BIjbD8C1a0ySSS3mOzP22F+RJwWSum0mJ4YJPSJSBfT1ckwMNyrxXvrqa5y2JVpeaMOqfbBqqHlWrvRp7+5kzZ3pS/tphoL52XWqwbdbQjkljm64SKX1IH4Fcf2DnzTdlZLJAeV57XTQ26qJ2bF9ZX5hvqpmn6Ji0KPqMaPwevvNFkzCGaEH2EWT0CzFbsutFNw/5Qw891NNGTAiEnGL2f80mHmWzlbpQZkWpget6yXMu2qUT12YiMZpiDLyoL0DDCEP2bQ18QqMM8045HitTRIi5/EdahNoDcIKzjyCjamjMSi61vV6vY+vWrfj85z+/Jqe/ycroywcUMlfIcFJNXLnLjlpGlY/lmHHR4Tpmj8nONWTnRrLNK4uLi9i8eXPPGoUYTSGbuG2Csum310XI36kmjBS7ue/+2/e3SPhtzAQWoyVUz3e95DGXiVLjg4rk0nIvHHNJh1H/ZI1gtBCbdftm7MxrZ6pnz57lvXv38pkzZ9R5amI5bVw0FU1voEFKxJI2r1KIHld/MkpLlkkZs0s7sDWR0J4EsZm1T1tMhcaslBpJJk1tobZjtPjKFNVUNOlMbLOhBHLUUEa/EJp1m9mJWYRkHJ8m4kWuAjaawY033thdnWy3Y/+3Z35aekM59MumP3Y5ml0zuRgdof/yWsi9H8yx06dP49vf/nbPjD40Www5QuViMgA9WpRcuKRxLNvHyzh5QxEzrvG5orp896VWa6fxPnDgAFZWVoJjcvUdK1P0GWvz8jBarVaSVtpteNw+WSMYH8jdvGSmUnvz9+XlZb755pu7uYfMx5ekzbRjOxurmNGnIlUD8fkkNL4KV3I9e1Ztrq9ZPBZzwrtmzHYfcme1orZ713GNFlGV5mZrjObahTQFez1BP2f8Gmj9WakawdCZepFPFgTjAfuFcCVVk5+DBw+uiXTxRZQY4WGvbnWpxSlmlqqdoXad1dVVPnToUA9DlUIvxJjMile56tjUt7calQxcMy7XAqoiGV1TGKarrksg+YRPqK+QELIz6RbN7BpCFUKgCgFol/MJgmwayugLXCYbl8nEOHYB4JJLLukxYQDoxtQbGPPR1q1b8elPf7pnUZXZEGVhYaFnfYIxS8n/Gietb1w+J2oItgNVbhNpxmrn97Eh8xHNz8/3mIf279+PlZWVNfQsLi521yKYsvZ4Wq32Jjb2bmlyxzW50Cx2bUKb+oTqGhOOHBuwNp+OvI6uexa7j3I8u3btwszMTJIzWzMujYkohJjTV0OTvf4kCJd0GPVP1ghGGymzFjnLdOUhskMiTdoFM5tzpb62nZd2moqysz9XKGcKNM7NGI12+m45o7dn9YcOHVrjgI+Z3lx0SY3EV86n/fnaNn1LulzpqkPPlK0Rumj3tVFkhp3i4C9jIipLk+taIpuGMgaJFCFgL4SSL7M8d/bs2W6eHtmHKzmYzRBScxz5mLU0XxjTVQoz1fQXYyCmX7PTm/1x+SPkNZRjcPkXZD0bcrc6Zva2ofVJuO55aNy+47HoJXM89Kxo4HuOQsxY02YMsXY0z9/q6ggsKAPwfACHAJwC8EUA7+wcf13n/3cBzGrayoJg/CFfHOkwdjEy8y0ZmmTwrlmq3Ydhnr4ZY6iePbNybbQjmZGrnVBfvplqCMvLy7x3714+ePBgj507JhTs9l0M3GSLdTF4Oznd0aNHnZsLaWbxvv5DwsCHmLZnnp0yWUVDWUmL0CzbLLIVqbaMvBfwLCgbpCB4DoCrO7+fBuBLAKYAbAfwIwAOZ0EwObBfnFhki4xa8TlKXZAMwjijQ8JGtinNUrYQkb/NOV86a/ltX4MyK5ulo1y+7JpUHTZNPsFrl7dnxCl9+M652gvF/dtt+sbrEjL2+pQYjTZ8WUlTI4tk3X5pBLYwDmkEA3MWM/MZZr638/tsRzN4LjOfYuYHBkVHxvAhHaQGdtIxu/zi4iJmZmYwOzvbk5Hz5MmTPY456RhrNps9G6ssLS3B7GxnVuXaDk7jcD5x4kR3c5h6vd6TAM124plYeOPslDB1XE67siubzXWwM4G6rmUont9ejWvakjSZTXdM1lQ5hiKJz3yOZdNeKO7ftepabuLj2mjHXJtnP/vZzhXUoZh7SYOdlVS2HVqrEboGmvUEIeez631qtVo9z3rsPg3Fxg9gC4CHATxdHDuMrBFMDFJnwDEbqMtsYc8qbZu6y7wj+/LR6Iotl2YSn0lFM2ZDl8Z84dIAQuVcM0bXb1d9uTe1prwGMS3E107IWa3VhmS90PXTJH4LXdcYUstqQ2mlpiqBYfsIuh0CdQAnANxoHQ8KAgA3AWgAaGzevFl98TLGDz6ThSZ5Wcw04GIUGjutqx0XjTGBFTvGzEm2bDuFRGpfLrgYm3bRXuw+heg7cuSI098Qat9nDolBk5YkZqJy0dNPrK6ujRazz8f8YADu5WELAgAbAfwNgP/oOJc1gow1M3WN7VWbrjfUTkqWR5vxF7E52+O067hs0b42bOEWspeHmAhz3N7u+9b0YY/bhisCydWeTyCFNB/fpCBGb4r9PjZJCY1JA98sX56PaZ5D1wgAEIBPAviQ53wWBBnMrDdZmPOuWVu/Z2ghhqsVSuYTysmfYt6w66Ukh5PnXQ5119gM7a6016FxpGgLLjpCJirXf18ElK/9UN8hul3Xy9V/jKHH+ilz3icIqH2u/yCiHwPwdwDuQztUFAD+K4CLAHwYwGUA/hHASWb+56G2Zmdn2ThCMiYbrsRjxnmWktjLOEqlw9Q+F/rtK+/rS9LnS55mnMzGUW2S9PnaM47tEN2+vmQCwND47HbuueceEBE2bNiA7du3o16vr7kXc3NzICLMzs6qUjm7aDbHms0m9u3bhyuuuAK7du1aMxYfza4x22N30eG75rF25D2WMONpNBqYnZ1dQ5fdRpnkhy4Q0QlmnrWPDzJq6AgzEzNPM/NVnc/nmPkvmPl5zHwRMz8rJgQyMgxktISMptCkfXClJHClRvBF15h+XNCkm7C3p/TVMRFJsT0FXFE2PobuGqOpa0fDuGiX13337t3dNA333XffmuioWq299aZWCBja5L2waXrDG97QFQK+rLQ2zb7+ZGSZTYfvnK8te88IO1pHjscIAUmvvMcp0Ucx5BQTGesePjt9rE7IVOAq7/pdNWJ9+xYyaVbxxsaQOi6XKc5e4+GC1mTmM/eFxqK9Bqaca12K3U4oI2tsbLJcrI6vPw1SfDIY9jqCjIx+QObFT1Gj7Tz4cnbu6sP1O4bUpGuh2axZB6Fdi+A6H4ImoZz87dI+5KzfleROM8uV91PuVWHO+fZNcMXSy3r2uhEAa9al2Od9s3xgrVZlzhuYdRdzc3Nd7ca+HqaOvC6SFs2z5lpX4Rp7tC2XdBj1T9YIMsqi385kbSSThDZapgxCkTUpsfShmbe910RRbcQ1k4/9d33bZUNah13PF8Lruzd223KmH9IoyjiONY5vcx7DTjFR5ScLgoxRRojJpLbRD4GljbiRdKRs8xjqw9d+iLGmtJ8ihGJbbGrzALkEoEYIlWX+mkWCsvzRo0cZwCl28NSBRQ1ViRw1lDHqqCLiox9RI7JtbWRVVXT4IrOMI94VcRMyA/m2xzTRUyG6XVFSrrZDUUOyrKHfOJiNCckXqeXqV+tMl9FmIUd4o9EAM/ekR7nooovuZeYddvnsI8jI6AOqYJz9EgKmba1fpSohEIrMkhFRdu6eEO32eeNbCNEto3PsMtIPALg3U3KVNb4Ek+cJQM94XXXN2GO+E1ckUkxwGJ+N2dhJlHfO/LMgyMiYUNgzUg1SwxltJlav19ck5jM7r9mOUjt016Y9FNobguzPLm/+a9tyBSvYDu+YZgOgR/gAWLPDnryO2rGaPufm5tBoNEx5cpXNgiAjY8KhZSypse0+JjY/Py8ZEwD3zNsXpeOL1bfXUvgiaUx/Nn1y9p4ahRabnfuOy37kGgqpsbgy2qZocyY6qoNLXOWyjyAjI0PtB0j1F7jKxxbkhdqx/QCacsZm71pgF2rXR3tsoaJsr8jqdgA9ZquUldk2pM+iVquBiLKPICMjww0tgykrBEwbZfwOob0KpHnGNs2Y2bZrdbgsb9qKrTJ3jVeuHpYzeY22Za9XMdrJzp07MT09HWzHptN8Lyws2Gsvso8gIyNjMEg1I2naMkzcZRpx9SeZvImiMZsNuRzNNiP2bUAD+BeUyWgjYwJzOcgNzSHaZf/z8/M4duyYc4MjMzbbV9JqtcDMttB1+giyaSgjI6MvqDL81Rd6mtKfy+HqMzGVpcO0bbSfWJiqlnZDv31OJic0QsDs3Cad4hdddNEpZu51OiBrBBkZGX1CleGvcnZftD9pknI5l2NIidaxzUx2O65II19ZSbvPZyGFAIA1QkCEsD7pojkLgoyMjIlEKLTTBds0FNrnGLgwU5cmHV9WVVPejo5y+SkMZFvSLASsXU8hxpl9BBkZGRkSqVqLL1TVwGbIO3fuxK5du7oLu8xM3edEt7UEO9pJMn7TVqvVXpDXarV6VjSnjDP7CDIyMjIKwJ7Vu9JLxOqU6dMON5VmIBcNrVYLF1100XA3psnIyMhYT7CZrJzthxaRVdWn/G2bgQD3pj3wRA1tKEVVRkZGRkbSat9B0ALAaWZC9hFkZGRk9A+jIAQkUvwEAxMERPR8IjpERKeI6ItE9M7O8d8notNEtEBEf0FE3zcomjIyMjIyBqsRnAfwn5h5O4BrAPx7IpoCcBDAi5l5GsCXAPzaAGnKyMjImHgMTBAw8xlmvrfz+yyAUwCey8x3MvP5TrEvAHjeoGjKyMjIyBiSs5iItgB4CYDj1qm3AviUp85NAG7q/F0lovv7RmB/8AwA3xw2EQkYN3qBTPMgMG70AuNHcz/pvdx1cODrCIioDuAuAP+dmW8Xx38dwCyAGzlCFBE1XLGwo4xxo3nc6AUyzYPAuNELjB/Nw6B3oBoBEW0E8OcA/tQSAm8G8CoAPxETAhkZGRkZ1WJggoCICMDHAZxi5g+I49cD+FUA1zLzE4OiJyMjIyOjjUFqBC8F8CYA9xHRyc6x/wrgDwBcBOBgW1bgC8z8i5G2PtYvIvuIcaN53OgFMs2DwLjRC4wfzQOndyxzDWVkZGRkVIe8sjgjIyNjwpEFQUZGRsaEY6QFARFdT0QPENESEb3LcZ6I6A865xeI6Oph0CnoidH7rzp0LhDRPUQ0Mww6LZqCNItyO4noO0S0Z5D0OeiI0ktE1xHRyU4qk7sGTaODnthz8b1E9FdENN+h+S3DoFPQ8wkiesy3VmfU3rsOTTGaR/HdC9IsyvX/3WPmkfwAeCqALwN4AYAagHkAU1aZVwL4a7RTq14D4PiI07sbwPd3fv/MMOnV0izKfR7A5wDsGWV6AXwfgEUAmzv/nznq1xjtoInf6/y+DMAKgNoQaX4ZgKsB3O85PzLvXQLNI/XuaWgWz0/f371R1gh+FMASM3+FmVsA9gF4tVXm1QA+yW18AcD3EdFzBk1oB1F6mfkeZv5/nb+jkE5Dc40B4B1or/94bJDEOaCh918CuJ2ZHwYAZh4HmhnA0zoh1nW0BcF5DAnMfHeHBh9G6b0DEKd5BN89zXUGBvTujbIgeC6A/yv+P9I5llpmUEil5W1oz6qGiSjNRPRcAD8H4A8HSJcPmmv8wwC+n4gOE9EJIvrXA6PODQ3NHwGwHcDXAdwH4J3M/N3BkFcIo/TeFcEovHtRDPLdG+WNaVw76dixrpoyg4KaFiJ6OdoP44/1laI4NDR/CMCvMvN3Ous8hgkNvRsA7ADwEwAuBnCMiL7AzF/qN3EeaGj+5wBOAngFgBeivabm75j5W32mrShG6b1Lwgi9exp8CAN690ZZEDwC4Pni//PQnjGllhkUVLQQ0TSAPwbwM8y8PCDafNDQPAtgX+dBfAaAVxLReWb+zEAo7IX2mfgmM/8TgH8iorsBzKCd4nwY0ND8FgDv5bZReImI/g+AbQD+fjAkJmOU3js1Ruzd02Bw796wHSYBJ8kGAF8B8EO44GR7kVXmZ9HrtPr7Ead3M4AlALuHfX21NFvlb8VwncWaa7wdwP/ulL0EwP1o73cxyjTfDOC3O7+fBeBrAJ4x5GdjC/yO15F57xJoHql3T0OzVa6v797IagTMfJ6I3g7gb9D2nH+Cmb9IRL/YOf+HaHvSX4n2DX4C7ZnVKNP7WwB+AMBHO1L+PA8xK6KS5pGBhl5mPkVEdwBYAPBdAH/MzENLWa68xu8BcCsR3Yc2c/1VZh5a2mQiug3AdQCeQUSPAHg3gI3A6L13BgqaR+rdA1Q0D46WjrTJyMjIyJhQjHLUUEZGRkbGAJAFQUZGRsaEIwuCjIyMjAlHFgQZGRkZE44sCDIyMjImHFkQZGRkZEw4siDIyMjImHBkQZAxMSCi1xHR8U5O+iUienek/E8S0Z8k9nExEd1FRE8tR+2adncT0X8johoR3U1EI7sYNGP8kAVBxkSAiN4M4FcBvJaZpwFchfaq2BBm0E4JoWnfMP63op0G+zsFSXWC22mU383tVNb/G8C/qLL9jMlGFgQZ6x5E9HQAHwDwemZ+BACYucnMv09E2zoz7C8S0d8S0TNE1RkAJ31liOjPiOgDRHQIwK916vwrAH8p+t7eqbtARP+ZiJYKjuHPiMhkzPxMp5+MjEqQBUHGJODn0N6R6ivyIBFdhPamH+9k5hcBOAjgl0WRGbT3B/CVuRJAk5lfzsy/S0Q1AC9g5q922t8A4E87dafR3qWsaN6jF3doQaeNnQXbychYgywIMiYBL0I737+N1wA4wsz/0Pm/COCZAEBEGwE8He2kYGvKENH3ANgE4HdEe88A8I/i/40A5q26PaamjoZxv+PzalHmewBsZOb/DwA6ZqcWET1NfwkyMvzIDqeMScA/ob1JjY0pXJhlA+0Z/qI4dypQ5kVoaxlyS8knAXyP+D+NXgH0YgB3SAKY+ScV9L9I0GVwEYBvK+pmZESRNYKMScDnALyOiJ4FtE1CRPQLaOf9n+ocewGANwH4ZKfODNpM3FfmSrRTXXfB7T1xn9qZwQPAMtpbZ4KIrgLwRiidzxZ6+iKiHwDwODOfK9BWRsYaZEGQse7BzHMAfhvA33Ry/p9E2wT0JwB+sHNsH4C38oWdq0zEkK/MGkHQwZ24sA3inwCYJaI5tKOJvmr7KZSw+3o52sItI6MS5P0IMjIqBBG9BMB/ZOY3EVGdmZud4/8ZwPcy829U0MftAH6NmR8o21ZGBpA1goyMStFxDB/qrCv45U7I6Um0tyR8T9n2O5FJn8lCIKNKZI0gIyMjY8KRNYKMjIyMCUcWBBkZGRkTjiwIMjIyMiYcWRBkZGRkTDiyIMjIyMiYcGRBkJGRkTHhyIIgIyMjY8Lx/wNvg0E5ZUxTPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_cmd(candidate_df)" ] @@ -255,7 +299,15 @@ "cell_type": "code", "execution_count": 53, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading in: MIST_iso_5fd2532653c27.iso.cmd\n" + ] + } + ], "source": [ "import read_mist_models\n", "\n", @@ -274,7 +326,18 @@ "cell_type": "code", "execution_count": 54, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "read_mist_models.ISOCMD" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "type(iso)" ] @@ -290,7 +353,18 @@ "cell_type": "code", "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "list" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "type(iso.isocmds)" ] @@ -306,7 +380,18 @@ "cell_type": "code", "execution_count": 56, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "len(iso.isocmds)" ] @@ -338,7 +423,18 @@ "cell_type": "code", "execution_count": 58, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.ndarray" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "type(iso_array)" ] @@ -354,7 +450,18 @@ "cell_type": "code", "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "dtype([('EEP', '= 0) & (iso_array['phase'] < 3)\n", "phase_mask.sum()" @@ -396,7 +525,18 @@ "cell_type": "code", "execution_count": 62, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "354" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "main_sequence = iso_array[phase_mask]\n", "len(main_sequence)" @@ -417,7 +557,18 @@ "cell_type": "code", "execution_count": 63, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "14.4604730134524" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import astropy.coordinates as coord\n", "import astropy.units as u\n", @@ -455,7 +606,20 @@ "cell_type": "code", "execution_count": 65, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEOCAYAAACEiBAqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABmxklEQVR4nO19eXxVxdn/d1guIBEwioLKogSECAQhqKBV1C5WrVvR2lbrq7Z207a/bthF7avtW6t1abVuuNdWailVjIqgEpEQMAkmAQJIkEUkbLkCuSy5CXl+f9w7l7mTmXPmnHvukmS+n8/93HvPmfPMM3POmWeeZZ5hRAQLCwsLi66LbtlmwMLCwsIiu7CCwMLCwqKLwwoCCwsLiy4OKwgsLCwsujisILCwsLDo4rCCwMLCwqKLI2OCgDH2DGNsB2NspeLczxljxBg7JlP8WFhYWFjEkEmN4DkAF8oHGWNDAHwBwOYM8mJhYWFhEUfGBAERLQIQVpx6EMAvAdiVbRYWFhZZQI9sVs4YuxTAp0RUwxhzK3szgJsBoG/fvpNGjx6dAQ7TDyLC/v37ccQRR8CtD3IdnaktQYOIwBhL9FGfPn3QrVv7eRgv15HQRoTGSBS7Is1obSP07tEdxxwZwoA+IXSwpnR6VFVV7SKigfLxrAkCxtgRAH4D4Ism5YnoSQBPAkBxcTFVVlamkbv0IhqNIhQKaf93ZHSmtqQLuj6KRqOorq7GhAkTPPdhNvo90tyKF8o3Yuaij8H2t+Crowbiu+ecjKkjju5wwqyrgDG2SXU8mxrBCAAnAeDawIkAljPGTieibVnkK61QveydaeB0aosVEjHo+iAUCvkWAn4FiB80HWzBC+WbMPP9j7F7fwumnTIQP75gJE4belTa67ZID7ImCIhoBYBj+X/G2EYAxUS0K1s8ZQJ+X/ZsI9VBPNODlVfkipDyw0Omnqn90VY8t2QjnlwUEwDnnTIQP/78KEwYMiCt9VqkHxkTBIyxlwBMA3AMY2wLgDuJ6OlM1Z9LyIUBxwuCGMT9DFZ8cE73IJ3rQsoEae2f1jbMqtiMh9+tx86mZpx3ykD85POjUGQFQKcB64hpqDu6j6AjIlODslhfdXU1CgsLUVdXl/ZBOlc0glzCoTbCq9Wf4sG3P8In4QM4fXg+fnnhKSgenp9t1ix8gjFWRUTF8vGsRg1ZdBxwISDPnNM1gIoaRCZm6lYIHAYRYUHddtw//yOs3d6EMYOOxLM3TMa0UQOtE7iTwgoCC2PIg3K6TSod0ZnuJBg7gtax9ONG/GneGny4eTdOOqYvHrxqHAa3NmDiSQOsEOjEsILAwgh8EBMHslRm6x1hUPQKJ8GY636I+h1NuOfNNXh79Q4M6tcbf7xyHKZPOhE9u3dDNDooJ3m2CA5WEFi4wmkQ8ysERHqdRSg4CcZcjRbb0XQQD729Dv+q+AR9enbHL750Cm46+yT07tk9USbXeLYIHlYQWLgi6EFMpJfrM2UvcBNoudS+/dFWzFy0AU8sWo9oaxuuPWMofnTBSByd1yvbrFlkAVYQWBgh6EFMtP93FiGQikDLlFZ0qI0wu+oT3D//I+xoasaFpw7CLy88BScPzEt73Ra5CysILFJCEANYRxcCQOr+kkxoRUvW78Jdr9VhzbYmnDZ0AB795kQbCmoBwAoCixQQ1ADmV5jkmm8hnYvtUmnrJ+H9+L83VuPNldtwwoA+eOQbp+HicYNtFJBFAnaHsk6CaDSa8TqCMOtwYRKJRIzrFa/LRLszATch4Ket+5pb8ee31uKCB95D6dqd+NkXRuGdn52LS8Yfb4WARRKsIOgECHpQVA3KujqCMAvx1cNeBnzZ4dxRBYIJ314Fblsb4b8fbsH595fikYX1uHjcYLz783Nx6wUjk6KBLCw4bIqJToKgzCSRSASzZ8/G9OnTkZeX7ED0U4fpNX4XYkWjUVRWVoKIMHny5JwyFakgtiUdvoHaLbtx59xV+HDzbhSd2B93fOVUTBpms4JaxKBLMWEFgUU7RCKRdkLAD4KKpHETJnxW3RGEQLpSdIT3RXHfW2sxq2Izju7bC7d9eTSuPO0EdOuWGyagXPPndFXoBIE1DeUwsmXuCEIIAMFE0kQiEVRUVDj2hbziOVeh6o9U+T7URnhx6Sacf38pXq78BDeddRIW/vxcTJ90Yk4Jgc7kz+mMsFFDOYrOtNDKD/igCQCtra3ZZSZAuN1LLzPn6k9247evrMDKT/fizJPzcddlYzHquCODYDNQdJa1Ip0ZViPIUXTkl4fP/IKaCfbs2TMItnIepv3VcqgN989fiysfLcPOpmb89eun4aXvnJmTQoCjIz7HXQlWEOQwcuXl8TKQi4OZHNnjtc7q6moAQHFxsTKJmx/+chk64S+2r35HBFc+ugQPv1uPc4b0wpu3TMWlRTYc1CI1WEFg4Qivs3rRpMP/+9EMxEFRl8mTh412Jvuzrq3Nzc14fslGXPzX97Hls/14/NqJePLb5yC/3xFZ4tSiM8FGDVm4wsRuLYdFVlZWJs3kg44akevLFe0pHWgIR/CrV+tQunYnpp0yEPd+dTyO7dc722xZdEBkPWqIMfYMY2wHY2ylcOx3jLFPGWPV8c9FmeLHwhxuoZuqWbk8wTAxD3nVGEz46+hY9NFOfOXRpViyvhF3XXYqnv2fyVYIWASOTJqGngNwoeL4g0Q0If55I4P8WKQI0Y4v2rZDoRCKioqSBmidCSdox3Iuw0vbiAh/W1iPbz3zAfL79sTcW87Ct6YMt74Ai7QgY4KAiBYBCGeqPovMgPsD5EFfThmhcoQG5VjuCPAi6JpbD+FXc1bgvrfW4rIJx+PVH56N0YP6ZYBLi66KXHAW38IYq42bjuxa+A4CcWCTBzhd9ItqkJc1iWg06rqAzCufuQDTcOAdew/i608uxayKT3DLeQV48OoJ6BOy+YEs0otsC4LHAIwAMAFAA4D7dQUZYzczxioZY5U7d+7MEHsWOvCBLS8vz3gLS1W0jwp+zB8mCeuyLRTchED1J7vxlUcWY3VDEx795kT8/Eun5MzqYIvOjawKAiLaTkSHiKgNwEwApzuUfZKIiomoeODAgZljsgvDbeB0infXlRdDQlWmoFAolIg2Mh24TTOUpsMHERS92VVbcPUT5ejZvRvm/GAqLho3OBC6FhYmyKogYIyJT/sVAFbqylrokY6ZrmrgdJp1RyIRR2cwhxztozMteRm43TaNdyvjF0EIl9ZDbbjrtTr8/N81mDT0KMy95WyMGWz9ARaZRcbWETDGXgIwDcAxALYDuDP+fwIAArARwHeJqMGNll1HcBjpzElkmjJZzhIqfpvwpst22hHWB6TC454DLbjln8vx/rpd+J+pw/Gbi8egZ3fvc7OO0E8WuQGbhroTQzUQpGNwkGnq6hUHf7dU0mJ5oOOtCfDbzx/vjODbL1Tik/B+3H3ZWFxz+lDf9Xfl5IQW3pD1BWUW6YNTCoZ01WNil+f/nfgRU1J0tHUEfvt58bpduPxvZdi9vwUv3nSGbyEAdOzkhBa5A6sRdFJkwlzgVId8TjT/OGkHQaZpzgS88ENE+PvSTfjf1+pQMDAPT11fjCH5NleQReZgNYIuhkwMlk5CQA7b5AvMnEI6dcJBRzcXYNrPLYfa8NtXVuKOV1fhvFMG4j8/mGqFgEXOwAoCi8ChMg/pwkadBnb5fDbNIKkIn937o/jW0x/gH8s24/vTRuCJ64qR18vuCWWRO7CCwMIYbqGhIsRoI/G/+DsUCqGwsFA7sKdja0c/SEUT2fLZfkx/vBxVmz7DA1cXYcaFo9HdLhKzyDFYQWBhBJVJx21wNJnxyzmJZOSCP8BNYOmwauseXPnoEmzfexDP33g6rpx4Ypo4tLBIDVYQWBjBydzDEYlEjHIOyedzHSYCS8b763bia08sRfduDLO/NxVTRhydRg4tLFKDFQSdCOl2ojolkYtEIpg1axbKy8sdHcDcYSzCaz6gTDuLvfom5izfghuercCJR/XBf39wFk4ZlLt7CVtYAFYQdBqkM6JGR1NMK5GXl4drrrkGU6ZMaecfEOlUVFSgsrIy6Rw3u+jakMnIIR1deQ2FDo+/tx4/fbkGp5+Uj5e/NwWD+ttNZCxyH1YQdBKkK6LGaXCuq6tLsp3n5eW1S0khaweTJ09OSipXUVGB2traRDy+054F6Wynqi6TjKYcRIT756/FPW+uwSXjB+O5G05Hv949A+fRwiIdsAvKLFzhdwGYSeoLVVSRG510LiozyZMk109EuLtkNZ4p24CvFQ/B/105zkYGWeQk7IIyC99wcvZ6uY5rALKWoDMlqZBu05BJtlLx2KE2wq//uwLPlG3A/0wdjj9aIWDRAWEFgUVGodt0Rk5jLYephsOxXU6DNg2lErraeqgNP3u5Gi99ENtN7M6vFNqNZCw6JKwgsPAEMerH66xc3HRGpllbW6t0GodCIRQUFGDu3LmIRCKBtYPX61e7aD3Uhh/N+hCvVG/FL750Cn7+pVPsxvIWHRZWEFg4Qo7YqaysREVFBcLhsK9BVDfLJiKtWSYvLw/Tp09HXl5eyqYhL+sc5PIcbW2EX86uxRsrtuG3F4/BD88r8MWLhUWuwAoCCy1UETvFxcUoKipCfX190gzeK10RPJpIpCVHHwWx05gukknHl6o8EeHOuasw58NP8dMvjMK3P3eyZz4sLHINVhBYaKHL9ZOXl4fCwsLEDF1eF+AEp30MdAN1UPmGnISIad0Pvb0Of1+6Cd8952Tcer7VBCw6B6wgsHCEbtAU00o7hSCrBnynaBzVuVQcw5xHlabhVLcqrPXFpZvwl3fW4apJJ+K2L4+2PgGLTgMrCCw8Q8wRVFdXh6KiIuNZttsaALc9CbyAayvl5eVJYatOWonu/LyV23DHqytx/uhj8ccrx/kWAm5tyXT6DCd40fIsOjYyJggYY88wxnYwxlZKx29ljK1ljK1ijN2bKX4sUoO4t4Bq43leRp5le3X0puIc5j6NKVOmJHwQKr7c+P5gQxg/mvUhioYMwN++MRE9fGwwb9KWdK+R8AJTXnKJZwv/yNjKYsbYOQAiAF4gorHxY+cB+A2Ai4momTF2LBHtcKMVxMridK5OtTgMk1XBflYoB1GvCdZua8JVjy/BMUf2wuzvTUV+39RopqOt6YIpL7nEs4Uzsr6ymIgWAQhLh78P4B4iao6XcRUCQcDOYvRINQJIPucUpaMqo1or4DbIqKJ9RAe23/u9K9KMG5+rQO+e3fHCjae3EwIVFRUJflU8qOB1NXY2YcpLLvFs4Q/Z9hGMAvA5xtgyxth7jLHJuoKMsZsZY5WMscqdO3emVGk6E5d1ZHgdMN3Km+w3IN6LSCSC2bNnuy4ck30OuiRwqjpMaALAwZZD+O7fq9C4rxlPXV+ME486ol2Z1tZW1NTUKFdF24mGRUdCRpPOMcaGAygRTEMrAbwL4McAJgP4F4CTyYUpm3QuPXBKACeq/7rfqrKRSAR1dXXGgjcSiST5HFQmHjkZnB9zk1xWpElE+NnLNZjz4af42zcm4uLxg7X1AodDX1XfFha5hKybhjTYAmAOxfABgDYAx2SZpy4JPtA5neNhmPIiM7ksj9DhYaYFBQXaQVGeNctCQGVakreNdEsM5wZZY3i0dH1iwdjF4wcry/BjogNa5NcKAYuOhGwLglcAnA8AjLFRAEIAdmWToa4K0/h+EzMLD63kg3Z9fb3STGJqWhJn4OIaBlOYlOV1zFu5Dfe9tRaXFh3fbsGY0ypkmV9rFrLIBZg+h5kMH30JQDmAUxhjWxhjNwF4BsDJcRPRLADXu5mFLNIH0/h+t3JiYrm8vDxPC8jcYvsBeNpIXrbfO6F+RwQ/e7kaRUMG4N7p440zpcr8Wh+BRS7Ay3NoN6axyAiczCWiXV23GQwvB8CxjFy+uro6kQ7DCfuaW3H538rQuC+K1390Ngb375MSTWsessgFyM9hrvoILLoAnGYm8jm3Ad5LxBc3TbkJASLCr+aswPqdETz89dO0QkCs342myndiYZFpmE5GrCCwSDtM/A8A2jmrdWGiJo5nU39CNBrFC+WbMLdmK372xVMweWg/o/Z4gTUVWeQ6rCCwyBrEyCO3dBRujlhVZBMAx3UM0WgU/5y/FHeX1OGC0cfipilDXFNA+IGTILTCwSIXYAWBRdqhmhG7rTrWhWvqZteiZiFfqxvc9x5owcOVERzVm+GeKwrRu3cv1zTVfndJM03KZ2GRDVhBYJF26AZ1E3+ACS0RsvlIV56IcOfra7EnCjz6zWIM7N83UV4XDVRYWOg5dNUJmVzhboWNhROsIOgE6AgvuddFX7L2YHKdbt2Bqvy/K7fg9doG/PSLozB5xMCkuiorK5Uzf6dQWBWfbshUZJHVPCzcYAVBB0dnfMnFNnndG1kUAnx/ZfnaNVs/w51zV2HqiKPxvXNGtKPR0tKCmpoarWYg8qniWb7Oz2K6IOGmeZjw0JmeL4v2sIKgg8OveUE3OAUFv7Z04HCbotEo5s6d65iiwolGcXFx0j4EABDZfxDff/4D9OrZDQ9+bQJaW1vaXSfvX6CCzpkNJPsknHwaXhbGpQonIeAmkDrjZMMiGVYQdAIEEc4Y5MsuZhFNJdImLy8P06dPd43Zd6Ih982Tizdhw55W3De9CEf17tZu0NZdp6Ktyz0kHtcN+H5SZaQDJtpCJn0ZFtmBFQRdEH6dtzJ0gxgfwEOhkPEuV068BiWg1m5rwmPvrcc5Q3vh3IKj2oWkeq3HyVfBoRvwc2lwNdEWcoFPi/TBppiw8IWgUi2IaaoB5xTYqQxIh9oI0x9fgk2N+/HGLVMw6Kj2PJvQ98NDtgZSt3rT1V6L3IVNMWERKEzDKd0Gorq6OhQWFgLQx/tzISDuOuYVLy7dhA8378YdlxS2EwKiScgJOpOaG7IlBNwWx5loQFYIdA1YQYDciYjIFT5kOJmAUjFviHl7TEwlfrXXrbsP4N55a3DOqIG4bMLxSedMnaUiv7rVz7kEXX/q2mLRtdHlBUGuvMy5wocMXcrloNIwyH4KHZ1QKOQayaPig4hw+ysr0UbAHy4f2y61tFv0jio6SLzWLY12NqESAk6bCll0XXR5QeA2c8o2H+mG20yYm27kwY6nWzAJlTSt3yTk0pQmv76ktgHvrNmBn31xFIbkH6Esq1szwOt0ui+qfjHRLvwg1WfSagEWOnR5QQC4z5yyxUdQ8GsnFk034jXicTlU0stAIy/CEiNUgjA57W8F/ve1VSg6sT9uOOskbXndBjQiPS/1phKzz8v5vdaEx2wilzQmi8PwLAgYY30ZY93TwUyuoDPNnOQBRHwRUxm4dVE8uqgfFcT6VfH3pjzpjv3h9dX4bH8L/njleHTvph7s+cKzoO61Ex2T/nbShjr6M5mr5k8LA0HAGOvGGPsGY+x1xtgOAGsANDDGVjHG7mOMjUw/m5lHR3/hOMQVr6oX0c/qWS9x926RNqLj1YsQEWnzVcxcs6isrMRTr72Pf1dtwbfPGobC4/V7DMj1+jVrmcLPQjXTa1NBJgbnziDMOitMNIKFAEYA+BWAQUQ0hIiOBfA5AEsB3MMYu9aNCGPsGcbYjvj+xPzYvxhj1fHPRsZYtb9mWHDI5hYOMT+/SZgkh2rhGf8Wc/3rZuaqcnI6Z52wcBI2nDYPYeX+CgAYNeZUPL8qiqFH9cGZR36m1IZU9TppT3I7veyF7BWZdj6nGprrBVYI5CZMBMHniehuIqolojZ+kIjCRPQfIvoqgH8Z0HkOwIXiASL6GhFNIKIJAP4DYI456xYqiAOvyuZuGisvDqxOUDmNRTr8mMiLav2BKixTPq6inZeXl3Bm87JPLW3A9v1t+P1lhejVo5uSH7GvVD4OpzbxRXDpzhUUtCnFiU5HXFhqERwyurKYMTYcQAkRjZWOMwCbAZxPROvc6NiVxWbQmVtMrzO53qmseEwOWRSvq1ZsRu9Wt3h9RUUFGGMoLi7GRzsP4LK/leGKCYPx56tPa8eDE4/iMd2qaT99YwIn01gq91D8X1lZqfWH+K3HomMh5ZXFjLF1jLE5jLE7GWOXxQf1oPA5ANudhABj7GbGWCVjrHLnzp0BVt15keoAYnK9U1n5mCqGXWc3NrGl8+/JkyejuLgY3br3wK/mrMBRR/TERcc3txvcTKPDVNFSqnpN/Bcms3k3h75X6Op2mvRZIdC14SVq6AkA2wA0AvgygJWMsRWMsbsYYz1T5OPrAF5yKkBETxJRMREVDxw40Klop4dfU4Efx25QPHhxgsoDolNdkUgkYfJ6tmwjVny6B7dfNBpnnz7RdbA25clPOKfsG3GCiUlK9W1CTzzmZUFeLsNGHQUPL4LgWiL6ARE9QkTfA3A2gHcB7AXwgF8GGGM9AFwJMz9Dl4dfu7HKSSueA8yjOrzyIGsB4jG5nOyjiEQiWkemmO76k/B+PLBgLSYe1xNH799kzKdJW1Wb25j2lWk/caEl+x7EfqiurjbeqCeVqKNcHmiD9ptYxOBFEOxhjI3nf4ioGsCZRPRnAGelwMPnAawhoi0p0OgykAcgt1kiH/hDoRAKCgraOWlVIZheeXCCLiJIdwxAu8Vq3KQhl+fprvv27Ytf/3cFunfrhoeuPROnn366cm2Crm1ubRYXnHk123gJl5RNUqJg4E7x+vr6tDqp0zHQBknLhqCmB14EwXcBPMsYe5oxditj7BEAPIrI9a4wxl4CUA7gFMbYFsbYTfFT18DFLGSRDDm6RhfKKG8QoxtEeBRPOBzG7NmzEQ6HjXkwKad6cXX7Icg+Cm7SAA7PruWooX9VfIL31+3Cz75QgKED+yn9AjrhIx5XDVih0OEFZ37s/l6h6hMuGLhwdEv7nQr8DrROQlanifqFFQJpABEZfwB0B3AVgLsB/ATA0QD6AvitFzqpfiZNmkQWMTQ3Nyd9y2hqampXVvy/bNkyam5uTpxrbGxMHAuKN12dKl6fffbZJJ7F60Q++fcn4X106h3z6GuPl1H50qWOfIvnmpubqaysLImuji/5OtP2BtGHXuDUBrlckGhqanKs1+28ReYAoJIUY6pr+ChjjJFLIZMyQcKGj5rBNMRRhGlopEndqrBQmS+5rkgkogzZ5OGcfBMbbjK69ullqN68G/N+cg6Oy+vhyQ5eUVGR5EBVtVvcOMctnFXX3kzCJOw2SD6dQm298GWRGejCR00EQSlii71eJaLNwvEQYg7j6wEsJKLngmTYCV1VEJi+THxwN3nheXw5px1k3p0gByVV/P4L5Rtxx6ur8IcrxuKbZwxLG398kDNd2xBE3elE0HUH2S8W6UUq6wguBHAIwEuMsQbGWB1jbAOAdYiFfT6YSSHQVSDP1HU2bvG3aPMGzByVoVAI48ePx9SpUwMVApy223kvQkCkufLTPfh9yWpMO2UgvnH60MD543Vym3wQTlTRsR+03dwL3NodNL1ciPLJdv25DldBQEQHiehRIjoLwFAAFwA4jYiGEdF3KBY9lBPoLDdb9fKoImBEJ2dFRQW4luQ1o2hdXV2ijkzDT6hq08EW3PLP5cjvG8IDV09wTSPtFWKdbgvfnPjkx1U0Tbb51NWTLqRj0M6FKJ9cEUa5DOMUE/Eso7cBOEBEt6SVKxeoTEO5YqMVkYpKbGrfF+PNeZQNP2dio0+Vz1RpqEw+TucOtRFueu4DvF/fiBf+ZxLOGnVcSnz74cukrMo8Z9rvTsfT/Yx3BDOOHx47QrsygSA2r/87gNkAzokTHMsYeyEg/lJGpmcebrOLVGchJu0QBx0+q+f/df2h0zbkMl7gt61O4a+qWTkA3P3aSpR+tAu//lIBeu7elDTjDhKm4aIqPnXmObmfnQZ7XShrEM+4U3tyfbD0+6zleruyDlUokeoD4IP494fCseWm1wf5yXb4aLbC9EzqkkNCVSGNbiGQbm1Thax6batMwy1sk4ho5qL1NGxGCd3x39p216YrPNHkHpvw7pVmuuC3r1JpTzqus6Go/gCgihRjqheNYCtj7CQABCQyhvYJVix1DJjOzDI5CxHr4jluKisrUVFRkVhQZjKbctIk+Lcq1YGXtups8HIZ8dhT73+M37++GmeeEMJtF45KuiZbdmjum1HBqy/B5Fp+vV84aYpu1+l4TlUb9NueXF79nKuIt1E5ZnsRBD8BMBPAIMbYDQBmAVjpeEUnRjYGHbdzokkiGo2iuLgYRUVFqK2tTQxYYpoJHU0ncxJ3dKaS6oAPRk7t4fURER5/bz1+//pqXDRuEJ7+9ufQp3cvV56DgMnmMypHtR9BawJ58PQyeIlmOC8hyG48mzjRVUilH4IW/G6OfrdjHQXx/jqgOmeyVeWXGWPHE9FGxEJJfwTgZADvAbguODYtdHCbkfGkaPwFiUajmD17NqLRWAqG4uLiRJqG+vp6FBQUADi8qYwb5IHbJNUBAFfauvp5fYfQHT9+aTnueXMNLh4/GH+55jT07dPblV8vcIrycdt8RrXuItUZvxPEAdDrjNpLpJKJH0mmbUrH5DoTBB3mrNoPw8lv1YGhjA4yWVD2FIAJAI5DbL/iagA18e/VRHQoQCaN0BUXlDlFkqg2HFGt0OXH+UpZPth5yThqEoUEAOFwGHPnzsX06dO1AsNp1e6mxn347t8rsXZbBNNH98bd15yN3pImkGokiNwm1f+gI6G8XK/773bclLbT9am2IRUecwVOkWwdFb5XFgsEfgJgJIBVACYhtpgsTEQnBsinEbqiIHCC28OpGlgA7+kkdC+GLCD4sYKCAuTn52t5UNXfeqgNzy3ZiPvnf4Se3Rnunz4O5446xqhePzAddL1e45c/nXByS+FgyqtcjxPdoPrYiY9s0emqCCJ89AYi+iHFFpfdhNiuYosD49DCN9yEgLjwjEO0+cvqr/jtVo/OXjthwoQkISDbtmVncVsb4Y0VDfjig4vw+9dXY8rJR2HeT87BF8Ye78s2bQpReKn+i1A53HXmAr/8cROO6AhPZfGZUyiqG103X45J/W58eKWXDtNMBzf1BAIvgmAvY2wS/0NEVQBGBc+SRSrQDUiys5C/4OJx8beT80xVh1iGO6xlHuTBLRQKoelgC/6+dBM+/8B7+ME/lqN7N4bHvlGE7xYCxxzR3bGt6XIWutmH5bboBku/ZiF5cBb3ZvACN2HkRFc1afACWdgHJbSDjg5z8791FXgxDY1CbFFZHYAqAOMATCCiM9LHnhqd2TSUiuorqvJA8uyWm2rq6+sT53lZ0Vcg8qAa4AsLC1FTU+O47aFbG8JN+/HPt6uwen8fvL16J5pb2zD+xP646eyTcMn449G9G0vZZOUVJuYenU8jSBOKrm7d+aBs+TJ9v74SmTfAv0DMlAkoFdNeRzNVpewjiBPpjti2kuMR27v470TUGBiXhuisgiCIAYWbL+QBSzVgyKahUCiU2Mzm0ksvTSRbE3fMAqB0Tju9EAeih1CzZTcqN4ax9OMwPtgQRvRQGwb06YmvFB2PKyaegNOGDGi3E5hJH5imidb1gVfoBrdMDQjR6OHgAAAJ4WzaByIdpzb4dUQ7Od/90gkSQU4w0smnV15MywfhLK4AUAtgBf8mop3GnAWIzioIgNQfVDcnoDwYigML/x8Oh/Hxxx9j37592LRpE6655pokDUE1e66urkbh2PHYFmnFhl37sH5nBHWf7saa7RGs37kPh9piz9mo4/Jw7qiB+NyIfPTYvQnFE09znI0B7uGJJo5U3s7Ro0cntCK/M1Wnlz/dAiEajYULFxUVJaXG9vrc6Bz82XC+m9AJAukYuDMxAfDKt1P5IATB8YhpAuMBFAO4GMAuIvKeCD5FdGZBYAI+K/USzinO5sePH58UI88HllAohMrKShARioqKEteGQiFULf8QJ4wYg537D2HbnoNo2HMADXsOJn5v3X0AO5qa0SY8Tkf36YbxQ/IxetCRyGveiavOK8axA/o68mnaRhMacrklS5YgFIql3fYTgeNWZ6ZmiLIW5Hf2ni6tJpfNJU73Lhd4Doq/tGkECoJjAEwnorsNyz8D4BIAO4hobPzYBACPA+gNoBXAD4joAzdaXVkQmM6WVdcUFBRg9erVmDx5MqLRKGpra1FcXIx9Bw6i/MNVyD9xBLbtPYiGPQexfW8z1mzehoOsD7Y3NWP73oNJgzwA9OnZHYMH9Mbg/r0xqF8fnDCgN04a2BfDj+6Lk4/JQ58elBio5N3AvLQ3iBeAnwP8mXW8CJwg/RVuA4NO+KRrRu02SGVq1h20T8Tv8xkkMjGRCEIjGErCDmXxY7OI6BrD688BEAHwgiAI5iO2sc2bjLGLAPySiKa50erKggDw9xJ8uvMzlFbVoa3vMdh5AKjf0YQ1W3ahqbU7du2LQn4Mjgh1x6B+vTGoXy8M6t8b7MBuFI0ahiH5ebHBv18f9OvTw3gvgEyYTAC1BuEmHNw0q0zarMXZvq49bjRScfY61aHrW5WZyVRLdeMvHWYsVX+p/F46vtOJdNcXhCAoBzAEwAbE/AQHAVxAREWOFybTGA6gRBAEbwF4hoj+xRj7OoCvENE33Oh0VkGgWw3sBXv2NmHnQWDlp3ux8tM9WLl1Dz7aHkF43+FQuG4MOPGoI3BC/17o3XYApww9DhRpxOSxIzHk6CMxqH9v9OvdAy0tLZ61j6Ah9omJSQZIXihnMiiaRI2kw6Sgc66KPg+vtn/Auf1+odOmRB69mMzEtjo5uoN2znvRoDLpDPYLr/0QhCAYTkQbGWMFiIWO5gN4i4i2eGBiOJIFwRgAbwFgiK1pmEpEmzTX3gzgZgAYOnTopE2blMU6LHi0jlNKBhnRaBQHWw7hw0/2oGLTHpSt24GVn+5BC8Vm6b16dMOYwf0w6ti+GHlcP5w4IIRIwwZ8/swiHNW/X4KG00scDoeTFoYBmYuYEfskFAoZO2l1g7gfp5vbTDyIKC+nAcmLSaqiogKMMU8RXSZlTMyRfpzoXgSIrl4/cGur/MxkwhnsReMTj3t9/oIQBMuJaKJ07EwiWmpEAEpB8FcA7xHRfxhjVwO4mYg+70anq2sEH++M4JWqTXh75RasC7eipQ3ozoBxJw7A2MF9cdqwYzD2hP4YMbAv2g61ory8HFOmTEEoFAsPdVsHwBEOhzFnzpxE1BAfaERna7pmTfzhN9EInK6XjwHOUUjp9mF4pe1VcAHOs3bdNSZOebdyJs+vH58Pr9dvmg3Tek21lCBhIkCDjFLzLQjiA/REAF8FcCmAj3iiOcZYLRGN98DEcCQLgj0ABhARxfc32ENE/dzodFRBkMqg8Ul4P16r3YqSmgbUNewFAIw+Lg9nDB+A04cPQN/9DZg6eWI7+pFIBLNmzcI111yTCDcU49CdXvyKigocOHAA55xzTmJ2JDqZ3RyaftpsOjB5RaovXBD1B2HP9lu3m30fMA888Nt/qfSxl/UiqdQbtCbgRfvQlQ9ysqETBCY7k50A4FsAdgF4E8DHAJYDKAGwzO16idZwACuF/6sBTIv/vgCa3XPkT7Z3KPMDPztDtbW1UVn9Trr+mWU0bEYJDZtRQpc+/D7NXLSe6jZupaampqTdyMS6RDQ1NSUd5+UXL17suvMUv1Y8Jl6X6m5nMl8m7fEKE16DqMeJbrp2UDOpW/zWndf991OXE62g6MvPpZdrMwWn+646l4nnBEAlqcZm1UFlQeAs4Xc+YhlI+3q4/iUADQBaAGwBcBOAsxFLV1EDYBmASSa0OqIgIDJ/GNva2uj12q108V8X0bAZJTTxrvn04IK1tH7bblq2bBk1NjbSzJkzaeHChUkvBB9AVQ+TfLy5uZnKysp8DeRetojUbWupo6EqZ1qHUxu8DhxBwetA7FTWpB75mJeBxWtfBzEJcKOjQlNTEz377LPKe5qJAd9LHV6f23Tz71sQALgz/j0VwJFu5TPx6aiCwAQrtuymrz5aRsNmlNB5f15I/1y2iQ5EW4koeQBtamrSzib8zP5018iCRkXTbSYo87Z48eIkIeQ2iKUirHgbgp5pmQo/pxmh06xQJeCd6nOqxwu83JNUBLSKphfohEC6Z9S6e5YteK07FUEwJf79MmIJ5z4C8AqAuxBbUGYFQQBoa2ujZxd/TAW/fp0m3T2fXlq2iVoPtTkOKqmq9aJQcdMiVDN38bhoflJpGqrrdPx4bY+b9qMr4/cFdht45f5wul7FI78fXNjLglPXnqBgKliCqjNTAjooGroJWLrqc7rOi+mVKAVB0O4CoBdizuPrAfzZ6/VBfDqbIGhra6PfzV1Jw2aU0E3PfUCf7TMzm6RqMikrK0sadNxoiHwsXryYSktLqbm5uZ2vQud7SLU9XuDWdhOtxIS+6jq5T02Fntj+pqamRD86aX/pQjZnuSpkih8/fZuqEEj1PfZCPwgfwfkAngZwP4Ab4j6CXqbXB/npqIJAd9MemL+Whs0oof+du4ra2tqSynp5CGRzgtMDxgdDPsh4NSs0NTVpB1ITnjOpYuva5sSLKV3ddaIw8GMrlwV1OjWAdNIMov5MCD4dH361Ur/1qc7pJk+mECckQQiCrQCuAHAVgLsBvAqg3vT6ID8dURDozAFL1++i4beV0E//VZ0kBLhTWIZu5t7Y2NjOgeY2kDc2NmoHKy8zFSczSyqzmSCu8aM+B8VPKi+v0/V++tqtXBADjpf6dPWbaKap1OOFhpdnJ12OcfEauY/c3m/5mrKyMtJFZnrZoayeiP5LRP8motuJ6DIiKvBwfZdGKHR4J6vq+I5IRIS7Supw4lF9cNdlpyby9oRCIRQUFGDu3LkIh8MJGuFwGLNnz0YkEkmiHY1GUV9fn9hDwA18bcHy5csTi3TkGGvOr1P8Mo+BrqysREVFRWINAOeJx2+Lx/k5fr3quA46ek7l3drhtsjMDW79Y0pb7jvd9U59atI3unJiP5nQ8nIPqoUd8HQIhVLbktPrs+HEq9j/JmsPTMv55VF8Dngf6XYRBA6vyBd3IwyFQnxCr4ZKOqg+iGkB/w/xRWjZ/HREjUAEl+SL1+2kYTNK6F8Vm5Xl+Iydz7h1WoJIU/zvFHXT2Njouo7Aib54TK5DNjvp+BKPBTVz182edGVNzFNBaxNu98pvUECQZgy3++3FVMNno6rnzaRtTvW5PedeEYQGG7QWrKNhohHI5RGAaWgOYhFD2wC8DuAPAK4yvT7IT0cXBBx3vrqSTvntG3Qg2pq4WaoFXKrfMlQvQnNzs6ON2suDLb5sqgFLrL+5uZlKS0sdncbiNUG9yDJPJvZ5N1OA26DndVDUlVcJRj/004VUTUe65zMIk4qpMEkF6TATZQIyPzpB4Hk/AsZYHwCnAhgLYCwR/dwTgQDQUVNMyLjskcXo26sHnrt+IqqrqzF06FDMmzfPMfGcbll6eXk5evTokZRDSJXN0gROeXr4xjWTJ09OOi/Xb5LXxym9gd/ka3K+Gz8pLrwu8Q+iDvm82DdA9rbGDKLOIFOQmNQVdNpqkbbXNByZTF5nwo8uxYQXHwEAgIgOEFElET2XDSHQmbCjqRmD+/dJ+AQ2b96MSy+9VJvLhdsFVfbBnj17JnYZ4+D2Qa9CQGdDDoVCKC4uThI2vGyPHj2S6uflOU25Dm7vFMvJPHBfSDgcVvogZPB8NNxmzPnwAlV5XTt017jZgE1tzrwfZMj9kyn4FQJOdvGgB0eVvd7Uhi9D9Q64lRHLifcpVf+FX5gKIGNBwBhbxxibwxi7kzF2WTyBnEWK6MYOO3v5zF1+aHgCuNraWqVzlw/QqgHfz0xVnImq6Ik0uaCZPHmydo/kysrKxKAlvhyyY5ALO9EpxjOgHjhwIKmc2Ed84OfbbwJI6cVTXZeqM9aEF7mMuJ2oCC+OVV1bMgFeT6bz+TsJc1OYOszdhBx/P9z2W0gHPDmnVfYi1QfAzwE8CuAWxLaXjCC2Qc1dAHqa0gniY+ojyBU7nQ5fevA9uv7ppUTk7gtQOV5FpNthqbqe+wCc7PvNzc00f/585ZoDuc2lpaU0c+ZMamhoSDqvczqrfAyp2LDlftCVMaUl/jfpT6/rKkzt1WL/+bFh+7HhNzc3ax3EQcKP78DLfUz1Hrhdm+mFgdD4CLyYhq4loh8Q0SNE9D3EEsa9C2AvgAc80MkIgggnSzdGHdsXtZvDRjbjuro65XH+7TWsUi4vqs8qVVpFmzGGaDS2KXx5eXmSSUa8hu9hIIdDyur7pEmTcMkll6CkpCShGQBAXl6esn+42UTUYLi24TT7cgq9dDIjmM4qVTN4k1BclUnDSz2q84WFhaitrU2Y1ryaSfzOjFVmRN21fuFkclFpjX7MNG5lU9F0/JqsTKEZV5R7y3oRBHsYY4m9B4ioGsCZRPRnAGd5ZTLdSHcnB4Hik45G+GAbPtmTPHg6DdKqcl7bqiuvG4ScXvRQKATGGIgo6WXj5qxIJIKNGzcm1SMLDH6strYWeXl5GDlyZJLD2aQNXCjoTCa6gUDVf+l4ZkxoqsqIfgA/g2ZeXl67AdnN5yHzJDte5WudnicTp7ifdommQNWzorqnbmYaGX6Epleki7ZD36qjg1RqguoDYAxiKaOfBnArgEcAlMfPrTSlE8Sns4SPNuw+QMNmlNBf3v4o6bjbykG/5o9UYBq6Kq5WLisro8bGxnamCdFkIJp/ZFMTNyfpTEmqbydeVeajdK2mDQJiuuWgzQh+TUROK9H98uEXuRRim04e/D6nqnJI1TRERKsBnA5gHoBjAdQDuIQx1hfALA/CyiKOQf17Y+qIo/HSB5vRcqgNQEyS19TUaFVYWRNQIRPmMHlGyGdlotN79OjRmDt3brvZyfjx4xPhp6LjmEcd8XZRXMvgzmZR2+C/Kysrk0L0OD86cM1BdmTmiilRrD8vLy8RSuxHw/WiUZlAN6tOpe/8OFDl+yy2JR33z4/mFCTk9pn2tYaX1ExDjLGjEds8Pg/AawCeIKJGItpHRL83pWORjOvPHIKGPQcxp2pz4hhjzPHBEiNJnARFUJAHYV0d4kABAPn5+bj00kuRn5+fsOPz6CexvHwdBzdnEFFSpAxweACn+DoYlU2Y8y6C8yGnxTB9kdMZsqnqV7FPvAqBdNi3df4d00HQS9SVl+itIIW57OdKceANBCqh5xXxNvRRnlSpCaoPgEUA7kBsl7H3AEQBrDG9PshPZzENEREdOtRGFz74Hk394zvtNqBRbU5SVlaW2JlMjpgRywUFbgZobGykhQsXtjPXOEGlLrttqKOKWnIyQejMRcuWLaOGhgataYX3r9dUCbqdsYJCEKaSIGgFDfG+uvWfW+Sal0ghP3zm0sYzXmDCMwJIOnckEd0FYDsRnQvg6wCe9SyWLJLQrRvD7V8pxKe7D+CJ0vrE8fLycsyaNSsxC+cmkPHjx4MxlphVi4nsRHOSaRy70wyXm2y4qScUCiWif0zUcJWjUY5+EtctVFRUgK8Y1zlvVQ5JcVbPzUSFhYWJBXp8Vi3T9BrfzU01mZj56aDrc51D3+maTIEHDgB6Z74IXeSaCVK9N36it3IBsibloMWk7CzmjuFlAPrEf7/n4fpnAOxA8ub1RQDKEVuP8BqAfia0OpNGwHHTc8to1K9LaP223UR0eMbKf8uzcXlWLjtdeS57fkw1u5JnuKqZujh787rfgdtx1QzWdMav4kOnSXid5bnNRv04WYNwSPvp8yCcmEHMssXnMZ190BkQhOPdQSNIOencVxHbtP5niG1Efys87EcA4BzEdjYTBUEFgHPjv28EcLcJrc4iCMSb9Ul4HxXe/iZd80Q5HTrU1q5sY2NjOxOLLnlZU1NTu41RdMns5LzluofJy2Bq8rJ6LWMSsWK6yQ4fmJzq9rK7mNM5XhfPxppqhlU/g0QuDLxubfdiismmUEs30i3ofAsCxHYmGygduw7AvQBOdbteum64JAj2AonEd0MA1JnQ6QyCQDV7/eeyTTRsRgk9V7YhqVxTUxPNnDlTudmECFEbcJqF6h42kxfQdGD0svWl+Fs+pmqHqizvIzF1t1M7nFa8OgkdJzj1q9O9kMvl2ow3CF50zw4/x9vsVVh61cxSyXSbjntiMmkJEjpBYOIjeBvACsbYVsbYfMbYnxGLNnoJsRDSVLASwKXx31fFhYESjLGbGWOVjLHKnTt3plht9qEKCbuy6DicO2og/u+N1ajbujdxHACGDRumXBzDwe3vRUVFiYVeTguk3BaU6Wy4su1RFebKeXGLaJLDD8PhcCJUVCzLVy2LPgAVrZEjRxrZ/UOhkOOKV9PFR3KEkm7hn+5eqOy6QOZz87ghVV7Etuno8yR7uvxKKnqmq4S5H0z0R6kizEzaEKS/xSkCKl11aqGSDpQ8i78FwHIAtyFm3vkOgL8CWAhgm9v1Eq3hSNYIRgOYj9hCtTsBNJrQ6QwagQwu+Xc2HaTT/7CAzr33XdpzIJqYvbiZMkQaTsdSNduIMzGdZqLjRb5ePNbQ0EBlZWU0f/58WrBgQYK+ONOXZ/JyBJLbJjQLFy40mg2azMJ42+XNg9zMaU51BW0SMkUmtA+T58Fp4yWn65ygi/SS6zW9536Qyn31eq0bPfjVCIjoEcRSSBCAhwC0APgxEZ1HRINSFEJriOiLRDQJMQ1jfSr0chGm0pzPAo7J64VHvjERn3x2AL/8dy169OiZlM5BpKubSYhlTNJVqHhxyrcjz17dsp7K9csz4SVLluCVV17B6NGjMWnSJGzcuDExk87Ly8OVV16J+vp6RKPRxHaefOEdj6Zy0kL4d319vess0u28OPsvLCxEfX09CgpiO7byqCeTtQmqxW9OmodIVwfTZ81vnHwq0PWBuDiS96eXmH03bUVclCdfz+tVpdAwbYMb3PrXjabTM6HSxHWLUF2hkg66D4B+AH6PmJP3DC/XklojODb+3Q3ACwBuNKHTUTSCVOy9Mxetp2EzSuj+t9Yo6S5evJhKS0uNZkRO//3ClI6oNehmv01NTVRaWpoU5aSzpcsaiU47EOsWy6hoqXhVtUN1P0Wbtqnt2akeFcT0G240TWaYQcfJp3K9Vz+VVzj5qrzuRucX6dK4/FgAkIKz+HOIrSh+AMCbiJlxSgFc5HatROclxBajtQDYAuAmAD9GbPvLjwDcA8P9kDuKICDy/xC0tbXRL/5dTcNmlNDsyk+S6HGTiWpxlzjYqQbCIBZE+RnIVFtXir/FHEVuL6Ts9FO1y810oKtD93I5ORn93GMvTlHTvjblI8iBKV2DZxBwe9519zJV02Gu9YXITyqCoA3AhwB+CWC4W/lMfDqSIEgFzS2H6Jonyqng16/T0vW7EjNDrgnIgz1/8GW7tYggNILm5maj6ByxTh4+KdLgA5y4elm36b1cv6rt4jkT27wf34YTvA4AueAfCAK5zJ/X593LJMTpfDpXn6cCnSBw3bOYMfZdAOPin9EAGhFbALYibuZ5xd0AFSw6y57FJtizvwVXPFaGxkgzbp96JM6fNBpr1qxJ8hlwWyeARMSNnMNf3stXB5GW7nxFRUVijwE3mtxuWVBQgPz8/KRzkUgENTU1SfsVLFq0CH369NFG9XB6YsSV2A+VlZUoLo5tySqf52WA5L2X5SgNP1E7vF/c8u/rrtXV63Y/so1c588P5Ag13Xkd+Ip8t4izbPSb7z2LiegJIrqFiM4louMAfBHA84iZeL4aPKsWIvof0RPP33A6evfsjnuW7cPetl4JIcCdpPJAd//99ycEAhB7MMV0FTqYOA556KVua0xVeZ0TkG9xKdLq06dPu72XVfR0L6qcbkIOE+T/VZumpJLQCwBaW1t9XacLO81o+KAPZJO/dNbplsDOxEHtJgRM+y1Tfetn8/otRPQGEf2JiK5LB1MWyRiSfwRevOkMtBHwzaeWYtf+Q4nZr7ype15eHqZNm4ZQKJR0buTIkQCcd1zSDYSqeHkvgyV/MXQQI0B0ex+LvPC9jHksuYqWKiKECxGe70iVL8k075AKPXv29HWdXG9QawrSPdCkKjj9gmtfqsg5LzSckGrbdO+QF9qZFLSeBYFFdjDyuCPx9HWnIRxpxjdnLsXu5rakWa34sJx77rkIhUJobW1FNBrb+WvSpEmuAzKgD0H1usWfCibhbqrBWT4vhm3W1dUlLRjiZiExLFGE2AdyGKsKbi+jKCRlc53JdSqIA0UqQkAlKMXzQQw0qQjOVAQV3ybVD/+m16XSNlV94r1QPeeq+jMlaK0g6EA4bfgxePr6Sdje1IxrnlyK8IE2hEKhpP0CVCs4iShRDlAPyDqYrrJ1gi5eW2cS0ZlzODgv+fn57bJZ8sFTRVf8FmfcTn3ithagoqIC27Ztw+zZs41nfSbx3n77WbzebdtOIPhVzKaDrEk5nTDjAt/PM6l77nRlgcMrk/0KHtW9UNHyYoYyfX+NofIg5/qnq0QNiRCjFD7Y0Ein3jGPzrn3XdqwfXdSlIIYUcMjcPh2kTyiSFy9aZqbJxW+5ZxKXsMxVWVUezWo6Ij1yTH/ujp435mECZaWlia25JT5crtW/p9KGKaXcFin40EgyDBW02R1XtZvmD5z/L7y98a0Hqf6df+93H/5/fGyjSVSzT6aS5+uIgjEmyuHpH1Qv4PG3jmPpv7xHVrX8FnSNWJI5YIFC+jhhx9OCIDS0lKaOXMmbdq0KUk4yHWq6KXCv0yL8+eHNn853TKn8k18xIHf5IXh15q+lLycyToNp5DRVMJPvVyf6XDPVJ4dp+tVAt4PL7rnh08GvIRKpwIv9OWJFf/txqcVBB0M8k0V00nzc8s37KSi/32LTv/DAlrTsFc52C1YsIAefPBBeuONNxLXrlu3jm6//faEpqCrUzzuZ5BymqF6ibdWzZzknDSqAV5cdCe3JWgtSLxP8nHVi+pXCIp0/VyfquYh00q1PtOBWXed6r6nKnhUxzItPE3qVGkDViPohJBvqsq0sbphD53+hwU09s559Ozr77d7GJqammjTpk302GOPUWlpaWJ2s27dOqM6+TG3QV0Fky0J3c7rZms6PlRlVem7/Sw0cjonL5gTj4vCSGxTECu8TfiTzwexStmLQDFN86AS2F7r9iN4chGm/etFGyDSCwLrLM5h6CJexGiS0YP64T/fn4pjj+yF/1vShLdWbU8KraupqcGWLVtw9dVXY9y4caivr8fQoUOxePFiZUSJbkGTzqmriybiYZ5ujmi3aB3gsENXxaPIh47P2bNnJ84XFhaitrYWNTU1xg43k+ii1tbWdjRDoVBSWnB+THTApwIvEUoi//J90TmTVfRMnOhyed1zINJQ1ekUx+9Ut1cnfa7Bi0NbDo0WnwlPUEmHXP90FY3AC8KRZrrib4tp+G0ldOeL7yRmVOJHnIU6pfs1nWW4aQQm15nSl2fVIpx2a+Pn5eOyyUbnE5Bn8nzLRVVdqnoylYfHi0agMrWZaHupmKO8ljMxc6iuT2fgQybgpCU5XSO+3079AKsRdG4c1TeEf3z7TFww+jg8t+IA/rxgHZZ/+CGAw7NQvgl9NHo4JTOApJmuOGtyC4EUZyMquM3K3GY94vHYM6xOE801JV07VCmIgeQZJ6cv8inzCgAtLS2oqqpqt5APAGpqatrFiqvWbTiFjar+m0DUrnRhsGJZmUdZO1PN0v3GtZuWlzUcrzDhL+iY/KC0C1Ufq0Kp5fJiX4mLJT3fJ5V0yPWP1Qjag0v/ltZDdNt/amnYjBL6zvMf0L7mlsR5cZbAfQWNjY1J0TVEZrb9VFIZ+3XmyVqNSKexsZFmzpyZlJrbLamczm4utk8OG+QzLtXsX5VhVdZW5L5zO+/Ev3xc3hfZywzerx8oXcjlmbusZTtpkqb0TDaCMgkZ9esjyPqg7udjBUEy5Aejra2NZi5aTyfdVkIX/WURffrZ/kQ5cacvLgT4t2qwdapTV386Ib8Yoirc0NDgOKDqTECqstyh/OyzzyZ2TxMjt1R9JJubOF2VMBHr1UVAqdruNGCI99DPAO5U78KFC3Mio6YXE1i66i8rK0sIfN298Po+mAprDr/3AkAVWdNQ54SsTjLG8O3PnYynr5+MTY37cdnfyvDh5s8QiURw//33IxwOgzGGUCgEIkJeXl7SPsfyKkjR3KEzNfhZ4em3rfxbVIULCwuxefPmdiq2XGdLS4uSpsh/JBJBbW0tQqEQLrzwQnz88cdJpqy8vLxE3bIpSFzpzfkSd0bjmSk5PVVCPqd+dNo5TnRK8x3NTO6J6p7K59esWYOqqqqMOFpNnN5+zvupUwbvZ57aRXcvvL4PJiuIRdOZWyCGA5Tppq0g6CRQ2RTPG30s/vWdyejdsxu+9uRSLPy4CdOmTUN+fn4i7fOYMWPaRdmID3IkEklE3eiW/PP6+fVOkG3v4nGvEKOoxMFZpFVRUZHgvba2tp0vQK6fR1q1tLQgGo1i/fr1GD16NKZOnZr04utSOPCXlEdwcL44r3JaBNM0CZFIBG6p11UpNeQ2eokQ4sjLy8O1116LKVOmpD3vjRM/Jj4lvynEvQgQnQCQy6QqNHV8mfqevMAKgk4E+UWIRqPYs3kN/v2d0zFhyAD8bPZKLN43CNHWNlRVVWHRokV4+eWXsW3btsQAX1FRgfLycgBIhFzyPV91OVNUDloV5JBQ2TmoS5Dm1mYnZ2ZrayuqqqoAAMXFxZg6dWo7nkRhBwCTJ0/GlClTEI1G0draijVr1ijboapP1BoikUg7DYCX4XTE/zqIwslLv4jXR6OxvaHlvY9NB095f4t0wUsAAdA+h5RfHrOVc8kJbn2hy8nlp04rCDoZ5IeGiJDfN4RnrjsNXx7RB88v3YxvPF2Bz6IMEydOxLBhw7B27VoUFhYCAIqKitCzZ0+Ew2HMmjUL5eXlSTTFGWw0mpwKWxeBIvImr4MQTSR+1F1RiKgiTcaNG5fQAuRoIXFAnz59OkKhUGLWHY1GMXfuXIwbNy7J5MLp8Bm/zjTA94CorKxM9K2Kb93MXaY3efJkTJo0yWiwEs1E0Wg06f6MHj1aGSGkqzsbMB2Q5Xvv1yTkJ0JJRUeEX+1Ehqn2I2oJLn3BlEdVjoN0fAAMAbAQwGoAqwD8OH48H8ACAOvi30e50bLOYnPIztI3arfS2Dvm0bg759Hcqg1UWlpKCxcuTMrfI24daeKcM3G+OjnVUk3opXKMitt6ipFE/JyKL+5ElyOEdO1TRS+JEK93SwjnFoni1Kc6pyU/x53IJs5u3fGgYErLa7lUeHS7jyY85Mp6Eacyzc3NBKCOshk1BGAwgInx30citmF9IYB7AdwWP34bgD+50bKCIDWsa/iMvvzQezRsRgn96t/LaU8kFlXU0NCQKCMvmjINK+T/5UR2uhdFTiAnw0/khRxR5CXCSSUYVPmK5EHVTzSLyO/ChQuTon5U18jCjNev4tGpTeL1cl1ew1m9wJRWpgdW+T66CQane+mXBy+8OpV3owVgOWVTELSrGHgVwBcArAUwmA4Li7Vu11pB4A2qgXBvZD/d/t8aGjajhC64v5TK6jYnBmRxAOQaghgux8/LSd3EGb5IS+ZB5ku3Wb2XAUEua5oB1ISu+BH7wnQmqWubOFMvLS31lABQlXrcT9tUdQWlEaQyYGaynHx/eUZeU83MCx+qur3knXJrh9skR6cRZMVHwBgbDuA0AMsAHEdEDQAQ/z5Wc83NjLFKxljlzp07M8ZrR4dudeiRffvgrsvH44UbT8ee/VFc90ItwsdNQp8j+gKIOUxHjx6N2tpaLF26FK2trYntIbkTFUhekSs6SrnNXV6Zq+JLLOfHkSmW5bSd/A0mzlm5LHeiV1VVJXZ+4+GjKnpODnTeTiJCNBpFVVUViMgxJJdfU1FRAQBJuYq4r8KPg1Ll2zH11ahWvIrndBEvJjANew1qExzuJ+DPbn5+vvLZUz2TqThqvfjH3MKBDR3tB5QnVdIhnR8AeQCqAFwZ/79bOv+ZGw2rEXiD2yzi7UXldNOzS2nYjBK66rEyen3hkqSVxwsXLqSGhgaaOXNmwm8gmzFEelyT4P9NTRZ+UzOrZrZB23tFM5OYr4lrRiqzjWqWLppyuLYl9pdTu1RptXXXOP3m/+UV5ap6nWbAbqaxVE07pppgELSC4NWrBut2f/zSdgJyIdcQY6wngP8A+AcRzYkf3s4YGxw/PxjAjkzy1BXgNov43BkTMfP603Hf9PFYtXUvfvHuHjz6Vg3GjBmDvLy8xOKzkSNHJsIIxQVoMnjMPp/hOMWFixDj70VaTpA1CzkqyQtkGuJxvnCN8xkOh7FixQocOHAAlZWVqKysTKxXkNshLwQSM5LW1dVh/PjxSfmQ+MxSDPXkGoAYDaSCKiRXNSMOhUKJtSSqWbt4jdPM2GkdhJ94fvG3yWw/KA0jiOgeUw2Wa3bl5eXKsFdZw1CFXAcOlXRIxwexsKUXADwkHb8Pyc7ie91oWY0gOMgzjPptu+mi++bRsBkldM0TS2j9tt30xhtvtMu3r3ImizNJN/+ACn6zd/rVIHR1qfiWZ/VlZWU0f/78pNxDJtqITtPg58SZNvcbyDZk037hWp3qXoj+AB2tVDbP8aqVqdqU6uxXRyMIuiZwsvuLviYVgu4HDuSARnAWgOsAnM8Yq45/LgJwD4AvMMbWIeY8vieDPHVpiDHmHCOO6485t07DXV8ZgxWf7sXFjyzBq6s+wymjRydmrdu2bcNzzz2H8vJyhMPhBB1xBltbW4slS5Yk2TVlG6r8m9tJnRaIqeBllmSyWtMtNj0vLw/jx49H3759E3Wr9opQ1S3/r6mpSWgTYlqKUCiEHj16KG3IOq1Fpl1fX4+CgoKENqOKu3ea0fvZHB5AYmEib5cJdIvzVDC1w+v8M6ku9HKrE0C7RYoy8vLyEmkqVDDph0Chkg65/rEaQTAQbf0qbNi+my69/y0aNqOErvjbYqrbuoeampro4YcfpgcffJA2bdqUFB2kmjWLERk8WRf3M6hmuk6z3aBmT6Yahpvvgf833eier2tw0qR0molbFJSXPQVM+kBFx7SsuAucU259L5qTTN/UF+KWgTZVyHWbRq55oRtkedjsoxYquD1ABw8epJeWbqCxt79OJ//qdfrdq7X05tsLE+sEnDJnyqaO5ubmpNBSMeupG0/ySyYP0vKGHF5NE6r65P+qgc1NmIqQhaNJ3aIA9TtwejmuKpdKJk2xr8Q2uAl8L2s9nNIzB+Fg9SuUUqnPC9+6iYoKVhBYpITtn0Xotv/U0vDbSmjy7xdQSc1W2rt3b9KOXaJNmkhth+YDqrjyN5UZuoq+6eCpqkNFXyXQvLx8cj26F10Xv+9XqDlpCrLvQMenyEcqUAlMP4JNV9aP1mFK28/+EKny4PW51T2TMh2dIGCxcx0LxcXF5JaJ0SJ4RKNRvPxuBV5c3Yo12yMYN7AHrhnJcEK/EFpbW1FfX4/LL78cmzdvTti15SyJFRUVKCoqQl1dHQoKChyTmYlRRyqbuCp5WyQSSezCxo+ZtEuuQ7Qh83Oq/zzCRsWLCuFwGPn5+e0ieLhNma+/4D4TsR5TyPzo+qm2thYtLS2JrKK8LI9YIiIUFRUlfEPieTHayEtuoHTYu1X3z6lur3ykwjfnjWegDbIefp/EXFjiOyO+g/w8Y6yKiIplWjbpnIUxQqEQLj+7CHdO6Y3fXnQKNuwFfresFRUHj8OESZMxZsyYxEIc7mgEkpO88VBUnodfB6fwRfml5k5W2UFnKgQ4P3J5VdieHKIq8slTRau2sQRiQuChhx7Ctm3bACCprLgIr7KyEjU1NYlkdV6cm7IzlPMdDocTIYtcWI4fPx49evRQhpgWFxcnBLYYxsgdzeFw2LGtfuGHlujoV9FShWO61SPvM+EXpgvGvCyOE8En8uL9lkN7jaBSE3L9Y01D2QVXN7fvOUA/emk5DZtRQmfd8w7NXb6ZDh482K68HG4p09FBTH4nXuOk/qqclE7t0C2Kks0xbjZtE3MLUSyfk5iuQ+VQ5G3wmwxNZXLiO60tWLAgyWTGfTaNjY3Kjc9VphwxpNXUbGViYknFDOPmH/BixxfTTAQFEzOY6fOqek7d0pHwc7A+Aot0oWzdTvriA7Ekdl++7y36cOOudg9lQ0MDPfbYY64DpQxVUjrdwy8PyCbQCRM/+WRM6mxubk6sD1Dxys8vWLCAZs6caZQzSTcAiIO0mENKHuC4017eftF08PKymlZ3XLXeQb63bnH3QfoHVLmGgvCVyPDSfzIPTrypJkxEekFgTUMWAFLLQz+14Bi8/qOzcfflY7F1P3DF40vxvafeQ0M4kqC9du1ajBgxAoCZqYOfz8/PT2yMI0KOOxdj48U8PG7Qrf5VmYqcTATiOgiTdtXU1ACA0mzQo0cPnHnmmbjkkkuS7PMyHXH9gWgG4SagRYsWJXZo4yaDoqIirFmzJolefn5+u+0XdaYK2eRkutZDvEZ1XNx2lLdNNDtxs6IKvM2m9ZlAzjWUrvUHXvqPl1fx45QTyYi2Sjrk+sdqBMHC66zECbv3RemO/9bSybeV0Kl3zKOZi9ZT074D2vxDsvnDzUSg0wTKysq0GSNNEMTMz4spym02x80T4kxe7iPdDF7MYaSa7ZtGUznNMlPpB7msznwjax1OqcpNQ3hTgd91Aan0l99zOsCahiycEPRLVLclTNc/s4yGzSihc+99l+Z+uJna2toSdS1btowaGhqSUv6apGnQmQDkQdG0TSa26SDhpQ5RSIrrD+S8+bwM96eo8uqb9IvJgOXXjq0rqwvz9Wrm8dsmU/h9RtyuczqfSooPXV1WEFikDU4P6lsrttCUu9+gYTNK6PK/LaZlH8fs0/wh37RpUxINNyHg5BST/5ts4pFqtlIVUllRyiHz4+QjETUB3apeN57cBnAvA6GX63SC3a/dXPyfyuDt5bhbGT9CzE0L8ksPQBUpxlTrI7BICW6202mjBuJP0/rh95eNwdbdB3D1E+X49vMVaNhHKCgowLvvvtsupz/PyqjLB6TL1Cj+B5yzNfKwUZUdNRU7sFuOGRUfqmNym+RcQ3JuJDlvUF1dHYYOHZq0RsGNJyebuNhXqnxR8roI8bebDdzJvu0G3f2X76+f8FvV8+eFF6frdP0lHlP5ukx8UC65tNQLx1TSIdc/ViPILbjNuvlnf3MrPfLuOjr1jnl00m0l9Mt/11D9p7uSyjc1NdHMmTOpoaHBOE+NW04bFU9+0xuYwEvEkmleJSd+VPWJUVpiGS9tVmkHsibitCeB28xaNOmlAhOzktdIMtHU5kTbjRddGb+aiokvRDYbioCNGrJIF5xm3Xx2Ul1djQORPfjOWUPx53OPwJdO6oX/LN+Cix/7AH98fRX2HmxJaAZXXnllYnWyTEf+L8/8TPl1yqGfat53VcSSaibnxofTf7EvxL0f+LE1a9bg4MGDSTN6p9miKkpKpMcXkwFI0qJ0exI4RR2Jx3WRQCZwiphRtU8V1aW7L6FQCAUFBZg7dy7C4bBjm1R1u5Xx+4zFxnJnRKNRT1opAJtiwiK94KtYw+Ew5s6dm5RCobRiBd7c0gOvr9qBAX16YFLvnfj65BNxztlTE9fzJfRA8gvOhQZPhcBDH03SDQQNt9QAMk+6AUx3XARvt5jmoqKiIimlMReQS5cuRZ8+fRIrhHXpKjh/YhoEkWf+v6amBoyxpJQGfvpFXhmuWzXudszrfeZ0xG+e8kQXbhwOh1FfX59070xNROl4Bk2eEeDweydDl2Ii62YePx9rGuoYkFVgVVK15uZmWr5hJ339iSU0bEYJTf2/t+mVD7fQgQMHtaYDUW2XV7eq1GIvZpagnaHyNc3NzbRw4cIkFZ/zzyNodGq9GFIqO49F04+c4M+kXarQWz8ZXU3Nc7prVQvsdOYQp7pMAg6am2OL9/xmdnVCEMEHQZgu5XKwpiGLTEJlslHNUKqrq3Hq8f3w3P9Mwq/OzEO/Pj3x41nVuPDBUixcuzOhDXDwGXFBQQFefvnlpEVVfEOU2trahFrMZ2cm6r2J6u/kRHWC7EAVt4nkzm05v48MMR9RTU1Nknlo9uzZCIfD7fipq6tL5BLiZeX2RKOxTWxE8xB3UAPJpiCTvnHa1MfpWm7CEdsGtM+nI/aj6p653UexPVOmTEFRUZEnZ7ZJu0xMRE5wc/qa8MQ1HiMeVNIh1z9WI8hteA01FDWGQ4fa6L/Lt9DZ97xDw2aU0KUPL6KnS95PzIJ52gU+m1Olvpadl3KailRnf6pQTi8wcW668Sin7xZn9PKsfuHChe0c8KIWoqtPPiZqJLpyOu1PR1t0zMo8yf3hlutJpqsqowqR9Zv7X9cmv7Td6HnlSdWXsOsILDIJL0JAXgjV3NxM0dZD9HzZejrtztgahEv+/BaVrfk0kadHrEOVHEweELzmONIN1qL5gpuuvAymJvW5DSC8Xr7Tm/xR7aUg71/Mf8tmEfk6GbxODh0Np/UZYv2qBIJO7dYdd4te4sednhUT6J4jp8HYhKYbTExybs9fc7N+QVnGTEOMsSGMsYWMsdWMsVWMsR/Hj18V/9/GGGvvxLDokDB1qAFIpKQuKCgAEDMX0aFWfGvqyXjvF9Pw24vH4NP9wDee/RBPf9QTb5bXJkwJkUgEc+fObRchIZsNQqFQu9w1brxxs0k0Gk3sxyznxZk8eTLGjx+f4Fvkw9TU5NXcFAqFMGbMGMyZMweLFi1CeXl5Uq4d0cHL+1hMDy5G+8hOZt4GVYppHo3Ej/OIpdbW1nb8yWscVOflfZ5FfnXRPLr+4I5uVb/x+vizws2EbnRluK3H0NWdCk3APM+Rrq/FZwyAOkxLJR3S8QEwGMDE+O8jAXwEoBDAGACnACgFUGxCy2oEHR8qE4bTLHJ74276+TNv05jfvE7DZpTQLf9cTut3NCVMQTqI2sOCBQscUy2L3+LqXHnWK89g+TldOmvxW+6DVFY2i45yURswSdUh86TqA9XsVpUnybQO3TmdGcgpt5AIXXtVWoq8PsWNRxm6rKRe1rHIbUmXRiBriDmhERBRAxEtj/9uArAawAlEtJqI1maKD4vsQ5z5ccizQ7n8xvq1uPOqM/DeL87FD88bgXdWb8cXHlyE7z79PnbuP5QoJ86IIpFI0sYq9fX14GHH8qxZdjhXVVUlNocRZ86q2RmPheczUxFimKKT48/PymbufOfX6mbaKpqy1iNqTpyWHK7LN8yR2+DF0SrXLzuWOT2nuH/VqmtxEx/VRju8bwYNGqRcQe02I+eQs5KKtJ3Wajj1gYlG4uR8Vr1PXIsFoH2vRGRlHQFjbDiARQDGEtHe+LFSAD8nItcFAnYdQceHSTy2XB44/ELsbGrGo6X1eHHpJjAwXF18Aqb234v+vRgmT54M4PB2fXzADIfDSZFLcpy8KjJGxaMqthyIrXloaWlBjx492plc5C0FndpZXV2NgoIC5OfnG5VVbUmoKqda9KWL55evr6ysTEQ6ucXTm95bVVw/AFee5Bh5sRwX/ro1E6r6xWvk8k7ndO318mx7Lat7jnRrJMTnEMihdQQA8gBUAbhSOl4KB9MQgJsBVAKoHDp0qKsqZdFxoTNZqJxxn362n277Tw2d/KvX6ZTfvkG/f20l7Wo6qKSjM5voomF0vKli3fm3F6exTt0Xdw1zg5xCwmtdKqhMDLJpLJUUHbrrFi9e3C4ayo2+zhziBpO0JG4mKhU/6URzc/toMfm8fJ9kAFhOqvFVdTBdHwA9AbwF4KeKc46CQPxYH0HnhWzTNLG9NjU10avvLKFb/1FJw28roTG3v0l/fGM1NUb0kT8qGl545N+qgcBkUJDbKV9jsreCTrg52cudBhEid3u77tukDrndMlQRSCp6OoGko61qixxyrIMX+71T37q1yQTyQK8675aLCNkOH0XMW/0CgIc0560gsCAi9eDiVFZ8qddt30u3/nN5QiDc82Z7gRAUj7oB03SlMf845eQ3oUPknqbaJLxS3ovYxCnKNxxyyp2vEypO7dHVydvqpBHI/1X9G5R241RWd3/dBnS3elI5rxMEGfMRMMbOBvA+gBUA2uKHfw2gF4CHAQwEsBtANRF9yYmW9RFYcKhyr0SjUZQsqsQ720N4Y+V2HNGzO66fOhzf+dzJOKqvs51XZbPV2dJ19l03u69ss1e1gZcT7by6/DGir0BnO9fZ4Tk4bbf2yXSWLFkCxhh69OiBMWPGJMJT5TaY5ijS8Sz6AGbNmoWRI0diypQp7dqi41nVZrntKj50fe5GR7zHInh7nHJoiTS8+NFMkDM+giA+ViOwIHIOv+T/P9q2l374jyoaflsJFd7+Jt07bzWFI3pTgdMsOEh7sOksk6v6Tn4Mft5kxavJTN+EL9ms1dTUpM3bY6LZyHSdtBcxbNbENCT3gUxL1x9O4cBOvKvKqniVj8nbk6bjWUO2NYIgYTUCCw4+23PL9vjR9ib85Z11eGNFA44Idcfnh/bAb746BccO6Jug41UjSEdbnOoOh8PtIonkmafqerlv3OoxgSpyh0cWOc2gTbQloH3El0lbnDQrlQbGNRWZZ5GO0yzfrQ9FOk68ic+dH43ALYJLbLvVCCw6NUxnTmsa9tL3XqigYTNKqPCON+nPb62hz/alJ+LDy2zObQbodbbrdN6pDhMaOl7Emb/Khu/V5q7iSZfnyKT/5Fm4Kl2EmwZoqhk2NTUlZZM1Sbnh12dgEv3EgWw7i4P8WEFgkSpqN++iH7xYRcNmlNDYO+bR/W+tod37ooHR97PxuInjM1U4DeJO0TwmJhLZpOLlOhNeTf6rvuWy4mCuM7Vx6EJ4dfdGpi2afWQeTPrACar2uglDaPYszvqg7udjBYFFUFjdsIe+/2LlYYEwf23KAsFpkPFKI4jBX0Vb/JaPq/jwss2jUx06+k4Dqxf6XoSQ2xabJutL5IFfFgByG001Cqf6ZJqq8yJv/HdZWRkBWE2KMdX6CCwsAKxu2Iu/vrMOb67chiN798CNZ52EG88+Cf379PRFLwhfQrr9Eaa7aAXFh84Pw9NcqGzxXldKi74FJ75VUVIq2k5RQ2JZzr9qZbMuss3ramSVr8NtNThR8u59vXr1Wk5Ek+TyVhBYWAio2xoTCPNWxQTCDVOH48azT8KAIzKz7WUmkU5Bo6pLlw6DZ+CcPn16O0epW4iuibNYhqo+mbYJHbGsyhltmv5Dvl7XVl273XjjcHIWW0FgYaHAqq178PA79Zi3ahv6hrrjW1OH49tnn4Sj83plm7W0IIgIFbfyYmSMnARNF8tvGhEFqCONdHDSCDgtP/shq445CTN5rYEoHDl/qkgpL9qcuI5DpxHYrSotLBQ49fj+ePy6SZj3k8/hvNHH4vH31uPsPy3EH16vw46mg9lmL1DwgUWeQfotpyvPB8WamprE/g4cqsE7FFLvayDSEzNryhlL5W8R4iDLz/NMqIB6bwEnOJXVnRP5F9so7lHA2+V0nRtfRUVF4pavR6jKWY3AwsIA9TsieHRhPV6p/hQ9u3fD108fiu+eezIG9++TbdYCQSY0AvEYYL4hjEhHt4raqZxsmtGZWmS6ftZbyPT8ahVcCADwtDJbhpw9lTFmfQQWFqli4659eLS0HnOWf4pujOGq4hPx/WkjcOJRyolWl0aQPghxgI1Go0q7u84Ba3KtfL2bSQZwX7gmmsBMBYiKlnzeix9BXuSn8xFY05CFhQcMP6Yv7p1ehIU/n4bpxSfi5cpPMO2+UsyYXYtNjfuyzV7OwKsZyYQWN92oTCOq+sSBkw+KfLMh0akrl+e/dRvQAM5bcHIhwE1g8uY7Is9OvIv119TUJLYkVdHhpjaRVjQaBRHJgkO5VaXVCCwsUsDW3QfwxHvr8VLFJzjURrhswvH44XkFGDHQLFFZZ0a6NAKnkEm3WTeQvJ+1qXPZKx+ctk4j8BIKKvLO+ZfPickJRc1HDKUFgF69eq0momSnA6wgsLAIBDv2HsSTiz7Gi8s2obm1DZeMPx63nl+AUccdmW3WLDQw2X1MhJtpSC4rax0mIaBe1xeozF9AcgSVyLddR2BhkQHsijTjqfc34O/lG7EveghfHjsIt5xfgFOP759t1iwU8OP8BtxDVXm5iooKtLa2JrYvdfNRyFqCU5I9UZDx4zpBxc/bdQQWFhnEZ/uieKZsA54r24im5lZ8fsyxuPX8kSgaMiDbrFkEAJ02Ia9DkGEiQHQagW7dBIDEAjknhzKgdxZbQWBhkUbsOdCC55dsxNOLN2DPgRacXXAMfjBtBKaMOBqMKf12Fh0E8qCtSi/hdk0qdcragWwGknmIRqPo1auXFQQWFtlC08EW/HPZZjy1eAN2NjWjaMgA/GDaCHxhzHHo1s0KhI4Ov87ndPECtE97UV1djTPOOMP6CCwsso2DLYcwu2oLnli0Hp+ED2DksXn43rkjcOmE49Gzu43m7sgIMkoqCKjMTFYjsLDIIbQeasPrKxrwWOl6rNnWhBMG9MHN55yMr00egt49u2ebPYtOiqz7CBhjQwC8AGAQYpvXP0lEf2GM3QfgKwCiANYDuIGIdjvRsoLAorOAiPDumh14tHQ9qjZ9hqP7hnDj2Sfh2jOH+U6BbWGhQy4IgsEABhPRcsbYkQCqAFwO4EQA7xJRK2PsTwBARDOcaFlBYNHZQET4YEMYj5aux3sf7UTfUHdcPXkIbjzrJAzJt+krLIKBThD0yBQDRNQAoCH+u4kxthrACUQ0Xyi2FMD0TPFkYZErYIzhjJOPxhknH41VW/fE1yJswvNLNuLLYwfjps+dhIlDj8o2mxadFFnxETDGhgNYBGAsEe0Vjr8G4F9E9KLimpsB3Bz/OxbAygywGiSOAbAr20x4QEfjF7A8ZwIdjV+g4/GcTn6HEdFA+WDGBQFjLA/AewD+QERzhOO/AVAM4EpyYYoxVqlSb3IZHY3njsYvYHnOBDoav0DH4zkb/GbMNAQAjLGeAP4D4B+SELgewCUALnATAhYWFhYWwSJjgoDFllE+DWA1ET0gHL8QwAwA5xLR/kzxY2FhYWERQyY1grMAXAdgBWOsOn7s1wD+CqAXgAXxJfdLieh7LrSeTBeTaURH47mj8QtYnjOBjsYv0PF4zji/HXJBmYWFhYVFcLBr2i0sLCy6OKwgsLCwsOjiyGlBwBi7kDG2ljFWzxi7TXGeMcb+Gj9fyxibmA0+BX7c+P1mnM9axtgSxlhRNviUeHLkWSg3mTF2iDGW1QV/JvwyxqYxxqoZY6sYY+9lmkcFP27PRX/G2GuMsZo4zzdkg0+Bn2cYYzsYY8q1Orn23sV5cuM5F989R56Fcul/94goJz8AuiOWe+hkACEANQAKpTIXAXgTsQ2ZzwSwLMf5nQrgqPjvL2eTX1OehXLvAngDwPRc5hfAAAB1AIbG/x+b632MWNDEn+K/BwIIAwhlkedzAEwEsFJzPmfeOw8859S7Z8Kz8Pyk/d3LZY3gdAD1RPQxEUUBzAJwmVTmMgAvUAxLAQyI5zTKBlz5JaIlRPRZ/O9SxPIsZRMmfQwAtyK2/mNHJplTwITfbwCYQ0SbAYCIOgLPBODIeIh1HmKCoDWzbArMEC2K86BDLr13ANx5zsF3z6SfgQy9e7ksCE4A8Inwf0v8mNcymYJXXm5CbFaVTbjyzBg7AcAVAB7PIF86mPTxKABHMcZKGWNVjLFvZYw7NUx4fgTAGABbAawA8GMiassMe76QS++dH+TCu+eKTL57GV1Z7BGqbZvkWFeTMpmCMS+MsfMQexjPTitH7jDh+SEAM4joUA5srWjCbw8AkwBcAKAPgHLG2FIi+ijdzGlgwvOXAFQDOB/ACMTW1LxPQh6uHEMuvXeekEPvngkeQobevVwWBFsADBH+n4jYjMlrmUzBiBfG2HgATwH4MhE1Zog3HUx4LgYwK/4gHgPgIsZYKxG9khEOk2H6TOwion0A9jHGFgEoApAtQWDC8w0A7qGYUbieMbYBwGgAH2SGRc/IpffOGDn27pkgc+9eth0mDk6SHgA+BnASDjvZTpXKXIxkp9UHOc7vUAD1AKZmu39NeZbKP4fsOotN+ngMgHfiZY9ALEvt2Bzn+TEAv4v/Pg7ApwCOyfKzMRx6x2vOvHceeM6pd8+EZ6lcWt+9nNUIKLZRzS0A3kLMc/4MEa1ijH0vfv5xxDzpFyF2g/cjNrPKZX7vAHA0gEfjUr6VspgV0ZDnnIEJv0S0mjE2D0AtYjvhPUVEWUtZbtjHdwN4jjG2ArHBdQYRZS1tMmPsJQDTABzDGNsC4E4APYHce+84DHjOqXcPMOI5c7zEpY2FhYWFRRdFLkcNWVhYWFhkAFYQWFhYWHRxWEFgYWFh0cVhBYGFhYVFF4cVBBYWFhZdHFYQWFhYWHRxWEFgYWFh0cVhBYFFlwFj7CrG2LJ4Tvp6xtidLuU/zxj7u8c6+jDG3mOMdU+N23Z0pzLG/pcxFmKMLWKM5exiUIuOBysILLoEGGPXA5gB4KtENB7ABMRWxTqhCLGUECb0+cB/I2JpsA/5ZFUJiqVRvpNiqazfAfC1IOlbdG1YQWDR6cEY6wfgAQBXE9EWACCiCBHdxxgbHZ9hr2KMvc0YO0a4tAhAta4MY+zfjLEHGGMLAfwqfs03Abwq1D0mfm0tY+wXjLF6n234N2OMZ8x8JV6PhUUgsILAoivgCsR2pPpYPMgY64XYph8/JqJTASwA8P+EIkWI7Q+gKzMOQISIziOi3zPGQgBOJqKNcfo9APwjfu14xHYp85v3aGycF8RpTPZJx8KiHawgsOgKOBWxfP8yLgewmIg+jP+vA3AsADDGegLoh1hSsHZlGGO9AeQDuEugdwyA3cL/KwHUSNcmmZriGsZKxecyoUxvAD2JaA8AxM1OUcbYkeZdYGGhh3U4WXQF7ENskxoZhTg8ywZiM/w64dxqhzKnIqZliFtKHgDQW/g/HskCaCyAeSIDRPR5A/5PFfji6AXgoMG1FhausBqBRVfAGwCuYowdB8RMQoyx7yCW978wfuxkANcBeCF+TRFig7iuzDjEUl0nQLE9cbvHZ/AA0IjY1plgjE0AcC0Mnc8SkupijB0NYCcRtfigZWHRDlYQWHR6EFEFgN8BeCue878aMRPQ3wEcHz82C8CNdHjnKh4xpCvTThDEMR+Ht0H8O4BixlgFYtFEG2U/hSHkus5DTLhZWAQCux+BhUWAYIydBuCnRHQdYyyPiCLx478A0J+IfhtAHXMA/IqI1qZKy8ICsBqBhUWgiDuGF8bXFfy/eMhpNWJbEt6dKv14ZNIrVghYBAmrEVhYWFh0cViNwMLCwqKLwwoCCwsLiy4OKwgsLCwsujisILCwsLDo4rCCwMLCwqKLwwoCCwsLiy4OKwgsLCwsujj+P2o810sxd2oBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_cmd(candidate_df)\n", "plt.plot(color_g_i, mag_g);" @@ -476,7 +640,76 @@ "cell_type": "code", "execution_count": 66, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        mag_gcolor_g_i
        028.2947432.195021
        128.1897182.166076
        228.0517612.129312
        327.9161942.093721
        427.7800242.058585
        \n", + "
        " + ], + "text/plain": [ + " mag_g color_g_i\n", + "0 28.294743 2.195021\n", + "1 28.189718 2.166076\n", + "2 28.051761 2.129312\n", + "3 27.916194 2.093721\n", + "4 27.780024 2.058585" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "\n", @@ -534,7 +767,76 @@ "cell_type": "code", "execution_count": 69, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        mag_gcolor_g_i
        028.2947432.195021
        128.1897182.166076
        228.0517612.129312
        327.9161942.093721
        427.7800242.058585
        \n", + "
        " + ], + "text/plain": [ + " mag_g color_g_i\n", + "0 28.294743 2.195021\n", + "1 28.189718 2.166076\n", + "2 28.051761 2.129312\n", + "3 27.916194 2.093721\n", + "4 27.780024 2.058585" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "filename = 'gd1_isochrone.hdf5'\n", "iso_df = pd.read_hdf(filename, 'iso_df')\n", @@ -552,7 +854,20 @@ "cell_type": "code", "execution_count": 70, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEOCAYAAACEiBAqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABmxklEQVR4nO19eXxVxdn/d1guIBEwioLKogSECAQhqKBV1C5WrVvR2lbrq7Z207a/bthF7avtW6t1abVuuNdWailVjIqgEpEQMAkmAQJIkEUkbLkCuSy5CXl+f9w7l7mTmXPmnHvukmS+n8/93HvPmfPMM3POmWeeZZ5hRAQLCwsLi66LbtlmwMLCwsIiu7CCwMLCwqKLwwoCCwsLiy4OKwgsLCwsujisILCwsLDo4rCCwMLCwqKLI2OCgDH2DGNsB2NspeLczxljxBg7JlP8WFhYWFjEkEmN4DkAF8oHGWNDAHwBwOYM8mJhYWFhEUfGBAERLQIQVpx6EMAvAdiVbRYWFhZZQI9sVs4YuxTAp0RUwxhzK3szgJsBoG/fvpNGjx6dAQ7TDyLC/v37ccQRR8CtD3IdnaktQYOIwBhL9FGfPn3QrVv7eRgv15HQRoTGSBS7Is1obSP07tEdxxwZwoA+IXSwpnR6VFVV7SKigfLxrAkCxtgRAH4D4Ism5YnoSQBPAkBxcTFVVlamkbv0IhqNIhQKaf93ZHSmtqQLuj6KRqOorq7GhAkTPPdhNvo90tyKF8o3Yuaij8H2t+Crowbiu+ecjKkjju5wwqyrgDG2SXU8mxrBCAAnAeDawIkAljPGTieibVnkK61QveydaeB0aosVEjHo+iAUCvkWAn4FiB80HWzBC+WbMPP9j7F7fwumnTIQP75gJE4belTa67ZID7ImCIhoBYBj+X/G2EYAxUS0K1s8ZQJ+X/ZsI9VBPNODlVfkipDyw0Omnqn90VY8t2QjnlwUEwDnnTIQP/78KEwYMiCt9VqkHxkTBIyxlwBMA3AMY2wLgDuJ6OlM1Z9LyIUBxwuCGMT9DFZ8cE73IJ3rQsoEae2f1jbMqtiMh9+tx86mZpx3ykD85POjUGQFQKcB64hpqDu6j6AjIlODslhfdXU1CgsLUVdXl/ZBOlc0glzCoTbCq9Wf4sG3P8In4QM4fXg+fnnhKSgenp9t1ix8gjFWRUTF8vGsRg1ZdBxwISDPnNM1gIoaRCZm6lYIHAYRYUHddtw//yOs3d6EMYOOxLM3TMa0UQOtE7iTwgoCC2PIg3K6TSod0ZnuJBg7gtax9ONG/GneGny4eTdOOqYvHrxqHAa3NmDiSQOsEOjEsILAwgh8EBMHslRm6x1hUPQKJ8GY636I+h1NuOfNNXh79Q4M6tcbf7xyHKZPOhE9u3dDNDooJ3m2CA5WEFi4wmkQ8ysERHqdRSg4CcZcjRbb0XQQD729Dv+q+AR9enbHL750Cm46+yT07tk9USbXeLYIHlYQWLgi6EFMpJfrM2UvcBNoudS+/dFWzFy0AU8sWo9oaxuuPWMofnTBSByd1yvbrFlkAVYQWBgh6EFMtP93FiGQikDLlFZ0qI0wu+oT3D//I+xoasaFpw7CLy88BScPzEt73Ra5CysILFJCEANYRxcCQOr+kkxoRUvW78Jdr9VhzbYmnDZ0AB795kQbCmoBwAoCixQQ1ADmV5jkmm8hnYvtUmnrJ+H9+L83VuPNldtwwoA+eOQbp+HicYNtFJBFAnaHsk6CaDSa8TqCMOtwYRKJRIzrFa/LRLszATch4Ket+5pb8ee31uKCB95D6dqd+NkXRuGdn52LS8Yfb4WARRKsIOgECHpQVA3KujqCMAvx1cNeBnzZ4dxRBYIJ314Fblsb4b8fbsH595fikYX1uHjcYLz783Nx6wUjk6KBLCw4bIqJToKgzCSRSASzZ8/G9OnTkZeX7ED0U4fpNX4XYkWjUVRWVoKIMHny5JwyFakgtiUdvoHaLbtx59xV+HDzbhSd2B93fOVUTBpms4JaxKBLMWEFgUU7RCKRdkLAD4KKpHETJnxW3RGEQLpSdIT3RXHfW2sxq2Izju7bC7d9eTSuPO0EdOuWGyagXPPndFXoBIE1DeUwsmXuCEIIAMFE0kQiEVRUVDj2hbziOVeh6o9U+T7URnhx6Sacf38pXq78BDeddRIW/vxcTJ90Yk4Jgc7kz+mMsFFDOYrOtNDKD/igCQCtra3ZZSZAuN1LLzPn6k9247evrMDKT/fizJPzcddlYzHquCODYDNQdJa1Ip0ZViPIUXTkl4fP/IKaCfbs2TMItnIepv3VcqgN989fiysfLcPOpmb89eun4aXvnJmTQoCjIz7HXQlWEOQwcuXl8TKQi4OZHNnjtc7q6moAQHFxsTKJmx/+chk64S+2r35HBFc+ugQPv1uPc4b0wpu3TMWlRTYc1CI1WEFg4Qivs3rRpMP/+9EMxEFRl8mTh412Jvuzrq3Nzc14fslGXPzX97Hls/14/NqJePLb5yC/3xFZ4tSiM8FGDVm4wsRuLYdFVlZWJs3kg44akevLFe0pHWgIR/CrV+tQunYnpp0yEPd+dTyO7dc722xZdEBkPWqIMfYMY2wHY2ylcOx3jLFPGWPV8c9FmeLHwhxuoZuqWbk8wTAxD3nVGEz46+hY9NFOfOXRpViyvhF3XXYqnv2fyVYIWASOTJqGngNwoeL4g0Q0If55I4P8WKQI0Y4v2rZDoRCKioqSBmidCSdox3Iuw0vbiAh/W1iPbz3zAfL79sTcW87Ct6YMt74Ai7QgY4KAiBYBCGeqPovMgPsD5EFfThmhcoQG5VjuCPAi6JpbD+FXc1bgvrfW4rIJx+PVH56N0YP6ZYBLi66KXHAW38IYq42bjuxa+A4CcWCTBzhd9ItqkJc1iWg06rqAzCufuQDTcOAdew/i608uxayKT3DLeQV48OoJ6BOy+YEs0otsC4LHAIwAMAFAA4D7dQUZYzczxioZY5U7d+7MEHsWOvCBLS8vz3gLS1W0jwp+zB8mCeuyLRTchED1J7vxlUcWY3VDEx795kT8/Eun5MzqYIvOjawKAiLaTkSHiKgNwEwApzuUfZKIiomoeODAgZljsgvDbeB0infXlRdDQlWmoFAolIg2Mh24TTOUpsMHERS92VVbcPUT5ejZvRvm/GAqLho3OBC6FhYmyKogYIyJT/sVAFbqylrokY6ZrmrgdJp1RyIRR2cwhxztozMteRm43TaNdyvjF0EIl9ZDbbjrtTr8/N81mDT0KMy95WyMGWz9ARaZRcbWETDGXgIwDcAxALYDuDP+fwIAArARwHeJqMGNll1HcBjpzElkmjJZzhIqfpvwpst22hHWB6TC454DLbjln8vx/rpd+J+pw/Gbi8egZ3fvc7OO0E8WuQGbhroTQzUQpGNwkGnq6hUHf7dU0mJ5oOOtCfDbzx/vjODbL1Tik/B+3H3ZWFxz+lDf9Xfl5IQW3pD1BWUW6YNTCoZ01WNil+f/nfgRU1J0tHUEfvt58bpduPxvZdi9vwUv3nSGbyEAdOzkhBa5A6sRdFJkwlzgVId8TjT/OGkHQaZpzgS88ENE+PvSTfjf1+pQMDAPT11fjCH5NleQReZgNYIuhkwMlk5CQA7b5AvMnEI6dcJBRzcXYNrPLYfa8NtXVuKOV1fhvFMG4j8/mGqFgEXOwAoCi8ChMg/pwkadBnb5fDbNIKkIn937o/jW0x/gH8s24/vTRuCJ64qR18vuCWWRO7CCwMIYbqGhIsRoI/G/+DsUCqGwsFA7sKdja0c/SEUT2fLZfkx/vBxVmz7DA1cXYcaFo9HdLhKzyDFYQWBhBJVJx21wNJnxyzmJZOSCP8BNYOmwauseXPnoEmzfexDP33g6rpx4Ypo4tLBIDVYQWBjBydzDEYlEjHIOyedzHSYCS8b763bia08sRfduDLO/NxVTRhydRg4tLFKDFQSdCOl2ojolkYtEIpg1axbKy8sdHcDcYSzCaz6gTDuLvfom5izfghuercCJR/XBf39wFk4ZlLt7CVtYAFYQdBqkM6JGR1NMK5GXl4drrrkGU6ZMaecfEOlUVFSgsrIy6Rw3u+jakMnIIR1deQ2FDo+/tx4/fbkGp5+Uj5e/NwWD+ttNZCxyH1YQdBKkK6LGaXCuq6tLsp3n5eW1S0khaweTJ09OSipXUVGB2traRDy+054F6Wynqi6TjKYcRIT756/FPW+uwSXjB+O5G05Hv949A+fRwiIdsAvKLFzhdwGYSeoLVVSRG510LiozyZMk109EuLtkNZ4p24CvFQ/B/105zkYGWeQk7IIyC99wcvZ6uY5rALKWoDMlqZBu05BJtlLx2KE2wq//uwLPlG3A/0wdjj9aIWDRAWEFgUVGodt0Rk5jLYephsOxXU6DNg2lErraeqgNP3u5Gi99ENtN7M6vFNqNZCw6JKwgsPAEMerH66xc3HRGpllbW6t0GodCIRQUFGDu3LmIRCKBtYPX61e7aD3Uhh/N+hCvVG/FL750Cn7+pVPsxvIWHRZWEFg4Qo7YqaysREVFBcLhsK9BVDfLJiKtWSYvLw/Tp09HXl5eyqYhL+sc5PIcbW2EX86uxRsrtuG3F4/BD88r8MWLhUWuwAoCCy1UETvFxcUoKipCfX190gzeK10RPJpIpCVHHwWx05gukknHl6o8EeHOuasw58NP8dMvjMK3P3eyZz4sLHINVhBYaKHL9ZOXl4fCwsLEDF1eF+AEp30MdAN1UPmGnISIad0Pvb0Of1+6Cd8952Tcer7VBCw6B6wgsHCEbtAU00o7hSCrBnynaBzVuVQcw5xHlabhVLcqrPXFpZvwl3fW4apJJ+K2L4+2PgGLTgMrCCw8Q8wRVFdXh6KiIuNZttsaALc9CbyAayvl5eVJYatOWonu/LyV23DHqytx/uhj8ccrx/kWAm5tyXT6DCd40fIsOjYyJggYY88wxnYwxlZKx29ljK1ljK1ijN2bKX4sUoO4t4Bq43leRp5le3X0puIc5j6NKVOmJHwQKr7c+P5gQxg/mvUhioYMwN++MRE9fGwwb9KWdK+R8AJTXnKJZwv/yNjKYsbYOQAiAF4gorHxY+cB+A2Ai4momTF2LBHtcKMVxMridK5OtTgMk1XBflYoB1GvCdZua8JVjy/BMUf2wuzvTUV+39RopqOt6YIpL7nEs4Uzsr6ymIgWAQhLh78P4B4iao6XcRUCQcDOYvRINQJIPucUpaMqo1or4DbIqKJ9RAe23/u9K9KMG5+rQO+e3fHCjae3EwIVFRUJflU8qOB1NXY2YcpLLvFs4Q/Z9hGMAvA5xtgyxth7jLHJuoKMsZsZY5WMscqdO3emVGk6E5d1ZHgdMN3Km+w3IN6LSCSC2bNnuy4ck30OuiRwqjpMaALAwZZD+O7fq9C4rxlPXV+ME486ol2Z1tZW1NTUKFdF24mGRUdCRpPOMcaGAygRTEMrAbwL4McAJgP4F4CTyYUpm3QuPXBKACeq/7rfqrKRSAR1dXXGgjcSiST5HFQmHjkZnB9zk1xWpElE+NnLNZjz4af42zcm4uLxg7X1AodDX1XfFha5hKybhjTYAmAOxfABgDYAx2SZpy4JPtA5neNhmPIiM7ksj9DhYaYFBQXaQVGeNctCQGVakreNdEsM5wZZY3i0dH1iwdjF4wcry/BjogNa5NcKAYuOhGwLglcAnA8AjLFRAEIAdmWToa4K0/h+EzMLD63kg3Z9fb3STGJqWhJn4OIaBlOYlOV1zFu5Dfe9tRaXFh3fbsGY0ypkmV9rFrLIBZg+h5kMH30JQDmAUxhjWxhjNwF4BsDJcRPRLADXu5mFLNIH0/h+t3JiYrm8vDxPC8jcYvsBeNpIXrbfO6F+RwQ/e7kaRUMG4N7p440zpcr8Wh+BRS7Ay3NoN6axyAiczCWiXV23GQwvB8CxjFy+uro6kQ7DCfuaW3H538rQuC+K1390Ngb375MSTWsessgFyM9hrvoILLoAnGYm8jm3Ad5LxBc3TbkJASLCr+aswPqdETz89dO0QkCs342myndiYZFpmE5GrCCwSDtM/A8A2jmrdWGiJo5nU39CNBrFC+WbMLdmK372xVMweWg/o/Z4gTUVWeQ6rCCwyBrEyCO3dBRujlhVZBMAx3UM0WgU/5y/FHeX1OGC0cfipilDXFNA+IGTILTCwSIXYAWBRdqhmhG7rTrWhWvqZteiZiFfqxvc9x5owcOVERzVm+GeKwrRu3cv1zTVfndJM03KZ2GRDVhBYJF26AZ1E3+ACS0RsvlIV56IcOfra7EnCjz6zWIM7N83UV4XDVRYWOg5dNUJmVzhboWNhROsIOgE6AgvuddFX7L2YHKdbt2Bqvy/K7fg9doG/PSLozB5xMCkuiorK5Uzf6dQWBWfbshUZJHVPCzcYAVBB0dnfMnFNnndG1kUAnx/ZfnaNVs/w51zV2HqiKPxvXNGtKPR0tKCmpoarWYg8qniWb7Oz2K6IOGmeZjw0JmeL4v2sIKgg8OveUE3OAUFv7Z04HCbotEo5s6d65iiwolGcXFx0j4EABDZfxDff/4D9OrZDQ9+bQJaW1vaXSfvX6CCzpkNJPsknHwaXhbGpQonIeAmkDrjZMMiGVYQdAIEEc4Y5MsuZhFNJdImLy8P06dPd43Zd6Ih982Tizdhw55W3De9CEf17tZu0NZdp6Ktyz0kHtcN+H5SZaQDJtpCJn0ZFtmBFQRdEH6dtzJ0gxgfwEOhkPEuV068BiWg1m5rwmPvrcc5Q3vh3IKj2oWkeq3HyVfBoRvwc2lwNdEWcoFPi/TBppiw8IWgUi2IaaoB5xTYqQxIh9oI0x9fgk2N+/HGLVMw6Kj2PJvQ98NDtgZSt3rT1V6L3IVNMWERKEzDKd0Gorq6OhQWFgLQx/tzISDuOuYVLy7dhA8378YdlxS2EwKiScgJOpOaG7IlBNwWx5loQFYIdA1YQYDciYjIFT5kOJmAUjFviHl7TEwlfrXXrbsP4N55a3DOqIG4bMLxSedMnaUiv7rVz7kEXX/q2mLRtdHlBUGuvMy5wocMXcrloNIwyH4KHZ1QKOQayaPig4hw+ysr0UbAHy4f2y61tFv0jio6SLzWLY12NqESAk6bCll0XXR5QeA2c8o2H+mG20yYm27kwY6nWzAJlTSt3yTk0pQmv76ktgHvrNmBn31xFIbkH6Esq1szwOt0ui+qfjHRLvwg1WfSagEWOnR5QQC4z5yyxUdQ8GsnFk034jXicTlU0stAIy/CEiNUgjA57W8F/ve1VSg6sT9uOOskbXndBjQiPS/1phKzz8v5vdaEx2wilzQmi8PwLAgYY30ZY93TwUyuoDPNnOQBRHwRUxm4dVE8uqgfFcT6VfH3pjzpjv3h9dX4bH8L/njleHTvph7s+cKzoO61Ex2T/nbShjr6M5mr5k8LA0HAGOvGGPsGY+x1xtgOAGsANDDGVjHG7mOMjUw/m5lHR3/hOMQVr6oX0c/qWS9x926RNqLj1YsQEWnzVcxcs6isrMRTr72Pf1dtwbfPGobC4/V7DMj1+jVrmcLPQjXTa1NBJgbnziDMOitMNIKFAEYA+BWAQUQ0hIiOBfA5AEsB3MMYu9aNCGPsGcbYjvj+xPzYvxhj1fHPRsZYtb9mWHDI5hYOMT+/SZgkh2rhGf8Wc/3rZuaqcnI6Z52wcBI2nDYPYeX+CgAYNeZUPL8qiqFH9cGZR36m1IZU9TppT3I7veyF7BWZdj6nGprrBVYI5CZMBMHniehuIqolojZ+kIjCRPQfIvoqgH8Z0HkOwIXiASL6GhFNIKIJAP4DYI456xYqiAOvyuZuGisvDqxOUDmNRTr8mMiLav2BKixTPq6inZeXl3Bm87JPLW3A9v1t+P1lhejVo5uSH7GvVD4OpzbxRXDpzhUUtCnFiU5HXFhqERwyurKYMTYcQAkRjZWOMwCbAZxPROvc6NiVxWbQmVtMrzO53qmseEwOWRSvq1ZsRu9Wt3h9RUUFGGMoLi7GRzsP4LK/leGKCYPx56tPa8eDE4/iMd2qaT99YwIn01gq91D8X1lZqfWH+K3HomMh5ZXFjLF1jLE5jLE7GWOXxQf1oPA5ANudhABj7GbGWCVjrHLnzp0BVt15keoAYnK9U1n5mCqGXWc3NrGl8+/JkyejuLgY3br3wK/mrMBRR/TERcc3txvcTKPDVNFSqnpN/Bcms3k3h75X6Op2mvRZIdC14SVq6AkA2wA0AvgygJWMsRWMsbsYYz1T5OPrAF5yKkBETxJRMREVDxw40Klop4dfU4Efx25QPHhxgsoDolNdkUgkYfJ6tmwjVny6B7dfNBpnnz7RdbA25clPOKfsG3GCiUlK9W1CTzzmZUFeLsNGHQUPL4LgWiL6ARE9QkTfA3A2gHcB7AXwgF8GGGM9AFwJMz9Dl4dfu7HKSSueA8yjOrzyIGsB4jG5nOyjiEQiWkemmO76k/B+PLBgLSYe1xNH799kzKdJW1Wb25j2lWk/caEl+x7EfqiurjbeqCeVqKNcHmiD9ptYxOBFEOxhjI3nf4ioGsCZRPRnAGelwMPnAawhoi0p0OgykAcgt1kiH/hDoRAKCgraOWlVIZheeXCCLiJIdwxAu8Vq3KQhl+fprvv27Ytf/3cFunfrhoeuPROnn366cm2Crm1ubRYXnHk123gJl5RNUqJg4E7x+vr6tDqp0zHQBknLhqCmB14EwXcBPMsYe5oxditj7BEAPIrI9a4wxl4CUA7gFMbYFsbYTfFT18DFLGSRDDm6RhfKKG8QoxtEeBRPOBzG7NmzEQ6HjXkwKad6cXX7Icg+Cm7SAA7PruWooX9VfIL31+3Cz75QgKED+yn9AjrhIx5XDVih0OEFZ37s/l6h6hMuGLhwdEv7nQr8DrROQlanifqFFQJpABEZfwB0B3AVgLsB/ATA0QD6AvitFzqpfiZNmkQWMTQ3Nyd9y2hqampXVvy/bNkyam5uTpxrbGxMHAuKN12dKl6fffbZJJ7F60Q++fcn4X106h3z6GuPl1H50qWOfIvnmpubqaysLImuji/5OtP2BtGHXuDUBrlckGhqanKs1+28ReYAoJIUY6pr+ChjjJFLIZMyQcKGj5rBNMRRhGlopEndqrBQmS+5rkgkogzZ5OGcfBMbbjK69ullqN68G/N+cg6Oy+vhyQ5eUVGR5EBVtVvcOMctnFXX3kzCJOw2SD6dQm298GWRGejCR00EQSlii71eJaLNwvEQYg7j6wEsJKLngmTYCV1VEJi+THxwN3nheXw5px1k3p0gByVV/P4L5Rtxx6ur8IcrxuKbZwxLG398kDNd2xBE3elE0HUH2S8W6UUq6wguBHAIwEuMsQbGWB1jbAOAdYiFfT6YSSHQVSDP1HU2bvG3aPMGzByVoVAI48ePx9SpUwMVApy223kvQkCkufLTPfh9yWpMO2UgvnH60MD543Vym3wQTlTRsR+03dwL3NodNL1ciPLJdv25DldBQEQHiehRIjoLwFAAFwA4jYiGEdF3KBY9lBPoLDdb9fKoImBEJ2dFRQW4luQ1o2hdXV2ijkzDT6hq08EW3PLP5cjvG8IDV09wTSPtFWKdbgvfnPjkx1U0Tbb51NWTLqRj0M6FKJ9cEUa5DOMUE/Eso7cBOEBEt6SVKxeoTEO5YqMVkYpKbGrfF+PNeZQNP2dio0+Vz1RpqEw+TucOtRFueu4DvF/fiBf+ZxLOGnVcSnz74cukrMo8Z9rvTsfT/Yx3BDOOHx47QrsygSA2r/87gNkAzokTHMsYeyEg/lJGpmcebrOLVGchJu0QBx0+q+f/df2h0zbkMl7gt61O4a+qWTkA3P3aSpR+tAu//lIBeu7elDTjDhKm4aIqPnXmObmfnQZ7XShrEM+4U3tyfbD0+6zleruyDlUokeoD4IP494fCseWm1wf5yXb4aLbC9EzqkkNCVSGNbiGQbm1Thax6batMwy1sk4ho5qL1NGxGCd3x39p216YrPNHkHpvw7pVmuuC3r1JpTzqus6Go/gCgihRjqheNYCtj7CQABCQyhvYJVix1DJjOzDI5CxHr4jluKisrUVFRkVhQZjKbctIk+Lcq1YGXtups8HIZ8dhT73+M37++GmeeEMJtF45KuiZbdmjum1HBqy/B5Fp+vV84aYpu1+l4TlUb9NueXF79nKuIt1E5ZnsRBD8BMBPAIMbYDQBmAVjpeEUnRjYGHbdzokkiGo2iuLgYRUVFqK2tTQxYYpoJHU0ncxJ3dKaS6oAPRk7t4fURER5/bz1+//pqXDRuEJ7+9ufQp3cvV56DgMnmMypHtR9BawJ58PQyeIlmOC8hyG48mzjRVUilH4IW/G6OfrdjHQXx/jqgOmeyVeWXGWPHE9FGxEJJfwTgZADvAbguODYtdHCbkfGkaPwFiUajmD17NqLRWAqG4uLiRJqG+vp6FBQUADi8qYwb5IHbJNUBAFfauvp5fYfQHT9+aTnueXMNLh4/GH+55jT07dPblV8vcIrycdt8RrXuItUZvxPEAdDrjNpLpJKJH0mmbUrH5DoTBB3mrNoPw8lv1YGhjA4yWVD2FIAJAI5DbL/iagA18e/VRHQoQCaN0BUXlDlFkqg2HFGt0OXH+UpZPth5yThqEoUEAOFwGHPnzsX06dO1AsNp1e6mxn347t8rsXZbBNNH98bd15yN3pImkGokiNwm1f+gI6G8XK/773bclLbT9am2IRUecwVOkWwdFb5XFgsEfgJgJIBVACYhtpgsTEQnBsinEbqiIHCC28OpGlgA7+kkdC+GLCD4sYKCAuTn52t5UNXfeqgNzy3ZiPvnf4Se3Rnunz4O5446xqhePzAddL1e45c/nXByS+FgyqtcjxPdoPrYiY9s0emqCCJ89AYi+iHFFpfdhNiuYosD49DCN9yEgLjwjEO0+cvqr/jtVo/OXjthwoQkISDbtmVncVsb4Y0VDfjig4vw+9dXY8rJR2HeT87BF8Ye78s2bQpReKn+i1A53HXmAr/8cROO6AhPZfGZUyiqG103X45J/W58eKWXDtNMBzf1BAIvgmAvY2wS/0NEVQBGBc+SRSrQDUiys5C/4OJx8beT80xVh1iGO6xlHuTBLRQKoelgC/6+dBM+/8B7+ME/lqN7N4bHvlGE7xYCxxzR3bGt6XIWutmH5bboBku/ZiF5cBb3ZvACN2HkRFc1afACWdgHJbSDjg5z8791FXgxDY1CbFFZHYAqAOMATCCiM9LHnhqd2TSUiuorqvJA8uyWm2rq6+sT53lZ0Vcg8qAa4AsLC1FTU+O47aFbG8JN+/HPt6uwen8fvL16J5pb2zD+xP646eyTcMn449G9G0vZZOUVJuYenU8jSBOKrm7d+aBs+TJ9v74SmTfAv0DMlAkoFdNeRzNVpewjiBPpjti2kuMR27v470TUGBiXhuisgiCIAYWbL+QBSzVgyKahUCiU2Mzm0ksvTSRbE3fMAqB0Tju9EAeih1CzZTcqN4ax9OMwPtgQRvRQGwb06YmvFB2PKyaegNOGDGi3E5hJH5imidb1gVfoBrdMDQjR6OHgAAAJ4WzaByIdpzb4dUQ7Od/90gkSQU4w0smnV15MywfhLK4AUAtgBf8mop3GnAWIzioIgNQfVDcnoDwYigML/x8Oh/Hxxx9j37592LRpE6655pokDUE1e66urkbh2PHYFmnFhl37sH5nBHWf7saa7RGs37kPh9piz9mo4/Jw7qiB+NyIfPTYvQnFE09znI0B7uGJJo5U3s7Ro0cntCK/M1Wnlz/dAiEajYULFxUVJaXG9vrc6Bz82XC+m9AJAukYuDMxAfDKt1P5IATB8YhpAuMBFAO4GMAuIvKeCD5FdGZBYAI+K/USzinO5sePH58UI88HllAohMrKShARioqKEteGQiFULf8QJ4wYg537D2HbnoNo2HMADXsOJn5v3X0AO5qa0SY8Tkf36YbxQ/IxetCRyGveiavOK8axA/o68mnaRhMacrklS5YgFIql3fYTgeNWZ6ZmiLIW5Hf2ni6tJpfNJU73Lhd4Doq/tGkECoJjAEwnorsNyz8D4BIAO4hobPzYBACPA+gNoBXAD4joAzdaXVkQmM6WVdcUFBRg9erVmDx5MqLRKGpra1FcXIx9Bw6i/MNVyD9xBLbtPYiGPQexfW8z1mzehoOsD7Y3NWP73oNJgzwA9OnZHYMH9Mbg/r0xqF8fnDCgN04a2BfDj+6Lk4/JQ58elBio5N3AvLQ3iBeAnwP8mXW8CJwg/RVuA4NO+KRrRu02SGVq1h20T8Tv8xkkMjGRCEIjGErCDmXxY7OI6BrD688BEAHwgiAI5iO2sc2bjLGLAPySiKa50erKggDw9xJ8uvMzlFbVoa3vMdh5AKjf0YQ1W3ahqbU7du2LQn4Mjgh1x6B+vTGoXy8M6t8b7MBuFI0ahiH5ebHBv18f9OvTw3gvgEyYTAC1BuEmHNw0q0zarMXZvq49bjRScfY61aHrW5WZyVRLdeMvHWYsVX+p/F46vtOJdNcXhCAoBzAEwAbE/AQHAVxAREWOFybTGA6gRBAEbwF4hoj+xRj7OoCvENE33Oh0VkGgWw3sBXv2NmHnQWDlp3ux8tM9WLl1Dz7aHkF43+FQuG4MOPGoI3BC/17o3XYApww9DhRpxOSxIzHk6CMxqH9v9OvdAy0tLZ61j6Ah9omJSQZIXihnMiiaRI2kw6Sgc66KPg+vtn/Auf1+odOmRB69mMzEtjo5uoN2znvRoDLpDPYLr/0QhCAYTkQbGWMFiIWO5gN4i4i2eGBiOJIFwRgAbwFgiK1pmEpEmzTX3gzgZgAYOnTopE2blMU6LHi0jlNKBhnRaBQHWw7hw0/2oGLTHpSt24GVn+5BC8Vm6b16dMOYwf0w6ti+GHlcP5w4IIRIwwZ8/swiHNW/X4KG00scDoeTFoYBmYuYEfskFAoZO2l1g7gfp5vbTDyIKC+nAcmLSaqiogKMMU8RXSZlTMyRfpzoXgSIrl4/cGur/MxkwhnsReMTj3t9/oIQBMuJaKJ07EwiWmpEAEpB8FcA7xHRfxhjVwO4mYg+70anq2sEH++M4JWqTXh75RasC7eipQ3ozoBxJw7A2MF9cdqwYzD2hP4YMbAv2g61ory8HFOmTEEoFAsPdVsHwBEOhzFnzpxE1BAfaERna7pmTfzhN9EInK6XjwHOUUjp9mF4pe1VcAHOs3bdNSZOebdyJs+vH58Pr9dvmg3Tek21lCBhIkCDjFLzLQjiA/REAF8FcCmAj3iiOcZYLRGN98DEcCQLgj0ABhARxfc32ENE/dzodFRBkMqg8Ul4P16r3YqSmgbUNewFAIw+Lg9nDB+A04cPQN/9DZg6eWI7+pFIBLNmzcI111yTCDcU49CdXvyKigocOHAA55xzTmJ2JDqZ3RyaftpsOjB5RaovXBD1B2HP9lu3m30fMA888Nt/qfSxl/UiqdQbtCbgRfvQlQ9ysqETBCY7k50A4FsAdgF4E8DHAJYDKAGwzO16idZwACuF/6sBTIv/vgCa3XPkT7Z3KPMDPztDtbW1UVn9Trr+mWU0bEYJDZtRQpc+/D7NXLSe6jZupaampqTdyMS6RDQ1NSUd5+UXL17suvMUv1Y8Jl6X6m5nMl8m7fEKE16DqMeJbrp2UDOpW/zWndf991OXE62g6MvPpZdrMwWn+646l4nnBEAlqcZm1UFlQeAs4Xc+YhlI+3q4/iUADQBaAGwBcBOAsxFLV1EDYBmASSa0OqIgIDJ/GNva2uj12q108V8X0bAZJTTxrvn04IK1tH7bblq2bBk1NjbSzJkzaeHChUkvBB9AVQ+TfLy5uZnKysp8DeRetojUbWupo6EqZ1qHUxu8DhxBwetA7FTWpB75mJeBxWtfBzEJcKOjQlNTEz377LPKe5qJAd9LHV6f23Tz71sQALgz/j0VwJFu5TPx6aiCwAQrtuymrz5aRsNmlNB5f15I/1y2iQ5EW4koeQBtamrSzib8zP5018iCRkXTbSYo87Z48eIkIeQ2iKUirHgbgp5pmQo/pxmh06xQJeCd6nOqxwu83JNUBLSKphfohEC6Z9S6e5YteK07FUEwJf79MmIJ5z4C8AqAuxBbUGYFQQBoa2ujZxd/TAW/fp0m3T2fXlq2iVoPtTkOKqmq9aJQcdMiVDN38bhoflJpGqrrdPx4bY+b9qMr4/cFdht45f5wul7FI78fXNjLglPXnqBgKliCqjNTAjooGroJWLrqc7rOi+mVKAVB0O4CoBdizuPrAfzZ6/VBfDqbIGhra6PfzV1Jw2aU0E3PfUCf7TMzm6RqMikrK0sadNxoiHwsXryYSktLqbm5uZ2vQud7SLU9XuDWdhOtxIS+6jq5T02Fntj+pqamRD86aX/pQjZnuSpkih8/fZuqEEj1PfZCPwgfwfkAngZwP4Ab4j6CXqbXB/npqIJAd9MemL+Whs0oof+du4ra2tqSynp5CGRzgtMDxgdDPsh4NSs0NTVpB1ITnjOpYuva5sSLKV3ddaIw8GMrlwV1OjWAdNIMov5MCD4dH361Ur/1qc7pJk+mECckQQiCrQCuAHAVgLsBvAqg3vT6ID8dURDozAFL1++i4beV0E//VZ0kBLhTWIZu5t7Y2NjOgeY2kDc2NmoHKy8zFSczSyqzmSCu8aM+B8VPKi+v0/V++tqtXBADjpf6dPWbaKap1OOFhpdnJ12OcfEauY/c3m/5mrKyMtJFZnrZoayeiP5LRP8motuJ6DIiKvBwfZdGKHR4J6vq+I5IRIS7Supw4lF9cNdlpyby9oRCIRQUFGDu3LkIh8MJGuFwGLNnz0YkEkmiHY1GUV9fn9hDwA18bcHy5csTi3TkGGvOr1P8Mo+BrqysREVFRWINAOeJx2+Lx/k5fr3quA46ek7l3drhtsjMDW79Y0pb7jvd9U59atI3unJiP5nQ8nIPqoUd8HQIhVLbktPrs+HEq9j/JmsPTMv55VF8Dngf6XYRBA6vyBd3IwyFQnxCr4ZKOqg+iGkB/w/xRWjZ/HREjUAEl+SL1+2kYTNK6F8Vm5Xl+Iydz7h1WoJIU/zvFHXT2Njouo7Aib54TK5DNjvp+BKPBTVz182edGVNzFNBaxNu98pvUECQZgy3++3FVMNno6rnzaRtTvW5PedeEYQGG7QWrKNhohHI5RGAaWgOYhFD2wC8DuAPAK4yvT7IT0cXBBx3vrqSTvntG3Qg2pq4WaoFXKrfMlQvQnNzs6ON2suDLb5sqgFLrL+5uZlKS0sdncbiNUG9yDJPJvZ5N1OA26DndVDUlVcJRj/004VUTUe65zMIk4qpMEkF6TATZQIyPzpB4Hk/AsZYHwCnAhgLYCwR/dwTgQDQUVNMyLjskcXo26sHnrt+IqqrqzF06FDMmzfPMfGcbll6eXk5evTokZRDSJXN0gROeXr4xjWTJ09OOi/Xb5LXxym9gd/ka3K+Gz8pLrwu8Q+iDvm82DdA9rbGDKLOIFOQmNQVdNpqkbbXNByZTF5nwo8uxYQXHwEAgIgOEFElET2XDSHQmbCjqRmD+/dJ+AQ2b96MSy+9VJvLhdsFVfbBnj17JnYZ4+D2Qa9CQGdDDoVCKC4uThI2vGyPHj2S6uflOU25Dm7vFMvJPHBfSDgcVvogZPB8NNxmzPnwAlV5XTt017jZgE1tzrwfZMj9kyn4FQJOdvGgB0eVvd7Uhi9D9Q64lRHLifcpVf+FX5gKIGNBwBhbxxibwxi7kzF2WTyBnEWK6MYOO3v5zF1+aHgCuNraWqVzlw/QqgHfz0xVnImq6Ik0uaCZPHmydo/kysrKxKAlvhyyY5ALO9EpxjOgHjhwIKmc2Ed84OfbbwJI6cVTXZeqM9aEF7mMuJ2oCC+OVV1bMgFeT6bz+TsJc1OYOszdhBx/P9z2W0gHPDmnVfYi1QfAzwE8CuAWxLaXjCC2Qc1dAHqa0gniY+ojyBU7nQ5fevA9uv7ppUTk7gtQOV5FpNthqbqe+wCc7PvNzc00f/585ZoDuc2lpaU0c+ZMamhoSDqvczqrfAyp2LDlftCVMaUl/jfpT6/rKkzt1WL/+bFh+7HhNzc3ax3EQcKP78DLfUz1Hrhdm+mFgdD4CLyYhq4loh8Q0SNE9D3EEsa9C2AvgAc80MkIgggnSzdGHdsXtZvDRjbjuro65XH+7TWsUi4vqs8qVVpFmzGGaDS2KXx5eXmSSUa8hu9hIIdDyur7pEmTcMkll6CkpCShGQBAXl6esn+42UTUYLi24TT7cgq9dDIjmM4qVTN4k1BclUnDSz2q84WFhaitrU2Y1ryaSfzOjFVmRN21fuFkclFpjX7MNG5lU9F0/JqsTKEZV5R7y3oRBHsYY4m9B4ioGsCZRPRnAGd5ZTLdSHcnB4Hik45G+GAbPtmTPHg6DdKqcl7bqiuvG4ScXvRQKATGGIgo6WXj5qxIJIKNGzcm1SMLDH6strYWeXl5GDlyZJLD2aQNXCjoTCa6gUDVf+l4ZkxoqsqIfgA/g2ZeXl67AdnN5yHzJDte5WudnicTp7ifdommQNWzorqnbmYaGX6Epleki7ZD36qjg1RqguoDYAxiKaOfBnArgEcAlMfPrTSlE8Sns4SPNuw+QMNmlNBf3v4o6bjbykG/5o9UYBq6Kq5WLisro8bGxnamCdFkIJp/ZFMTNyfpTEmqbydeVeajdK2mDQJiuuWgzQh+TUROK9H98uEXuRRim04e/D6nqnJI1TRERKsBnA5gHoBjAdQDuIQx1hfALA/CyiKOQf17Y+qIo/HSB5vRcqgNQEyS19TUaFVYWRNQIRPmMHlGyGdlotN79OjRmDt3brvZyfjx4xPhp6LjmEcd8XZRXMvgzmZR2+C/Kysrk0L0OD86cM1BdmTmiilRrD8vLy8RSuxHw/WiUZlAN6tOpe/8OFDl+yy2JR33z4/mFCTk9pn2tYaX1ExDjLGjEds8Pg/AawCeIKJGItpHRL83pWORjOvPHIKGPQcxp2pz4hhjzPHBEiNJnARFUJAHYV0d4kABAPn5+bj00kuRn5+fsOPz6CexvHwdBzdnEFFSpAxweACn+DoYlU2Y8y6C8yGnxTB9kdMZsqnqV7FPvAqBdNi3df4d00HQS9SVl+itIIW57OdKceANBCqh5xXxNvRRnlSpCaoPgEUA7kBsl7H3AEQBrDG9PshPZzENEREdOtRGFz74Hk394zvtNqBRbU5SVlaW2JlMjpgRywUFbgZobGykhQsXtjPXOEGlLrttqKOKWnIyQejMRcuWLaOGhgataYX3r9dUCbqdsYJCEKaSIGgFDfG+uvWfW+Sal0ghP3zm0sYzXmDCMwJIOnckEd0FYDsRnQvg6wCe9SyWLJLQrRvD7V8pxKe7D+CJ0vrE8fLycsyaNSsxC+cmkPHjx4MxlphVi4nsRHOSaRy70wyXm2y4qScUCiWif0zUcJWjUY5+EtctVFRUgK8Y1zlvVQ5JcVbPzUSFhYWJBXp8Vi3T9BrfzU01mZj56aDrc51D3+maTIEHDgB6Z74IXeSaCVK9N36it3IBsibloMWk7CzmjuFlAPrEf7/n4fpnAOxA8ub1RQDKEVuP8BqAfia0OpNGwHHTc8to1K9LaP223UR0eMbKf8uzcXlWLjtdeS57fkw1u5JnuKqZujh787rfgdtx1QzWdMav4kOnSXid5bnNRv04WYNwSPvp8yCcmEHMssXnMZ190BkQhOPdQSNIOencVxHbtP5niG1Efys87EcA4BzEdjYTBUEFgHPjv28EcLcJrc4iCMSb9Ul4HxXe/iZd80Q5HTrU1q5sY2NjOxOLLnlZU1NTu41RdMns5LzluofJy2Bq8rJ6LWMSsWK6yQ4fmJzq9rK7mNM5XhfPxppqhlU/g0QuDLxubfdiismmUEs30i3ofAsCxHYmGygduw7AvQBOdbteum64JAj2AonEd0MA1JnQ6QyCQDV7/eeyTTRsRgk9V7YhqVxTUxPNnDlTudmECFEbcJqF6h42kxfQdGD0svWl+Fs+pmqHqizvIzF1t1M7nFa8OgkdJzj1q9O9kMvl2ow3CF50zw4/x9vsVVh61cxSyXSbjntiMmkJEjpBYOIjeBvACsbYVsbYfMbYnxGLNnoJsRDSVLASwKXx31fFhYESjLGbGWOVjLHKnTt3plht9qEKCbuy6DicO2og/u+N1ajbujdxHACGDRumXBzDwe3vRUVFiYVeTguk3BaU6Wy4su1RFebKeXGLaJLDD8PhcCJUVCzLVy2LPgAVrZEjRxrZ/UOhkOOKV9PFR3KEkm7hn+5eqOy6QOZz87ghVV7Etuno8yR7uvxKKnqmq4S5H0z0R6kizEzaEKS/xSkCKl11aqGSDpQ8i78FwHIAtyFm3vkOgL8CWAhgm9v1Eq3hSNYIRgOYj9hCtTsBNJrQ6QwagQwu+Xc2HaTT/7CAzr33XdpzIJqYvbiZMkQaTsdSNduIMzGdZqLjRb5ePNbQ0EBlZWU0f/58WrBgQYK+ONOXZ/JyBJLbJjQLFy40mg2azMJ42+XNg9zMaU51BW0SMkUmtA+T58Fp4yWn65ygi/SS6zW9536Qyn31eq0bPfjVCIjoEcRSSBCAhwC0APgxEZ1HRINSFEJriOiLRDQJMQ1jfSr0chGm0pzPAo7J64VHvjERn3x2AL/8dy169OiZlM5BpKubSYhlTNJVqHhxyrcjz17dsp7K9csz4SVLluCVV17B6NGjMWnSJGzcuDExk87Ly8OVV16J+vp6RKPRxHaefOEdj6Zy0kL4d319vess0u28OPsvLCxEfX09CgpiO7byqCeTtQmqxW9OmodIVwfTZ81vnHwq0PWBuDiS96eXmH03bUVclCdfz+tVpdAwbYMb3PrXjabTM6HSxHWLUF2hkg66D4B+AH6PmJP3DC/XklojODb+3Q3ACwBuNKHTUTSCVOy9Mxetp2EzSuj+t9Yo6S5evJhKS0uNZkRO//3ClI6oNehmv01NTVRaWpoU5aSzpcsaiU47EOsWy6hoqXhVtUN1P0Wbtqnt2akeFcT0G240TWaYQcfJp3K9Vz+VVzj5qrzuRucX6dK4/FgAkIKz+HOIrSh+AMCbiJlxSgFc5HatROclxBajtQDYAuAmAD9GbPvLjwDcA8P9kDuKICDy/xC0tbXRL/5dTcNmlNDsyk+S6HGTiWpxlzjYqQbCIBZE+RnIVFtXir/FHEVuL6Ts9FO1y810oKtD93I5ORn93GMvTlHTvjblI8iBKV2DZxBwe9519zJV02Gu9YXITyqCoA3AhwB+CWC4W/lMfDqSIEgFzS2H6Jonyqng16/T0vW7EjNDrgnIgz1/8GW7tYggNILm5maj6ByxTh4+KdLgA5y4elm36b1cv6rt4jkT27wf34YTvA4AueAfCAK5zJ/X593LJMTpfDpXn6cCnSBw3bOYMfZdAOPin9EAGhFbALYibuZ5xd0AFSw6y57FJtizvwVXPFaGxkgzbp96JM6fNBpr1qxJ8hlwWyeARMSNnMNf3stXB5GW7nxFRUVijwE3mtxuWVBQgPz8/KRzkUgENTU1SfsVLFq0CH369NFG9XB6YsSV2A+VlZUoLo5tySqf52WA5L2X5SgNP1E7vF/c8u/rrtXV63Y/so1c588P5Ag13Xkd+Ip8t4izbPSb7z2LiegJIrqFiM4louMAfBHA84iZeL4aPKsWIvof0RPP33A6evfsjnuW7cPetl4JIcCdpPJAd//99ycEAhB7MMV0FTqYOA556KVua0xVeZ0TkG9xKdLq06dPu72XVfR0L6qcbkIOE+T/VZumpJLQCwBaW1t9XacLO81o+KAPZJO/dNbplsDOxEHtJgRM+y1Tfetn8/otRPQGEf2JiK5LB1MWyRiSfwRevOkMtBHwzaeWYtf+Q4nZr7ype15eHqZNm4ZQKJR0buTIkQCcd1zSDYSqeHkvgyV/MXQQI0B0ex+LvPC9jHksuYqWKiKECxGe70iVL8k075AKPXv29HWdXG9QawrSPdCkKjj9gmtfqsg5LzSckGrbdO+QF9qZFLSeBYFFdjDyuCPx9HWnIRxpxjdnLsXu5rakWa34sJx77rkIhUJobW1FNBrb+WvSpEmuAzKgD0H1usWfCibhbqrBWT4vhm3W1dUlLRjiZiExLFGE2AdyGKsKbi+jKCRlc53JdSqIA0UqQkAlKMXzQQw0qQjOVAQV3ybVD/+m16XSNlV94r1QPeeq+jMlaK0g6EA4bfgxePr6Sdje1IxrnlyK8IE2hEKhpP0CVCs4iShRDlAPyDqYrrJ1gi5eW2cS0ZlzODgv+fn57bJZ8sFTRVf8FmfcTn3ithagoqIC27Ztw+zZs41nfSbx3n77WbzebdtOIPhVzKaDrEk5nTDjAt/PM6l77nRlgcMrk/0KHtW9UNHyYoYyfX+NofIg5/qnq0QNiRCjFD7Y0Ein3jGPzrn3XdqwfXdSlIIYUcMjcPh2kTyiSFy9aZqbJxW+5ZxKXsMxVWVUezWo6Ij1yTH/ujp435mECZaWlia25JT5crtW/p9KGKaXcFin40EgyDBW02R1XtZvmD5z/L7y98a0Hqf6df+93H/5/fGyjSVSzT6aS5+uIgjEmyuHpH1Qv4PG3jmPpv7xHVrX8FnSNWJI5YIFC+jhhx9OCIDS0lKaOXMmbdq0KUk4yHWq6KXCv0yL8+eHNn853TKn8k18xIHf5IXh15q+lLycyToNp5DRVMJPvVyf6XDPVJ4dp+tVAt4PL7rnh08GvIRKpwIv9OWJFf/txqcVBB0M8k0V00nzc8s37KSi/32LTv/DAlrTsFc52C1YsIAefPBBeuONNxLXrlu3jm6//faEpqCrUzzuZ5BymqF6ibdWzZzknDSqAV5cdCe3JWgtSLxP8nHVi+pXCIp0/VyfquYh00q1PtOBWXed6r6nKnhUxzItPE3qVGkDViPohJBvqsq0sbphD53+hwU09s559Ozr77d7GJqammjTpk302GOPUWlpaWJ2s27dOqM6+TG3QV0Fky0J3c7rZms6PlRlVem7/Sw0cjonL5gTj4vCSGxTECu8TfiTzwexStmLQDFN86AS2F7r9iN4chGm/etFGyDSCwLrLM5h6CJexGiS0YP64T/fn4pjj+yF/1vShLdWbU8KraupqcGWLVtw9dVXY9y4caivr8fQoUOxePFiZUSJbkGTzqmriybiYZ5ujmi3aB3gsENXxaPIh47P2bNnJ84XFhaitrYWNTU1xg43k+ii1tbWdjRDoVBSWnB+THTApwIvEUoi//J90TmTVfRMnOhyed1zINJQ1ekUx+9Ut1cnfa7Bi0NbDo0WnwlPUEmHXP90FY3AC8KRZrrib4tp+G0ldOeL7yRmVOJHnIU6pfs1nWW4aQQm15nSl2fVIpx2a+Pn5eOyyUbnE5Bn8nzLRVVdqnoylYfHi0agMrWZaHupmKO8ljMxc6iuT2fgQybgpCU5XSO+3079AKsRdG4c1TeEf3z7TFww+jg8t+IA/rxgHZZ/+CGAw7NQvgl9NHo4JTOApJmuOGtyC4EUZyMquM3K3GY94vHYM6xOE801JV07VCmIgeQZJ6cv8inzCgAtLS2oqqpqt5APAGpqatrFiqvWbTiFjar+m0DUrnRhsGJZmUdZO1PN0v3GtZuWlzUcrzDhL+iY/KC0C1Ufq0Kp5fJiX4mLJT3fJ5V0yPWP1Qjag0v/ltZDdNt/amnYjBL6zvMf0L7mlsR5cZbAfQWNjY1J0TVEZrb9VFIZ+3XmyVqNSKexsZFmzpyZlJrbLamczm4utk8OG+QzLtXsX5VhVdZW5L5zO+/Ev3xc3hfZywzerx8oXcjlmbusZTtpkqb0TDaCMgkZ9esjyPqg7udjBUEy5Aejra2NZi5aTyfdVkIX/WURffrZ/kQ5cacvLgT4t2qwdapTV386Ib8Yoirc0NDgOKDqTECqstyh/OyzzyZ2TxMjt1R9JJubOF2VMBHr1UVAqdruNGCI99DPAO5U78KFC3Mio6YXE1i66i8rK0sIfN298Po+mAprDr/3AkAVWdNQ54SsTjLG8O3PnYynr5+MTY37cdnfyvDh5s8QiURw//33IxwOgzGGUCgEIkJeXl7SPsfyKkjR3KEzNfhZ4em3rfxbVIULCwuxefPmdiq2XGdLS4uSpsh/JBJBbW0tQqEQLrzwQnz88cdJpqy8vLxE3bIpSFzpzfkSd0bjmSk5PVVCPqd+dNo5TnRK8x3NTO6J6p7K59esWYOqqqqMOFpNnN5+zvupUwbvZ57aRXcvvL4PJiuIRdOZWyCGA5Tppq0g6CRQ2RTPG30s/vWdyejdsxu+9uRSLPy4CdOmTUN+fn4i7fOYMWPaRdmID3IkEklE3eiW/PP6+fVOkG3v4nGvEKOoxMFZpFVRUZHgvba2tp0vQK6fR1q1tLQgGo1i/fr1GD16NKZOnZr04utSOPCXlEdwcL44r3JaBNM0CZFIBG6p11UpNeQ2eokQ4sjLy8O1116LKVOmpD3vjRM/Jj4lvynEvQgQnQCQy6QqNHV8mfqevMAKgk4E+UWIRqPYs3kN/v2d0zFhyAD8bPZKLN43CNHWNlRVVWHRokV4+eWXsW3btsQAX1FRgfLycgBIhFzyPV91OVNUDloV5JBQ2TmoS5Dm1mYnZ2ZrayuqqqoAAMXFxZg6dWo7nkRhBwCTJ0/GlClTEI1G0draijVr1ijboapP1BoikUg7DYCX4XTE/zqIwslLv4jXR6OxvaHlvY9NB095f4t0wUsAAdA+h5RfHrOVc8kJbn2hy8nlp04rCDoZ5IeGiJDfN4RnrjsNXx7RB88v3YxvPF2Bz6IMEydOxLBhw7B27VoUFhYCAIqKitCzZ0+Ew2HMmjUL5eXlSTTFGWw0mpwKWxeBIvImr4MQTSR+1F1RiKgiTcaNG5fQAuRoIXFAnz59OkKhUGLWHY1GMXfuXIwbNy7J5MLp8Bm/zjTA94CorKxM9K2Kb93MXaY3efJkTJo0yWiwEs1E0Wg06f6MHj1aGSGkqzsbMB2Q5Xvv1yTkJ0JJRUeEX+1Ehqn2I2oJLn3BlEdVjoN0fAAMAbAQwGoAqwD8OH48H8ACAOvi30e50bLOYnPIztI3arfS2Dvm0bg759Hcqg1UWlpKCxcuTMrfI24daeKcM3G+OjnVUk3opXKMitt6ipFE/JyKL+5ElyOEdO1TRS+JEK93SwjnFoni1Kc6pyU/x53IJs5u3fGgYErLa7lUeHS7jyY85Mp6Eacyzc3NBKCOshk1BGAwgInx30citmF9IYB7AdwWP34bgD+50bKCIDWsa/iMvvzQezRsRgn96t/LaU8kFlXU0NCQKCMvmjINK+T/5UR2uhdFTiAnw0/khRxR5CXCSSUYVPmK5EHVTzSLyO/ChQuTon5U18jCjNev4tGpTeL1cl1ew1m9wJRWpgdW+T66CQane+mXBy+8OpV3owVgOWVTELSrGHgVwBcArAUwmA4Li7Vu11pB4A2qgXBvZD/d/t8aGjajhC64v5TK6jYnBmRxAOQaghgux8/LSd3EGb5IS+ZB5ku3Wb2XAUEua5oB1ISu+BH7wnQmqWubOFMvLS31lABQlXrcT9tUdQWlEaQyYGaynHx/eUZeU83MCx+qur3knXJrh9skR6cRZMVHwBgbDuA0AMsAHEdEDQAQ/z5Wc83NjLFKxljlzp07M8ZrR4dudeiRffvgrsvH44UbT8ee/VFc90ItwsdNQp8j+gKIOUxHjx6N2tpaLF26FK2trYntIbkTFUhekSs6SrnNXV6Zq+JLLOfHkSmW5bSd/A0mzlm5LHeiV1VVJXZ+4+GjKnpODnTeTiJCNBpFVVUViMgxJJdfU1FRAQBJuYq4r8KPg1Ll2zH11ahWvIrndBEvJjANew1qExzuJ+DPbn5+vvLZUz2TqThqvfjH3MKBDR3tB5QnVdIhnR8AeQCqAFwZ/79bOv+ZGw2rEXiD2yzi7UXldNOzS2nYjBK66rEyen3hkqSVxwsXLqSGhgaaOXNmwm8gmzFEelyT4P9NTRZ+UzOrZrZB23tFM5OYr4lrRiqzjWqWLppyuLYl9pdTu1RptXXXOP3m/+UV5ap6nWbAbqaxVE07pppgELSC4NWrBut2f/zSdgJyIdcQY6wngP8A+AcRzYkf3s4YGxw/PxjAjkzy1BXgNov43BkTMfP603Hf9PFYtXUvfvHuHjz6Vg3GjBmDvLy8xOKzkSNHJsIIxQVoMnjMPp/hOMWFixDj70VaTpA1CzkqyQtkGuJxvnCN8xkOh7FixQocOHAAlZWVqKysTKxXkNshLwQSM5LW1dVh/PjxSfmQ+MxSDPXkGoAYDaSCKiRXNSMOhUKJtSSqWbt4jdPM2GkdhJ94fvG3yWw/KA0jiOgeUw2Wa3bl5eXKsFdZw1CFXAcOlXRIxwexsKUXADwkHb8Pyc7ie91oWY0gOMgzjPptu+mi++bRsBkldM0TS2j9tt30xhtvtMu3r3ImizNJN/+ACn6zd/rVIHR1qfiWZ/VlZWU0f/78pNxDJtqITtPg58SZNvcbyDZk037hWp3qXoj+AB2tVDbP8aqVqdqU6uxXRyMIuiZwsvuLviYVgu4HDuSARnAWgOsAnM8Yq45/LgJwD4AvMMbWIeY8vieDPHVpiDHmHCOO6485t07DXV8ZgxWf7sXFjyzBq6s+wymjRydmrdu2bcNzzz2H8vJyhMPhBB1xBltbW4slS5Yk2TVlG6r8m9tJnRaIqeBllmSyWtMtNj0vLw/jx49H3759E3Wr9opQ1S3/r6mpSWgTYlqKUCiEHj16KG3IOq1Fpl1fX4+CgoKENqOKu3ea0fvZHB5AYmEib5cJdIvzVDC1w+v8M6ku9HKrE0C7RYoy8vLyEmkqVDDph0Chkg65/rEaQTAQbf0qbNi+my69/y0aNqOErvjbYqrbuoeampro4YcfpgcffJA2bdqUFB2kmjWLERk8WRf3M6hmuk6z3aBmT6Yahpvvgf833eier2tw0qR0molbFJSXPQVM+kBFx7SsuAucU259L5qTTN/UF+KWgTZVyHWbRq55oRtkedjsoxYquD1ABw8epJeWbqCxt79OJ//qdfrdq7X05tsLE+sEnDJnyqaO5ubmpNBSMeupG0/ySyYP0vKGHF5NE6r65P+qgc1NmIqQhaNJ3aIA9TtwejmuKpdKJk2xr8Q2uAl8L2s9nNIzB+Fg9SuUUqnPC9+6iYoKVhBYpITtn0Xotv/U0vDbSmjy7xdQSc1W2rt3b9KOXaJNmkhth+YDqrjyN5UZuoq+6eCpqkNFXyXQvLx8cj26F10Xv+9XqDlpCrLvQMenyEcqUAlMP4JNV9aP1mFK28/+EKny4PW51T2TMh2dIGCxcx0LxcXF5JaJ0SJ4RKNRvPxuBV5c3Yo12yMYN7AHrhnJcEK/EFpbW1FfX4/LL78cmzdvTti15SyJFRUVKCoqQl1dHQoKChyTmYlRRyqbuCp5WyQSSezCxo+ZtEuuQ7Qh83Oq/zzCRsWLCuFwGPn5+e0ieLhNma+/4D4TsR5TyPzo+qm2thYtLS2JrKK8LI9YIiIUFRUlfEPieTHayEtuoHTYu1X3z6lur3ykwjfnjWegDbIefp/EXFjiOyO+g/w8Y6yKiIplWjbpnIUxQqEQLj+7CHdO6Y3fXnQKNuwFfresFRUHj8OESZMxZsyYxEIc7mgEkpO88VBUnodfB6fwRfml5k5W2UFnKgQ4P3J5VdieHKIq8slTRau2sQRiQuChhx7Ctm3bACCprLgIr7KyEjU1NYlkdV6cm7IzlPMdDocTIYtcWI4fPx49evRQhpgWFxcnBLYYxsgdzeFw2LGtfuGHlujoV9FShWO61SPvM+EXpgvGvCyOE8En8uL9lkN7jaBSE3L9Y01D2QVXN7fvOUA/emk5DZtRQmfd8w7NXb6ZDh482K68HG4p09FBTH4nXuOk/qqclE7t0C2Kks0xbjZtE3MLUSyfk5iuQ+VQ5G3wmwxNZXLiO60tWLAgyWTGfTaNjY3Kjc9VphwxpNXUbGViYknFDOPmH/BixxfTTAQFEzOY6fOqek7d0pHwc7A+Aot0oWzdTvriA7Ekdl++7y36cOOudg9lQ0MDPfbYY64DpQxVUjrdwy8PyCbQCRM/+WRM6mxubk6sD1Dxys8vWLCAZs6caZQzSTcAiIO0mENKHuC4017eftF08PKymlZ3XLXeQb63bnH3QfoHVLmGgvCVyPDSfzIPTrypJkxEekFgTUMWAFLLQz+14Bi8/qOzcfflY7F1P3DF40vxvafeQ0M4kqC9du1ajBgxAoCZqYOfz8/PT2yMI0KOOxdj48U8PG7Qrf5VmYqcTATiOgiTdtXU1ACA0mzQo0cPnHnmmbjkkkuS7PMyHXH9gWgG4SagRYsWJXZo4yaDoqIirFmzJolefn5+u+0XdaYK2eRkutZDvEZ1XNx2lLdNNDtxs6IKvM2m9ZlAzjWUrvUHXvqPl1fx45QTyYi2Sjrk+sdqBMHC66zECbv3RemO/9bSybeV0Kl3zKOZi9ZT074D2vxDsvnDzUSg0wTKysq0GSNNEMTMz4spym02x80T4kxe7iPdDF7MYaSa7ZtGUznNMlPpB7msznwjax1OqcpNQ3hTgd91Aan0l99zOsCahiycEPRLVLclTNc/s4yGzSihc+99l+Z+uJna2toSdS1btowaGhqSUv6apGnQmQDkQdG0TSa26SDhpQ5RSIrrD+S8+bwM96eo8uqb9IvJgOXXjq0rqwvz9Wrm8dsmU/h9RtyuczqfSooPXV1WEFikDU4P6lsrttCUu9+gYTNK6PK/LaZlH8fs0/wh37RpUxINNyHg5BST/5ts4pFqtlIVUllRyiHz4+QjETUB3apeN57cBnAvA6GX63SC3a/dXPyfyuDt5bhbGT9CzE0L8ksPQBUpxlTrI7BICW6202mjBuJP0/rh95eNwdbdB3D1E+X49vMVaNhHKCgowLvvvtsupz/PyqjLB6TL1Cj+B5yzNfKwUZUdNRU7sFuOGRUfqmNym+RcQ3JuJDlvUF1dHYYOHZq0RsGNJyebuNhXqnxR8roI8bebDdzJvu0G3f2X76+f8FvV8+eFF6frdP0lHlP5ukx8UC65tNQLx1TSIdc/ViPILbjNuvlnf3MrPfLuOjr1jnl00m0l9Mt/11D9p7uSyjc1NdHMmTOpoaHBOE+NW04bFU9+0xuYwEvEkmleJSd+VPWJUVpiGS9tVmkHsibitCeB28xaNOmlAhOzktdIMtHU5kTbjRddGb+aiokvRDYbioCNGrJIF5xm3Xx2Ul1djQORPfjOWUPx53OPwJdO6oX/LN+Cix/7AH98fRX2HmxJaAZXXnllYnWyTEf+L8/8TPl1yqGfat53VcSSaibnxofTf7EvxL0f+LE1a9bg4MGDSTN6p9miKkpKpMcXkwFI0qJ0exI4RR2Jx3WRQCZwiphRtU8V1aW7L6FQCAUFBZg7dy7C4bBjm1R1u5Xx+4zFxnJnRKNRT1opAJtiwiK94KtYw+Ew5s6dm5RCobRiBd7c0gOvr9qBAX16YFLvnfj65BNxztlTE9fzJfRA8gvOhQZPhcBDH03SDQQNt9QAMk+6AUx3XARvt5jmoqKiIimlMReQS5cuRZ8+fRIrhHXpKjh/YhoEkWf+v6amBoyxpJQGfvpFXhmuWzXudszrfeZ0xG+e8kQXbhwOh1FfX59070xNROl4Bk2eEeDweydDl2Ii62YePx9rGuoYkFVgVVK15uZmWr5hJ339iSU0bEYJTf2/t+mVD7fQgQMHtaYDUW2XV7eq1GIvZpagnaHyNc3NzbRw4cIkFZ/zzyNodGq9GFIqO49F04+c4M+kXarQWz8ZXU3Nc7prVQvsdOYQp7pMAg6am2OL9/xmdnVCEMEHQZgu5XKwpiGLTEJlslHNUKqrq3Hq8f3w3P9Mwq/OzEO/Pj3x41nVuPDBUixcuzOhDXDwGXFBQQFefvnlpEVVfEOU2trahFrMZ2cm6r2J6u/kRHWC7EAVt4nkzm05v48MMR9RTU1Nknlo9uzZCIfD7fipq6tL5BLiZeX2RKOxTWxE8xB3UAPJpiCTvnHa1MfpWm7CEdsGtM+nI/aj6p653UexPVOmTEFRUZEnZ7ZJu0xMRE5wc/qa8MQ1HiMeVNIh1z9WI8hteA01FDWGQ4fa6L/Lt9DZ97xDw2aU0KUPL6KnS95PzIJ52gU+m1Olvpadl3KailRnf6pQTi8wcW668Sin7xZn9PKsfuHChe0c8KIWoqtPPiZqJLpyOu1PR1t0zMo8yf3hlutJpqsqowqR9Zv7X9cmv7Td6HnlSdWXsOsILDIJL0JAXgjV3NxM0dZD9HzZejrtztgahEv+/BaVrfk0kadHrEOVHEweELzmONIN1qL5gpuuvAymJvW5DSC8Xr7Tm/xR7aUg71/Mf8tmEfk6GbxODh0Np/UZYv2qBIJO7dYdd4te4sednhUT6J4jp8HYhKYbTExybs9fc7N+QVnGTEOMsSGMsYWMsdWMsVWMsR/Hj18V/9/GGGvvxLDokDB1qAFIpKQuKCgAEDMX0aFWfGvqyXjvF9Pw24vH4NP9wDee/RBPf9QTb5bXJkwJkUgEc+fObRchIZsNQqFQu9w1brxxs0k0Gk3sxyznxZk8eTLGjx+f4Fvkw9TU5NXcFAqFMGbMGMyZMweLFi1CeXl5Uq4d0cHL+1hMDy5G+8hOZt4GVYppHo3Ej/OIpdbW1nb8yWscVOflfZ5FfnXRPLr+4I5uVb/x+vizws2EbnRluK3H0NWdCk3APM+Rrq/FZwyAOkxLJR3S8QEwGMDE+O8jAXwEoBDAGACnACgFUGxCy2oEHR8qE4bTLHJ74276+TNv05jfvE7DZpTQLf9cTut3NCVMQTqI2sOCBQscUy2L3+LqXHnWK89g+TldOmvxW+6DVFY2i45yURswSdUh86TqA9XsVpUnybQO3TmdGcgpt5AIXXtVWoq8PsWNRxm6rKRe1rHIbUmXRiBriDmhERBRAxEtj/9uArAawAlEtJqI1maKD4vsQ5z5ccizQ7n8xvq1uPOqM/DeL87FD88bgXdWb8cXHlyE7z79PnbuP5QoJ86IIpFI0sYq9fX14GHH8qxZdjhXVVUlNocRZ86q2RmPheczUxFimKKT48/PymbufOfX6mbaKpqy1iNqTpyWHK7LN8yR2+DF0SrXLzuWOT2nuH/VqmtxEx/VRju8bwYNGqRcQe02I+eQs5KKtJ3Wajj1gYlG4uR8Vr1PXIsFoH2vRGRlHQFjbDiARQDGEtHe+LFSAD8nItcFAnYdQceHSTy2XB44/ELsbGrGo6X1eHHpJjAwXF18Aqb234v+vRgmT54M4PB2fXzADIfDSZFLcpy8KjJGxaMqthyIrXloaWlBjx492plc5C0FndpZXV2NgoIC5OfnG5VVbUmoKqda9KWL55evr6ysTEQ6ucXTm95bVVw/AFee5Bh5sRwX/ro1E6r6xWvk8k7ndO318mx7Lat7jnRrJMTnEMihdQQA8gBUAbhSOl4KB9MQgJsBVAKoHDp0qKsqZdFxoTNZqJxxn362n277Tw2d/KvX6ZTfvkG/f20l7Wo6qKSjM5voomF0vKli3fm3F6exTt0Xdw1zg5xCwmtdKqhMDLJpLJUUHbrrFi9e3C4ayo2+zhziBpO0JG4mKhU/6URzc/toMfm8fJ9kAFhOqvFVdTBdHwA9AbwF4KeKc46CQPxYH0HnhWzTNLG9NjU10avvLKFb/1FJw28roTG3v0l/fGM1NUb0kT8qGl545N+qgcBkUJDbKV9jsreCTrg52cudBhEid3u77tukDrndMlQRSCp6OoGko61qixxyrIMX+71T37q1yQTyQK8675aLCNkOH0XMW/0CgIc0560gsCAi9eDiVFZ8qddt30u3/nN5QiDc82Z7gRAUj7oB03SlMf845eQ3oUPknqbaJLxS3ovYxCnKNxxyyp2vEypO7dHVydvqpBHI/1X9G5R241RWd3/dBnS3elI5rxMEGfMRMMbOBvA+gBUA2uKHfw2gF4CHAQwEsBtANRF9yYmW9RFYcKhyr0SjUZQsqsQ720N4Y+V2HNGzO66fOhzf+dzJOKqvs51XZbPV2dJ19l03u69ss1e1gZcT7by6/DGir0BnO9fZ4Tk4bbf2yXSWLFkCxhh69OiBMWPGJMJT5TaY5ijS8Sz6AGbNmoWRI0diypQp7dqi41nVZrntKj50fe5GR7zHInh7nHJoiTS8+NFMkDM+giA+ViOwIHIOv+T/P9q2l374jyoaflsJFd7+Jt07bzWFI3pTgdMsOEh7sOksk6v6Tn4Mft5kxavJTN+EL9ms1dTUpM3bY6LZyHSdtBcxbNbENCT3gUxL1x9O4cBOvKvKqniVj8nbk6bjWUO2NYIgYTUCCw4+23PL9vjR9ib85Z11eGNFA44Idcfnh/bAb746BccO6Jug41UjSEdbnOoOh8PtIonkmafqerlv3OoxgSpyh0cWOc2gTbQloH3El0lbnDQrlQbGNRWZZ5GO0yzfrQ9FOk68ic+dH43ALYJLbLvVCCw6NUxnTmsa9tL3XqigYTNKqPCON+nPb62hz/alJ+LDy2zObQbodbbrdN6pDhMaOl7Emb/Khu/V5q7iSZfnyKT/5Fm4Kl2EmwZoqhk2NTUlZZM1Sbnh12dgEv3EgWw7i4P8WEFgkSpqN++iH7xYRcNmlNDYO+bR/W+tod37ooHR97PxuInjM1U4DeJO0TwmJhLZpOLlOhNeTf6rvuWy4mCuM7Vx6EJ4dfdGpi2afWQeTPrACar2uglDaPYszvqg7udjBYFFUFjdsIe+/2LlYYEwf23KAsFpkPFKI4jBX0Vb/JaPq/jwss2jUx06+k4Dqxf6XoSQ2xabJutL5IFfFgByG001Cqf6ZJqq8yJv/HdZWRkBWE2KMdX6CCwsAKxu2Iu/vrMOb67chiN798CNZ52EG88+Cf379PRFLwhfQrr9Eaa7aAXFh84Pw9NcqGzxXldKi74FJ75VUVIq2k5RQ2JZzr9qZbMuss3ramSVr8NtNThR8u59vXr1Wk5Ek+TyVhBYWAio2xoTCPNWxQTCDVOH48azT8KAIzKz7WUmkU5Bo6pLlw6DZ+CcPn16O0epW4iuibNYhqo+mbYJHbGsyhltmv5Dvl7XVl273XjjcHIWW0FgYaHAqq178PA79Zi3ahv6hrrjW1OH49tnn4Sj83plm7W0IIgIFbfyYmSMnARNF8tvGhEFqCONdHDSCDgtP/shq445CTN5rYEoHDl/qkgpL9qcuI5DpxHYrSotLBQ49fj+ePy6SZj3k8/hvNHH4vH31uPsPy3EH16vw46mg9lmL1DwgUWeQfotpyvPB8WamprE/g4cqsE7FFLvayDSEzNryhlL5W8R4iDLz/NMqIB6bwEnOJXVnRP5F9so7lHA2+V0nRtfRUVF4pavR6jKWY3AwsIA9TsieHRhPV6p/hQ9u3fD108fiu+eezIG9++TbdYCQSY0AvEYYL4hjEhHt4raqZxsmtGZWmS6ftZbyPT8ahVcCADwtDJbhpw9lTFmfQQWFqli4659eLS0HnOWf4pujOGq4hPx/WkjcOJRyolWl0aQPghxgI1Go0q7u84Ba3KtfL2bSQZwX7gmmsBMBYiKlnzeix9BXuSn8xFY05CFhQcMP6Yv7p1ehIU/n4bpxSfi5cpPMO2+UsyYXYtNjfuyzV7OwKsZyYQWN92oTCOq+sSBkw+KfLMh0akrl+e/dRvQAM5bcHIhwE1g8uY7Is9OvIv119TUJLYkVdHhpjaRVjQaBRHJgkO5VaXVCCwsUsDW3QfwxHvr8VLFJzjURrhswvH44XkFGDHQLFFZZ0a6NAKnkEm3WTeQvJ+1qXPZKx+ctk4j8BIKKvLO+ZfPickJRc1HDKUFgF69eq0momSnA6wgsLAIBDv2HsSTiz7Gi8s2obm1DZeMPx63nl+AUccdmW3WLDQw2X1MhJtpSC4rax0mIaBe1xeozF9AcgSVyLddR2BhkQHsijTjqfc34O/lG7EveghfHjsIt5xfgFOP759t1iwU8OP8BtxDVXm5iooKtLa2JrYvdfNRyFqCU5I9UZDx4zpBxc/bdQQWFhnEZ/uieKZsA54r24im5lZ8fsyxuPX8kSgaMiDbrFkEAJ02Ia9DkGEiQHQagW7dBIDEAjknhzKgdxZbQWBhkUbsOdCC55dsxNOLN2DPgRacXXAMfjBtBKaMOBqMKf12Fh0E8qCtSi/hdk0qdcragWwGknmIRqPo1auXFQQWFtlC08EW/HPZZjy1eAN2NjWjaMgA/GDaCHxhzHHo1s0KhI4Ov87ndPECtE97UV1djTPOOMP6CCwsso2DLYcwu2oLnli0Hp+ED2DksXn43rkjcOmE49Gzu43m7sgIMkoqCKjMTFYjsLDIIbQeasPrKxrwWOl6rNnWhBMG9MHN55yMr00egt49u2ebPYtOiqz7CBhjQwC8AGAQYpvXP0lEf2GM3QfgKwCiANYDuIGIdjvRsoLAorOAiPDumh14tHQ9qjZ9hqP7hnDj2Sfh2jOH+U6BbWGhQy4IgsEABhPRcsbYkQCqAFwO4EQA7xJRK2PsTwBARDOcaFlBYNHZQET4YEMYj5aux3sf7UTfUHdcPXkIbjzrJAzJt+krLIKBThD0yBQDRNQAoCH+u4kxthrACUQ0Xyi2FMD0TPFkYZErYIzhjJOPxhknH41VW/fE1yJswvNLNuLLYwfjps+dhIlDj8o2mxadFFnxETDGhgNYBGAsEe0Vjr8G4F9E9KLimpsB3Bz/OxbAygywGiSOAbAr20x4QEfjF7A8ZwIdjV+g4/GcTn6HEdFA+WDGBQFjLA/AewD+QERzhOO/AVAM4EpyYYoxVqlSb3IZHY3njsYvYHnOBDoav0DH4zkb/GbMNAQAjLGeAP4D4B+SELgewCUALnATAhYWFhYWwSJjgoDFllE+DWA1ET0gHL8QwAwA5xLR/kzxY2FhYWERQyY1grMAXAdgBWOsOn7s1wD+CqAXgAXxJfdLieh7LrSeTBeTaURH47mj8QtYnjOBjsYv0PF4zji/HXJBmYWFhYVFcLBr2i0sLCy6OKwgsLCwsOjiyGlBwBi7kDG2ljFWzxi7TXGeMcb+Gj9fyxibmA0+BX7c+P1mnM9axtgSxlhRNviUeHLkWSg3mTF2iDGW1QV/JvwyxqYxxqoZY6sYY+9lmkcFP27PRX/G2GuMsZo4zzdkg0+Bn2cYYzsYY8q1Orn23sV5cuM5F989R56Fcul/94goJz8AuiOWe+hkACEANQAKpTIXAXgTsQ2ZzwSwLMf5nQrgqPjvL2eTX1OehXLvAngDwPRc5hfAAAB1AIbG/x+b632MWNDEn+K/BwIIAwhlkedzAEwEsFJzPmfeOw8859S7Z8Kz8Pyk/d3LZY3gdAD1RPQxEUUBzAJwmVTmMgAvUAxLAQyI5zTKBlz5JaIlRPRZ/O9SxPIsZRMmfQwAtyK2/mNHJplTwITfbwCYQ0SbAYCIOgLPBODIeIh1HmKCoDWzbArMEC2K86BDLr13ANx5zsF3z6SfgQy9e7ksCE4A8Inwf0v8mNcymYJXXm5CbFaVTbjyzBg7AcAVAB7PIF86mPTxKABHMcZKGWNVjLFvZYw7NUx4fgTAGABbAawA8GMiassMe76QS++dH+TCu+eKTL57GV1Z7BGqbZvkWFeTMpmCMS+MsfMQexjPTitH7jDh+SEAM4joUA5srWjCbw8AkwBcAKAPgHLG2FIi+ijdzGlgwvOXAFQDOB/ACMTW1LxPQh6uHEMuvXeekEPvngkeQobevVwWBFsADBH+n4jYjMlrmUzBiBfG2HgATwH4MhE1Zog3HUx4LgYwK/4gHgPgIsZYKxG9khEOk2H6TOwion0A9jHGFgEoApAtQWDC8w0A7qGYUbieMbYBwGgAH2SGRc/IpffOGDn27pkgc+9eth0mDk6SHgA+BnASDjvZTpXKXIxkp9UHOc7vUAD1AKZmu39NeZbKP4fsOotN+ngMgHfiZY9ALEvt2Bzn+TEAv4v/Pg7ApwCOyfKzMRx6x2vOvHceeM6pd8+EZ6lcWt+9nNUIKLZRzS0A3kLMc/4MEa1ijH0vfv5xxDzpFyF2g/cjNrPKZX7vAHA0gEfjUr6VspgV0ZDnnIEJv0S0mjE2D0AtYjvhPUVEWUtZbtjHdwN4jjG2ArHBdQYRZS1tMmPsJQDTABzDGNsC4E4APYHce+84DHjOqXcPMOI5c7zEpY2FhYWFRRdFLkcNWVhYWFhkAFYQWFhYWHRxWEFgYWFh0cVhBYGFhYVFF4cVBBYWFhZdHFYQWFhYWHRxWEFgYWFh0cVhBYFFlwFj7CrG2LJ4Tvp6xtidLuU/zxj7u8c6+jDG3mOMdU+N23Z0pzLG/pcxFmKMLWKM5exiUIuOBysILLoEGGPXA5gB4KtENB7ABMRWxTqhCLGUECb0+cB/I2JpsA/5ZFUJiqVRvpNiqazfAfC1IOlbdG1YQWDR6cEY6wfgAQBXE9EWACCiCBHdxxgbHZ9hr2KMvc0YO0a4tAhAta4MY+zfjLEHGGMLAfwqfs03Abwq1D0mfm0tY+wXjLF6n234N2OMZ8x8JV6PhUUgsILAoivgCsR2pPpYPMgY64XYph8/JqJTASwA8P+EIkWI7Q+gKzMOQISIziOi3zPGQgBOJqKNcfo9APwjfu14xHYp85v3aGycF8RpTPZJx8KiHawgsOgKOBWxfP8yLgewmIg+jP+vA3AsADDGegLoh1hSsHZlGGO9AeQDuEugdwyA3cL/KwHUSNcmmZriGsZKxecyoUxvAD2JaA8AxM1OUcbYkeZdYGGhh3U4WXQF7ENskxoZhTg8ywZiM/w64dxqhzKnIqZliFtKHgDQW/g/HskCaCyAeSIDRPR5A/5PFfji6AXgoMG1FhausBqBRVfAGwCuYowdB8RMQoyx7yCW978wfuxkANcBeCF+TRFig7iuzDjEUl0nQLE9cbvHZ/AA0IjY1plgjE0AcC0Mnc8SkupijB0NYCcRtfigZWHRDlYQWHR6EFEFgN8BeCue878aMRPQ3wEcHz82C8CNdHjnKh4xpCvTThDEMR+Ht0H8O4BixlgFYtFEG2U/hSHkus5DTLhZWAQCux+BhUWAYIydBuCnRHQdYyyPiCLx478A0J+IfhtAHXMA/IqI1qZKy8ICsBqBhUWgiDuGF8bXFfy/eMhpNWJbEt6dKv14ZNIrVghYBAmrEVhYWFh0cViNwMLCwqKLwwoCCwsLiy4OKwgsLCwsujisILCwsLDo4rCCwMLCwqKLwwoCCwsLiy4OKwgsLCwsujj+P2o810sxd2oBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_cmd(candidate_df)\n", "plt.plot(iso_df['color_g_i'], iso_df['mag_g']);" @@ -575,7 +890,18 @@ "cell_type": "code", "execution_count": 71, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "117" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "g = iso_df['mag_g']\n", "\n", @@ -594,7 +920,76 @@ "cell_type": "code", "execution_count": 72, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        mag_gcolor_g_i
        9421.4117460.692171
        9521.3224660.670238
        9621.2333800.648449
        9721.1444270.626924
        9821.0545490.605461
        \n", + "
        " + ], + "text/plain": [ + " mag_g color_g_i\n", + "94 21.411746 0.692171\n", + "95 21.322466 0.670238\n", + "96 21.233380 0.648449\n", + "97 21.144427 0.626924\n", + "98 21.054549 0.605461" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "iso_masked = iso_df[g_mask]\n", "iso_masked.head()" @@ -651,7 +1046,20 @@ "cell_type": "code", "execution_count": 75, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEOCAYAAACEiBAqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABnSklEQVR4nO19eZhUxfX2WwIN6oiKEk2CggoICDMsMyoYRbOoMQYjkkRjzKKJMYtZfl8SkpgElySucY8aiWJMVFCiBJEoqAPI6swAM+IAMiogOgrMiE6zdM9yvj+6q6murqpb9/btZWbqfZ5+ZvreWk5V33tOnaVOMSKCg4ODg0P3xQGFJsDBwcHBobBwgsDBwcGhm8MJAgcHB4duDicIHBwcHLo5nCBwcHBw6OZwgsDBwcGhmyNvgoAx9jBjbDtjbJ3i3i8ZY8QYOzJf9Dg4ODg4JJBPjeARAOfKFxljxwD4AoCteaTFwcHBwSGJvAkCIloCoFlx6w4AvwbgdrY5ODg4FAA9C9k5Y2wSgHeJqJYx5lX2SgBXAsDBBx88btiwYXmgMPcgIuzZswcHHXQQvOag2NGVxhI2iAiMsdQcHXjggTjggMx1GC/n4JAL1NTU7CSi/vL1ggkCxthBAK4BcLZNeSJ6EMCDAFBeXk7V1dU5pC63iMfjiEQi2u+dGV1pLLmCbo7i8TjWrl2L0aNH+55DN+8ONmCMbVFdL2TU0AkAjgNQyxjbDGAAgNWMsaMLSFPOwV/2eDyeutaVXmDTWMQxd2fo5igSiQQWAvIz5eDgBwUTBET0GhF9gogGEdEgANsAjCWi9wtFUz4Q9GUvNLJlMsXOrIqFriDPRWd9phyKB/kMH30CwAoAJzLGtjHGrshX38WGzvbChsHEgzAr3l+umXSxCykbdLZnyqG4wDpjGurO7iPojOA26HzZojlzHjFiBOrr63O+4nU29sKgtbUV27Ztw759+wpNSpdCnz59MGDAAPTq1SvtOmOshojK5fIFjRpy6DzgQkB2ZuaKgYoaRD7MHk4I6JFLIblt2zYccsghGDRokIuWCglEhKamJmzbtg3HHXecVR2XYsLBGjJTzrVJhffTmZi0aS46o+kp17/xvn37cMQRRzghECIYYzjiiCN8aVlOEDhYgTMCkSlns1rvjEzRCyam2Vn9EPnQyJwQCB9+59QJAgdPmJhYUCEgttfZmKMOJqbZmSN7OiPNDv7gBIGDJ8JmYmJ7nXWlrIKXLd0x1OJESUmJZ5m7774bw4cPx6WXXoo5c+agvr4+b33nA04QOFghbCYm2v8760pZRLYCrSsIwq6M++67D/Pnz8djjz0WqiDwg/b29py17QSBQ1YIg4F1diEAZO8v6SpaUWfHrbfeioqKCpSWlmLatGkAgKuuugpvvfUWJk2ahD//+c+YO3cufvWrX2H06NF488030+p/8MEHuPDCC1FWVoaysjIsX74cAHD77bdj5MiRGDlyJO68886MfokIv/rVrzBy5EiMGjUKs2bNAgAsWrQIZ511Fr7xjW9g1KhRORu3Cx91CIxscuPI7QRloMUkRILSYiNEim2sucB1z76O+vc+DrXNEZ/qi2lfPsmq7IIFC7Bp0ya8+uqrICJMmjQJS5YswQMPPIDnn38elZWVOPLII7Fp0yacf/75mDJlSkYbP/3pTzFx4kQ888wzaG9vRzQaRU1NDWbMmIFVq1aBiHDKKadg4sSJGDNmTKre008/jbVr16K2thY7d+5ERUUFzjjjDADAq6++inXr1lmHggaB0wi6CPKxmpT7CMOsw4VJNBq17les11VW0V5CoCuNtVixYMECLFiwAGPGjMHYsWOxYcMGbNq0yVcbL7/8Mn74wx8CAHr06IFDDz0US5cuxYUXXoiDDz4YJSUlmDx5Ml555ZW0ekuXLsUll1yCHj164KijjsLEiRNRVVUFADj55JNzKgQApxF0CYS1MueIRqMZTixdH9n2F4lEjLuHTf2KDucwaCkEbFb6XcWP4gXblXuuQET47W9/ix/84Aeht5tNmYMPPjhMcpRwGkEXQJiMIhqNYvbs2Rkr9GwyY3qhpKQkUNglFwLV1dWoqqrqFCtmkUY/K/2uLgSKAeeccw4efvjh1LP/7rvvYvv27RnlDjnkELS0tCjb+NznPof7778fQMK5+/HHH+OMM87AnDlzsGfPHuzevRvPPPMMTj/99LR6Z5xxBmbNmoX29nbs2LEDS5YswcknnxzyCPVwgqCLICxGUVJSgilTpijD2nKZHlmXn9+mXnl5OSoqKoqeWcrz0V1W+kDniIo6++yz8Y1vfAPjx4/HqFGjMGXKFCXDv/jii3HrrbdizJgxGc7iu+66C5WVlRg1ahTGjRuH119/HWPHjsV3vvMdnHzyyTjllFPwve99L80/AAAXXnghSktLUVZWhs9+9rO45ZZbcPTR+cvI75LOFTG6goMwG0cwTzpXW1vbKRi9DbrCb+oXJtPl+vXrMXz48AJR1rWhmltd0jmnERQpuruDUFwtt7W1FZqc0OAlBLri792dNJ/OCicIihSd+eURU0eEIczkVLpdFX7nqzMJjc74HHcnOEFQxCiWl8cPwxGZmSqyx287AFBeXq6MJgpCXzFDJ/y7Q/isQ2HhBIGDEX4ZDmdm4vcgTEtkirqQ0ng83uUYommscrnOqjE6FB+cIHAwwpbhyIyquro66+gYm0PeuzpD9AqfdXAIA/k8s/hhxth2xtg64dq1jLF3GWNrk5/z8kWPgz28dr2qVq1yNJqNecivxmBDX1dAVx+fQ+GRT43gEQDnKq7fQUSjk5/5eaTHIUuIdnxx1RqJRFBWVpbGwHQmjrAdy8WMrjy2roTzzjsPu3btMpY588wzoQphX7t2LebPD4eN6frIBfImCIhoCYDmfPXnkB9wf4DM9Ovr69MYn8rEEZZjuTOgOwi6zg4iQkdHB+bPn4/DDjssUBthCgK/yCZNdTH4CH7CGKtLmo4OLzQxDnYQGZvM4HR2bRWTlzWJeDwearqIYmG8Xd2X0VmxefNmDB8+HD/60Y8wduxYvPPOOxg0aBB27twJALjhhhswbNgwfOELX8All1yC2267LVX3qaeewsknn4yhQ4filVdeQTwexx//+EfMmjULo0ePTqWS5mhvb8cvf/lLjBo1CqWlpbjnnnsAAC+99BLGjBmDUaNG4fLLL0csFsug84knnsCoUaMwcuRITJ06NXW9pKQEf/zjH3HKKadgxYoVgeeh0Enn7gdwAwBK/v0rgMtVBRljVwK4EgCOPfbYfNHnoIHI2HRMX4a4wxRA2v8igpxhq9qxK+9oLfSuXicEPPC/3wDvvxZum0ePAr54k7HIxo0bMWPGDNx3331p16urq/Gf//wHa9asQVtbG8aOHYtx48al7re1teHVV1/F/Pnzcd111+HFF1/E9ddfj+rqatx7770Z/Tz44IN4++23sWbNGvTs2RPNzc3Yt28fvvOd7+Cll17C0KFD8a1vfQv3338/fv7zn6fqvffee5g6dSpqampw+OGH4+yzz8acOXPwla98Bbt378bIkSNx/fXXZzVNBdUIiOgDImonog4A0wFosywR0YNEVE5E5f37988fkd0YXqtpm3h3ubwq2kfWJvi+AT8bq7xCLHNlmikWjcMhOAYOHIhTTz014/rSpUtxwQUX4MADD8QhhxyCL3/5y2n3J0+eDAAYN24cNm/e7NnPiy++iKuuugo9eybW3/369cPGjRtx3HHHYejQoQCAb3/721iyZElavaqqKpx55pno378/evbsiUsvvTRVpkePHrjooot8j1lGQTUCxtgniagx+fVCAOtM5R3UyMVKV5UfxrTq1qWSluvI/6v60V3XwSbEMhemmbDTf3d7eKzccwVdmmevPGy9e/cGkGDGNmlQiChD2802RXWfPn3Qo0cPzza8kM/w0ScArABwImNsG2PsCgC3MMZeY4zVATgLwC/yRU9XQa5WujLj9Fp1i6mk/UQC8fMIVKYlPwzWplzYzLpY7P5OK8kNPvOZz+DZZ5/Fvn37EI1G8dxzz3nWMaWoPvvss/HAAw+khEZzczOGDRuGzZs3o6GhAQDwr3/9CxMnTkyrd8opp2Dx4sXYuXMn2tvb8cQTT2SUyRb5jBq6hIg+SUS9iGgAET1ERJcR0SgiKiWiSYJ24GAJP2kJgrRt6kc+EEY2wdhEAokRRioh42CGi0bKHSoqKjBp0iSUlZVh8uTJKC8vx6GHHmqsc9ZZZ6U0Y9lZ/L3vfQ/HHntsKt30448/jj59+mDGjBn46le/ilGjRuGAAw7AVVddlVbvk5/8JG688UacddZZKCsrw9ixY3HBBReEO1gi6nSfcePGkYMesViMVq1aRbFYrCB9yNe86InFYnmhOWwUC82F7j8b1NfXF5oEI1paWoiIaPfu3TRu3DiqqakpMEX2UM0tgGpS8NRCRw055AD5MFnYnBwmagqi+UfnN7BNZVEsmkKxmIYK3X9XxpVXXon6+nrs27cP3/72tzF27NhCk5QTOEHQRZEP5qDrQxW2ydVlANqQTl3IqeynKAbmy1EsdDjkBo8//nihScgLimFDmUMXg7xSNoWNmuzbxXS0o7PB5w7UCU9JLHb4nVMnCBysocsTpIK4ihe/i//rIobEcjLjL5QQcA7Z3KBPnz5oampywiBEEBGamprQp08f6zrONORgBZW5x8tM41VGNBmZhEGh4SWwHIJjwIAB2LZtG3bs2FFoUroU+vTpgwEDBliXd4fXO1hDdtTK36PRaMr8oyujahMoDoavQzH6JhwcgsAdXt8NkGvThSmJXDQaxcyZM7FixYqMlBEyjTKdotnFZgz5NtEUS3SQg0Ou4ARBF0Eu7di6NqPRaKrPkpISXHzxxRg/fnyGf0Bsp6qqKu30MgAps4vXmQX8/1za63XtqjbSOTh0FThB0EWQq1WriTnX19en2c5LSkqMKSkikQgqKirSkspVVVWhrq4uYyeyrv9crs7lvlQM3zmOHboinI/AwRM6O7+N/V9lGjKlqbBpJ5ebynjbJr9AMW1qc3DwA+cjcAiMoBE9KgYqHzojOpdt/QO5XJHbZCt1QsChq8EJAoe8QnfojOhvADLPMm5uTpxyGrZpyGYvhINDV4cTBA6+IEb9+F2VRyL7D52R26yrq1M6jSORCAYPHoy5c+ciGo2GNg7er7P3Ozg4QeDgATlip7q6GlVVVWhubg7ERHWrbCLSmmVKSkowZcoUlJSUZM28ZbOUl3bhhIRDd4ATBA5aqCJ2ysvLUVZWhoaGhrQVvN92RfBoIrEtOfrIxnbvdzxiPyq6nMbg0F3gBIGDFrpcPyUlJRgxYkRqhS7vCzDBdNKZjlGHlW/IJERs+3Zw6IpwgsDBCFOOIO4vMIUgqxi+KRpHdS8bRsxpVGkapr47Q+oLB4ew4ASBg29wpgkA9fX1KCsrs15le8Xg69oJAq6trFixIi1s1aSVmO6HAa82i8kM5UfLc+jcyOfh9Q8zxrYzxtZJ169mjG1kjL3OGLslX/Q4ZAfxbIGSkhJtGXmV7ZfBZsOUuU9j/PjxKR+Eii4vusOC11iKySdhS0sx0ewQHHnbWcwYOwNAFMCjRDQyee0sANcA+BIRxRhjnyCi7V5thbGz2O0OzQ9sdgUH2aEcRr/ZIgy6wmgzV7ClpZhodjCj4DuLiWgJgGbp8g8B3EREsWQZTyEQBtwqRo9sI4Dke6YoHVUZ1V4BLyajivYRHdi5+L35LmlOr4oGFfzuxi4kbGkpJpodgqHQPoKhAE5njK1ijC1mjFXoCjLGrmSMVTPGqrM9xMJFg6jhl2F6lRd9CTqIv0U0GsXs2bM9N47JPgcVDaKmG9Z+AblMW1sbamtrlbui3ULDoTMhr0nnGGODAMwTTEPrALwM4GcAKgDMAnA8eRDlks7lBqZIGVH91/2vKhuNRj1PIRMRjUbTfA4qE4+cDC6IuUkuG+S0NXG+eH/yXweHYkLBTUMabAPwNCXwKoAOAEcWmKZuCc7oTPd4GKa8yUwuyyN0eJjp4MGDjQxWhCwEVKYl+djIbBPD2WgMuv0MogNapNcJAYfOhEILgjkAPgsAjLGhACIAdhaSoO4K2/h+G6bJE8txpt3Q0KA0k9ialsQVuLiHwRY2ZW0Yt2kXskyvMws5FANsn8N8ho8+AWAFgBMZY9sYY1cAeBjA8UkT0UwA3/YyCznkDrbx/V7lxMRyJSUlvjaQecX2A/B1kLxsvw8DpjZ1O6QdHPINP8+hO5jGIS8wmUtEu7rJVs8faNuD5Hl7PB1GGLBt05mHHIoB8nNYrD4Ch24A08pEvhfEVm8qG6YQEPv3alPlO3FwyDdsFyNOEDjkHDb+BwAZzmpdmKiN49nWn2Ab/y/T7AfOVORQ7HCCwKFgECOPvNJReDliVZFNAIz7GPjGM3FTmFcKiCAwCUInHByKAU4QOOQcKgbrtetYF66pY9aiZiHXNTH31tZW1NbWpjQNrzTVQU9Js03K5+BQCDhnsUNekO2mL5t6OmezjTnJprzfzXE2yJdT2TmvHQDnLO7S6AwrSr+bvmTtwaaebt+Bl/NZFgKiuUiEKRRWRacX8ikEnObhYIITBJ0cXfElF8fk92xkUQjw85X9OoRFc5Gufbkd2Ufh1V8+fzevSCsbGrrS8+WQCScIOjmCJtDTMaewENSWDuwfUzwex9y5c40pKkxtlJeXp51DAGQyYJW2IZ9foILOmQ0go32dT8PPxrhs4ZVDySuyqqstNhzS4QRBF0AY4YxhvuxiFtFsIm1KSkowZcqUwPsAZLMPv8YZsE4oqOqp2tblHhKv6xh+kFQZuYCNthB0seHQeeAEQTeEjon5fdl1TIwz8EgkYn3KlYnWMFejIgOWQ1L99mPyVaj6k8sUC3O10RaKgU6H3MFFDTkEQlipFsRIHMCcAjsshmSKOrJJWxFEAysEI/XqN1fjdSheuKghh1DBTR5e5g0vRlRfX48RI0YA0Mf7cyEgnjqWLe0yHV608nIqk5rf/vIBm81xNhqQEwLdA04QoHgiIoqFDhkmE1A25g0xb4+NqSQX2quts1SkV7f7uZigm0/dWBy6N7q9ICiWl7lY6JChS7kcVhoG2U+haycSiXhG8gShwyt6RxUdJNb1SqNdSKiEgOlQIYfui24vCLxWToWmI9fwWglz040qBDOMs3pVZhZTyKVtm7Z0xONx7Z4B3qfpdzGFpur6C4psn0mnBTjo0O0FAeC9cioUHWEhqJ1YNN2IdcTrcqikH0Yjb8ISI1TCMDnZ1ucnqpnaC6Nf2+cqlxvQCi0EikljctgP34KAMXYwY6xHLogpFnSllZNpA1U2jFsXxaOLxlFB7F8Vf29Lk21/OhrEE9Wyhakdm/k2aUOd/ZksVvOng4UgYIwdwBj7BmPsOcbYdgAbADQyxl5njN3KGBuSezLzj87+wnGIO15VL2KQ3bN+4u69Im1Ex6sfISK2LaaR5tFFy5cvT333oi+ojT8IQwuyUc22bjbIB3PuCsKsq8JGI6gEcAKA3wI4moiOIaJPADgdwEoANzHGvunVCGPsYcbY9uT5xPzaLMbY2uRnM2NsbbBhOHDI5hYOMT+/TZgkh2rjGf8r5vrXrcxV5eR0zjphYRI2vG0ewsr9FQBQWlqaElZiriGVw9vk4zBpG7k4C5kj387nMENzveCEQHHCRhB8nohuIKI6IurgF4momYj+Q0QXAZhl0c4jAM4VLxDR14loNBGNBvAfAE/bk+6ggsh4VTZ321h5kbGaoHIai+3wayItqv0HqrBM+bqq7ZKSkpQzm5ctKSlJmXu4/V+nDel8HKYx8U1wuc4VFLYpxdROZ9xY6hAe8rqzmDE2CMA8IhopXWcAtgL4LBFt8mrH7Sy2g87cYlvPpr6prHhNDlkU6631eYaAXL+qqgqMsTRbv4ouLxrFa7pd00HmxgYm01g2v6H4vbq6WusPCdqPQ+dC1juLGWObGGNPM8amMcYuSDL1sHA6gA9MQoAxdiVjrJoxVr1jx44Qu+66yJaB2NQ3lZWvqWLYdXZjG1s6/1tRUZEhBFQ5cmyjw1TRUqp+bfwXNqt5L4e+X+j6Ni36nBDo3vATNfR3AO8DaALwRQDrGGOvMcauZ4z1ypKOSwA8YSpARA8SUTkRlffv3z/L7jo3gpoKgjh2w6LBjxNUZoimvqLRaJrJi5cVndrZ0qTzFdiE3trAxiSl+mvTnnjNz4a8YoaLOgoffgTBN4noR0R0LxFdBeAzAF4G8DGA24MSwBjrCWAy7PwM3R5B7cYqJ614D7CP6vBLg6wFiNfkcrKPIhqNah2ZYrprXp8fRmNLp81YVYfb2M6V7TxxoSX7HsR5WLt2rfVBPdlEHRUzow3bb+KQBBFZfQAsBlAqXVuV/Lvaso1BANZJ184FsNiWDiLCuHHjqDsjFotl/C9eE9HS0pL6v6mpiVatWpVRf9WqValyYnlbGrzK6frUXRPHFIvFaOnSpWnXxf5lenXlTDSbxhKLxWjZsmWe86yr66e83L7qtxG/5wKq3yaMNsNE2O11JwCoJgVP9aMR/ADADMbYQ4yxqxlj9wLgUUSeSw3G2BMAVgA4kTG2jTF2RfLWxfAwCzmkQ7aF60IZ5QNiGhoalJEuPIqnubkZs2fPRnNzszUNNuVUK2fdeQiyj4KbNID9q2s5aoiD11X5BWxCVFWrTHHDWRC7v1+o5oSPke/k9kr7nQ2Cxvrr+jVpokHRFcxbRQeVdNB9APQA8FUANwD4OYAjABwM4Pd+2sn20901AhF+NAK5jGoVrtIasqVN16eK1hkzZihXvJxG3XhtVrLyapuv9PlHV99Gq9DRlE/YrubDpotrKqZnMGwtwyEYoNEIPMNHGWOMPArZlAkTLnzUDrYhjiJsQyNt+laFhcp0yX1Fo1FlyCYP5+SH2GQbAslt/6IDVVVfPDjHK5xVN958wibsNkw6TaG2fuhyyA904aM2gmAREpu9/ktEW4XrESQcxt8GUElEj4RJsAndVRDYvkziJi4bBsadsaIZJB/0+mFKfuL3w6aPMznbvQ1h9J1LhN13mPPikFtks4/gXADtAJ5gjDUyxuoZY28D2IRE2Ocd+RQC3QXySl1n4xb/F23egF06iUgkgtLSUkyYMCFUIcDb9rrvRwjYtBkWfbxPbpMPI1pFDP8M227uB17jDru9YojyKXT/xQ5PQUBE+4joPiI6DcCxAD4HYAwRDSSi7xPR2lwTaYuu8mOrXh6ZacpOzqqqKnAtyW9G0fr6+lQf+UbYoaphQOzTa+ObF50y8+dt2hzzqesnV8jFXAd1PoeJYhFGxQzrFBPJLKO/AbCXiH6SU6o8oDINFYuNVkQ2KrGtfV+MN5c3VtnY6LOlM9s2TCYf3b1cmIn80GVTVmWes5130/VcP+OdwYwThMbOMK58IIzD6/8FYDaAM5INjmSMPRoSfVkj3ysPr9VFtqsQm3GITIev6vl33XzotA25jB8EHasp/FW1KjfVCXu1ZxsuqqJTZ56T59nE7HWhrGE846bxFDuzDPqsFfu4Cg0/GsGrRHQyY2wNEY1JXltNRGNzSqEChXYW267M8rkKEVelnDYOmZHK1+R2vMamWwH7GavchkkjkK9x+lVjDnu+bRyhnB7beoV0rgadq2zGE6RNr3qAY+5BkOTZ4+TrfjSC9xhjxwGgZIMMwIEh0depYLsyy+eDKvbFhQBPt8A3lNmspkyaBP+rSnXgl6mobPByGZ02I4+5UHZo7ptRwa8vwaYurx8UJk3Rq56O5my1waDjCdvm3x38B8kxKnm2H0HwcwDTARzNGPsugJkA1hlrdGEUgul43RMZZTweR3l5OcrKylBXV5diWIMHD045KXVtmsxJ3NGp26VsA86MTONRvegmJpaL38Pm8BnVecdBBK0N5Hnxw7xEk5pN37Lp0DTvXtqjCtnMQ9iCX/e86QRfZ0Vyvvaq7tkcVflFxtiniGgzEqGkPwVwPBK5hy4Lj0wHHbxWZDwpGn9B4vE4Zs+ejXg8njqkhadpaGhowODBgwHsP1TGCzLjtkl1AMCzbV3/4osuC6xcmH5U37nfxSTsIpHMfRfZrvhNkOfFz6rYT6SSjR9Jbtu2HZt6NgjzOVAJFhXt2WoxRQKlL8BmQ9k/AIwGcBQS5xWvBVCb/LueiNpDJNIKhfYRFAKmSBLVgSOqHbr8Ot8py5mdn4yjNlFIANDc3Iy5c+diypQpWoHhtWuXCzn50BlTv34gj0n1PexIKD/1dd+9rtu2bWP3D2OOO6st39Zv1ZkQeGex0MDPAQwB8DqAcUhsJmsmogEh0mmF7igITPDrfFQ5XIP2oxIQ/NrgwYPRr18/LQ02/ZucsWE4iG2Zrt862ThlVcLJK4WDLa1yP6Z2w3TCh8VAOzsjLjTCCB/9LhH9OLm57AokThVbGhqFDoHhxUi5OiuqtKLNX1Z/xb9e/ejstaNHj04TArJtWxUaKtPN2w9im7aFKLxU32WaTGMJgz5uwhEd4dlsPjOFonq16+XLsenfiw6/7eXCNNPJTT2hwI8g+Jgxlgo7IqIaAEPDJ8khG+gYkuws5C+4eF383+Q8U/UhlhEje0QaZOaWTWSN3G82sGHu4jV5LDpmGdQsJDNn7pMJIlRM9UztqhYNfiAL+7CEdtjRYV7+t+4CP4LgCgD3McZmMMZ+whj7O4DWHNHVbZHNw6db/QNAfX19WsQQgBTD5itDYH/oqc55Fo1GlSd2ceheVrktm5WoH5NVNlAJKrl/cQWtQlgrVdv5k/8P6pA1mY2CMHFRs9LtZfHTjg292UA3PtvFSFcRFtaCgIjeADABwHwkHMfrAZyXI7q6JbJVfeXVv/xS9uvXL/XQiy+AHI0iHmbDo3rEMl4hkzbMJxuTgwibEE8OP2Yv1Rj4ClpVN8yVqpepj2eL9dLgTDCtgFWC0bZNmY5C7DHwaltGUNNjLulU9ZXL8taCgDFWBeBBAJ8GUAngMSJq8tWbgxFhrYRVYY+66AfOWMRy5557LjZs2IDFixdj5syZKaHAhYZtyKRq5SrCpJLrNBu5nFeIp1i2urra+sxfE3Q+Ad5PrkFEaat1v6YjL9MXEGzlbaNZBWknLPhl3LYLmlw7r/3SHURA+Yka+hSA0uSnHMCXAOwkooHWvYWE7h41JJp2bMM5eZ3q6mqUlpamMdCqqiqUlZUhEomguroaRISysrJU3Ugk4hk9IvfJH0a+glaFuNo4i/32q0M8Hsfy5csRiSTSbgeJwPHqUxxzLpmDHHZrOwcidM9IV4/sMf12xUBzWPTpymcdNURE7xHR80R0CxF9DQlh8A/b+oyxhxlj2xlj64RroxljKxljaxlj1Yyxk23b664QnbE6hqOzd0ajURBRyt5dV1cHACgrK0vZvvnms0gkgvr6+pQW4LXqVplWRPpUCw6v9mxWXDqBpyrHz1xQnYDmBRvTV1grRC9NStQAbLQxHa0212zaNGkWYSBMR66OyZr8XvmCae6CaFV+4Mc0dKz4nYjWAzjJR1+PILEzWcQtAK4jotEA/pj87mCAbNu3rcPTQgwfPjxVl5sYSkpKUoxe/IiRRUHCF0UTgXgkZJA2vCDazHVMUTVnNlEjfphbtk5R0d5vwxhUwkeuFwaDM82tyh9lI6Bt6LMxYwUZiwyV38uLtrCRL1OTCn6ihmYxxrYxxl5hjN3HGLsdwHDbykS0BECzfBlA3+T/hwJ4zwc9XQ5yuoVde+JY8sYO1Gz5MO266UHRpXXgzH79+vUptZFrAtzUoLPjAxrtI74b2LIc2LTQc2xBH25xPKYVqUynjomrbPteUSOmFzQbRqGiTTTZ2TIG0T8h0xvmCl0XzSTPuY2wFbVUL/pUEVxBGaaKFpXfS1c218h2IREUfnwEg4hoM2NsMIBRAPoBeIGItll3xtggAPOIaGTy+3AALwBgSAilCUS0RVP3SgBXAsCxxx47bssWZbFOi5aWFjz4xDM4cvh41DbuxuotH2Jz0x4AwLknHY0HLsvIHJvxMEejUcyePTsjrYPsGBZt5OI91UPY3Ny8f2NY81YcsGUFer67CnhnFbC9HqAOUL/jwX66JtT5AJA2Hi8/hUi/bKsXx+jHhu9llw3DJ6Dyrdj6UeR2dOk4bNrw8teI/p4g/hGTT8LG56LrNwi8xio/M/lwBns9Z2H5pMJIMZFx9gBj7FQiWmnVAJSC4G4Ai4noP4yxrwG4kog+79VOV3EW72ttx7KGnXhpw3YseWMHtn2YSAzY7+AIygcejtHHHobRAw7DyAGHom+fXml1o9Eo6urq0Nraip49e6KsrAwlJSUZOYbi8ThWrFiB8ePHp4RFbW2tlammeecOLJt1B84Z2I6eWxbjgB3rAQDU62CwY04GBlSg9agyvNbcCyNPOSvUF4Y//OJ4/LyUOsYD6BlKWE7XsBBEcAF6Rm3SaGyc8l7ldPmtbOgwlef9Bk2zYdsvn2++XySfEUEmAepXwJoQWBAkGfRYABcBmATgDZ5ojjFWR0SlPogYhHRB8BGAw4iIkucbfEREfU1tAJ1XEMTjcRzQoyeWvdmEp1dvw4v1H2B3vB0HR3pg/AlHYuLQIzH+hCNxQv+DtTZL3g5/YDl0D240GsXMmTNx8cUXpw5h5xE8gIJpEAHv1qB9zWNof+1pROK7QAf0Ahs4Hm2DzkT806di7fsdKD/5lLQVeFjM1ZYx+UW2L1wY/Qc1ZYThfFaNLciKO5vVaTZz7JWg0Itm237D1gT8aB+68mEuNrIRBJ9G4sD62wFUATgRwC4k7Pn9iegUH0QMQrogWA/gh0S0iDH2OQC3qE7PkdEZBcH2Xbtx57NVqNzWjsaP9qFvn574Uukncc5JR2P8CUegd88eVu3wh6K5uRmRSCT1cgDQPkx8pSY+eABQVVW1XzNo3QvUzQJWPQhsfx3o2QftQ85B6wnnos/I84E+fVNti/VsTQo2qq+OMWX7Iti+3Lla3edayHj17WV+CWKKMvVlaius9m20j7D6DQrT7666l4/nRCcIQERWHwCnCf/3QyID6cE+6j8BoBGJtBTbkEhZ8RkANUiktV4FYJxNW+PGjaPOguZojP4yv55G/OF/NHDqPLrkwRX0XN17tK+1zXdbsViMVq1aRU1NTTR9+nSqrKyklpaWtPu8TCwWU9bl12OxGC1btoxi0V1Ey+4hunUI0bS+RPedRlT1MNHeXca2VG3qaBb/inTq6LIZj6oP05yJ85RPqMaluu91zbYf+ZrX3PktL/8+2bRl044KLS0tNGPGDOVvGmTu/MJPH36f21zTD6CaVPxZdZHSGfi05N8JAA7xKp+PT2cQBG3tHfTw0rdo5LTn6bjfzKOrH19N6xs/yqpNkYG2tLRkvJT8xbNlOvHa/xD9dQTRtL7UPuN8orcWE3V0pJWRBY2JJl05mbalS5cmhJCBSdqMRy6no6GlpcUXQ7SBrfDT9asTcirBFXQOvOj0ot3UT7YCWtWmH+iEQNi/s00f+RA+Jnr8IBtBMD7590kA9QDeADAHwPUApnjVz8Wn2AXBjpZ99LUHltPAqfPom/9YSRvf/zhwWyam4sWAtYjvIXr6qqQGMIH2vP6CpxahWrmL1/mLmdI0DFqEjrEFHY+X9qMrE/QF9mK88nyY6qto5IKLC3tZcOrGExZsBUtYfeZLQIfVhm4Blqv+TPVs+hbvBxYEGRWA3kg4j78N4Da/9cP4FLMgeKd5N51+88t04u/n05NVW6lDWmH7gYr56u7p6mdg38dED51DNK0vbf3nVdTy0YdG04nqxefMadGiRRSLxdJW3PyeFwMMMh4/8JoXG63Epn1VPZGR68p4Ca+WlpbUPJq0v1yhkKtcFfJFT5C5zVYIZGv69NN+1oIAwGcBPATgrwC+m/QR9LatH+anWAXBrj1xOvPWSho17XlavaU5436Qh8vPQyCbEzIesLZWoke/QnTt4dS6ZiYtXbo0xWT8mhVaWlq0jNSG5nyq2LqxmWixbVdXTxQGQWzlXLPS1c/FXBWa+ev6z4fg09ERVCsN2p/qnm7xZAtxQRKGIHgPwIUAvgrgBgD/BdBgWz/MT7EKgqsfX00n/PY5evXtpox7OnOACrxsU1NmO7qVe1NTU4YDLaOfJbclzEE1/6SWlhZqamrSMis/KxXTmLJZzYRRJ4j6HBY92by8pvpB5tqrXBgMx09/uv5tNNNs+vHThp9nJ1eOcbGOPEdeCzW5zrJlywhADWUpCJbYls31pxgFQfXmJho4dR7dvmCjtgxnmDYPDWfsojBQMXverkpwpPXR8gHRn44mmnkptbS00PTp02nhwoW+zBe6MS1btizDHGQaa1BG5ndlGESrKhT8aFQ2UWF+64v9ZmuuUPUnm7dUMGlPXrSEoTVko6X6EXbZ0GijacpRVXx+li5dGooguAHAL5Dce1DITzEKgh/+u5pGX/cC7Y61epa1fRD4il180FVagqrNDA2k8iaiaYcS7WxIta2z5dvSrNMI+EOnevl1L1tYK3fd6klX1ubFD1ub8PqtggYFhM20dNf8MjS+GlU9bzZj8xJetpq2DcISftm2YdO+jUYglw/DNPR0MmLofQDPAfgzgK/a1g/zU2yCYF9rGw29Zj79cc5rgdvgP5Zqta/6X1Vf9VLxlUP738YTPXyetm0v2sSXTcWwxP5jsRgtWrTI6DQW64T1Iss02djn5fn1ayILoqV4aUnyXObTPq6D6vf2Wz+oFuPVn60wyQZ+FirF8HtxyPSEGTV0IBJnEXzHRQ0l8Nq2XTRw6jx6ru69QPX5j9XY2KjdKCOWFf/y/1WMN7Uq/nBHQht4+c/W9KiuxWLpZiDxI/fvxdi9BIDtKliGSZDaoBAageq+LHiz7TMMBO0z1ytkub0g/i7btv2WCyo4w4TYt04Q+ElDzXci7yWiaiJ6hIh+6bd+V8QHH+8DAHzqsAMD1Y9EIhg8eDC2bt2KSZMmaVMB8JS9qtS9vXr1Sp0yJrY7evRolGAPAAIOHeBJiy71Lk+LLB5cA+w/tpEnvuPXeXneptxHJBJJS7esooGnoG5ubs44OESVfldMp+2VYE4HVXndOHR1vFIDe9HEfzc+DzLk+ckXwkr7nG2bJvC5U70H2aZ4NiXtU5Xzk2o7V7BNreHnYJpNjLGnGWPTGGMXJPMGOSCRpw1I5NIOgng8joaGhlR2RVXu9qqqKtTV1aXKiA82Z9Cq3CuRSGQ/gR4U8oeG5/pRQWbco5Nn5lZUVCj750nuONMSXw75DAQu7LiQqK+vR3NzM55++mns3bs3rZycxz8e35/LHwh2aLrYvuqaTZu6cja0yGV05zGL82NDj821XID3k+8cSyZhbgub39tGyPH3IxfnWXjB9pkF4MtH8EsA9wH4CYAHAEQBvIbEDuNetu2E8bE1DeVLHavZ0kwDp86jF+vf911XZ+qR4RV1YRzrvpZE2OiS27TlZXOEjW1dNhHpyi1YsEC550Bl3po+fTo1Njam3dc5nVU+hmxs2PI86MrYtiV+t5lPvxErtiYmcf6CmEmC2PBlM2KuEMR34Od3DNssKNfN98ZAhGAa+iYR/YiI7iWiq5BIGPcygI+RyExaVPAlDbPECf0TK+H1jR/7qifS6JUVk58pLF+X21GidwnQdwDw/jpteVF9VqnSqrYZY4jHE4fCr1ixIs0kI9ZhjKG0tDRNgxH/8v/HjRuH888/H/PmzUtpBkDidDXV/IinkonXxLq6+ZKv25xGZruqVK3gbc5eVpk0/PSjus/PpuamNb9mkqArY5UZUVc3KEwmF5XWGMRM41U2G00nqMnKFhq+ojQL+BEEHzHGUmcPENFaAKcS0W0ATvNLZK6R60kWceiBvTDs6EOwtGGnr3o6hmti0qpyVmMdOB54ewnQ0a4tr2NCphc9EomAMQYiSnvZuDkrGo1i8+bNaf3IAoNfq6urQ0lJCYYMGZKWLttm7rhQ0JlMdIxANX+5eGZs2lSVsTmq04SSkpIMhuzl85BpklMly3VNz5OXEAi6WBNNgapnRfWbeplpZAQRmn6Rq7YNc6s8d8CPILgKwAzG2EOMsasZY/cC6Ejey2+ib0vk0y75hRFH4dW3m7E96Ti2hc7+Kz/cqjzvvpjXiecBe3YCm1+xKy/RZHrRx48fjwkTJqCkpASDBw9OMWJ+uM7FF1+cxkiqq6tTK1SRsRBRqj0AqK6uzigjz4E8F7oXXSzD/8rCtBDOPBP4UZ1csAZlmiaHvK0wEOuE5fzMZrEmMnbdWHQLHb/Pvg1yaYFQaTde8Du31oKAiNYDOBnA8wA+AaABwPmMsYMBzLRtp6ti8tgB6CDgiVff8V1XZnC1tbXal83GnKR8UE78ItDnMKD6Yd/0efXBGY3s9B42bBjmzp2b8SCXlpaioqICwH5TTn19fSrqiI+Laxnc2SxqG/x/LixERm56+LnmIDsy82lKNEHsv6SkJHX+dBCm6UejsoFuVZ2tkPJDt3hfXu3nSpjngvH6gW7xYlNPgexMQ4yxI5A4PL4EwLMA/k5ETUS0m4j+ZNtOV8VxRx6Ms07sj3+u2IzdsTbreqofljFmfLDESBKToEhDrwOBcd8B1j8L7GywHxiQwYRNKzDOKACgX79+mDRpEvr165ey4/PoJ7G8XI+DmzO4psDNPsB+Bk7JiCjdqkkOseR0iFqJTIvXXOQKqnkV58SvEMiFfVu1qvbDBG2YPKfbxvYv0hCWMJcXZlky3lCgEnp+kRyDOsZd5UFWfQAsAfBHJE4ZWwwgDmCDbf0wP8W2oYyDRw/d9eIbvurpImJUh5MsW7YsdTKZalOWMdKhZXsi39Csb1nTxnfnNjU1UWVlZSr6xzaSRI6K8DpQRxW1ZIqk0W3ekTfoqdr0e2CN6WSssJBtFEpYbYUN8Xf1mj+vyLVcblALEr1VLLChGZpcQ358BIcQ0fUAPiCiiQAuATDDt1jqwhh77OE456Sj8MDiN/H+R/a+AtXqfsWKFZg5c2ZqFc5NIKWlpWCMpVbVfIUr225VmgJK+gMTrgbq5wBblgMwr3C5yYabeiKRSCr6x0YNVzka5egnXgZIaAv8LGqd/0Nl9xVX9dxMNGLEiNQGPb6qltv0G9/NTTX5WPnpoJtznUPfVCdf4IEDgN6ZL4I/X0FWvtn+Nqp+8+lrDApZkzJoMepD6lXSQfUBsCL5dxWAA5P/L/ZR/2EA2wGsE66VAViBxH6EZwH0tWmrWDUCIqItO3fT0Gvm0w8erfZVT7di5f/Lq3F5VS7G3PNDV3j9tJVvLEp0+0lE955CLbuaMrIUyvSIqzfP8w6k8Xhd12lCXuVNGoVKk/C7yvNajQaJww+6v8FP32HRa9Ou3/ri81jssfeFRtCxWWoEWSeduwiJQ+v/HxIH0V8NH+cRADgDiZPNREFQBWBi8v/LAdxg01YxCwIiontf3mSVe8iPKt/U1JRhYtElL2tpaclIV5umjm98PrHB7OU/Z+Qt1z1Mfpipzcvqt4womHR02B6ywxmTqe+g6blVvwffWGVrigrb9FEMjNdr7H5MMYUUarlGrgVdYEGAxMlk/aVrlwG4BcBJXvWleoMkQfAxkmmtARwDoN6mnWIXBK1t7fTle16h0de9QB98tFdZxmQHl8vx8wNUh02IELUB0yo0FovRjgcnU8e1hxO9U5123QQbJivSomvD9L98TTUOVVk+R2LqbtM4TDteTULHBN1L7PVbyOWKbcUbBi26Z4ff42P2Kyz9ambZZLrNxW9is2gJEzpBYOMjeBHAa4yx9xhjCxhjtyERbfQEEiGk2WAdgEnJ/7+aFAZKMMauZIxVM8aqd+zYkWW3uUXPHgfg9q+Nxt7Wdvzfk7Vo78g0y9mEhPHrADBw4EDl5hixLA/B5Bu9THHTfb/+AFjfTwH/uQLY93FGOZ0NV6ZTFebKafGKaJLDD5ubm1OhomJZvmtZ9AGo2hoyZIiV3T8SiRh3vNpuPpIjlFT2ZU6v6rdQ2XWB/Ofm8UK2tIhj07U/OplkT5dfSdWe7X4G7gcT/VF+4/JzEV7stf8hryHNKulA6av4nwBYDeA3SJh3vg/gbgCVAN73qi+1NQjpGsEwAAsA1ACYBqDJpp1i1wg4nli1hQZOnUd3LNzoWda0WrIxZejaUK1AUyuuLSuIrj2caOY3iTo61GU07cnmGj/jke/HYjFqbGykZcuW0YIFC2jhwoWp9sWVvrySlyOQvNJ3V1ZWWq0GbVZhfOzy4UFe5jRTX2GbhGyRD+3D5nkwHbxkqmeCLtJL7tf2Nw+CbH5Xv3W92kNQjYCI7kUihQQBuBNAK4CfEdFZRHR0lkJoAxGdTUTjkNAw3symvWLD1yuOwQVln8RdL21C5cbtxrKm1Wkksj+dA4cqMshm92jaqvXYU4HPTwPWzwWW36Muo6BHXr1qs54KdKjq8zEsX74cc+bMwbBhwzBu3Dhs3rw5tZIuKSnB5MmT0dDQgHh8/25lvvFO3H2s00L434aGBs9VpNd9cfU/YsQINDQ0YPDgwQD2Rz3Z7E1QbX4zaR5iuzrYrhyDxslnA90ciJsj+Xz6idn30lbETXlyfd6vKoWG7Ri84DW/Xm2angmVJq6zLHhCJR10HwB9AfwJCSfvKX7qkloj+ETy7wEAHgVwuU07nUUjiMVitGTZSjrnjkU0ctrztOmDcOLP+cp40aJFVisi03fq6CCadRnRtYcRbVpoTYNtLL2oNehWvy0tLbRo0aK0KCedLV3WSHTagdi3WEbVlopW1ThUq0fRpm1rezb1owL3/XitDoOeoJWtRpBNfZPPJAyYfFW5OsBG1Vcu4NsCQNk5i09HYkfx7QD+h4QZZxGA87zqSu08gcRmtFYA2wBcAeBnSBx/+QaAm2B5HnJnEQREiR/inebdNPb6BXTGLS9TUzT7l46bTFSbu+QDq2VGqNwQta+F6L7TiP4ygOiDeisa/DIy3QlqHNzEotr8petfnAt5XF6mA10fupfLz2lqNvDjFLWda1s6wmRMuWKeYcBrA6Dut8zWdFhscyHSk40g6ACwBsCvAQzyKp+PT2cSBBzVm5toyDXz6aL7ltHeeFugNvjKkGsCMrPnD75st5bbUOLDrUS3DknsMfi40UhHLBazis6R6VbtQxBDXZuamrSH3sv9q8Yu3rOxzQfxbZjglwEUg38gDBQzfX53gftZhJju53L3eTbQCQKbqKEfAlgG4EsAVjHG6hljsxhjv2eMfcWivgOAcQP74Y6vjUbN1g/x0yfWoK29w7uSAG4DHz58OHr16gUgcwcmt4cC+yNPuI2RR06o7PkAgMOOAb4xC7SnCfj3FGDfR1o6qqqqsGHDBs/oDpluOW/OiBEjUFtbm3by2t69e1FbW2tsj/sn5LFzW7o4fpW9lJerra21tpfbjFM+TtMLNtEh3I5drCh2+rTPuwZeCey8djyLObFMz0Khd3tnQCUdTB8AAwCcB2AqgH/5rR/GpzNqBBwPL32LBk6dR796ai11CJE6NtDZyUU0NTXR7373u7QNaOI+BK+V5/p5f6OO6/oRPfxFothubTk/q0CTGURsi/s+vFZTus1esdj+yCD+Xd6rIZqfwjLz8Ho2PhtTffl7MZtdiAprFsp1n9mOLQx/jlc7QYAQD6/fRkTziehmIrosXLHU9fHd047DTz87GE9Wb8P18+q5cLWCHEcvZ9AEEiugM888E5FIJO3ekCFDAJhPXIpEIjj+C98Dm/xgIhfRk5cBbTFlvLyfVSCPxzeNi//VnX3MwTWM5ubmVCy5qi1VRIicwVS16rPNO6QC19T81pP7DWtPgW18fFBkkwkzG4jaV1D6veplOzZVBJ/ftvO5j8C3IHDIHr/4wlBcftpxmLFsM256foO1MJDD7cSTp8SHZeLEiYhEImhra0M8njj5a9y4cZ4MGUg+wCMvAr58F9DwIjpmfQu1q6tCOYzEJtxNZ84R74thm/X19WkbhsrLy9P6kl82cQ7kMFYVvF5GUUiKIb629VQQGUU2QkAlKMX7YTCabARnNoKKH5MahH7betmMTdWf+FvoTE9y/3kTtCo1odg/ndk0xNHR0UHXPFNHA6fOoxvnr7c2E6lURTmvEDcr8JBMHq2ji8jRqp+rHiSa1pfaH7uYqDXYtnyxfVWfXuFuXtE9ppxLOhrkKCCvOTE5BpcuXZqW7tpEg26MXuVtoQoM0PWTTaoFLxqChrHqypic+kEd9H7MMqZ8XLaQfwtf76GBNr/1kG3SuWL6dAVBQETU3t5Bv3s6IQxuePZ1ozCwjVIQmRu3tzc1NaVFFIm7Nz2jf1b+PZGg7rGvEcXVeZNMUDF2L0ZkwyBVZzWo2hH7kwWlrg8+dzbMbNGiRbRs2bLUnPrZXyF/z9Ym7Ue45NLGbtu2TTnbZHW2jN32jINYLJb6Xfl7Y9uPqX/dd79+A6+Muzo4QVCk6OjooGn/XUcDp86ja56po/b29FQP/K+8MjKtXsWQyoULF9I999yTEgCLFi2i6dOn05YtW9KEg6ot/v2tJ3+fEAb/nEQUi1qPTX445QfYb1I3Dv5yemVO5Yf4iIzf5oXhdW1fSnHl6HVwjWklF3R167d+LoVAWP3ZamR+kwPqhIDq+eGLAT+h0tkgiEYgP9tedDpBUMTo6Oigv8yvp4FT59FPn1hN8bb2jB9VNP94rf7EvwsXLqQ77riD5s+fn6q7adMm+sMf/pDSFMT6unZbqx5J7D6e/nmiPc2eY7KhMchGKV5PzkmjYvDipjuxnM0LE5Qpq8xDqhc1qBAU2w1SP1vNQ24r2/5sGbOunup3z1bwqK7lW3ja9KnSBpxG0MnR0dGROsfgOw+vot2x1owf1cu0obrX0tJCW7Zsofvvv58WLVqUWt1s2rRJSYfpxYzXzia6/kiiv51K9NF7nqtrmyMJve7rVmuqdnRlVem7g2w0Mt1Thb3y66IwEseU7aYjP4xKfib8tK2772dDoU0bKoHtt+8ggqcYYTu/frQBIicIOg0eW7mFjvvNPLrg3qXKdBReDElUaUVGxE1Dq1at0jo3dW2m9ftmJdGfP0Udt59EtS89ZeWQtGlfdd0mh4/MVFXCUxwr1xJM6S68aFHdV6XQ4P15rTazhQ3z09mUVbR4MVpdvaC0qcoFZehBBUgxwWuBpYPOdCzCCYJOhP+91khDrplPZ95aSVt2qjd16RCLxZRHWsoM05Tu1/NlfHcN0S0nUMeNxxJtXh7oZTW2rygnr6pFeEUO6cw1uvZ1NPByugR3qn7yxXj8CFz5fxszo6lstrTp6ArST9gmv3zDpCWZ6ojvt2kedILA7SMoQpw78mg89r1T8OGeOC68bxlWb/3Quq4cS8+v8fh7noqBp2QG0lNay3sVlHHMnxqN+Lfmgx18JPDoBYi8MU9Liwyr9hX1E8+wOk003xugG4cqBTGfH16ety/SKdMKAK2traipqVGmk6itrc2IFVft2/BKExwkVl2MS5f3avD7YlmZRjmuXXf4Ty4PlJf3YPiFDX1hx+SHtdlLNcfy/Kt+V3GuxM2Svn8nlXQo9k9X1wg4Gra30Ok3v0xDr5nv+/xj+Zq8SuBmoqamprToGiI72/6qVaso9mEj0UPnEE3rS62VN6cdbuOXVps6JjNQU1MTTZ8+PS3Ng1dSOfF/ndNcDhvkKy7V6l9lHvKKH7eJL9fRL1+Xz0X2s4L3oxnkA8W8cpe17GxNfzbtmMx7fsx1cKahzomdLfto8n3LaODUeXT3i28o9xrYvvCcsXGmwYUA/6titqa2iIgovpfanvwu0bS+1Db7e0St+wKP1QbyiyGqwo2NjUaGqjMBqcpyh/KMGTNSp6fJG/e8IoR4uyphIvari4BSjd3EMGSToKktXfu665WVlUWRUdOPCSxX/Ys+Jt1v4deEZiusOYL+FgBqyJmGOh+OKOmNx753Ci4c82n8deEb+NnMtdjX2p5WxitjIkc0GsVf//pXNDc3gzGGSCQCIkJJSUnaOcdy9kTR3JFhaujVBz2mPIS206eix2tPAv/8MhA1n8YmtuMXurxBI0aMwNatWzNUbLnP1tZWZZuiKh2NRlFXV4dIJIJzzz0Xb731Vpopq6SkJNW3bAqKRCIp8xWnSzwZLRqNpuZWdyqXSaU3nRwnprjgJ5rZmAdU5iP5/oYNG1BTU5OXvDfZpPsImjLDto6c2kX3W/g1zZjmXi7D820F/C3U+WxU0qHYP91JI+Dg4aWDfjOPzr/7FXr3wz0ZZXSrYPH/BQsWpEwbKtOHvKIUo248tYV1T1PHDUcR/XU40burlUV0KnXQlZyXGUY830A2gYkQV+n8zAeenkPM5Cr2q3JSq+bI5mQ0L6j2ROjAV/Cqfmy0IV3/+TDXBDWN2d4P0mdQZNuelwYY5DmCcxZ3bjDG8OOzBmP6ZeV4e+dufPmepVjxZlNaGdX5q/JZtxMnTgQA1NTUYMmSJXjyySfx/vvvp1arVVVVWLFiBYDEyjgSiaTOfFVpC2kO2iFfwuun3A4CAx46B1j7eBp9uqyaXgnSTBC1INVKrK2tDTU1NQCA8vJyTJgwIYOmaDSK2bNnp/qvqKjA+PHjEY/H0dbWhg0bNijHoepP1Bqi0WiGBsDL8HbE7zrE44nzmVXajGlexPrxeOJsaPl5sF298t8/1/ATQACkO01V920RdnK3sBL6meiSHcleCRRNcIKgk+HzI47CnB+fhkMP6oVL/7ESf6tsQEfHfm1PfmgSi4DMSIyePXti7NixGDhwIDZu3IgRI0YAAMrKytCrVy80Nzdj5syZWLFiRVqbPEJHlQo7Eolg6MQpYD9YjI4BFcCcHwJzrwbie1K0yVk1RRNJEHVXFCKqSJNRo0al5kCOFhIZ+pQpUxCJRFIH28TjccydOxejRo1KM7nwdvihPDrTQDQaxcyZM1FdXZ2aWxXdqvHK1yKRRHrucePGWTEr0UwUj8fTfp9hw4YpI4R0fRcCtgxZ/u2zyQyaLVS/WRjCxSQQ5RTr3BTqMRdMeVWlJuTiA+AYAJUA1gN4HcDPktf7AVgIYFPy7+FebXVH05CMln2t9OPHamjg1Hn0zX+spA8+VieEM5mJ+FnClZWVafl7xKMjbVRxpblhxXJqe+EPiRxFfzuV4ttqlXVVzlS/UJlcxGM95QNjTDmbxKgf3QE2svlHR7dY3yshnFckismcpnNa8nvcpGTj7NZdDwu2bfktlw2NXr+jDQ3Fsl/EVCYWixGAelLxZ9XFXHwAfBLA2OT/hyBxYP0IALcA+E3y+m8A3OzVlhMECXR0dNBjK7fQ0Gvm07gbFtDLGz6wqicyHNH229i4/6xi2SasY2K666lImE0LqePmE6j9uiOpdcXfM0JM5QRyKlptIdIkjk1lw7exQXPBoMpXpEr9bUObjt7Kysq0qB9VHZU/hAs8k/9A9Tuq/Cm662HmJrKdq3wyVvl39BIMpt8yKA1+aDWV92oLwGoqpCDI6Bj4L4AvANgI4JO0X1hs9KrrBEE6NjR+TGffvpgGTp1H0/67jvbG29Lu6xiheF1kyCID5BqCGC7H78sOTHGFL7ZFH79P7Y9MSmgHj19CFN2RRpcpDUPQOHjbDKA27Yof+XwHm/Z0YxNX6tw5rRuPTI+skQRZGeuYfVgaQTYMM5/l5N+XZ+T1kzolW20iaPpyG9rE+zqNoCA+AsbYIABjAKwCcBQRNQJA8u8nNHWuZIxVM8aqd+zYkTdaOwNOPPoQ/Pcnp+E7EwbhkeWbMenepXj9vcTh86bdoWK4ZENDAyZNmpTahVtRUYFhw4ahrq4OK1euRFtbW+p4SO5EBdJ35IqOUm5zX7t2LeK9D8cBlz0DnPMXoGEhcP8EtK6fn7ZrV+Xo8mNnFW2kXuF1Ns5ZuSx3otfU1KROfuPho6aTrFS+AD5OIkI8HkdNTQ2ISLvjV6xTVVUFAKl55mVVO1FtIO/w9hOaqNrxKt5T0eJ3l7FX/zbjtSnH/QT82e3Xr5/y2VM9k9k4av34x7zCgS0d7XuVN1XSIZcfACUAagBMTn7fJd3/0KsNpxHoUbnhAyr/00Ia/Lvn6N6XN1FrMqW1DqrVJV/V87+VlZXU2NhI06dPT/kNZDOG2B7XJPj3tDKNdYnspdP6Utucq4n27S8XNDWzamUbtr1XNDOJ+ZrE8FSxrG7np2jK4dqWOF+mcdmEkOrMebrfSRdmyv+aVsBeprFsTTu2mmAYbYVBq18N1uv3Cdq2CSiGncUAegF4AcD/CdecaShkNEdj9KN/JxzJF9y7lBq2+0sHzXcacwbH01eLTleT+inbuzMe4PheoheuIZp2KNGdpURvL9WqyH7tyWHYak3mAFFQLlq0iBYuXJgar9deC/GeysQjlpOFrUyb7byYkpB5CSHZh2Q7X0EhM7/OkClUhq0Q4IEMOgGqSicRxlwUXBAgEbb0KIA7peu3It1ZfItXW04QeKOjo4P+u/ZdKrvuBRp6zXx6cPGb1NauTk8hf5dP9po/f35Gvn2VM1lkDOJ97QO8eXlCEEw7lGj+r6mlKd3ZbcsMgmoQur5UdMur+mXLltGCBQvScg/ZvLA6TYPfExkw9xvIwsJ2XrhWp/ot+F/Tij6ohiaOxU/5sDYZyu3aXMsFTHZ/0dekQtjzwFEMguAzSGxvrgOwNvk5D8ARAF5CInz0JQD9vNpygsAeH3y0l654pCqlHWxo/Dh1j69MVMKAX+PJ3MR8OI2NjXTPPfekNAXejriCVZkdlOpwLEo07/8RTetLe28aSvENC3L2EvD2vHZrqkweutW0TnDo+pbHJpqJxKgV8bfR7WCW21aNU3R62o7N1K4NZPOXLWz78lNOt/M7V8JAFLB+ji3NFwouCML8OEHgDx0dHTRnzTYac/0COuG3z9Etz6+nvfG2NPODCiIzER/we+65h+644w7asmVLWnSQatUsmjZ4si7eXtpK9+2l1HHXaKJpfWnHgxdRrPldJT06Or3K2LQj3xf/qlb7/LvtQfcqc4AsSHSaiRdDsc0caiu0VO3YluW/q5fACSKAvDQHlcC2bTsITEImmyR9YWi5KjhB4EBN0Rj9YtYaGjh1Hp1+88u0aON261WsyJy4JkCUecCNismJ5gkxtFTMekpERPE9RC9eTx3XHUF000Cimn8Stben2lIxFbl9kc5sXngV01IxNi9hKkKlRXj1LQrQoIzTz3VVuWwyaYpzJY7BSzPzs9fDlJ45jNV/UKGUTX9+6NYtVFRwgsAhhWUNO+is2ypp4NR59MN/V9N7uzIT2MmQmR9RurORM3nVjlvZfi7uTVA6zD5YT/TQuYl9B//4AsXfWZ1Bg7zykgWADfNUjU/Vvkqg+Xn55H50L7rOUR5UqJk0BRtHcBDtwUSLamOeqbyftoNoHbZtZ5MELygNfp9b3TMpt6MTBCxxr3OhvLyceE4Yh2CItbXjwcVv4d7KBvQ4gOHnnx+C7552HHr10G8t4fHSPM9OdXU19uzZg549e6KtrQ0NDQ34yle+gq1bt6Zio+VU0FVVVSgrK0N9fT0GDx6sT2ZGhLaaR9HjpeuAfR+io/z76PG5a4A+h6ZoUSVvi0ajqVPY+DUv8HHJcfsc/J7qO4+9t00k19zcjH79+mXsVeCJ7/j+Cx7PL/ZjC5ke3TzV1dWhtbUV48ePTxsHzyFFRCgrK0vtVxDvy8n+/NIVJlS/n6lvv3RkQ7f4zsgn5WXbD/+dxFxY/DfhffJniN9njNUQUbnclks6103Ru2cPXP25IVj4i4kYf/wR+Mv8DfjiXa9gWcNObR1x8wuQyOZ5xhlnYMKECTj11FMxfPjw1EYcnpwOSE/yxs9B4Hn4dYi3tmJ1x3DsvnwxOkZfhh5VDwL3VgC1MxGPxTIylwLIyCJqKwTEJHIiVJlS5Q154maiaDSaloRPRnNzM+688068//77AJBWVtyEV11djdra2lSyOj+bxFQbCHnffFMcF5alpaXo2bMnotFoRr3y8vKUwBYT9PEEb83NzcaxBkWQtsTNhKq25A1fNvMpnzMRFLYbxvxsjhPBF/Li7y1u7FTNixIqNaHYP840FD5erH+fTr/55ZS5aJvivAMOG3OCCDnc0qsdsV4qKd22GqIHzyKa1pc+vvNUim+pUqq/KielaRy6TVHyWLxs2jbmFqJExJWYrkPlUORjCJoMTWVy4ietLVy4MM1kxn02TU1Nyj0HKlOOGNJqa7ayMbFkY4bx8g/4seOLaSbCgo0ZzPZ5VT2nXulI+D04H4GDF/bG2+iuF9+gE38/n078/Xy6Y+FG2hNr866YhMlu3tjYSPfff78no5SRlpSuvZ2o5lHquPl46ph2KH3wj0vSootkhmxLs/iXSB8/b8NAbPrj+wNUtPL7CxcupOnTp1uFH+oYgOzPicX2H1Eqgjvt5eMXbZmXn920uuuq/Q4yw/OKuw/TP6DKNRSGr0SGn/mTaTDRpnsXnSBwMEJ8WLZ9uCeV4nrCjS/R3LXvKs9K1rUjv7ScuXGNwO8msQwn6kfbif73W+q4rh/RX44hWn4vtezK3DwVBH4FiVzPRliIh9yrIpH45j0xG6zqRZf3H4j1uTCRU2Do0lTYakA6jShbyA5/2dlvSq/hJSSCwlYjDLMfP3W86FHdc4LAQQvdQ7XyzZ30xTuX0MCp8+ii+5bRmq0fWrcnZyXV5R+SzR9eJoK0e9s3EP1rMtG0vrTn5uH0cdVMWrVyZeAXS/V/0DZ091XCSsVsxQ1JKsEqXpNX8GIOI9Vq35ZpmlaZ2cyDXFalgcjXTcJZft5yhaD7ArKZr6D3dHCCwMEI3UPV1t5BM1/dQuNuWEgDp86jqx9fTVubdvtqT7fabGxsTEv5a5OmQXUvXv8c7b7lJKJpfan9oS8SvbvGOCZVe/nKa+OnD1FIqnI3qdJOiCYNXeI/09x60W4r7Gz704X52mgiNvfD+k2DPiNe9Uz3s0nxoevLCQKHrNCyr5VufX4DDb1mPg25Zj795bl62rUnTkTeqxbVi84f8i1btqS14SUEtE6xPVGiVQ8S3XxcIrPpU1fQmkXPetIWZkIvjmx2lHKo5ku8p6JddOLKTMSLJi8G7ocR+qmnmnu/TFcnNLJh3n6ue5UJIsS8tKCg7QGoIScIHLLFe7v20P/NWkuDfjOPyq57gR6ofIOWLtebY0xqu+p0slgsltpkZvNSyS9M7KMd9O4/r6SOGz5BHdf3J3rh90R7mrXtBHlxTbDJMePVl8zAjAJQUVbUuGxp0mltKsHgdc1mjF73/AgBm2ihIO2FvfqXywYpE0QjE+85jcAhVLz+7kd02UOraODUeXTajS/SM6u3Ubsmu6mKyehWqi0tLTR9+nRqbGy0zlOjzGmz6x2ip69KZDa98ViipXcl0l+T98uSrTruRwiY6DB99+pPjNISy/gZs47heyWx86JZbCsMJ69Xv35X1+LYTClUbGjRlQmqqdj4QmIxfW4qnSBwG8ocAmHEp/ri0ctPxr+vOAWHHhTBz2etxfn3LMXiN3YkVhhI3yTDNyHxU7aqq6szdgHz074mT56c2p0styN/l0/YSuHQAcCF9wNXvQIMKAcW/gG4Zxyw9nFEevbQ7kL1cyqaDqodpKqNQqa+VCdjqdqLx+Ooq6vLOAFtw4YN2LdvX9pGI9OpYaoNdWJ7fDMZgLQNdeLGJd2pXaq2+HXGmLJPG+h2Nqu+6zZ16X6XSCSCwYMHY+7cuWhubjaOSdW3V5mgzxh/t0yIx+NpGyutG+5sH6cRFBfa2zvomdXb6LSbXqKBU+fRxX9fkYow4isT+Rxj0Z7NV173339/mllIXAGpbOb8vlUyszcriR44I5G/6G+nEm2YT2QZEusFv+q6yezl1ZYquZ68qubzK4aPmswdqhWz3IeYWtqPmcXruo0WEZbmpjIXyedsyJD3E+RyxW8DW5OVX42g4Ew9yMcJguLEvtY2mrH0LRp7/QIaOHUeXfnPV+mZF/czDlVSNfGzcOHCjEgXXUQJFx7y7laVWpyq395O9Np/Uumu6R9nE21ZoS5rgMzI/IRUxmLpJ7iJY+VCTfcSi7Z+mWmL8yYzcJtxqTZQBcno6odhquqqBJJp/4CuL5MQEscj7ukw0eUXYQiBMASgXE4nCJxpyCE09O7ZA9857Tgs/vVZuPqs47G0oQn/76Vd+OOzG/Derr1KkwnP5wMABx10UJoJAwAqKirSynPz0eDBg/Hkk0+mTEzcdFFVVYW6urqUWiyapXDAAYgPPR/VJ/8NbefeBny4GXj4HODxrwPvv2al+qty+dio+fLB9KWlpRljlfP7yBDzEdXW1qaZh2bPno3m5uYMeurr61O5hHhZeTzxeBwNDQ1p5iGe9A5ARm4lr7nhv4efvEFizidxbEBmPh1xHlW/mdfvKI5n/PjxKCsr8zwUXqbVCzYmIhNMZjzV86bqh5thrWhQSYdi/ziNoLjBVy3vNbXQtXPX0ZDfJUJOr3/2ddrZsi+jrEpjEK+JIZE87QJfzalSX8vOSzk6KbVKiu0mWvJXohuPSWgIT11OscZ6z/GpQjn9zo/Xd68Vqpy+Wz6JTKS1srIywwHvZXpT0aWLPlKZemzCVcWxyruK5TZNK2FZI1TRrmsjyArbj4M/GxNRtjSp5hLONOSQT4gP37YP99CvnlpLx/1mHo34w//orws20kd742kvp4qRyfd4egaZoauSg8kMwZh6Yk8z0YvXEf3paKJrDyea+1OK7Xhb2564O1g+otM0D7bz5cVAeL/8pDf5o/JHyOcX8/9V/gWxngzxtDoi9dm7MmNX0a/bQGgSgl7mHlP0Er9uelZsoHuOTMzYpk0v2JjkvJ6/WKwIwkcBHAOgEsB6AK8D+Fny+leT3zsAlNu05QRB58SmD1roR/9O5DAqu/YF+u2jlfRhy540h7GKkfG/IkMTGbwuRl5mSLJTOQMfv0/03K+o47ojqP26I6jtuV9TrHlbxspKZmCmBHI2+WB0K1UT+FnSCxcuTLNzewkFuX0VA+fpKVQMXk5XsWzZMuXhQjareF3/JmGgg5cvhD872WQVNWUlDUKz2KbXHg+b58hLYyqKDWUAPglgbPL/QwC8AWAEgOEATgSwyAmC7oHXtu2ib/1jJQ2cOo/G3bCQZix9i5o+/MjIBMSoFZ2jVAWRQXBntEnYEBHFPthE8ae+Tx3XHkZt13+CYv/7Pa2ofF65ahUFjGpFahI82TA+PjYV47dJ1SHTpBO8cnlVniTbPnT3VO155RYSoRuvSsjI+1O8aJShy0rqN7JIrJsrjUAWxiaNIG/OYiJqJKLVyf9bkprBp4loPRFtzBcdDoXH0P4H4sejGJ64ogIn9D8Y1z5bjy8/UI1N7f3BevRUOsLq6+tRVlaG8vLytBOz1q5dm+aYEx1j0Wg07WCVhoYG8JPt+IEdsoMzGo2iatMHWN7/UqwZ/wA6Bp+NyMq7ccrK7yOy8i7EW5oznHg8Fp47O0Vwh6bKaScfciOO1wZ8HuRDc8S4fp3TUndYi9iWSBM/dKe2tjZjDH4crXL/smOZt2eK+5f3lNTX16cd4qM6aIfPzdFHH51xEp24R0JHKwc/eEl2/vNrtgfMiH3b7CcwOZ/FgAPxmvise/1OBbHxAxgEYCuAvsK1RXAaQbcBX710dHTQkje206R7l9LAqfPojFtepqdXv0Nt0i5lLxuoymwhryplm7rKvCP2lervvVqix76ecCjffBztXngTVS1fnFGem0l0JhWblSKny8Z8odIATOVUK0bV/6r64tnUNuVt4KWF6NoxOatttSGxnmn+bBK/mebVC37L2obSipqqCBTaR5DqECgBUANgsnTdKAgAXAmgGkD1scceaz15Dp0DHR0dtPD19+ncZNrrz/11ET1b+y7t3ZuIMvKyk2Ywb9Lbv1XJ2qzyA71TRe2PTEpkOb1lMNHKB4ha9+kFiESfzTUi8mXLllNI+O1LBRVjs9q053HPiz5+joJXXa/UIzZjVaYl0fSVrf0+LMRimdFi8n0vPxiA1VRoQQCgF4AXAPyf4p7TCBxo7959dNfTS+izt1UmNIS//I/mrX2HOjo6jCtEv5u6VG3YIr6pkujhLxJN60sdtw2jt576A8X22B/BycuYNmqpbNG6NmThZrKXm5gIkbe9XffXpg953DJUEUiq9nQCyaT56BYFXvT6sd97LVJMY7KBbpUv3vfSPAuuEQBgAB4FcKfmvhMEDkSUeKDbkmkrJt6SOEf5S3cvoZfWv59xUppu1ZbrFVps3z5a/9z91P7gZxMmoztGEtU8SrE9UWuhxD+mnPx+zBtyPT/J4cT7Koe6WE5kfNxkZBLGJk1NNx5dn3ysJo1A/q6LgNK1b+rbRLdqvlT9ezF0r36yua8TBCxxL/dgjH0GwCsAXkMiVBQAfgegN4B7APQHsAvAWiI6x9RWeXk5cUeIQ9dGW3sHnlnzLu5+eRPead6LsmMOw88/PwRnDu0Pxpgy8Rh3nvlJ7MUdpaLDVL6n/L9XL6DhRaDyz8B7a4DDj0Pbab9AzzGXAj16avsS6dMlT+NO5oqKCkQikVSSPl17I0aMSLuvolvXl5gAUDVW1TwBwPLly8EYQ8+ePTF8+HCUlJRk/BZVVVVgjKG8vNzz99DRzK9Fo1HMnDkTQ4YMwfjx4zPGoqNZNWZ57Co6dHPu1Y74G4vg46murkZ5eXkGXXIb2SQ/VIExVkNE5Rk3VNKh2D9OI+h+iLe10xOrttCEGxOJ7S64dym9uO5dWpk8mtKv6q0zFZhWwcYVYkcH0frniO7/TEJDuGs00ZrHidpaPfs30chVfa/9El4rctV4TNe86JLNWnyzX1DNRm7XpL2IYbM2piF5DuS2dPNhCgc20a4qq6JVvib+xn5/ExPENlBojSBMOI2g+yLe1oHZNdvwt8oGvLtrL8YccyiuPusEHNyyFWPGjLFaQckrbX7Nr0agBBGwcT6w6Ebg/deAficAE38NjJyi1RBU/aiuNTc3o1+/fhn3xZWnqr6sHXn1YwN5pcxXuaWlpcYVtFc/fPWu03BMYzFpVioNjGsqMs1iO6ZVvtcciu2YaBOfuyAagamcPHadRuCSzjl0KkR6HoBvnHIsKn95Jv70lZH44OMYLn90NW6sasWKzR/BdmEj58EX4+cz+pRixj0aBoZ9CbhyCVov+ifQ6yDgmR8AfzsZqJ0JtLcpq5mSjPH7DQ0N1nsRVPdNsEkoJ/4vx/hHIpE0048qyZ1NjL18zoHch+7cBFUsvVhP3jcCIGNfinxfHqfYjum3Avbvu6iqqkrtlZDng9cR50WkxVYIyPsqVGP3bEulJhT7x5mGHDj2tbbRv1duTjMZVW74IMOpLCPXzuSUWWHfXqL6Z4nuP00wGT2mNBnZRstkA1NkjZ9YepNzVT5rwqaeDa0231V/5bKyA91Ejy6EV/fbyG2LZh+ZBps5MEE1Xq8QaxQ6xUSYHycIHGTEWtvpsZX7fQiT7l2qjDLKCy0qJtPRQbR+3n6BcGcZ0ep/EbXFjW3kQmDZRtyIdPg55tHUh659E2P1074fIeR1xKZtHiCVALQRQtkyf5tNgmL5ZcuWEYD15HwEDl0d8bYOPL16G+6tbMC2D/eidMCh+Olnh+Bzwz+R1bGIvunQ2W2JgI3/AxbfBDTWAocNBM74JVB2CdCjl10bIdFnG1kVFh06PwxPc6GyxZvMQLrjMblvwUS3KkpK1bYpakgsy+nnaU1EP4Iuss0r2slr3F6+gerqahBRyhcWj8fRu3fv1UQ0Ti7vBIFDl0RreweeWf0u7q1swNbmPTh5UD/M+sGpeRUGRhABb7yQEAjvrQEOOxa4cjFwUD/vuiEhl4JG1Rdn0pxRiiGhs2fPxpQpUzIcpToaVfe9wkQ5VP3Jbdu0I5ZVOaN14/WqrxurbtxetHGYnMVOEDh0abS2d2DOmnfx0d5WfO/04wtNTiaIgE0LgbcXA+f8uWBkhBGh4lVejIyRndu6WH7biChAHWmkg0kj4G0F2YeiumYSZvJeA1E4cvpUkVJ+tDlxH4fTCBwcHJSwZSx+GJCufJANZkDmilsVPiqaZcRyNoyYCyjZrJMNbFftYuQQNzOJGotKcPoRyLw+APTu3XsDEQ2XyzhB4ODgkBeNQLwG+GO0MsPUrfxV5WTTjM7UIrcbZL+FirEH0SpE5u1HcMqQhSNjTKkRuH0EDg4O1gwmWyHA28hmtW06q0DcDyKfzRCPx5XnH8jleVvyXgHxmmovhHif73kQ75kgz1UkEkntPaioqEBpaamxHZlO/reurk7ee6Fc+TtB4ODgEDpsNo/5bYszcdUmKVV/IpPnUTS1tbUpxmjaEKbqw2ZDmWhmqq2tRXV1dYbwEWk20S72X1tbixUrVigPOOJj4wJKFFZEJAtdZbSEMw05ODjkBGFGJdlEy9iYbYD03by2zmW/dPC2ufbjFaZqSzunX74npkzhQoCf3Cbu0O7du/d6Iko/Rg9OI3BwcMgRwgxNFVf3QfsTTVLcdKMyMelgq+WozExyO/KKXw6BFcuKtOt8FqIQAJAhBIT0G3tVNDtB4ODg0C0h+g9sIJuGTOccA/tX6qJJRzQT6cJhTSYj8X+xLdEsBCBNEElCx/kIHBwcHET41Vr4qtzksBYZckVFBcaPH4+KigoA+1fqOie6rCWo9g/Iph8ebhqPx7Whr17jdD4CBwcHhwCQV/U2+xCy9ZuY9lDIG9BkGuLxOHr37u3SUDs4ODiEBZnJiqt9HbPP1m8iRzFxyGYgAEozEzRRQ+aTMhwcHBwcPKEKNy0kLQCUZiY4H4GDg4ND7lAMQkCEHz9B3gQBY+wYxlglY2w9Y+x1xtjPktdvZYxtYIzVMcaeYYwdli+aHBwcHBzyqxG0Afh/yYRHpwL4MWNsBICFAEYSUSmANwD8No80OTg4OHR75E0QEFEjEa1O/t8CYD2ATxPRAiLiB7muBDAgXzQ5ODg4OBTIWcwYGwRgDIBV0q3LAczS1LkSwJXJrzHG2LqcEZgbHAlgZ6GJ8IHORi/gaM4HOhu9QOejOZf0DlRdzPs+AsZYCYDFAP5MRE8L168BUA5gMnkQxRirVsXCFjM6G82djV7A0ZwPdDZ6gc5HcyHozatGwBjrBeA/AB6ThMC3AZwP4HNeQsDBwcHBIVzkTRCwxGGxDwFYT0S3C9fPBTAVwEQi2pMvehwcHBwcEsinRnAagMsAvMYYW5u89jsAdwPoDWBh8mDxlUR0lUdbD+aKyByis9Hc2egFHM35QGejF+h8NOed3k6Za8jBwcHBITy4ncUODg4O3RxOEDg4ODh0cxS1IGCMncsY28gYa2CM/UZxnzHG7k7er2OMjS0EnQI9XvRemqSzjjG2nDFWVgg6JZqMNAvlKhhj7YyxKfmkT0GHJ72MsTMZY2uTqUwW55tGBT1ez8WhjLFnGWO1SZq/Wwg6BXoeZoxt1+3VKbb3LkmTF83F+O4ZaRbK5f7dI6Ki/ADoAeBNAMcDiACoBTBCKnMegP8hkVr1VACripzeCQAOT/7/xULSa0uzUO5lAPMBTClmegEcBqAewLHJ758o9jlGImji5uT//QE0A4gUkOYzAIwFsE5zv2jeOx80F9W7Z0Oz8Pzk/N0rZo3gZAANRPQWEcUBzARwgVTmAgCPUgIrARzGGPtkvglNwpNeIlpORB8mvxZDOg2bOQaAq5HY/7E9n8QpYEPvNwA8TURbAYCIOgPNBOCQZIh1CRKCoA0FAhEtSdKgQzG9dwC8aS7Cd89mnoE8vXvFLAg+DeAd4fu25DW/ZfIFv7RcgcSqqpDwpJkx9mkAFwJ4II906WAzx0MBHM4YW8QYq2GMfStv1KlhQ/O9AIYDeA/AawB+RkQd+SEvEIrpvQuCYnj3PJHPd6+YD6ZRnaQjx7ralMkXrGlhjJ2FxMP4mZxS5A0bmu8EMJWI2pP7PAoJG3p7AhgH4HMADgSwgjG2kojeyDVxGtjQfA6AtQA+C+AEJPbUvEJEH+eYtqAopvfOF4ro3bPBncjTu1fMgmAbgGOE7wOQWDH5LZMvWNHCGCsF8A8AXySipjzRpoMNzeUAZiYfxCMBnMcYayOiOXmhMB22z8ROItoNYDdjbAmAMiRSnBcCNjR/F8BNlDAKNzDG3gYwDMCr+SHRN4rpvbNGkb17Nsjfu1doh4nBSdITwFsAjsN+J9tJUpkvId1p9WqR03ssgAYAEwo9v7Y0S+UfQWGdxTZzPBzAS8myBwFYh8R5F8VM8/0Ark3+fxSAdwEcWeBnYxD0jteiee980FxU754NzVK5nL57RasREFEbY+wnAF5AwnP+MBG9zhi7Knn/ASQ86ech8QPvQWJlVcz0/hHAEQDuS0r5NipgVkRLmosGNvQS0XrG2PMA6gB0APgHERUsZbnlHN8A4BHG2GtIMNepRFSwtMmMsScAnAngSMbYNgDTAPQCiu+947CguajePcCK5vzRkpQ2Dg4ODg7dFMUcNeTg4ODgkAc4QeDg4ODQzeEEgYODg0M3hxMEDg4ODt0cThA4ODg4dHM4QeDg4ODQzeEEgYODg0M3hxMEDt0GjLGvMsZWJXPSNzDGpnmU/zxj7F8++ziQMbaYMdYjO2oz2p3AGLuOMRZhjC1hjBXtZlCHzgcnCBy6BRhj3wYwFcBFRFQKYDQSu2JNKEMiJYRN+5zxX45EGuz2gKQqQYk0ytMokcr6JQBfD7N9h+4NJwgcujwYY30B3A7ga0S0DQCIKEpEtzLGhiVX2K8zxl5kjB0pVC0DsFZXhjH2FGPsdsZYJYDfJutcCuC/Qt/Dk3XrGGO/Yow1BBzDU4wxnjFzTrIfB4dQ4ASBQ3fAhUicSPWWeJEx1huJQz9+RkQnAVgI4BdCkTIkzgfQlRkFIEpEZxHRnxhjEQDHE9HmZPs9ATyWrFuKxCllQfMejUzSgmQbFQHbcXDIgBMEDt0BJyGR71/GVwAsJaI1ye/1AD4BAIyxXgD6IpEULKMMY6wPgH4ArhfaOxLALuH7ZAC1Ut00U1NSw1in+FwglOkDoBcRfQQASbNTnDF2iP0UODjo4RxODt0Bu5E4pEbGCOxfZQOJFX69cG+9ocxJSGgZ4pGSewH0Eb6XIl0AjQTwvEgAEX3egv6TBLo4egPYZ1HXwcETTiNw6A6YD+CrjLGjgIRJiDH2fSTy/o9IXjsewGUAHk3WKUOCievKjEIi1XUKlDgTt0dyBQ8ATUgcnQnG2GgA34Sl81lCWl+MsSMA7CCi1gBtOThkwAkChy4PIqoCcC2AF5I5/9ciYQL6F4BPJa/NBHA57T+5ikcM6cpkCIIkFmD/MYj/AlDOGKtCIppos+ynsITc11lICDcHh1DgziNwcAgRjLExAP6PiC5jjJUQUTR5/VcADiWi34fQx9MAfktEG7Nty8EBcBqBg0OoSDqGK5P7Cn6RDDldi8SRhDdk234yMmmOEwIOYcJpBA4ODg7dHE4jcHBwcOjmcILAwcHBoZvDCQIHBweHbg4nCBwcHBy6OZwgcHBwcOjmcILAwcHBoZvDCQIHBweHbo7/D1zcxv5VvFZxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_cmd(candidate_df)\n", "\n", @@ -712,7 +1120,18 @@ "cell_type": "code", "execution_count": 77, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(234,)" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "color_loop = front_to_back(left_color, right_color)\n", "color_loop.shape" @@ -729,7 +1148,18 @@ "cell_type": "code", "execution_count": 78, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(234,)" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mag_loop = front_to_back(g, g)\n", "mag_loop.shape" @@ -746,7 +1176,20 @@ "cell_type": "code", "execution_count": 79, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEOCAYAAACEiBAqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABjAklEQVR4nO19eXydVZn/93S5pSUglF2WFkilLZAUmiAFZHXBZapincEFHXVEZ4QfrlNQlFHUUWRTcBgpAuIoFStCDaU0QNrSNi1JShJKugVoSyGFNumS2yU3y/P7495ze+65Z3vf+94lyfl+PveT3Pc9y3POfd/nOefZDiMieHh4eHgMX4woNgEeHh4eHsWFFwQeHh4ewxxeEHh4eHgMc3hB4OHh4THM4QWBh4eHxzCHFwQeHh4ewxwFEwSMsQcZY+8wxtYo7n2XMUaMsaMLRY+Hh4eHRxKF3BE8DOBK+SJj7GQAHwCwpYC0eHh4eHikUDBBQERLAXQpbt0F4D8B+Mg2Dw8PjyJgVDE7Z4zNBPAmEbUwxmxlrwVwLQAceuih0ydPnlwACvMPIsK+ffswbtw42Oag1DGUxhI1iAiMsfQcjR07FiNGZK/DeDkPj3ygqalpBxEdI18vmiBgjI0D8AMAH3QpT0T3A7gfAKqqqqixsTGP1OUXiUQCsVhM+30wYyiNJV/QzVEikUBzczOmTZsWeA79vHu4gDG2WXW9mF5DpwM4FUALY2wTgJMArGaMHV9EmvIO/rInEon0taH0ApvGIo55OEM3R7FYLLQQkJ8pD48gKJogIKKXiehYIppIRBMBbAVwLhFtKxZNhUDYl73YyJXJlDqzKhW6wjwXg/WZ8igdFNJ99FEA9QDOYIxtZYx9pVB9lxoG2wsbBRMPw6x4f/lm0qUupFww2J4pj9JCIb2GPkNEJxDRaCI6iYh+L92fSEQ7CkWPhztEJp6rMHAFZ87xeDzvTNqvqD2GO3xksYcTuBCQmXK+GDRnzmVlZQVh0l4I6DGYd0oebvCCwMMZ8so53yoV3s9gYtKmuRiMDHUoqM087PCCwMMJnBGITDkXlcpQZCwmpjlYGapXmw0PeEHgYYWJiYUVAmJ7g4056mBimoOZoQ5Gmj2CwQsCDyuiZmKy8XkwrpRVsAV1eYbqUarwgsDDCVEzMVH/P1hXyiJyFWhDQRB6DF54QeCRE6JgYINdCAC520uGyq7IY3DCCwKP0IiKgQ2VVXRYgeYiREptrB5DC14QDBEUglHIfUSh1hEDx1z7FesNFQZpEwJDaawepQcvCIYAomYUKqas6yNXtU4sFsPUqVPR1tYWiOHLBufByiRd6B4qdhSP0oUXBEMAUTKKeDyOefPmZQmDXDJj2mCKHra5ZCYSCTQ2NqKhoWFQCAM5KttVgHsh4JFPeEEwRBAVoygrK8OsWbNQVlaWcx+5MjrXelVVVaiuri55ZinPx3Ba6Q8GIT2c4QVBCaNYL49KCIRBFJ408XjcutqPxWKDgpmq5mMw0J0rvI2j9OEFQYliuL88ItPs6+srNjmRwcb4h+LvPZx2PoMVXhCUKAbzyyOmjohCmI0ePToKskoeQedrMAmNwfgcDyd4QVDCKJWXJwjDEZlZLucY8HYAoKqqKmsuCpEKu9DQCf/h4D7rUVx4QeBhRFCGw5mZ+D0M0xKZooox8vaGGkM0jVUuN1h3jB6lB0ZExaYhMKqqqqixsbHYZAwb2JKpyWW4S6e4kndpIyxNUbddahjq4/MoHBhjTURUJV8v5JnFDzLG3mGMrRGu/Rdj7E3GWHPq85FC0ePhDlvUq2rVKi8wXNRDQXcMLvQNBQz18XkUH4VUDT0M4ErF9buIaFrqs6CA9HjkCFGPL6opYrEYKisrMxiYTsURtWG5lDGUx+YxuFHIw+uXAugqVH8ehQG3B8hMX04ZodJpR2VYHgwYDoLOY/CiFIzF1zHGWlOqoyOLTYyHG0TGJjM4nSFTxeTlnUQikYg0XUSpMF5v3PUoZRRbENwH4HQA0wB0ALhDV5Axdi1jrJEx1rh9+/YCkeehA2dsujxBupQRsrePCoyxwPS4uFgWWyh4IeBRqiiqICCit4mon4gGAMwBcJ6h7P1EVEVEVcccc0zhiBzGsDFOF393ubzoEqpSBfHcQUFURK4ZSvOhmim2cPHwiAJFFQSMsROEr58EsEZX1kOPfDAjFeM0rbrj8bjRGMwhe/voVEtBE9aZMpTayoSF1/t7DBUULI6AMfYogEsBHA3gbQC3pL5PA0AANgH4GhF12NrycQQHwZlRPvTPsq++rh9eTvXXhbZ4PK5MdDcY/OdLgcZSoMFjcEAXR+ADyoYAVIwgH8xBblPXr8j8ZeGgapOXBwafHr3YTDifCwGPoYeiB5R55A+uaQmi7Mc19YFNzSOmpBhsapZSUA15bySPKOB3BEMUhVipmvqQ74nqH9PuIEgqi1JAqdHj4WGC3xEMMxSCOZmEgOy2yQPMTC6dtlPKSmEFLsMLAY+hAC8IPCKHSj2kcxs1MXb5fjHVIKUkfDw8ooYXBB7OsLmGihC9jcTv4v+xWAxTp07VMvZSOdqxFHciHh5RwgsCDyeoVDo25uiy4pdzEskoBdWLTWB5eAx2eEHg4QSTuocjHo875RyS75c6XASWh8dghhcEQwj5ZlSmJHLxeBxz585FfX290QDMDcYiguYDKjRD9i6aHkMdXhAMEeRTj61rU0wrUVZWhquvvhozZszIsg+I7TQ0NKCxsTHjHle76MZQSM8hXbtyDIWHx1CCFwRDBPlatZqYc1tbW4buvKysLCslhbw7qK6uzkgq19DQgNbW1rQ/vunMgnyOU9WXS0ZTD4+hAB9Q5mFF2AAwl9QXKq8iWzv5DOJyyZPkg8g8Bit8QJlHaJiMvUHq8R2AvEvQqZJUyPeK3CVbqRcCHkMNXhB4FBS6Q2fkNNaym2pXV/KU06hVQ6XuuurhUQh4QeARCKLXT9BVuXjojNxma2ur0mgci8VQXl6O+fPnIx6PRzYO3q/X93t4eEHgYYHssdPY2IiGhgZ0dXWFYqK6VTYRadUyZWVlmDVrFsrKynJm3kHiHOTyHh5DFV4QeGih8tipqqpCZWUl2tvbM1bwQdsVwb2JxLZk76MoThrTeTLp6PI7Bo/hAi8IPLTQ5fopKyvD1KlT0yt0OS7ABNM5BjpGHVW+IZMQce3bw2MowgsCDyN0TFNMK21yQVYxfJM3jupeLoyY06jaaZj6dnFr9fAYKvCCwCMwxBxBbW1tqKysdF5l23zwbWcSBAHfrdTX12e4rZp2Jab7UcDWZimpoYLs8jwGNwomCBhjDzLG3mGMrZGuX88YW88Ye4Uxdluh6PHIDeLZAqqD53kZeZUdlMHmwpS5TWPGjBlpG4SKLhvdUcElG2up2CRcaSklmj3Co2CRxYyxiwHEATxCRGelrl0G4AcAPkpEPYyxY4noHVtbUUQW++jQwsAlKjhMhHIU/eaKKOiKos18wZWWUqLZw4yiRxYT0VIAXdLlfwfwCyLqSZWxCoEo4FcxeuTqASTfM3npqMqoYgVsTEbl7SMasPPxe/MoaU6vigYVgkZjFxOutJQSzR7hUGwbwXsAvI8xtooxtoQxVq0ryBi7ljHWyBhr3L59e06dem8QNYIyTFt5l/MGxN8iHo9j3rx51sAx2eagokHc6UYVLyCX6evrQ0tLizIq2i80PAYTCpp0jjE2EUCNoBpaA+B5ADcAqAbwFwCnkYUon3QuPzB5yojbf93/qrLxeBxtbW3Ogjcej2fYHFQqHjkZXBh1k1xWl2DO1i9w0PVV9dfDo5RQdNWQBlsBPE5JvAhgAMDRRaZpWIIzOtM97oYpB5nJZbmHDnczLS8vNzJYEbIQUKmW5GMjc00M57Jj0MUziAZokV4vBDwGE4otCJ4AcDkAMMbeAyAGYEcxCRqucPXvd2GaPLEcZ9rt7e1KNYmraklcgYsxDK5wKevCuE1RyDK9Xi3kUQpwfQ4L6T76KIB6AGcwxrYyxr4C4EEAp6VURHMBfNGmFvLIH1z9+23lxMRyZWVlgQLIbL79AAIdJC/r76OAqU1dhLSHR6ER5Dn0B9N4FAQmdYmoVzfp6vkDbdPni+Wbm5vT6TCigGubXj3kUQqQn8NStRF4DAOYVibyvTC6elPZKIWA2L+tTZXtxMOj0HBdjHhB4JF3uNgfAGQZq3Vuoi6GZ1d7gqv/v0xzEHhVkUepwwsCj6JB9DyypaOwGWJVnk0AjHEMPPBMDAqzpYAIA5Mg9MLBoxTgBYFH3qFisLaoY527po5ZizsLua6Juff29qKlpSW907ClqQ57SpprUj4Pj2LAG4s9CoJcg75c6umMzS7qJJfyQYPjXFAoo7I3XnsA3lg8pDEYVpRBg77k3YNLPV3cgc34LAsBUV0kwuQKq6LThkIKAb/z8DDBC4JBjqH4kotjCno2sigE+PnKQQ3CorpI177cjmyjsPVXyN/N5mnlQsNQer48suEFwSBH2AR6OuYUFcLq0oGDY0okEpg/f74xRYWpjaqqqoxzCIBsBqzabcjnF6igM2YDyGpfZ9MIEhiXK2w5lGyeVUNtseGRCS8IhgCicGeM8mUXs4jm4mlTVlaGWbNmhY4DkNU+/BpnwDqhoKqnaluXe0i8rmP4YVJl5AMuu4Wwiw2PwQMvCIYhdEws6MuuY2KcgcdiMedTrky0RrkaFRmw7JIatB+TrULVn1ymVJiry26hFOj0yB+815BHKESVakH0xAHMKbCjYkgmryOXtBVhdmDFYKS2fvM1Xo/Shfca8ogUXOVhU2/YGFFbWxumTp0KQO/vz4WAeOpYrrTLdNho5eVUKrWg/RUCLsFxLjsgLwSGB7wgQOl4RJQKHTJMKqBc1Bti3h4XVUk+dq+uxlKRXl30cylBN5+6sXgMbwx7QVAqL3Op0CFDl3I5qjQMsp1C104sFrN68oShw+a9o/IOEuva0mgXEyohYDpUyGP4YtgLAtvKqdh05Bu2lTBX3ahcMKM4q1elZjG5XLq26UpHIpHQxgzwPk2/i8k1VddfWOT6TPpdgIcOw14QAPaVU7HoiAph9cSi6kasI16XXSWDMBo5CEv0UIlC5eRan5+oZmovin5dn6t8BqAVWwiU0o7J4yACCwLG2KGMsZH5IKZUMJRWTqYAqlwYt86LR+eNo4LYv8r/3pUm1/50NIgnquUKUzsu823aDQ32Z7JU1Z8eDoKAMTaCMfZZxthTjLF3AKwD0MEYe4Ux9ivG2KT8k1l4DPYXjkOMeFW9iGGiZ4P43ds8bUTDaxAhIrYtppHm3kUrVqxIf7fRF1bHH4ahhQlUc62bCwrBnIeCMBuqcNkR1AE4HcBNAI4nopOJ6FgA7wOwEsAvGGOftzXCGHuQMfZO6nxifu0vjLHm1GcTY6w53DA8OGR1C4eYn9/FTZJDFXjG/4q5/nUrc1U5OZ2zTliYhA1vm7uwcnsFAFRUVKSFlZhrSGXwNtk4TLuNfJyFzFFo43OUrrk2eCFQmnARBO8noluJqJWIBvhFIuoior8R0acA/MWhnYcBXCleIKJ/IaJpRDQNwN8APO5OuocKIuNV6dxdfeVFxmqCymgstsOvibSo4g9UbpnydVXbZWVlaWM2L1tWVpZW93D9v243pLNxmMbEg+DynSsoalWKqZ3BGFjqER0KGlnMGJsIoIaIzpKuMwBbAFxORBtt7fjIYjfo1C2u9Vzqm8qK12SXRbFec8AzBOT6DQ0NYIxl6PpVdNloFK/poqbDzI0LTKqxXH5D8XtjY6PWHhK2H4/BhZwjixljGxljjzPGbmGMfTzF1KPC+wC8bRICjLFrGWONjLHG7du3R9j10EWuDMSlvqmsfE3lw67TG7vo0vnf6urqLCGgypHj6h2m8pZS9etiv3BZzdsM+kGh69u06PNCYHgjiNfQ7wBsA9AJ4MMA1jDGXmaM/YQxNjpHOj4D4FFTASK6n4iqiKjqmGOOybG7wY2wqoIwht2oaAhiBJUZoqmveDyeofLiZUWjdq406WwFLq63LnBRSan+urQnXgsSkFfK8F5H0SOIIPg8Ef0HEd1LRF8HcBGA5wHsAXBnWAIYY6MAXAU3O8OwR1i9scpIK94D3L06gtIg7wLEa3I52UYRj8e1hkwx3TWvzw+jcaXTZayqw21c58p1nrjQkm0P4jw0Nzc7H9STi9dRKTPaqO0mHikQkdMHwBIAFdK1Vam/qx3bmAhgjXTtSgBLXOkgIkyfPp2GM3p6erL+F6+J6O7uTv/f2dlJq1atyqq/atWqdDmxvCsNtnK6PnXXxDH19PTQsmXLMq6L/cv06sqZaDaNpaenh5YvX26dZ13dIOXl9lW/jfg9H1D9NlG0GSWibm84AUAjKXhqkB3B1wA8xBj7PWPsesbYvQC4F5F1qcEYexRAPYAzGGNbGWNfSd26Gha1kEcmZF24zpVRPiCmvb1d6enCvXi6urowb948dHV1OdPgUk61ctadhyDbKLhKAzi4upa9hjh4XZVdwMVFVbXKFAPOwuj9g0I1J3yMPJLblvY7F4T19df1a9qJhsVQUG+VHFTSQfcBMBLApwHcCuCbAI4CcCiAm4O0k+tnuO8IRATZEchlVKtw1a4hV9p0fapofeihh5QrXk6jbrwuK1l5tc1X+vyjq++yq9DRVEi4ruajpovvVEzPYNS7DI9wgGZHYHUfZYwxshRyKRMlvPuoG1xdHEW4uka69K1yC5XpkvuKx+NKl03uzskPscnVBZLr/kUDqqq+eHCOzZ1VN95CwsXtNko6Ta62QejyKAx07qMugmAxksFeTxLRFuF6DEmD8RcB1BHRw1ESbMJwFQSuL5MYxOXCwLgxVlSDFILeIEwpiP9+1PRxJuca2xBF3/lE1H1HOS8e+UUucQRXAugH8ChjrIMx1sYYex3ARiTdPu8qpBAYLpBX6jodt/i/qPMG3NJJxGIxVFRU4IILLohUCPC2bfeDCAGXNqOij/fJdfJReKuI7p9R682DwDbuqNsrBS+fYvdf6rAKAiI6QET/Q0QXAjgFwBUAziGiCUT0VSJqzjeRrhgqP7bq5ZGZpmzkbGhoAN8lBc0o2tbWlu6j0IjaVTUKiH3aAt9sdMrMn7fpcsynrp98IR9zHdb4HCVKRRiVMpxTTKSyjN4IYD8RXZdXqixQqYZKRUcrIpctsat+X/Q3lwOrXHT0udKZaxsmlY/uXj7UREHocimrUs+5zrvper6f8cGgxglD42AYVyEQxeH1fwQwD8DFqQbPYow9EhF9OaPQKw/b6iLXVYjLOESmw1f1/LtuPnS7DblMEIQdq8n9VbUqN9WJerXn6i6qolOnnpPn2cTsda6sUTzjpvGUOrMM+6yV+riKjSA7gheJ6DzG2EtEdE7q2moiOjevFCpQbGOx68qskKsQcVXKaeOQGal8TW7HNjbdCjjIWOU2TDsC+RqnXzXmqOfbxRDK6XGtV0zjati5ymU8Ydq01QM8cw+DFM+eLl8PsiN4izF2KgBKNcgAjI2IvkEF15VZIR9UsS8uBHi6BR5Q5rKaMu0k+F9VqoOgTEWlg5fL6HYz8piLpYfmthkVgtoSXOry+mFh2ina6uloznU3GHY8Uev8h4P9IDVGJc8OIgi+CWAOgOMZY18CMBfAGmONIYxiMB3bPZFRJhIJVFVVobKyEq2trWmGVV5enjZS6to0qZO4oVMXpewCzoxM41G96CYmlo/fw+XwGdV5x2EErQvkeQnCvESVmkvfsurQNO+23aMKucxD1IJf97zpBN9gRWq+9qvuuRxV+WHG2LuJaBOSrqT/D8BpSOYeuiY6Mj10sK3IeFI0/oIkEgnMmzcPiUQifUgLT9PQ3t6O8vJyAAcPlbFBZtwuqQ4AWNvW9S++6LLAyofqR/Wd211Mwi4Wy467yHXFb4I8L0FWxUE8lVzsSHLbru241HNBlM+BSrCoaM91F1MiUNoCXALKHgAwDcBxSJ5X3AygJfV3LRH1R0ikE4ptIygGTJ4kqgNHVBG6/DqPlOXMLkjGURcvJADo6urC/PnzMWvWLK3AsEXtciEnHzpj6jcI5DGpvkftCRWkvu677bpr2y56/yjmeLDq8l3tVoMJoSOLhQa+CWASgFcATEcymKyLiE6KkE4nDEdBYEJQ46PK4Bq2H5WA4NfKy8sxfvx4LQ0u/ZuMsVEYiF2ZbtA6uRhlVcLJlsLBlVa5H1O7URrho2Kgg50RFxtRuI9+iYi+kQou+wqSp4oti4xCj9CwMVK+nRW3tKLOX97+in9t/ej0tdOmTcsQArJuW+UaKtPN2w+jm3aFKLxU32WaTGOJgj6uwhEN4bkEn5lcUW3t2mw5Lv3b6AjaXj5UM4Nc1RMJggiCPYyxtNsRETUBeE/0JHnkAh1Dko2F/AUXr4v/m4xnqj7EMqJnj0iDzNxy8ayR+80FLsxdvCaPRccsw6qFZObMbTJhhIqpnqld1aIhCGRhH5XQjto7zGZ/Gy4IIgi+AuB/GGMPMcauY4z9DkBvnugatsjl4dOt/gGgra0tw2MIQJph85UhcND1VGc8i8fjyhO7OHQvq9yWy0o0iMoqF6gEldy/uIJWIaqVquv8yf+HNcia1EZhmLi4s9LFsgRpx4XeXKAbn+tiZKgIC2dBQEQbAFwAYAGShuO1AD6SJ7qGJXLd+sqrf/mlHD9+fPqhF18A2RtFPMyGe/WIZWwuky7MJxeVgwgXF0+OIGov1Rj4ClpVN8qVqk3Vx7PF2nZwJphWwCrB6NqmTEcxYgxsbcsIq3rMJ52qvvJZ3lkQMMYaANwP4EQAdQD+RESdgXrzMCKqlbDK7VHn/cAZi1juyiuvxLp167BkyRLMnTs3LRS40HB1mVStXEWYtuS6nY1czubiKZZtbGx0PvPXBJ1NgPeTbxBRxmo9qOrIpvoCwq28XXZWYdqJCkEZt+uCJt/G66B0hxFQQbyG3g2gIvWpAvBRADuIaIJzbxFhuHsNiaodV3dOXqexsREVFRUZDLShoQGVlZWIxWJobGwEEaGysjJdNxaLWb1H5D75w8hX0CoXVxdjcdB+dUgkElixYgVisWTa7TAeOLY+xTHnkznIbreucyBC94wMdc8e029XCjRHRZ+ufM5eQ0T0FhEtJKLbiOifkRQGD7jWZ4w9yBh7hzG2Rrg2jTG2kjHWzBhrZIyd59recIVojNUxHJ2+Mx6Pg4jS+u7W1lYAQGVlZVr3zYPPYrEY2tra0rsA26pbpVoR6VMtOGztuay4dAJPVY6fuaA6Ac0GF9VXVCtE205K3AG47MZ0tLpcc2nTtLOIAlEacnVM1mT3KhRMcxdmVxUEQVRDp4jfiWgtgDMD9PUwkpHJIm4D8GMimgbgR6nvHgbIun3XOjwtxJQpU9J1uYqhrKwszejFj+hZFMZ9UVQRiEdChmnDBlFnrmOKqjlz8RoJwtxyNYqK+n4XxqASPnK9KBicaW5V9igXAe1Cn4saK8xYZKjsXjbaokahVE0qBFEN1QM4GcDrAF4GcADAFURUaayY2cZEADVEdFbq+zMAHiSivzDGPgPgn4jos7Z2hqpqSI4G3r2vF61v7sLu/e7OWQcOHMAhhxyivbd582acfvrpGDVqFA4cOICtW7fipJNOwtatWzFx4kSMGjUqXb6vrw+bNm3CxIkTASDjHgD09A5gw9vd+Pz5E3Dy+HEBRuoOcU5cVDIAMtQlsrrGVSXiUs9EkwtUfTRLQV5B2heZsW78YWGyHYh9uarMxLHaostV/Yadd918uDwDpYig8xBFZPFEItrEGCsHcDaA8QCeIaKtAYiYiExBMAXAMwAYkruTC4hos6butQCuBYBTTjll+ubNymKDFvF4HA8++jiOOetCrN4aR+PmnXh9x95ik+WEKyYfg9//a/RavXg8jnnz5mHWrFlWO4X4QuiYeNAX2/aSRcEoVLYVVzuK3I4uHYdLGzZ7jSxoTWVcBWYQAaLrNwxsY5WfmUIYg23PWVQ2qSgEQdbZA4yx84lopVMDUAqC3wBYQkR/Y4z9M4Briej9tnaGyo6gt38Ay9t34Nm1b2PFq514bXuS8b9r7Gicd+p4TDv5CFSedASOO3xMVt19+/Zh/YYN6Ovtw8hRIzH5jDMwbtw47Nu3D+PGHVyd9/b2orm5BdOmVWL06NHYt28f1q1fj7PPOgujR4820rdz12788akl6DmqHEs2dqGnbyB978hxozF9wpGoOPFwnH3ITlx43rmRvjD84XfZEZjqy9cAPUOJyugaFcIILsC8atfVcTHK28rp8lu50GEqz/sNm2bDtV/XXUqUcBGgQQWsCaEFQYpBnwvgUwBmAtjAE80xxlqJqCIAERORKQh2AziCiCh1vsFuIjrc1s5gFQSJRAIjR43Gytc6UdP6Fhau2Yad+3pxaGwkzjt1PC44/WjMOP0oTD3hcIwYodZZ8nb4A8uhe3Dj8Tjmzp2Lq6++On0IO/fgAdRMY/22bvxp5et48qWt2N1DGMGAc085EhdPOgrVJx+G3u2v4/zzDur8XVZYQeYIsDOmoMj1hYui/7CqjCiMzzp1SNAVdy6r01zm2Jag0Eaza79R7wSC7D505aNcbOQiCE5E8sD6OwE0ADgDwC4AbwE4hojeG4CIicgUBGsB/DsRLWaMXQHgNtXpOTIGoyDY2b0Pv/7Hi6jd0o83dx3AuNhIvH/KcfhYxQm4+D3H4JDRI53a4Q9FV1cXYrFY+uUAoH2Y+EpNfPAAoKGhIW3EPdDbj/ktb+HRF7fgpS27EBs5ApdPPhqXlo/HhypOxpGHHmxbrOeqUnDZ+uoYU64vguvLna/VfTF1zS7qlzCqKFNfpraiat9l9xFVv2Fh+t1NdpN8Pic6QQAicvoAuFD4fzySGUgPDVD/UQAdSKal2IpkyoqLADQhmdZ6FYDpLm1Nnz6dBgt27u2hXz69ls6+ZSFNmF1Ds+5bTv9oeZP29fQFbqunp4dWrVpFnZ2dNGfOHKqrq6Pu7u6M+7xMT0+Psi6/3tPTQ8uXL6fuvfvp/1Zuovf+7FmaMLuGLr+9juYsfZU64+a2VG3qaBb/inTq6HIZj6oP05yJ81RIqMalum+75tqPfM02d0HLy79PLm25tKNCd3c3PfTQQ8rfNMzcBUWQPoI+t/mmH0Ajqfiz6iJlMvBbUn8vAHCYrXwhPoNBEPT3D9AfVrxOlT9+hibeWENf/2MjNW3uyqlNkYF2d3dnvZT8xXNlOgtbt9L7fvk8TZhdQ5+49wV6YcN2GhgYyCgjCxoTTbpyMm3Lli2j5cuXG5mky3jkcjoauru7AzFEF7gKP12/OiGnElxh58BGp412Uz+5CmhVm0GgEwJR/84ufRRC+JjoCYJcBMGM1N/HALQB2ADgCQA/ATDLVj8fn1IXBJ3xHvrC71fRhNk19Jn766ntrd2h2zIxFRsD1uFAbx/NntdCE2bX0AfvXEILXtpEK1eutDJweeUuXucvJt9pmHYROsYWdjy23Y+uTNgX2MZ45fkw1VfRyAUXF/ay4NSNJyq4Cpao+iyUgI6qDd0CLF/9meq59C3eDy0IsioAY5A0Hn8RwO1B60fxKWVBsG33frrktudp0g8W0P+t3JS1wg4CFfPV3dPVlxE/0EufnVNPE2bX0HVzaqlz526j6kT14nPmtHjxYurp6clYcfN7NgYYZjxBYJsXl12JS/uqeiIj15WxCa/u7u70PJp2f/lCMVe5KhSKnjBzm6sQyFX1GaT9nAUBgMsB/B7AHQC+lLIRjHGtH+WnVAXBnv0Juvz2Opr6w6epcVNn1v0wD1eQh0BWJ8gPWH//AH35oRfptJueormrXqdly5almUxQtUJ3d7eWkbrQXMgttm5sJlpc29XVE4VBGF0531np6udjrorN/HX9F0Lw6egIuysN25/qnm7x5ApxQRKFIHgLwCcBfBrArQCeBNDuWj/KT6kKgu881kyn3lhDK9p3ZN3TqQNU4GU7O7OFiW7l3tnZmWVAk/v53ZJ2mjC7hh5e/jp1d3dTZ2enllkFWamYxpTLaiaKOmG2z1HRk8vLa6ofZq5t5aJgOEH60/XvsjPNpZ8gbQR5dvJlGBfryHNkW6jJdZYvX04AmkjBU4McTNNORH8nor8S0Q+J6ONEVB6g/pBG69ZdmNe0FV+/5HTMOP2orPs8jwhgz9Eei8VQXl6O+fPno6urK329q6srfVaAiEQigfb2dsycOVPrUtcZ78FvnmvHFZOPxVVnH4W5c+di9erV6SAd2WXNJe8Jd0tsbGzMStqVSLjl/lFd10HXnqm8bRy2IDMbbPPj2rY8d7r6pjl1mRtdOXGeXNoK8hvwhIe2Zz6XIzmDPhsmWsX5d3HldC0XlkbxOeBzZDqDgkfki6cRxmIxvqBXQyUdVB8kdwHfQir2oJifUtwRfONPTXT2LQtpz/6EtazrqoCv2PmKW7dLULUp70B+W7eRJsyuoY1v70m3rdPlu9Ks2xFwHbys25bpEq9FtXLXrZ50ZV3UU1HvJmy/VVingCjVGLbfO4iqhq9GVc+by9hM/QXZabsgih1s1LtgXRsuOwK5PCJQDT2OpMfQNgBPAfgZgE+71o/yU2qCINHXT2f+aCHd+LfW0G3wH0tmXK76StWL0NNz0JD7kbuX0Cd+u0zbto028WVTMSyx/56eHlq8eLHRaCzWiepFlmly0c/bVAE2pheUKerKqwRjmPbzhVxVR7rnMwqViqswyQX5UBMVAjI9OQuCdAVgLJJnEfwrvNcQERG1vbWbJsyuoSde2hqqPv+xOjo6tIEyYlnxL/9fxXh5uzt376Hy7z9Fv3h6rTM9qms9PT0ZKzvxI/dvY+w2AeC6CpZhEqQuKMaOQHVfFry59hkFwvaZ7xWy3F4Ye5dr20HLhRWcUULsWycIgtgIuCppPxE1EtHDRPTdoPWHIt7p7gEAvPuIsaHqc5vAli1bMHPmTG0qAK4XVOkHR48enT5lTGx32rRpOECj0dtPOOlIO30mHXIsFss4uAY4aO8YNWpURv+8PG9T7oPrO8VyMg3cFtLV1aW0Qcjg+Wi4zpjTEQSq8rpx6OrYdMCuOmc+DzLk+SkUwuZKMunFo06loNLXu+rwZajeAVsZsZz4O+VqvwgL19QaQQ6m2cgYe5wxdgtj7OOpvEEeOHj6liFPnBHc2MsNt/JDw/P7tLa2Ko27nEGrDMVBE76JRm0VZMY9LXVmbnV1tbJ/bkzmTEt8OWTDIBd2olGsq6sLjz/+OPbv359RTpwjzvj58ZtAuEPTxfZV13IxxrrQIpfRncccxLCqG0shwPspdI4lkzB3havB3Cbk+PthO28hHwhinA6yI/gdkvaBTgAfBrCGMfYyY+wnjDFzPuMioVAP/JHjkj/wjnjw/kTmW1ZWpl3RVFZWZjD7IA/2u8aOBmPAjm79ilp+aFxegoaGBmVbMvbu3YvW1tasscoJt+rr6zF37lxs27YtfX/8+PG4+uqrcfHFF2cIPi6sxFUzby/MClAUKjavGhNU5cIwFXGeVHA5sF7lsRPGcyWMEBO9yfKJIJ5N4hzYYFsQiWXCeo5F4emUK30cQQTB54noP4joXiL6OpIJ454HsAfJzKQlhXxPsojyY8swggFtb+0JVE+k0fZC8zOF5etyOyqMjY3ESUeOxfq392jLiw+NjpnJYIwhkUgeCl9fX5+hkhHrMMZQUVGR9VLIwm769On42Mc+hpqamvTOAEBaQMoQBYB4Tayrmy/5uvg76F4eV8GiWsG7MAzVAiBIP6r7/GxqrloLKiTDroxVakRd3bAwqVxUu8YwahoXV++wCKuycoWGryj1FkEEwW7GWPrsASJqBnA+Ed0O4MKgROYb+Z5kEYeOGYXJxx+O+lc7A9VzXT3ayrmM9byJR2F5eyf6+ge05XVMyPSix2IxMMZARFkr0IaGBsTjcWzatCmjH1lg8Gutra0oKyvDpEmT0v7srnPHhYJOZaJjBKr5y8cz49KmqoxoBwjDNMvKyrIYss3mIdMk79zkuqbnyWXHEmZcoipQ9ayoflObmkZGGKEZFPlq2zC3ymCCIILg6wAeYoz9njF2PWPsXgD8yKrCJvp2RCH1kleedTwaNnehY/d+e2EBOv2v/HDLjDko83r/lGOxe38vVqSEVZC5sb3oM2bMwAUXXICysjKUl5enGTE/EPzqq6/OYCRiAJrIWIgo3R4ANDY2ZpWR50CeC92LLpZRBU7ZBE8xIAYG5cI0VQw5SHvibxel8TOXxZrI2E3qPNX3oM++C/KpgVDtbmwIOrfOgoCI1gI4D8BCAMcCaAfwMcbYoQDmurYzVDGz8t0AgEdXbQlcV2ZwLS0t2pfNRZ2kelAun3Isxh8aw/+tjOasZ1lIcUYqGr0nT56M+fPnZz3IFRUVqK6uBnBQldPW1pb2OuLj4rsMbmwWdxv8fy4sREZuevj5zoGXDRJNWwiI/ZeVlWHWrFla21GQtmSEaU+3qs5VSAWhW7wvr/bzJczzwXiDQLd4camnQG6qIcbYUUgeHl8G4B8AfkdEnUS0l4h+6trOUMXEow/F+6cch0dWbka8p8+5nuqHZYwZHyzRk8QkKESMGTUSV1efjGfXvo2Nb3cHGVoWEzatwEQD5/jx4zFz5kyMHz8+rcfn3k9iebkeB1dn8J0CV/sABxk499jSrZpkF0tOh5wWw/VFzqfLpmpexTkJKgTyod9WraqDMEEXJs/pdtH9izREJczlhVmOjDcSqIReUKTGoPYhVwUXqD4AlgL4EZKnjC0BkACwzrV+lJ9SCyjjeGnLTpowu4Z+tXBdoHqq4CkeFSxfW758efpkMlVQlimQqzPeQ1N/+DR97ZFGZ9p4dG5nZyfV1dWlM466RoPKgTy2A3V0UctiebkP+X9VgJ6qzaAH1phOxooKuQQehQ3CKwTE39U2f6pnQL5vqpsrnaV08EwQuNCMCJLOHUZEPwHwNhFdAuAzAB4KLJaGMKadfAQ+Pu3duP+F17B15z7neqrVPXel5KtwrgKpqKgAYyy9quYrXFl3q9opjD80hq9efBoWvrINK9p3ADCvcLnKhqt6YrFY2vvHZRuuMjTK3k+8DJDcLfCzqHX2D5XeV1zVczXR1KlT0wF6fFUttxnUv5uragqx8tNBN+c6g76pTqHAHQcAvTFfBH++wqx8c/1tVP0W0tYYFvJOyrCLUWeeU0kH1QdAfervKgBjU/8vCVD/QQDvAFgjXKsEUA/gZSTVTYe7tFWqOwIiojd37qMzbl5A//aHhkCH0uhWrPx/eTUur8r5//xAE57Lnl/jbe9P9NHFtz1Pl/6qjnbs3J2xwlWt1MXVm+28A3k8tuu6nZCtvGlHodpJBF3l2VajYQ4uiSLVQJg5jyK9QhSrbPF5zOccDAVEkcrDsCPIOencp5A8tP47SB5Efz0CnEcA4GIkTzYTBUEDgEtS/38ZwK0ubZWyICAi+t/Fybz/f19tzj0UZCvf2dmZpWLRJS/r7u7OOhhFZOJLN7yTVmHJect1D1MQZurysgYtIwomHR2uh+xwxmTqO8jpYqZ7vC+ejTXXDKthmEQpMF7b2IOoYoop1PKNfAu60IIAyZPJjpGuXQPgNgBn2upL9SZKgmAPUmmtAZwMoM2lnVIXBH39A/TJ3y6jiv96hrbt3q8sY9KDy+W6u7tpzpw5ysMmRIi7AdMqtKenh77w21o69cYaani9M+O6CS5MVqRF14bpf/maahyqsnyOxNTdpnGYUnCbhI4JupfY9lvI5UptxRsFLbpnh9/jYw4qLIPuzHLJdJuP38Rl0RIldILAxUbwLICXGWNvMcYWMcZuR9Lb6FEkXUhzwRoAM1P/fzolDJRgjF3LGGtkjDVu3749x27zi5EjGG7/dCV6+vrxzbnN6B/IVsu5uITx6wAwYcIEZXCMWJa7YPJAL5Pf9F2fvwAnHTkON8xtxu79vVnldDpcmU6VmyunxebRJLsfdnV1pV1FxbI8alm0AajamjRpkpPePxaLGSNeXYOPZA8llX6Z06v6LVR6XaDwuXlsyJUWcWy69qelkuzp8iup2nONZ+B2MNEeFdQvPx/uxbb4h4K6NKukA2Wu4q8DsBrAjUiqd74K4DcA6gBss9WX2pqIzB3BZACLADQBuAVAp0s7pb4j4Phr4xvOXkSm1ZKLKkPXhmoFyldFqzd30Wk3PUVfe6Qxw55h05GLdOm8QGwqAHnV09HRQcuXL6dFixZRbW1tun1xpS+v5GUPJFv67rq6OqfVoMsqjI9dPjzIpk4z9RW1SsgVhdh9uDwPpoOXTPVM0Hl6yf26/uZhkMvvGrSurT2E3REQ0b1IppAgAHcD6AVwAxFdRkTH5yiE1hHRB4loOpI7jFdzaa/UMGv6SZh17rtxb107nlv7trGsaXUaix1M58Ch8gxyiR4VV63nnHIkbrxyMha+sg33Pt+uLKOiR1692rKeyv3LK+EVK1bgiSeewOTJkzF9+nRs2rQpvZIuKyvDVVddhfb2diQSB6OVeeCdGH2s24Xwv+3t7dZVpO2+uPqfOnUq2tvbUV6ePLGVez25xCaogt9MOw+xXR1cV45h/eRzgW4OxOBIPp9BfPZtuxUxKE+uz/tVpdBwHYMNtvm1tWl6JlQ7cZ1mwQqVdNB9ABwO4KdIGnnfG6QuqXcEx6b+jgDwCIAvu7QzWHYEPT099MKKlfThu5fQmT9aSGs7dkfW7rJly2jx4sVOKyLT94GBAfrm3JdowuwaemZNhzMNrr704q5Bt/rt7u6mxYsXZ3g56XTp8o5EtzsQ+xbLqNpS0aoah2r1KOq0XXXPpn5U4LYf2+ow7Alaue4IcqlvsplEAZOtKl8H2Kj6ygeCagCIcjMWvw/JiOI7ATyNpBpnMYCP2OpK7TyKZDBaL4CtAL4C4AYkj7/cAOAXcDwPebAIAqLkD/HWrn103s9q6YL/fo7e3qM2Hgdpj6tMVMFdIrNTMULVNnl/oo/+6Z4XaOoPn6Z1HXucaAjKyHQnqHFwFYsq+EvXvzgX8rhsqgNdH7qXK8hpai4IYhR1nWtXOqJkTPlinlHAFgCo+y1zVR2W2lyI9OQiCAYAvATgPwFMtJUvxGcwCQKO1jd20eSbn6aZ9y6jfT19odrgK0O+E5CZPX/wZb213IYKHbv2U/VPa+n8nz9Lb+7cZ6Sjp6fHyTtHplsVhyC6unZ2dmoPvZf7V41dvOeimw9j2zAhKAMoBftAFChl+oJGgQdZhJju5zP6PBfoBIGL19C/A1gO4KMAVjHG2hhjf2GM3cwY+4RDfQ8AZ5/0Ltx99TS0bt2F6x9djd7+AXslAVwHPmXKFIwenTwHSI7A5PpQIPOQFuCg54TuoJPj33UIHv7Seeg+0IcvPPgidu7V68gbGhqwbt06q3eHTLecN2fq1KloaWnJOHlt//79aGlpMbbH7RPy2LkuXRy/Sl/Ky7W0tDjry13GKR+naYOLdwjXY5cqSp0+3fOugy2BnS3iWcyJZXoWih3tLcPFWPw7IrqOiC4houMAfBDAH5BU8Xwq3wQOJXzozOPxk5ln4tm17+C7f23BgMKtVAf+AI4fPz5tOOZMTTbM3nHHHRmnUsXj8Yx0FTqUH30IvnveodjStQ9f/kMD9iWyk+dx10vd0Ziq8jojID/iUmxr7NixWWcvq9oTjX0i5HQTspsg/646NCWXhF4A0NfnnmxQHpPK7bSg7oMhUEz68tmnLYGdi4Ha5nbsOm+Fmtswh9dvJaIFRPRLIromH0QNZVwzYyK+96Ez8GTzW7j5yTVc/eYE2Y9ezqAJJB/CSy+9FLFYLOPepEmTAJhPXIrFYvjsB87Db66ehuY3duFrf2zCgd5+pb98EGbJXwzTuPhf3dnHHHyH0dXVlfYlV7Wl8ggRV2v8u83zirflAr5TC1pP7jeqmIJ8M5pcBWdYiLuvsPTb6uU6Nt0CJUjbhRS0gQWBR+74xmXl+Polp+PPq7bg5wvWOgsD2d1OXNWKD8sll1yCWCyGvr4+JBLJk7+mT59uZchA8iG98qwT8MurKvDCxh346h8a8GLTS5EcRuLi7qZT54j3RbfNtra2jIChqqqqjL7kl02cA9mNVQXbyygKSdHF17WeCiKjyEUIqASleD8KRpOL4MxFUPFjUsPQ71ovl7Gp+hN/C53qSe6/YIJWZTgo9c9gNBbLGBgYoB8+8TJNmF1DP/nHK84J6lRGKjmvEDeYcpdM7q2j88jRGb7mvriZJsyuoWseqKf9ib6cA2pUfdrc3WzePaacSzoaZC8g25yYDIPLli3LSHdtokE3Rlt5V6gcA3T95JJqwUZDWDdWXRmTUT+sgT6I8d+Uj8sV8m8R5D000Ra0HnJNOldKn6EgCIiSwuCWJ9fQhNk1dPPfX6b+fr0wcPVSEJkb98Dp7OzM8CgSozdt3j+PrkoKg399cBXtTwT3dlIx9qDumDrhJ943uQKKc6TrV36xbH77vNzixYtp+fLl6TkNEl8hf8/FDTOocMmnp0+UbqyuyepcGbvrGQc9PT3p35W/N679mPrXfQ/y+8vvj0vOMg4vCEoUAwMD9LOn2mjC7BqaPa+F+vozUz3wv/LKyLR6FV0qa2tr6Z577kkLgMWLF9OcOXNo8+bNGcJB1Rb//rO5i2nC7Br6zP311H2g13ls8sMpP8BBk7px8JfTljmVH+IjMn6XF4bXdX0pxZWj7eAa00ou7Oo2aP18CoGo+nPdkQVNDqgTAqrnhy8GgrhK54IwOwL52bbR6QVBCWNgYIBuf2YdTZhdQ9f9eTUd6O3L+lFF9Y9t9Sf+ra2tpbvuuosWLFiQrrtx40b64Q9/mN4piPV17T724iY67aanaOY9L1BnPPzqyyTcTG3J7co5aVQMXgy6E8u5vDBhmbJKPaR6UcMKQbHdMPVz3XnIbeXanytj1tVT/e65Ch7VtUILT5c+VbsBvyMYAvht3UaaMLuGPjunnvbsT2T9qDbVhuped3c3bd68me677z5avHhxenWzceNGJQ2mF/Pplq30nh8soCvuWExv7dpnXV27HElou69brana0ZVVpe8OE2hkuicHzInXRWEkjinXoKMgjEp+JoK0rbsfJKDQpQ2VwA7adxjBU4pwnd8guwEiLwgGDf7a+AaddtNT9OG7lyrTUdgYkrilFRkRVw2tWrVKa9zUtSn+XfnqDjrrRwtpxs+fpb/VLncySLq0r7ruksNHZqoq4SmOle8STOkubLSo7qtSaPD+bKvNXOHC/HQ6ZRUtNkarqxeWNlW5sAw9rAApJdgWWDroVMcivCAYRHh+3ds0+ean6cJfPEevvhN85ao60lJmmKZ0v7aX8eWtu6jqp7V01i0LafnG7aFeVlP7qnLyqlqEzXNIp67Rta+jgZfTJbhT9VMoxhNE4Mr/u6gZTWVzpU1HV5h+olb5FRqmXZKpjvh+m+ZBJwh8HEEJ4rIzjsXca8/H/kQ/Zv1vPZo273SuK/vS82vc/56nYuApmYHMlNZyrILKj/msE9+Fx75ajRPedQi+8OCLmP/yO1paZLi0r6qffIbVaaJ5bIBuHKoUxHx+eHnevkinTCsA9Pb2oqmpSZlOoqWlJctXXBW3YUsTHMZXXfRLl2M1+H2xrEyj7Neuiq4N69fuWl6OwQgKF/qi9smPKthLNceqyHi5vDhXYrBk4N9JJR1K/TPUdwQcr2+P08W3PU+TfrAg8PnH8jV5lcDVRJ2dnRneNURuuv1Vq1bRjt1x+tyclTRhdg3dtiC3WAiXOiY1UGdnJ82ZMycjNbctqZz4v85oLrsN8hWXavWvUg/Z/Mdd/Mt19MvX5XORg6zgg+wMCoFSXrnLu+xcVX8u7ZjUe0HUdfCqocGJrngP/fP/rkgy24VrlbEGri88Z2ycaXAhwP+qmK2pLSKiRF8/fecvq2nC7Bq6/k+NoWINgkB+McStcEdHh5Gh6lRAqrLcoPzQQw+lT0+TA/dsHkK8XZUwEfvVeUCpxm5iGLJK0NSWrn3d9bq6upLIqBlEBZav/kUbk+63CKpCcxXWHGF/CwBN5FVDgw9HHhrDH7/yXnzmvJPx27pX8e9/asLenszkZraMiRzxeBx33HEHurq6wBhDLBYDEaGsrCzjnGM5e6Ko7pBVDaNHjsCvPj0N37qiHPNbt+Ff7l+JbbsPWMcVdkutyxs0depUbNmyJWuLLffZ29urbFPcSsfjcbS2tibTbVx5JV577bUMVVZZWVm6b1kVFIvF0uorTpd4Mlo8Hk/PrS4hn2lLbzo5TkxxwU80c1EPqNRH8v1169ahqampIHlvckn3ETZlhmsdObWL7rcIqpoxzb1chufbCvlbqPPZqKRDqX+G046AY2BggH7/wmt06o01dOXdS2mr4swA3SpY/H/RokVp1YZK9SGvKEWvG9tu4emX36KpP3yapt9aSy++rjZG67bUYVdyNjWMeL6BrAITIa7S+ZkPPD0H30XJ/aqM1Ko5cjkZzQZVTIQOfAWv6sdlN6TrvxDqmrCqMdf7YfoMi1zbs+0AwzxH8MbiwQ3GGL580al48F+rsbVrH/7pnmVYumF7Rhl5JcIzlMoJ6QCgqakJS5cuxWOPPYZt27alV6sNDQ2or68HkFwZx2Kx9Jmvqt2CaKC9/D1H4daLD0fZmJH4zP0r8cf6TUn9Ywq6rJq2BGkmiLsg1Uqsr68PTU1NAICqqipccMEFGfUTiQTi8TjmzZuX7r+6uhozZsxAIpFAX18f1q1bl1WnublZ2Z+4a4jH41k7AF6GtyN+1yGRSJ7PrNrNmOZFrJ9IJM+Glp8H19Ur//3zjSAOBECm0VR13xVRJ3eLKqGfiS5divUwfXpBMMhw6RnH4u/fuBBHl8XwxYdexB2L1qNfONdAfmg4I5Y9MUaNGoVzzz0XEyZMwPr16zF16lQAQGVlJUaPHo2uri7MnTsX9fX1GW2Kuda5oOEeNLFYDB+7uApPXncRLjz9KPzwyVfwn/Na0+caqLJqiiqSMNtdUYioPE3OPvvs9BzI3kIiQ581axZisVj6YJtEIoH58+fj7LPPzlC58Hb4mQg61QA/A6KxsTE9tyq6VeOVr8ViyfTc06dPd2JWopookUhk/D6TJ09Wegjp+i4GXBmy/Nvnkhk0V6h+syiEi0kgyinWuSrUMhdMeVW1TcjHB8DJAOoArAXwCoAbUtfHA6gFsDH190hbW8NRNSRjX08fffexZpowu4au/l299ixkk5qInyVcV1eXkb9HPDrSZSuu2qLWr1xJty14hSbeWEOX315HzZt3KOuqjKlBoVK5iMd6ip5E/J5cl/8vev1wdYhOnaILYhP7MXmXyH3byurUaTqjJb/HVUouxm7d9ajg2lbQcrnQaPsdXWgolXgRU5menh4C0EYq/qy6mI8PgBMAnJv6/zAkD6yfCuA2ADemrt8I4Je2trwgOIjHGrbQGTcvoHN/soiebdvmVEdkOKLut6OjI11G1gnrmJjuOmfuyzZup+qfLqLTb6qh+xdvzHIxlRPIqWh1hUiTODaVDt9FB80FgypfkSr1twttOnrr6uoyvH5UdVT2EC7wTPYD1e+osqforkeZm8h1rgrJWOXf0SYYTL9lWBqC0Goqb2sLwGoqpiDI6hh4EsAHAKwHcAIdFBbrbXW9IMjE+m176EN3LaEJs2vo+4+30t6ezAyhOkYoXhcZssgA+Q5BdJfj92UDprjCF9vqjPfQlx5cmU5nvb37QAZdpjQMYf3gXTOAurQrfuTzHVza041NXKlz47RuPDI98o4kzMpYx+yj2hHkwjALWU7+fXlG3iCpU3LdTYRNX+5Cm3hftyMoio2AMTYRwDkAVgE4jog6ACD191hNnWsZY42Mscbt27erigxbvOe4w/DkdRfi2otPw59f3IKP/WYZWrfuApCti1bp6ePxONrb2zFz5sx0FG51dTUmT56M1tZWrFy5En19fenjIbkRFciMyBUNpVzn3tzcjLLRwO//9Tz8eOaZWP5qJ668+wU88/KbGVG7KkNXED2rqCO1ude5GGflstyI3tTUlD75jbuPmk6yUtkC+DiJCIlEAk1NTSAibcSvWKehoQEA0vPMy6oiUV0gR3gHcU1URbyK91S0BI0ytvXvMl6XctxOwJ/d8ePHK5891TOZi6E2iH3M5g7saGjfr7ypkg75/AAoA9AE4KrU913S/Z22NvyOQI/l7dvp/J8/S6ff9BTd89wG6u3rd1pFqIKc+N+6ujrq6OigOXPmpO0GshpDbI/vJPh3sczajt30wTuTu5dvz11Nu/cn0uXCpmZWrWyj1veKaiYxX5PoniqW1UV+iqocvtsS58s0LhcXUp06T/c76dxM+V/TCtimGstVteO6E4yirShoDbqDtf0+Yds2AaUQWQxgNIBnAHxbuOZVQxFj194EXf/nZLTvzHuX0fpte4zl5YeLRxpzBsfTV4tGV9P2U9Z3yw/wgd4++uXTa+nUG2toxs+fpaUb3tFukYPqk6PQ1ZrUAaKgXLx4MdXW1qbHa4u1EO+pVDxiOVnYyrS5zospCZlNCMk2JNf5CguZ+Q2GTKEyXIUAd2TQCVBVOoko5qLoggBJt6VHANwtXf8VMo3Ft9na8oLADfOb36RzfrKIJn1/Ad3z3AZK9PVnlbGtFHt6emjBggVZ+fZVxmSRMYj3dQ/w6s1ddNntdWnbxtudu7JoySWVdZDyqhdOt2LjDHTRokUZuYdcXljdToPfExkwtxvIwsJ1XviuTvVb8L+mFX3YHZo4liDlowoylNt1uZYPmPT+oq1JhajngaMUBMFFSIY3twJoTn0+AuAoAM8h6T76HIDxtra8IHDHju4D9B9/aqIJs2voI79eSq+8uTt9j69MVMKAX+PJ3MR8OB0dHXTPPfekdwq8HXEFq1I7qLbD+xN9dOs/km6m1T9eQM+ueTNvLwFvzxatqVJ56FbTOsGh61sem6gmEr1WxN9GF8Est60ap2j0dB2bqV0XyOovV7j2FaScLvI7X8JAFLBBji0tFIouCKL8eEEQHE+//BZNv3URnX7TU/TzBW20t6c3Q/2ggshMxAf8nnvuobvuuos2b96c4R2kWjWLqg2erIu3J650V73WSZfe9nzybOR7aumNHdnqrKhWT647DPGvarXPv7sedK9SB8iCRLczsTEU18yhrkJL1Y5rWf672gROGAFk2zmoBLZr22FgEjK5JOmLYperghcEHtQV70kHoc34+bO0cE0HHThwwFhHxZz4ToAo+4AbFZMT1ROia6mY9ZQoaTu4u3YDTfrBAjrrRwvpDytep75UtlX5JZOZtKwLD6qaUI1b/q5ibDZhKkK1i7D1LQrQsIwzyHVVuVwyaYpzJY7BtjMLEuthSs8cxeo/rFDKpb8gdOsWKip4QeCRRsPrnem4gy899CJt3rHXWkdmfkSZxkbO5FURt7L+XIxNUBnMXtt+8JyDmfe8QC9t2p5Fg7zykgWAC/NUjU/VvkqgBXn55H50L7rOUB5WqJl2Ci6G4DC7BxMtqsA8U/kgbYfZdbi2nUsSvLA0BH1udc+k3I5OELDkvcGFqqoq4jlhPMKht38Af1ixCXfVbkDfAOG6y8px7SWnYcyokdo63F+a59lpbGzEvn37MGrUKPT19aG9vR2f+MQnsGXLlrRvtJwKuqGhAZWVlWhra0N5ebk2mRkR4fGmLfj50xvQtTeBa84/Gd/50BS8a+zoNC2q5G3xeDx9Chu/ZgMfl+y3z8Hvqb5z33vXRHJdXV0YP358VqwCT3zH4y+4P7/YjytkenTz1Nrait7eXsyYMSNjHDyHFBGhsrIyHa8g3peT/QWlK0qofj9T30HpyIVu8Z2RT8rLtR/+O4m5sPhvwvvkzxC/zxhrIqIquS2fdG6YYvTIEfi3952GZ79zCd4/5TjcUbsBV979Al7YqA/WE4NfgGQ2z4svvhgXXHABzj//fEyZMiUdiMOT0wGZSd74OQg8D78Ovb29OHngbcz/ehU+U30S/rjqDVx++2LMfXEL9h/oycpcCiAri6irEBCTyIlQZUqVA/LEYKJ4PJ6RhE9GV1cX7r77bmzbtg0AMsqKQXiNjY1oaWlJJ6sLEiSmCiDkffOgOC4sKyoqMGrUKMTj8ax6VVVVaYEtJujjCd66urqMYw2LMG2JwYSqtuSAL5f5lM+ZCAvXgLEgwXEi+EJe/L3FwE7VvCih2iaU+serhqLH4vXv0CUpY+3XHmk0qotc1AkiZHdLWztiPW6sfnnrLpp133KaMLuGLvvvhbRy49vK7a/KSGkahy4oSh6LTaftom4hSnpciek6VAZFPoawydBUKid+0lptbW2GyozbbDo7O5UxBypVjujS6qq2clGx5KKGsdkHgujxxTQTUcFFDeb6vKqeU1s6En4P3kbgYcP+RB/95tkNNPnmp2nSDxbQL59eS90Heu0VUzDpzTs6Oui+++6zMkoZonF5YGCAnnhpK533s1qaMLuGrvltpneRzJBdaRb/Eun9510YiEt/PD5ARSu/X1tbS3PmzHFyP9QxANme09Nz8IhSEdxoLx+/6Mq8gkTT6q6r4h1khmfzu4/SPqDKNRSFrURGkPmTaTDRpnsXdYLA2wg8AGTqJ7ftPoBfLlyHv7/0Jo49bAz+88rJuOqcEzFihDqVudwOkLQF8OP8EokE6uvrkUgkMGPGjCy9pY0ersrg2Nm9Dw+s2IL7l76G2MgRuP6KSfjnymPQvmGd8ZwA13lw1emq6tnGFY/H0dTUhFGjRqG6ujrDFiCeH1BZWYl4PI7jjz8+az7498bGRlRUVCjr9/X1obe3F2PHjkVlZWV6TrhtQD5jQVYl6caj0mNHofvnB/hwVQa3UfBnSEc371983qKCbFdw+X1z7SdInSB2EQ6djaDoq/swH78jiBa6VUnT5i76+L3L0t47jZu6nNuTs5Lq8g/J6g+bikC8t2lHnL7ycANNmF1D7/3JApq3ciOtXLkyZy+NsCu/IKoo22pODEiSV8N8jnQreDGHkWq17+pNZVpl5jIPclmd+kbedeh2R/Lzli+EjQvIZb7C3tMBXjXkYYLuoervH6DHV7+RVsdc9+fVgdxN+f/y91WrVlFHR0dGyl+XNA2qe7Vr3qQZty6gCbNr6FP/s4xWb+4yjknVXqHy2gTpQxSSqtxNqrQTokpDl/jPNLc22sPqsXVldW6+QdU8YcfkirDPiK2e6X4uKT50fXlB4JET4gd66fZn1tEZNy+g8u8/Rbc8uYZ2SOcKqKBbgfKHfPPmzRlt2ISATne/d99++r+Vm2j6rUmB9fVHGujJ51ZYaYsyoRdHLhGlHKr5Eu+paBeNuDITsdFkY+BBGGGQeqq5z0VvLn7PhXkHuW4rE0aI2XZBYdsD0EQKnurdRz2ccOiYUfjOB8/Aku9dhlnTT8Ij9Ztwya8W49e167Cy8SWj2xtj2baFsrIylJeX4/nnn8/K6c/tCS7nwHJd6UB/Hz733gmoveECzJo8Dos3bMd3ntuJny/ciK696nz5qrMZ+L2wkF1YbXDJ5S+fESC6CAIH3UvF86Tb2tpwyimnZMQo2GiS4yh051jIZyvI4zCdq6CCS85/HVRzJZ5zoaLZtb2gZykEOYNBN1/iNfHMCVW9oDSknhe1UVglHUr943cExcfGt/fQv/0hqZ+v/uki+vOqzdSryW6qUk3oVqrd3d00Z84c6ujocM5To0r98Pbu/XTj31rp1Btr6KwfLaTf1m2k/Ym+9P2w6Q1cEMRjyUSH6butP9FLSywTZMyq3YG8E9G535poFtsKEv2tg4taKagnmahqM7Vto0VXJuxOxcUWIqsNRUCjGvI7Ao9QKD/2MMz5QhXmfX0GTh5/KG56/GV86O6leOaVbUmdIzJXJzwIiXt4NDY2ZkUB853BVVddlY5OltuRv8srP45jDz8E/33V2Vj0rYvx3tPG47aF63HZ7Ysxr2krRo4arV1xBlmN6qDyNlKt5Ex9qVbJqvYSiQRaW1uzVunr1q3DgQMHMlb0ptWiKqBObI8HkwHI2EWJgUu6U7tUbfHrqt2iK3SRzarvuqAu3e8Si8VQXl6O+fPno6uryzgmVd+2MmGfMf5umZBIJALtStMND7aP3xGUFgYGBmjhmo702QKf+p/l1LgpuZIST/MSvWBEfTZfed13333p3EP8o0vSxtuRjY261Vb9qzto5j0v0ITZNfSBOxfTwjUdNDAwEMn4gxpQdTYJF1uFKrmevKrm88uDx2xGeNWKWe5DTC0dVnevuu6yi4hq5ybvLvncmXYKcjxBPlf8LnC1ZwXdEfg4Ao/I0Nc/gMcat+KuZzdge3cP3j/lGHz0pD589H1VGXmAOORV09KlS3H++edn7BJU/uF8ZVZeXp6h3+erXq4vF8vHYjEQERa8vA23L1qH13fsQ+XJR+A/P3QGLiw/OqusCWH8y3mdRCKBFStWIBaLpX3i+VhV+X1EiPmIAGTkAOJjFunh9/h1E31dXV1ob2/PGAffocm5llzHGdY3Xozh4PESuvgBXV+6/uX5qa+vT8d0BPHHdxlLrvEGunEFiWeQ2/C5hjzyjlEjR+Cz7z0FS753Kb55+elY+dpOfPe5Xbh5/lps3blPydx4Ph8AGDduXIYKAwCqq6szynPmVF5ejsceeyytYuKqi4aGBrS2tqa3xaJaijGGD0w+Cj+/aBx+/omp2L7nAD73wCp87oGVaH5jl9PW32RENUE2oFZUVGSNVc7vI0PMR9TS0pKhHpo3bx66urqy6Glra0vnEuJl5fEkEgm0t7dnqIe4gRrIVAW5zA3/PYIY3TnDmjp1asbYgOx8OuI8qn4z2+8ojmfGjBnpgDsddGo5E1xURCbYjL4uNHE1rBMNqm1CqX+8aqi0wbfGHV3ddMuTa2jS9xfQpO8voFueXENv79mfVVZlONa5RPK0Cz09B89FkFNfy8ZLUS0ltr0/0UcPvPAanfOTRTRhdg1d+0gDvfKGPb+MypUz6PzYvpva5GMXy8gnkYm01tXVZRngbao3FV26U7dUqh4Xd1VxrCJdqnTVNsO6Su2jKpPriWVBDfy5qIhypUk1l/BxBB6FhPjwbd25j2bPa6HTbnqKJt/8NP33grW0c29PxsupYmTyPfEcX7EPVXIwmSGYchx1H+ilu2s30Jk/Wkin3lhD3/rLS/Tqtl3a9sToYPmITtM8uM6XjYHwfvlJb/JHZY+Qzy/m/6vsC2I9GeJpdUTqs3dlxq6iXxdAaBKCpus27yV+3fSsuED3HJmYsUubNtjacXn+enpKIKAMwMkA6gCsBfAKgBtS1z+d+j4AoMqlLS8IBide2x6n//foapp4Yw2d+aOF9L2Hn6fOPXszDMYqRsb/igxNZPC6s2FlhiQblWV0xnvopzWv0KQfLKDTbqyhHzzeQlt37MlaWakO2hGZkap/HUwrVRP4WdK1tbW0ePHijBQSJqEgt69i4Dw9hYrBy+kqli9frjxcyGUVr+vfJAx0sGVq5c9OLllFTVlJw9AsthnmKFLXMuJvAU1AWcGMxYyxEwCcQESrGWOHAWgC8AkkAxwGAPwOwHeJyGoF9sbiwY112/bg9mfW4dm123HkuNH4j0vL8cmzj8JrG9drD2KJx+NoaWkBYwwVFRVKQ6kKoosqN0aLBlDR2Mj/btm+B/c8347HmzswagRwzXtPxnmH7calF743Q08uJnlTJZDj9JkMmvIhN0EgB+IB2QeSmNqVjd7yXMh1RXddWQcextCqmhveninxn9ymnLBOHhP/v7m5Gaeccgq2bNmi/I1coDKqywbcIO3Znl/dmFX3gezfC8g8SGnMmDHFNRYTUQcRrU79343kzuBEIlpLROsLRYdH8XHa+ENw7RTgr9eeh7NOfBd+tmAtPnpfA9oSRwEjRikZZltbGyorK1FVVZUhBJqbmzNeSNEwxhmEaBDlCwjRq0Y0cMbjcbyx4WV87Phu3HbpYbj8jGPwwIo38N0l+/C7Fzaja8++LCMe94Xnxk4RorAwGf5UL7ANfB5ErynZr19ntBSNkeL/Ylsys+UH5shjCGJolfuXDcu8PZPfvyrqWjzER3XQDp+b448/XsnETT73Ig384CXZ+C8KAVdDufz8mmAyPosOB+I18Vm3/U5FcR9ljE0EsBTAWUS0J3VtMfyOYNhAZDorX+vE7c+sR+PmnTh5/FjccMV78MlzTsRIIe21buUprirF1MVA9qqyq6srY+Ulu1mqPGNisRheeWs37qrdiGfXvo0jxo3GNVUnoPqIfTi/6pws98/e3t4sd0STC6RqXrhr7Pjx453Kqo4kVJUzpZS2rdx5ymtxjnJ1t7TtQnTtqNyQRZdX1yM+eT2xjmonakubLtMZdEcQpKyrK624U3VxHy24oRdAGZJqoauk64thsBEAuBZAI4DGU045Rasr8xicGBgYoOfXvU0f/c1SmjC7hi6/vY7mN79J+/cfTGznkrxMp2c3GShd9LRERC1v7KQvPLCSJsyuoXN+/Azdv+RV2tfTl2XHcDUa68YSRJctp5AI2pcKKn2/S9Ce7Z6NvmXLlintDab2dbYJG1RpSXR95aq/jwo9PdneYvJ9mx0MwGoqprE4SQNGA3gGwLcV94yCQPx4Y/HQxYEDB+jXjy+ly1NRyhf97Gn6e9Nm6u8f0L4AQY6mFP/Kbbhi5ca36fMpgVB16yK65U91tCe+L6sfGy2yK6cI1QlZujZk4aYyuJrGLl7XRSGrjPdye7Y+5HHLUHkgqdrTCSRd26qxyC7HOgTx6LEtUkxjcoHM6FX3bZHfKAGvIQbgEQB3a+57QeBBRMkHuq9/gJ5sfpMu+1VdOi1ETctb1N8/kFVWtWrL9wqtp6eHHnrqBfp06hzl9/7sWXqkfhN1793vLJREzxsdA3QVbrY01S7ulfJZxDafe0677Zxo005NNx5dn3ysph2B/F3nAaVr39S3iW7VfKn6tzF0Wz+53NcJgkJ6DV0E4AUALyPpJQQA3wcwBsA9AI4BsAtAMxF9yNSWtxEMH/QPEGpa38JvntuIV7fvxRnHHYYb3j8JV555PEaMYFpviSBh+LyOS7oC1f8r2nfgjtoNaNq8EyceMRb/fslE/Mt5EzF6pNoXQ+VlIo+BlxP1vLJuXG5P9rLReQWp+hK9q0w6ermdFStWgDGGUaNGYcqUKSgrK8v6LRoaGsAYc7aRmDyu4vE45s6di0mTJmHGjBlZY9HRrBqzPHYVHbo5t7Uje4RxiPasqqqqLLrkNoJ6ktlQMjaCKD5+RzD80NefPLieJ7b70F1LaP7qLVSfOpoy6NZbpyowrYJNK8SBgQFasv4dmpk62vOiXz5HjzVsUabmdqGPl+FbfVu8hG1FrhqP6ZqNLlmtxYP9wu5s5HZNuxe+I3BVDclzILelmw/dPRvtqrIqWuVr8vGkUdkexDZQ7B1BlPA7guGL/gHCP1qSO4TXduzFGceV4brLTsMxPW/h3HPOcfZWkT0qwuwIVCAi1K1/B3fWbsCaN/fg1KMPxfWXl2Nm5bsxSrNDUPWjutbV1ZXlSWSLRVDtjmz9uEDlucM9i0wraFd/eN0OxzQW085KtQPjOxWZZrEd0yrfNodiOy5eb6r+gnhf6e6JY/dJ5zyGBEaOYPjEOSei9tuX4O5/mYbefsL1c1vxX/UH8PyGLgwMuC1s5Dz4ov+8DNln3Nbu5ZOPwz+uuwi//UwlxowagW8/1oL337kE85q2oq9/QFlP538uMrn29nbnWATVfRNkt1kVfeL/so9/LBbLUP2Ifv62Mcp0iPEQch+6cxNUvvRiPTluBEBWXIp8Xx6n2I7ptwIOxl00NDSkYyXk+eB1xHkRaXEVAnJchWrs1rZU24RS/3jVkAdHb18/Pb76Dbo0ZVT+8N1Lnc4ayLcxmasV9u8/QAvXdNCH7066xV582/NalZGrt0wuMHnWmLx5XFQkKqOzaz0XWl2+q/7KZWUDuokenQuv7reR2xbVPjINLnNggmq8NhdraFJMFJ2ph/l4QeAho7evn/7W9AZdctvzgQRCPqBiMgMDA/TMmg76yK+TAuF9v3ye/vLiFkoYbAj5PNxE/CtfV9ER5JhHUx+69k2MNUj7QYSQ7YhN1zxAKgHoIoRyZf62JHeiwOH2JgBrydsIPIY6+voH8GTzW7jn+Y3Y1LkPZ777cNxwxSR8YOpxOR2LGBQ6vS0R4bm17+DXz23Ey2/uxsnjx+Ibl5bjU9NPyvIyyofXiNi2q2dVVHTo7DCJRGa+HRttpkhp0bZgolvlJaVq2+Q1JJbl9Ksim3WebUGjkVW2Dls0OBGlbWGJRAJjxoxZTUTT5fJeEHgMSfT1D+CJlEDY3LkP1ROPxF+unYERIwonDEyglFH5189uRMvW3TjpyLGouf4iHDEuP4xfhXwKGlVfunQY4slrsqFUR6Pqvs1NlEPVn9y2SztiWZUx2jX9h1xfN1bduG20cZiMxV4QeAxpcIGwa18C//a+04pNThaICIs3bMfyjTtw88em2ivkCVF4qNjKi54xsnFb58vv6hEFmDOWyjDtCHhbYeJQVNdMwkyONRCFo3z0qDiPQXZzYhyH3xF4eHgo4cpYgjAgXfkwAWZA9opb5T4qJ4gLwoi5gHJNWOcC11W76DnE1UzijkUlOIMIZDFd+ZgxY9YR0RS5jBcEHh4eBdkRiNeAYIxWZpi2swpMqiidqkVuN0y8hYqxh9lViMw7iOCUIQtHxphyR+DjCDw8PJwZTK5CgLeRy2rbdFaBGA8in82QSCSU5x/I5XlbcqyAeE0VCyHe5zEP4j0T5LmKxWLp2IPq6mpUVFQY25Hp5H9bW1vl2Avlyt8LAg8Pj8jhEjwWtC3OxFVBUqr+RCbPvWhaWlrSjNEUEKbqwyWgTFQztbS0oLGxMUv4iDSbaBf7b2lpQX19vfKAIz42LqBEYUVEstBVekt41ZCHh0deEKVXkou3jIvaBsiM5nU1Lgelg7fNdz82N1VX2jn98j0xZQoXAvzkNjFCe8yYMWuJKMsrwe8IPDw88oIoXVPF1X3Y/kSVFFfdqFRMOrjuclRqJrkdecUvu8CKZUXadTYLUQgAyBICQvqN/SqavSDw8PAYlhDtBy6QVUOmc46Bgyt1UaUjqol07rAmlZH4v9iWqBYCkCGIJKHjbQQeHh4eIoLuWviq3GSwFhlydXU1ZsyYkT5Hm6/UdUZ0eZegih+QVT/c3TSRSGhdX23j9DYCDw8PjxCQV/UucQi52k1MMRRyAJpMQyKRwJgxY3waag8PD4+oIDNZcbWvY/a52k1kLyYOWQ0EQKlmgsZraFROVHl4eHh4KN1Ni0kLAKWaCd5G4OHh4ZE/lIIQEBHETlAwQcAYO5kxVscYW8sYe4UxdkPq+q8YY+sYY62Msb8zxo4oFE0eHh4eHoXdEfQB+E4q4dH5AL7BGJsKoBbAWURUAWADgJsKSJOHh4fHsEfBBAERdRDR6tT/3QDWAjiRiBYRUV+q2EoAJxWKJg8PDw+PIhmLGWMTAZwDYJV068sA/qKpcy2Aa1Nfexhja/JGYH5wNIAdxSYiAAYbvYCnuRAYbPQCg4/mfNI7QXWx4HEEjLEyAEsA/IyIHheu/wBAFYCryEIUY6xR5QtbyhhsNA82egFPcyEw2OgFBh/NxaC3oDsCxthoAH8D8CdJCHwRwMcAXGETAh4eHh4e0aJggoAlTw7/PYC1RHSncP1KALMBXEJE+wpFj4eHh4dHEoXcEVwI4BoALzPGmlPXvg/gNwDGAKhNygqsJKKvW9q6P19E5hGDjebBRi/gaS4EBhu9wOCjueD0DspcQx4eHh4e0cFHFnt4eHgMc3hB4OHh4THMUdKCgDF2JWNsPWOsnTF2o+I+Y4z9JnW/lTF2bjHoFOix0fu5FJ2tjLEVjLHKYtAp0WSkWShXzRjrZ4zNKiR9Cjqs9DLGLmWMNadSmSwpNI0KemzPxbsYY/9gjLWkaP5SMegU6HmQMfaOLlan1N67FE02mkvx3TPSLJTL/7tHRCX5ATASwKsATgMQA9ACYKpU5iMAnkYyter5AFaVOL0XADgy9f+Hi0mvK81CuecBLAAwq5TpBXAEgDYAp6S+H1vqc4yk08QvU/8fA6ALQKyINF8M4FwAazT3S+a9C0BzSb17LjQLz0/e371S3hGcB6CdiF4jogSAuQA+LpX5OIBHKImVAI5gjJ1QaEJTsNJLRCuIaGfqaymk03CZYwC4Hsn4j3cKSZwCLvR+FsDjRLQFAIhoMNBMAA5LuViXISkI+lAkENHSFA06lNJ7B8BOcwm+ey7zDBTo3StlQXAigDeE71tT14KWKRSC0vIVJFdVxYSVZsbYiQA+CeB/C0iXDi5z/B4ARzLGFjPGmhhjXygYdWq40HwvgCkA3gLwMoAbiGigMOSFQim9d2FQCu+eFYV890r5YBrVSTqyr6tLmULBmRbG2GVIPowX5ZUiO1xovhvAbCLqT8V5FBMu9I4CMB3AFQDGAqhnjK0kog35Jk4DF5o/BKAZwOUATkcypuYFItqTZ9rCopTeu0AooXfPBXejQO9eKQuCrQBOFr6fhOSKKWiZQsGJFsZYBYAHAHyYiDoLRJsOLjRXAZibehCPBvARxlgfET1REAoz4fpM7CCivQD2MsaWAqhEMsV5MeBC85cA/IKSSuF2xtjrACYDeLEwJAZGKb13ziixd88FhXv3im0wMRhJRgF4DcCpOGhkO1Mq81FkGq1eLHF6TwHQDuCCYs+vK81S+YdRXGOxyxxPAfBcquw4AGuQPO+ilGm+D8B/pf4/DsCbAI4u8rMxEXrDa8m8dwFoLql3z4VmqVxe372S3REQUR9j7DoAzyBpOX+QiF5hjH09df9/kbSkfwTJH3gfkiurUqb3RwCOAvA/KSnfR0XMiuhIc8nAhV4iWssYWwigFcAAgAeIqGgpyx3n+FYADzPGXkaSuc4moqKlTWaMPQrgUgBHM8a2ArgFwGig9N47DgeaS+rdA5xoLhwtKWnj4eHh4TFMUcpeQx4eHh4eBYAXBB4eHh7DHF4QeHh4eAxzeEHg4eHhMczhBYGHh4fHMIcXBB4eHh7DHF4QeHh4eAxzeEHgMWzAGPs0Y2xVKid9O2PsFkv59zPG/hiwj7GMsSWMsZG5UZvV7gWMsR8zxmKMsaWMsZINBvUYfPCCwGNYgDH2RQCzAXyKiCoATEMyKtaESiRTQri0zxn/l5FMg90fklQlKJlG+RZKprJ+DsC/RNm+x/CGFwQeQx6MscMB3Angn4loKwAQUZyIfsUYm5xaYb/CGHuWMXa0ULUSQLOuDGPsr4yxOxljdQBuStX5HIAnhb6npOq2Msa+xxhrDzmGvzLGeMbMJ1L9eHhEAi8IPIYDPonkiVSviRcZY2OQPPTjBiI6E0AtgG8JRSqRPB9AV+ZsAHEiuoyIfsoYiwE4jYg2pdofBeBPqboVSJ5SFjbv0VkpWpBqozpkOx4eWfCCwGM44Ewk8/3L+ASAZUT0Uup7G4BjAYAxNhrA4UgmBcsqwxg7BMB4AD8R2jsawC7h+1UAWqS6Gaqm1A5jjeLzcaHMIQBGE9FuAEipnRKMscPcp8DDQw9vcPIYDtiL5CE1Mqbi4CobSK7w24R7aw1lzkRylyEeKbkfwCHC9wpkCqCzACwUCSCi9zvQf6ZAF8cYAAcc6np4WOF3BB7DAQsAfJoxdhyQVAkxxr6KZN7/qalrpwG4BsAjqTqVSDJxXZmzkUx1nQYlz8QdmVrBA0AnkkdngjE2DcDn4Wh8lpDRF2PsKADbiag3RFseHlnwgsBjyIOIGgD8F4BnUjn/m5FUAf0RwLtT1+YC+DIdPLmKewzpymQJghQW4eAxiH8EUMUYa0DSm2iTbKdwhNzXZUgKNw+PSODPI/DwiBCMsXMAfJuIrmGMlRFRPHX9ewDeRUQ3R9DH4wBuIqL1ubbl4QH4HYGHR6RIGYbrUnEF30q5nDYjeSThrbm2n/JMesILAY8o4XcEHh4eHsMcfkfg4eHhMczhBYGHh4fHMIcXBB4eHh7DHF4QeHh4eAxzeEHg4eHhMczhBYGHh4fHMIcXBB4eHh7DHP8fYBG9hADcue8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_cmd(candidate_df)\n", "plt.plot(color_loop, mag_loop);" @@ -763,7 +1206,76 @@ "cell_type": "code", "execution_count": 80, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        color_loopmag_loop
        00.63217121.411746
        10.61023821.322466
        20.58844921.233380
        30.56692421.144427
        40.54546121.054549
        \n", + "
        " + ], + "text/plain": [ + " color_loop mag_loop\n", + "0 0.632171 21.411746\n", + "1 0.610238 21.322466\n", + "2 0.588449 21.233380\n", + "3 0.566924 21.144427\n", + "4 0.545461 21.054549" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "loop_df = pd.DataFrame()\n", "loop_df['color_loop'] = color_loop\n", @@ -782,7 +1294,18 @@ "cell_type": "code", "execution_count": 81, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from matplotlib.patches import Polygon\n", "\n", @@ -820,7 +1343,18 @@ "cell_type": "code", "execution_count": 83, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([ True, False])" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "inside = polygon.contains_points(points)\n", "inside" @@ -875,7 +1409,76 @@ "cell_type": "code", "execution_count": 85, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        colormag
        00.380417.8978
        11.609219.2873
        20.445716.9238
        31.590219.9242
        41.485316.1516
        \n", + "
        " + ], + "text/plain": [ + " color mag\n", + "0 0.3804 17.8978\n", + "1 1.6092 19.2873\n", + "2 0.4457 16.9238\n", + "3 1.5902 19.9242\n", + "4 1.4853 16.1516" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "points = pd.DataFrame()\n", "\n", @@ -896,7 +1499,18 @@ "cell_type": "code", "execution_count": 86, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([False, False, False, ..., False, False, False])" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "inside = polygon.contains_points(points)\n", "inside" @@ -913,7 +1527,18 @@ "cell_type": "code", "execution_count": 87, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "454" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "inside.sum()" ] @@ -945,7 +1570,20 @@ "cell_type": "code", "execution_count": 89, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEOCAYAAACEiBAqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB3t0lEQVR4nO1dd3gU1dr/nQABJLTQSyhSxIiAEFCwl6teC5aLFdRrRz9vU+8FK1wRQb12RQUFQVBUiIqoFJUiSYAkkNCRkAoECAklS8km2ff7Y3aW2dkzM2d2Zzeb5PyeZ59kZ055Z3bmfc95KyMiSEhISEjUX8TUNAESEhISEjULKQgkJCQk6jmkIJCQkJCo55CCQEJCQqKeQwoCCQkJiXoOKQgkJCQk6jkiJggYYzMZYwcZY1s4555mjBFjrG2k6JGQkJCQUBDJHcFnAK7VH2SMJQD4E4DCCNIiISEhIeFFxAQBEa0GUMY59RaA/wCQkW0SEhISNYCGNTk5Y2wkgL1ElM0Ys2r7CIBHAKBZs2ZD+vXrFwEKww8iwokTJ3DGGWfA6h5EO+rStTgNIgJjzHePmjZtipiYwHWY2q42wUOEUpcbh1wVqPIQmjRsgLbNY9GqaSxq2aXUeWRmZh4ionb64zUmCBhjZwB4DsDVIu2JaDqA6QCQlJREGRkZYaQuvHC73YiNjTX8XptRl64lXDC6R263G1lZWRg0aJDte1gT991VUYU5afmYsToX7EQl/tK3HR695EyM6NWm1gmz+gLGWAHveE3uCHoB6AlA3Q10BbCBMTaMiPbXIF1hBe9lr0uM0+xapJBQYHQPYmNjgxYCwQqQYFB+qhJz0gow4/dcHDlRicvOaod/XNkH53VrHfa5JcKDGhMERLQZQHv1O2MsH0ASER2qKZoigWBf9ppGqEw80szKLqJFSAVDQ6SeqRPuKnyWmo/pqxUBcPlZ7fCPq/piUEKrsM4rEX5ETBAwxr4EcBmAtoyxPQAmENGnkZo/mhANDMcOnGDiwTArlTmHm0lHu5ASQVjvT5UH89ML8d5vOSgpr8DlZ7XDP6/qi4FSANQZsNqYhrq22whqIyLFlLXzZWVlITExEdu2bQs7k46WHUE0odpD+D5rL9765Q8UlZ3EsB7x+M+1ZyGpR3xNkyYRJBhjmUSUpD9eo15DErUHqhDQr5zDxUC1O4hIrNSlEDgNIsLybQfwxrI/sPNAOc7u2Byz7h+Ky/q2k0bgOgopCCSEoWfK4Vap1EZjuplgrA27jrW5pXh1yQ5sLDyCnm2b4a3bzkWnqmIM7tlKCoE6DCkIJISgMjEtIwtltV4bmKJdmAnGaLdD5Bwsx9Sfd+CX7QfRsUUTTLn1XIwa0hWNGsTA7e4YlTRLOAcpCCQsYcbEghUC2vHqilAwE4zR6i12sPwU3v5lF75KL0LTRg3w72vOwoMX9USTRg18baKNZgnnIQWBhCWcZmLa8aJ9pWwHVgItmq7vhLsKM1bn4ePVu+Gu8mDM+d3w9yv7oE1c45omTaIGIAWBhBCcZmJa/X9dEQKhCLRI7YqqPYQFmUV4Y9kfOFhegWvP6Yj/XHsWzmwXF/a5JaIXUhBIhAQnGFhtFwJA6PaSSOyKUncfwks/bMOO/eU4r1srTBs9WLqCSgCQgkAiBDjFwIIVJtFmWwhnsF0o11pUdgKv/LQdP2/Zjy6tmuL9u8/D9ed2kl5AEj7ICmV1BG63O+JzOKHWUYWJy+USnlfbLxLXHQlYCYFgrvV4RRX+t3QnrnxzFVbuLMFTf+qLX5+6FDcM6CyFgIQfpCCoA3CaKfKYstEcTqiF1OhhOwxfb3CurQJBhG67AtfjIXy7cQ+ueGMl3l+Rg+vP7YTfnr4Uf7uyj583kISECplioo7AKTWJy+XCggULMGrUKMTF+RsQg5lDtE+wgVhutxsZGRkgIgwdOjSqVEU8aK8lHLaBTXuOYMKirdhYeAQDu7bEizeegyHdZVZQCQVGKSakIJAIgMvlChACwcApTxorYaKuqmuDEAhXio6y4268vnQn5qcXok2zxhj/53649bwuiImJDhVQtNlz6iuMBIFUDUUxakrd4YQQAJzxpHG5XEhPTze9F/qI52gF736ESne1hzB3bQGueGMlvs4owoMX9sSKpy/FqCFdo0oI1CV7Tl2E9BqKUtSlQKtgoDJNAKiqqqpZYhyE1W9pZ+WcVXQEz3+3GVv2HsMFZ8bjpZv6o2+H5k6Q6SjqSqxIXYbcEUQpavPLo678nFoJNmrUyAmyoh6i96uy2oM3lu3ErdNSUFJegXfvOg9fPnxBVAoBFbXxOa5PkIIgihEtL48dRq5lZnrPHrtzZmVlAQCSkpK4SdyCoS+aYST8tdeXc9CFW6el4r3fcnBJQmP8/MQIjBwo3UElQoMUBBKmsLuq16p01O/B7Ay0TNEok6fqNlqX9M9G11pRUYHZqfm4/t3fsefwCXw0ZjCmP3QJ4lucUUOUStQlSK8hCUuI6K31bpEZGRl+K3mnvUb080XL7ikcKC5z4Znvt2HlzhJcdlY7vPaXAWjfoklNkyVRC1HjXkOMsZmMsYOMsS2aYxMZY3sZY1nez3WRokdCHFaum7xVuX6BIaIesrtjEKGvtmP1HyW4cdpapO4uxUs3nYNZfx0qhYCE44ikaugzANdyjr9FRIO8n58iSI9EiNDq8bW67djYWAwcONCPQRupcJw2LEcz7FwbEeGDFTm4d+Z6xDdrhEVPXIh7h/eQtgCJsCBigoCIVgMoi9R8EpGBag/QM319ygieIdQpw3JtgB1BV1FVjWeSN+P1pTtx06DO+P7/LkK/ji0iQKVEfUU0GIufYIxt8qqOZCx8LYGWsekZnJH3C4/J63cSbrfbMoDMLp3RAFF34IPHTuGu6WsxP70IT1zeG2/dPghNY2V+IInwoqYFwYcAegEYBKAYwBtGDRljjzDGMhhjGSUlJREiT8IIKmOLi4sTLmHJ8/bhIRj1h0jCupoWClZCIKvoCG58fw22F5dj2ujBePqas6ImOliibqNGBQERHSCiaiLyAJgBYJhJ2+lElERESe3atYsckfUYVozTzN/dqL3WJZSnCoqNjfV5G4kybtEMpeGwQTg13oLMPbj94zQ0ahCD5MdH4LpzOzkyroSECGpUEDDGtE/7LQC2GLWVMEY4Vro8xmm26na5XKbGYBV6bx8j1ZIdxm1VNN6qTbBwQrhUVXvw0g/b8PQ32RjSrTUWPXERzu4k7QESkUXE4ggYY18CuAxAWwAHAEzwfh8EgADkA3iUiIqtxpJxBKcRzpxEoimT9VlCtX9FaDPKdlob4gNCofHoyUo88cUG/L7rEP46ogeeu/5sNGpgf21WG+6TRHRApqGuw+AxgnAwB/2YRvNqmb9VKmlte6D2xQQEe59zS1x4aE4GispOYNJN/XHnsG5Bz1+fkxNK2EONB5RJhA9mKRjCNY+IXl79bkaPNiVFbYsjCPY+r9l1CDd/kIIjJyox98HzgxYCQO1OTigRPZA7gjqKSKgLzObQn9Oqf8x2B06maY4E7NBDRPh8bQH++8M29G4Xh0/uS0JCvMwVJBE5yB1BPUMkmKWZENC7baoBZmYunUbCwWjcaIDofa6s9uD577bgxe+34vKz2mHh4yOkEJCIGkhBIOE4eOohI7dRM8auP1+TapBQhM+RE27c++l6zFtXiMcu64WP70lCXGNZE0oieiAFgYQwrFxDtdB6G2m/a/+PjY1FYmKiIWMPR2nHYBDKTmTP4RMY9VEaMgsO483bB2Lctf3QQAaJSUQZpCCQEAJPpWPFHEVW/PqcRHpEgz3ASmAZYeu+o7h1WioOHDuF2Q8Mw62Du4aJQgmJ0CAFgYQQzNQ9Klwul1DOIf35aIeIwNLj910luOPjtWgQw7Bg7AgM79UmjBRKSIQGKQjqEMJtRDVLIudyuTB//nykpaWZGoBVg7EWdvMBRdpYbNc2kbxhD+6flY6urZvi28cvxFkdo7eWsIQEIAVBnUE4PWqMxtSmlYiLi8Odd96J4cOHB9gHtOOkp6cjIyPD75yqdjG6hkh6DhmNq4+hMMJHq3bjya+zMaxnPL4eOxwdW8oiMhLRDykI6gjC5VFjxpy3bdvmpzuPi4sLSEmh3x0MHTrUL6lceno6Nm3a5PPHN6tZEM7r5M0lktFUBRHhjWU7MfXnHbhhQCd8dv8wtGjSyHEaJSTCARlQJmGJYAPARFJf8LyKrMYJZ1CZSJ4k/fxEhEmLt2NmSh7uSErAK7eeKz2DJKISMqBMImiYGXvt9FN3APpdgpEqiYdwq4ZEspVqj1V7CM9+uxkzU/Lw1xE9MEUKAYlaCCkIJCIKo6Iz+jTWejfVsjKlyqnTqqFQXFerqj146ussfLleqSY24cZEWUhGolZCCgIJW9B6/dhdlWuLzujH3LRpE9doHBsbi969e2PRokVwuVyOXYc6b7C7i6pqD/4+fyO+y9qHf19zFp6+5ixZWF6i1kIKAglT6D12MjIykJ6ejrKysqCYqNEqm4gM1TJxcXEYNWoU4uLiQlYN2Ylz0LdX4fEQ/rNgE37avB/PX382/u/y3kHRIiERLZCCQMIQPI+dpKQkDBw4EDk5OX4reLvjaqF6E2nH0nsfOVFpzMiTyYguXnsiwoRFW5G8cS+e/FNfPHTxmbbpkJCINkhBIGEIo1w/cXFxSExM9K3Q9XEBZjCrY2DEqJ3KN2QmRETnfvuXXfh8bQEeveRM/O0KuROQqBuQgkDCFEZMU5tW2swFmcfwzbxxeOdCMQyrNPJ2GmZz89xa564twDu/7sJtQ7pi/J/7SZuARJ2BFAQStqHNEbRt2zYMHDhQeJVtFQNgVZPADtTdSlpamp/bqtmuxOj8ki378eL3W3BFv/aYcuu5QQsBq2uJdPoMM9jZ5UnUbkRMEDDGZjLGDjLGtuiO/40xtpMxtpUx9lqk6JEIDdraArzC82ob/SrbrqE3FOOwatMYPny4zwbBo8uK7vV5Zfj7/I0YmNAKH9w9GA2DKDAvci3hjpGwA1FaoolmieARschixtglAFwA5hBRf++xywE8B+B6IqpgjLUnooNWYzkRWRzO6FSJ0xCJCg4mQtmJeUWwc385bvsoFW2bN8aCsSMQ3yy0McNxreGCKC3RRLOEOWo8spiIVgMo0x1+DMBUIqrwtrEUAk5ArmKMEaoHkP6cmZcOrw0vVsCKyfC8fbQG7GB/70OuCjzwWTqaNGqAOQ8MCxAC6enpPnp5NPBgNxq7JiFKSzTRLBEcatpG0BfAxYyxdYyxVYyxoUYNGWOPMMYyGGMZJSUlIU0azsRltRl2GaZVe5F6A9rfwuVyYcGCBZaBY3qbg1ESON4cImMCwKnKajz6eSZKj1fgk/uS0LX1GQFtqqqqkJ2dzY2KlgsNidqEiCadY4z1ALBYoxraAuA3AP8AMBTAVwDOJAuiZNK58MAsAZx2+2/0P6+ty+XCtm3bhAWvy+XysznwVDz6ZHDBqJv0bbVjEhGe+jobyRv34oO7B+P6AZ0M5wVOu77y/kpIRBNqXDVkgD0AkknBegAeAG1rmKZ6CZXRmZ1T3TD1QWb6tqqHjupm2rt3b0OmqF8164UAT7WkLxtplRjOCvodw7SVu30BY9cP6MRtox7TGqC19EohIFGbUNOC4DsAVwAAY6wvgFgAh2qSoPoKUf9+ETWL6lqpMu2cnByumkRUtaRdgWtjGEQh0ladY8mW/Xh96U6MHNg5IGDMLApZT69UC0lEA0Sfw0i6j34JIA3AWYyxPYyxBwHMBHCmV0U0H8B9VmohifBB1L/fqp02sVxcXJytADIr334AtgrJ6/X3Zsg56MJTX2dhYEIrvDZqgHCmVD290kYgEQ2w8xzKwjQSEYGZukSrVzcqBqO2A2DaRt8+KyvLlw7DDMcrqnDzBykoPe7Gj3+/CJ1aNg1pTKkekogG6J/DaLURSNQDmK1M9OesGLwdjy9VNWUlBIgIzyRvxu4SF9676zxDIaCd32pMnu1EQiLSEF2MSEEgEXaI2B8ABBirjdxERQzPovYEt9uNOWkFWJS9D09dfRaGdmshdD12IFVFEtEOKQgkagxazyOrdBRWhlieZxMA0zgGt9uNL5atxaTF23Blv/Z4cHiCZQqIYGAmCKVwkIgGSEEgEXbwVsRWUcdG7ppGq2vtzkLf14i5HztZifcyXGjdhGHqLYlo0qSxZZrqYKukiSblk5CoCUhBIBF2GDF1EXuAyFha6NVHRu2JCBN+3ImjbmDa6CS0a9nM197IGygxMdG266oZIhnhLoWNhBmkIKgDqA0vud2gL/3uQaSfUdwBr/03GXvw46ZiPHl1Xwzt1c5vroyMDO7K38wVlkenFSLlWSR3HhJWkIKglqMuvuTaa7JbG1krBNT6yvq+O/YdxoRFWzGiVxuMvaRXwBiVlZXIzs423Blo6eTRrO8XTDCdk7DaeYjQUJeeL4lASEFQyxGsesGIOTmFYHXpwOlrcrvdWLRokWmKCrMxkpKS/OoQAIDrxCk8Nns9GjeKwVt3DEJVVWVAP339Ah6MjNmAv03CzKZhJzAuVJgJASuBVBcXGxL+kIKgDsAJd0YnX3ZtFtFQPG3i4uIwatQoS599szH092b6mgLkHa3C66MGonWTmACmbdSPN7ZR7iHtcSOGH0yqjHBAZLcQSVuGRM1ACoJ6iGCNt3oYMTGVgcfGxgpXuTKj1SkBtXN/OT5ctRuXdGuMS3u3DnBJtTuPma1ChRHDjybmKrJbiAY6JcIHmWJCIig4lWpBm6YaME+BHQpDqvYQRn2UioLSE/jpieHo2DqQZpHxg6Ghphip1bzhul6J6IVMMSHhKETdKa0Y0bZt25CYmAjA2N9fFQLaqmN2MXdtATYWHsGLNyQGCAGtSsgMRio1K9SUELAKjhPZAUkhUD8gBQGixyMiWujQw0wFFIp6Q5u3R0RVEuzudd+Rk3htyQ5c0rcdbhrU2e+cqLFUS69R9HM0weh+Gl2LRP1GvRcE0fIyRwsdehilXHYqDYPeTmE0TmxsrKUnD48OIsIL322Bh4DJN/cPSC1t5b3D8w7S9rVKo12T4AkBs6JCEvUX9V4QWK2capqOcMNqJayqbvTMTk23IOIqKTq/iMul6Jhq/8WbivHrjoN46uq+SIg/g9vWKGZAndPsd+HdF5HdRTAI9ZmUuwAJI9R7QQBYr5xqig6nEKyeWKu60fbRHte7StphNPogLK2HihMqpxNVwH9/2IqBXVvi/gt7GrY3KkCjHc/OvKH47Kvtgu0rQmNNIpp2TBKnYVsQMMaaMcYahIOYaEFdWjnpGYj2RQyFcRt58Rh5/fCgnZ/nfy9Kk9GxyT9ux+ETlZhy6wA0iOEzezXwzKnf2mwckfttthuq7c9ktKo/JQQEAWMshjF2N2PsR8bYQQA7ABQzxrYyxl5njPUJP5mRR21/4VRoI155L2Iw0bN2/O6tPG20hlc7QkQ7thrFrO4sMjIy8MkPv+ObzD146MLuSOxsXGNAP2+wai1RBBOoJto3FESCOdcFYVZXIbIjWAGgF4BnAHQkogQiag/gYgBrAUxljI2xGoQxNpMxdtBbn1g99hVjLMv7yWeMZQV3GRIq9OoWFdr8/CJukip4gWfqX22uf6OVOa+dPp2zkbAwEzbq2KoLq2qvAIC+Z5+D2Vvd6Na6KS5ofpi7G+LNa7Z70l+nnVrIdhFp43Oorrl2IIVAdEJEEFxFRJOIaBMRedSDRFRGRAuJ6C8AvhIY5zMA12oPENEdRDSIiAYBWAggWZx0CR60jJencxf1ldcyVjPwjMbacdRjWlp48Qc8t0z9cd7YcXFxPmO22vaTtcU4cMKDl29KROOGMVx6tPeKZ+MwuyY1CC7cuYKcVqWYjVMbA0slnENEI4sZYz0ALCai/rrjDEAhgCuIaJfVODKyWAxG6hbRfiL9zdpqj+ldFrX9sjjF6K3m1vZPT08HYwxJSUn4o+QkbvogBbcM6oT/3X5eAA1mNGqPGUVNB3NvRGCmGgvlN9R+z8jIMLSHBDuPRO1CyJHFjLFdjLFkxtgExthNXqbuFC4GcMBMCDDGHmGMZTDGMkpKShycuu4iVAYi0t+srf4Yz4fdSG8soktX/w4dOhRJSUmIadAQzyRvRuszGuG6zhUBzE3UO4znLcWbV8R+IbKatzLo24XR3GaLPikE6jfseA19DGA/gFIAfwawhTG2mTH2EmOsUYh03AXgS7MGRDSdiJKIKKldu3ZmTes8glUVBGPYdYoGO0ZQPUM0m8vlcvlUXrNS8rF571G8cF0/XDRssCWzFqUpGHdOvW3EDCIqKd5fkfG0x+wE5EUzpNeR87AjCMYQ0eNE9D4RjQVwEYDfABwD8GawBDDGGgK4FWJ2hnqPYPXGPCOt9hwg7tVhlwb9LkB7TN9Ob6NwuVyGhkxtuuuishN4c/lODO7QCG1OFAjTKXKtvOI2ovdK9D6pQktve9Deh6ysLOFCPaF4HUUzo3XabiKhwI4gOMoYG6B+IaIsABcQ0f8AXBgCDVcB2EFEe0IYo95Az4CsVokq44+NjUXv3r0DjLQ8F0y7NJjByCPI6BiAgGA1VaWhb6+mu27WrBme/XYzGsTE4O0xF2DYsGHc2ASja7O6Zm3AmV21jR13Sb1KSisYVKN4Tk5OWI3U4WC0To4lXVDDAzuC4FEAsxhjnzLG/sYYex+A6kVk+aswxr4EkAbgLMbYHsbYg95Td8JCLSThD713jZEro75AjBETUb14ysrKsGDBApSVlQnTINKO9+Ia1UPQ2yhUlQZwenWt9xr6Kr0Iv+86hKf+1Bvd2rXg2gWMhI/2OI9hxcaeDjgLRu9vF7x7ogoGVThapf0OBcEyWjMha7QTDRZSCIQBRCT8AdAAwG0AJgH4J4A2AJoBeN7OOKF+hgwZQhIKKioq/P7qUV5eHtBW+33dunVUUVHhO1daWuo75hRtRnPyaJ01a5Yfzdp+WjrVv0Vlx+mcF5fQHR+lUNrataZ0a89VVFRQSkqK37hGdOn7iV6vE/fQDsyuQd/OSZSXl5vOa3VeInIAkEEcnmrpPsoYY2TRSKSNk5Duo2IQdXHUQtQ1UmRunluoni79XC6Xi+uyqbpzqkVsVJXRmE/XIavwCJb88xJ0iGtoSw+enp7uZ0DlXbe2cI6VO6vR9UYSIm63TtJp5mprhy6JyMDIfVREEKyEEuz1PREVao7HQjEY3wdgBRF95iTBZqivgkD0ZVKZu8gLr/qXq2M7mXfHSabE89+fk5aPF7/fism39Mfo87uHjT6VyYnGNjgxdzjh9NxO3heJ8CKUOIJrAVQD+JIxVswY28YYywOwC4rb51uRFAL1BfqVupGOW/u/VucNiBkqY2NjMWDAAIwYMcJRIaCObXXejhDQjrll71G8vHg7LjurHe4e1s1x+tQ5VZ28E0ZUrWHfab25HVhdt9PjRYOXT03PH+2wFAREdIqIphHRhQC6AbgSwHlE1J2IHibFeygqUFd+bN7Lw/OA0Ro509PToe6S7GYU3bZtm2+OSCMYV9XyU5V44osNiG8WizdvH2SZRtoutHNaBb6Z0ake540pUubTaJ5wIRxMOxq8fKJFGEUzhFNMeLOMjgdwkoieCCtVFuCphqJFR6tFKFtiUf2+1t9c9bJRz4no6EOlM9QxeCofs3PVHsKDn63H7zmlmPPXIbiwb4eQ6A6GLpG2PPWc6H03Ox7uZ7w2qHGCobE2XFck4ETx+s8BLABwiXfA/oyxOQ7RFzIivfKwWl2EugoRuQ4t01FX9ep3o/thtNvQt7GDYK/VzP2VtyoHgEk/bMHKPw7h2Wt6o9GRAr8Vt5MQdRfl0WmkntPfZzNmb+TK6sQzbnY90c4sg33Wov26ahw8VyLeB8B679+NmmMbRPs7+alp99GactMTmUvvEspzabRygbS6Np7Lqt1r1Y9h5bZJRDRj9W7qPm4xvfjtpoC+4XJPFPmNRWi3O2a4EOy9CuV6wtFPuqIGBwCZxOGpdnYE+xhjPQEQ4MsY2tRZsVQ7ILoyi+QqRDuXmuMmIyMD6enpvoAykdWU2U5C/ctLdWDnWo108Po22mOf/J6Ll3/cjgu6xGL8tX39+tSUHlq1zfBg15Yg0lftHyzMdopW/YxoDnU3GOz1RHP0c7TCe41cnm1HEPwTwAwAHRlj9wOYD2CLaY86jJpgOlbntCoJt9uNpKQkDBw4EJs2bfIxLG2aCaMxzdRJqqEzlFQHKjMyux51PiLCR6t24+Uft+O6czvi04cuRtMmjS1pdgIixWd4hupgBK0I9MzTDvPSquHsuCBb0SxiROchlPvgtOC3MvRbHast8N6vk7xzIqUq/8wY60xE+VBcSf8O4EwAqwDc4xyZEkawWpGpSdHUF8TtdmPBggVwu5UUDElJSb40DTk5OejduzeA00VlrKBn3CKpDgBYjm00vzpfNRrgH19uwNSfd+D6AZ3wzp3noVnTJpb02oGZl49V8Rle3EWoK34zaBmg3RW1HU8lETuSfmzRcUT6icBpN2dePQwzu1UtBtc7SCSg7BMAgwB0gFKvOAtAtvfvdiKqdpBIIdTHgDIzTxJewRFehK56XI2UVZmdnYyjIl5IAFBWVoZFixZh1KhRhgLDLGq3oPQ4Hv08Azv3uzCqXxNMuvMiNNHtBEL1BNFfE++7055Qdvobfbc6Ljq2Wf9QryEUGqMFZp5stRVBRxZrBvgngD4AtgIYAiWYrIyIujpIpxDqoyAwg9XDyWMsgP10EkYvhl5AqMd69+6N+Ph4Qxp481dVe/BZaj7eWPYHGjVgeGPUubi0b1uheYOBKNO12ydY+oyEk1UKB1Fa9fOYjevUPTajo6bGqa9wwn30fiL6P1KCyx6EUlVsjWMUSgQNKyGgDTxTodX567e/2r9W8xjpawcNGuQnBPS6bb2x2OMh/LS5GFe/tRov/7gdw89sjSX/vAR/6t85KN20KLTCi/ddC57B3UhdECx9qgpHawgPJfjMzBXValwrW47I/FZ02B0vHKqZWq7qcQR2BMExxtgQ9QsRZQLo6zxJEqHAiCHpjYXqC649rv3fzHjGm0PbRjVY62nQM7fY2FiUn6rE52sLcNWbq/D4vA1oEMPw4d0D8Wgi0PaMBqbXGi5joZV+WH8tRswyWLWQnjlrazPYgZUwMhuXt2iwA72wd0poO+0dZmV/qy+woxrqCyWobBuATADnAhhEROeHjzw+6rJqKJStr3YrD/ivblVVTU5Oju+82lZrK9DSwGPwiYmJyM7ONi17aHUNZeUn8MUvmdh+oil+2V6CiioPBnRtiQcv6okbBnRGgxgWssrKLkTUPUY2DSdVKEZzG513SpevHz9YW4meNiB4gRgpFVAoqr3apqoK2UbgHaQBlLKSA6DULv6ciEodo1IQdVUQOMFQVPWFnmHxGIZeNRQbG+srZjNy5EhfsjVtxSwAXOO02Qtx0l2N7D1HkJFfhrW5ZVifVwZ3tQetmjbCjQM745bBXXBeQquASmAi90A0TbTRPbALI+YWKYbgdp92DgDgE86i90A7jtk1BGuINjO+BzuOk3BygRFOOu3SItreCWNxOoBNADarf4moRJgyB1FXBQEQ+oNqZQTUM0MtY1G/l5WVITc3F8ePH0dBQQHuvPNOvx0Cb/WclZWFxP4DsN9VhbxDx7G7xIVte49gxwEXdpccR7VHec76dojDpX3b4eJe8Wh4pABJg88zXY0B1u6JIoZU9Tr79evn2xUFu1I1e/nDLRDcbsVdeODAgX6pse0+N0YG/powvouM4wTCwbgjsQCwS7dZeycEQWcoO4EBAJIAXA/gEBHZTwQfIuqyIBCBuiq1486pXc0PGDDAz0deZSyxsbHIyMgAEWHgwIG+vrGxscjcsBFdep2NkhPV2H/0FIqPnkTx0VO+//cdOYmD5RXwaB6nNk1jMCAhHv06NkdcRQluuzwJ7Vs1M6VT9BpFxtC3S01NRWysknY7GA8cqzkjtULU74KCXb2Ha1cTzeoSs98uGmh2ir6w7Qg4A54NYBQRTRJsPxPADQAOElF/77FBAD4C0ARAFYDHiWi91Vj1WRCIrpZ5fXr37o3t27dj6NChcLvd2LRpE5KSknD85CmkbdyK+K69sP/YKRQfPYUDxyqwo3A/TrGmOFBegQPHTvkxeQBo2qgBOrVqgk4tm6Bji6bo0qoJerZrhh5tmuHMtnFo2pB8jEpfDczO9TrxAqjngODUOnYEjpP2CivGYCR8wrWitmJSkVp1O20TCfb5dBKRWEg4sSPoRpoKZd5j84noTsH+lwBwAZijEQTLoBS2+Zkxdh2A/xDRZVZj1WdBAAT3EuwtOYyVmdvgadYWJSeBnIPl2LHnEMqrGuDQcTf0j8EZsQ3QsUUTdGzRGB1bNgE7eQQD+3ZHQnycwvxbNEWLpg2FawFEQmUC8HcQVsLBamcVSZ21drVvdD1WY4Ri7DWbw+je8tRMortUK/rCocbi3S+e3cuI7nAi3PM5IQjSACQAyINiJzgF4EoiGmja0X+MHgAWawTBUgAziegrxthdAG4korutxqmrgiAgGvjkYWDfRuDkEaH+RIS8owfQlLVE0eGTKCo7gaLDJ1F85BRcFVW+dowBbZrFIv6MRmhEbnRu2xJ0yoVeCR3RNq4pWp3RCE1jG6C6qgr5BQXo0V3R/jVs2NB/wqoK4OA2YOiDQOseIV49H9p7IqKSAfwD5USYoojXSDhUCkbGVa3Nw67uHzC//mBhtJvS0mhHZaa9VjNDt9PGeTs7qEgag4OF3fvghCDoQUT5jLHeUFxH4wEsJaI9NojoAX9BcDaApQAYlJiGEURUYND3EQCPAEC3bt2GFBRwm9VauFwu/DT/E4wc0BpN9q0HCtOAst2G7QmE/fCAQGBg6IgYHABhJtx4ALHo6A0RIRAOgNABDAws4LsZPPBgCzzojxgwMOyHBwDQ0fvd167PtYgZ/ZUDd8EfqgfTqFGjEBsbK2ykNWLiwRjdwu01YmVctaOSSk9PB2PMlkeXSBsRdWQwRnQ7AsRo3mBgda36ZyYSxmA7Oz7tcbvPnxOCYAMRDdYdu4CI1goNAK4geBfAKiJayBi7HcAjRHSV1Th1ZkdQXQnkrgJ2/gTkrQZKdynHm7QCul8IdB0CdB4MNO/k162w7DhmZ6ZiYd7PKDt1EkAsunqGYVC7fujUxo1hCT3Qt0MLJMQ3xZ6jxRj361S8euV49GjdBbsPFeDllA8w8dJ/onurzoakEREW7VyOF1dNxszO56Hzvgy8W30MAPAPNEbHpm2BhPNR1Xkwshsl4dyhFzn6wqgPv8iOwKy//hhg7oUUbhuG3bHtCi7AfNVu1EfEKG/Vzii/lQgdZu3VeYNNsyE6r+guxUmICFAnvdSMBEFDXmNdx9sBDAbQ3LuC/0OTaG46FC+iYHEfgH94//8GwCchjBX1cLvdiG3YAMj/HdiSDGz/AThZBsTGAd1HAEPuA3peAnQ4F4jxD/ouKjuBHzbtw+LsYmwuLsCxBulIbHkrru3RHP07t8Cmvd9j/PUPo1u8fyH34hNHsfFIAYobnYEe7fuhYYOmqGrUEhR/JgpjYpDQOiFQz39gG/alvoffN81DEp1Exz0p6NhlOB5PGIbKjkOQe6w14s8fgdjYWDQEcK7ACsvOPQJOMxzti29nHLNtvtG8wazuQxFMImPboceuHUR73Goe9ZwZQ7JinsHcY7VdKMxZdF7t/XZKCIjsPszsK1a0OCWoRLKPdoFSsP5NAOkAzgJwBMA+AO3sRBZzdgTbATxGRCsZY1cCeI2IhpiNAdTOHYHbVYbiH19Dt32LwY4WAY2aAWf9Geh/K9DrSqBRYHplIkJabimmr87Fyp0lIBD6da7GLeeejUaNs9CvfRfMXTcX468dD8YYElonAACKDhf5GLzH48H6gvUY2m0o9h7di66tumLPkT3weDx4YfELePnGl9G9TXeg8hSwZQGQ+RmwJx0U0wj7el4Cd/dL0WPIGLBmbZTr0HlYBGuI1bfTq24AGL4ctu+94DY/XKv7mtQ1i6hfglFFmc1lNpZT44vsPpyaN1hYOSKEK5bDDEY7AjulKi/U/B8PJQNpMxv9vwRQDKASwB4ADwK4CEq6imwA6wAMERmrpktV2sLxUqLlE4mmJBBNaEH06TVEmxcSVRw37OLxeOjHTfvo+ndXU/dxi2nwS8voreU7aW3uTnps3mOUvDGZ+kzuQzd/fDOl5aaRx+Mhj8dDBaUFlH8onx6b9xgVlBb4jVlQWuB3PP9QPo2ZNYbyD+wiSv+U6H/9FPreSyJKeY/IdciwrKGdEpFGZS2NxuC1E53D6Ny6deuovLzcsE04YVaK0+h4MGUYjcaxU5bS7r0OteSpyDg8lJeX06xZs7i/aSRKWNqZw+5zG276AWQQjz/zDpI/A5/g/TsCQHOr9pH41ApBUF1NtG460dTuRBNaEs0fQ1S43rLb5j1H6C/TUqj7uMV0+f9W0BfrCuiku4o8Hg/lH8qn/EP5VFVVRam7UymvJI88Hg8RnWb0+YfyqaC0wHdchSoo1OMej4cKM+eQ561ziSa0oOrpVxLl/Eak66d92YweXCNBof2uraO8Zs0aSklJsaxXrO1jBCthpV6D0zWNRYWf0bxGQo4nuEKpMx1qLWmjeUIV0Lwx7cBICISrdrXZHDVZP9nu3KEIguHev19DSTj3B4DvALwEJaBMCgI9XIeIPr9VWWF/dgNR8WbLLh6Ph2atyaXez/5IQyYtoy/XFVBlVbWPeetX9DzGzhMAXFSeIvr+CYW+Dy6gE9nf07q1ay0ZuH7lrj2uvpgVFRV+TF47lr6fHlYCxQhmdJu1CaV4uhnj1d8Ps/48GlXBVV5ezhWcRtfjFEQFi1NzRkpAOzUGT3CHMm84nkOj8YMWBAEdgMZQjMf3Afif3f5OfKJaEBzdR/TOIKKX2ikqFwHG7PF4aOKiLdR93GJ68LP1dPi48sNpmb+e0esFA29MrmA4VU702Y1EE1pQ0awHqfzwIVPVCe/FV5nTypUrqaKiwm/FrZ4TUVU4/UIZ0c07J7IrERmf10/LyI3aWAmv8vJy331UBYJR23CgJle5PESKnmDubahCIFTVp53xQxYEAK4A8CmANwDc77URNBbt7+QnagXByaOKjn1yZ6KCtX6nzFbsby7bSd3HLab/Ltrqp++vrq427KMfr7q6mtJy06i6upqIDARFdTXRvNuJJramyow5tGbNGh+TsatWKC8vN2SkwapNwvWym6lmjGgRHdeon1YYBKMrV3dWRv3Dca9qmvkbzR8JwWdER7C70mDn450zWjyJQrsgcUIQ7ANwC4DbAEwC8D2AHNH+Tn6iVhB8+xjRxFZEuasDThnp8NfuPkQ9xi+mJ7/K8lvtP/r5o5S8MdnH2IkCmb0Kj8dDyRuTKfGVRErLTfMdCxAia95R1EFrP6by8nIqLS01ZFZ2VipmapZQVjNO9Alm++wUPaG8vGb9g7nXVu2cYDh25jOaX2RnGso8dsaw8+yEyzCu7aO/R1YLNX2flJQUApBJIQqC1aJtw/2JSkGwJ1Nhsssnck/zvHo8Hg9d985quujVX8l1qtKvbfLGZEqckkjJG5N9uwQ9s1dRUFpAj871FxwBgsBVQjS5C9G826n82DGaMWMGLV++3Jb6ggd15apXB6nCwc5q1skXTjue08IoHLCzozK6p6EyLTs7JDu/gdbeYQaz3ZMVLU7sGkLZpdoRdqHQKLLT1HtVqfdnzZo1jgiCSQD+BW/sQU1+olIQfP1XxUX05FHTZloGvWZXCXUft5i+Si8MaFddXU3JG5Pp0c8fpYLSAi6z542pImAHsup/iqA6uIOIiEpLSw11+TxYMQ79y6NVO+n78F42p1buRqsno7YiL77TuwmzeyJCUzh2BCJt7AgKLdTVKO95E7k2K+El4l0mCqeEX6hjiIwvsiPQt3dCNZTs9RjaD+BHAJMB3Cba38lP1AmCKrey2l70d1vdJny/hc56/ic6UVFJBaUFVFVV5af60TJ4MxuD1rVU60WUfyifUnen0th5Y2nv+8OIZlzp18/uqk592XgMS/siVlRU0MqVK02Nxto+Tr3IeppE9PNWqgArphfMLsVql6S/l5HUjxuB93vb7R/sLsZqPlFhEgqc2HHVBPT0OOk11BRKYZq/Sq8hL4o3K6vtTd/Y6jbyvd/prulpVFBaQGPnjaXpa6ZT4pRA1Y8KIyNy/qF8umX6LTR65mg/43BBaQGNnTuW0nJ+J8/EeKLlE4ToMnqRKir81UDaj57xWzF2KwEgugrWQ78DCHW1LjKGE3Poz+sFb6hzOoFg5wz3Clk/XjD2LtGx7bYLVnA6Ce3cRoLAP6GNAIjoJBFlENFnRPS03f51Eq79yt8WXWx1O1hegU4tm6Jrq664OvFqpO9Ox6RrJqFj846q0AWgCOuC0gKszVuLKT9PwfqC9Zi6ZCqKDhf52jRr1Az/d+n/+dJMAEBC6wQ88+dncH7bnmBUBbTyz0PEgxrmrub8UREbq5SqTEpK8ivgobZt2LChr8qZtr06pn6O2NhYX4U0o/B7l8sFACgrK0N6errfOPoxgdO5/N1ut2WCOSPw2htdh1Efo3Zmc+jPDxo0yHcf9NDfn0ghlLTPovcuVPBy8wSbO4j3Dli10bbT/k5m9yCcEE2tISwIGGO7GGPJjLEJjLGbvHmDJABA5dnMtlxFDAP2HNmDZduW4YGLH8CQbkPw2rLX/Jh80eEiPP/D85i2ehruG3EfhnUfhvHXjvcx/W7x3TB55GRc0PMCvwRyjDF0i+9mu3iMUWI2AAGMW00MN3ToUMMayRkZGT6mpX05VKatbetyuXxCYtu2bSgrK0NycjJOnjzp1077YqmMXy2/CSCkF4/Xz4qhWbUToUXfRltOVAvt/RGhR+RYOKDOE+kcS2bCXBQiv7eIkFPfD6t6C+GA6DMLwJaN4GkA0wA8AaW8pAtKgZqXADQSHceJj6hqKGLbsT0Zimpo2w+2ul395kq6ffqPfqoeni2guro6IKWEFpZRxRXHlTQXK6aePmTTYBkwZEVFgIrIqN2yZcu4MQf6LfTKlStpxowZVFxc7HfeyOjMszGEosPW3wejNqJjab+L3E+7HiuiKibt/QtGTRKMDl+vRgwXgrEd2PkdnVYL6vtGOjAQDqiGxhDR40T0PhGNhZIw7jcAx6BkJo0q2JKGoaLtWcpuYP9mW926tjmF3/d+jT1H9piu3Pcc2YPP136OmJgYXxsiQmFZIYgIRYeLAlRFfog9Q1ELHdwKgH9vtNtn3laadx8ZY3C7laLwaWlpfioZbR/GGAYMGOCnNtL+Vf8fMmQIbrjhBixevNi3MwCAuLg47mpKVZtodzDqbsNs9cVbrav3w0yNEGw6aBHVhJFKw848vPOJiYnYtGmTT7VmV00S7MqYp0Y06hsszFQuvF1jMGoaq7ah7HScTHfNg4FaiM9keNKB9wGwCsAA3bF13r8bRMdx4hN1OwIiog8vJPr0WltdPkvJpa7jPqddB475jvEigs3cQ3npJ7hIHks0pRtRlRKvYHdFaOTpoq7kV6xYwc2RU1paSjNmzLBMoqauIMvLy32pK0RXY1r6zCJxef7X0WDMM4NV0j8RhGpwFjF+BkNbKCti7e9pNH+oO4JwtrWLYHa4vHsLB9xHz4aSMvpTAH8D8D6ANO+5LaLjOPGJOq8hIqKVryrqlyN7hLsUHzlJ3cctpnd++cN3TI0erqqqMs0iapZ+gout3ynqq12/CNOnhdUWXD2vjVZOSUmh0tLSANWE3vOIyD+3jvpR1UlGqiTeXzNaeeqjcEXTOgFtYJDTaoRgVURmkejB0hEsQlF3OY1w0hDsc8prZyQIhFVDRLQdwDAASwC0B5AD4AbGWDMA80XHqbPo/xflb+Znwl06tmyC4WfGY/a6LLirlKJvRYeL8MGqD7ieQer5qUumGqqTSKMy8kPfa4Ez2gAZM21fGg96NYBa/CQnJ8dXUrBfv35YtGhRwDZ9wIABGDp0KIDTqpxt27b5vI7U7SwR+Rmb1bbabX5GRoZf8RWVHiOo6iS9ITOiqkQTaOePi4vDqFGjfKoxu2oEK5VGMNXYeMbPUO5dMAZU/e+svZZw/H4iY4ZTzaO/PtF7bUALVzVkx2uoDZTi8XEAfgDwMRGVEtFxInpZdJw6iza9gLOuA9JnABXlwt1GntcEu48vxqy0DX7HO7Xo5OcZBCiM0ePx4J4L7kHXVl25TN/QXtCwMTD4PqU+8sEdti5Nz4TNXEy15SXj4+MxcuRIxMfH+/T46enp2LRpk197fT8Vqn6ZiPw8ZYDTDFy9dp5OWKVdC5WOjIwMP5dU0Rc5nC6bvPsabKlOEYYRDNMysu/Yratsdl6l2473lpPCXG/nCpHxOgKe0LML7zU05Z7kbRN4HwCrAbwIpcrYKgBuADtE+zv5iUrVEBFRkdd76JeXhLtUVVXT5W8k0/BXfvErQJN7MJdSd6dSdXW1X56i0TNH000f3USpu1N9eYvUNBLV1dUBEcZ+cB1SMqPOHy1Mn6oGKC0tpRUrVgSoa8zA2y6bpVTmeQKpbbTt9XPo/1f7FxcXG6pWzOwJZvfCqDKWU3BCVeLEWE5D+7ta3T/eM6A/b9Y3VDqjqfCMHYjQDINcQ3a8hpoT0UsADhDRpQDuAjDLtliqy+g6BDj3NiD1PeBIoVCXBg1i8PJNF2Pv0ZN4fVkaAMXL5qnvnsJ98+/D+oL1KCwrxHOLnsPeI3vx+CWPIyYmBtNWTwMAjL92PABg6pKpijpp6VTsO7rPb6dA6s7hjHhgxN+A7T8AuasAmK9wVZWNquqJjY31ef+IbMP1qxfV15/XBlB2C2otam0/M08avUpIG6xWWFiIkSNH+lbV+jHt+nerqppIrPyMYHTPjTx3zPpECm63UucagFD8g5HnmghC/W2C8d6KBuh3Uia7GH6Rep504H1w2jC8DkBT7/+rbPSfCeAgNIZlAAMBpEGJR/gBQAuRsaJ2R0BEdKSIaFIHoi/uEipKo+KuT36iNs/fS2tzd5LH46G8kjzfjiD/UD7d/PHNNHrmaN+KP68kz7fy1xqQ03LTaPTM0TR65mhf3qK03DQaO3es4onkPkH09kCid86j8sMlAVkKVfBWb3oPFqscPFbHjbyQrNqb7SiMPILsrPKsVqPBGFmdMEgHc8+dMGI6scpWPcJCHS8aDMPhhhOGd5MdQcheQ3+BUrT+KSiF6P8GG/UIAFwCpbKZVhCkA7jU+/8DACaJjBXVgoCIaM3biooo+yvDJnqXz8JSF/V9YR7d8VEqVVf7C5CqqipauGEh5R7M9TF+P+auGTOvJI9SclIoJSeFxs4bq7Tz/vUlpNv1CxVPiCPP8v8G5C03epjsMFORl9VuGxGPFdEiO1qPJCMEm56bJ8hULylRVZTTqo9oYLxW125HFVOTQi3cCLegC1oQQKlM1k537B4ArwE4x6q/rl8PnSA4Bm9aawAJALaJjBP1gqC6imjGVYrf/tF93Ca8OIB5a/Op+7jF9FlKHhGdFhYpOSnUZ3IfSt2d6usbwNy9wmH0zNE0ZtYYP7sBLwbh2TcSad/EFkQFpxPcibyAoozRTulL7f/6Y7zVNK9teXk5zZgxw+e+asVMzSJezYSOGYxeYrMdAe96o23F6wQtRs+Oes4qDsSIJrs7s1Ay3YbjNxFZtDiJUASBB0rq6X0AlgH4H5R6xefBZqlKjiBIBXCT9/8nAZSb9H0EQAaAjG7dujl6c8KCkl2KimjW9Ypg0EG7I9DWDrj303XU97mfaOveo77ja3atoas/uJpyD+YG9FWhCgfViGwUX+BLWb1vC3neOpfozf5EJw4HtBNVM9ipbmZ1vLS01KdC0DJjNcBMSxdPDWQViBbMqlNkdW42rt0dT7BMKpohuvvT13q2Gk9UaPCCGe365YdDQFuNGY45QxEETwDYAGC8V73zMIB3AawAsN+qv24svSDo5xUumQAmACgVGSfqdwQqNs4T8iLSMvaS8lM0bPJyuvS13+jIiQoqKC2gvJI83ypfZAyzY36Ry0XpRBNbK15EmjZmD6D25dG+kEbtzPprjxUXF1NKSgotW7aMli9f7htfu9LXr+T1HkhWRWhWrFghxGjtMAbtDkQ/tigDFJk3nMIhEoJH5HlQ76ed8USEAM/Ty2hBITKnXYTyu9rtazVeSDYCKL6n47wC4a8IskqZXhDozvUFsF5knFojCIioKvkxRRjs+Fm4z/q8UjrzmR/p0TkZVF0dmIiOV4iGB6F0FSnvKvStfM2vr52VrBXMdgYqg/7www+ptLSUm5JCH62s9luzZo3fd7OCL6KqIzu6bK1rrZ4eo2u3Om7U1sqmYWdMu8IqXNDPbVcVJworNWU4VTHhur+8ca3eAaIQBQGdZtYtALzsNfKeb6cv8XcE7b1/YwDMAfCAyDi1RRBUVFTQ+tTVVD3tQqWC2f4twn1nrN5N3cctpjeW7gg4V1BaQKNnjqZbpt9iukvQF7vXfyciZSew8GFFGGxfLEyfqC+9dtdg9MKp6h91TKNso/q/WkEkUhZTbwA2am+0w+G9aFrmZUcwiqhAtHNYZfEUZThGDCQUhNLfjGk5ATMhEK4CNry5wgGRHYH+mkJRDV3s1c+/CeBnrxpnJYDrrPrqxvkSSjBaJYA9AB4E8A8o5S//ADBVdKdRWwQBkfeHObKH6H9nEb15DtGx/UL9PB4P/fubLOo+bjEtyCjyHVNdR1NyUmjMrDGUV5LnW+Hr8xSpAWfqjiAtN41fAc19gujjS5Vgs/1bha7JLiPjla7U/q9d9Vu9kPodBW/7b6U6EFk9Gc3HO28Xdoyiovc6mB1BqKjJHYUVrAIAjX7LUHde0XYvHNkReI3FGwH8B0APq/aR+NQmQeDD3g1EL3ckmn45UcVxoS4VldV058dp1PvZHyktp4TSctPo7k/vplum3+ITAFpmrzL65I3J/oXrvWog7o5AxdG9RK/3JXrjbCUWwoyuigoh7xwV6oqWF4dQXl7up2IxKnqvn1+/Qteu9kWYk7aP/rhReyvYZQCiq/JoYyx6RDN9dqPA7SxCzM6HM/o8FBgJAtV10xCMsUcBnOv99ANQCiUAbLNXzfOd6QBhQFJSEqkRqLUK2xcDX41REsDd8TnQoJFll6MnKnHLhynY7yrGwISVuO28a/Bt9rd4+caX0b1NdxAp9QgSWieAiJCWm4bio8UY0m0IerTtAcYYPB4P1hesx7DuwxATYxxMTsWbsH/WNejYvCvYg0uBM+ID2qhRomqNAV5VMn37rKws9O7dG/Hx/uO5XC5kZ2f71StYvXo1mjZtapjHXh1Pm4RLG0GbkZGBpKQkAAg4r7YBlFxDROQ3j35sO1Dvi1X+faO+RvOKlhqsKUQ7fcFAm8TQ6Bk0u2Y1It/sOaqp+8YYyySiJP1xyxQTRPQxET1BRJcSUQcAVwOYDUXF8xfnSa3DOPsG4LrXgT9+Br57DPB4LLu0PKMRZt8/DHEN22Lb3iswqMufMHnkZCS0TkBBaQEKywqR0DoBjDHExMTgQPkBPLToIWws2oiiw0UgIqzLX4d7v7wXa/PW8jOTelHUuBVea38B9h/OA764HXAfD2gTGxuLoUOHIikpyVIIqO0TExORk5MTEPKulrjUjtW0aVO/2sdG4xm9qPp0E7ziJG63m1s0JdQMklVVVUH1MyoEFC0ZUY1Qk/SFc06rBHZWz4dZ6hLA3n2L1L0Npnj9HiL6iYheJaJ7wkFUncawh4ErXwQ2fwP8+CRgsSMDgIT4MzDvoQsQQ61xx6dL0IC1xZ4je/D8D8/j+R+e98s0el7X83B+h/PRvnl7PLfoORSUFoCI0L9dfwAwrWSW0DoB/7r1HXT8y6fAngxl91J5KiCjpzZVtAjUF8MI2vw/RrWPVaj5isrKyrgF3LWrez2D1Wcw5eVLCiYtsopGjfx3eHZeYr0Q0FZfC1YwhZvRhLvClhHU3ZdRhlLRMcwQ6rUZLVDsjB1JQWu/2rpE6Lj4KeDCfwKZs4BlzwsJgz4dmuO127og/+Ri3DbjZzRu2A4v3/gyXr7xZXRt1RWFZYXweDyIiYnB9Dumo0urLjheeRx7j+zFtNXT8O8r/40Lel6AcdeM09p//OArdn/OTcDI94Ddv8Hz5V3Izlxvu8QfD/r+RonS9HPoz6s7jN69e2Pbtm0+YaCWR9TOpX/ZtELJKuWxEY082tRdhmiOftFaAaEIAZ6g1J53gtGEIjhDEVRqmdRg6BftF8q18ebT/hbBJG0MJ6QgqClcNREY+jCQ9j6w9DkhYXBVv0TMHPU0DrvOwF0z1qFxww7oFt8N6wvWY8rPU7C+YD1eXfoqGGN+BWsYY+jYvCPWF6wHEeHVpa/6dgVEBoVsBt8DjHwPMbm/YUjOm4hr3DCkPOi8TKRGKhEjdY4KlZnHx8cHZLM0ylyp39Xo6x3zhJQ6nlmG0vT0dOzfvx8LFiwQXvUZMSJe5lA74AlMXqZPp3YcRjSIMFmRdkbCTBX4VioYozHtrMiB0xl6gxU8vN+CN5YdNZRVP9vgWZCj/VMrvYZ48HiIfvy34sO/+EkinjcPBQaBrc8rpXNeXEKXvPYbrc/b6cs7pK1HkFeSR6Nnjqbf//idFm5YSGt2raHEKYm0IHMBLdywkKqqqqi6upqSNybTo58/6hd05jd3+iwlQd3nfyFyn7R9iXovC71Xj6gvtB5WNZC1x7WeHEbz6j14rPz21XYrV670leTU02XVV/89FDdMO+6wZsedgJNurKIBfnbiN0SfOfV3nTVrlu/3DVfMhJ3fX//+2EmXAScCyqLlU2cEAZEiDJY+pwiD75/w5SXS5yLSJpnzeDz00+bNdM6En2n4K79Q6u4dPiGhzVuUujuVrn7/aur63660IEMRADd9dBP1mtSLXln6ik84JG9M9ktnrU9J8fS0K6h4QhzRZzcQnTomfGn6h5Pn/x8M81NfTqvMqSkpKQFpJUReGLWv6EupthMpXGPmMhqK+6md/pF29wxmPhHXWp6AD4YWo+dHXQzYcZUOBXbG1y+s1P+t6JSCIJrh8RD9OkkRBt/cT1R5KiA7aVpuGj36+aOUlpvmix1Ytm0LDfzvUho2eTlt33c0INto/qF8uvr9q6nDxA504ZsX0ppda2j3gd30n+/+Qy1fbEkLMxf6xRUYpaTIP5RPhWveI8/EVkQfX6ZUOrOA1Qo12EAptZ8+Jw2PwWtTUmjbicYZ2IFWGOiP817UUNMpBLuDCHXnoR8r1PlEGbNRP97vHqrg4R2riVgJkR0pb7dtBikIagNWv6EIg89uJM+JIwH5hdTaAtpAse3FR2nY5OV01oQv6C8zHvY7V11dTWt2raGXf3qZuk3sRjd/fDMlb0ymh+c8TOO+G0dut9tvet6OgOi0gCjMmE00qT3Re0OJjuyxXF2LZJG0Om+0WuONY9RWv3NQg9jswIop6QPmtMe1wkh7TaEGHdlhVHoBaWdso/N2AgpFxuAJbLtzByN4ohGi99fOboBICoLag43zlIygH14YkI7CiFEXlR2ny1//jXo+N5dmrVnvV49gzKwxNHrWaFqYuZAWZi6kRz5/hKavmU5nv3J2YKoJHbSVz3zz5q0heqUred5IpOxfvjZc2dp9kHnHRXL46Jmqvp1eXaPuEszSXVjRwjvPS6Ghzme12gwVIszPSKfMo8WK0Rr1C5Y2XrtgGXqwAiSaYLXAMgIvxYoeUhDUJvyxTElH8VZ/pa6BAMpcFXTLB2uo6/g5dOHbd/lKWap/8w/l09i5ip2hsrKSkjcmU1WVWJ2EAEPyviyi1/uQ55WuRLtXBvWyqn9FmYR+Va2FmTBSz+uP61U2RjYB/UpeWy9B3443T6QYjx2Bq//fSoVn1TZU2ozoCmYep1V+kYbZLsmsj3ZBZHYfjASBdB+NRvT5E/DXxYD7BDDzaqBovWWX1s1iMe+hC3D1Wf1QUHwdPvo9H1OXTkVMTAy6t+mOhNYJuG/EfRjWfRj2HduHZVuXIb0wHR6PBwWlBb7As6LDRb6gs4TWCRh/7XgktE7wm4s6DkDhbXOA5p2BubcidtsCLk1WrpNWbnza48ozDG48g+pGqI0H0M6jD1BTx9WOo46vpVNPKwBUVlYiMzPTF9CkRXZ2doCvOC+QzsxtlPddBFq/dCM3WG1bPY16v3ZedG24C8rrYzDsQoQ+p33ynQr24t1jniu1vr32XmmDJW3/TjzpEO2fOr8jUHEoRyk0/1I74frHlVXVNH7hJuo27gca/elP5Dql2AG0q3uf2+jcRyl5YzLd/enddPPHN1P+oXzzxHRe+Mbat4Vo9kjyTGhOexY/TR6TPloEsyrj6da146h1DLTVzKySyhnpzbUrKr3boLri4q3+eeoh/W5Fv1qzOm9Gv/64vi6ynRW8nZ1BJBDNK3ftjlLUHdVqPJFCUCIuo1bzQqqGaimOlxLNvM5b6ey/3FgDvQrH4/HQjNW7qef4xXTdO6tp7+ET5PF4KPdgLi3csJB2H9hNo2cqdgPVfqC1K+jrIevhZ6uoctOer+6lyRNiac8XdwYVa2AH+hdDuxUuLi42ZahGKiBeW9WgPGvWLF/1NG0pRZ6xV69uUsflCRPtvEYeULxrN2MY2iI9wTBws3lXrFgRFRk17ajAwjW/1sZk9FvYVaGJCmsVwf4WADJJqoZqIc6IB+75Fhh8H/D7G8DX9wAV/pGWqgpHTTUBAA9dfCY+vW8oCkpP4KYPUpBVdAQb92zEA989gF/++EWJNm7ZEQwMg7sNxuSRk9EtvpuiQhp+H2anzkbR4SJ4PB6szVsLj8cDIvKN3y2+mxK93KAROo+ahXuH/xudd/4IfHYdcGyf5WUFu6U2yhuUmJiIwsLCgC22fs7KykrumNqttMvlwqZNmxAbG4trr70Wubm5fqqsuLg439x6VVBsbKxPfaXSlZOT4zumZqZUx+Ml5DPb0htt+dVoW/VcRkYGN8UGDzz1kf78jh07kJmZGZG8N6Gk+wg2ZYZoH/U+qwkLjX4Lu6oZkQhireqMFzEuCH4KA550iPZPvdoRqPB4iNKmEU1sRTTtQqLDhQFNeDuDlTu30YVTf6E+z/1EH61Mo6s/uJpy9udQ6u5U2n1gNy3csJAqKyt9KiOtgVl1WVWL2RSUFvgMzrzdgmfLd7Tv5fbkebUXUX4q9zKMttTBruSs1DDa+gbaADM9tKv0NWvW+CqmrVmzxleKUj8vz0itV1/px+Zdq8i182IijKCu4HnziOyGjOaPlNE7FPfPYNWO0ViZzGoHGMxzBGksruVgDLjgMeDub4AjBcD0S4GcX/2a6I27hWWF+CT1FXxwd3cM7NoSk37ehXPajoMHDK//+joe++YxPLX4KcxaOwtTlii5ip5b9Bye/PZJ306gfbP2+OT2TzCs+zCfwXl22mxfims/Q3On8zClyxXYH9sEmH0DsH6GXw4loxw3VgnSzKA1cvJWYlVVVcjMzAQAJCUlYcSIEX793W43XC4XFixY4Jt/6NChGD58ONxuN6qqqrBjx46APllZWdz5tLsGl8sVsANQ26jjaL8bwe12Izs7m7ubMbsv2v5utxupqam+nYKeXpHUypFIfmbHgQAIzCEVLI01lXPJDFb3wignVzBzSkFQ29DnKuChX4Fm7YG5fwF+exnwVAPQZA/VJJwDgFZnNMLUWzujS/uV+GbDPjz+ZTaApnhk+CNIaJGAH7f+iDHDxsDj8eCxix/DGY3OwC87f8F98+/D098/jS6tuiAmJgaMMZzf43w8c+0zSGidgKLDRX6psBNaJ+Dpka+iw8OrsS/hAtBPTwHfPwG1rgEvq6ZWRRLMdlcrRHieJueee65iDEOgt5CWoY8aNQqxsbFQCx653W4sWrQI5557rp/KRR1HrYlgpBpwuVyYP38+MjIykJiYaEg373r1x2JjlfTcQ4YMEWJWWjWRmhhPvc/9+vXjeggZzV0TEGXI+t8+lMygoYL3mzkhXMwEoj7FulECRR0Y9yCRddZLJ8AYS4BSoL4jlPKX04noHcZYPICvoBS2zwdwOxEdNhur1lYocxLuE8BP/way5gI9Lgb+8inQvINfE6LT1csAoOhwEbbsaYj/LNyEKlaGsRe3wurcT+DxeHDvsHvxwtIX8Mntn4AxhllrZuGa/tdgcMJgdG/TPUC4qOMH2Ayg7ESmLpmC51rGoUv6DKBtH1Te9DEaJQz2vwS3f/UyUZ12wK1wB1aUUqufqcVihg8f7ndOdSnV9lGZpqr/dblcAat4Ld2JiYmIi4szpFvbn1eBTD+3CqO2+uPa69bTqO2nVm1Tdcuq0FXpN7ouHp2hwo7dwk67UGhUn4dQnj/ebxYOiNBo1MbtdqNx48bbiShwZcLTF4XjA6ATgMHe/5tDKVifCOA1AOO9x8cDeNVqrHppIzDChrlEkzoQvXom0Y6fLZt7PB5K3b2DLn9jIbV49h66f/aXtHP/bnK73TR9zXSqrKyk6upqSt2dSnkledxkdNyIY81xv4C13SvI83ofqv5vG6r8/V3F1qGBPoGcHsF4Xug9ing6fBEdtGov4OUr0nsQBaO71tK7YsUKP68fXh+ePUS1Y5jZD3i2GJ49xei4k7mJRO9VJAPx9L+jUZS6to/IMTs02KHVrL2A++gG4vFn3sFIfAB8D+BPAHYC6ESnhcVOq75SEOhwYBvRtBGKi+kP/ySqcPlO6Zm4alD+Y/9u+tfXv1K3cT/QFf9bQe/89oUv7YQvNcXM0ZS6O5VSclJo9MzRlFeSRwWlBZRXkkdjZo2hlJwUn9upduzkjcmUOCWRUnenKnOXl1D13NsU+uaOIio/SESBvvl62GEI+raiGUBFxtV+VMYrwjDM5tO6e5aXl/uM00bXo6dHH08Riruo1b1zwpBvd6xIttP/vmraaTupU0K5R3byTlldh9UiB8A2ihZjMWOsB4DzAKwD0IGIigHA+7e9QZ9HGGMZjLGMkpKSiNFaK9D+bODh34ARfwMyZgEfXwLs3QAAfpHCwGmDcu/2PfHmbVdgzv3DsP/4Trz464+4tMeTGNw1CUSEl65/CbcOuhUfrPoALy19CS63C8t3LMeUJVOw7+g+HK887tO9q0honYBx14zDoC6D8Mntn6BTi07K3O4TiLn7K+DPrwO5q4APR6By22K/qF2eocuOnlWrI7VyrxMtSKJtm56ejrS0NGRmZqKqqso3h1b9wxvDqACJ2+0GEcHtdiMzMxNEZBjxq+2Tnp4OAD6DtNqWF4kqAq1brDqGqK2GF/GqPcejxW6UsdX8ThXBUe0EcXFxGDVqFOLj47nPHu+ZDMVQa8c+ZqUWEjS0n+Se5EmHcH4AxAHIBHCr9/sR3fnDVmPIHYEJclcRvXE20X/jiVa9Rp5KNzdRnYqC0gK6f/ajdPPHn1O3cT/Qje8vontmPeIrWLMwU6lh8OGqD6nXpF60cMNC345A3SFox84/lO/bSWgL5fja7N9C9MEFRBNaUNXCR4lOHiEiY3dMEfBWtqGu0PT9tWomdfVWWlrq556qbWsU+alV5ahBa+r/Vtcl4kLKUwPp/1e/G7nTauc1WwFbqcaccJ90oo1IOydotbuDtfp9gh3bDIiGyGIAjQAsBfCk5phUDTmNE2VE3zygqGKmX66ojgyg1fd/nV5I/V74kRJeeIUufOsOSslJodyDuXTL9FtoQeYCunn6zT67gZFwyT+UTzd/fDONmTWGCkoL+InrKk8RLZ+oxES8kUiU86vhFtmuPtkJXa2ZOkD9v7S0lFauXEnLly/36fe1Uc5GjF1vuzCLUDaLFBa9L2ZJyKyEkLa/nfsVLPTMrzZkCtVDVAiosSpWKlEnFjda1LgggOK2NAfA27rjr8PfWPya1VhSEAhi8wKiV3sSvdSWaNVrRFXW9QfScnfSmS/fRs2evZFGfrCIUnZto0veuYTunHGnL5CMZ0xWV/7V1dWUV5JHKTkplFeSF2BQ9kNROtG7Q3y2jfJS/7Tboswg2B2E0Vw8Bqdf1aekpNCyZcv8cg+JvLBGOw31nJYBq3YDvbAQvS+qnls/h/av2Yo+lOI5dhkX75qcYHzh2KmIwkzvr7U18eD0fVARDYLgIijhzZsAZHk/1wFoA+BXALu8f+OtxpKCwAZcJURf36cw2w8vIire5DuVfyjfz9hLpAiHvJI8evuXNDr7xZ+o6/OTqf3EPrQgc4FPCHz8+8fU9aWuNPLDkZS8MdmnKtLuAsbMGuNLZKeOq1UT+YRQxXGiJc+SZ0JLOjm1L7m3/xy2l0Adzypak6fyMFpNGwkOo7n116ZVE2m9VtRzeiGj7asfm3edWqOn6LWZjSsCvfpLFE6pebTtjCK/wyUMtALWTtnSSKHGBYGTHykIgsDW74le66XYDpa9QFTh4goCLdbn7aSzJt9H7ca9TNe88y1t3XuEUnenUpeJXajDxA40+efJPu8gPZNP3Z3q52mkznX3p3f7hIdfuor8FPK8cx7RhBZ06KORVKGvgUBi7nxO6JV5q2feal/9LlronqcO0AsSo52JFUOxU1NA5B7wxhFtqwobK4ETjACy2jnwBLbo2MHATMiEkqTPiV0uD1IQSCiZTL99XNkdvJFInq2LqEBryNVBXcVPW7mO2r94L3V75nN68utf6IYPb6KFmQvJ7Xb7FbjRqprU//MP5dPYeWN9qqSFGxZS4pRESslJoYUblOynPkFUeYpoxVTyvNSO6JWuROumE1UrY+tfMj2T1uvCQ9Wp8pgWj7FVVIgXuuftIqzmVse3EjYiQlLkOK9dKJk0tfdKew1WOzM7sR5m6ZmdWP0HK5RCmc8O3UYLFR6kIJA4jYI0og+Ge/36byMqzTVt7vF4aPOe3fSfb7Koy/g5NPCl+bRo4x5ffIFqVF64QSmFqdYzUI3QablpNHbuWF9Cu5ScFErJSaG7P72bbpl+S+CO5FAO0eyRRBNakOejS6lw+8/k8XgMX3C9fl6UeWphtrLTq1WMVu6i8xi96EaG8mCFmtlOQcQQHMzuwYwWXmCeWXs7Ywez6xAdO5QkeMHSYPe5NdtNamEkCCKWYsJJyBQTDqC6Elj3MbByCuCpAi5+Grjw70DDxoZdCssK8VTyy9h7+HwUlsaicfMf0LX5UbRu3BSnqk9hZ9lOPHPZM9hYsBH3jbgPc9LmYNw143z9iQgvLH4Bj1/yOGanzcbViVcbprAgjwd7132MmFVT8dmpg7hv4F/R5dopQNNWAPjpGdS0EGq6APWYFYzSN6hQz/G+69MbWM1bVlbmS6ehQqV7wYIFvpxHqj+/dh5R6Okxuk+bNm1CZWWlL/2GNl1DRkYGiAgDBw4MSMchktrCii4nIZLiweieiI4fLN1GaTucmEebPkT/G6tzqs+Qep4xlklESfqxZNK5+ooGjYARTwD/tx7oey2w4mVg2nBg92+GXRJaJ+CpKx/AuZ3T8c8reqGh+2bkHxiD/h3+iXGXP4tBHQbhT2f9Cc/8+RkM6z4M468dDwCYunQq9h3dh31HlToFnVp0wl9H/BXLty/3JbPTo+jIHkzO24SCm6bj3v6j0Tn7C+C9IUDmbLhPnQzIXAogIIuonVw1ahI5LXiZUvWJ87TBRC6XCxkZGdwyloAiBN5++23s378fAPzaqoFMauK77OxsX7I6O0Fi+uAple6ysjJfUJwqLAcMGICGDRvC5XIF9EtKSsLAgQN9gU76BG9lZWWm1xosghlLG0zIG0sf8CVyP/V1JoKFaMCYneA4LdSFvPb3Vu+HWsJVCLxtQrR/pGooDNi1nOidQYq6aP5oQ3WR1g5w4OhJ+vuXG6j7uMU0Ysov9FlKus+lVNs+LTeN7v70bvrT+3+ilJwUbv4i3jxpuWm+cprVezYQfXoN0YQW5HpjCLl3r+Fuf3lGSiNoVSQ8Xa+Zukg/joi6hYiouLjYr7oVz6CoXoNoCgsePfrx1Epry5cv91OZqbmeSktLuTEHPFWO1qVVVG0lomIJRQ1jZR+wo8fXpplwCiJqMNHnlfecWqUjUc9B2ggkLOE+SbTyNaKXOyp1kpdPJDp1zLJbyq4SuvrNVdR13OfUZ/JfadnWLX5MXnU57T6pO63ZtcZUAGjh8XgoeWOyLwcSeTxEm74hz//OIprQgkqm3+rnXaRnyCIwEibB5JMRmbOiosIXH8CjVT2/fPlymjFjhpD7oRED0DJprUuqnsGVlpZyyy+KMi870bRGx3nxDnqGZ+V376R9gJdryAlbiR527p+eBjPajGxYUhBImMLvQTq6l2jhw8ru4PW+RBvncWsla1FZVU2zU/MoceKX1GX8bDr31TtoY8EuIjodbazuCAIijXXQ7hZUY3O1d36Px0MF+7eRZ/lE8rzUlmhyZ6Lf36Lyw4eEVuQi98GOINH3ExEW2iL3ZlXViouL/cbXz6ePP9D2V4WJPgWGUZoK0R2Q0Y4oVOgN/npjv1l6DSshESxEd4ROzmOnTzCZSKUgkDCE4UNVuJ5o+hWKQPj4MqLCdZZjHTnupn999Su1fO426vviPJqxejftOpBLY2aNCcg/VFVVRWm5aVRVVeWX1jr/UL6hsPBLWVG6m+iLO8kzoTnlTu1DR9d9QevWrg36xeL9H+wYRud5worHbLUBSXpGpzJLoxW8NocRb7UvyjTNVpmh3Ad9WyP1jX7XYZaqXNSFNxQEGxcQyv0K9pwRpCCQMIXhQ1VdTZQ1n8irjqFv7hdyN131x3a699O11G3cD3TB1G/os9R036perX08fc10SpySSMkbk+mxeY9RWm4aPTbvMco/lM9VH+mjk1UUZs6lCZPbU/GEOKr+5GoldYXZNemuO5yrPd58otDaCLTxB/q8+WobfSQxL021GQ0iDEtU2InOZ+Tma1fNE+w1iSLYZ8Sqn9n5UFJ8GM0lBYFEaDhVTvTrJKUIzn/bEP30HyJXiaXR94v1mdR54u3UZdwcuvmDNbQut9RnCH5o9kP0ytJXyO12+3YEPEavgpfAziccDu4mz/pPyPNqLyqeEEeVX4ymrN++tVxROZnQS0UoEaUq9PTomT6Pdq0RV89ErGiyYuB2GKGdfrx7b5fpGgmNUJi3neNWbYIRYla7oGDHA5BJUhBIhIyj+4i+/5uSOXRyFypa8iw9PvchQ51//qF8Gj1rDL37WxoNm7ycuo9bTA9+tp52Fh/1FbBJy03ztc8ryaNbpt9CuQdzAwQMT+iouws1VUXB/m007t3zad+kduTxCaxDAXTx1BH6c8FAJMeM1Vx6Bmamr+e1VY+pNgbRvDdWDNxIhWN0HWbXaHXOjhAQ8RYKZjynV//6tsG0CWZHpj0ndwQSzuLgDqIv7iLPhOa079We5EmfSVRV6ddEXa3nleRR/qF8On6qkt779Q/q8+I86jp+Dj01fwMt3rTSpzIiIkrdnUp9Jveh6b9Pp7HzxvoYP68kpuqGmpabFtj26D6iRX9XBNYrXYlWv0HkPkFE1i9LqNtxO0LAjA6z71bzFRcX04cffug7Z+aKaiZo9P/rGaWR+60ZzdqxnDDyiqiV7HqSaVVtZmNb0WLUJtidiogtpKLCODeVkSCQAWUSwaHdWcBdX4A9sAyd2vQGW/xP4MPhwPbFAClBLkWHi/Dq0lexv3w/piyZgqXbf8ANAxrhvG4/oU38j/gqOwX/+tqF5xf9jsPHTyEtNw0d4jpg6p+nIiM/A/decC+ICIVlhX5V1tSqa4VlhSgsK0TH5h0x/prxSGidcJq+5h2BG98BHl8LdL8Q+PW/SkBa1heIbdjAMArVTlU0I/AiSHmBQmZz8Spj8cZzu93YtGlTQAW0HTt24NSpU36BRmZVw3gBddrx1GAyAH4BddrAJaOqXbyx1OO8YEJRGEU2874bBXUZ/S6xsbHo3bs3Fi1ahLKyMtNr4s1t1SbYZ4zIOhOE2+32C6wUHri2feSOIMrg8RBt++F0bYFPriYqWOtz/ayqqlLUQK+czlSaujuVxsx6hG6fMZdaPnsv9Zz4CrWd2Jtu+uhmn7HYqBKaOq4+/TUR345ARER5vyueTxNaEL1/vkKvQCyDCOxu143UDiLqCF5yPf2qWl0Rat1HzdQdvBWzfg5taulgdfe84yK7CKd2bjx1kXp/jKCPJwjnil8EoioruzuCGmfqwXykIIhSVFUSpc8ker0P0YQWtHf2TfS3WXf5JZ/TxgOoaqOlWzfTDe9+S02fvYr6//dDSs4spLySfB+j1yelKygtoLHzxtKCzAW0Ztcayj2Y61cUR3VTVefxCRGPhzybF9K+t84lz4TmSvW23Sv8xraruxV96bWMRK1ophcMqgeN0Uus1fXrmbZW9aNn4CLXxQugCiajq12dvL4vTyCZxQ8YzWUmhLTXo43pMKPLLpwQAk4IQH07I0EgVUMSzqFBQyDpfuDvG1F1yXh0KkrHMwU/IWH1VMQc24MLel6AmBjlkWOMgTGG15a9hn4dW+D9u8/DJV3ao22z9vj716tw+YcTkJpbhkk3TAKgLFg8Hg/W5q1Fl5Zd8Kez/4SnfnoKr/3yGrL2ZmHqkqlYX7AeLyx+AdNWT8P6gvUgIhQdLsKUJVPwXfZ38BChqHMSJrUfgb1XvQSUHwDm3ATMHgnsyRTa+vNy+Yhs8/WF6QcMGOCnrgEC8/vooc1HlJ2d7aceWrBgAcrKygLo2bZtmy+XkNpWfz1utxs5OTl+6iE16R2AgNxKVvdGzUdkJ2+QNueT9tqAwHw62vvI+82sfkft9QwfPhwDBw60LAqvp9UKIioiM5ip8XjPG28et9stnguKJx2i/SN3BNEN36qlbK/itfNSW+Xz47+Jjp0uR6mNC1CDyyorqyg5s4iGTfmGEsYtokvfmkk3f/wQpeWmUUpOCvWZ3MdX2+CW6bfQwsyFNHbeWN9uQ1U7jZ172nisTVPht0NwnyRK/UAp5zmhBdGXd1PFnk0mV6aA58pp9/5YfbdaoeoL3OgrkWlpXbFiBc2YMYOKi4u56brNVEZaGHkf8VQ9Iu6q2mvVRxXrx7QyrPPUPrw2oVYss6JDtK3oXKHQxLuXkKohiUjC76E8XEj0/RNEE1sreYyWvUge1yG/wjXJG5N9NQsKSguoorKK3vltLXWccC+1HzeZ+r58H81KWUo3f3wzpeSk+KKQKysr/YrjEJ1WB6ltqqqq/GosB+DUMaIVU4kmd1G8jJIfpYoDu7jXo1VfqDpmO8xU5H5ZMRB13tLSUj+mzmN26jF9/WL1f559QdtPD3VOFUZjiNokePnzza7b6LiV95J6nJdIzg6jNkphYsaMRca0gohKzur5q6iIAvdRAAkAVgDYDmArgH94j9/m/e4BkCQylhQEtRSHcogWPEg0oSXtm9yR/vPuBZS/b6tfltG8kjyfsdfj8dCuA7n08cpddM7EL6jTuM/oynfepjs+edhnDE7LTQuIRVChNRxry3IaBsG5Din1k19qR9UT46lq0b+oorQwYGWlZ2BmCeRE8sEYrVTNUFpaSjNmzKDly5f76bmthIJ+fB4DV9NT8Bi8Pl1FSkpKwO7E7LpE5g9ml2VlC1GFQChZRc2ykgZDs3bMYEqRirbR/hao6YAyAJ0ADPb+3xzAHwASAZwN4CwAK6UgqCfYv4Wq5t5BxRPiyDOlO3nWvENpO1f47Qj0gWQrdqyhoW/cQfEvjKJO496j/5uXSTkHjgUYh7XQGqhzD+bSNR9cQ2t2rfHLZaTfPVRXV1N+3jrK/+Ie2juxBVX+tx1V/PQspa34mbtqVVfnqkAQCcLSngslslmbBlr7slt5Celp49HJ66sVetpjonMYneONZ5VbSAuj6+UJGa16TIRGPYyyktr1LNL2DdeOQC+MzXYEETMWE1ExEW3w/l/u3Rl0IaLtRLQzUnRI1Dzcrfsgs8+TaPPX5WCdB4EtfwHnL3oUz3XpiW4tOqJbfDc///Kiw0X4KmMu3rn5H1j16FT887Ir8duOg7ji7e9x62eT0CCmDRhjKCgtQEFpge/hXl+wHrNTZ2PPkT3YX74fOw/vxOu/vg4AGHfNOBCdjlFYX7De9/f5le/hXy4Xnut8OYrPvBSx697H+WsfQWzaO3CXlwYY8VRaVWOnFqpBk2e00xe58d0fQQOjGq+gL5qj9es3MloaFWvRjqWlSS26k52dHXANdgyt+vn1hmV1PDO/f2171aitLeLDK7Sj3puOHTsGVKLTxkgY0aoiPj4+wFir/R1FC8xo5xaJJzAzPmsdDrTH1CqOvGdMjxopVckY6wFgNYD+RHTMe2wlgKeJyLIGpSxVWfvhV5Yvfw3w6ySgaC3Qqjtw2XhgwB1ATAMA8DFsAD4hUVJegQ9W7MLsdVloiHhcP7AJ9pXPROMGDJNHTgYATFkyBfcNvw/n9zgfHo8H32/6HoO6DEKDBsq4ry591ScQ9h3dh84tO6NbfDcUHS4CEYExpsy3f7NS0nPnT6AmrZDX/y6Utr4WA4eO8POkycjIQGVlJRo2bIihQ4f6vbz6koJm9yUrKwu9e/dGfHy8UFteSUJeO17Ql0j5RpV+1dNJX56T195OdTij0pdG46gV1njzuVwu4RKfaj9tH317s3NG12un5KTdtkbPEe9epqen+z2HgHGpyogbegHEAcgEcKvu+EqYqIYAPAIgA0BGt27dLLdSErUMHg/RH8uIPrpY8eB5L4k8m76hgkN5PvUNL1Bs7+ETNG5BFiU88zn1fH4O/WfhCio5djLADqD252U4NbMz+GFPJu2deR1NnhBLe6ckEKW8S1RxPECdYmW0MztGRLZ02foUEnbn4oGnYtCnwQ4lRYdRP7WOgh1duJE6xAq8Og5Gc4Wqv3cKFRWB3mL68/rfSQ8AG6gmbQQKDWgEYCmAJznnTAWB9iNtBHUXFadO0R/f/Y887yZR8YQ4mjC5AxWlfUweb80CXmrqtNw0Gj3zEXpg9hLqMX4xnf3CzzTlp+1U6qrwa6e1BWjH0Qe7mcHj8VDhlu+petaNStrrV3tR/lfjqeL40dPXIMAU9LpbfR+eLtpoDL2O3ExfbsZEiKz17UZ/RebQX7cePA8k3nhGAslobN61aBm8Gb129Pdm99bqmkSgZ/S881aR34gCryEGYA6Atw3OS0EgQUTel6S6ijzZX9O+twcoUcDvn0+0JTmgUpoaZazGCOw6cIyemJdJXcd/Tv1e+Imm/uwvEJxCQWkB/fOTm2nv9MuVHcz/+hGtn0EVx48JRxqrH7Oc/CLjEFmnqRZxr9TXIhYxiqpV0sxy55sZcY2ux2hO9VrNdgT670YeUEbjm81tRjfvfvHmt2LoVvOEct5IEETMRsAYuwjA7wA2Q3EVBYBnATQG8B6AdgCOAMgiomvMxpI2gnoETzWw9Vtg1avAoT+A9onApeOAs0eCGAuwHQBAYVkhnvl+MmJjbsHKHdU4o1ED3DeiBx6++Ey0bhaojyVSIpC7tuqKPUf2IKF1gm8s9Zya0I73P8tbDayYDBStA1omoOrCf6HhkHuBBo24l6TX2RslT9PrefW6cf14iYmJhrpzIz28CnVsK7uBfpzU1FQwxtCwYUOcffbZiIuLC9CXp6engzEmbCPh0ay1AcyfPx99+vTB8OHDA67FiGbeNeuvnUeH0T23Gkf7G2uhXo+q69fTpR8jlOSHPESNjcCJj9wR1ENUVxFlf306sd0Hw6lw3Qx6bF6gy6nWPvDH/mP0f/Myqcf4xZT4ws/02pLtVFp+ytR+oLVDaG0ThgntlEmJdv2i5C+a0ILorXOJNswNSM2tQnSVqW71zfzN1fMiEa8iK30RuvRqLX0tZn17u6tqs92L1m1WRDWkvwf6sYzuh5k7sBntvLY8WvXH9OVJnbI9aMdATauGnPxIQVCPUV1FlP0V0buDyTOhOe19bwgVrFUEglFxHCKinfuP0eNegdDnxbk05H930KaiHCIytx/oax+YVWPzdiDaueS00fud84iyvjQUCFpYMTCjQCaRKF4rZmaX4fDSTKhqIjOIqsx4RloRZityD9R2alQ4bx4jlZvVvTYax6qP0XwisFK1aa9dCgKJugWOQPBs/T7AhqDHjuJjdM+nP1GLZ2+jPi/Opf8t3UGHjztvQ/BUV1Ph+pnk+WC4VyAMIto4z3SHYJVWws5q1+y82RwiYxjRomd8ov3M5tO3NcpzJHL/9KtwXroIPbM30vtbXYc2Ols0DXiwNgMR7ycVUhBI1E1UVRJlzVdW3hNaEH14oWWtAY/HQ7/t2EqPfZ5B3cctpv4vLqE3lu6gI8fdjpDkVzXtUJ5Cz4cXKvS9PdBQZWTFsJ1SE1jl49FDVEWiV6nY6SdCq8h33l99W7Ndh76fkQuv0W+jH1u70jfbUQQrBPR/rYQhajrFhJMfKQgkAlBVqahg3hkkLBCIiLYXH6XH5moEwrKdIQsEfR1lIlLo2L6Y6MOLvAJhAFHmHKIq/lxO6oh5Y2v/6o/z6LBbg9lshcob34yx2hnfjhCyKrFpp9Yzz+uKd42iOwqz+fRj8s5raVP/T0lJIQDbicNTaySyOFRIryEJQ1RXAZu/AVa/BpTlAh0HKJHKZ10HmJRF3F58DO/+ugs/b9mP5k0a4oELe+KBi3qiZVO+548ZiE57GgWUYiQC/lgCrJwKFGcpkdQXPwUMujvAyygcXiPasXnRxkZtnaCD5wWkHne73VyPG7uR0lrvKTO6eV5SvLHNvIa0bVX6eZHNPK+lYKKRed5mVtHgROTzOnO73WjcuPEGIhqiby8FgUTdRHUVsPlrYNVrwOE8oNtw4K8/ATHm6bW27VMEwpKtikC4f0QPPHBRT7Q6w2GGTATsWqYIhH0bgFbdgEdWAWeYp5VwEuEUNLy5jNJhuFwuLFiwAKNGjQpwnTSikXfeyk1UBW8+/dgi42jb8tyBRdN/6PsbXavRdVvRpiI2NtbQfVQKAom6DVUgnCgDRjwh3G3rvqN479ccLNm6H81iG+DeET3w0EU90SausbP0EQE5vwC5K4FrJjs7tg3YzQ8UzLha33xeUjueL7/WF58XH6A9z4ulMILZjkAdy06BeauYC6udjQqtcFTp09NidzenjeOQOwIJiSCwY/8xvP9bDn7cXIwmDRtgzAXd8PAlZ6J98yY1TZpjEGUsdhiQUftgAsyAwBU3L+hNnyDODiPWJ58DxHYEVrSLqt30aibtjoUnOO0IZLU/ADRu3HgHEZ2tbyMFgYSEAHIOujBtRQ6+y9qLRg1icNewbnj00jPRqWXTmibNEURiR6A9BthjtHqGabTy57XTq2aMVC36cc1W+aJ0Brur0DJvO4JTD71wZIzJHYGERKjIP3Qc01bmIHnDXsQwhtuSuuKxy3qha+szapq0qIOTNggtg3W73Vy9u5EBVqSvvr+VSgYwV1XpVWCiAoQ3lv68HTuCmj5cFW5GNoKIFaaRkKgL6NG2GV4bNRArnr4Mo5K64uuMIlz2+kqMW7AJBaXHa5q8qIHKyPQGy1DGUovYxMbGcoWAfj4t41SZYnZ2NhITE/2Muvr26v9GBWgAcK9N28flciE7OxsZGRkBxXe0NJvRrp0/OzsbaWlp3AJH6rWpgk5bcIiI9IKD6zondwQSEiFg35GT+HjVbnyZXoRqD+GmQZ3xf5f3Rq92YonK6jLCtSMwc5m0WnUDpwWDHeOyXTrUsY12BHZcQbW0q/Trz2mTE2p3PlpXWgBo3LjxdiLyL6MHKQgkJBzBwWOnMH11LuauK0BFlQc3DOiMv13RG307NK9p0iQMIFJ9TAsr1ZC+rX7XIeICaje+gKf+Avw9qLR0S68hCYkI4JCrAp/8nofP0/Jx3F2NP/fviCeu6I1zOresadIkOAjG+A1Yu6qq7dLT01FVVeUrX2plo9DvEnh2Cp6XlHrcSFCp52UcgYREBHH4uBszU/LwWUo+yiuqcNXZ7fG3K/pgYEKrmiZNwgEY7Sb07q56iAgQox2BUdwEAJ+7qZlBGTA2FktBICERRhw9WYnZqfn4dE0ejp6sxEW92+Lxy3pheK82geknJGoV9ExbJA4hVLuJWQyFXg2kp8HtdqNx48ZSEEhI1BTKT1Xii3WF+GRNHkrKKzAwoRUev6wX/nR2B8TESIFQ2xGs8TlctACBQXhZWVk4//zzpY1AQqKmcaqyGgsy9+Dj1btRVHYSfdrHYeylvTByUGc0aiC9uWsznPSScgI8NZPcEUhIRBGqqj34cXMxPly5Gzv2l6NLq6Z45JIzccfQBDRp1KCmyZOoo6hxGwFjLAHAHAAdoRSvn05E7zDGXgdwIwA3gN0A7ieiI2ZjSUEgUVdARPhtx0FMW7kbmQWH0aZZLB64qCfGXNA9qBTYEhJmiAZB0AlAJyLawBhrDiATwM0AugL4jYiqGGOvAgARjTMbSwoCiboGIsL6vDJMW7kbq/4oQbPYBrh9aAIeuLAnEuJl+goJZ2AkCBpGigAiKgZQ7P2/nDG2HUAXIlqmabYWwKhI0SQhES1gjOH8M9vg/DPbYOu+o95YhALMTs3Hn/t3woMX98Tgbq1rmkyJOooasREwxnoAWA2gPxEd0xz/AcBXRDSX0+cRAI94v/YHsCUCpDqJtgAO1TQRNlDb6AUkzZFAbaMXqH00h5Pe7kTUTn8w4oKAMRYHYBWAyUSUrDn+HIAkALeSBVGMsQze9iaaUdtorm30ApLmSKC20QvUPpprgt6IqYYAgDHWCMBCAPN0QuA+ADcAuNJKCEhISEhIOIuICQKmhFF+CmA7Eb2pOX4tgHEALiWiE5GiR0JCQkJCQSR3BBcCuAfAZsZYlvfYswDeBdAYwHJvyP1aIhprMdb0cBEZRtQ2mmsbvYCkORKobfQCtY/miNNbKwPKJCQkJCScg4xpl5CQkKjnkIJAQkJCop4jqgUBY+xaxthOxlgOY2w85zxjjL3rPb+JMTa4JujU0GNF72gvnZsYY6mMsYE1QaeOJlOaNe2GMsaqGWM1GvAnQi9j7DLGWBZjbCtjbFWkaeTQY/VctGSM/cAYy/bSfH9N0KmhZyZj7CBjjBurE23vnZcmK5qj8d0zpVnTLvzvHhFF5QdAAyi5h84EEAsgG0Cirs11AH6GUpD5AgDropzeEQBae///c03SK0qzpt1vAH4CMCqa6QXQCsA2AN2839tH+z2G4jTxqvf/dgDKAMTWIM2XABgMYIvB+ah572zQHFXvngjNmucn7O9eNO8IhgHIIaJcInIDmA/gJl2bmwDMIQVrAbTy5jSqCVjSS0SpRHTY+3UtlDxLNQmRewwAf4MS/3EwksRxIELv3QCSiagQAIioNtBMAJp7XazjoAiCqsiSqSGGaLWXBiNE03sHwJrmKHz3RO4zEKF3L5oFQRcARZrve7zH7LaJFOzS8iCUVVVNwpJmxlgXALcA+CiCdBlB5B73BdCaMbaSMZbJGLs3YtTxIULz+wDOBrAPwGYA/yAiT2TICwrR9N4Fg2h49ywRyXcvopHFNsEr26T3dRVpEykI08IYuxzKw3hRWCmyhgjNbwMYR0TVUVBaUYTehgCGALgSQFMAaYyxtUT0R7iJM4AIzdcAyAJwBYBeUGJqfidNHq4oQzS9d7YQRe+eCN5GhN69aBYEewAkaL53hbJistsmUhCihTE2AMAnAP5MRKURos0IIjQnAZjvfRDbAriOMVZFRN9FhEJ/iD4Th4joOIDjjLHVAAYCqClBIELz/QCmkqIUzmGM5QHoB2B9ZEi0jWh674QRZe+eCCL37tW0wcTESNIQQC6AnjhtZDtH1+Z6+But1kc5vd0A5AAYUdP3V5RmXfvPULPGYpF7fDaAX71tz4CSpbZ/lNP8IYCJ3v87ANgLoG0NPxs9YGx4jZr3zgbNUfXuidCsaxfWdy9qdwSkFKp5AsBSKJbzmUS0lTE21nv+IyiW9Oug/MAnoKysopneFwG0ATDNK+WrqAazIgrSHDUQoZeItjPGlgDYBKUS3idEVGMpywXv8SQAnzHGNkNhruOIqMbSJjPGvgRwGYC2jLE9ACYAaARE33unQoDmqHr3ACGaI0eLV9pISEhISNRTRLPXkISEhIREBCAFgYSEhEQ9hxQEEhISEvUcUhBISEhI1HNIQSAhISFRzyEFgYSEhEQ9hxQEEhISEvUcUhBI1Bswxm5jjK3z5qTPYYxNsGh/FWPsc5tzNGWMrWKMNQiN2oBxRzDG/ssYi2WMrWaMRW0wqETtgxQEEvUCjLH7AIwD8BciGgBgEJSoWDMMhJISQmR8lfE/ACUNdnWQpHJBShrlCaSksv4VwB1Oji9RvyEFgUSdB2OsBYA3AdxORHsAgIhcRPQ6Y6yfd4W9lTH2C2OsrabrQABZRm0YY98wxt5kjK0A8Iy3z2gA32vmPtvbdxNj7N+MsZwgr+EbxpiaMfM77zwSEo5ACgKJ+oBboFSkytUeZIw1hlL04x9EdA6A5QD+pWkyEEp9AKM25wJwEdHlRPQyYywWwJlElO8dvyGAed6+A6BUKQs271F/Ly3wjjE0yHEkJAIgBYFEfcA5UPL963EzgDVEtNH7fRuA9gDAGGsEoAWUpGABbRhjTQDEA3hJM15bAEc0328FkK3r66dq8u4wtnA+N2naNAHQiIiOAoBX7eRmjDUXvwUSEsaQBieJ+oDjUIrU6JGI06tsQFnhb9Oc227S5hwouwxtScmTAJpovg+AvwDqD2CJlgAiukqA/nM0dKloDOCUQF8JCUvIHYFEfcBPAG5jjHUAFJUQY+xhKHn/E73HzgRwD4A53j4DoTBxozbnQkl17QMpNXEbeFfwAFAKpXQmGGODAIyBoPFZB7+5GGNtAJQQUWUQY0lIBEAKAok6DyJKBzARwFJvzv8sKCqgzwF09h6bD+ABOl25SvUYMmoTIAi8WIbTZRA/B5DEGEuH4k2Ur7dTCEI/1+VQhJuEhCOQ9QgkJBwEY+w8AE8S0T2MsTgicnmP/xtASyJ63oE5kgE8Q0Q7Qx1LQgKQOwIJCUfhNQyv8MYV/MvrcpoFpSThpFDH93omfSeFgISTkDsCCQkJiXoOuSOQkJCQqOeQgkBCQkKinkMKAgkJCYl6DikIJCQkJOo5pCCQkJCQqOeQgkBCQkKinkMKAgkJCYl6jv8Hh/wdcUvhY4oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_cmd(candidate_df)\n", "plt.plot(color_g_i, mag_g)\n", @@ -969,7 +1607,20 @@ "cell_type": "code", "execution_count": 90, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAC1CAYAAAAEEmivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlRElEQVR4nO3df7wcdX3v8ddbiW0TIVFzUBEwoFKKigiR0ou2x5pQsVavt1yqEvGa3iJUS22wtZQ+qNHjPV4pcJt6iz9aH7dtahXboEc5yknQ09bcAobfQdFSxIp4S+jDiIbaJPq5f+xsmCyzu7O7szszu+/n4zGPc3Z2fnx3vrPz/cznOzOriMDMzMzMquVxZRfAzMzMzB7LQZqZmZlZBTlIMzMzM6sgB2lmZmZmFeQgzczMzKyCHKSZmZmZVdAhZRdgGFauXBmrVq0quxhmZmZmXd18880PRcRU6/ixDNJWrVrFjh07yi6GmZmZWVeSvpE13t2dZmZmZhXkIM3MzMysghykmZmZmVWQgzQzMzOzCnKQZmZmZlZBDtLMzMzMKshBmpmZmVkFOUgzMzMzqyAHaWZmZmYV5CDNzGzC7du3j61bt7Jv376yi2JmKaUGaZLuk3SnpNskPeZ3nNSwSdI9ku6QdHIZ5TQzG2eLi4usW7eOxcXFsotiZilV+O3Ol0bEQ23eOxN4TjL8NHBV8tfMzAoyPT3N5s2bmZ6eLrsoZpZS9e7OVwN/EQ03ACskPb3sQpmZjZMlS5awdu1alixZUnZR3PVqllJ2kBbAgqSbJZ2X8f4zgG+mXt+fjDMzszHkrlezR5Xd3Xl6RDwg6XBgq6S7I+LvU+8rY57IWlAS5J0HcPTRRxdfUjMzGzp3vZo9qtRMWkQ8kPx9ELgGOLVlkvuBo1KvjwQeaLOsD0XE6ohYPTU1NYzimpnZkFWp69WsbKUFaZKWSTq0+T9wBrCzZbI54NzkLs/TgO9GxLdHXFQzMyuArzcz602ZmbSnAl+UdDtwE3BtRHxO0vmSzk+mmQfuBe4BPgz8ejlFNasfN4g2LP3uW77erH/+Pk+m0oK0iLg3Il6QDM+NiPck4z8QER9I/o+IeEtEPCsinh8Rj3mWmpllc4Now9LvvuXrzfrXzzZ3YFd/isi8Dr/WVq9eHTt2OJ6zybZv3z4WFxeZnp729T1WKO9bo9fPNt+6dSvr1q1j8+bNrF27dsgltEFIujkiVj9mvIM0MzOz8fPII4+wadMmLrzwQpYuXVp2cayDdkFa2c9JMzOzLtxtZf3Yvn07V155Jdu3by+7KNYnB2lmZhXn6wutH74GsP5yd3cmj8n4QUT8cLhFGpy7O81snPgaMLPx1nN3p6THSXq9pGslPQjcDXxb0l2SLpP0nGEW2MzK4+61avEDXs0mU6fuzi8AzwIuBp4WEUdFxOHAS4AbgPdKWjeCMprZiLl7zWyy+MSsmtp2d0paEhEdayvPNGVwd6fZYNy9ZjZZ/LiOcvXc3dkp+JL0xG7TmFl9uXvNJtEkZ5PqeJNBEfVV9Trv9+7OLxdaCjMzq72qN3jdTHI3fx1PzIqor6rXeafuzg3t5gEuiYgnD61UA3J3p5nZ6NW9y8zd/PVSRH1Vpc57/sUBST8ALgP2Z7z9WxGxotASFshBmpnZ6DQbutNPP53t27eX3uCZNVUlCOumXZB2SId5bgE+GRE3ZyzsvxdZODMzq6/FxUXOOeccNmzYwEUXXVTpxtAmy7Zt23j961/PRz/6Uc4888yyi9OzTtekvQn4lzbvPSbas8lT9+tPzKwY09PTbNiwgSuuuKKy1/aY1ZF/YN36VvfrT8ysOHXpVrLJUpf9sq8fWJf0Rkm3SNqTDDsknTu8Ylqd1PGWbbOqGZeMdB3vDrTxV/f9stPPQp0LvA24CDgCeAbwO8BvOlAzqP/Ob1YFVX8EgFmRxuWkZFQ6ZdJ+HXhNRHwhIr4bEbsj4vPALyfvDUTSUZK+IOkrye+B/mbGNNOSvivptmS4dND1mplViTPSDW68J0PrSYnrvbNOQdphEXFf68hk3GEFrHs/cFFE/BRwGvAWSSdkTPcPEXFSMryrgPWamVWGM9INzihOhtaTEtd7Z52CtH/v871cIuLbEXFL8v/3gK/Q6FI1M7MJU+WMorM9xWk9KalyvVdBpyDtpyTdkTHcCRxfZCEkrQJeCNyY8fbPSLpd0mclPbfI9ZqZWTVUOaPobM/wDKveew2sqxqIdwzSgF/KGF4JZHVL9iX5sfa/Bd4WEQ+3vH0L8MyIeAHwx8AnOyznvOTu0x27du0qqngTqao7q5lZGfrN9vhYWp5eA+uqBuKlPidN0hLgM8B1EXFFjunvA1ZHxEOdpvNz0gbj55+ZmQ3Ox9Ly9Pp8tLKfp9bzc9Ik/aqk3069/pakhyV9T9IFBRRIwJ8BX2kXoEl6WjIdkk5Nyvtvg67bOvM1Amb15exNdfhY+qhR75e9dqNWtbu9U3fn+cBHUq8fjIjDgCngdQWs+3TgDcDPpx6x8QpJ50s6P5nmLGCnpNuBTcBrYxx/IqFiqrqzmll3Ve226cW4BJo+lj6qKvtl3fatTkHa4yIinbX6BEBE/AD4iUFXHBFfjAhFxImpR2zMR8QHIuIDyTTvj4jnRsQLIuK0iPi/g67XzCZD3Q7GRRmH7E1VGnQrTlX2y7rtW52CtOXpFxHxPwAkPQ54yjALZWY2qLodjNMGCTDHIXtTlQbditO6X5Z1ElW3fatTkLYgaSZj/LuAhSGVx2wiTWrWZ5jqdjBOq3OAWYS6B5r+PndX1j5et32rU5D228CzJN0j6W+T4R7g2cDbR1M8s8kw6Y3yMNTtYJxW5wDTYNu2bZx99tls27at7KJUlvfxfA5p90ZE7AFeJ+lYoPkQ2S9HxD+PpGRmE8QHLEtrBphWT/v372ffvn3s37+/7KJUVtH7eNmP0BiWTpk0ACLi3oj4dDI4QDMbgjpnfaxY7iqrhkHq4ZBDDmHJkiUcckjbPIgVrJ/eiDp817oGaWZmNjru+m5vlI3qIPWwZs0arr76atasWVN8wWpi1AFQP70RdfiuOUgzM6sQd31n27dvH5dffjnnnHNO341qM3B45JFHugYQg9SDM+OjD4D62ebt6rhKGbZcQZqkF0t6U/L/lKRjhlssM7PJVMcGfhSN2uLiIldccQUbNmzou1FtBg6bNm3qGkAsWbKE6elpFhcXK9FY1023ILcKgVC771qlMmwR0XEA/gD4NPC15PURwPZu85U5nHLKKWFmVqS9e/fGwsJC7N27d6zWVYSFhYU4/PDDY2FhYWjr6LRN8q6/uYw9e/bk2r7p5e7duzfm5+djfn6+NvVSZUXtM4N+V7LmL+P7B+yIrBgsa+RBE8BtgIBbU+Pu6DZfmYODNDMr2igCkTLWlSXdSOVpsIps1PpZ1rAa2vQyFhYWYsWKFbFixYrS6mWcFLXPDPpdKfu71jRIkHZT8veW5O8yB2lm9dTLgbFu2ZxuhnHGPSxlBz3phmuQRmzQdQ+i6Ma330zauH2Pqqbf7dtrVnXYBgnS3g58ELgX+DXgH4Hf6DZfmYODNLNsvTRcVTnDLMq4fZ52Whutfj53p0xaL43ioOsexJ49e2J2djb27NlTaqA0jvvdOASeVauXvoO0xrysBS4D/hBYm2eeMgcHaWbZqphJq/J6qtYY5SlPa+OTDlaK0K5x66XLcRTbtahs4KCqtg8VoWoBTj+qVi+DBmnPBNYk/y8FDs0zX1mDgzSz+qjyAT9P2UZ5sO+nPFnzDFLmdvO2XmTfafnz8/OxYsWKmJ+f73n9/ZSzag1y3Xl7Fm+Q7s5fA74E/HPy+jnA9d3mK3NwkGZWDXmyOJ0O+GU3Bv1krsouT6d5mtdVzczMxNTUVK5sWPq99DVZnbpBu22TZpA2Nzc39Pqt2rVHZlkGvbvzCS13d97Zbb4yBwdpZv3r5W6+bg3f7OxsSIrZ2dm+yjE7O5sZTAxS9l6ma+oUbNYpCGjeobh8+fKYnZ3tmA1rN2/z7sZO03br5mxuq7m5uZ4yaoPciDA7O1tKxrbsEw2rh0GCtBuTv7cmfw/x3Z1m4ylvYJS34WsX3OTNUE1NTWUGE93K1a0h7jX71Qw2Z2Zm2pZ7lBm1fq8z63aHYqeAs1smLY/WbdRrt2dz/vn5+dzXunX7TKO8Nm4YyggCHXgWb5Ag7X3A7wF3JzcQXAO8p9t8eQbg5cBXgXuA3814X8Cm5P07gJPzLNdB2mD8BRwvvWTG5ufnDwRGnTJDg2aP8lzc3ktWrBk85C1Petl5Ap7du3fH+vXrY8uWLT1nj4Yhb4ay367k1vop6rNldZH28liL9H6aVQ+tQVy3/WEUgXXeGyr63cZZJzPD3hf72W51bFdGWeZBgjQl16V9Avib5H91my/Hch8P/DNwbNKdejtwQss0rwA+m5ThtGZWr9vgIG0wVb6Qexz02jC1zjto9qJ1Wc0gZWpq6qAMRbsLwQe9Liri0aBs9+7dsbCwEDMzMweCjm7Lb91+rd1wWevrVP48AU9WBicrUG2WbW5uLubm5noOPgbpfs1aRlamqlugk7Wsfo8JeYKR1v2s03ejdb9pl0lrfrZOmd50XY36VwSy9qd+A5+sawz7yUL3osjjUJWNssx9BWk0fttzZ6dp+h2AnwGuS72+GLi4ZZoPAq9Lvf4q8PRuy3aQNpiqnfFUoTxFliErqMhbhl6v0WrOl1X2ZgPePMC3HtDT86UblX6uE0sHgc1GZeXKlbF+/fqYmpqKubm5A0HH/Px8LF++PGZmZtpmedLbL92w7969O2ZnZ2PLli0HXZg+Nzd3YJmt10H1c3ND+jOl/za36bJly2LZsmUdA8fWzzRoY5C1jKwgrTluy5YtXQO9bhnTbt+LrEA/HRx2CrizsmHpgLo18J6bm4uZmZmDnovWKZPWLFtrINcpsOyWmWv9PO22T3N8el/s5+QtK9hrLr/IY0URqnAc71VdMml/BRzdbbpeB+As4E9Tr98AvL9lms8AL069vh5Y3W3ZDtLGSxXOwIosQ7+ZtIWFhQOBTRHPvMq6w65dY5RuYKempmJmZiZ3+dNn9c11Ll++/ECA1hoczs/Px7Jly2L58uWZDXmzQb700ktj48aNB22LZiN+xhlnHAjKDj/88JiZmTmwzJmZmYEf/5D+TK2ZyGZ25pprrjkQNDTnafcojGZwOUi95u1CSwfnreVpLWO3/b5dtrUpnfnqlq1tlre5/dInD81AZG5uLjZu3Hgg+5V+DtqyZctCUqxfvz5XMNluX8/6zK0BXVZGNSur2237tX4HO2U3sz5P86Qm67tYt2xXHYO4Ig0SpH0e+F4SIM01h27z5Vjuf80I0v64ZZprM4K0U9os7zxgB7Dj6KOPHtqGrLpx3NF7+Ux5p+11O6UDhbLu4ss6Ox7kczQbzl27dh10DVozqMkKZLIyAK3vZTUW6W3XqTuwtQuq2cgvX778oKxUulFOX8y/Z8+eWL9+fTzlKU+J9evXH/hsu3fv7lh//WzHrCA23Wi3bqOsdbTL5nSru173vazy5dkO3QK/1gCl9XrGdLdjt2xtWvqEpNm12dqFmc60zc/Px5YtW+Lcc8+Nww477DH7bS/BR6fP3PzOzM3NZT4od8+ePQeytVmZtHavm5+t3Q0RrdLrzAp0+z0+Dfo9GETRJ8J1awcHCdJ+LmvoNl+O5bq7c0CdDvplZp2yjOpLk/fz97OdugUwRWo9U04HLd3O+jtt6/SZfvNznHvuuQeCnXSAke5ybF1mVjdau66XrHKmG/T08lszCc3pWjN3zWzaxo0bY+PGjY8JXJtBQTNbl3d/yNtI5llWc/tmdSs2dQqYspbb7w98F3lcaLes9HZvBlLNbux215C1k3VC0u56tHR52t0tmjfL2G2erP0kPV23u1U7bbt+bqDI+90cRLfjSRUDq6q2g530HaQNa0ge5XEvcEzqxoHntkzziy03DtyUZ9mTEqT12kC3U8SXo9Mysg64RZUtz5l/L9PlKUtrANNrufOUMZ1hWbFiRSxdujSWLl36mHVmfa522bbdu3fHzMxMbNmy5UDgt2LFirj00ktj2bJlMTc3d9ByZ2dnD2Qz0pmDdg1Ku0ArTznbBUl59quVK1dmZmjavZe1nNYutqxGNO/+0hp4pW+K6Gd5reXslM0d5v6fp+ytnz1v912e9XQKcNoFLJ10a8hbTySyytSq040a3cpXVGBRdJDWqVxVzVhVtVydDJJJ+x7wcMvwTRqP4ji22/xdlv0K4GvJXZ6XJOPOB85P/hfwv5P378xzPVpMUJBW1I5YxMGh0zLaZUOKKNswM2ft5Ak6u22P1vea3XQrV648KFBrZtI2btx40HVanT5na8PSXN/69esPChbSmYl2Qdf69esDOKhLsdu2zLtftmu88s6f9Vmzlt+ajWydNh0Qt1tengChnawbEwbdH9s1xGV8HzopsrEsuuHNcwJYxMOU827roj7fqLfTOBvlZx8kSNsIvBk4FDgsufbrUuBXgMVu85cxTEqQ1kkvDWW3NHueZeU5u+7nrLrXTFqn5fR7PU/WugYpV9Z7zQvesy56blf+do9haJ0unUlLT59uPNo1JIM8v6xfRTdqCwsLB+64zOoqbM3+5K2zXsrauqxB98VeuvXalWGcG94qBTzjvq3H2ahOZiIGC9Ie82wy4Ibk7+3d5i9jcJBW7Bl1UenzshuQ9GfN0zB3mr9o/TxBvt3zvfoJcqp09j2MsuR9Hlav626dPs/8RexHk9Tw9/NZR9m4DqrXEzobnbpk0v4ROJvGM9Mel/zfDNJu6zZ/GcOwg7RBK24UFZ83+9Uu65Ker+hrHLppPcAO46w43cU1yF1f/a6/3Xt5rjVqlxlrN+2gWZt+PlOdGsm0QcudZ343vL3pN1tZl23c6fOV+T2q0zYsQtmfd5Ag7Vjg08BDwK7k/2cDP5F+PEaVhmEHaaM4kI9CVjmyxhWRFeklY9W6vqwMWBEBW97sSrty9SrPwbhd0Jina7LdOvt9cG7ersR+r9WqojqcgE2acd+mVc2kVaWdGpWyP2/l7u4c5lDXTNqov5BZ6yu6DN2Cj16vByryi9RrgDFolqToTFrewLLfB+eO8mJnM+tulN+3Sftul/15B8mkHZc8RHZn8vpE4Pe7zVfmUNdr0sqO5PPo95qddsFHr92ORX6Reg3GRnW9URX0s53LPsiZjbtxOL74OJFtkCDt74BTgVtT44bye55FDXUN0uqw8xZ1kGgN3sp6in+nsg3SvVuFzzFq49CAmJUl73XEdT+++DiRrV2QpsZ77Un6UkS8SNKtEfHCZNxtEXFSxxlLtHr16tixY0fZxRhL+/btY3FxkenpaZYsWdL3crZu3cq6devYvHkza9euLbCEVpai9g2zSTQpx0QfJ7JJujkiVj9mfI4g7bPAW4FPRMTJks4CfjUizhxOUQfnIK36HnnkETZt2sSFF17I0qVLyy6OmVmpHLxMtnZB2uNyzPsWGr+hebykbwFvAy4otng2abZv386VV17J9u3byy6KmZVk3759bN26lX379pVdlNItWbKEtWvXOkCzg3QN0iLi3ohYA0wBx0fEiyPivqGXzMba9PQ0mzdvZnp6uuyi2ADcyNogFhcXWbduHYuLi2UXxayS2nZ3StrQacaIuGIoJSqAuzvNRmNSrqOx4XAXn1lDP92dhybDahrdm89IhvOBE4ZRSDOrF2dEbRDu4mtwRroY47gd2wZpEbExIjYCK4GTI+KiiLgIOAU4clQFNLPqciNrNrg6d/tWKTCq83ZsJ8+NA0cDe1Ov9wKrhlIaMzMrTZUa3ElS54x0lQKjOm/HdvIEaX8J3CTpnZL+ALgR+PPhFsuK4AOumfWiSg3uJKlzRrpKgVGdt2M7ee7ufA/wJuA7wG7gTRExO+RyWQF8wDWzXlSpwbV6KDMwykpEjFtyom2QJumJzf8j4paI+KNkuDVrGqseH3DNrBfjmImw8ZWViBi35ESnTNqnJF0u6WclLWuOlHSspF+VdB3w8n5WKukySXdLukPSNZJWtJnuPkl3SrpNkp+p0SMfcM0M6ptdqGu5bTSyEhF5khN12q863d35MuB64M3AXZIelvRvwGbgacAbI+Jv+lzvVuB5EXEi8DXg4g7TvjQiTsp6foiZmXVX1+xCXctdlDoFE2XISkTkSU7Uab/q+tudQy+A9BrgrIg4J+O9+4DVEfFQL8v0w2zNzB5V14fG1rXcRfHDooejivtV3z+wPmySPg18PCI2Z7z3dRo3LATwwYj4UJ5lOkgzM7O6q2IwMQyT8jk7GeQH1vtd4TZJOzOGV6emuQTYD/xVm8WcHhEnA2cCb5H0sx3Wd56kHZJ27Nq1q9DPYmZmNmyt3ZuTcl3xoN2P49wtPLQgLSLWRMTzMoZPAUh6I/BK4Jxok86LiAeSvw8C1wCndljfhyJidUSsnpqaKv4DmZmZDVGdrpXKI2/wNOiTCMZtu6V1DdIknSbp0NTrQyX99CArlfRy4B3AqyLikTbTLGuuN7m79Axg5yDrtd6M89mJmVnVZAUrdT4O5w2eBs0YjvPjpvJk0q4Cvp96vScZN4j30/jx9q3J4zU+ACDpCEnzyTRPBb4o6XbgJuDaiPjcgOu1Hgzz7KTOBx4zs2HIClbqnCUaVfA0zt3CXW8ckHRbRJzUMu6O5PEZleQbB4oxzIs5fdeSWf34Au/R8zafDIPcOHCvpAslLUmG3wTuLb6IVjXDPDsZ5/S02biqc1anrsY5S2Td5cmkHQ5sAn6exqMwrgfellzMX0nOpJmZFc9ZHbPh6DuTFhEPRsRrI+LwiHhqRLy+ygGamZkNx7hmdXq5RtbX047eJG/zPHd3Hifpekk7k9cnSvr94RfNzMxs+HrpxnWX7+hN8jbP0935d8Bv03ji/wuTcTsj4nkjKF9f3N1pZmZ59dKN6y7f0St6m1exDge5cWBpRNzUMm5/McUyMzMrVy/duOPa5VtlRW/zOmXm8gRpD0l6Fo2bBpB0FvDtoZbKzMzMbAjq9HSBPEHaW4APAsdL+hbwNuCCYRbKzKxMk3yhstm4q1M2NM/dnfdGxBpgCjg+Il4cEfcNvWRmZiWpU3eI1YeDf+vVIe3ekLShzXgAIuKKIZXJzKxUdeoOsfpoBv/+pRXLq1Mm7dBkWE2je/MZyXA+cMLwi2ZmVo46dYdYfYwy+B80a+esXzW0DdIiYmNEbARWAidHxEURcRFwCnDkqApoZlZ3bvAMRhv8D9pl7y7/ashz48DRwN7U673AqqGUxsxsDLnBs1EbNGvnLv9qyPMw20uAs4FraDyG4zXAxyNidvjF648fZmtmVVLFh2eaWXUM8tud7wHeBHwH2A28qcoBmpkdzF1t5fM1blYWf//bq8O2ydPdSUTcEhF/lAy3DrtQZlYcd7WZVdswgwV//9urw7bJFaSZWX2N07UldTjzTatbeUfF2+VgwwwWxun7X7Q6bJtSgjRJ75T0LUm3JcMr2kz3cklflXSPpN8ddTnNxsE4dbXV4cw3rW7lHRVvl4MNM1gYp+9/0eqwbbreODCUlUrvBL4fEX/YYZrHA18D1gL3A18CXhcRX+62fN84YDae6nYBft3KW5Run3tSt4tZO33fOFCiU4F7kp+l2gt8DHh1yWUysxLV4cw3rW7lLUq3TNmkbhertip2w5cZpL1V0h2SPiLpSRnvPwP4Zur1/ck4MzOrsDpc62PWqord8EML0iRtk7QzY3g1cBXwLOAk4NvA5VmLyBjXtm9W0nmSdkjasWvXriI+gpmZ9cGZsuqpYpaoaqp4cjG0IC0i1kTE8zKGT0XEv0bEDyPiR8CHaXRttrofOCr1+kjggQ7r+1BErI6I1VNTU8V+GDMzsxqrYpaoaqp4clHW3Z1PT718DbAzY7IvAc+RdIykJwCvBeZGUT4zM7NxUsUskXVX1jVp75N0p6Q7gJcCvwUg6QhJ8wARsR94K3Ad8BXg6oi4q6TymplZH9zNVg1VzBJZd4eUsdKIeEOb8Q8Ar0i9ngfmR1UuMzMrVrObbfPmzaxdu7bs4pjVSpUfwWFmZjXnbjaz/pWSSTMzs8nQ7GYzs945k2ZmZmZWQQ7SzMzMzCrIQZqZmZlZBTlIMzMzM6sgB2lmZmZmFeQgzczMzKyCHKSZmZmZVZCDNDMzM7MKcpBmZmZmVkGKiLLLUDhJu4Bv5Jx8JfDQEItjg3MdVZvrp/pcR9Xm+qm2UdTPMyNiqnXkWAZpvZC0IyJWl10Oa891VG2un+pzHVWb66fayqwfd3eamZmZVZCDNDMzM7MKcpAGHyq7ANaV66jaXD/V5zqqNtdPtZVWPxN/TZqZmZlZFTmTZmZmZlZBExukSfq4pNuS4T5Jt6Xeu1jSPZK+KukXSizmRJP0G0kd3CXpfanxrp8KkPROSd9KfY9ekXrPdVQRkt4uKSStTI1z/VSApHdLuiP5/ixIOiL1nuuoZJIuk3R3UkfXSFqRem8k9ePuTkDS5cB3I+Jdkk4A/ho4FTgC2AYcFxE/LLOMk0bSS4FLgF+MiP+QdHhEPOj6qQ5J7wS+HxF/2DLedVQRko4C/hQ4HjglIh5y/VSHpMMi4uHk/wuBEyLifNdRNUg6A/h8ROyX9D8BIuIdo6yfic2kNUkScDaNDQ7wauBjEfEfEfF14B4aFWGjdQHw3oj4D4CIeDAZ7/qpPtdRdVwJ/A6QPht3/VREM0BLLOPRenIdVUBELETE/uTlDcCRyf8jq5+JD9KAlwD/GhH/lLx+BvDN1Pv3J+NstI4DXiLpRkl/J+lFyXjXT7W8NekK+IikJyXjXEcVIOlVwLci4vaWt1w/FSLpPZK+CZwDXJqMdh1Vz3rgs8n/I6ufQ4ax0KqQtA14WsZbl0TEp5L/X8ejWTQAZUzvPuEh6FQ/NPbNJwGnAS8CrpZ0LK6fkepSR1cB76ax/d8NXE7jQOY6GpEu9fN7wBlZs2WMc/0MSbd2KCIuAS6RdDHwVuAPcB2NTJ44QdIlwH7gr5qzZUw/lPoZ6yAtItZ0el/SIcB/AU5Jjb4fOCr1+kjggeJLZ53qR9IFwJZoXDR5k6Qf0fj9NNfPCHX7DjVJ+jDwmeSl62hE2tWPpOcDxwC3N67o4EjgFkmn4voZqbzfIeCjwLU0gjTX0YjkiBPeCLwSeFk8ehH/yOpn0rs71wB3R8T9qXFzwGsl/ZikY4DnADeVUrrJ9kng5wEkHQc8gcYP3Lp+KkLS01MvXwPsTP53HZUsIu6MiMMjYlVErKLRqJwcEf8P109lSHpO6uWrgLuT/11HFSDp5cA7gFdFxCOpt0ZWP2OdScvhtRzc1UlE3CXpauDLNNKbb/EdNaX4CPARSTuBvcAbk7MY1091vE/SSTTS/PcBbwZ/h6rO9VMp75X0k8CPgG8A54PrqELeD/wYsDXJSN8QEeePsn78CA4zMzOzCpr07k4zMzOzSnKQZmZmZlZBDtLMzMzMKshBmpmZmVkFOUgzMzMzqyAHaWZWe5L+l6SfzRg/LekzWfOUQdIGSXdLulPS7ZKukLQkee++ZPydkr4saUbSj6Xm/Zyk3a2fR9LHWp63ZWZjwkGamVWOGnIdnyQ9GTgtIv5+yGV6/IDzn0/jZ5pOi4jn0/i5sweBn0hN9tLkvVOBY4EPpd67DHhDxqKvovEj6mY2ZhykmVklSFol6SuS/gS4BThK0lWSdki6S9LGNrOeBXwutZyXJ9mqL9L42bfm+GXJD8F/SdKtkl6djF8q6erkh+I/LulGSauT974v6V2SbgR+RtI6STdJuk3SB5uBm6QzJP2jpFskfULSEzPKeQlwQUTsBoiIvRHx3oh4uHXCiPg+jQeb/uckCCUirge+l7HcfwDWJD9zZ2ZjxEGamVXJTwJ/EREvjIhv0PiR49XAicDPSToxY57TgZsBJP048GHgl4CXcPAPJ18CfD4iXgS8FLhM0jLg14HvRMSJNH4oPv1bvsuAnRHx08C/Ab8CnB4RJwE/BM6RtBL4fWBNRJwM7AA2pAso6VDgiRHx9bwbIgnevk7jJ2c6Tfcj4B7gBXmXbWb14CDNzKrkGxFxQ+r12ZJuAW4FnguckDHP04Fdyf/HA1+PiH9KfkZsc2q6M4DflXQbsAj8OHA08GLgYwARsRO4IzXPD4G/Tf5/GY0A7kvJMl5Go0vytKRc25PxbwSe2VJG0fj5rMYL6ReSbNx9kv5Th+2hDu+lPQgckXNaM6sJp8fNrEr2NP9Jfrj47cCLIuI7kv4PjcCq1b+3jG/3W3cCfjkivnrQyORH+dr4Qeo3+QT8eURc3DL/LwFbI+J17RYSEQ9L2iPpmIj4ekRcB1yX3ATwhMzCNrJvq4CvdShf04/T2A5mNkacSTOzqjqMRtD2XUlPBc5sM91XgGcn/98NHCPpWcnrdOB0HfAbzaBM0guT8V8Ezk7GnQA8v816rgfOknR4Mu2TJT0TuAE4XdKzk/FLJR2XMf8scJWkFcl0IjvoJLmm7U+AT0bEd9qUJ+044K4c05lZjThIM7NKiojbaXRz3gV8BNjeZtJrgelknh8A5wHXJjcOfCM13buBJcAdknYmr6ERDE1JugN4B43uzu9mlOfLNK49W0im3Qo8PSJ2Af8N+Otk/A00ul1bXQVsA25MptuefL5bU9N8ISnbTcC/AG9uviHpH4BPAC+TdL+kX0jGPxX494j4dpvtY2Y1pcZlG2Zm9ZUEZK9s3jnZ47yPB5ZExA+SDNz1wHERsbfgYg6FpN8CHo6IPyu7LGZWLF+TZmbj4CIaNwHs7mPepTQyWEtoXHd2QV0CtMRu4C/LLoSZFc+ZNDMzM7MK8jVpZmZmZhXkIM3MzMysghykmZmZmVWQgzQzMzOzCnKQZmZmZlZBDtLMzMzMKuj/A+XQi1hb0X73AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
        " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10,2.5))\n", "\n", @@ -1019,7 +1670,18 @@ "cell_type": "code", "execution_count": 92, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "3.6441001892089844" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from os.path import getsize\n", "\n", diff --git a/_sources/07_plot.ipynb b/_sources/07_plot.ipynb index d405af8..72785d3 100644 --- a/_sources/07_plot.ipynb +++ b/_sources/07_plot.ipynb @@ -1,5 +1,40 @@ { "cells": [ + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "---\n", + "title: \"Visualization\"\n", + "teaching: 3000\n", + "exercises: 0\n", + "questions:\n", + "\n", + "- \"How do we make a compelling visualization that tells a story?\"\n", + "\n", + "objectives:\n", + "\n", + "- \"Design a figure that tells a compelling story.\"\n", + "\n", + "- \"Use Matplotlib features to customize the appearance of figures.\"\n", + "\n", + "- \"Generate a figure with multiple subplots.\"\n", + "\n", + "keypoints:\n", + "\n", + "- \"The most effective figures focus on telling a single story clearly.\"\n", + "\n", + "- \"Consider using annotations to guide the reader's attention to the most important elements of a figure.\"\n", + "\n", + "- \"The default Matplotlib style generates good quality figures, but there are several ways you can override the defaults.\"\n", + "\n", + "- \"If you find yourself making the same customizations on several projects, you might want to create your own style sheet.\"\n", + "\n", + "---\n", + "\n", + "{% include links.md %}\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -91,7 +126,36 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# Some topics that might come up in this discussion:\n", + "\n", + "# 1. The primary result is that the multiple stages of selection \n", + "# make it possible to separate likely candidates from the \n", + "# background more effectively than in previous work, which makes \n", + "# it possible to see the structure of GD-1 in \"unprecedented detail\".\n", + "\n", + "# 2. The figure documents the selection process as a sequence of \n", + "# steps. Reading right-to-left, top-to-bottom, we see selection \n", + "# based on proper motion, the results of the first selection, \n", + "# selection based on color and magnitude, and the results of the \n", + "# second selection. So this figure documents the methodology and \n", + "# presents the primary result.\n", + "\n", + "# 3. It's mostly black and white, with minimal use of color, so \n", + "# it will work well in print. The annotations in the bottom \n", + "# left panel guide the reader to the most important results. \n", + "# It contains enough technical detail for a professional audience, \n", + "# but most of it is also comprehensible to a more general audience. \n", + "# The two left panels have the same dimensions and their axes are \n", + "# aligned.\n", + "\n", + "# 4. Since the panels represent a sequence, it might be better to \n", + "# arrange them left-to-right. The placement and size of the axis \n", + "# labels could be tweaked. The entire figure could be a little \n", + "# bigger to match the width and proportion of the caption. \n", + "# The top left panel has unnused white space (but that leaves \n", + "# space for the annotations in the bottom left)." ] }, { @@ -173,7 +237,18 @@ "cell_type": "code", "execution_count": 34, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAEXCAYAAAC9EJV/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFXklEQVR4nO3dd3wU1f7/8feGhAWS0CEkEAhNigQBC2ADFIx6r6JcFRuB76WIgiiI2C8oIl+92C7XFsUAem0IdlQsBKQpEJqCdKRfBDEBvhLAnN8f/rJmk93NttmW1/PxyAN26pmZMzPnM+fMGZsxxggAAAAAYJm4cCcAAAAAAGIdgRcAAAAAWIzACwAAAAAsRuAFAAAAABYj8AIAAAAAixF4AQAAAIDFCLwAAAAAwGIEXgAAAABgMQIvAAAAALAYgRcAwDITJkxQp06dwp2MoLDZbHr//ffDnYxKIy8vTzabTb/++qul6+nZs6fuvPNOS9cBABKBFwB4bdCgQbLZbLLZbEpISFCLFi00duxYHTt2LNxJiwiuApOxY8fqq6++Ck+CIlCkFfIjLT1WchfIzZkzRxMnTgxPogBUKgReAOCDSy+9VPv27dO2bdv06KOP6vnnn9fYsWNdTnvy5MkQpy6y1i9JSUlJqlevXsjXa7PZtGPHjpCvNxYZY3Tq1KlwJ8MydevWVXJycriTAaASIPACAB/Y7XY1atRI6enpuvHGG3XTTTc5anlKmtW9+uqratGihex2u4wx2rlzp/r27aukpCTVrFlT1113nf773/86llky30svvaT09HTVqFFD1157bbkn87m5uWrXrp2qVaumtm3b6vnnn3eM27Fjh2w2m9555x317NlT1apV0+uvv+5yG2w2m1566SX99a9/VY0aNdSuXTstXbpUW7ZsUc+ePZWYmKju3btr69atTvO98MILatmypapWrao2bdrotddec4zLyMiQJF199dWy2WyO32WbGhYXF+uRRx5RkyZNZLfb1alTJ3322WfltmPOnDnq1auXatSooTPOOENLly719hD5JSMjQxMnTtSNN96opKQkpaWlaerUqeWmO3jwoK6++mrVqFFDrVu31ocffug0fsGCBTrnnHNkt9uVmpqqe++91xG0DBo0SAsWLNCzzz7rqDktCQ49zSf9UTN1++23684771SdOnWUkpKinJwcHTt2TP/zP/+j5ORktWzZUp9++qlTetavX6/LL79cSUlJSklJ0YABA3Tw4EGP6SmpGfr888911llnyW6367XXXlNcXJxWrFjhtPypU6eqWbNmMsa43K/PP/+8WrdurWrVqiklJUXXXHONY5wxRk888YRatGih6tWr64wzztC7777r8TgtWbJEF154oapXr6709HSNGjXKqca5qKhI48aNU3p6uux2u1q3bq1p06Zpx44d6tWrlySpTp06stlsGjRokGPflq71O3z4sLKzs1WnTh3VqFFDl112mTZv3uwYP336dNWuXVuff/652rVrp6SkJMcDGQDwyAAAvDJw4EDTt29fp2G33367qVevnjHGmPHjx5vExESTlZVl8vPzzZo1a0xxcbHp3LmzOf/8882KFSvMsmXLTJcuXUyPHj0cyyiZ76KLLjKrVq0yCxYsMK1atTI33nijY5qcnByTmppqZs+ebbZt22Zmz55t6tata6ZPn26MMWb79u1GksnIyHBMs2fPHpfbIck0btzYvP3222bjxo3mqquuMhkZGeaiiy4yn332mVm/fr3p1q2bufTSSx3zzJkzxyQkJJjnnnvObNy40Tz55JOmSpUq5uuvvzbGGHPgwAEjyeTm5pp9+/aZAwcOOLbtjDPOcCznqaeeMjVr1jRvvvmm+fHHH824ceNMQkKC2bRpk9N2tG3b1nz88cdm48aN5pprrjHNmjUzJ0+e9PpYSTLbt2/3evpmzZqZ5ORkM3nyZLNx40bzr3/9y1SpUsXMmzfPaZlNmjQxb7zxhtm8ebMZNWqUSUpKMocOHTLGGLN7925To0YNc9ttt5kNGzaY9957z9SvX9+MHz/eGGPMr7/+arp3726GDh1q9u3bZ/bt22dOnTpV4XzGGNOjRw+TnJxsJk6caDZt2mQmTpxo4uLizGWXXWZycnLMpk2bzK233mrq1atnjh07ZowxZu/evaZ+/frmvvvuMxs2bDD5+fmmT58+plevXh7TM3/+fCPJdOzY0cybN89s2bLFHDx40PTp08fcdtttTvutc+fO5h//+IfLfbp8+XJTpUoV88Ybb5gdO3aY/Px88+yzzzrG33///aZt27bms88+M1u3bjW5ubnGbrebvLw8Y4xxpOPw4cPGGGPWrl1rkpKSzNNPP202bdpkFi9ebDp37mwGDRrkWOZ1111n0tPTzZw5c8zWrVvNl19+ad566y1z6tQpM3v2bCPJbNy40ezbt8/8+uuvjn17xx13OJZx5ZVXmnbt2pmFCxea1atXm6ysLNOqVStz4sQJY4wxubm5JiEhwfTu3dssX77crFy50rRr187pfAUAVwi8AMBLZQOvb7/91tSrV89cd911xpg/goyEhARH0GGMMfPmzTNVqlQxO3fudAz74YcfjCTz3XffOearUqWK2bVrl2OaTz/91MTFxZl9+/YZY4xJT083b7zxhlN6Jk6caLp3726M+TNgeeaZZyrcDknmwQcfdPxeunSpkWSmTZvmGPbmm2+aatWqOX6fe+65ZujQoU7Lufbaa83ll1/utNz33nvPaZqygVdaWpqZNGmS0zRnn322o0Bfsh2vvPKKY3zJ/tqwYUOF21Y6Lb4GXqUDTWOM6d+/v7nsssuclll6vx09etTYbDbz6aefGmP+CCTatGljiouLHdM899xzJikpyfz+++/GmPKFfF/mO//88x3jT506ZRITE82AAQMcw/bt22ckmaVLlxpjjHnooYfMJZdc4rSuXbt2OYIPd+kpCXjef/99p+Fvv/22qVOnjjl+/LgxxpjVq1cbm83mdj/Pnj3b1KxZ0xQWFpYbd/ToUVOtWjWzZMkSp+GDBw82N9xwg1M6SgKvAQMGmGHDhjlN/80335i4uDjz22+/mY0bNxpJ5osvvnCZnrLLK1F6H2zatMlIMosXL3aMP3jwoKlevbp55513jDF/BF6SzJYtWxzTPPfccyYlJcXlegGgBE0NAcAHH3/8sZKSklStWjV1795dF154oVOTtGbNmqlBgwaO3xs2bFB6errS09Mdw9q3b6/atWtrw4YNjmFNmzZVkyZNHL+7d++u4uJibdy4UT///LN27dqlwYMHKykpyfH36KOPlmsOeNZZZ3m1HR07dnT8PyUlRZKUmZnpNOz48eMqLCx0bMd5553ntIzzzjvPaRsqUlhYqL1793q1nNLpS01NlSQdOHDA7bIvu+wyp30jSaeffnq5YZ5079693G9P6UpMTFRycrIjXRs2bFD37t1ls9mctu3o0aPavXu32/V6O1/pdVepUkX16tUrd8ykP/fTypUrNX/+fKd90LZtW0kql29cKZuXrrrqKsXHx+u9996TJL366qvq1auXo1lpWX369FGzZs3UokULDRgwQP/5z3/0f//3f5L+aAJ5/Phx9enTxyl9M2fOdJu2lStXavr06U7TZ2Vlqbi4WNu3b9fq1atVpUoV9ejRo8Jtc2fDhg2Kj49X165dHcPq1aunNm3aOOWFGjVqqGXLlo7fqampHvMnAEhSfLgTAADRpFevXnrhhReUkJCgtLQ0JSQkOI1PTEx0+m2McSpQVzS8RMk4m82m4uJiSdLLL7/sVCCU/iiAe1q/O6XTXbIuV8NK1l16mLfb4I43y6koLWW98sor+u233xy/W7durblz56px48Y+p89TWsse79LHx9V2mP//7pOn/eTtfK7W7Wk/FRcX64orrtDjjz9ebp0lwawnZfNS1apVNWDAAOXm5qpfv35644039Mwzz7idPzk5Wfn5+crLy9O8efP0j3/8QxMmTNDy5csdafzkk0/KHSO73e5yecXFxbrllls0atSocuOaNm2qLVu2VLhNFTFu3lUre4xcHQt38wJACQIvAPBBYmKiWrVq5fX07du3186dO7Vr1y5Hrdf69etVUFCgdu3aOabbuXOn9u7dq7S0NEnS0qVLFRcXp9NOO00pKSlq3Lixtm3bpptuuim4G+Sldu3aadGiRcrOznYMW7JkidM2JCQk6Pfff3e7jJo1ayotLU2LFi3ShRde6LScc845J6D0uQqwmjVr5rY2xpVly5aV+11SQ+SN9u3ba/bs2U6F9CVLlig5OdmRvqpVq5bbR97M548uXbpo9uzZysjIUHy869u9q/R4MmTIEHXo0EHPP/+8Tp48qX79+nmcPj4+Xr1791bv3r01fvx41a5dW19//bX69Okju92unTt3el1D1aVLF/3www9uz7/MzEwVFxdrwYIF6t27d7nxVatWlSSP29u+fXudOnVK3377rc4991xJ0qFDh7Rp0yanvA4A/qCpIQBYqHfv3urYsaNuuukm5efn67vvvlN2drZ69Ojh1JSrWrVqGjhwoNasWaNvvvlGo0aN0nXXXadGjRpJ+qN3wMmTJ+vZZ5/Vpk2btG7dOuXm5uqpp54KyXbcfffdmj59ul588UVt3rxZTz31lObMmePUlX5GRoa++uor7d+/X4cPH3a7nMcff1xvv/22Nm7cqHvvvVerV6/WHXfcEZLt8GTx4sV64okntGnTJj333HOaNWuWT+m67bbbtGvXLt1+++368ccf9cEHH2j8+PEaM2aM4uL+uN1mZGTo22+/1Y4dO3Tw4EEVFxd7NZ8/RowYoV9++UU33HCDvvvuO23btk3z5s3T3//+d0fw4So9nrRr107dunXTPffcoxtuuEHVq1d3O+3HH3+sf/3rX1q9erV++uknzZw5U8XFxWrTpo2Sk5M1duxYjR49WjNmzNDWrVu1atUqPffcc5oxY4bL5d1zzz1aunSpRowYodWrV2vz5s368MMPdfvttzu2ZeDAgfr73/+u999/X9u3b1deXp7eeecdSX8E4jabTR9//LF+/vlnHT16tNw6Wrdurb59+2ro0KFatGiR1qxZo5tvvlmNGzdW3759vdrvAOAOgRcAWKjko8J16tTRhRdeqN69e6tFixZ6++23naZr1aqV+vXrp8svv1yXXHKJo1ahxJAhQ/TKK69o+vTpyszMVI8ePTR9+nQ1b948JNtx1VVX6dlnn9U///lPnX766XrppZeUm5urnj17OqZ58skn9cUXXyg9PV2dO3d2uZxRo0bprrvu0l133aXMzEx99tln+vDDD9W6deuQbIcnd911l1auXKnOnTtr4sSJevLJJ5WVleX1/I0bN9bcuXP13Xff6YwzztDw4cM1ePBgPfjgg45pxo4dqypVqqh9+/Zq0KCBdu7c6dV8/khLS9PixYv1+++/KysrSx06dNAdd9yhWrVqOQI6V+mpyODBg3XixAn9/e9/9zhd7dq1NWfOHF100UVq166dXnzxRb355ps6/fTTJUkTJ07UP/7xD02ePFnt2rVTVlaWPvroI7d5umPHjlqwYIE2b96sCy64QJ07d9ZDDz3k1GzyhRde0DXXXKPbbrtNbdu21dChQx3dzTdu3FgPP/yw7r33XqWkpGjkyJEu15Obm6szzzxTf/3rX9W9e3cZYzR37txyzQsBwFc2Q6NkAAirCRMm6P3339fq1avDnZRKKyMjQ3feeafT95zg2qRJk/TWW29p3bp14U4KAEQVarwAAECFjh49quXLl2vq1KkuO7gAAHhG4AUAACo0cuRInX/++erRo0eFzQwBAOXR1BAAAAAALEaNFwAAAABYjMALAAAAACxG4AUAAAAAFnP9KXu4VVxcrL179yo5OVk2my3cyQEAAAAQJsYYHTlyRGlpaRV+9J7Ay0d79+5Venp6uJMBAAAAIELs2rVLTZo08TgNgZePkpOTJf2xc2vWrBnm1AAAAAAIl8LCQqWnpztiBE8IvHxU0rywZs2aBF4AAAAAvHoFic41AAAAAMBiBF4AAAAAYDECLwAAAACwGIEXAAAAAFiMwAsAAAAALEbgBQAAAAAWI/ACAAAAAIsReAEAAACAxQi8AAAAAMBiBF4AAAAAYDECLwAAAACwGIEXAAAAAFiMwAsAAAAALEbgBQAAAAAWI/ACAACWW7t2rUaOHKm1a9eGOykAEBYEXgAAwHI5OTmaOXOmcnJywp0UAAiLqA28JkyYIJvN5vTXqFEjj/MsWLBAZ555pqpVq6YWLVroxRdfDFFqAQCo3IYNG6bs7GwNGzYs3EkBgLCID3cCAnH66afryy+/dPyuUqWK22m3b9+uyy+/XEOHDtXrr7+uxYsX67bbblODBg30t7/9LRTJBQCg0urYsaP+/e9/hzsZABA2UR14xcfHV1jLVeLFF19U06ZN9cwzz0iS2rVrpxUrVmjKlCkEXgAAAAAsFbVNDSVp8+bNSktLU/PmzXX99ddr27ZtbqddunSpLrnkEqdhWVlZWrFihU6ePGl1UgEAQJSjgxAAgYjawKtr166aOXOmPv/8c7388svav3+/zj33XB06dMjl9Pv371dKSorTsJSUFJ06dUoHDx50u56ioiIVFhY6/QEAgMqHDkIABCJqmxpedtlljv9nZmaqe/fuatmypWbMmKExY8a4nMdmszn9Nsa4HF7a5MmT9fDDDwchxQAAIJqVdAxCByEA/BG1NV5lJSYmKjMzU5s3b3Y5vlGjRtq/f7/TsAMHDig+Pl716tVzu9z77rtPBQUFjr9du3YFNd0AACA6lHQQ0rFjx3AnBUAUitoar7KKioq0YcMGXXDBBS7Hd+/eXR999JHTsHnz5umss85SQkKC2+Xa7XbZ7fagphUAAABA5RK1NV5jx47VggULtH37dn377be65pprVFhYqIEDB0r6o6YqOzvbMf3w4cP1008/acyYMdqwYYNeffVVTZs2TWPHjg3XJgAAgDCiswwAoRS1gdfu3bt1ww03qE2bNurXr5+qVq2qZcuWqVmzZpKkffv2aefOnY7pmzdvrrlz5yovL0+dOnXSxIkT9a9//Yuu5AGEDIU8ILLQWQaAUIrapoZvvfWWx/HTp08vN6xHjx7Kz8+3KEUA4FlJIU8SH5IF/LR27Vrl5ORo2LBhAb9rRWcZAEIpagMvAIg2FPKAwAXzAUZJZxmILsEMvoFQIvACgBChkAcEjgcYCFbwTQCHUCPwAgAAUYMHGAhW8E3zb4QagRcAAACiRjCC77Vr1+rgwYO6/PLLqT1FyERtr4YAAMA79KgJOMvJydHcuXNVv359mhkiZKjxAgAgxtGkCnDGu4IIBwIvAABiHIVMwBnvCiIcbMYYE+5ERJPCwkLVqlVLBQUFqlmzZriTAwAAACBMfIkNeMcLAAAAACxG4AUAUYxOEwAAiA4EXgAQxUo6TcjJyQl3UgAAgAcEXgAQxYYNG6bs7Gw6TQCAEKGlAfxFr4YAEMXomQsAQovPM8Bf1HgBAADEGGplrFPZWxpYmbdiPd8SeAEAgJgQ64U2X/D+p3VKWhp07Ngx3EkJCyvzVqznW5oaAgCAmEATsD/x0WxYxcq8Fev5lg8o+4gPKAMAEJnWrl2rnJwcDRs2rNLWRgAILT6gDAAAKo2SJoaSKnUTMCAS0QT4TwReAAAgqsX6eyFANOP8/BOBFwAAiGolvcz17NmTJ+tABFm7dq0OHjyoyy+/PGbf2/IFgRfgJarKASAylfQyl5eXx5N1IILk5ORo7ty5ql+/Pk2ARa+GgNfoLQsAIlus94gGRBvOSWf0augjejWsvOgtC0Ck4HoEAJGBXg0BC1T2DyYCiBy8rA6gBK9CRA+aGgIAEGVovgOgBK9CRA8CLwAAokxJDTwAeHoQQ7PkyBK1TQ0nT56ss88+W8nJyWrYsKGuuuoqbdy40eM8eXl5stls5f5+/PHHEKUaAABEE5pxIdJ5ehWCZsmRJWprvBYsWKARI0bo7LPP1qlTp/TAAw/okksu0fr165WYmOhx3o0bNzq9/NagQQOrkwsAAKIQzbgQzWiWHFmiNvD67LPPnH7n5uaqYcOGWrlypS688EKP8zZs2FC1a9e2MHUAACAWxHLBlWZosY9myZElapsallVQUCBJqlu3boXTdu7cWampqbr44os1f/58j9MWFRWpsLDQ6Q8AAFQOsdyjLc3QYJVgNNGNxWa+UVvjVZoxRmPGjNH555+vDh06uJ0uNTVVOTk5OvPMM1VUVKTXXntNF198sfLy8tzWkk2ePFkPP/ywVUkHAAAIi1iuzUN4BaOJbiw2842JDyiPGDFCn3zyiRYtWqQmTZr4NO8VV1whm82mDz/80OX4oqIiFRUVOX4XFhYqPT2dDyhHOZpXAAAAWCMY5axoKatVqg8o33777frwww81f/58n4MuSerWrZs2b97sdrzdblfNmjWd/hD9aF4BAEBwxWLTMPgnGE10Y7GZb9QGXsYYjRw5UnPmzNHXX3+t5s2b+7WcVatWKTU1NcipQ6QbNmyYsrOzaV4BABWgMA1v8VAT8Cxq3/EaMWKE3njjDX3wwQdKTk7W/v37JUm1atVS9erVJUn33Xef9uzZ42gf+swzzygjI0Onn366Tpw4oddff12zZ8/W7Nmzw7YdCA96+QEA78TiexawBu+MhVa0NMXDn6I28HrhhRckST179nQanpubq0GDBkmS9u3bp507dzrGnThxQmPHjtWePXtUvXp1nX766frkk090+eWXhyrZAABEFQrT5VHgdY2HmqEVzQ9FKus5FBOda4SSLy/QAQCA2DNy5EjNnDlT2dnZUVfgReyI5uAlls4hX2KDqK3xAgCgrGguiCB6UAuISBDNNYyV9RyK2s41AAAoq7K/3E9HGKERi72tIXZEw3Wgsp5DBF4AKp1ouCnBP5W9x9LKHngC4DoQyXxqaujuI8Oe9OnTx9HLIABEgmh+IRmeRXPTm2CorM13EB407Y1MXAcil0+da8TF+VZBZrPZtHnzZrVo0cLnhEUqOtcAoh+FBQAI3PXXX685c+aoX79+euutt8KdHCAsfIkNfG5quH//fhUXF3v1V6NGDb83AgCsUlnblgMAEEw03feNT4HXwIEDfWo2ePPNN1MrBAAAEGZWFJCvueYatW3bVtdcc03QlonowvtkvvEp8MrNzVVycrLX07/wwguqX7++z4kCAAC+4clz5IjEY2FFATkvL087duxQXl5e0JaJ6BLMDo0i8bwJNr7jBQBADKDTmMgRicfCig4X6MQhNCL5veRgdmgUiedNsPkdeI0ZM8blcJvNpmrVqqlVq1bq27ev6tat63fiAACAdygERw6rjkXpArgknwrjVvT4Wdl7EQ2VyhCQSJXjGuZTr4al9erVS/n5+fr999/Vpk0bGWO0efNmValSRW3bttXGjRtls9m0aNEitW/fPtjpDht6NQQAAK5YXTMxcuRIzZw5U9nZ2ZLk+H8sF8YR2TVeoRLJ+8DSXg1L9O3bV71799bevXu1cuVK5efna8+ePerTp49uuOEG7dmzRxdeeKFGjx7t7yoAAAAqFCnvhnj7HpW/6S39Po2/79ZEyr6C93ztiTcWj3HMdOJh/JSWlmZ++OGHcsO///57k5aWZowxZuXKlaZevXr+riIiFRQUGEmmoKAg3EkBAITRmjVrzIgRI8yaNWvCnRSHSExTKIwYMcIkJyebESNGhDUd3u7/cKa37LpL0jxr1qxKmXdikdX5y8rrjLtlR/K1zZfYwO93vAoKCnTgwIFyzQh//vlnFRYWSpJq166tEydOBBIXAgAQkSLxvYtITFNFXDUh8rVZUajeDakoXd6+8+QpvVY3qSq77pI8s3DhQu3YsUNS9OQduGb1+WDldcbdsmPmfUJ/o7sbb7zRNG/e3MyZM8fs2rXL7N6928yZM8e0aNHC3HzzzcYYY958801z5pln+ruKiESNF4BIEslPASOFVfsoEvd9KNMUrHW5ejofKTVYZYUiXaHedmq84CsrrjPRnA99iQ38DryOHDlihgwZYqpWrWri4uJMXFycqVq1qhk6dKg5cuSIMcaYVatWmVWrVvm7iohE4AUg2AK5iUVqATWSsI+sEaz96ir/B7tgF6zlhSKwjcSA3lvRnHaEVzRfp0PS1DApKUkvv/yynn76aW3btk3GGLVs2VJJSUmOaTp16hRohRwAxLxAmm1Uhu53A8U+Coy7pm/B2q+umhCVHRZo87tgNY0KR3OnSO7NraxobOqKyFBprtOBRHgLFy40N910k+nevbvZvXu3McaYmTNnmm+++SaQxUY0arwABBtPiaNDrBwnX7fD1ZPoUO+LQJ+GR9OxK7ut0VQTEE37OVzYR7EnJDVes2fP1oABA3TTTTcpPz9fRUVFkqQjR47oscce09y5c4MUGgJAbIuZl4YVXU/nfRUrT/N93Q5XT6JDvS+8eRruKe9VdI6tXbtWjz32mCTp/vvvD2veLbut0VQTEEvXMqvEynUEfvI3uuvUqZOZMWOGMcaYpKQks3XrVmPMH+91paSk+LvYiEeNFwC4F01P533lz5PqSHy6HYw0VbSMcGy3u27SvUnDiBEjTEJCgklISIjJvIvIEYnXBAQmJJ1rVK9e3Wzfvt0Y4xx4bd261djtdn8XG/EIvABUJrNmzTKZmZlm1qxZXk3vbaGishQ+YjkQdWfNmjUmMzPTJCYmut1ub46/r72clV2mL/t+zZo1pn///qZ///4R1ataNPf0BlQWIQm8WrRoYb744gtjjHPgNWPGDNOuXTt/FxvxCLwAhFsog5bMzEwjyWRmZgZ1ueEOSALZh6UL6b4EA5Uh2CwJuqpVq2YyMzPdbqs3x79kmszMTL/eMfN3f4c7b7pKi6t9ACAyhCTwevzxx0379u3NsmXLTHJysvnmm2/M66+/bho0aGCmTp3q72IjHoEXgHDzt2DoTxDga42Xt+nwNnCpaDnh6Ibf32ZpkVSgt8qIESNMYmKix6DLmMBrvKzsyj4YeT7Y3ddHU41XZXjAAJQWksDLGGPuv/9+U716dWOz2YzNZjPVqlUzDz74YCCLjHgEXgDCKZCgpXRhNZhBQDB6yfNHIMsJZo1XNDevjNTvZYVqPVZ9vLlkGf3797f8XbhIy1eV4QFDMETacYP/QhZ4GWPMsWPHzPLly823337r+HByLCPwAhAoX2+4pacPVrARzJu+r2nyd91l5wvmNviyrEDeJYokJc0Ca9SoYUnaoyEgdbXuYNTIliy3f//+HvOGp7zj7X6JtPznLt2etidc53I4RdpxizaRdJxDGniF23PPPWcyMjKM3W43Xbp0MQsXLvQ4fV5enunSpYux2+2mefPm5oUXXvBpfQRe0S+STlZUTr7ecEtP766gGM5aBquaa5XlbTO2itLrajpfApCyxy9c15RA1+vr/vR13d7mc3fThfNaHWih2Nsmgp4eJnibhmi5p3nanmAGIZ5qGyNpXwW7OWokbFMoRVLgalngNXr0aK//QuGtt94yCQkJ5uWXXzbr1683d9xxh0lMTDQ//fSTy+m3bdtmatSoYe644w6zfv168/LLL5uEhATz7rvver1OAq/oF0knK6xjxbsRobpRlh1fURDjKk9bUTvkSwG5bKccvq7f1TZ7CpBcLd/bACmYAV1FtYoltSlZWVkB96AXrODAnxqI/v37m4SEBNO/f3+38/rbG2GJYF6rfd3WQB9weNo/nlT0kMVT2iO9AO4pXwTz2lpSW+mqtjEW7/+xuE3eiKT8blng1bNnT6e/5ORkU6NGDdO5c2fTuXNnk5iYaGrWrGl69erld+J9cc4555jhw4c7DWvbtq259957XU4/btw407ZtW6dht9xyi+nWrZvX6yTwin6RdLIGKpa2JdhKbkbB7A0sVDe4suupaL2ego6Sp74VNXnyRtmCU8m/WVlZJiEhwWRlZTnSUTZwKimIlp7GE3e9KboraHoTfLorDAfzPCq9DldP3keM+KNjjri4OJOQkOB3j33BTndZFeU5T4GFpxqH0ioKbnx9QOHL9vhTszRixAhTo0YNR4DuKa3+Bl6+HtPSaffmHAjGegMNSq28jlYUuAb7gVwk3IMjIQ2VXUiaGj755JPmiiuuML/88otj2C+//GL69u1rpkyZ4u9ivVZUVGSqVKli5syZ4zR81KhR5sILL3Q5zwUXXGBGjRrlNGzOnDkmPj7enDhxwuU8x48fNwUFBY6/Xbt2EXghYkTjk65Q3SSsuMEGoyc+f9blzz4rmack4KqoEOzt8koXVEuChlatWpmEhATTqlUrt/mxpCBaehpPx2jWrFmmVatWJisrq8Jal6ysLJOVlWVatWplpkyZUq4wXDZA9LUw7IvSBe6yx6AkXaVrvKZMmVKuZs+b89rq88jfoKeiGofSXG2nL9c0X6YtGySV/s5Y2W3xtG2ZmZmmevXqJjMz02n7PAV27n6XzgfBOC89PYBxtY+8DT7LLtfdA4VgfDPN33zt6/U+WPfOaLwHI/hCEnilpaWZ77//vtzwdevWmdTUVH8X67U9e/YYSWbx4sVOwydNmmROO+00l/O0bt3aTJo0yWnY4sWLjSSzd+9el/OMHz/eSCr3R+CFSBCNT7qi9Ubl7VP8YK+vooKQLwXkQPKLqyfJZWu+PBV6XBWMygZwZbd1xIgRpnr16qZu3boum1mWDuZKuncvvayyyw9XD3OeCuG+1lK4CuYCTV8g3BXK3dU4VJSWQGpevNlvJf+Wrrkqq6Jzr6S5a1ZWliNodneeuTteI0b8WfMZHx/vsZlrIMfM07xlj5W7hz3ugsqyDxR8SaO7c9/f+4Mv+a6i/eKLaLoHh/qhZzTsk2AJSeCVlJRkvvrqq3LDv/rqK5OUlOTvYr1WEngtWbLEafijjz5q2rRp43Ke1q1bm8cee8xp2KJFi4wks2/fPpfzUOMVepXxpA2HQJ8sBuMJbTQJtMDrzbLL1vhkZmaaKVOmlKtpKx0Eln5yX9E6fHk/yps0eju/uwK2u6fepaepW7euo8mhu4L2lClTHLVjs2bNKrfcUD8Fr0jp4+drLWqgDwAqCjp8VVFNTzBVtOyy+8ZVkO9vQOhqvLtrQel1uTpeJXm/pKY2PT3dxMfHu62JtSpfegqavdlfgVw33NVQBeO+5O1Dq0gRqjSF+vpm9XoiSUgCrwEDBpimTZuaWbNmmV27dpldu3aZWbNmmYyMDJOdne3vYr0WqqaGZfGOV/C4u9jE6kkbaRf8YDxZDIS7G284uarJKVswDvQpvSuuCmclw1q1auV4Ku7qibOrQrSr9IwY4b4DiUALpf7UIHibj0q/K+ZunrLD/c2joX4iXLbgHoon9SUBuDfBurfLC9X5W9FxLbtfS9emlK3RCYaKHiiUrTlytx0VvQ8WaKDoz/ZU9KDF230Zjvu5p2DPys8n+JKW0kK1j6jxsk5IAq9jx46ZW2+91djtdhMXF2fi4uJM1apVza233mqOHj3q72J9cs4555hbb73VaVi7du08dq7Rrl07p2HDhw+nc40wcXexiaaT1pe0RlpA6e/NPFjHp3RgYfV7N76mqaTAlpmZ6WjC5um4uTq2ngLLsgUcV+/ElAQc5557romPjzetWrVyeSxcFfJcPYn3tsaqonzqbltdFea93Qfe8FTYc7c/fVl2MJ66+6psuoMZEHm73mhah7fLdJfvQnEN9mYdwc5v3m5XMK/dnq6L3gZwVqXPHU8Pn6ziT35A9Anpd7yOHj1q1qxZY1avXh2ygKtESXfy06ZNM+vXrzd33nmnSUxMNDt27DDGGHPvvfeaAQMGOKYv6U5+9OjRZv369WbatGl0Jx9G0XrzL82Xi2q4ujX3dx9YXUgpSZerHvG8nTeQmgF3T6vL1ni56rTBm2WVDeLc1faULgy4ahpVUZOy0sty13NgMPOLLwF5MPKQp2DSFX/WWXoebwIgK64rI0a4rzW08jpmVW1KpD1oMiY27jmBrNNTHvN1fZ4ebvh77EN1z4nEY4PoZlngtWbNGvP77797Pf33339vTp486csqfPbcc8+ZZs2amapVq5ouXbqYBQsWOMYNHDjQ9OjRw2n6vLw807lzZ1O1alWTkZHBB5RjXCRcyMsW6oJZW+TNdvm7D0L91N+Xd6e82SZP05QUrr1pcuIpgPLElxovV2kp2x27NwGPuyZL4SoEB+PJvrcBaNl1+vKgo2yNX0WFUyueYnua3qrj5815EOnXD3gvVLWq/h578gy8FWl5xbLAKy4uzhw4cMDr6ZOTk83WrVt9WUXEI/AKvUBOsEho5lC2UBfM96MioflGsAR7mzxN079/f7fN99wtx1MHEIHWGHhTWxRIYT9S8oA/+T+QGpeSAMrfICyQaYJ5rlv1GYPSta3BrvGCf6ze3xxPxIJIq1G3LPCy2WzmlltuMaNHj/bqz263E3ghYKF64hqKEznabnrhbOJkJX8/burPsoKVf6Mt77gSym0o/XTf39rKQJtjBSMItvK6FAt5KtZEWoESiESRdu2yLPDq0aOH6dmzp09/7r6PFa0IvEIvkCfeoS5sWSGc6Sq7D4OZlnAWMIK5HYH2SBaJojHNrvjT7NAYa/NmrFyX4CxYx6myHe/Ktr2ITSHtXKOyiaTAK1ZrIwLlb2ErUrc5kgKU0mkJdH9Zsb+9XWYw1x3Md3lCpaI0VPan7lxb4avKfs74y4r3JYFQI/CyUCQFXpH0VDaSeEq7pwt4pG5zJL23E6z31axKu7dp8iWAdDU+kPSXfvcoXAWJivYTBR3AN5wz/gnl+5KhQD4IrmjZnwReFoqkwIunsq75G1wFe5utfkfH1baE6ritWRPYC/9W3Uj9qfGqKC2uxgcadIb7A7bRfH4DqFyi6XoVTUFiNIiW/UngZaFICrzgu1BewMteMHypZfAmna6mCdVFKtAak0gKFkJd4xWM+UuLlhsTAARTJAZkkZimaBYt+5PAy0IEXtFzIgQq2IVrX96r8bcwHcoar1C/I0SA4VplOR8BoDTuCc64F4SPL7FBvAAf5eTkaObMmZKkf//732FOjXUC3c6OHTs6zVf2d1nDhg1z+rfs//1Zp1X82ZZAWbHMWBCMY7527Vrl5ORo2LBh6tixY5BSBgDW4Z7grLKUzaKdzRhjAl3Ib7/9pl9++UWNGzd2Gv7DDz/o9NNPD3TxEaWwsFC1atVSQUGBatasGe7khEVlKaSFYjsry75EZBs5cqRmzpyp7OxsbtgAQo57YeDYh+HjS2wQcOD17rvvavTo0apbt66MMXr55ZfVtWtXSVKXLl2Un58fyOIjDoEXgokCLyIBN2wA4cS9ENHMl9gg4KaGjz76qPLz89WgQQOtWLFCAwcO1AMPPKAbb7xRQahMA2IaTSUQCULVRBUAXOFeiMoi4MDr5MmTatCggSTprLPO0sKFC9WvXz9t2bJFNpst4AQCsYpaBgAAePiDyiMu0AU0bNhQa9eudfyuV6+evvjiC23YsMFpOABnJS/C5uTkhDspAID/b+3atRo5ciRlGABBF3Dg9dprryklJcVpWNWqVfXmm29qwYIFgS4eiFnDhg1TdnY2TSsQchQsAfd4KAbAKgE1NczPz9c333yjqlWr6rzzzivXXOq8884LKHFALKNpBcKFbocB93jfCIBV/A68nnnmGY0ZM0a1a9dWfHy8Dh48qNNPP13Tp0/XmWeeGcw0AgCCiIIl4B4PxQBYxaemhq+++qry8/NVVFSkxx57TP/7v/+rQ4cO6cCBA/rpp5/Ut29f9ezZU4sWLbIqvQCAAJUULOnUBUC40fQ5+nEMvedT4PXPf/5TXbt2VVJSkg4dOqTly5fr6aefVl5enpKTk/Xoo4/qiSee0NixY61KLwAAAGIE79RFf+DCMfSeT00NN2zYoOPHj2vdunW64IILFBcXp3feeUcPPfSQjh8/riZNmqhly5ZatWqVPvroI3Xo0EHNmze3Ku0AAACIYjR9jv73bjmG3rMZP79yfPHFF+viiy/W/fffr+LiYm3YsEFr1qzRwoULlZOTozp16ujw4cNKSkpSYWFhsNMdNr58nRoAAJTHdwyBP3E+RDdfYgO/O9d48skn1bNnT23btk3Dhw/XGWecoaZNmyo/P19paWnavXu3du/ere+//97fVQCSuCABQKyJ9if8QDDRoUvl4Xfg1alTJ61cuVLDhw9Xt27dVFJxFh8fr1dffVWS1KRJEzVp0iQ4KUWlxQ0aAGILTZOA2MOD8ooF9B2vli1b6osvvtB///tfLVu2TCdOnFC3bt2Unp4erPQB3KABIMbwhB+ITp6CKx6UVyygwKtESkqK+vbtG4xFAeVwgwYAAAg/T8EVD8orFpTACwAAVD40LQIqF0/BFQ/KK+bTd7wixY4dOzR48GA1b95c1atXV8uWLTV+/HidOHHC43yDBg2SzWZz+uvWrVuIUg0AQGzh+z3R/w0mwBclwVWwHrRUtvMnKmu8fvzxRxUXF+ull15Sq1at9P3332vo0KE6duyYpkyZ4nHeSy+9VLm5uY7fVatWtTq5AADEJJoW8V4LEIjKdv5EZeB16aWX6tJLL3X8btGihTZu3KgXXnihwsDLbrerUaNGVicRAICYR9Migk+r0Zw1tlW28ycqAy9XCgoKVLdu3Qqny8vLU8OGDVW7dm316NFDkyZNUsOGDUOQQgAAEGsIPq1V2WpEKpvKdv7EROC1detWTZ06VU8++aTH6S677DJde+21atasmbZv366HHnpIF110kVauXCm73e5ynqKiIhUVFTl+FxYWBjXtAAAAcK2y1YhYgVrDyBFRnWtMmDChXOcXZf9WrFjhNM/evXt16aWX6tprr9WQIUM8Lr9///76y1/+og4dOuiKK67Qp59+qk2bNumTTz5xO8/kyZNVq1Ytxx/fKAMAAAg+Vx0tBLszh8rIqk5wKlvHGMEQUTVeI0eO1PXXX+9xmoyMDMf/9+7dq169eql79+5+ZabU1FQ1a9ZMmzdvdjvNfffdpzFjxjh+FxYWEnwBAAAEGc0KrWFVrSHHy3cRFXjVr19f9evX92raPXv2qFevXjrzzDOVm5uruDjfK+8OHTqkXbt2KTU11e00drvdbTNEAAAABAfNCj3zt8mgVe9Rcbx8F1FNDb21d+9e9ezZU+np6ZoyZYp+/vln7d+/X/v373earm3btnrvvfckSUePHtXYsWO1dOlS7dixQ3l5ebriiitUv359XX311eHYDIQZVeQAAEQOT80KuWdH3nfzaAbqu4iq8fLWvHnztGXLFm3ZskVNmjRxGmeMcfx/48aNKigokCRVqVJF69at08yZM/Xrr78qNTVVvXr10ttvv63k5OSQph+RgSpyAACiA/dsaphigc2UjlRQocLCQtWqVUsFBQWqWbNmuJODAERCLz+RkAYAACId90tEKl9iAwIvHxF4IZhGjhypmTNnKjs7u9I+wQMATyhwA4hkvsQGUdnUEIgVNBsAAM9oYgYgVhB4AWFU2b7YDgC+4gEVgFhBU0Mf0dQQAAAAgORbbBCV3ckDAACgvEC6XafLdpAHrEXgBQAAECMC+dZTpH0nCqFHHrAW73gBAADEiEDeieN9OoQyD1TGHkt5x8tHvOMFAAAABCZWPqlDd/IAAAAAIlZlrGGlxstH1HgBAAAAkOjVEAAAAAAiCoEXAABu0LUyACBYCLwAAHCDrpUBAMFC4AUAgBvDhg1TdnZ2pXr5Gwgmao2BP9GrIQAAbnTs2DGquzkGwq2k1lgS5xIqPWq8AAAAYIlIrDW2qhaO2j1UhBovAAAAWCISa42tqoWjdg8VIfACACACrF27Vjk5ORo2bJg6duwY7uQAMcuqD/dWxg8Cwzd8QNlHfEAZAGCFkSNHaubMmcrOzuZpOQBECV9iA2q8AACIADwtB4DYRucaABBivIANV0rehaGZIYDKprLcFwm8ACDE+CgvAPwpXIXuylLYjwaV5b5IU0MACDGalAHAn8LVGyC9EEaOynJfpHMNH9G5BgBYh579EA7ku/AK1/7nuCMYfIkNaGoIAIgYlaW5SWk0dwq/ypjvIkm43m/kvUqEWtQGXhkZGbLZbE5/9957r8d5jDGaMGGC0tLSVL16dfXs2VM//PBDiFIMAKjIsGHDlJ2dHfPNTUqj0B9+lTHfAQi9qG1qmJGRocGDB2vo0KGOYUlJSUpKSnI7z+OPP65JkyZp+vTpOu200/Too49q4cKF2rhxo5KTk71aL00NAQDBRHMna7BfAYRCpfmOV3Jysho1auTVtMYYPfPMM3rggQfUr18/SdKMGTOUkpKiN954Q7fccouVSQUAwKWS5k4ILjpOABBporapofRHDVa9evXUqVMnTZo0SSdOnHA77fbt27V//35dcskljmF2u109evTQkiVLQpFcAAAQIjQfBGJDLL0HG7U1XnfccYe6dOmiOnXq6LvvvtN9992n7du365VXXnE5/f79+yVJKSkpTsNTUlL0008/uV1PUVGRioqKHL8LCwuDkHoAAGAlahKB2BBLtdcRVeM1YcKEch1mlP1bsWKFJGn06NHq0aOHOnbsqCFDhujFF1/UtGnTdOjQIY/rsNlsTr+NMeWGlTZ58mTVqlXL8Zeenh74hgIAACCixFLNSiyJpdrriOpc4+DBgzp48KDHaTIyMlStWrVyw/fs2aMmTZpo2bJl6tq1a7nx27ZtU8uWLZWfn6/OnTs7hvft21e1a9fWjBkzXK7PVY1Xeno6nWsAAADEkJEjR2rmzJnKzs6O+poVhE7Udq5Rv3591a9f3695V61aJUlKTU11Ob558+Zq1KiRvvjiC0fgdeLECS1YsECPP/642+Xa7XbZ7Xa/0gQAAIDoUFKjEgs1K4hMERV4eWvp0qVatmyZevXqpVq1amn58uUaPXq0rrzySjVt2tQxXdu2bTV58mRdffXVstlsuvPOO/XYY4+pdevWat26tR577DHVqFFDN954Yxi3BgAAAOHGe4GwWlQGXna7XW+//bYefvhhFRUVqVmzZho6dKjGjRvnNN3GjRtVUFDg+D1u3Dj99ttvuu2223T48GF17dpV8+bN8/obXgAAAADgj4h6xysa8AFlAACiDx9UBmAFX2KDiOrVEAAAwAolXVLn5OSEOykAKqmobGoIAADgCzpOABBuNDX0EU0NAQAAAEg0NQQAAACAiELgBQAAAAAWI/ACAAAAAIsReAEAAACAxQi8AAAAAMBiBF4AAAAAYDECLwAAAACwGIEXAAAAAFiMwAsAAAAALEbgBQAAAAAWI/ACAAAAAIsReAEAAACAxQi8AAAAAMBiBF4AAAAAYLH4cCcg2hhjJEmFhYVhTgkAAACAcCqJCUpiBE8IvHx05MgRSVJ6enqYUwIAAAAgEhw5ckS1atXyOI3NeBOewaG4uFh79+5VcnKybDabz/MXFhYqPT1du3btUs2aNS1IIWIdeQiBIg8hUOQhBIo8hEBFSh4yxujIkSNKS0tTXJznt7io8fJRXFycmjRpEvByatasyYUGASEPIVDkIQSKPIRAkYcQqEjIQxXVdJWgcw0AAAAAsBiBFwAAAABYjMArxOx2u8aPHy+73R7upCBKkYcQKPIQAkUeQqDIQwhUNOYhOtcAAAAAAItR4wUAAAAAFiPwAgAAAACLEXgBAAAAgMUIvAAAAADAYgReIZKXlyebzebyb/ny5Y7pdu7cqSuuuEKJiYmqX7++Ro0apRMnToQx5Yg0n3zyibp27arq1aurfv366tevn9N48hA8ycjIKHcNuvfee52mIQ/BG0VFRerUqZNsNptWr17tNI48BE+uvPJKNW3aVNWqVVNqaqoGDBigvXv3Ok1DHoI7O3bs0ODBg9W8eXNVr15dLVu21Pjx48vlj0jMQ/FhXXslcu6552rfvn1Owx566CF9+eWXOuussyRJv//+u/7yl7+oQYMGWrRokQ4dOqSBAwfKGKOpU6eGI9mIMLNnz9bQoUP12GOP6aKLLpIxRuvWrXOMJw/BG4888oiGDh3q+J2UlOT4P3kI3ho3bpzS0tK0Zs0ap+HkIVSkV69euv/++5Wamqo9e/Zo7Nixuuaaa7RkyRJJ5CF49uOPP6q4uFgvvfSSWrVqpe+//15Dhw7VsWPHNGXKFEkRnIcMwuLEiROmYcOG5pFHHnEMmzt3romLizN79uxxDHvzzTeN3W43BQUF4UgmIsjJkydN48aNzSuvvOJ2GvIQKtKsWTPz9NNPux1PHoI35s6da9q2bWt++OEHI8msWrXKaRx5CL744IMPjM1mMydOnDDGkIfguyeeeMI0b97c8TtS8xBNDcPkww8/1MGDBzVo0CDHsKVLl6pDhw5KS0tzDMvKylJRUZFWrlwZhlQikuTn52vPnj2Ki4tT586dlZqaqssuu0w//PCDYxryELzx+OOPq169eurUqZMmTZrk1PSCPISK/Pe//9XQoUP12muvqUaNGuXGk4fgi19++UX/+c9/dO655yohIUESeQi+KygoUN26dR2/IzUPEXiFybRp05SVlaX09HTHsP379yslJcVpujp16qhq1arav39/qJOICLNt2zZJ0oQJE/Tggw/q448/Vp06ddSjRw/98ssvkshDqNgdd9yht956S/Pnz9fIkSP1zDPP6LbbbnOMJw/BE2OMBg0apOHDhzuayZdFHoI37rnnHiUmJqpevXrauXOnPvjgA8c48hB8sXXrVk2dOlXDhw93DIvUPETgFaAJEya47TSj5G/FihVO8+zevVuff/65Bg8eXG55Nput3DBjjMvhiA3e5qHi4mJJ0gMPPKC//e1vOvPMM5WbmyubzaZZs2Y5lkceqnx8uQ6NHj1aPXr0UMeOHTVkyBC9+OKLmjZtmg4dOuRYHnmo8vE2D02dOlWFhYW67777PC6PPFT5+Foeuvvuu7Vq1SrNmzdPVapUUXZ2towxjvHkocrHnzL13r17demll+raa6/VkCFDnMZFYh6ic40AjRw5Utdff73HaTIyMpx+5+bmql69erryyiudhjdq1Ejffvut07DDhw/r5MmT5aJ2xA5v89CRI0ckSe3bt3cMt9vtatGihXbu3CmJPFRZ+XMdKtGtWzdJ0pYtW1SvXj3yUCXlbR569NFHtWzZMtntdqdxZ511lm666SbNmDGDPFRJ+Xodql+/vurXr6/TTjtN7dq1U3p6upYtW6bu3buThyopX/PQ3r171atXL3Xv3l05OTlO00VsHgrb22WVVHFxsWnevLm56667yo0reRFw7969jmFvvfVW2F8ERGQoKCgwdrvdqXONkk5aXnrpJWMMeQi+++ijj4wk89NPPxljyEPw7KeffjLr1q1z/H3++edGknn33XfNrl27jDHkIfhu586dRpKZP3++MYY8hIrt3r3btG7d2lx//fXm1KlT5cZHah4i8AqxL7/80kgy69evLzfu1KlTpkOHDubiiy82+fn55ssvvzRNmjQxI0eODENKEYnuuOMO07hxY/P555+bH3/80QwePNg0bNjQ/PLLL8YY8hA8W7JkiXnqqafMqlWrzLZt28zbb79t0tLSzJVXXumYhjwEX2zfvr1cr4bkIXjy7bffmqlTp5pVq1aZHTt2mK+//tqcf/75pmXLlub48ePGGPIQPNuzZ49p1aqVueiii8zu3bvNvn37HH8lIjUPEXiF2A033GDOPfdct+N/+ukn85e//MVUr17d1K1b14wcOdJxIQJOnDhh7rrrLtOwYUOTnJxsevfubb7//nunachDcGflypWma9euplatWqZatWqmTZs2Zvz48ebYsWNO05GH4C1XgZcx5CG4t3btWtOrVy9Tt25dY7fbTUZGhhk+fLjZvXu303TkIbiTm5trJLn8Ky0S85DNmFJvMgIAAAAAgo5eDQEAAADAYgReAAAAAGAxAi8AAAAAsBiBFwAAAABYjMALAAAAACxG4AUAAAAAFiPwAgAAAACLEXgBAAAAgMUIvAAAAADAYgReAICY1bZtW73yyit+z9+zZ0/ZbDbZbDatXr3a43R33nmn3+txZdCgQY51v//++0FdNgAg9Ai8AAAx6bffftOWLVt0xhlnBLScoUOHat++ferQoUOQUuadZ599Vvv27QvpOgEA1okPdwIAALDC999/L2NMwAFTjRo11KhRoyClynu1atVSrVq1Qr5eAIA1qPECAMSU1atX66KLLtL555+v4uJiNW3aVE8//XTQln/s2DFlZ2crKSlJqampevLJJ8tNY4zRE088oRYtWqh69eo644wz9O677zrGHzlyRDfddJMSExOVmpqqp59+2pLmigCAyEGNFwAgZmzdulU9evTQ3XffrXr16qm4uFhnn322xowZowsuuEBnnXVWwOu4++67NX/+fL333ntq1KiR7r//fq1cuVKdOnVyTPPggw9qzpw5euGFF9S6dWstXLhQN998sxo0aKAePXpozJgxWrx4sT788EOlpKToH//4h/Lz852WAQCILdR4AQBixvDhw9WvXz89+OCD2rlzp7p3765x48apdu3a+uabbyRJV199terUqaNrrrnG5+UfPXpU06ZN05QpU9SnTx9lZmZqxowZ+v333x3THDt2TE899ZReffVVZWVlqUWLFho0aJBuvvlmvfTSSzpy5IhmzJihKVOm6OKLL1aHDh2Um5vrtAwAQOwh8AIAxIT9+/fr66+/1vDhw/X7779r3bp16ty5s+Li4hQfH6+qVatKkkaNGqWZM2f6tY6tW7fqxIkT6t69u2NY3bp11aZNG8fv9evX6/jx4+rTp4+SkpIcfzNnztTWrVu1bds2nTx5Uuecc45jnlq1ajktAwAQe2hqCACICcuWLVNxcbE6deqkH3/8Ub/99ps6deqkXbt26eDBgzrvvPMkSb169VJeXp5f6zDGVDhNcXGxJOmTTz5R48aNncbZ7XYdOnRIkmSz2XxeNgAgelHjBQCICSdOnJAkHT9+XKtXr1aTJk1Ur149vfTSS2rfvn1Q3p9q1aqVEhIStGzZMseww4cPa9OmTY7f7du3l91u186dO9WqVSunv/T0dLVs2VIJCQn67rvvHPMUFhZq8+bNAacPABC5qPECAMSEbt26KT4+Xo888oiOHj2qli1b6vnnn9fTTz+t+fPnB2UdSUlJGjx4sKPzjpSUFD3wwAOKi/vzOWZycrLGjh2r0aNHq7i4WOeff74KCwu1ZMkSJSUlaeDAgRo4cKDuvvtu1a1bVw0bNtT48eMVFxdXrhYMABA7CLwAADGhadOmevXVV3XPPfdo3759io+P1//93/9p7ty5Tu9TBeqf//ynjh49qiuvvFLJycm66667VFBQ4DTNxIkT1bBhQ02ePFnbtm1T7dq11aVLF91///2SpKeeekrDhw/XX//6V9WsWVPjxo3Trl27VK1ataClEwAQWWyGRuUAgBhTt25dvfrqq7rqqqtcjs/Ly9O///1vp29rudKzZ0916tRJzzzzTPATWcqxY8fUuHFjPfnkkxo8eLDTOJvNpvfee8/ttgAAogPveAEAYsru3bt1+PBhZWZmuhyflZWla6+9VnPnzlWTJk20fPlyj8t7/vnnlZSUpHXr1gUtjatWrdKbb76prVu3Kj8/XzfddJMkqW/fvo5phg8frqSkpKCtEwAQXtR4AQBiyqeffqprr71WR44cCfidqT179ui3336T9EdTxpIu6QO1atUqDRkyRBs3blTVqlV15pln6qmnnnIKFg8cOKDCwkJJUmpqqhITE4OybgBAeBB4AQAAAIDFaGoIAAAAABYj8AIAAAAAixF4AQAAAIDFCLwAAAAAwGIEXgAAAABgMQIvAAAAALAYgRcAAAAAWIzACwAAAAAsRuAFAAAAABYj8AIAAAAAixF4AQAAAIDF/h+7gucfgJXAVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10,2.5))\n", "plot_second_selection(winner_df)" @@ -221,7 +296,23 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# plt.axvline(-55, ls='--', color='gray', \n", + "# alpha=0.4, dashes=(6,4), lw=2)\n", + "# plt.text(-60, 5.5, 'Previously\\nundetected', \n", + "# fontsize='small', ha='right', va='top');\n", + "\n", + "# arrowprops=dict(color='gray', shrink=0.05, width=1.5, \n", + "# headwidth=6, headlength=8, alpha=0.4)\n", + "\n", + "# plt.annotate('Spur', xy=(-33, 2), xytext=(-35, 5.5),\n", + "# arrowprops=arrowprops,\n", + "# fontsize='small')\n", + "\n", + "# plt.annotate('Gap', xy=(-22, -1), xytext=(-25, -5.5),\n", + "# arrowprops=arrowprops,\n", + "# fontsize='small')" ] }, { @@ -275,7 +366,9 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# plt.gca().tick_params(top=True, right=True)" ] }, { @@ -293,7 +386,18 @@ "cell_type": "code", "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "10.0" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "plt.rcParams['font.size']" ] @@ -347,7 +451,43 @@ "cell_type": "code", "execution_count": 39, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['Solarize_Light2',\n", + " '_classic_test_patch',\n", + " 'bmh',\n", + " 'classic',\n", + " 'dark_background',\n", + " 'fast',\n", + " 'fivethirtyeight',\n", + " 'ggplot',\n", + " 'grayscale',\n", + " 'seaborn',\n", + " 'seaborn-bright',\n", + " 'seaborn-colorblind',\n", + " 'seaborn-dark',\n", + " 'seaborn-dark-palette',\n", + " 'seaborn-darkgrid',\n", + " 'seaborn-deep',\n", + " 'seaborn-muted',\n", + " 'seaborn-notebook',\n", + " 'seaborn-paper',\n", + " 'seaborn-pastel',\n", + " 'seaborn-poster',\n", + " 'seaborn-talk',\n", + " 'seaborn-ticks',\n", + " 'seaborn-white',\n", + " 'seaborn-whitegrid',\n", + " 'tableau-colorblind10']" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "plt.style.available" ] @@ -581,7 +721,21 @@ "cell_type": "code", "execution_count": 45, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-8.9, -2.2],\n", + " [-8.9, 1. ],\n", + " [-6.9, 1. ],\n", + " [-6.9, -2.2]])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import numpy as np\n", "\n", @@ -634,7 +788,18 @@ "cell_type": "code", "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAG/CAYAAACe80n1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9fXBb13km/oAAAYJf4BdAQKBAERQpUhQh0qSp2I5lK2asJN20qdMk3WybZrrdaWe7M9vtdHYnOzs76exHp/vHbzo77R+7M7tpu502s5s6aT7syKFD26mtiCZFChJEmpRIESIEECBBggQBAuQlf39w3qNzD+69uAA/rNh4ZzKxiHvPPd/nPc/7vO9r2N/f30dJSlKSkpSkJCUpSUmKlrIPuwIlKUlJSlKSkpSkJL/oUlKoSlKSkpSkJCUpSUkOKSWFqiQlKUlJSlKSkpTkkFJSqEpSkpKUpCQlKUlJDiklhaokJSlJSUpSkpKU5JBSUqhKUpKSlKQkJSlJSQ4pJYWqJCUpSUlKUpKSlOSQUlKoSlKSkpSkJCUpSUkOKSWFqiQlKUlJSlKSkpTkkFJSqEpSkpKUpCQlKUlJDikfOYXqnXfewec//3mcOnUKBoMB3/ve92S/7+/v45vf/CZOnToFq9WKF198EYFAIG+5f//3f4/z58/DYrHg/Pnz+O53v3tMLShJSUpSkpKUpCS/aPKRU6i2trZw8eJF/Pmf/7ni7//tv/03/H//3/+HP//zP8f7778Pp9OJT3/609jc3FQt8/r16/jKV76C3/zN38StW7fwm7/5m/jyl7+MGzduHFczSlKSkpSkJCUpyS+QGD7KyZENBgO++93v4gtf+AKAA3Tq1KlT+IM/+AP8u3/37wAAmUwGzc3N+NM//VP87u/+rmI5X/nKV7CxsYHXX3+d/e0zn/kM6uvr8Xd/93fH3o6SlKQkJSlJSUryZIvpw67AScrCwgIikQhefvll9jeLxYIXXngB7733nqpCdf36dfybf/NvZH+7evUq/uzP/kz1W5lMBplMhv17b28P8XgcjY2NMBgMh2tISUpSkpKUpCQlORHZ39/H5uYmTp06hbIydcPex0qhikQiAIDm5mbZ35ubm7G4uKj5ntI7VJ6S/Mmf/An++I//+BC1LUlJSlKSkpSkJE+KPHz4EC0tLaq/f6wUKhIRIdrf38+LGhX6zje+8Q384R/+Ift3IpGAx+PBw4cPUVtbq/ktSZKwvLyM5uZmGI1G3b89qfLo0SNkMhlYLBacOnUq798LlV/EPgGKb7/43lH148OHD/Ho0SOcOnUKp0+fBvDhzMUPu1zxuWLqo/UOjdfc3BysViusVitOnTpVcL34vz969AgA2PjTc/x/a5WtNYf47yqVx/++vLycMzfT6TQSiQQuXryYt//U6kHfaGpqwsrKimp79PS71jo5qrWkVR9xvPSsK3pHkiQAgNFoZO/mG5+TaOdhRGtea821k9zrNzY2cPr0adTU1Gg+97FSqJxOJ4ADxMnlcrG/R6PRHARKfE9Eo/K9Y7FYYLFYcv5eW1ubV6EKhUIwm81IpVJwu905v9fX12u+r0ckSUIkEoHT6Tz2iVlVVaX4LbW/F1NHsU/yvXuS7VcTpfbrqZf4Xr5+1Cs1NTWoqqpCTU2NbI5qzbd8c7GYfs43//OJ1jf1rB3x+8XUR+sdGq/Ozk4EAgE0NjZid3cX9+/fR39/v+Z87ejoyPk9FArBarXCYrGgvr4+59t62qw1hyRJQiqVQm1tLSKRSE67+O91dHTkzM3JyUm43W7ZO2pjRPWw2+2IxWLs/yVJgtlsxoMHD9DQ0KA5FtRe8Rt61omeZ/TOaUmSMDk5CZvNllPfVCqFVCqlOOZKc4cfY3qff5farHeuHtWecRRCdd7c3ITRaJTVqb6+Pqe/j+L8K1byAS8fOS8/LWlra4PT6cRPfvIT9rdsNou3334bzz77rOp7zzzzjOwdAHjjjTc031ETumFoidPphMViYQrgUYgkSQiFQuz7kUgEmUwGkUgk57ejFqPRCLfbnbNw1f5OwtexUMn37mHKPirh209jEAqF8tZL7Ld8/ahX3G43Wltbi1Ji1KSQfqY+sNvth5r/hx1bWn92u73o+qitYf5wsFqtGBwchMfjQSKRgM1mK2q+it8qZv/QmkP8t5XK5v+mNDf7+/tRWVkpe0etPfR+LBZDJpOB3+9nXFSLxQKfz6e7beI3lNYb7Xn0bwB515Le+RWJRGCz2ZBIJHLq63Q6ZWPO18dutyMej8Nut8uep3aL75JIkgRJkmAymRT7h//GUe0ZRyHUNgCK/XrUe/VxnncfOYUqmUxiamoKU1NTAA6I6FNTUwgGgzAYDPiDP/gD/Nf/+l/x3e9+F3fu3MHXv/51VFZW4qtf/Sor42tf+xq+8Y1vsH//63/9r/HGG2/gT//0TzEzM4M//dM/xcjICP7gD/6g4PotLy/nfeY4Jrs4KfkF+iQoF0qitHnrXQz5DpXjUFoPIzQGAPLWS08f8M+o/bcoWgdOMaK1wSuVT30Qi8UONf/1ji3VIZvNyuoiHurF1EdtDYdCISwuLrLDm54lpcNutyMYDCIYDMr6RmstAChYwS5kfEWFifYMsb94lFXsT/EdrTHi542oQBWyN2p9Q9zzCtkD9c4vp9OJyspKRdRRVDT578diMTQ0NCAWi7H+4BEaLSV1d3eXPZOvzU+K0Ji63W7Ffj3qvfo4++EjFzbhrbfewpUrV3L+/lu/9Vv4y7/8S+zv7+OP//iP8T/+x//A2toaLl26hL/4i7/AhQsX2LMvvvgizpw5g7/8y79kf/vOd76D//Af/gPm5+fR3t6O//Jf/gteeeUV3fXa2NiAzWZDPB7/UCBLLZj6STB/6RVCcCwWy5EiKR+2FDIGevogGAxiaWkJLS0tMBqN7HkAuvpP7Ru8EhKPx9Hb24t4PK5Yb7EMvo20qfHln8QcVapDPB5HQ0NDTl2UlJXD1oMfF4/Hk/M7KVwANNFC3pxUWVlZ8FooZh1R2yVJwu7uruq7SmUX8r1i3i/UxC9JEoLBIGKxGPr6+mA0Gk9sD1SqK/83ALLftdai2KYnleaQr80nWZ9ivkvndyKR0KTsfOQUqidV9A7Ix0EOs5AKgeaPqw4ftqhtTjycL0kSwuEwWlpa4Ha7VTdrvd/gD9OlpSXMzMwwzlVXV5fiQSeWwR8MpNDo6f/DKg+8KNWBeDp8XdQOsUIOdgCy/xbNLZIkwe/3w+fzwWw2s/f1zO9QKIRUKoVEIqHKu9KSYrltqVQKsVgMJpMJfX19rN68ZLNZxXYVMt75Dl/6N8+xyqfkif01NjaGxcVFtLa2YmhoSFcf6BWt9tIcMplMOZyhQsoqdj19GKJHSX6S92S95/dHzuT3pMtx8ZSeZNHibxUqBGfv7u4eCrJ9UuFvPaJk9ohEIlhaWoLf78fS0hKMRiNDOOh5ek7csJTMP+I3eJNkS0sLnnvuOVitVly+fFnGN9IqQ4trIwpfJ56LovSdQkSpDmazOcfUqcabcjqdMJlMzCwlCj+vxP9eWlpCOBxmc3hqaopREvg+83g88Hg8moeKljmJl8NwhZS+mUgkmPJCJilReJMV/z3R7KcmSnNDbT6KHCstE7/IO7Lb7TCbzTKu0lGJHs4boMwZEkVtrfwi0DZIRLOdEh3gSW+DHikpVCcsejhURyUEa4t8jJMWLf5WMXIUNvUnjUN1WHE6nWhpaYHP52OolJLSpeSIoGcjo/5yu93weDwwm82QJInxi4hvVAiZXktEIjQpD7FYDKlUCpOTk0XN6Xx1IJNbJBJRfS4ajaq2lScUi0TilpYWtLS0wOl0sgPFaDTKDnQl5VaPwqsmh+EKiULcndbWVtYOpfpRu+12OyYnJ5FKpXIUzMMKfYM4Vkrzna8bgBzekcfjYU4BSu+ISqg437R4aFr7Sz7OkF7h5wD/veMkXesVJR6dqBCLfK+Pwp5cMvmdkHwYHCq9fIzjlifZtn8Y+UWrN2+KIQVIj7lAqZ1jY2OYn59HdXU1PvvZzwLIRb8Oa9pVQ9OOyvyn9J2FhQXWR21tbTnPq5naRH5RPnOOWjm8OYgXLXOWFv+mUJ5NMaJlHuXbmK9uSlJMffl3QqGQJmdNT3vUTFP5zIxHIcXsnSfJM9VjjiyG8/akScnk94TKSU4e8VZ8FFLM7UcvKsB7Pv0iyElC1Hr6Pd8zvCmmEPObUjv7+vpQW1uLs2fPIhKJqJohD4OGqIXaUPJw0iNK/SPWkRAjtb4gtMzn88nMV7xJlDfnhEIhVa89JZMdbw5aWlrC0tISK1NsL7WHD7Wh1B4tD8BsNovx8XFks1nd/cb/W8l0o9ZGNbOd0vzg27a5uYlr165p1pF/j0fFihHRrCsiJ+JY65mHxaJG+daQ0u+HRXoKqata/fLVoRC0+hdJSgrVL7jQ5Bddv4HHfAwiJR8FBPxRsHMXI0qbzElC1Hr6Pd8zhShRau+RmM1mXL16FTU1NZq8FS2+0UmLkslT5Erli8VF/SaaOHmTKG/OAR4rRvy4aCmM9D5dhtTMWUoHe745Kc5jv9+PRCKBkZER1THSMhsSAkR1V2qLmhlOK74X37b5+XlYLBb4/f68CiDPt3M6nQXHViPkBADjaapxAflx0TILBoNBTExMFKXkKcWk4kVpvAvhJyoJf8HN96zafDsphelJMG/yUlKofsFFJGcqLdjj4C4cpRJxHAElj1rU4gepbRr5FnqhG4Gefue5K0plF7vJ5Tv81cor1oFAvCTwlwUtBEKrTyVJQjabxcrKCux2O1sTYowpvX0kjocaEsQrRoWsGSVyusiJVDrY+XooXbbEvcDn8yGTycDr9eZw6+ibIgLFz7NwOJyXWyT+OxKJIJVKwe/3qzpIkLLldrsxPDwMm80Gn88Hv9+PZDKJyclJxbHWS9ZXk2LQJ/49cU6SM0Imk1EM8JlPxJhURyGFnAdKz/Lj+WEjTU/aBb+kUP2Ci0jOVFqwR6kEFbOA8ikPH/aiPA4pBqrXEj19pIaeFCNHdfMrZu6JlwT+siAiEErvqV0qwuEw804rpF6HIYWLilGx/UqK5OLiIkO79Jpq+f4TEQ8RaVRDo6LRaE7b6bC3Wq2y+F2iwqvklKIWGV5UdIEDpaK/vx9msxk9PT1IpVJobGyUlcmTz6kd2Wy2YPOfnnmhZmZTQmOJdtHa2sp4ZHqcDvSgeGp10SpXTxv5C67Ss0+SEvOkEdlLCtUvuNDmxrt+qz1TukUUL4WiaPkW+nGaw45ik9E7ZkommHw3WL1mBLok0P/b7XZIkgSLxaKIQGi1W+QTFoIuHuX8LbYsUiQtFotutEvpspUP8RD7UEv5EdEgUqaqq6uZwkvz22AwsP9W48EpoWGimTYQCLB8hrxiSKgXIVekSNpsNqytrcnWWT6aRL5LidhHSmZCvjxeoVYaf62/5YvSrzXn1bipepBlJcRTzzdPWj7ss02UkpffCcnHObDnL5pHhyhHXf+T9BIqVvS2+caNGwgGg/B4PLh06RKAg2jgi4uLMJvNGBwczHm/WC+k4/Re4ttLhxl9h7wje3p6VKPCF/MdvV5bet47zPfzReJWCnyqJDTuFosFfX19soCbStHoRVHypuMVcwDMdOZwOJDJZLC2tsa4Y6RAWSwW5lygFPSTvqNVJz39za9jKs/lcuXlL/Hl8sga/16x482/V4yHY0mUpeTl94TKk0KeO2rRQh1O4hZxnOTEo0bYiuVp6BG9/XBUZliHw4Hy8nI4HA5Z2bOzs9je3tZ1w6d3gsEgFhYWVOOmqb3H86sOY04j05D4HUJ1AoHAoedBMR6Veuqvt91Go5EdtiIXS+Te8SgJKZr5TFWkyPj9fqRSKQD6kxqL/U4KQSwWw+7uLgAwRMztdiORSCCTybBnCPUiThmh9mK8Jz00CeonLWcefh0nEgk0NDQwVEdJlJSkSEQ5/16xeyY/fwpB1T8scveTRio/rJQUqhOWkwzseZJCC5lcnU96gRynWfGoIW4lMvFRid5+OKr+8ng8ePrpp2U3YKPRiM7OTlRUVKgeVvkivSvVS+09nl+lN+gnv5HzvCwirPOHHvGOenp6jnQeKB0manMtHz9MiU9ESqYYtoH6emlpCaFQiLWXN3OpkfiVzFK8cka5I0Wemx4FhcYXkPOMeII6P/4OhyOH8K+kmKs5DGjRJKgOWuFcyGwPgClnWiZ8pfIK3Vt4c2WhSbTV5gPw4dEyPgp0EF5KCtUJS3Nz86HeP2qN/qjJx4C+dAridw9bj3wbyWHkqBE2sbyjHFO9G/RR9ZdS39DN2OVyFVRvPtK7XrI4z7nR4vuIQocbHSzEy4pEIjmHHiFU8Xj80PNAVORIAaQDMhQKKZp58vHD+CjZYnRyMWwDzycDHq9XvhyexE9KkBhril/zfFodt9sti2yvFiNLrX+o/kbjQfokCv0iKtK7u7swm82MnxQKhTA5OYmbN29qKuZ6xkavUNT8WCxWlEdroXsL72iQLxwHzfGpqamcFEj0nl7y+2FEq18/TD7WcaBjJYXqhOWwh/JxmZ8OWx7vJq5ngYi3NbV66J30+dCL45bDLM5C66ll5tKrrGn112FRRr3hEvjbNpko2tra8uax4+vLm0t4snNDQwNu3LiBhYUFzXaQOUnLVCMqLHq8tLTqzCswpACqHZBUPnGZlMxu/G+hUEiGDolkfEBOlObXK48QSZIEl8uFlpYWSJKkGGuKX/Mul4uZ+/i5xfednsMzFAohnU4zwrlSWAZxTHhpaGhAc3MzHA4HXC4X7Ha77vRb4jp0Op0wm82aHnZiX2sFYHU6nYcOD8ObK/WG47Db7cwBxm63y96jfZjWn551V+hep7W/fZik8uM4H0oK1S+YHJf5qZDy1BbUYYizWqaOYnO3neTt5zDcl0Jvh6KZ66jCM2ihjLzyo2czVQpIKM4b/ratB7nQMo+J5N5AIIBgMIhbt24plksoWl9fX05gT0JulJTUUCiE+fl5TExM5LSjkD6mNUIKoNYBqdVPVJ8f//jHmJ+fhyRJOdHJtZItqynWIvqjJfQdWv/8WCl5jFG9tUx/LpcLgUAAyWQSfr9fs968wuL1euHxeNDc3Ayz2YxYLKaqqIrCz1lJkjA1NYV0Oq24Doh7phYJXkQitTz2CuXAkbmSxlWtP2mO0xhSyBAxjAcR9/XWo9C97knyCuTlOOpVUqh+weRJMD+pLahCFhotdrol0d+UTB16zTj52nacUszizLfR6vlWvu8WUi81lJE3wxDZOJ+CG4lEmPKlFlRSixyspnzxPCFeeRd/9/l88Hg8uHjxomKgUzUejRa6JkkSwuEwS9A8MTGBYDBYkEKsxedRU3yIq9PY2Cgzu/H12d7eRjweV5zzhRzYIncK0A4ZolS2yK3i0SHRJCkK/y2KOdXT06NZXyqP1pHb7c5BZFwulya/CZAH0aQ2xONx2TP8PNPaX0QksthYUnpE7X01pFB8hlBFvfUQy8o3v9QUzQ9bjuN8KIVNOCH5RQmboMc1XQ2JKgahOsz3jkuO6nv5ytH7nWLqc5R9Fgo9TnJL0aopOTHxbfjvSJKEiYkJNq5NTU0wGAyIxWKw2+26UA8lF3r6jiRJGBkZgdfrRU1Njex3JRf/fGEB8s1jHnmhQ9ZgMCCTyTCej1a5xY4F/x4ddnwbaFzi8TjzslQ6JApZY2TekyQJZrM5bxgAKptPBg1AVhbwODk7P5fyRTPXE87B7/ejuroayWSS5VckUQqVoDSf+HlLf6PvA8WFMyjkOa0LpdK8pv6lv5EHqs/ng9lsLqgeYpuLmaeFhDM5ztAnwPGdFXrP75JCdULyJCtUR7GolMrSa48/SWVJjwSDwSOJ33JUm0cx5WgdXBRXSWkDBvIrBHoPelLAYrEY+1t1dTUGBwdV6y1ygoDcg2Z8fJy5zA8PD8sUKKW+UptjehUtNaVBPAh5pUTrMNeqkziG9J6a4qpUT6X2aB3a/LfIay0cDrNgrVarVVX50VJKlcx+eg94tfEnRIr2Uvp/3qFAkiTWZ/SuGEtMHKPjED0Ku9L64UUpZhYA2d+04mkVepk4ynYe9tli5LgUtpJC9YTJSSlUx4US6ZXjvoGchOQLTKlXTgrpUnuHDh6KzUMyPj6OZDKpqtwUgmgoIUJK9VVS4pQUNb7OABQVkWAwiFgsxoJHqiEPgPblQK+ipbf/lRQvNSXisH1c6PP5vifWMZvNYmpqCpIkoampiQXL1NuXhewDIuJE+6SSkqCkrPP9HAqFEA6HZcoHCR9gVBwjknyXDa36K80jpUuNkqKsNsb5ECpS4NXMV4VeJvS27UmVo0QQ+We2trZKgT0/bkIH0ubmZkEk7qMk5z2pBEQSPTZ8t9sNq9WKhoaGHJJtIVIMn0XpdyoH0Cbzit9WSu8BIC83Rc8YavG/6KCivgPAlFP+kBI5G5FIfq+pSCSC/f19xjsSielavCqlPlLqV/G7WjxD/r/pPT3xxZTaJo49fTcSieQQ4Un41D/0vFLaFOJh8Twi+h55WfIHdCwWQ1NTEwuBAGiHQ+F5U4U6WtC7vDJFSFJDQ0PO2BARnPhvNH7AQVy0wcFBVmcipAPyAKNqY0TJl5WI8Fr1V+IVqvE/+bHXGjNAmevH/81oNGJ/f5/9XRQ1RYvqwPMLtfhwevhdx8GPKrRMvbwoPe0qhttWQqhOSE4CoaIb0dzcHDo6OnKQiZJo38zU0A01WF6PKUWUfOZENZRDrLuSCUiPaCFXhUi+m7weM5cSKqJUpl7USQ1ZyofwaPGAtL5jMpkQjUY1+zJff/NtIxd2i8WCgYEB9t1gMIjx8XHs7++zIKo0927duoXKykrYbDYMDg5qzkmxnWT2UjIdifNLz9jxiJbYVi1EQGmcaM3pSQ+jZr4T+0IcU6U6pdNpjIyMoLu7G21tbbppC2pjfBRcKj19VyyCxK8Z4rzxe1Mh3z4O68RxWTxKCFVJ8grd3oaHhxWRieOW47ihHLVooS/8jYS/6ai9E4nkBk08qvoBuYgAX49ibk9UZzGKdTFSaJJd+jZfZ/E2GYvFWEwmtVuy1g1UDVnSSnTLvwc87nP+myIiJUkHQS4pGOfKygr7JiFG6XSaoTV8FHYtj7hIJIJYLIZ0Oi1DOwhNcTgcrC6kfG1vbyOVSsHn87HyxLha9A6hRtROSZJkEeD5JNS8Aqt00ItjSfG8dnd3FeeW1nxVQmFoTLTSw1CZgHIKJx6BJKWU9y5UqhOFEAiHwzIPVS0hNFiMlK62H6r9nYKEUn34sc7Xd4B+9JqXfGi01noT++84rBPHZfHQMpEqcf/0SgmhOiE5aoTqSbRtP+n8qXwkURHJyNfHxSBUR3FjLaScQr5/GHJpoTc+Jb4VAMWbfqFt1VM3LW6K+N+h0OMks0ajkc1xUmpaW1sxNDQESZJw7do1WCwWZDIZdHV1yVAvJaSTR1kymQxWVlawsrICr9eLdDrNuDciGmMymRCJRJBOp2G1WhmipYTm8QiO0+lEMBhkh2B9fT2SyaQqxwfI5bGp9bHe+cr37WHmbr71TH2+uLiIaDSKxsZGGcFeCWW7du0aqqqqUFVVBZfLpYp86eEl0fwAIPMEVdonlfhWWmi1KEeFXh9mnX3YchT1UTvDSqT0J0zUBqTYSVAscfaoJN/h+CQsMFHUFkuhfz8uEQ8lNVOj2rtHsZnodWk/CrhfNJWQ8gLoV1DV2pGvLkreU2rP8mZap9PJzJIAZCbKUCiEzc1N3Lt3D11dXTkxrpRMUPRvp9PJ0JFMJiMz2/MHJCBX+rTMiUoHMvGxZmZm2Htnz56VKVW86ZW4aPkUZb3jls1mWciLysrKvIoCXzYhRxSVXel7anNKD+LAe49evXpV1tdaihP/bSUlU+TEKZWrpHDqdUYQ3z/pfUOvHOe3jorKoFbHkkL1hInagBR7aJ+E/VpLnlQ0qhgEptC/5/utWBFvtLQ56tlYj2I8CtmURC5YMbfbyclJFkOI3N4LvWXrRZ8OA+2Lh5WodNLvFA+osbER+/v7TJERuUEUO0qMZcUrlKRgKR2QamgPgByFTalvxsbGMDU1hbKyMrz00ktYX1+HzWZjiFQkEkF9fb3ugykUOojWHo/H0d/fL+MGiuPDKy0XLlyQIWdKbSKESZIkJBIJVFdXI5FIQJIOgnZ6vV5FL8B4PJ43hpYoap6oauEx9CJlxE0C5EiVmiJ62LVcyFo8zCWqUCkEcSumbL3tKEb0KlQlDtWHLMXaiMVD4DhszVqcqOOybR9W9HKL9ByohfAHjoI/5nTK867l4wDx36TxUOLp6BXigtDNXosDIuZY06OU8DwkUZkixSMej8Nms+HatWvY3NzMy2PhOUjieNJhTIeWWBdK/ssfZErfEfl0vOcWtSWVSiEQCMBmsyEWi7F4TuS9trm5iWvXrqGhoQGJRALZbJYdmnxeNTp4yYORFDU+Jcr4+Dju3buH8fFxAI8PY5HTx9dbPLybm5tht9thNpvZmAMHXnHpdBpzc3OytEFaQnOvoaFBdXxo7vp8PthsNgwPD8PtdsuUKSX+Gq0Jk8mEmpoabG5uoq6uDoAyb8rpPOCROhwOLC0tsYTTNO/Iq5GP4E5/NxqNOZ6ooVAIN2/eZPnuxPmg1Eb+3cXFRZab0OFwsPrSvFlcXMzhYCqlbRJFa20WovQ4nU6sra0xzp+W6N1btb6lxA89qr2TTwOkV47i27yUEKoTkic5sKcoIl/jJE1eh0V9tMrQww0p9jtHjdjp4ZyocTGOO6ZYMbdBse+14vPMzMwwjtDzzz+P/f39vPGTlObqwsICJicn4XA4WCJgo9HICMo7OzuoqqrCyy+/nBPPSiyf73seyaA0NHwUeTFytyRJuHPnDvPG6+/vV0QmRNSP+oNMgcThmp+fx+zsLDo7O2UIjZbpTeTY8EgYTyomhaYQhEqtn7T+rvW+JEk5SBH1jcvlAgAWh0wtVtTCwgJu3bqFpqYmlJWVyfhvKysrePToERobG+H1egGo7wVqMen0rE+q88rKCjKZDDweDy5dusTGQw1J02uyzhfjSs+84OuZL5DxUaHyH7Z1hRe9qFkJoSpJwUILjyYZoHwLPC45zA1IDylWkiSWC+2wCJsWQqj31qP1HN8XauiPUhv03G7zCdVLREZ4NKzQ2yBfV7X36ZkrV64gm82itbUVgPYcpL7h0Q7+N6PRiGg0quiJGY/HEQqFMDExoRo3iVAG/vZOHo6kLFksFhYXyefzYX5+HlarlcUy2t/fx4ULF2Cz2dDT06N6KLnd8px51B/k3UdmzNbWVnzqU59Ca2srGhoaZHGoSHGkuol9Sx58brcbHo8HkUiEISWUOHdgYEDRS1iSpJzcfOI4qPHFRCVLnPf8+7wHKT3rdDpZol+z2YympiZVD1Mqr7GxkeXlE1HcxsZGhgJqrRm32w2v15sT4FdrfYp1Pn/+PIxGI/b29libaQ0MDg7mpGJSWtciwitJEtbW1jRjXPH7+dLSEubn53Ht2jUWAR8Ai0FGSp2W5EOh9Ype68pRo0dKooaaFSslheoJlKOcSIWURZsEAN0BCo9SDqPk5FPGIhG5O/lRbQ4kfHl6FUOt5/T0hVIblA4jfuz1zAeqVyAQkCWLJbOVJEkF9x1fVy0Tq9PpZK785eXlis+qHciEsNDf3W43+vv70d/fD5fLxUw9TqcTg4ODOHXqFPb29hAMBjEyMsIO1Hz9w2/CYoiCWCyGjo4OLC4uwmazAThYSxRwMhaLYXFxEZOTkzljL7aV/u3xeGC1WlFfX8+Unra2NrjdboyOjiKRSMgCUSopgUrmY1LSbDabLOin2viIJkUtUTLFir+plcHPfXqWAsgCkF2MeBGV/s3NTVRVVWF9fV3WB263W+btpxUCRGleiXVUazvVua2tDR6PB/X19Swchtb+o/Qb32ekINElgFeyeNSMTNEA0NLSgs3NTVgsFtlcmZqaYsq03vV81IqO1nw7CiVHz7eVLmTFSEmhegLlsBOJn/CFlEWbxGEUKZ6nIHIX8i3AYpQcKjtfZOaT5Hzp/ZbWc3oVCfE3vh+UeF60yWrNB6oXHwPI6XRifn4+Z0NWksNsuFRno1FO1M53ICu1jRCbtrY2mM1mhMNhGb/o5ZdfxlNPPQWr1craJZYtokZUrtomTMgDxYJzu905B7IkSdjZ2cHKyoouJJG4bSaTCUtLSwxhCIVCqKyslMWhyieiskKmPTKH5ZsXPMdPjLmlpHAAyIkino/vJ3LW+GfJBKdUT37sYrEYvF4vwuEw2tvbGfcsm83mKFBO5+Mo8vy+BaivGa29SlzXNH7JZDIHUdIrSnsFKfK7u7s53LNIJILq6mrMzc3B6XTC4/Hg6tWrsNlssrlCPLpCEO2TUHSAk92ztcZTkiQ8evRIVzklheoJlMNOJJHUqbesQg9xrW/7/X5Fkmmx5eb7nlIKFP4bR41I8SK2Re+3lEjDSiRTPcqxUj+IY09oRL6gnlQvMd3F8PBwzoasVFcyGR/m4CCFRS2NilLQUJvNhrW1NabE8/WSJAkulwstLS0AHieXvXTpEj7zmc+wdokHOKAeCkBpnPm+I6WF7w9CR/b397G7u6tpthK/tbq6inQ6LVNojUYjmpubZXUQlUBxHVC9SPne399HbW2trnnh8XiYiWpqagoLCwt48803VdE2p9OJubk5VFdXIxgMYmxsjKGEkchjpwGqYzqdZooPleN0HoSqSKVSiEajiMfjOReFYDCIdDrNlFSn04lkMolLly6hqqoK0WiUceqUxpgUE37fAtTXjGiCy7f+SakqNuAyX6bb7WbzmL9AiWb1jY0N1NTUsLaYzWZ0dXXh29/+NpLJJIDHqXoKSQJfzPlUzH5/nHt2IcJbbvJJSaF6AkXNJq93MvIT/rCTstDbiBq6IS5AJbNEMaIHej/um1Qh31EbS7Uy9CrHajdYkatQjCcMiVI+PqW6AnLeU7GmR73t4tvmdDrZjZ2v1+7uLsxmM+MY8WXy7VIyjRUr1B+SJLF4V5FIBD6fD62trXC5XDnKn5JQX/X09KC6upoptNQOMq2JfUqKxsTEhGKEcDLzNDQ05AT3FL+tVEdCNyiAKZlU+WfJBJpMJhGJRHDz5k1MTk6qzvPR0dGcXHq8UkMmXEIv6felpSX4/X4W4Zz6mTz+HA4HysvL0djYyNYSP8bivkXKlt1uz1kzImolrl0+vyIvWvu6ngsVz0sjBZC/QPHKMgAZT4/e/c53voOVlRW8+uqrOXXSa10o9EyRJAkTExOYn5+X7fd62qxXDrPH5BMebc0nJS+/E5LDePl9mF4QvF3+KG8Kej1LDlO346r7Yb6jNpZqZWiVfVLt0ytq9RHbTAeSUryrw851pTrk+xugHWhRT9+Kz/ObeSwWQ319PRKJhCyIqN62Knl00fey2SzC4bDMi43PzZfNZpHNZpFKpTA8PAyj0Zjj4aeF4IZCB8FK5+fnceXKFcTjcVkbqc2ENgFgdRH7dmFhAaOjo+js7ERbWxtTavjnKJYXJUfWMz5Uz1AoxDw9m5qaZGRjCmMRDofR0NCQEzCVb4/dbmeJmtUCpvLjIUlyr8Tx8XEkk0lYLBaUl5fryndJ9dQKLsw/Q6ZwIDeGFe91KsYy29nZwY0bN/DKK6+gurpasT58sFu1eoljoLVGQiF5nDLeaYL3zKXyxL/rkaP0eFZqVymw5xMmh1GonrSDU4+chLJTyIJROvAOe4gW8w653PMHRrGK0oepaOsV/lZNGz9t+mtra3A6nTm39pOY63oOMz2idghQG+fm5uD1elkYBaXURnoCkPKKAK+MKSV0pvLIo4/nSvFtBZA3mXo2m8W3v/1thvx1dXUpBl7lxxmA4oFIlyij0chMVVphAbQuHpJ0EFFeSckU0wnx9RLfUfomxUIjpYTn04ltpbHgL4e0xnd2dpDJZFBdXY3BwUFZ/UVFkZQycV/QUvzVQiQoXVYoebXdbmcIrFqqLXH+8G0X+0tP+BS1/nK5XMw0zrenmMCfR7WfU7vEfi0pVE+YFKpQ/SIqUbycxGGvp4/UDjwit1osFpYHrZg6F/qO0i1Q6QasVabawXFU86WQgx6QR/VWO6T4ttCBU1dXh2g0eiiUUqneevqjkGe1RO0QoIOturoaGxsbTHFU+pZ4MPHPELJACIte0ws/hvyhyJcNgNUxkUjI4iHx62ZzcxMTExP4lV/5FczMzKCxsRHxeFw1VlU+tJU/sNVyZ6qNCR+PanV1VVdUf70HtdK855E3pXx8JpOJKbz9/f1oa2tj5SlFXufXA6+UkpJBorYm1MaVb4/ad6kdZrOZIZhaaZf07EPFpHu5d+8e3n77bbzwwgs4e/ZsTtuUlPST5FIdBqEqcaieUDlK/s9R2ZILkWKIiyR666vHlq/G6wGQQ24tps6FvqPEMdNTJt8nPAemkFANenkGVJZI0OWFeCvEXVF6TpIOvKaWl5eRzWbZN3gvKwrvQM+rxTnSI3wfRCKRHO8yXvi5ozSP9MxB4piYTKYcz1giIdfU1Mh4XXSwUTuDwSDsdrss+roab47iafn9fiwtLSEajSrWl+f4TE1NsYNabKvRaITP50MymYTD4ZBxz/h1k06n8cwzz2Bubg7ZbBZvv/02UwD5OFhKfavU54RKTE1NMV4N1XlzcxPj4+OMv0RKHd9OIvL39/fDYrEocrd4oThTvFKr5S3LH6ZO52PPRrvdjoWFBYyNjTFFhPqdj3fF15Pik5Hw46m0Zg0Gg2KdxLXv9/tzovwToT8UCuWEgeDbQXuP1h4k1lVJiiXax+Nx1NbWIh6P55THzxtSZicnJw/NtS1EDsM7/tgpVGfOnIHBYMj53+///u8rPv/WW28pPj8zM3Os9TyMQiLKUSpneuUwk/Io60v9KB54brc7h9yqVmetw1VPO/n3+UNF7VtKN3O1Q1Zsp9Z8UepXpb/pVfrEDVp8LhKJIBwOIxqNIhwOs2/wgRTtdrtsA9Ub50jsV7EPnE55ihi9QmXm81QkBYBCPCiNP421SIKXJAmBQACLi4tYXFxkaEJlZSULokpxluhQpwjsNC4mk0mWLkRUJsllnlLhqCkbpNwajUZZLCp+3dChSYhHe3s7I2oHAoEcEnm+caK+o5QswGOF4N69e8hms6qKOpkLqc0AZOEwlL4nhkmgvqJxpueU5p/R+DhYqt/vZ0FQA4GAbP1ubGzIyhTnjxLawq8D8swcGBhgSBhdMMbHxxkBXmltUnuI0B+LxRQdOchDk/YetT1InL9qFw29FgJx7Ck4bV9fn+qcAbRTGqmVf5RSTNkfO5OfuLncuXMHn/70pzE6OooXX3wx5/m33noLV65cwQcffCCD+viDQI/ohQyPw9T3YZoPT4KXdNx1Oqz5spD3tUxIh+2Tw/IMCjGx8vwVXpHU4kpks1lZqph89VHjkOQzG2mZFoAD/k8+85Be/ohS//BmNoPBIDOdqZFrxW9pJacGwFAjk8mE/f191ef4Q54OZq15Kvadknkp3zgpceh4Xg31pZIpWTThkymU2iCa7smcxv9O82xvbw9NTU2s78WLD32fSOrV1dWIx+MwmUzo6+tj36LvVVZWykj1VquV1V3JCUfJWUPkSFFiaD4QqdqY0Le1xuKwUij3UByLQk2E+fYcvfSIw5jzLRYLampqSiY/JaEYJfS/H/7wh2hvb8cLL7yg+R4ltqT/HaWyI96SjhpNOgxadFgppj35uCGHvZEUWqfDooVOp1N2++dFDWUB5KkQjmIMlcoopFw9/cY/Q7diihTNH5RKqCEhCaurq6rlU3+RCVGMmC1+n27wSiZN3rxFyASQmyVA6ZZN33Y4HHn7TTyoyRTo8/kgSZIswKca+si77lM9+KTKwGOFwWg0spx39BzPn+KRLD7Sez5Ts1I/kFmLFACldcmXS+VYLBamlIimUxFJUeLTEOrHPy/OL5GbxM8z8o4khIjKpu9mMhmMjIxgc3MTIyMjjAvncrnY/k/953a70dHRgYGBAeZZSeVOTk7mhE9Q6xcxgCihwK2trZpKO40dedGJyhS/Zvj/z2fOVjK/iygwX3+lMkUTp1ocPLXv0f4EIGfukVlYa2/OZ/rXkmL2/Y+dQsVLNpvF3/zN3+C3f/u3FW3XvFD6ipdeegmjo6N5y85kMtjY2JD9jxc108JRmvqeBDnq9hyFwllonUSlQ+uQUXvfaDTKOCpq469mJtIrxwmB68kTqKdv1ZQ4JTOd2oWD55Dw5YjKq5ZJk+rImy9FJY//Jm/O2d3dxerqKjKZjOJmrcR7Ecc4EAhgaWkJy8vLzBylpAQqcUuoPteuXcPm5mbOenC7DwKINjU1yfpI7UBUGxdRAeNNYvxhRU4eItdFRAh4JY4SS1+7do2ZAP1+v+LcJbRGjUvDH8jUflLEotGoTImgOQIcXJTFmGM0D71eL+bm5lBVVcWUADIvUlk8fw6AzJzl9/sRj8fx7W9/Gw0NDSwiuRJqS8oGH5iWN9Plu/ComTH538iEqsWN5N9RMr/zdRZRZzFIq9hG8WKg53tiG0SOX76AzsWa/sW26pWPtUL1ve99D+vr6/j617+u+ozL5cL//J//E3//93+PV199FefOncNLL72Ed955R7PsP/mTP4HNZmP/O336tOx3Hs7Nt6n9IstRt+coFLTD1kk8ZPQoeGK9edKvUnv01vEkEE4SPimwmkJ5GHSR0Bue5CreMOkwbGxshMlkgt1ul91saaMnRUfpBivWUe3govqSR5QkSbIx8/l8qgogryirIT+NjY1wu924ePGi7Jafj79Fh0Q4HMbm5ibGxsZylFylvtQ7VuKBxCtgLS0tLCCpzWbDu+++i42NDYTDYUiSxP6fRFSE+PLsdjvm5uZYOAeiRZAyqYSGkWJEfRQKhVjw0sXFRabs8O8aDAZEo1EZcul2u2G32xGNRnPmCI8iXrhwAeXl5cwDkhRvADmk8FAohP39fcZPopALTqcT77zzDjPJKY0tOSbY7XZ28VJDbdTmhBKyzf+ml4xO7/BjXcgFTdyDRHRRaW/gLzVK9VK6BKmhqfz6UVoHxykfOw4VL1evXoXZbMYPfvCDgt77/Oc/D4PBgO9///uqz2QyGbb5AgebxenTp5kN9igCWx6HHDd/6aMgeng6Wu/o4UTpHYd8PIyjFJ6/QvF8yDtMi3Mk8l4K4aKRKYTnXfCcIofDwUw6PJmXf4cQH73cMbG+xLsU4+YolaPED9LL/VDjlin1CZluAoEAbDYbvF4v40jxhxcgD8HAhwBQ6heqhxY/jOo5MzODzc1NJJNJfOpTn1IMY8CHORD7LhQ6CBp679499PT0sPhIVC++f6gck8mEpqYm1kfZbBa3bt1CXV0drFYrM3XS/GxsbEQ4HM75vtK8EseT6kh9ya9bMbRCJpOBwWDA6uqqjMOUTqcxOjqKy5cvM4VJKWQE9SlfRiQSweTkJBoaGuD1eo+Ec1To+3r5n1p7YrEcVD1t4Z+hcSgmjlU+KYVNyCOLi4sYGRnB7/zO7xT87ic+8QnMzc1pPmOxWFBbWyv7Hy/k1VEMyfk45TgRjo+KqMHeWgiMiLTkQ6CUxkGpfJHHoFe5owOZvwHrQZDIvLG2toZ0Os0QViD3Zkzf4rPeGwwG9m09YjQaGRLE84wIGQKQc7MVb6VKfcn/TewPStUCHKxj4knpQQ2pblVVVbhz5w7rSz4diSQdhJMQkyMrccuUxoTMZmazWUbiBg4UAPJEExFUEXXgUR6eWyOGceCFnjEYDLhy5QrOnDmDT33qU/B4PIpIAO1zhBry/W2325FMJnHu3DmYzWYZZ0pEIKicvr4+Zq6jed7Y2Air1cpy0rndblZ/o9Eoi9zOo5JKCB6fIkXkmPHzhlemCOEyGo05CG48HkdXVxcSiUSO2ZbfD8icDkDmkUjhGbR4SrwUir7nQ7j1WgSU9kQAOTwnPW3Qi9SK9VVaPyctH1uF6lvf+hYcDgd+6Zd+qeB3JycnZaTPYuRJNe0dNefpODk9x1l2MaJFgCzUlq80DkqKAc+50bMB8eVQPCOeE6Pnff5wysf54omobrcbq6urSKVSmm72gHxsRbd3/jBUIiXTM2qHM9+/RBymOi0tLTF0g9rl8Xhk6Jd4ANGYZ7NZRCIHOeQWFxdhMpnwxhtvIBgMYmpqioUXIL7Io0ePVPkp1AciUZkUX1Iq6uvrYbVaZRezhoYGxiPjDzMybZrNZuzu7gKALGL6yMgIUqkUI5orxXiiJMWrq6uwWq24dOkS3G43m/NqTg92ux0zMzOw2WysTfQdJXOM2v5Ic47MYm63G16vF4ODg4rKEvXL0tISgsGgpsmT5j8pNvwcIYUzm83KoojTvCE0UrxciLxD3tTP7wd8+ArexGq1WmUehUeR/5SXfArUYc4pJZ6Tnj0mHx2CF76+hdSVv0Qd5RnysVSo9vb28K1vfQu/9Vu/JXO7BYBvfOMb+NrXvsb+/Wd/9mf43ve+h7m5OQQCAXzjG9/A3//93+Nf/at/VfT3nzRFgJejVvSOE/Eqtmyt/j/M2GgpTYXa8pXGQU3ZLWQD4svx+XwydEdEu7T6QURY1eaNSETt6elBKpVCV1eX5hhQkMeJiQnm/q/Fg1IqQyTGArlhHGKxGIvZREl+W1paWMRy0eQjzjniAVVXV8Pv9zOvsMuXL2N3dxc1NTVYWlqC3W5niY2dTifMZjPq6uoQiURUN/VI5CCe1AcffMAOcz72ldPpxNraGhobG9k7hC6RWVaJtGu327G8vMzQA7fbjZWVFWxtbWFlZYX1MwUS5YnCPp+PtYP6mFcW1SQQCKCyshLvvPMO628KPaNnv1FCItQOUTWkNl/Ca6fTyTzqeAWVv4AQR4yQtrW1NbbelS4X4mWAR1FoP+Bjj/HoivjucchRKlD5ylb7m9p7epCmYuvLj+lRnk8fS4VqZGQEwWAQv/3bv53zWzgcZp4iwAHE/Ud/9Efw+Xx4/vnn8Y//+I/40Y9+hFdeeaWobyvdOk9aTlKhO2rE6yjK1lLEDqMAqilNWqTMQsZCS2kpxmvRbDbL0B2+fOoHJa8hrbrkqzOZQGZmZnLQPB7qt9lsmJ+fRyaTQTgclpldSJSIy2TCVELrlMbW6XQimUyio6MDMzMzaGpqgtlszkEEeDMV39ehUAjb29tYW1tDT08PxsbGYDKZMDMzg6tXr7K+pQOUDsfBwUFUV1ejvr5edVOnutlsNoTDYRYLiZSRWCyG3d1dWdDUQCDAAn5ev35dMShiLBbDo0ePWKBKo9GIsrKDo6CsrIyNv81mg8VikZlTzWYzBgcHYTabWX/yyiIvvJmTFLErV66w/tZSFERCNo8WaXHfiKTOIzm8uTBf5G9+PYgXFf4CAhygUPv7+zkhUbTQUSXTGCl6fOR7Gn8ls6cSTaTQPV0PUfywooS46qEknIT1hr9UHuX59LEmpZ+kEKltenoaRqOx4ICARynFkAQ/SmR1rbboCVRY6DdEgi0vR+mcoDSuxZLflQjohc5XpbJ5Uu/U1BQymQxaW1vh8XhySNl6krOKASOJdK3Em1EbWyWisdEoD8ZIHCA+po7T6WTeZUTyXlhYwMbGBnN4IeL1/Pw8uru7sb+/n+NAoDdnot1ux8jICGpqahhJmfeeI0Tj9u3bePToEQtGSIl5+TLHxsZk+efEpN1qddLrkCFJEq5duwaLxZJTh3xzTolALxL3ldYS/UZOBHrXlNo45HNcIFI7peAplgytRpAvRNT6Ra0NxZDND7vvF0tOfxKkREp/QoVIvMUoU0eFLBWD7OhFbo6qjkeJoollad2Ajgpm5/tLT/ymo5B8vCs1grPSuPLmCzUzZr4x0uJ8EQ9FNEXxOddE1Cxfe4l0rRZPSmls+QNDTMXBIwL8t/h29fb2oqqqCr29vQAOEJ7m5mZWhtPpxPz8PCwWC6LRqKKrN39gKc1VQk3i8Tjq6uqwvr6e8xuhHPF4HENDQ/jc5z6H6upq1NbW4saNG8wJgL7X19fHCNzAY+QpFosxQrtSv/OcMeojpbGJRCLwer3IZDLo6enRtf5Esx7FiEomk1hYWGB5D/k+5FEwmj8+n08RyRFRL3o3GAwqmn/UzInUFofDAYPBgO3tbSwvL7PLB89307uH1dXVYWZmRjPNilIdSPLRAZTQTz1ngF7elp626vmmOEbHIcdpoSkpVCcsSsEI9Uo+pUbvRNEDqYpl6V2AR8WZUiunmMVQSJ2OykTJl6OlpB2lt2c+3pWaySufGYQIyrxZA8gfhTjfJm80GmVtV8u5pjZuIjcKgGY8KaWYVFoHhpJ5RjTjkAkzHo/D7T4IpllbWyvz5hweHkZNTQ3LtkCKE3nj8RwlrTYTx+fixYsAkBOskm+b2WxGS0sL7t69i2AwyPhNVH4gEFBULsPhMHZ2dhiJm8acJ2XfvXsX6+vr+MEPfoCFhQVFDpjT6URNTQ2uXr2KeDyuOE+09hij0Yj19XVsb2/j+9//PkZGRrC4uJjDCfP7/Yy/Jc4fvnyl/p6amsK9e/cwOTmJlZUV9PT05F371H+Tk5NYWlrC9PQ0wuEwlpeXYTQaZe/r3XcikQgCgQC2t7cRCAQUnyFFY2FhgXmhajk00DvEzRJ5kTSP6aKlJTxardWGfBHJ9Zw75LChN59nvnqrcROLVXzzSUmhOmE5zGGd7/A7SgK4WJZeu3axColeBa6YNhZSp6Oy32vxKI7je8XWQ4nnIG4upFDs7u7KOFVOp7bnolh2NpvFjRs3kE6ncwi4gL7gfST8Ia/kCce3gZQmNdRFLK8Q13SnUx6Z3eFw5ASoJDPS/v6+THGy2WzMTNTQ0JDXxZwQKaPRiKWlJWYyJUK0eEA6nU5cvHgRHo+H8ZsIxenp6cnh/kQiB/ngtra2IElSTkT0kZERLC0tQZIk3Lx5E9PT05icnGSef/xhyvcREfetVqvsmXx7jM/nQ1VVFTweD+rq6hTnQldXF4LBILq6uth8AeRei9QG6m8KCGu325FKpRiyFAgEVGkAhILReO/t7UGSJHR3d8Pj8eDixYt557OaOJ1O9PT0oKKiAj09PYrPkKJBKJpS+hZeSIGkiwvPCaM5osbl5dcCcHBm1dfXa+65vHOGnr1ZTYnhUWalNVCI6EXnjvLcLHGoTkj02mAPI0dp7z5pztRhbPpPAr/rw65Dsdwvsd75uBiSJA/OWUi7x8fHsbCwgPLycjz99NO6UDm18eb5K/T/fE45paCQfMwmEdkiBWJ9fR1dXV15uSwi34fMbSKXhn5TS3ZN/an1rjgWCwsLjO/EJ+DlOWgkhJAqjS8AFsCTAknSOxSHicyvRIinYKoPHz7E9PQ0zp8/D5fLhZmZGbS1tWFra0tmsqU+TqVSmJubQ0dHB3PaEPlfWhwyQlVEhXh8fByJRAKpVAoXLlxgfUf1TSaT6O/vRzabxZtvvom6ujo0NzfL6kBKL5+kmh9jqj+fRDmVSmF+fh7Dw8N515ueNRIMBjE/P4/NzU3GvxPLCAaDrBwehVUqn+rMrwtxzhK378qVK8zUzs8RpTmpxi2j7ykFtFUya+vljB2Gd6V3b9LzXIlD9TGUo0Q79CAXRyl6b3NKbVSCcI/CDq/UZr0w8nGKUh1400ch5SglZNVKhcO7hPN/V+OZ8OLz+dhtnt7XGiu1WzShDaQI8ME3qQ08+uJ2H6QMiUQiGB8flwW95NOHzM7OoqqqSpZPTU1Evg+fDodHKqg/RfRC7E9qBwBZuXwcJB79sdvtLPI3KWY8QkNmExE94vl8PMJIyEc0GoXRaITZbMb+/j4WFxfxxhtvoK6uDpWVlRgcHERbWxvOnDmD8+fPY319HeFwGDabDYuLi8hkMjnmGqfzIHTG8PAwCxPAoyeU00/JXESoHCUsFr1CGxsbkUwmsb29jYmJCUxOTiIUCqGxsVEWUoK8H8PhsCxkAyXv7uvrkwWPBQ4Oc/I0pXqT15+Sp+Jh94a5uTk8fPgQU1NTir+vrq4yL1SqHykDYvkUPsPn8ykqqZIkYWNjAx0dHTnpcGge0Zzk567amqQxdjqdspylSu3n168e9I7fbwo5h/TuTUd5bpYUqo+RHAd8elTlH2ZSK0G4vB2+2HoptfmwJM+jEKU68PGBCilH3NjyjYPa73wfq/WR2WzGpUuX0NbWxt7X4kyobbziYcHnaaM6komSzGH0b+Cx2V0cs9raWmxububkU1MzTfB8H6PRiP39/YL5kdSfpBwBYJwX+k2Mn8Tz7vi+pudJwXO5XDn5BiORCAtASvy4ysrKnOdI4djY2EAymUQgEJChEU7nQdDJjo4OWCwWtLa2Ynh4GK2trar52NTGVcl0LJpg+ejtZHYOhQ5y57lcrhz0JBwOszhak5OT6OnpQUtLC8xmM7xebw6fke8X/tuzs7PY2dlBWVkZU375GFL8Qc8rGvy84ecKbz4kobnV3d0Np9MpU+rowjExMcEQQj4YLYUIMRgMsrr4/X7Wn+K6pMTiVK+6ujrmJCLOSfoW1ZfGTu3S4XQ6c7IhKJnyxSTJWnt0vr2lkP39uC++JYXqYySHmUx6FIaTRGl4EQ950Q5fbL2U2szf8POZI45DaBMTA13y8YHE59U2G6WNrVgRERu9yqU4VuJvIvoEyMnrkUiExWYiHpJ4iAFg3KSenh7s7+/njJnRaER5eTmLVk0Il1I8K0B5zh2G86fEeRH7gRJBk8cb7/XGR/P2+/2or69n6I/P51MNKMu3w+FwyBwYJEnC+fPn4fV6WUBSno9GCYQHBgYUY5mJfUAoGACmxFG/KCXF5t/ho6oDkMWH6uvrg9frRV9fH1MKSJmksA2xWAzl5eU4d+4c1tbWsLS0lKPUULiFYDCIGzduwO/3o729HVtbW6wMMjuJJiJRSSTeGe8NCQDXrl3D7Owsrl27xtYyKUe0hikcBikQFL2fzJeRSATJZBLT09MsmOzq6qpiXaiv+HXJI090IaH2izIxMYHx8XFMTEywuaiERNF4xWKxnGwI4pzIZ2XgFVr6Ps05pXVWyP6u9H4hloh8UlKoPkZyGBRFj8JwlCiNOKELhXp5by8100m+MpXaLB7mWiEJjqrtvPBmKj1KkNZmowdt0isiYqNXueTHCoDsuyLSRCKarZLJJLxeL0ZHRxlCwPOQ6LBoamrC/fv3kU6nmWmIvuV2u/HUU08x5EcJ0SLhUYZsNouxsTGm3ND3lPpFq295xVBNWY9EDpLljo6Owu/3M882HsUiZII/THnPONGrlL4TCoUU55XZbMbQ0JAMVeTHjh/nfOitaELSilwuviNeakj54ZUap9OJzc1NpkyazWb09fUxJcxmsyGZTMJoNCKdTueYx4lOHIvFEIvFsLOzg1QqxUyVVAclz1DxcqJE0g4Gg3j06BGCwSBqamoYYmiz2XDv3j2mJPL9QhcOiuBObU0kEtjd3UVdXR0ymYwscr3dbmd1IVRNLSCq3W5naKbSvr2/vw+DwcD6Rsn0L17ylNDyfHsKb6anSwyvgPOJrbU8mfOJHsqI2t/0SImUfkJyEqT0YkQvcU/tPa2ghIcRkYx4FIHoii1TrXzg8U2VFqDesrTqqRXss9Dxyve80jjybaF/6/meFjFeqx70myTlBhFVek8cN7rlk0nE5XLJzGF8OxoaGhAIBNDY2CgLsqmn33jEIJ1Ow2q1YnV1FZubmygvL0dFRQUjXavNAb7ufN8CkBF1AeS0cXx8nHlIksJIlwalcQTUA2+K9dFDPNY7jkplUF2ofnS5iUajDHWhOU9jJ5aTzWYRDodhMpmQyWSwurqKp556CkajkZGobTYb4vE49vb2sLu7y4LG8nXJZrMYHR3FlStXWMR3KptytIbDYRgMBtTX1yOZTKKnpweBQAA9PT24ffu2LCCt2hwVSeFjY2OYn59HZWUl+vr6ZI4R5D3Jm3KVxlBNMaHv8uuHf5cQM3IqIMcScZ6JosfZRW1O8/NDz14rzkWtwL7FnltKorXW6W96z++SQnVC8qQqVEoTXc9kFT1Bjjr6rdbmrLWRaykDhZR52PrmE60N5rDR0wupC32LNjCx3wpRFMfHx5FMJlFdXZ0TnVurvfxGGo1G83r/aG2AvFJGh2ChCp7a9yTpwCPPYDBgdXUVjY2NyGQyuHfvHhobG1FfX4+NjY0cLoraQUCkZ/LsMhqNqgcppVOxWCwYGBjQPV/zHRb8d2gsgMcmqsMo7/yYS5KExcVFJBIJnDt3DolEgpncWltbIUmSYlR6/uJDqJTL5UI0GkU2m2XPS9JBoE7KyRgMBnHz5k184QtfwNmzZ2X1VPJ0JO80AEzZcDqdTMmdm5tDZWUlUqkUOjo6NL1K1fqYlHlxPiopX1SG6A2ndCmkiPIulwvT09NobW1FMpmUKZVut5uVZbFYmPIsjn+hSrT4u9p+oWe9qc1LpecP4/1XjJS8/EoCQB/UqtcmrUS0LCYXkh6Tkh67u1J9+faI7SikTL6earGJDsOh0oKpebOMln1fK6luIXC1JEnY29vLIUPz5lKC9tW+K0kHHlfEjRH7R6u99BtP9hXNs3x51EdKCoLb/Tiyuxi8Mt94aZnjeM6Ox+PB4OAgPB4Pa+/AwABqampgt9tZjjwlor343fv372NrawtTU1O61kQ+5UZsQz5zBtUHQE7gS615pNRX4vM0rg0NDbh16xYza5JDAc+d4+e8OOckSYLBYIDD4WDR0+n9QCCAVCqFWCyGd955B8FgELFYDFtbWzh9+jRWV1dz6s6X73Q62SEZjUbhdB6QqomjRvtbZ2cnrFYrrly5ksM75M1VvLmaxpn6JR6Ps3yOYlBWnlPGjx0RwLPZrGKkeKfTKQsH4vV6MTExge3tbYTDYcTjcVaffMnZ1SgM4riKY6+2X/CiZ39U6jN+7kmSlMMdzGdK5989Ti91kpJC9RGXfIdrITZpcSN2OtXjxxymToVOfjX+TiG2daXvUj3VktcWa2cHtDcYnv+jRIrOV69C2u12H0T3bmpqYvwZJcVDkg5ys21ubip+NxI54HZRct1C+ofvC/pvkV9Dt3WlQIRkziACMO+5xnPnlPpSz8FBm7dS6APiWvE8JQogqcRL4ZVSAHjhhRfg9Xpht9uxuLjIuF1KygnvCagm4qHIc1vo+6SgpNNplpYmFAohnU7DYDCwwJda80jp8BUPORrLQCCAyspKVFRUwOv1or+/PyfNDz/nRSVtd3cXq6ur2N/fx8zMDBYWFvDmm28iGo3CarVifn4eDQ0N2N3dxfr6OiRJwvDwMNrb2+Hz+WREflGZJkWDklATqZpCTkQiEUSjUezv76OlpYXF/SIzIc+jWlpakv2b728ag2AwyEjeolLLh49Ip9NYWlpi74XDYSwtLeVEiieuGHllJhIJtLa2oqysjBHzSWFW+g6/JtQuo2LqLDVlh9quNI6FitpFnzyCxX7It9ccZq+WJAmPHj3S9WxJofqIS6FKBaB+2BP/IZvNKh5AR1WnQstVq2+hqJHaDVsNhSumb/UqiyIqwn+DvssnsuXLBvRnkKcDhcwyauPq9/thsVgwPz+f0x/0HnFY+P7L5y1H74uxqMS+pdu6UuwaQhno2zTudGiHQiH8/Oc/x4MHD7C8vMzI5KKSRfUlRYNyvImbt/htvp5utxvV1dXo7u7OiRfEjyu5rlutVgwNDcHj8TA0B0DOIaY3xyTVh4/1RHUgF3tSUO7cuYNgMIjJyUkZiksR8UVToFqqm3wIhs/ng81mw9WrV2UBKcX3yAT6xhtvIJVKsTJMJhObc11dXdja2mKpfGw2Gwuu2dzczAj9U1NT2N7exo9//GNcv36dpa5Rmn9GoxE+nw/xeBzZbBYdHR3MtMejavxczGQymJqawvz8PEOEpqenczwHyUONvkP7J6C8rmkej46OIp1OY3V1FW63WzN6OI/wulwulJeXw2KxoLm5GWazOeeSxH+HrwePVvJKoDj3lPY9nqh/FBdmtYt+S0sLXC6XDA1UqxMvevZqsV70b9oj9EiJQ3VC8qRyqAoR3l7f2tqaw1EqRPRyog7LbTqqOh2VHIZcr8VRKZZkr1QvpXElciqvxIkkdpHYzJer9Bv/bZpXxImh56jNWmRrEVETkdMbN25gamoKZWVlcDgcLCgmIRImkwl9fX0wm80IhUJ4//33sbOzA4/HIwvnoHduKHFKeKItkbJFdJdXiIFcgrGWsizyT8bHx7G9vY2Kigo4HA7cunUL9fX17IA9f/48pqamEI/Hcf78eezv7yORSKCxsRHhcJiVS+PBRzrnOTj8GEmSPOq7FuFfNBk5nU5MTEzgzp07aG9vR21tLRwOh6KTgprZl8oMhUJ47733kM1mUVZWBpPJBK/XC4/Hw/hnItmaFMuGhgZsbm6q8qX4tVBXVwe/3w9JkrC5ucnS5Hg8HoZGjYyMoK6uDpcuXYLb7cbCwgJmZmbw0ksvwWq1Ko4dz7ei9cb/ls1msbS0pMinE9cpjRGfLYAQLTXrgpLTR76LGs/7FJ0KRCmWt6v1/lGI2n5qMpmQSqXQ3d1dIqU/KaKlUH1YCkShUgwCwr+rpQzoeeejIHrbpPSc0kYnKhbF9Fch40oEWjGNiNJ39ZYrKhK7u7sM2QoEAjh79iwqKytlZiGljY8OcjFlBt34z507h/LyclaO3+9HOp0GIA/2yXuf8SiT2nxV8oQSFUFSNvIdAtS/8XiceZmRAiNJuV6Q/Hs8sX9rawtra2t46qmnAACLi4tYX19HbW0t1tbWcOrUKRYWoqWlhZVDyih5vdEByXtRUr1Ex4F8HDW+rqRAm81mNmbpdBqxWAwOhwNmsxnnz5/HO++8A6/XK+On5UuvNDY2htnZWYRCIXziE59giAwpzcBjBwpqw9bWFkZHR+FwOPCpT30K7777Li5fvsyQKaW+NhgMLAJ7Y2Mjtre30d3djd3dXSQSCezs7GBxcZF59QEHZkEAstAVhXp+UsgWm82G6upq2VxQm6ek8FAIBC3FR+kSw685pfVeyF6k9NvCwgJu3bqFixcvoq2tTXVs1d4/CtFqA8UiKylUT4hoKVQn7bHwYUg+ZUDPO8XKk6SY6a1LMbe4YtupB0Xiv0GHazKZhM/nU0RaeMSimLAU9J10Oo3a2lpcuHCBKVokdPiLqI8YGoFHTEhh4s0FxNcyGo2yg05v3yp5N6rNdxFpExVOajfvjUX9aDAYZF5cDodDZqahfiOF98KFC8xLlL5NUa8JeaJvEw+NlDVJkmTKC4/KkHn2K1/5CkNZqI94ZGxwcFDxcBX5NjR2ZCKiuhBCtLa2BrvdjkAgAKvVCpvNxvpZqV+z2Sz+7//9v2hpaUFHRweMRmPOWuLbE41GEY1Gsby8DLvdjpaWFqTTaWxsbKjm1aO+zmQysvx1wGMlyGQyMeWUlBi+z/lxUVJcAOVci3a7HVNTU4jFYmhvb0c6ndaF4BG6RYoy3y+issrPQ/HSJF5olKTQvZtM7B6PB5cuXVJE7T7M/bsUNuEJk48CQnUYKaaNR9UvJ62watW7GJMfkLvx6oXS9dRVRIfyKXE8IkPKCP9OIQqaVr3IY6uvrw9GozFHSQPkLu90gPAIwurqqsz8EYlEsLi4yA5xMl3rRdKUxpXvD/o+b87iy+TrNj09jaqqKpSXl+cE21S6KdMBPjc3h5qaGmZ65c2kAHJc7dXaADw+qCRJwsjICEODAMgQCSpzbW0Nt2/fRlVVFbxeL/PKI7PS+Pg4VldX0dnZycyN0WiUKbRGo1ExfABfL1LmaNwk6SCkws7ODra2tmQJiUV0kubF/Pw886pzuw8SZIuoI/AYuaF6GgwG2O12vP3226iurkZ7e3tOCBCxL8npgZ+r/JpaXFxkdaG4VcTN4WNlaY2PqGgtLi4yU6MY+0zrMqZkOrfb7RgZGYHFYmHKKiGlSjGt+P9Wu9gVaskQUV6+DfxcPAprRjHnSkmhesLko8ChelKk0AVxGFNlMfXRUmyKWcxKh4ZoGtCjcGmVrQblKylHRwn/FyIishGJHORsy2azMnRJCSGj5/lo5kp8K/5b/PMkaiY3vj/JnGUymbC7u8viifEmsdu3b2NjYwOpVAoOhwPDw8OK5iU1xZrQhlgshv39fRYd2+125xxOSoepOE8BqB6g1Caz2Yz+/n6mPNhsNkxPTzMzDcXKMplMKCsrw/b2Nu7du4ezZ8+ioqICBoMBtbW1GBsbg9vtliFN+UyqY2NjWFlZwdWrV3NQMTXkjzc9Tk5OKsZIEy8HpKA3NDQgGo3C5XLloHzifAmFQizoam1tLYaHh1nEeupbvi6k1Ecij/Mp8vHm8l2mJEnCxMQE9vf30d/fL+NK8e83NDTA7/ez1E2ETImx7UKhEDY3NxVRTZGDpSc2Hs0DSqWjxBHMtw8XilAVcpksJs5fKQ5VSQ4tInn0SflWPi8SUYxG5RQmRyVifZzOo02UTOXxhHD+m3TgRSIRXRuVkocQbVZqITSAA2WC97zi3wFyDzH+wOFTdYh1UBp7pb9Rm6PRKCKRA3d6l8uVk5CXvu92u2XKFPFPPB4P2tra4PF4ZOEZ6JvZbJaFaPD7/cxVGzhI+VFdXY2JiQkEg0EWH4g8FJ3Ox7kJ+SS31A9LS0uIRqOora1FJBLB3t4ednZ28M4776iG5tjc3GS538h70ePxwGq1sryEvBcaKTtTU1PMsy+VSmFkZEQWdoI8CRsaGiBJEiwWC1MUxTE0Go0s3pHZbMbAwADW19exs7ODaDQK4OCQ9Hq9GBoawuDgICoqKnD27FmUl5czZWp+fh4DAwPIZB6nS6F+pDkljn0sFsPKygoymQxGR0dl3oZqSjG1IZPJYHJyEl1dXdjc3ERdXZ3sfd6DzW6344MPPmB59VpbW7G7u4vJyUmmJExNTeWMk91uZwqt1+vF1NQU0uk01tbW4Ha74fF4YDab2f5D6V58Ph9D0MQxp28o7XWxWIyF6iAPVDK30uWCwlUEg0HcunVL0TuUUig1NDSgpqYGFy9exP7+PlP0RJOhGD+LF3HMVldXWbJpvl2Li4sYHx/H+Pi45l7Pf1+pLvQt+m8xZEchopSwulgpKVQfQdFzYOmRQhWXw0gh3xJdyvXIUSs5WmVrEXKL6VMqjw4/OjyKaQ99n3ejF2+3SiYrUk4AKOZ8E9ulNef4OvBuyeLmK/6NyMW8uzcdWLw7vthvdOjyManoYOCTC/NKFN1G+QCUbrcbPp8P8/PzSCaTmJycxMTEBG7evClDHKg+pPzQGEmShGg0isbGRni9XnzhC1/AhQsX4Ha7ceXKFdX6zc3NYXNzk8XZ4vvD4XBgfX0dPT09AMDeSSQSyGQyMkWwtbVVlkSaUIxAIMAI6jQv+HFzOh/HwOLHpb+/H21tbYxzxR9y/O8mkwm1tbVIJpN47rnnMDExgcuXL7O0L6SwkmImjr3dbkdTUxO2trbQ2trK4qAtLCzgtddew8LCgux5UkJv3bqFlZUV2Gw2zMzMoLGxEdFoFFNTU0zB59dRLBZDdXU15ufnmXK8srLC1gkARqDnQ5X4/X7Y7Xb09vZiY2ODkespNpQkSQxNJKSpvr4e6+vrOZcR+h8pl+KFhhSyRCKBuro6VoeRkREkEglZjkqfzwePx4OLFy+ir6+POR/Q2Pr9fiSTSQQCgZwLiChGo5Htu2qKP8W2cjqdLC8mXxbVm/qj2HNFSeHkOWi8oqV0BlIYCn78kslkTm7HYqSkUH0ERdyQ+MleiFJ1nEqI1rfyKYB0qyR05iQQNC3RUqBEOUyfqqFJbrdblUytVgYAdpDlU2QAZdRHLNdkMjHEhleSxPqJhwQgj8kjHiq8OBwOxSCbvBDqwSsGVH8+iTAfY4oO07m5OfT09LBo2IQGkcIWi8XQ0dGBzc1NdjDs7OzI4rORiPF7JElikbsJYeJjBfH9z9fvwoULsFgszHTDy+zsLCorKxEIBGRIZX9/P1pbW1luOp/Ph3Q6LUsiTf3e09ODWCzG3leaE+l0GlNTUzKFgketeMXI7/czxRQAamtrMTs7i52dHbz99tswGAx49dVXmdLicDhw//59WK1WZtrh50MsFkNZWRk6OjqQTqdZTKqZmRmsra1hZmYmJ3r4vXv3sLW1BQAsyCspxjQm4r5B3yVFhS4NNB8paCj1BZkiKb4Z9QGNN80JippPimY2m8UHH3wAq9WaE1yTkFf6ttK6i8ViOHfuHKqqqpgJ0ev1IpPJsFATkUgEZrMZly5dQltbG5tjPEovJjHW2sdoDff19ckUfx7ppssOocDiJYfq3dramqNsFSL8/OD/WwvZ4/8tWiyUkjkXKyWF6iMo4obET/ZikJGTIMrz38qH4ijd2vLJSaJtgDpCc5g+VXu3kDL5DZoPFkjCzx0lKFzrW9FoVGYeUzMliocErxxJksQCUiqhYPxho3YLpZhCSoEclcyndGBubGygo6MD8XhcNdYTmcZ6enpYVPjy8nIABxwVEVHjU5Ksrq6iuroa09PTkCSJmZiSySQzJVG/8cFTCWWIRCJYWFiQBSWlg7Snp4ehTmQKI1MTKWg+nw+JRAIVFRWYmZlhRH4ifhPfzOVyMcWYN7stLS0xc9bY2Bhef/11bG5uysxYFJ2bRxI3NjYQjUYRDAbR0NCA/f19DAwMsMNtfX0dp0+fxuLioqIZmUJgtLS0yKKsv/jii5AkCc8//3zOHO/p6YHVakVDQwOLq0WHPHBgkiIFh79sEhJD86uhoQEVFRXY29vDgwcP8M477yAWiyGdTuPatWvw+/2IRqNYW1tDJpPBysoK7HY7ysvLUVtbK+NSESqytLSEbDaL+fn5nOCa4pxRWndOp1OW/sbpdKKmpgZXrlxBNBrF3t5ezvv83CdlyGg0YnBwUOYYkO+CKl5MaL6RYsKntlGiF1RWVmJgYEARUdYrauZAJUWL2qqUsof+TVwvrVAceqWkUH0ERekAy5fH6UmSfChOPrSkmDJF0bO5aD0j8oaeNNGjnE1NTWFhYQFTU1N5y4tEDuLimM1mZh7Lp+Qp1YHKIU4Q38fiGKrdQgkZEsebJ7ry5lNS1GjDV8ojSOWTQmc2m9HY2IiysjJcuHABLpcLDoeDoVY07vxNuL+/HzU1NSwCN3GdEomELL2NyAkyGo1YXV3FgwcP8Oqrr2J8fJwpXzU1Nbh69SqL8r2+vi6rs4gcOBwOLCwsMA4X8ZeIi0aBIm/duiXj5bndbtjtdhaGYnp6GpubmxgbG2NmLEpfRLn2iCTvdDrR0dGBqqoqDA0N4Z/9s3+Guro6NjY9PT3IZDK4cuWKbC7QGrp9+zbq6+sRi8UY8pjNZjEzM4NnnnmGmUSvXbvGlH+qczwezzHnEHJEfUz9Q0otheYIhUIIh8PY29vD2toaNjY2UFtbi5aWFpjNZqRSKezt7aGlpQXDw8OwWq3o7u6G1WpFV1cXCytCSgQpiQaDAQDQ3d3NLob8nJYkiaWxUbo08ARt/t8UE2t2dlaTLyqa3KlsJUsGfV80yyshQ6LZTVyfvKIsIsj8Gj2M1YHepzlAip9Syh61S9Nhvm/K/0hJPgrCT+YnScQNAtBXV6X3juJZEn4zUKuLnmeeZMlXf7vdjnA4rIurRhup1+st6uZJY0SHM5Ujmg55N3DRLEgeaYQwKClrVBbVV/QiAsDyrEmSJPMCUnqHvC+bm5uxsrLC0rYQWZxMMjT3rl69Kisjm80yfhIlsuUPPLp5d3V14Qc/+AHq6upYImuqk9F4ELz05s2b6Onpyel/MhVS/5w9exZra2uMKG00GmWZDyTpINE11YuQDBofMlvNzMzg7NmzjBvk9/vR2NiIVCqFmzdv4sKFCwAee3SR1xnll+OdAOrq6pipiJ8P29vbzLy6u7uLW7duweFwMO9OSZLQ39/P3P4nJyfhcrlYSIKmpia8//77eOWVV2TjSImQ+f6h+pWVlaG+vh5ra2tYW1uDzWZjEca7urrQ1tbGlK3m5mb09fXBarXK+oifw3y/7u7usn4lRIQQXSLRr6ys5MxZmgtUBs0hfq76fD74/X5cunRJFl2d+pOebWlpgcVykGqKX1tO5+PwGMFgEKurq2hsbMTu7i4LTSLyRMV1qLXG+Dbxbeb3nkL3VH5vVyqXr4OobOXjuBazp5cQqpIcuRSi5RdriisEAVL6Rr46ipCx0nNaqFchvCa9cpTeKEB+1I4UGKU2aPWf3vHnn+NvufxmJ9aRvzGL5Hj6b4oEQwc/fYP3auM32cnJSaaEEV9odnY2LzpJXA1Cw0jx5CPRKKHFtMkDYGlAbt++jfn5eVy/fh0LCwtYXl6WHXgzMzPo6urC3t4eK49HId555x00NTWxJK4i6jA1NcXQJKvVir29PWSzWZmJb3x8HKlUCkajEV6vFz6fjwUCFdthNpvx8ssvo6amhrUnnU4jHA4z/tLk5KQM7RDJv1S3O3fu5PQ1KdL3799nnK6WlhacP38eq6urqK+vh9FohMPhQCQSQWdnJ6qrq+FwOLC4uIg7d+7g0aNH+P73v4/NzU1MTEywtePxeDA4OAiPx8PmXTQahdFoZMrU/Pw8dnd3YbPZkEwmEYvFUFNTw7hmFP+rv78fTqdT5uAhJn6mb0iShOXlZWxvb+eY5XjFpK+vj+0dNGclSWIemgaDga0DCuJK5krizJHCKa4vUtqV1hZZMiwWCwKBABKJBCKRCObm5lioAFIMSQi1pTHjvTVF0y1v+lOiG9BvSiZPpfXHI2dUvsvlUvT4FXl++egkxVpySgrVEyCHgRkLffewkKYeKURJOuwE1iNK38hXR1qIkUhEVXHT4hMdB//sKL1RAOU68vNDKyGv2H+8gqumwIowv3ibVZoH4g2f3gEe806UzIIAZORuMrGRVxv9TexTu92Ozc1NtLe3s35R2rxHRkawsbGBxcVFmQnabDbD5/PJDgVxzfHt5pW8eDyO27dv40c/+hFDJKicnp4etLe345VXXoHb7ZZ5jQHAlStX0NjYiKGhIebmDxzM/fn5eYRCIfj9fgQCATidTthsNjx48ADnzp3D9PQ0M6MlEgnWFjpUR0ZGZHVfXFzEzZs3ZWEwqH+prl6vFy6XCzabjY2Bw+GQkX/Jg9Hr9TLEhA9FMTMzg9raWoZQmc1mrK+vY3t7G6urq2htbYXRaGQegkSQN5lM6OzsZBHbg8EgJiYmkEgk4Pf7c3g3ZPIzGo146qmn0NbWhuHhYbS2tjIOWih0EGtqaWkJi4uLGB0dRW1tLVZXV2UHtWhG4xUlAJiensadO3cwOzuLcDjM0EFSkMmcTIoIcbCMRiMSiQTq6+uxurrKlJjKykq0t7czRY9CSySTSYyOjsrWV2trK+NdKV1eaL1JkoTt7W1sbW3B6XTC6/Uyz0clz1veyYXapIYM0ze0PHPFy4KSiPsAAIb+qfGztBQ5/vuH2bdLCtUTIMWiNMW8yz9/XMpVIUpSsRO4EARI6RsnocgBR6PAUhk9PT3sQDosx0tNtJQcLT4TL2oKrHg75MNfaM2DfIoXbxahZ4hfx5O76V3+b6KHD3kiVVdXMxMZHVTA4827tbUVsVhMFuCTV9jC4TBrq8hZ4Qmy5F04MzODnp4eOJ1OuFwubG5uslt+JpNBIBBguegikYOApqT0SpKEeDyOq1evIplMMmWLpLu7m5Xd09MDt9vNTD//8A//AIvFgs3NTXbgAmDzLZPJwOv1sro3NDRgfX2dcZpIaa2vr2dmMer/vr4+JBIJ9PT0sMCwfKRy8phMp9NwOp2sz4joTSbTT37ykyyZdTabZYgNfaelpQUul4v1s9vtxtmzZ/HlL38ZQ0NDuHTpEnw+H1KpFCPv82vC4XAwhYeUSZ4r5HA4UFFRgYGBAWYuIyWDSOV0UAOQ8ZB4BCcajTLPy46ODrhcLhkKLCrhfP5Et9vN0CMyjzqdTgwMDKCqqgr19fVsfl65cgXV1dW4cuUKKxOALJyH0tolhfb27duQJAnNzc1wu92Yn5/H6dOncfv2bSwvL7OwG4SKaTm5qO0HWnuTnr2ZnuH7L987WoqcKMXu26VI6Sckx5V6ptB3RZuz3uiyhxG9dTxMPxy1iJyeYutEh/Fh+lipDD3lFvNttWz1+crTGjt+c+IVJ6XylPqdvs2/z89dUnwikYhi0l49In6XOEF8Tj2eCDwxMYFUKgWr1Qqfz4dAIACv14sf/vCHeOqppzA7OwuXy4WBgQGEQiFW5v7+fk57X3/9dSSTSXi9XvT19WFkZESWr4/iFiUSCebxRkJ9QVHOe3p6ZGldqI/j8Tjbf/hcfV1dXZiZmZGlgaF36DDm606EboqaTsT60dFR1NfXo6mpCfPz8+jo6GD1JfSJolNTndXyGtJ4UioXQtwo6vvKygq6u7tZ6ht6l4/0TnMwm83i2rVrqK2tRVtbG1NQScEjTpKYuoai3btcLhY7jI/FBYCZau12OzukSRESc+Bls1ksLS2x+aqU4ok4ToRYKbUnFAphfn6eoUt8pHk6/GmuFpKUm8pYXFxkKX4uX76Md955B62trXj//feRTqfR3NwMj8fD+uoo9zQScS/h/w2cTF4/sX6lSOm/QHIYmLHQd0W4+yRQGr0oGh0MWvGyTsJkSXVRg8ULkaPoY6UyCrnFafHARFEyi+n5ppb5kPhOIhyvhTbxpjp6nvc8498lM0FtbS3m5uYKCvhKEgqFMDc3hx//+Mcs6CBtoDyPTDTnxGIxltbkr//6r2E0GjE+Pi7jZIXDYcbTEWNrGY2PXfztdjvMZjOuXr2KdDrNEtk6nU4WS4lHUqgvebNVPB5n6T4IUVpZWUFdXR1TqqhPXS4XrFYrenp6MDIygmQyiWAwyII90vdpHZhMJkbgNhgMbMxnZmawvb2NSCSCsbExtLa2sqCoSsjE5OQkNjc3WUBMmmOEHpjNZrS1tWFgYACxWAyNjY0oLy9HY2MjGhsb0dzczJAQQlUoMjnlUyShYK0bGxs5nCTiNcXjcfT09LC1QhxF4iPRGBqNRhal3Gg0Ih6PY3d3VxYug8aTAqiKa4RQNSU0KpVKMY4TjTmvTPHmw/39fTZP6Xe/34/x8XFMTk5iamqKca74CPRa3nXZbBYGgwEejwdXr15l8b0WFxfxyU9+Es3NzXC5XLKQI2qitE/nQ7hF0zr1KX9+HMaaU4gUu2+XEKoTkuPK5fckoDr56lAIQqWW4VwPSnKSbfpF+ma+PlO6AR4WmeO/qydJshJCxH9fLT8Y/76YFDgfysi3OxQK4dq1a4jFYujq6mLfUJp7Kysr2NzcxM9+9jNcunQJNTU12NjYwCc+8Qn8/Oc/x+XLlzEzMwObzQaTycQOYT7fHl83Mr/zSikdLgBkf6M2KqFm/BjSc4lEAltbW7h//z4uX77MlALKVdfS0gK/389CKXR0dGB6ehq1tbXweDzMlEaRzsmTjO9nCl65t7eH2tpaLC4u4sqVKzKEk+onSQfk6p///Oc4c+YMixUlIjFKbW1oaMCbb74Jq9WKmpoaFstqfn4es7OzaG9vR3V1taychYUF3Lp1CxcuXIDVamWIjcFgUBwXQmkkSWLIWjqdRiqVwosvvojbt28DAAsvoZR0+caNGwgGg/B4PGhpaWH5AUkBoboRobypqQn19fXY2NhgpmlaA6Q48EgklcUjUYSAra2tob6+Hi0tLVhdXZWNE7UNQE4y7snJSaTTacbponEltJpMyCI6rIYu8cgYz4Hc3d1V3Q/U9gt+bhOyyiOqWnJUe2opOfITJselUB2HgqG0mR9lHfKZh7RMksUukKN4DzheuLnYscw3XkptV+pnLcWnkP4rRJHRqyjrmZPiM9QupaTSdrudxR2iA2RsbAyhUAhutxtDQ0Oq5oZsNsvy4tlsNrzwwguKpjytQ4QStJpMJjQ1NcnqyLefbxNwcAjPz8+js7OTKURKyW7JXOTz+fDGG29ga2sLbW1tKCsrQzKZxOrqKhKJBC5fvgxJkvDDH/4Qn/3sZ1FdXY1sNovV1VWmJChddJRMuLwpdGNjA/X19WhtbWWJoanf/X4/tra2sL6+Dp/Pl3PwUxs2NzcxPz+P4eFhmM1mLCwsYGRkBLu7u2hubsbg4CAbNzKndXd3yxS9iYkJAAeIw/7+vszUt7i4iFgsBpfLlYNERKNRpNNpxONxljpncXERZWVlePToEZ577jnW75mMPGE2KXEXL16Ex+ORKbcU6sFsNiMajSKVSsFkMsn4a/R8PB5HJHLgRer1euF0OnMuDaISIppR+XVGiq/D4ZAhxTRf4vE443Xx62thYYGFoxgaGsopV5x7vLk4Go3C4XBgf38fBoOBhWLg14uamV/pG4XukeLzxexjTqcTW1tbJZPfR0nUTF3HYbZTIhBrSaF10IJt85kk85k41fqpWKj4MHCzlnlS6TetftQqK994KfWZEtEbUI88X0jb85lLRZI2HTJKqWay2Sy78QNQ9f6hzY+eob6iJLRiEEIyKZKJxWg0YmhoCM888wxTpsR2Uz96PB5cuHABp0+fxgsvvACPx8PMRWRSAR4TnMWYUbwQQV00j5F5Znx8nKWDAcC4VjMzMzLTo+iWbrEcpKoxGo14+eWX0d7ejr6+PhZosqysDJWVlYjH4zCbzWhvb4fVaoXH48HZs2dx6dIlpkxFIo+jYPOIGiFblCiavk9BRqlveZMWEfkpB6DH48kJOkzmJ/IAJHSEkkpTX1MfEZrT29srK4cSW4fDYYTDYRbFnPqI56KFw2H4/X6Ew2GGglJ7yUxYUVGBaDSKqqoqTE9Ps4jn169fZ2lzgAPT5VNPPcUUN0qXROlvjEYjtra2WDDZU6dOoaenB5HIQSotOrgdDocsJAeNAyFnvOmM9zLleV48OkT9RMgOzVVC6EhBpUsD7+27vLyMO3fuMO9TtT2Yr8/q6iqSySTu3LnDFL6GhgYYjUbFAL38fiHuNzTHC02CzO+ppPCT16uS8GupmDOjhFCdkBwWoTopUxcA2UZFnkVHiQwdpzlNjeisZD4plCgPQPG/1d7XGrNCzHBqBG7+2UIQRb58PbfCQsvXi1AReqOGzgDA+Pg47t+/j2QyiU996lOsHLEe4k2dR4ZI3G430uk0Xn31VfzKr/wKEolE3jYpzZNsNsvy2vExh9RMKgsLC8xMQbGP9PQNIShOp5Nxhkixr6qqwuLiIoaHh5m3HX8LF5EMsWxCuoaHh5lCzqNdSqYbHhFZWVlhyAy59ZMnXiwWg8FgYHwhv9/PvNVIydPqc97sZrVaGfKTTqcxOjqK5557Dh988AGy2SwCgQB2dnbg8XjQ19cnM5eRowIFWQWA9fV11NbWoqKiggUIpXAL9AzVj+oiSRLL0dfT08PI9uRxub6+jqWlJXR3d2NgYCDHGYAcCQhBmpqawq1bt1BbW4vKyko0NjbCZDKxYKJk9uPNfdQnZrMZLpdLNibiHCX00+VyydA/nkIRiUQU56pYb1LmeGK/iIiK64X6TJIkFvy1srJStg7zIdaF7H9aIiK8i4uLiMfjTJlXmnu0j/D1LSFUHzERNW0tknGhyIj4O93Gm5qa2O3wKBAeknwbqh4hpU8kWNLNkxY01UEMAqm3PXxd+Y2Wbtxa7yuRwrVuWuLtiCfoF0sIVxtneofPyaU2Lkr9Jwr/PSqHNm3xNki/k6uzSHLlx5Zc7vl0LjxKRd+lOE50iFPZAGRxk9555x0YDAZ873vfA6DffMg/MzU1hcXFRUxPT8vqwicMttvtWFhYwPXr1zE1NcWI3rRha6F3PJmYAkh6PB7EYjGkUiksLy9jbW0NNTU17NDh53wkIk/fw5dN4R8qKytx4cIFNhZiCBL+WX4O07zt6+uD1+vFyy+/jNbWVrS0tDD0hMyYZrOZeQEmk0m4XC5ZOAm1PicUgwJnSpKE8fFxRCIRdHV1YW5ujoWSiMfjMBqN2NvbQyqVYqZYv9+P/f19eDweXLp0CS0tLUgkEqiqqsK9e/cY8ZyPBk+EeEI4CamZnJxEJBLBzs4Opqen0dfXh7Nnz8Lj8aC3t5cpuJTrkGJpmUwm5kWZzWYZMlpbW8u8Bq1WKwKBABsvCljKk99pjqyurrJ682fB+Pg4Q114RTgSiTCyPrWRR/9dLhebYyS0z/CIqdlsxuc+9zmcPXsWTqdTk9hOOTRv3bqFaDQKn8+Hmpoatm7FPURUwESEF0BRyBQ/j/n8omRaVVPKaC3R/Nfa85SkpFA9IaL3AFSCQ0XR+l3vuwBkE7hY0+JxmCSpnouLiyxbOwktAP6gU6rDYeqldmCJQhuX3+9nhyQPb/NwPJXLm+H4hNZKt2ZA2zMmn8ek3n7Q84wSRB8Oh7Gzs4OlpSXFDZjaxOfVo02ZeBuxWAynT59GWVkZotEoAPm8pHaOjo6yvuKjVpMZpLGxEcBBAMy9vT1UVFQoJk+mupMnGpmzxIjrRqMR9fX1Mg8qv9/PkItYLAa/34/JyUlEo1Hs7u6ylCUrKytoaGiQHUx0mGSzWYb+OJ0HwRipTk7nQZDOyspKrK2tyZBW4MBcOzk5yUjeFHOJyiUTKO0jvOIgImWiKYlXvGnsCA0iM6jZbGb9QmvDbrcjkUigq6sLkUgEDocDLS0tOZ6nFN5gc3MTgUBAZpoaGRlBPB5HIBBgJlyTyYS9vT3U1dXh1KlT6OjowNjYGBwOB370ox+ho6MDBoOBfcNsNuPcuXOoqKjA+fPnGdk+nU4zBZnmDG/+npmZQTQaRTwex8OHD5lSRGMSCAQwNDSE06dPo6WlhSVNpoCvMzMzzLRKikoymYTdbkdZWRkWFhawt7fHOFhkZpQkCXt7ewiFQkin0wCAixcvslhXNF6k9K2urrL1QPOSYnnx6YL4Po9Go0gmk7IciLQmxWjv/F5GJmiaWzSHaV80m80s7RDNW7rgiHsIKTyLi4u4du0aM3Hz+5jWBSTfuUnoLoXryBeHis4Pfg4XIh87k983v/lN/PEf/7Hsb83NzZpIw9tvv40//MM/RCAQwKlTp/Bv/+2/xe/93u8V9N18Jr9CIE01M5Qek1o+U9dRmuPy1fOw5fFxW3j4ViuW0mG/W4i5EMiNjwM87gfaLNSge6XviPNEzTOGiNNerxc1NTW6YHLqt3weNEr9y7eLIHryYqqqqsLa2houXryoaLLj20kK0gcffACbzcZyzE1NTcni/dB7pBCQF5rD4WC3UeKrqHkMWiwWDAwMyOoOgAVUnJ+fR1VVFVZXV1lKkoqKCvT39+d4uimNMwVJrK2tRWtrK1ZXV5knldlsZkqO1WqV1dtgMLDbPUXqpvEW+543bUajUbbHEGLHIzG8WZXMZ52dnSgrK8vrickjH2TqczgcOYRsEakkxToej6O6uhrV1dUYHBzMGYPJyUnE43EsLS2hs7OTHX6RSASbm5v4+c9/jra2NmZyIn4ZABYPi3IIGgwG1NfXo7u7G8lkEplMhpk2ab1sbGwgk8lgZ2cHjx49Qn9/Pzo6Otg+Qv3c1dWFu3fvshAIRLKm9UHmMZfLBUmSMDIywoKmPvXUU7JYVYTa8oc/cZScTieb21RHUsZSqRS6urpy4nkR2Z9HUiVJwtTUFFPEKEAtH8eMyiFzusfjQXt7O/r7+5lS9M477+DKlSuwWq2srjTHKdegJB2Qzu12O7xeLzNn0oWDR4XUnIr4NZxOp7GysoLTp08zL8p8ey2ZN5WcM8S5q/ccUHq+5OWnIt/85jfxne98ByMjI+xvtOkqycLCAi5cuIB/8S/+BX73d38X7777Lv7lv/yX+Lu/+zt88Ytf1P3dfANSrCLzJIcR4OsG4MgDXKrVSYkHcJi+ycdfKlZBVftNS7ER31F7Vjzg9YzZ+Pg4kskkO/TUFOKJiQksLCxge3sbzz77rGIgTZ5HRfngiIsHQDXKPc9P4m/HSrdT2kwbGxsxNzeHrq4udgiTKAU1FNtFChQpZKQk+Hw+TExM4M6dO0xh6+zsZKgRkMvJEzlpPBeRlLlYLIbe3l7EYjEZosCnkgkGg9jY2MDw8DAzh+bzmKQx4kNP8Cgt//74+DgSiQTS6TRzi6+trUUikVD09KJvhUIHSYFpXdG/iZNCCgMdpiaTCbu7u3A4HFhfX2ff4suxWq2ora3Fa6+9hoqKCjQ2NrKgndSGYDCIcDiMlpYW9PX1YWpqCpIkMcUrFAphaWkJOzs7eP/991kKmenpaXapAID5+XnMzMwwdOvu3bs4c+YMDAYDXnjhBdZWCqYqzu2FhQX89Kc/RVtbG8xmM9bW1tDZ2YnV1VUYDAZks1msra2hubkZ9fX1bE6lUikWo6usrIwFhCXUur6+noWHoPGjeHB82ALqW0IaqW407n6/HxsbGxgbG0N9fT18Ph+ampoYYkmINZHrHz58iO7ubgwNDTG0aGZmBltbWzhz5gw+//nP58w1qkM4HIbBYIDb7WaJoYmXRUgaP/f4YLliv2qZ2NVEkiTVSzX/jBKfsFApKVQq8s1vfhPf+973MDU1pev5f/fv/h2+//3vY3p6mv3t937v93Dr1i1cv35d93ePMmyC1iZ6HERvoDjFja8nmUT0xg9RKgPQh3LxhxsdKIfhbGkpRUep0NJ3lpaW2M366tWrmvVW+34h/UbP0gYuRtnmFWKTyYSlpSUEAgG0t7ejtrY2r8LGj0co9DgCttI84IndhOIAygoYoRz3799HRUUFrFYr81QSv6u2Nsg9f2xsDENDQ6isrGSHGiEapAzy7/NKF69AidGuxQOGDk8xHhUhTWQWee2117C5uYmamhp87nOfy4tmFiJkXgwEAjh79ixTovkDn+rBm5nD4TBsNhuLl+R2uzE+Pi6LuSQSeu12O5tTAPD6668jEomgo6MDVVVVjJdEyYLJhNrU1MS8zwhN4b3U0uk0ysvLcfHiRayursp4eKFQiMWGIrMYjQ+veG1sbKClpQWjo6Po7+/HysoK1tfX0djYiIaGBiSTSXR0dDAU1uPxYHx8HA8ePEA6nUZtbS1DGBsaGljqnWQyibfffht2ux0XLlyAyWTCz372M9jtdhbyoba2lplvCeEiUxM/N0jJIC4XcZ4ePXoEk8mE/v5+rK6uorq6GnNzc6ipqcH8/DwsFgtsNhtefvllNr9isRiWlpbwwQcfoK6uDplMBr29vbDZbOjv72dzFwBmZ2fx/PPPo6qqSlGJ581sdOEhdIyQZJrvNLfFaP1aFhW9a5cPD6LkXEOIdyEXS3GtRCIRVFZWMlN6iZQuyNzcHE6dOoW2tjb8+q//Oubn51WfvX79Ol5++WXZ365evYrx8XHs7Owcd1UVhTZXnv8gchxI8tmY9UoxnCMeWdBKtKslPDdHDamgA2JhYUFGaCRORyqVkvEEChE1iJr6s9B+0RoPaiuhJHwONS2OgNL3i+HcUZRtUnT4snluid1uh8/nw9mzZ1U3KaV2kqmLd3ZQag/lZmtsbMzJHs+XS2Ps8XjYjV/pObX2E3dpbW0Nra2tWFlZYYolcUV2d3dRVVWFoaEhZm5yu92M38ZHdOf7kfqJSOpkgk0mk0gkEuzgpzYDYMqE0WjEhQsXsLW1hVQqhYmJCdjtdhnxnExeCwsLTOnTIgvz64PQnp6eHlRWVqKurg737t3D+fPnMT4+zuIjEU+GiMbZbBbz8/Oor69nnKeuri60traisbGREe/tdjucTiei0SjrT+KUEYcslUqx4KmZTAYGgwE+nw+f/vSn0dvbi2w2iw8++IAhdnV1dcxMV1NTA5fLxaga9F3aB8n7LxgMytYBEc/7+/uxtbWFK1euQJIkPPXUU7h37x5WV1dRV1cHh8OBlZUVBAIB/PSnP4Xf78etW7cQiUTQ39+P9vZ2fOUrX2Fj9PzzzzOExO12Y3Z2likm5Ek6NDSE/f19XL16FQMDAyz8xebmJuNTibydYDCIa9euYWxsDHfv3sX9+/cRDocRi8Xw4MED7OzsMFPZvXv3GML4iU98ApIk4cUXX2R7IEW8d7lceP7553Hx4kX8zu/8Dmw2G0OuKCSFy+VCb28vysvLFdcN9SOhdMTFo5yO9E1SZsLhMOO+idHf+f2H/w79jV9f4t5CCjeZfPl1SPxReobQwELPQarH8vKyruc/dgjV66+/jlQqhc7OTiwvL+M//+f/jJmZGQQCAUZc5aWzsxNf//rX8e///b9nf3vvvffw3HPP4dGjRyw9gSiZTIYtKuAAoTp9+vSRIlTirVbL/KXGkTgpTlWx5eh5j1ANusGKNvtr167BYrEwLpFWWeL31Nzxi0Gk8sHPSoieGASvGDnKMdb7rJq5V22eKr2vlsuMR2rUOBQ80kVcKrW1QWR4IoNbrVacO3dOMdChyBESEZiJiQlGxI1EIsxMJUkSbt++DbfbjV/6pV9i3CAxSCcRf3t6ejA1NYVAIICOjg6cPXuW9aPJZGLBMauqqnD+/HlmRpMkCR6Ph5lsaQ4tLS1hdnYWnZ2dDPkjF3xCbEZHR1FTUwNJkvDss8+ydC9LS0vY2NhAb28vI6gTMnXmzBk89dRTmJ+fx40bN+ByuVBfX4/6+nosLi6ioqKCceeIYwMAfX19iMfjSCaT+MEPfoCnnnoK586dYyZl3qWf8huura3h4cOHaGxsRHd3N8rKypgpkQ7M+fl5jIyMwGAwwOv14mtf+xoAOUJLpm0igN++fRvV1dVMEQAOYlg9evQI1dXVGBoagtlsxvnz5/Huu+/iypUrMJvNuHbtGkwmEzKZDC5evMhQmrGxMcTjcZw/fz6Hn0ZmKpojpOjRPOLNe6FQCFNTUzCZTLhy5YrM7BcKhVjoh93dXTbHqa2pVEpmuhfNaXyQT1Jq4/E4DAYD825T4yDy+wD9Rtw68ijkvaHVwndocUXFdcavQbXQOKIZnw8XUazZr4RQ5ZHPfvaz+OIXv4je3l4MDw/jRz/6EQDgr/7qr1TfMRgMsn+TDir+nZc/+ZM/gc1mY/87ffp03rrRTVLplskLTTDec0INvRG9VsTbhl70Qu13vaJWv2Lf4xccoRoUOI9HKSKRCK5cuQKbzQa73Z63LWJ7qf8kSZKlpCjU+4PKVvIOVNrwCNEzGo1FfU9rQxKfK0TR1TuO1G/kscSjLzzvSA19s9vtmJubQ3V1tWy8RESOd/lXmhPk3aO1NsjEee7cORiNRtTV1cFisWBwcFCW9JbQQuKPGI1GZsbw+/2IRA5iHq2urmJychI//vGPMTs7i3A4DADsG3QQzc/PM3NQOBxmClAikWAcz7NnzzLuGbmOA0BbWxsymQyef/55xONxdhlcX19nOd78fj+SySQikYNYSW1tbQCAvb09GI1GRrRuaWmB1WrFr/zKr2BjYwM+nw9ra2uM2B6Px5FOpxEIBFifd3d3I5VKIZPJMD7VU089hd3dXXi9Xsazqaqqwp07d5jnlsfjwdDQEOLxOFKpFGZnZ/H000+juroaDQ0NuHbtGqqqqmAymbCwsIBkMolYLIbh4WF0dHTg3LlzLFwE0TAIoaDI6A0NDSx3H3kB05qWJAmNjY2wWCxMqbDZbKiurkZ5eTl2d3eRyWRYuIqnnnoKFRUVaGpqwre+9S2srq7izTffxMTEBCoqKvDw4UOkUincuHEDY2NjeP3115m3oMfjkYXyMBqNmJqawttvvw2/34+ZmRmGAk5NTSGdTrNgpKRQ9vb2oru7G0ajPPBse3s740eRImi32xGNRnHu3DlGZFfjJfn9fjx48AA//elP2Z5mMBhQW1sLk8nE1isp+HyIGLoY8n9zOp1MeSEPa6PRiP7+flkgUt6bk95V2lNI0dzf32f/rbYHiGXQd/nYW1pe2Vr7UKHn1sdOoRKlqqoKvb29mJubU/ydBoQXSnKqhGiRfOMb30AikWD/e/jwYd66EH9Gb4RyPYOtpHzxks9kxf+uNfEOY1pUejdfeaIpkCBo3gtMNGVRRGst5UTsj3zKiJ42K0HUIlJCbtv8s7zbeqGKqJaZi68z/+1C2lRIPdRiWPHQPG249O1YLIaOjg4kk0nZ3APkh4OWaZNQAXLvFucXKZLkgfbBBx/AaDyIv8bXlz9AAMji9zidj8NbAJDFY+rq6oLT6WRxbzo7OzE7O8sSA1++fBnhcJgdZkajET6fj5m1dnd3UV1dDbfbzcwfdMgtLCzA4/Hggw8+YKEaBgcHMTw8zDwjfT4f8/Lq6upih+XS0hIMBgO7rRNqu7Ozgy9/+cuIRqPwer1IJBLo6+uD2+3GxsYGtra2MDU1hYWFBdy9exe1tbXMlDcwMICzZ8/i8uXLMJlMWF1dxcWLFxEMBtnBGwgE2H9TvxGXamBgAIFAABaLBfPz8zAYDDh9+jS2trYYCjIwMIDPfOYzqK2thcPhQG1tLUvPkkqlMDMzg76+PrS1teFLX/oSampq2LjQmg4GgyxGFV2MzWYz9vf3UV1djbW1NSQSCZw/fx4XL16E1WplTg+f/OQnsbq6io6ODiQSCYyOjqKtrQ3l5eWIx+O4c+cOtre3WZ1p3o2NjbH5Z7fb0dbWBqvVio6ODkQiEfzsZz/D/fv3cePGDZaHz2KxoKmpCRUVFSgrK5MlYKax9ng8qKysZIE+R0dHkUwm8e6777L4V7QeQqEQ5ufnMT4+DkmS4PP5YLVaWf8YjUbG6yKuF71HsayoTaHQ42juAGRhDdxuN4sbR/QLo/FxGBu/38/GON8lUQ+dQU34Z0jZU6MnHBVoAJQUKmQyGUxPT6ua7p555hn85Cc/kf3tjTfewODgIMrLy1XLtVgsqK2tlf0vn/C36mIQEC1Rm4RKf1dDN7QmXqGTMh/Hhf+bJElYWFjA2NgY40Hp4S4Vohyp9QfV0+l0MqKxyJmhTUaM8yK2RS2WSrHPaola/5wUIknlAFAdJ14Z4fuTEBwimwKFBVKlSxDFZRofH8f4+LgsXhn/LafzIL5TKpWCJElMieOfJYUrm80yD7BYLCa7hVMdjEYjzp8/j87OTnz1q19lZZhMJnR0dGB+fh42mw0zMzNobW3F1tYWQzHMZjOGh4dhtVpZYEvibFVXV2NychIPHjzA9PQ0lpeXGbcKOFA0+UuFePD29/fD6XSirKxMVldC3RoaGrC4uIiBgQFsbW0xc1B/fz8uXLgAj8cDu92OW7duIZPJwGw2o7m5mT0nSRJu3bqF27dvI51O4+HDh6iursb6+josFgvOnj2LtbU1pjw3NjYyRMxoNKKnpweZTAadnZ2oqqpi6DLPj4nH4+jq6sLp06fR1taG3t5exoM7e/YsbDYbBgYGcOrUKTa/CCWldRqJHATpJHTSaDSiuroaExMTsNlsjJDe19eH1tZWmM1mdHR0MG9GUiIbGxuxvr6OlpYW9PT0oLOzEx6PB1euXGH9+sEHH2BqagojIyNYWFhglz9CHq1WK06dOoW5uTk0Nzfjgw8+gNvtRl9fH/PMUzsTSFkADvh3ly9fRiKRgNVqxfLyMguKS/1NgUGpD+rr61FWVsaQI0r1Q+E4aO+l70QiEYbS03wSL+q8yZS/JBLi5fP5YLPZMDw8rIlS5zMDFiL59n0eTT/sZfJjp1D90R/9Ed5++20sLCzgxo0b+LVf+zVsbGzgt37rtwAcIEtkdwcOPPoWFxfxh3/4h5iensb//t//G//rf/0v/NEf/dGx1C/f4B8WQdCDBqkdqlpKjNOZG6Fc69vigaYVeJNuNouLiyyo3mGUo2KQMN6DxGAw5Jhg1AiU+fqNficvsnzP6h3/fCZg0WRGSE6+CO56hb7DI2yiSVuE5vm6kckzEomwsAY8mVtJeaU2U51NJhMcDodm/WjDHh4ehtfrRX9/P+Pj0C07m80yL91AIMA8/MRDhCJlLy0tIRqNwul0IhAIYHJyUpaL7/Lly1hbW2OmRf4QI7MfoU7AAYpYV1fHTKDvvfceysvLmaIfjUZlij2P9pH5j9rp8XjQ2tqKpqamHKLvzMwMvF4v0uk0i/T+wx/+EBMTE6ivr0d5eTncbjcuXryI06dP4/nnn2foFilli4uL+OlPf4q9vT20t7djY2MDDQ0NLM8e8HitkOmU6kHKUiwWw1tvvQWDwcCCPe7t7cFutzOFlnfVHx8fRzabhcVykL+QxtZoNMJms2F0dFSWD5E4TU1NTSwVzcTEBAYGBmC1WtHa2gqfz4dgMMgCpVZWVqKzsxPvv/8+QqEQ+vv70dDQgO7ubmZ9aGtrY3kgl5aWsL+/j3PnzsFqtaKqqgozMzPY3d0FAMZ56+jowO7uLr7whS9gf3+foVYUYZ7I9gBy6CCEnNLFhfI7zs7OYmlpCaOjo8hms1haWoIkSWhubmZ7NKXSKSsrQzweRzgcZghVb28vrFYri9quFuKE5j6FRkmn02z+kRmYxpuC8pKST3NbvDjTnKXAunxgYhFNPyqhfUPNsasQ+dgpVEtLS/in//Sf4ty5c3jllVdgNpvx85//nMWWCYfDDKoEDhbJa6+9hrfeegt9fX34T//pP+G///f/XlAMKr2iBx04DIKgZPtWKrMYqJVMJGrJa8Xv5FPARMjW5/OxjU6tbeJhooYUabVdLI/3rgqFQtjd3cXq6iprJ31PTMKrt98AFOQBeVgESayLuJkoIWMiEqdHseJvtbyirmTSJkWLFAT6m8FgYOjQxsYGHA4Hqwspr0p14s2MpND5fD72HR55BSAzJVIspfn5ebzxxhtYXFxEOBxmCCXNQ9Htm279DQ0NDFGQJAnpdBoOh4MprRQ0kQ4ZMudZrVbGw+L5HqFQCOPj4/jJT36CR48eYWVlBc8++yzzdPvJT37ClE0AzIRKISWmpqawubmJ1157DQsLC5Ckx8l6KZkzcWja2tpw584dhjDdv38fjx49wqNHj3Dv3j2k02lEIhG0tbUxr0hJOiBZ//CHP0QgEMAHH3wASZKYh97+/j5DxKg/pqenUVdXB5PJhIaGhpy1Fo1GYbFYmLL04MEDzM7OIhaLsXAPNF9CoRBmZ2cRiURk6xI42MfW1tZQWVkJk8nEUJ76+npIkoTl5WXmPTg0NIR0Oo3e3l5Eo1GEQiG8+eabeOutt/DTn/6UoYQulwvr6+vY2NjAl770JWxsbDDv0Gg0yuLCpdNpGAwGtLS04Ctf+Qra29vx0ksvyUJKRKNRzMzM4MyZMwiHw3jllVeQTCZZn5Apmjz9RkZGcqKI86a36upqhvSZzWZYLBbMzMwAOFBWycxpNBqZafrUqVPo7e1FS0sLKioqWJgIkftE64uI6rypnrh6o6OjjNDu9XrR19fHFPXq6mrFtaqEKlPux7GxMcah5BEzXvE6SnqCHqtHPvnYefl9WKInDpUSzFnMM2qi5jl1mDILqZv4O5FFjyIAJ5+AVowuTaIUBFOtznxfkScNn+CUPFuUogEXKnwdaFPR8spUI5oeRrTGjt/M1Dwcld4XvXFIoaEYQRTrSvTQBB5HoKY1ozUGYp2U+pOPGi4mg6WI7h0dHaisrEQ2m8Xo6ChOnz6NdDqNpqYm2a2a/wZ5rlGqETKxAY/jZFEQRqfzIOJ7KpWSoXf0PfIe4/uRwiPMzs6ySOOUHJhPW/M7v/M7sFqtDM27d+8ebDYbWlpaMD09jc3NTVgsFrS0tMjQg/n5eayuruLChQuYnZ3F1NQUotEoPB4PfvmXfxmhUAiJRALnzp3D6uoqI/nTgRaNRnH79m1MTEzg9OnTcDgcePjwIV544QWkUilMT0+jvr4e586dw4MHD1BVVcXmtcvlYmTy/f19ZlKfm5tjfLbTp08jHA7jK1/5CsxmM15//XWsr68jFovhs5/9LFZWVjA9Pc2CU/IeZ/F4HHt7ezIvOFLmJUnCxsYGM70ZjUYWMJTiOEWjUSwvL6OrqwtPP/00Uw62trawvr6Ovr4+Fr8pFouhvb0d7733HuPFXbp0CWazmSnT9F3yhqOQEBRUdW5uDnV1dTCbzbDb7djb28N7770Hl8uFBw8esKTOXV1dSCQS6O3tZaR3SZJkCYztdjtGRkbQ2dkJq9Uq4wLTWhwZGUFrayvS6XROFgf6vbKyEmazWRZp3+l0yoLh9vT0MA9FPggt7Y/ZbBapVArd3d05Hsv8fsYj06Ojo7K6EU+O3wsKiWt1mP0P0B9H8mOHUD1JImraQP5DslCvA17UyHmHKbOQuom/042AR3a0bOpatxHamMk0p3TTUEKCtExjPNmYPwApz5Xb7T4SzpuIxml5ZfJIYCGIEaDeh/k2E5GroTROSiiW3W6XJT0mXg9tuADYwepwOOByuWSmPz5uDXE1lMZAy+OHL4viW/E3bhpn3uwGAB0dHchkMqivrweAHJd1UhbJxEcRo/mDAgCL00MmFjLvkkcWIREdHR0IBAKyG3gymWQhFH75l38ZOzs7uHDhAubm5vDiiy/i9OnT2NjYwMOHD/Hmm28yUvv8/DwjPpNH3unTp3HhwgU0NjYyQj0hdY2NjYjFYqipqUFrays2NjaYxyOFPojFYszbjwJArq+vAziIEeX1etHd3Y2XXnoJX//612Gz2dDd3Y329nY4HA4kEgmcOnUKVqsV/f39aGlpwc7ODt566y3cunULy8vLCIfDLI1Jf38/nnnmGUiShK9+9assBUpPTw92dnZgt9tx7949OJ1O1NXVsXQoNAaJRALZbBa7u7vs3fHxcTx69AgOhwPl5eVoaWnBxMQE0uk0Q0ZsNhuCwSAikYPgo2fOnEFzczNu3bqFcDgMh8MBt9uNpqYmxh0rLy9He3s73n//fSwvL2NpaQk2mw0Wi4WhcBMTE7h37x5CoRAsFgsLbEuK9traGra3txGLxRiCuLq6Crfbje3tbVy+fBnpdBpWqxU//OEPsbCwgEAgwOY5IaQ0T8nzk3L88TkXjUYjI4dPTEwwbh71H3CQP9FkMmFzc5PFhKN5E4lEWE7C6upqBAIB9Pf3s/lGXKvt7W3E43HGHTQajTlcpVDoIM7Z/Pw8JiYmmMLb0dHBlCmRWE5r3ufzyTiYJMXwefVwNPVICaE6IVHScI8SoTkKOQqkqtgy8qEgSrFHeMmXh46/CfGxg9Sith8HElRI3yg9y6MiIjpDN1A1hIknooqxWPLFdeHRRHqGR/CIc0RCdQJy0w2J/Qroi1VTTD/qQc3456g/DQYDi75NBxR/cKVSKRZvh27hxA2h71B8LIqAzbc3FDoIgmg0HoTH+NKXvoRAIMD2B0LS7t27B6PRyOI60eFPQUadTif+8i//EtFoFC+++CKeeeYZGXKgdrPnw4AQekbrh0xkNTU1zDEgEonA6/Xizp07MBqN6OrqgtlszuGnEVmfFFOXy4XV1VXYbDbm+cfnf3zttddw8+ZNWCwW9PT0MK9OMSULvVtXV4doNIq9vT1Eo1GmgP/0pz9FdXU12tvbZXGXstksiwc1OjqKVCoFk8mEU6dOYXd3F/fv30dzczOi0Sg6OzvR1NSElZUV3LlzB1VVVaitrcWzzz6L73//+xgcHMTCwgJDMemQD4VCmJubg9/vR29vL1ZXV5FMJnHu3DnY7XbMzMywfqc4YF6vl60NUiQNBgNsNhs2NzfR09PDOIerq6ssd2QikcDS0hJOnTqFR48e4ctf/jJTjra3t/Hw4UOk02lcvnw5x2SfzWZhtVpZjjw+JyTNPT5mk9VqxeLiIoaHhxkdgOYNxX1zOp0YGRnB6dOn8eDBAxbeIRQ6iFRfVlaGuro65mChtJfQPKR5L0kSQ5CV9j4lxF5tn9R7BqlZbngpIVS/AKKE0HyYclh+zmHKoPcAZa8w4lyl02mZtx+J2WxmHjhKiA3PqwkEAuz2r1Uf3t0/H0KmJvx7hfSNEnKmxnUjUqjaDYu4SyKZmkQJ0RMJoPwzhKKsra2xGEw8Z0mMri6iRzzXTuQMkSwsLODatWvsVi9ypPT0IykTPLFVrBO/+ZLLdywWYzdvnhC8sLDAcrURYZdI3mpewvQMIQM0npWVlfj5z38uU+5Fr65XXnkF9fX1eO6553D37l2sr6+juroaq6urjMz93HPPscOK3NlJmSLTKJHZCQ2jMQuHw8xsR3XzeDzY2dnBiy++iMbGRmQyGbzyyisMyeru7mbt3d/fZ5HqY7EYc6/nFa3GxkasrKwgm81iZ2cHExMTmJ+fRygUwvDwMC5evIhnnnkG3d3dWFtbQzqdxtTUFDKZDDMPRaNRJJNJ3Lp1CzMzM0zxoBhbL7zwAjweD+rq6hhxmxDB3d1dvPXWWzAajbh79y56e3tht9uxurqKZ599Fvv7+3jqqaewvLyMlZUVNDQ0oL6+HqlUCpWVlfirv/orGI1G3Lx5E11dXVhZWcHNmzextraG1157Del0GvPz8ygvL0cqlcIzzzyDT3/60zh16hRmZ2cZ78xgMODcuXNwuVxIp9MIBoPY29vD8vIylpeXsbu7i+3tbdTV1WF0dBRvvPEG/H4/S2fj8/lQU1OD5557DjabDc8++yzi8TjjL+3v72NnZwdnzpzBnTt3EA6Hmakuk8ngxo0bWFhYYGETjEYjHA4HYrEYQ4LpUmaz2ZBOp5kypeao4vf74fV6GYH8e9/7HiYmJjA9Pc34mJQex263sxygfHlutxterxcvv/wyfD4fKioqWABZce8T17Ka4qRmdVDjXqlZboqREkJ1QnKUufyOS4pBZcRJnQ8p0luOkhBBN5vNoq2tDYODg7L3C41Cng+h0kJo9N6C+Pe0UCQl4W+RIjeBR/Hy3bCKGVetLO7UJpHPpLddfN8ByrkoyaxRU1ODy5cvy/pPzDmo9Z18EZLVkDfiVFEC4dnZWdTW1rL8caRkU3uVeFxqfU7eY9XV1chkMjkogIicLS0tIZFIIBQKwev1Ym1tDV1dXaisrEQ0GkU6nQZwYI4tKytjCA+ZuEOhEDY2NtDd3Y1oNIp4PA6r1cq8+Ww2GwtnEI/H0dnZiWQyiXQ6zdAkihJN84tvXzqdxj/8wz+gtbUVzzzzDDP7ZLNZjI+P4/79+9jb2wNwoGA5nU709PSwvHkU+JSijhuNRphMJoZOEYKzu7uLQCDA4hwlk0kMDQ3BarXCYDAgmUzi/v37aGpqQnV1Nfx+P0va/MMf/hCSJKG+vh5dXV0MCXE6nfjbv/1bFiqjoqKCKX8PHz5ET08P7t69i4GBAbS0tOAf//EfEY/HcePGDQwNDaGhoQF1dXXY3d1lvECaF3a7HW+++SbS6TRDtEwmE27duoWdnR0WPuHevXvo6emB2+3GxMQE/H4/9vb20NzczMrkEwuTB6PT6WQpjerr61lKJwohkUwm0dvby4J4PnjwAGfOnGHrORwOo7GxEVVVVSwXHpn0JOkggbKYu5HWK3kPWiwW9Pb2YmRkBFVVVdjY2GBoqt1uR2NjIz73uc+xebC1tYXh4eGcPSXfWqV2iryqQvbWw1iESsmRnzD5sBSqQg/TfKY1ped5EwiQe7gUU2c1eDcYDCom1z0qwr0ahCz2oVY/KSkMxUDS4+Pj7CB95plnchLq0vtHYarV0w/8b2J/FAO987+T2z0pcMlkEt/5zncwNDTEglvyBHO9GyJvJg2FchMzK/Ulby7q7e1lXm/r6+toaGhgxHm67fPR2AF5YlYlJbyhoQFTU1PY399Hf38/U5bpoKKDLR6Py0xelAaGeDZmsxm9vb2IRA6CZlL6FCL7p9NpbG9vo7a2lsV8qqmpYZ5mZWVl6O/vRyAQYMpTQ0MDrFYrenp68Oabb6K6uhotLS1YX1+XmUB5gj2lcnG5XCyfosfjwcLCAr71rW/BaDRie3sb9fX1ePbZZ9HW1sYQ0MrKSvT29jIFgZQGg8GA2dlZVFZWYnl5GZWVleju7mZoKB1blECanANI+aDAo1VVVWhpaUFrayveeOMNtLS0yLhckUgE9+7dw+zsLJqbm9He3o6FhQVUVlZibm4ODocD+/v72N7eRjQaxfPPP4+/+Zu/Ycjf8PAwizS/vb2N69ev48yZM3jmmWfg8XgQDAYxPz/PIs/HYjEsLy/DZDLhxRdfxObmJouFRWtgZ2eHcbwkSZIplBaLBefPn8dbb73FTK8UFsFqtWJnZwdLS0tIpVJobW1FdXU1+vv7MTY2xvpua2uLJcHe2trCJz7xCeZdSF6WiUQC9+7dQ1lZGbtIUOJxmqfhcJghaLwiZjQexPX667/+a3zta19DOp1GQ0MD3nzzTdTU1KCtrY2VQ5ejxsZG7O7uql4KlZxHeCVKXGv59oJCLoBASaF64uTDUqho4wL0eaIVo4BQDBKj8XH+p2L4LXydC1HqlMrLx8lSE6VvK/1NC4nLV3+97VO6lRXbp8U8p/UOtYH4RsRvoQ2W3+R4V3FeqRe5FLxCxc9bMaeYuHnruShQotmdnR0MDg5iYGBAVenl4w95vV7WFvo+HQ5bW1vY2NhgCYKpHOKpibdmOhRmZmYYsdpqtcoOMiJEp1IpPP3006iqqpKhQsSjevDgAVpaWlBTU4OysjJUV1djZWUFa2truHLlCiKRCN566y1UVVXh9OnTKC8vZ8Erh4aGmCcbIWTEsSNlKBJ5nGuQvLOIlB6JRLC1tQWPx4P5+XlkMhlsbW2xmEq0D4RCIRbHy+PxsEOZlK3R0VF4vV54vV6Z40MkEmF9tbGxgVgshrNnz6KtrQ3hcBjpdBrJZJLF2CovL4fL5YLH48H4+Djq6+tZGAqDwQCn8yBUgs/nY4pyX18fG2sa22w2i9deew0XL15EKpVCNptlqNLdu3cZ+uTxeDA6OsrG7+LFi3A6nbh27RpmZmbgdDrxa7/2a2zMyBz6/vvvw2QyYXl5GUNDQyxEA3k7Li4usgjxhL5PTEywfqivr0drayv8fj8mJiZgtVrxpS99SYaWptNpvPvuu3j66afx8OFDXLlyBVarlZn7Hjx4AKfTyaLNZ7NZVFRUMOWSLhNzc3OIRqNMoW9sbMxJZr26uora2lrcvn0bzc3NMJvNbO6Hw2Ekk0lsbm6yJOc8l5D2hpmZGVgsFqTTafh8vpy1LCpB4v/ruVQexYWzxKEqCYDCoq9rIUNqMZ6MRiPz2qFNUc8Bp8WDUeLe5BPxYM3HyVITpW8r/Y33GBT7JF/9tX7nyzIajbhw4QJqampyTC08j6BQjlYxPDc1ThXxWyjeDR8cj56RJAk3b96UxdChuURBUp1Op0zh5+ct8Di9hdPpZChJOBzG4uKijFehJXV1dSgvL2cKmRjxnu8PUnKIb8Fv5KOjozCbzaiqqmKpXviLBQUgpYOAlD+n88CjsKamBgAYL4ninCWTSaYAPPXUUwxF4Q+M3t5ebG1tob+/n+XRI+7S6uoqtra2cPfuXVitVtTV1cnCOWxtbcHtdmNubg6XL19GJpOB1+tlEd/pbk31TiaT7HeDwYC6ujqW289sNrPDsqmpCc8//zw+85nPwOPxwOVyIZPJYHd3F5WVlRgaGoLb7WYkcuBxPkCaH3waKbf7IFJ4dXU1Pv3pT+PTn/40I+FT/tS6ujo4HA5cuHABFy5cwIsvvoilpSW0t7ejoaEBu7u7eP7553H16lXs7+/jpZdegtvtxvr6Ourr6xGJRFi8ruXlZcTjcbz77rsIh8OYmJhAY2MjWlpaGDLU0dGBra0tWK1WmM1m/MZv/AaefvppXLlyBXa7Hel0GvX19bh06RJ+9Vd/FUajkQUiptyCFy9eRDabZXw28sALh8NYWlpCPB7H7u6ubE9JpVJ48OAB2tvbmRddV1cXrFYr4+W53W6srq4yjmRHRwczl5OSJEkS1tfXcerUKezt7eHll1+G2+1GWVkZW4O3bt1CMBjE6uoqvF4vTCYTzp49iwsXLjDvOkJOJekguvrdu3cRjUbx3nvvIZlMsmwCFKU9Eolge3ubtZHmPe0NV65cQSaTwdmzZ2UcQ3HfiUQiMu/eWCzGOFVi8FpeaF0ehQefHikpVCcsauTmYknP+UQkxWqJ2kGb7/AxGnPd4fOJllKhF3XQUz6ZYtTKUlIQxeeV/sbXX+wT2jDoIC2kfbziQuVSlGEgd4z4f4vEcbX5xJPZteacVhnUBp/Ph83NTXR2dqKlpQV9fX2yCOTUzsbGRoZcUb35IKliQFH+XaW+Bg6QK7PZnOM2rSRutxuXLl3C1atXmfmNDx9A4SDoWa/XC7fbzZS2kZERpFIpRsTd3d3Fyy+/zMwXxDfhTUmk7FE4iUjkwN3c6/VicHAQLS0tsuSviUQCTU1NjKBOMXyov1KpFEN1stksrl69ymIoGY0HUcFTqRTLMeh2u9He3s5M5XSo1tTU4O7du+ju7mZIGglFXY9EInA4HAwZWV1dRTQaRV1dHUODSDFZX19nBy0dvC0tLRgcHMSFCxfYu/v7+0xZIPMTjT3f/zT+hGrQXIhEIgydkyQJZWVlqKysRHNzM4vyvr6+jkQiwRJBr6+vo7KyEu+//z4LFJlIJCBJB0FGV1ZWsLOzg2w2i/b2dpZrjwKSStJB5PH9/X1sbGzg7t27uH79OsxmM4aGhrC+vo6lpSW8++67yGQy2N7ehsfjgdN5kCNye3sbt27dQkVFBUKhEP7JP/kn6OzsZGvC4XBgZWUFdXV1LPcioWsAWFsIwYlEDhJMf+lLX5KhgDabjZmOLRYLqqurMTMzw+JqxWIxNDY2IpVKMSU5m81ienqaOYAQZaK8vJw5G4RCIVkCZt4sTfHDnM6DwMu3bt2C2WzGrVu3EIvFsLGxgYqKCubtyu8pZDI0Gg+yFCSTSRZeRY/Q5YQcLETCOgmZvokLeNxSUqhOWJaXl/MqLR+WqCk5/AEsHj753gWUD+ajUJq0RE/5h7m9UPlUjtgnhYynmuLCbxpUjtjP/L/5Nmt9n57Ll2qBL8PtdssQJCIcRyIR5slFijXf79QmigHFt433cFVS7uj7hEzRRkyu/h6PB4ODgzlKgZLwFwvy/jIajbL/5pU5Ks/lcsFiseD06dO4fv06c+0fHh5mJiAyw1VWVsrc0m/fvs1MSoTCkEs5KTy8txP1RSwWQyAQwLVr1/Dtb39bhm55vd4cL7719XV4PB7cvHmTKXhG40GgynQ6zczTu7u7OH36NCorK5HJZNiBRkK5A00mE1PsKaE3IQ5msxnd3d2oqKjA8vIyFhYWsLa2xuYSfcdsNrO62O12uFwuFgOMvBFNJhPW19dRVVXFLg30O5mDxXRO6+vrOHPmDKxWKxwOB3Z2dmAwGODz+bCxsQFJklBbW4uFhQWEw2G88847+Nu//Vu8+uqr+NnPfobl5WVsb29jcnISjx49gsFgwPr6OuMgdXd3szm+t7eH8vJyeDwejI2NwWw2IxaLwWw2s2jq6XQae3t7qKqqwvT0NBoaGljEe0k6CB66v7/PlKpkMom2tjY0NTUhGo1idnYWVVVV2N7extDQEF5++WXYbDb4fD4Wad5oPAhV8cYbb2Bubg6hUIgpqRS3icJi7O/vM3Rxb2+PmTjtdjtaWlpw5coVhqi+9dZbmJubw9zcHPb39+F2u9HQ0IDt7W3Y7XbU1tbi6aeflqV8SqfTuHPnDra2tjA5OYmKigoWeqKrqwuPHj1CY2MjAODy5cuQJImZLx0OBwKBADY3NzE6OopEIoGRkRHGpRIv4/zeoUSNoHhdSvGoRKSfNzmKvx+llBSqE5bm5mZNpeUktGg1UVNC+ANYPHzyvVuI0nJck1xNIhFll/1Cy1DqE71oEZWhpLiQOVVUGPT0kx4UKt+c4wNziuNL7tqxWEzVpExjn8lkctKCkNLCm/HEnF5i2h/K/aY0/5SEkBni8VA/8O0mjgyZIPkxoXF1Op148OAB3G433n33XZmplzfz8SaHeDyOtbU13L59Gz/+8Y+ZInjnzh3E43G88cYbCIVC7B1SRpuamtihVllZicrKStZndXV1CAQC2N7eZnUlr7f/+B//I6LRKL773e+ydhLP5+HDh+jq6mKIXG9vL0wmEwwGAxoaGmT54OhQI34LKbG3b99GfX09Cy2xs7MDh8OB9vZ2hgaRWXBlZYVxkoi47HQ6GdpHoSeAgwCqi4uL7DAMBoO4ceMGgsEgdnZ2EAqFsLe3x5TO/v5+ltZkenqaje/IyAhsNhtDaBobG9HY2Aij8SCOVzabZZHW/8//+T949913sbCwwFA34kE2NDTA7XbDarWiqakJLS0tCIfDKC8vRywWw/PPP4/a2lrU1NTg5s2b2Nvbw/r6Oubm5pBOp1kYAlo/Fy5cwMDAAL7whS+gtbUVdrudBZk1GAw4c+YMix1FJk+Kyn/79m2Ew2FMT0/jrbfewvr6On76058iGAwy8zApqel0GpIksYwAoVCIoTLkKdjU1CQzFdbU1LB8kpR3EQBWV1eRSCRw9epVVFZWYm9vj5kfr1+/jt3dXdy8eRPNzc2IxWJwuVwYGhrC/v4+fumXfgnvv/8+tra2EIvFUFdXh5mZGYTDYczMzCCZTOLevXvM1EcxuZT2SrW9FQDbD4DHIXP4VDm0pxqNyrkICfHVSxfQKyVS+gnJSZPSj4KIdxRlUvoNi8XCbu9qopesfVRtKzbEQ6F10QpBoLcMEtHJAMgNnsmXmy9sgFZdeM8ZkWCdTqdZuhSKRK30Ph/8U/SsEYOD0u/8e+RWTzdMkYiuNmd4ZQc48AYj7yCxH0QPURoz4kzt7+9jb28Ps7OzuHz5MlOeqJ7k4cornITgvfvuuygrK0NTUxOuXLmCVCqFsbExeDwelpaEAmtOTU0xs/n6+joePXqET37yk2xuTk5OIhAIYG9vDy0tLfjqV78KAPj2t7+N6upqvPbaa3j++efR1dWFlpYWrK6u4tVXX8Urr7yCbDbLzIdms1n239XV1Zifn0dnZ6eMJM1zXsj7z+fz4cc//jFCoRB6e3uZWYgcPyj5b2trK0KhEBYWFrC1tYXa2lqsrq4ypGR3d5ehQvzYj42N4e2330Z7eztSqRTW19dRV1eH3/iN35CtjVAoxLzzNjY20NTUBAAsZldFRQW2t7dRXV3NUroQFyccDjOS+tmzZ5FOp9HZ2YlAIMAiodMcisfjOHfuHEZGRmAwGBgKNDs7C6vVykK4vPfee5AkCS+++CLa2tpYzkZ+ffDhRiKRCB4+fAiDwYDGxkYsLi5iYGBAlgZmbGwMt2/fRkNDA/r6+vCzn/0MW1tbaG5uxuLiIi5evIhMJsPmOOXiu379OgKBAIxGIz7/+c/D4/Egm82yIKGErI6PjyMUCqGhoYGZAimyeV9fH5tbTudBNPqysjJYrVY2V0hho8u23W7HX/zFX7DLx4svvsjG8OLFi5AkiYU7oXkjUi14RxYi9Ise3bQ+yZQoOsHoCaNQ6N5Y8vJ7woQGhFyhj1uK8ZQ7DsmnTPCiV7E4qrYVUk6+umn9XoxCRTc1QO4ZJ/4dyA3LwLcvXwRg8dti3Cz6FiAPh6HWd2pxt5Tqqbap8X9fW1tjudhoE9aKB0b/JhPbysoKVlZW0NraiqWlJWaq44W8Kb1eLyOMk9LqcrlYdO6mpiYWwoBc3fONWzabxf/7f/8PAwMDqKmpYWY6kV93584dVFZWMnPPxMQEgAMUcXd3lyUijkQiuH//Pk6dOoXGxkZcvXqVcZK6urowMzPD6vbaa68hkUhgd3cXX/nKV2QhDyiERG9vL4uUzfc1jbF44IVCIbz22mtYWVlhSk91dTWam5tlno5O50GMpH/4h39AVVUVS8HS2tqKvr4+3L9/H6+//jr++T//5yy9E3AQHX50dBTd3d2w2+347ne/C5vNhs985jMMCaM+TqfTeOedd2AwGPDee+/h93//91lye+J+kSJ49uxZht6MjY2hqqoKnZ2dCIfDGBgYwI0bN7C1tYXKykp2YG5ubqKiogI1NTVoampCMBhkHoUNDQ2YnZ1lY2owGFj/dnd3Y35+HpWVlaiurobP55OND4W/ePToEeLxOB49eoTBwUEkEgkMDQ0hmUyyZ8i87Xa7mfdpPB5HVVUVMpkMTp8+jfn5eTQ1NaG+vh5ra2t49OgRgsEg2tracPHiRezv7yMajbIk3bzZfnJykiF5PI0hEnkc/+zRo0d44YUXmMJDc5tXYCh34N7eHn784x/j137t1/Dss8/KYmeR8O+urKwwxX1wcBBO50HoDD4+mRLCxK9zPdkilERt71B6v+Tl94TK8vLyiXznqEyIhzXDidybo/g2b6Y5TMbxQvooHydK9ILjJV8fKMHPtKERR4JEdDLQ4opR+8QUIVrtEjlZAFicGzXultI36X06vCcmJrC5uSlro5pJk/97X18f8/QTzXX0LLU/m83i2rVr2NzcBACmpHV1dWFpaQkdHR2KPI2JiQlsbW0xpIn3MKSNlmLkkFcjpY4R+z4UOshNRnMhHo/j13/911FXV8dMGrRpr66uYmlpCbdu3UJVVRVCoRBLO7K2tobNzU3cuXMHKysrCIfD2N/fx9DQEL74xS9Ckg4CU0YiEWbyoPxtNJYXLlxAJpNBW1sb4vE4mzcUq6q+vp4ltaVku7y52ePxoK2tTRY3KJvNor6+HhaLBTdv3sR3v/tdfP/738f8/Dx7LxwOs4O/ra0NZWVlcDgcGBwcRF9fHyKRCF5//XVIkoRvfetbsjVsNpvR1dWF8vJytLW1oaenBzU1NXj77beRTqdl/Krr169jeXkZb7/9Nmw2G+7cuYOuri44HA40NDSwYKJdXV2Md2a1WuH1etHU1IRQKMSSG58+fRqZTAbV1dWIx+O4f/8+0uk0FhcXGV2BOFr7+/uorq7G1atXYbFYsLe3xzz0MpkM5ufnceXKFZkylUgk8Oqrr8pyg5pMJkxOTiIUCuH+/ft45ZVXMDc3h42NDdy6dYutJ5pfNH5DQ0PY2dnBr/7qryKdTqO9vZ09s7a2hv39fZw5cwanTp1iwTUJXaN1Q0p4Q0MD1tfXsbu7y3JLTk5OMoQ0lUrhk5/8JHMoAA4Sar/++uvME1aSJExNTcFkMmFubg5f+tKX4PV6WYT3eDzOxoz2HJvNxqLe8xKLxWCz2ZgpsaWlRZG2QGuP5yEWyssVn6e9kOZYMWdKSaE6YWlubj4RrtBRkb4PS5bXSw7nN0r6lpqSQorE7u5uDmk1n4hkRTXelzg++Uj3ah59evpAjXyuJ9yF1lzi+0ltk1BKYKzFo+OJ20rImVg+KYZ00FAiVhH5UPseeRdlMpmctBPi9yjh671791gfut1uVFZWYnh4mCluPLcqFAohHA4jHo+z/uKVVvJYa21thc/ng8PhQGVlJePJKNWDTGjZbJaR6sksQkoy3dzNZjMuXryI6upqPPPMM4jH44hEImhtbcXdu3eZ0kShC4jf84lPfAILCwssjQmtlTfeeAPXrl3DwsICAOD8+fPM64yfM5L0OHVQIBDIIQVTu0jZIdN9LBZDRUUFM2uVl5czUrb4PinhTU1NzFOM+oDCP3zqU5+SrWG32w2DwQC/349gMIjh4WHm8PDmm28ypfzOnTssMvylS5fgdDrxiU98Am1tbThz5gzOnj3L0B2z2czI4rSXUNiL+fl5DA0Noba2Fl/84hcxMDAAl8uFtrY2OBwO9PT0oLy8HDabjSGUDoeDpVLx+/24fv06NjY2kEwm0dLSgs7OTuasEQwGsb29jY2NDdjtdrz33ntIp9MIh8PY29tDTU0N8xgk9OPmzZuora2F1WplprlgMMguGtlsFkNDQ3j33Xdx9uxZZlLd3NzEpUuXcOrUKVgsFlRUVCAQCGBmZgbb29uYnp5m4xMKhbC1tYWZmRmmUNtsNkxNTWFraws/+clPsL6+jps3b7JxtNvtCIfDmJubQzKZZMm8Kep/JBLBSy+9hIqKCrbGyLs1m80ikUgAAFKpFL7zne9gY2MD8Xgcg4ODDJ2ieVlfXy9La6Sm6BzFOcdzNvkcpMWceSWT3wkJDxlubm4+EeY4PXIcXCxReG4BoRpGo1HTVEb10puGRPyWVt/ne4a+zaeCoSi+Fy5cyAlRoacPi+1nrbry5idAOYK93raKZi3xb1QO5Sb7/9n70+DGrjM9HH8AkCABYgcBAgRJkOBONtlkk81u9b6pW4tlSR7LW5KZLFPZPE6qknxJVarycb6kUvmQxPObxOUp2TPW2GPZlq2lpVYv7J3i1tyaK8AFIEEABIiNIPb/B+Z9dYkGSHZrsf8zOlVdUjeAe889995z3vO8z/s8hw8fRl1d3a4+EJx/EN6C8BzApwbKwWAQOp0ur1o6ceL0ej37wOVLCwp5aKRGXYirkW+shc+pMO1B57p69SpKSkqgVCphsVj4GmiBkUh2KvCIgyJMN1A60O12Q6VSwW63IxqNsiRBX1/fLn4YaUhRSX1/fz+LedLCI7QvoeeVFOeJME7nJGFGALtU6X0+H1KpFFdq0rs3NTWFRCLBVZd0LBLgXFtbg8vlwiuvvIK6ujreeAiLEugdJoulgYEBjI6OQqFQ4NSpU9ja2sLS0hLOnDmD2dlZhMNhhEIhZDIZiMVi1NfXY3FxESdPnuQghAjNhLiR5MLIyAjfm4cPH+LYsWOQy+Us60HX7fP5IBaL2Tw4k8nA6XRifX2d7ZAGBwcZ3ZLL5airq4NcLmcpCOLFmUw7YqkbGxtcYUnPYXV1NSveS6VSDj5KS0vR29uLoaEhLC0twWq1oq+vj5/za9euoaqqCk6nEw0NDZiamsKhQ4cgk8nYd9LtduPIkSMoKirCzMwM6urqoFKp0NnZidHRUTidTmg0GkSjUTQ3NyMQCECj0eDu3buoqqrCvXv3oFKp0NDQgJ6eHn5uVldXsbi4iNdeew23b99GJBKBQqHgY9AYptNpVp0nZA0AC4wGg0HWGBOm+YXWOvTeCPmMe81V+WgS+7X9aATAVym/P+j2h1DRd9D2eSFdezUaj1zNKJPJtEu7KF+/aMLfT/8qdxdCxyTycCwWg8PhwMDAAC/Uhe4PLaK0swaASCQCjUbDprW539+vomS/cd4r/Vmor8IqGYLGCT4XClbuda35+pUPtaR+kEkrlcELf18oxZevCc8h/B1JC+QzFJdKpazELfwsX1qT0D+LxYK6ujr09fU9EUzljjldI/DpDtZgMLD5LwUKly5dglqtRkdHBx9reXkZ169fZ9mEfLpbFHDG43GYTCY2ww2Hw2hpaWGiMI2H1WqF0WjE9vY2k5dtNhuqq6vR3t7O5xZKGtDzSnwiahMTE5BKpbh//z50Oh0HS2RV09XVxd53k5OTiMfjkMlk+PrXv45Tp06hpqZml54YyU2srKyguLgYc3NzrBdE7ypd89DQEIaGhvDBBx8gHA4jnU7D5/NhdXWVK8bOnz+Puro6XLp0CRaLBVqtFnq9HjabDXa7Hdvb25ienmYEMLe6i4JmiUTCulpUnbe9vY1bt25xBeLc3BwMBgMbV6fTaRgMBhQXFyMSiTDSRkjW4cOHce7cOQ5aq6qqeINnNBoRi8XQ3t7OkgXHjx+Hz+dDcXEx1tbWUFRUxJVwJpNplzo+jbtOp2MtMbfbjdLSUnz88ceoqqrC1NQUMpkMv2smkwnb29vo6OhAOByGyWTC2bNnEYlEEIlEMDo6Cq1Wi6qqKoRCITidTty6dYtJ+BqNBnK5HN/97nfR1NSE5uZmLC0tIZ1OQy6XQyaTwWq14tatW2wiffHiRcjlchgMBmxtbcHv9yMUCqGkpATRaJRT/y6XC0ajERUVFaisrNzF2SIeH71rxFFcW1tjpDefZI9wzshHk9iv7UUjeNpWtP9XvmqfdxOS/3Lbl4EIHaR9mf0oNB5CNfJC45VLfC7Ub1pUc481MjKCxcVFTExMQKVSIZ3eEQwUGi9TEy6wRUVFu6qTiLBLfcrtI+2+KK2Re9xCY51Lvsz9/V7PUi5Jk/qhUCjw6NEj2Gw2rK2tFTRULtQn8k0jXTIaX5Npx0SXfOcowBAGNDTh7/ds0QRMqSPhdeb+N7fljonwfAfdxVKqhQIl4f2lhZbufyqVgtPpZLK6270jikmfud1ueDweKBQKRCIRVFZWcj+EY0BpSGGlWX9/P4qLi7G4uLhLY4qaWCzmcnfynguHw5zqEgbgpA8E7Gj4EOmXODMPHjxAS0sLxsfHuT9ra2ssIGqxWNi3z+VysaEw7erpfhGyLBKJcPToUdjtdjQ2NkIsFmNubg5KpZKDHgB4/Pgxp2kpRVhVVQWHwwGn08kpN6/Xi7a2NtjtdhQVFaG4uBgrKysoKytDNptFa2srAoEARCIRtFot8+p+8YtfMB9OKpVCo9Hgww8/hEwmg1qtxubmJhQKBTweD2ZmZiCXy+Fy7RhKazQafr4zmQxOnDiB0tJS5oJR8KfX63dV0bndbly+fBnj4+MwGAxcaXfr1i3U1NTgxRdfxMzMDFQqFSorK7GxscFIXUNDA89TNO6EqEokEjaj7urqwuDgIJLJJMrKynDz5k1+Vtvb2xnB6+/vR2trK7RaLfx+P6xWK6RSKWw2G8+vVBlK80wgEEBFRQU6OzuxvLyMx48f8/MTi8UQCoWgUCjgcrlQWVnJG9+BgQHMzc2hvr6enz9CS4mzRR6DQpK7kKMpnOeEvEO6p3vNGcLNT753Ot+8s9cc+rTtq5Tfl9QOAhkKYc+DlrkLf/t5BkB/CFWCz3JN+fq91yLqcDhw/fp11NXVQSaT8a5QiFYIgxqqSNmr8qRQYFSoD3v1mSYSIQz+rPeXqv7m5uZ4Z5/PaJTSEYXufyHpBvKjI19HGqN8KdKDVOYUSgXv1fZ7ZnL7vlfa1263Y2NjA4cOHWKjXolEskuCgQK/tbU16HQ6BINBDsKEop2JRAI3btxg2YVYLMZpLpIxuH37Niu/63Q6ADtB0Pvvv4/29naUlpayErvL5cLw8DBXDDscDrz++uu4e/cuSkpKoFar0dvby8GNRCJhvpyQTEx+bbdu3UIikUBJSQkuXrwIAPjwww+RyWTQ1dWFnp4e3uCQPpJCoeDzCO+X1+tlQj7xxAixUavVuPn/jH3JMzAWi2FmZob5Xm73jsr81NQUfD4fgsEgxGIxV1zq9Xokk0k0NTVBLpdjZGQENpsNxcXFjLwQCuZyuTA+Po6ysjI0NDRAr9djcHAQPp8PW1tbeOWVV7C0tASFQoFAIMDCy4cPH4bD4UBtbS2nKkkFvaamBmq1GtevX8fa2hqSySS2traYwG80GtmXTyqV8nzy29/+FoODg0ilUvjTP/1Ttu8ZGBhAX18f5ufnEQqFkEwm8d3vfneXgbdws/azn/0Mq6urmJubw5EjRzioI5ucV155BRUVFRCJRByQUzCem25NJBJwOp2M7gLgTVckEoHRaGQBX6qAXF9fR0lJCWpra3H9+nW0t7fj+PHjbH3k9XqZkyUWi2EwGBAMBqFQKFj8lgKs3Go+mg+exqvvoK2QTMtBjveVbMIfWDvIDTlImbuwCR+yXC7HQVuhB/XLRKg+r3PlC1pyg9TcBfwgiIVwYaeW77v7BaF7aSYJJxGDwYCxsTHWlxF6uj3LmAgRPOF5hPwzSgvtxSOgJtRMEu4ygU95N2azuWDguBcHKV/fibshnAiFEy5dV6Hj5S5I1N+DpFiBnSrHlZUVlJSUoKKiAolEAjKZDD09PXnHdHx8HOl0GuXl5fzMCRepzs5OrkYk4+AbN26goaEBIpEIb7zxBlwuF6anp9HS0oJsNsvyDxTIra2tYXt7G8XFxfD7/QB2JAcuX77MOlk1NTVYXl7G2NgY2tvbIZPJdo0bkZ0tlh2xzkgkgq2tLVy+fBkSiYT5O7SDp4Cxs7OTZRfIZFjI/6L7RkRkCnKkUimjcKWlpTAajczLIlQzdw4aHx/H+vo6kskkZmZm2F+xo6OD05I6nQ4ul4tV1M+fPw+Px8PnX1hYQFVVFZPY6+rqcOPGDX4WyPsPAIqLi5FIJGC1WjEzM4N0Oo3vfe978Hg8CIVCOHToEFKpFN59912IRCJsbW1BJBJxqrWrq4v1wlKpFLLZLCNSDocDP//5zyESifCNb3wDMpkMQ0NDzBMtLy/H9PQ0mpqadklECFNQLteOSvr//J//E+Xl5SzD09HRgZs3byKTyeD06dNIJpPQaDRoamqC0+nE+fPn4fV6sba2BrVaDbvdDpvNhkAgwM+VUqlksn06nd71bm1sbMBiseD69etIJBJQq9UwmUyYm5uDWq2GQqFAb28vQqEQfD4fysrKsLm5CaPRiEAgAJvNtss+hzYguXIKuZzMveaFp10vhGsBcTEPul5+xaH6/8NmMpkgl8sPvHgKUynPyssqVMX3RXCnCvGADlJJWOi3ucfJVdal3DzZJ+SqtgsruvaCkunF2+u7he5BIf4WNRprCmpGR0cRi8VQVFSEqqqqPWUP9hubXC6S8J4KU6rUd51Oh8HBQU4d5LtOr9eL8vJySCQS5uXQseVyOfOYhAEr8VAIoRKmIXPHJDfItVgsu6qQlpaWeLEnFG+v94DQHIfDgdHR0SfGqdD40TURH+jw4cOwWCwoLi5+guBOKQq/34/y8nIeC3rmqPKPvMesVitmZ2fR1tbGQpbZbBbf+c53IJPJ4Pf7mXROaHVjYyPsdjvS6TR0Oh3KyspgNpshl8vx8ccfI5lM4v3334dYLEY2m+V7TiR+ISeRkM9QKASj0Yiuri5sb2+jrq6OfeR6enpY3Vuv17Pv29DQEFuVUHqLfA7T6TQvlqFQCI2NjbvI3sAO33B7exsTExNYXV3Fb3/7W0xPT+Ov/uqvMDg4iEePHmFtbQ2bm5tobW1lTlJrayt0Oh06OjoYbaPUskqlQjab5esmz8HTp0/j61//OlpbW1mtv7a2Fq+++ipMJhMOHTqEbDbL6uBTU1OoqqpCSUkJ6z397Gc/QzqdhlarZcSroaGBg2EAKC8vR01NDRsH6/V6toCRyWT8fMhkMpjNZrz77ruw2+3IZrOQSqUQiUTswUjHXFpawo0bN+BwONgEOJFIYHl5Gf/m3/wbaLVaVFdXo6qqCuFwGDqdDmKxGJ988glmZmYwPT2N4eFhtLa2wuVy4aOPPkI0GoXdbofVasXAwADi8Tg0Gg176V27dg3z8/P44IMPODAUi8Xo7u7GxMQE1tfXsby8jNXVVaRSKYhEIiwvL8Pn8+Hhw4fQ6XRIJpMs5VFcXAybzYalpSXeDJFHJfGlaF4VzheF5koKivZz3hC+08L5JJeLKaQB7LW2HLR9hVB9Se2zKKXni8iftaLhIMf+otp+CM1efThICrLQOAnRi3A4DLvdnlfg8fNuufyngyrACy07NjY29k0B51MNPkhFXr5UGnFkaMe533VtbW3tOZ7C+waA02iHDx/mcwqf31yRzdwKPo1GA4/HA5FIhGw2y7ISIyMjrLMjrBijgIZK1zUaDf+7EBkhnSnazBBaHAgEdlnvALsFSnOdAOjzfBV1RqORx/vDDz9EMBiE1+tFc3MzvF4vvvOd7/AY0iJKth7pdJrHhVKPlG4cHBzksvLq6mp0d3cjFAqhvb2dUQmdTrcLLVOr1axvRWgi2c1oNBpYrVbm/dC437hxA4lEAhUVFSgqKuKKVrd7xzJmfX0d5eXl2NzchEgkQiQSwePHj3Hx4kXYbDYOtoxGI9xuN1wuF+uD0bVVV1fjyJEjfH2jo6OIx+PIZrOsRl5eXo6Wlhb4/X6srKxga2sLL730EhYWFuD3+yGVSpFMJtHa2opsNguz2YyJiQnY7XbEYjGcOnWK5wPiWd28eRN2ux1tbW2IRCI4f/480uk0bt++ja6uLoyNje3iaJFEAt17hUKBtrY2Fko1Go1Ip3c0zoiPRITte/fuob6+Htvb22htbWWdLuJR0X0aGhrC1tYWIpEImpubWVJDqVQiHA4jmUwimUwiHA6z7U4wGIRSqcTGxgbC4TBTGTY2NphAfuXKFYyNjUEmk+Hx48fw+XwoLy9HR0cH1tbWMDg4yB6GwkIIckcgyyKRSISBgQEsLS2huLgYJ0+ehMViQSQSQTKZxJkzZ5BKpTA3N8fIqpB/KZFInpgX90vzH9R5I3fe2WvtOIj49FcI1d+jlg/ByYfG/KG3QgjOQdCwgyBw+Y4jXAjT6R2NE6VS+VRVIM/a6L4BOBB6SH2tqamB1WqFRCLhyhfaaQlb7s6KuCdCqYR8YyJE3HI/I8d70lnKPY8wQKPJM59gZu65TCYTDAYDowRra2t5K3KEWlLCayY0jexaCD0hZI8W6xs3biASieDGjRtc2UZozpUrV1hPing25EeYTwcsEAhgaWkJIyMjPJbCVCWheDKZjNELGhuv18u76JKSEpjNZtDe1ev1orGxEfF4HBcvXkQ2m8Ubb7zBJF6Xy8XPQXl5OdxuN/+GtHyEz5LZbEZlZSUaGxuZ4Ez+e5RSE6a7FQoFpqenkUgkGDFIp3cquA4dOsTPEgVTarUaGxsbqK+v53L49fV1jI2N4cMPP8TS0hJ8Ph8ymQwHoG1tbUgkEmhubkY4HIbBYEB/fz/sdjump6dhMpkQjUbR3t4Ou92Ol19+GUqlEh0dHZyuo2cuk8lgbm4O8Xicg2KpVIqKigqsra1hbW0NDx48QElJCbq6ujA/P8/yCTTeNpsN2WyW+VC3bt2Cx+NBKpXC5uYmWlpacPz4cUYGCYk6ffo0gsEg89GMRiMaGxtZILW7uxvpdJqRIwo6PR4PJBIJIpEIHA4HJicneXP0zW9+E6lUCk1NTRyAZrNZGI1Gfg6HhoaY10WVliRYGolEsL6+DpfLhYmJCSSTSYRCIZatoGDKZrOhqKgIPp8PtbW1HMAkEgno9XosLCxgbm4Ot2/fxgcffIDf/e53EIlEqKmpgVwuR0dHB+rq6iCVStnwure3F3/8x3+MEydOoLOzE2KxGAqFApWVlSgvL0dbWxtSqRQbIRcVFaG1tZU5e263m9FtAFy1R9XWwjRgrrdnIpHY9X4edL141uzNsyBXXyFUX1L7IhCqgyBLByHp/r7J50/bPgtZnRbfvXYjz4L+fZZ7tN8xCyFcubs5QrY+D8/AQvw8YPdu72mOKSR65yJU9Dl5jpFn2l4WM/l4UVSBRwiVkCcGYJd3o9DLkVAp6g+hT4ODgwA+1XLKx9PKp38lRIKE5HWXa8f3rqioCNlsFkVFRSgvL+ffUGUhBYvCQJaQNTpHOr2j80MISGlpKW7duoWLFy/CbrejpaUF4XB4l00OIXZ03M3NTej1ek7TUkqFUpRWqxUOhwONjY2Ym5tDTU0NFhcXeS5TKBQIh8Nob2/H5ubmLmRweXkZ09PTuHjxIiYnJzEzM4OZmRlcvHgRUqmUy+EXFhZQXl6Os2fP4v79+9ja2kJRUREHzy6XC2azGcPDw1AoFKiqqkJ7ezvbzDx8+BAnT56EVqvFnTt3oNfrUVpais7OTk7pTE1NoaysjHWinE4notEoWlpaoNVqMTQ0BIvFgk8++YQVz8PhMHvcaTQa5s61traylUtxcTG2t7fh9XpZQJQMvCnYGh0dhVgsxosvvgi/34+HDx+yiXJxcfEuAngqlcL09DQCgQDu37+PZDIJs9mM2tpafPvb32a5i6WlJdjtdpSWlrLNjFwux9bWFm7cuIFsNouenh5UVlYiFovB5/NhaGgILS0tEIvFqK2tZZkLCpovXLgAj8fDcgpHjhzZhVLq9XpsbW1haGgIb7zxBtxuNz788ENks1lGK+ldJcQxEolArVZzIUwwGGRDZ0JHpVIpnE4nYrEYI+PCd9PtdnMxUDqd5sAuX+HPs3Kr8v1OuDYqlcqvSOl/SO3LNEd+GrL6l5ny+7zas6T/conf+6UXD1IJ9rR9KtS3/dpBCwf2M3t+GqKn8LtCIj+AA49j7nGpD0D+SkfhmAtTA/k4a+RrRmXYhBxR//Jdx9ra2hPpTGH/qA+EPAgRJ9rd5xYmACgoSJh7rS7XjqHv/Pw8zp49y0EO8WZcLhcGBga4ZP6FF16A1+uF3W7ntInVakU6neZqt1u3bnFwlUwmWTW7ubkZRUVF0Gq1CAaDMBqNTOwnBW8KfIQcFvJ3SyaTSKfTnE6iir3l5WX2myP0lNBKCh6Il7e2tgaDwQCbzcZkZ/IKpHv461//mvmN7e3tyGaz+OSTT3D27FkYDAaEQiGoVCoUFRUxeiQWi1FUVIR4PI7FxUVGVCORCIqLizE/P89SCDKZDHV1dSzLQEHW9evXIZVKEYvFOMVHFWoGgwFqtRp/8Rd/AafTCavVCrPZjFAohM7OTtTW1sLj8UCn06GqqoorGhsaGjA5OYlQKIT6+npYrVZG24QBst1ux8DAAF555RUUFxdz0El8NLVajb/8y79k25vS0lIcPXoU6XQazc3N6OzsxNTUFNRqNWZmZlBWVoZoNIqysjLMz89jbm4OmUwGx48fR0VFBfx+P3w+HzY3N1kGY2FhARKJBGVlZVhaWkJDQwPfQ5JqoPee5DPMZjNmZ2e5mu973/se1tbWEA6Hcfny5Scqo5eXlzmTEovFcOfOHbz++utIp9PQaDSYnJyEXq+HWCyGXq/H7OwsWltbGUWk9zadTrMMB6X58wk9P2uFfKEmnBui0ehXKb8/xPZ5EuAKtachqwtTYvv168vo+0HafteUj7iYm/ra61oMBgOKiopYRfrz6JOwHYSEL2yF7pHwmtLpNO80iZ+S63NoMn3qgbhXYQB9nk9EL5dAn+8aaDIlZXAhKb4Qqd9kMsFsNqOoqIiDNUoNFhqnfOmB3LEV3hdhOpPuv7B/ADhdNjY2hrW1NfY4o3QDfZ/Sf7QAUqUdjdfIyAh78dF4UtUZafQQr0VoCSIWixEOhxEOh3Ht2jUm51qtVq7e29jYYH7S2bNnGaXUaDQoKyvj9E5bWxump6cRjUaRTqcZUaJFnaxxHj9+zM/D2NgYIpEI5ufnIRaL0djYyGmnUCiErq4u2O12tLe3s1As3fOrV69iYGAAv/rVr1jdmkRP6d4bDAY8fvyYF6lz586hsrISPT09ePXVV5HNZnHixAlUVVWhsbERbW1tnOYkHSKHw4GtrS2Mj49je3sbW1tbqKysRGtrK8rKyniMbty4gZWVFeaAZbNZjI6OYmBgAEqlEuvr61hdXYXT6cS1a9cwPT2Nzc1NfPLJJygqKkJ7eztzfxQKBcrKypi83d7eDpFIhEePHrFsxu3bt1kkuKSkBF6vF7FYDB6PhwOTpaUlzM3NQS6Xo7+/H2+//TZCoRAmJyf5GfB6vaisrERFRQWef/55fPOb30QsFsP4+Dh+/etf49q1a0ilUlxJKJfLodPpYLfboVKpUF5ejsbGRkQiEaytrUEsFuPkyZMoLi7Gf/kv/wVlZWVYXV1FNBrF9evXsbGxgVAohGw2i9nZWaRSKZhMOyKzRFCfnp7G48ePUV1djYGBAbjdbrz55puQSCTMARTOqRKJhNPJgUCAUbqbN2/y+0I8KgAc6NNYCd9bi8WyK81Pmx/hHCYsPnra1F6hlju/HqR9FVB9yY10Tj4rh2evgIAeRipjzkdm32tBLdSeNhA4aH+ftu3Hudrr5aJr2MsD8Gn4afnSg/muVfhvn3dFJn2mUCgwMzPDhGpSpiaFdroWp9O5i2cF7A48cq8/33lzr4E4EBR4OJ1Orn7bS91Y2DY2NqDVahn5IjXzfOaoFosFNpuNSbN0DuGzn3tfKFUgrEwjpWqauI8cOQKr1Yr29nYUFRUhk8lgbGwMIyMjrNszMzPDHnoGgwFyuRxGo5HHle7FRx99hKKiIoyNjfGY0AJosVjQ2dmJeDwOq9WKkZERmEwmdHd348SJE5DL5ZDL5VheXgawY/Tc3NzMFVbBYBCNjY2QyWS4cOECFAoFOjo6YDKZ4PF4mAO0vb2N2dlZpNNpGI1GhEIheDweRKNRLC0tYXFxcZdptUajgdPpxOHDh7G5ucnXuri4CK1WyyRyt9uNiYkJLC0tsYfg1tYWwuEw5HI5QqEQdDodYrEY3n77bTgcDhgMBgwMDKCoqAiTk5M4f/48xGIxLl++DLPZjGAwyPyijo4OriKkhVcikTBZOhaLoaqqChUVFTh9+jQkEgk++eQTTE5OQq1WQ6vVoq6ujj0E6RnZ2NjA8PAw5ufnUVZWxgt/JBLB6uoqbt26BZ/Ph7feegtarRYNDQ148cUXYTabGdEZGxvD1NQUHj9+jK2tLUSjURgMBuh0Omg0GvYiHBoagkgkQkVFBZaXlzE6OorV1VX4fD6Ew2H4/X6UlJQgmUyipaWFpTQ8Hg+kUimam5tRW1uL6upqLgTIZrMsfEpioul0mhXQ7XY7ent7OU0ok8nQ3t6O+fl5GI1G3Lt3D2KxGG1tbQgEAmhtbUVxcTELmCaTSUxPT2N0dBQymQy3bt3i56ypqQmbm5vQarVwOByIRqPY2NhgFCl3c0KIZkNDA06cOAGLxYKXXnqJTc+FQRKZoFORiXCOp/8n5CwfV9RkMnH1Hm0K87WDrEP5vrO+vr7v/AV8FVB96a2iouJzKdfca3EthCLkQ26oHWSRf9ZAYL/+ft6NXq588hN0DfmsS56lFSoYKPRvtOAKNXue5rooWCAESIg+URqGlI71ej0b4D7NuOfe53z3PTeoHRsbQzAYZFSFSs/3UzcWIkXCIFh4/NzxFELxhGTROfZD0Oh8VBGl0+k41XX16lVOMZL8QTgcZlIwyQ/EYjGMjY3B6XTuspBJJpN49OgRE4eff/55pFIpTjPRvaPrk0qluHLlCqLRKGKxGKN4QjHEqakpbG1tIZ1OY3p6Grdu3UIgEEAwGGQ+jcViQW9vL2QyGRQKBRYXFxkdWVxchEqlgtfrZfuQ9vZ2lrdobm5mg2NCWpRKJVZWVpBMJhmZOXPmDKxWK86cOYO5uTm4XC4UFRUxh0sul6O4uBgtLS0oKSlBfX09ampqEI/HIRaLcfv2bYyMjKCnpwepVIo98qhqc2pqCqOjo7yQE5KUSCRQVVWFnp4eGI1GZDIZVFRUQK/Xo76+nj8DgMXFRa46NRgM6Ovrw/b2NhOvq6qqYDabcfnyZQ6ASAyT3skrV66w0vzjx4/ZpLeiogKNjY3Y3t5GMpnE2toaVCoVlEol/uiP/gilpaW4fPkyTp8+je3tbaytrcFut8Pv92NhYQErKyuYmZlh8rher4dGo4HFYsHx48fxi1/8Al6vFw8ePEB7ezuqqqpw5MgRdHV1cUXlCy+8gLa2NnR1dcFisXA6VCKRYHJyku+x0+lEW1sbV3rSM0ufabVaaDQafPvb34ZIJILZbMa9e/eYlF5WVobt7W08fPgQDQ0NSKfTeO2111i+pKmpiefPxsZGSCQSntt8Ph+jln6/HzKZjIsQDh069ATaIwyWctHrp1kfD4KcA88OHFRUVOzbB+ArDtWX1vJxqD4LIfwgPJx8vJjPSzbg8+IBHeR7XwTPa69jPg0pPR83C0DBayCCeT5z34M2Id+ILDUoQB8aGgKwEwQR6VlYflyIW1aI+H7Qlk/u4CD3jd4BkUjE1i30XBYqoabUCXGd8nG5hOemdCjp4OSTQ7h69Sq73L/00kv8e7Vajf7+fjQ1NXE6AgBLDQhRyffffx/RaBR1dXXo6enZFTjTPaH/p/ERSkEQt4gIuMCORYzf72chz2QyieHhYSYQNzY2wmaz7SK9E98kHA6jpKQEKpUKLS0t+Pjjj5HJZGAy7VgEEXH7xo0bLMewtraGRCKBoqIifh6oPJ3SeiUlJZDL5RxISSSSXZtEp9O5q3rrwYMHqKysRDgc5gCIEEK/349kMonbt29zdRil3OPxOKOKFosF7733HgKBALxeL4xGIzweD1544QUolUqk02nY7XY4HA6Ulpayvhb59KVSKRw9ehQXLlzgSjqfz4exsTEm29tsNjQ2NmJ4eBgDAwM4fPgwkskkDh06xPeOiiYymQwsFgv6+vpYINVsNnOqNBqNori4GEqlEtFoFPfu3cPp06dRW1uLaDSK0tJSTE9Po6SkBKlUCuvr69je3sbly5dRUlKC9fV1HDp0CFKplAsZAoEA4vE4qqqqkM1m2Sexu7sbsVgMP/nJTyCXy9HU1ITS0lJWxCc195WVFchkMk4nikQi3kgMDQ1BrVajsbERtbW1AACFQoGlpSWUl5fj1KlTmJ+fh9/vx/DwMOrr63n+oYpBq9WK0tJS5ovNz8/j17/+Naqrq1FSUgKRSARgh1JBBH5h0Uk+zmG+9XEvruh+c/ezrJvAV0rpf3At3w35sgnhnydxL9/D/qwPa77jHlRNe69r3e88+VTpnzXAOChRPpcDRSjL01TeCRdpANxPAHkDrb2Ou5/uS77zF/rOszzP+Srk8imcCyfH5eVlDA8PsznufuP96NEjyOVyqNVqdHd3szq1wWDYJU/R39+P8+fPc8m98DkQln0TiTz3Gh0OBwYHB7nCy2KxsOK9RLJjxZNIJPDo0SMcPnyYuVD0LgqDcapOJCSnpKQEQ0NDkMvlnBIiWxdKe1IgRsT5srIyjIyMsBwApYSoyqujo4PROVJ+pyCPNKwoVUypFuKFhUIh/NEf/dEuGQeh+j5ZiqTTaYhEIjx+/Jgr9IgHs7y8jMnJSeh0Ojx69AhTU1M4ceIENBoNGhsbWYyUxjoYDOLHP/4xTp8+jZs3b7Jaend3NxKJBD7++GPI5XLMzMxALBYzyf3+/ftYWVlBPB7nYLe6uhq3b99GSUkJB6A1NTUoLS1lw2Sz2YyKigqo1WrIZDIAYGI/STdQlefExASy2SzPK6dPn+a/P3r0CI2NjRCJRDh9+jRSqRQeP36M9fV1DlrITNtiseDRo0fY2trC9vY2NBoNMpkMiouLOcWn0Wjw8OFDlJaWwmazobm5GT6fD9lsFplMhq1cCAkjPl91dTWnbkmfCwCGh4exuLgIvV6Pvr4+RmWdTiebWZeVlaGjowPvvfceP8dFRUUoLS3F5OQkKioqUF1djZaWFphMJpYAIdsjOpewCVHofJtE4TtAz8JegRa1g+hKPW37KqD6A2tfZpUf8MVbyuQ7zkGCiv2+ky+gEVaZHbTP+4mIkr2LQqFAKBRiDg0Fb/vZzOT2+SCIFvVJiE4Be4vOCc8xNDTEnBuaKHKDLOEC+LTI2n5BkjCwPcg9KYSGCQMHYcCSL6ArFLjvNd7CII1259FolFFZIcJF3KfcUuxCgX1uEJ57TcSDKSkpQVVV1ROVcIRm1NTUoLu7m4OXXIkHSl34/X4oFAr2e5uZmeH7Ruc3GAzsQ6dSqSAWizm9SOmszc1NqFQqDA8PI5VKoby8HOXl5cydKS0txaVLlzA5OQmZTIalpSW0tray6bNQ5oKIzBKJBD/4wQ94kdva2sLMzAzUajUvimtra3C5XFhdXeW0bl9fH1QqFdxuNxwOB6RSKSQSCaLRKDweDw4dOsSBl0Qi4WeUSusptU0oWDqdxs2bN5mAXVRUxFpK7e3tcDqdePPNN7G+vo5wOIznnnuOET1SZK+oqIBMJoPFYkEgEEA2m0VjYyN0Oh0jlwCwtbWF7u5ujI6OwmQyYXFxEQ0NDdjc3GT1746ODvT19e0q8PB4PCgvL2fPPZVKhYWFhV3m2yaTCVNTU5BIJBgYGMBzzz2Hra0tlJeXIxgMcrqVpAs2NzfxZ3/2Z/jd736H7e1t9kKcnJxkIr3BYGDvwoqKCmSzWdbe0mg0cLlckEgkKC0thcVigVKphNfrhd/vZyV0u92OVCoFn88HrVaLTCaDkydPQiwWY3h4GH6/HxqNhnWv9Ho9cyCpCQ3FiU8oFCKmd47eb5KeEPpPHlSqJTeg2q/6+SDtK2HPf+CNJn8im1Lba7F9lpy18DifBw+LFi8AXPH1LAFgofNQUOD1etHd3Y1IJIJ4PM4Ck/Q7ujZakPZqByWx5+NvHZSXRv2majJqQu4Aie9RYLjXfRSOw34Ef+JHCCv/Cj1fwmdI+Nvl5WVWfna7P63GAz5FVPLd40L8LdK8oWML+0B8romJCZjNZtTV1eHKlSucLkyn07Bareju7obb7cb09DS2t7efIN3nVkSaTKYnBEBzx6GhoQHRaBRtbW18n4WVcHq9HjKZjCf33t5e+P1+bG1t4Re/+AWCwSDb4xQVFaGzs5N5N4FAAO3t7ejs7Nz1hyQCVCoVVlZW4PP5GBUjW5KysjLIZDL09vaioaGB5Qyqqqogk8kgl8tx7do1xGIxrnIjYUaqvorH4/B4PHj99dchkUhw4cKFXenMYDCIkpISDAwMIJ1Oo6amBr29veju7mbCcSqVYsXyxsZGVFdXw2g0wmazwefzQSwWY3JyEplMBqOjo5ibm8Po6Ci2trZYFfzYsWNwOBzQ6XRwOp34zW9+g9XVVUZmyErF6XRiamoKFosF/+gf/SN0dHTgzJkz0Gq1uHDhAhobG1FVVcXk9a6uLtTV1cFms8FoNO5ChzQaDRYWFjgg7+vrg9PphM/nw8DAAGZnZzE/P49oNLqLQA2AddVu3bqFoaEhDiRJuLO4uBjFxcUYGxvD2NgYrl69isbGRubHicVibG9vo7+/n+1l/H4/amtr8b/+1/9CKBSC1+vF8PAwP4MrKysIh8Nwu90Qi8XweDyssQUA4XAY6+vru9T66+rq4HA4AOzwnzY2NlBRUYETJ07wuzoxMQG1Ws3PGSFXNpuNn0Oz2bwLkUqlUiy4S/ZEXq93F1eJ3mnaKJIsCD1/wsIW4QanUFEWBWrp9I4mVjAYZEulL7J9FVD9PW35Jv/cJlz8cgnrz0KYPwgycpDvCAOUfBUdz9KEZGRaoCk1Y7Vaubqk0Hf3Go+DBkW51SpCEvV+Aa7JZOIgIBepoc+FyNF+xMuD9pl2iIQkUZ8LPV8E3btcLj4HPVuxWIxJ5wcNXGl86NjC8aedbq7aent7O1wuF2w2G5NdKZi6du0alpeXIZFIOAglIUjh/afjra2tsVo6BURU8k3jMzc3B4VCwdVfJDFAyAupwo+NjbF+EQXG9O75/X709PQgHo9DoVDg6tWrcDgcu9Aon8/HXJpYLIbbt28jnd6pzKOgqLOzE2azmSUKJBIJp9Gef/55HDt2DD09PXjuuecQi8VgMplw8eJFKJVKRmGee+45uN1u1NXV8X2iAgeZTIa7d+/iT//0T5FIJHgc6F2KxWKQy+WsnC+RSFBXV4dXXnkF3d3daG5uhkajwfr6Ovx+Pw4fPgydTofNzU1cuHABNTU1uHDhAjY3N7G0tIQHDx4gkUjA5/MxAvfXf/3XEIlEmJ6eht/vR2VlJdra2vC9730PZ8+eRVtbGy/CWq0WcrkcjY2N+Bf/4l+gqakJR48eRTwex4svvogrV66gqqoKfX19OH36NGw2G55//nmuSqPnbmhoCGVlZQiFQlAoFJidnUV1dTX0ej2OHj2KxsZGtLS04OjRo7tQzmvXrmF4eBgTExPQaDSIxWLsyUcokdlsRnd3N4xGI0tVkE2LTqcDsIOQNDQ0cOrr/PnzcDgcLAFC6UnSMqusrMTS0hISiQSy2SycTicWFxeRyWRQVlaG1tZWOBwORCIRvsd2ux0Wy45R9quvvoquri5cvnwZFRUVOHnyJJRKJQ4dOoRAIIBkMgmHwwGXywWPxwONRgO1Wo3S0lKIxWJO96XTaZSUlODMmTPY2tpCe3s7I0+0aSGVeeG7nclk4PF4AADZbHbXZjV3rcptlHp2u90YGRmB1WpFPB7f5f7wRbWvAqq/R024wNIERyrN+Zpw4SUCLi14hRblZwm0nrYVWuxzz71XX3L7XwiREe6MhAHcyMgI3G53wUozYZ8KpVbz9e0g40ff2U/DKXeHR301mUxsWupwOPKeS/j9vfpEk5OQeEy/3+/5or54PB7moVCqTLjLJBJyOp3epZ2VTufXs6JGaYVcaQW/378rYBBeS1lZGcLhMAd1FKSSejMhXlQRR9WKCoUC165d40WCAgayNSFtpkOHDjGiQYEu9ZEsb4TBO20ezGYzL1jz8/NYX1/H/fv3OZALh8Oora3FwMAAzGYzfvzjHyOdTuPOnTvY2NiAyWTCpUuXkEqlcOnSJUgkEu6rUqnEpUuXuM9dXV2IxWJQq9VwOp2YnJyEyWRCRUUFpFIp/H4/ampqEAwGd70PiUQCDx8+xMbGBv7u7/4OarWaeVZ0n3Q6HSoqKthkO5FI8DNN2m7ZbJaJ9i6XC7Ozs1hbW8PCwgJOnjyJ7e1tJlYT3yedTsPn87EoKqXkVldXsbS0hLa2NpSWlqKrqwsymQwXL15EZWUl9Ho9pxpnZmbQ29vLwUo6vaMUT5pU/f39SCaTkEh2Ki3FYjG2trYQCoVQVlYGlUqFtrY27vvs7CwT8Lu7u9HX17dLIJMqAalK79ixY3jjjTc42CWldUJUampq0NLSAotlx5Cb7IO8Xi/q6+vh8/n4Xdja2sIbb7yBUCiEnp4etLa2QiqVYmBgANlsFktLS2hqamJfQ6fTiUgkgmg0isuXLzNC39jYiNLSUsTjcZSVleHRo0coKyuDw+HAlStX4Pf7eS46ffo0mpqaUF1dDbVaDbVaDWDHGJqqqkUiEYLBIO7cubOLfkBpQZp/ibZAzymp99O8IRaLuZqSMhXCuWAvzSlaP4Ad6YZYLIYrV6584d6twFccqi+tfRkcqly+ydOQiIHdlWmFfvtZKhP3On+hcxbi8FC6pxCnJZcbdFCeUyGuUqE8fKHxKPTvexkZ5/52P6L4Xvd3cHAQCwsLXL6/lxWNkK+2n4J6oTHLJcsLyab5yP+5YwTs8FOERqrAbpI9nSsXtaJG10D8uNx7lUgknlBfp90ucZ2INyJUZKZnIhKJ8CTe09PD9jVC02KXy8X8rb6+Pk6/7ncPqc9qtZrRF6VSyXworVbL9h0DAwMoLy/H7OwsXnzxRWxsbOwy0g4Gg4hGo5ifn8eFCxdQV1e3i/RLSvRDQ0NYX19HY2MjotEozwNLS0ts5uxy7ai7a7VaGAwGJJNJTE5O4sSJE8hkMjh//jwmJycRi8U4YKN7RWa8Op0O77zzDlpbWxGPx5HJZCASiaDVahEKhRCPx2G321FSUoLl5WWcPXuWvQPpXq+treHRo0cQi8Xo7Ozk9//69evIZrOQyWQchJw8eRLBYBCJRALT09OQSCS4e/cuenp6MDExgbNnz+Lw4cNYX1/H9PQ0UqkUHA4HkskkSkpK8PLLL/P7otPpcOPGDSgUCg5cDQYDpqamMDc3x+Tpc+fOcaBNc08ikUBxcTGqqqrybl4oXRyNRllDbGRkBCKRCGq1Gu+//z7kcjm0Wi1UKhW0Wi3GxsYgFovR0tICqVSKTCbD6W2SO/D5fCytYDQaWWg1k8ng3/27f4eGhgYMDAxwsEL6YWQcnslkOGXb1taGjz76CJubmzh69Chu376Nzc1NlJSUsFhqeXk5zp07xym/oaEh9PT08DNlsViwvLzMfEGZTMZjpNPpcO3aNahUKtTV1fF9Jd4ZmUUXmguAwlmP/daTp6GQfEVK/wNrX0ZAlfuwfNbg5/N8IPO13P4dlLAuDJJyqxb3OsZBxyNf8LUfyf2g5H8KqIqKiqBSqVjCglCwfMHtXsfL/Yx+mztR5QuoDhLc7TX+ueOaTwpivxJnYb9HRkaYEE1jIrS9oN0ssBMUAGAkSaiqnBt4C89DE3tnZycHGhTwEYndaDRic3Nzl8cfEZjJxJbQNiFR3Wg0YnBwEI8fP+ZFr6KigsU/C5WH0xjm2xy4XC422y0vL2ce1fT0NPdveXmZkYXt7W2cP38eN2/ehEKhgM1m46BQeF5Cnih1U1NTg7KyMnR2dmJ0dJSvkzgvhKrRWIRCITQ2NnLZv0gkgt/vh0qlYhmH0dFRJBIJ3Llzh4MrEqUkv776+nqEQiGk02k8ePAA2WwWq6urqK2txdbWFnQ6Hdrb26HRaPDzn/8cJ06cgFqtRjabhUajwb1795BMJiGTyTA4OIienh74/X5cunSJBU3v378PvV6Pu3fvMm/q0qVL2N7exsDAAEZHR3HhwgWsrq4ik8ngzJkzqK+v5w1CIpFAf38/tra2YDAYEIvFUFpaio2NDcTjcVy4cAFjY2OQy+XY2NjYJZRJbgu0MRoZGcH29jan++bm5rC+vo7y8nJOmc7Pz0Oj0WB1dRWlpaVobW1l0jrx6+jZicfjePPNN7G6ugqNRoOKigocOXIEkUgEbW1tmJmZQSAQwNTUFGpraxnJ0mq1iEQiaGlpwS9/+UtOEYbDYSwsLECv16OyshLt7e24d+8eSktLEYvFsL29jWg0ymbTYrEYKpUKjx8/xqlTp/h+jY6OwuPxsAXS3bt3UVlZiXg8jubmZqYL0CaBCoMA5C1Gonck9/kldL67u3vPir6DbB73+h1tDL4KqP5A2pdd5Qd89uDnaRGvp+1b7sLyLMc/CMpV6Lt7ffZ5XHu+QId2ZgaDAdeuXUNJSQnUajXMZvOewV6h/giRDdrJFarEy72Gpy0vFvZBeGwKbPV6/S5+mDDgFfrc7YVGEnFdLpezXlHuzhTY4S6Nj49Dp9NhY2ODd7L57pWw34TUkEpzbqqT+uZ0Ovk6nU4nEokEwuEwWltbd52PEIzz588zYXl0dBQzMzOQy+VMQKcKQpfLxYKPwuq+Qnw66q/X6+UgR2i/Qd8ZHR3lCjaZTMZzTXt7O8bHx9mzT6iVRkEiqanr9XpUVVVxcEwBWyKRgN/vR1dXF9xuNwYGBjA/P4+6ujpIpVJks1lGbgjZEt5/CsKy2SyKi4sRiUTQ29uLWCyGw4cPw2QyIR6PY2JiAj6fD1arFY8ePWL+DwXi9K40Nzczl8zpdCIUCgHYCd4dDgcsFgtWV1dRXl7OyI7b7YbNZoPH48FLL73EKc8///M/RyAQQE1NDb7xjW9genoaxcXFOHXqFEKhEJxOJxYWFvg512q12NrawsTEBKqqqlhRPpPJsATE8ePHEQwGsbGxwSKl1dXVSCQSqK6uxtzcHAKBAOrq6pgcbjAYcOHCBdy+fZuRnVAohOrqaqytraGjowOPHj1CQ0MDysvLEYlEuBp0bm4Ov/vd7yAWi2G1WneZSsvlcoTDYSSTSSwtLbEmWU1NDQfPQoX7d955B9XV1exbaDQasb6+Dp/Ph9HRUZSWluL06dOwWCwIh8P8bMZiMdhsNvzxH/8xXC4X3nvvPTgcDhw/fhwSyY5dUDabxQsvvMCB3Ntvv81BJLBjLZQ7TxSaUynYJY0uYTYhd+4VzgH5UP+95nb6XSKRQGtr61dVfrntz//8z3H06FEolUoYjUa89tprmJmZ2fM3N2/ehEgkeuLP9PT0l9TrZ2sHIYDv1XK5TELOzkG5VIW+R9wR+n9hKkf4oO93jtzf7HXNe32Wy5HKvfZnGctcjpqQwyWVSnHp0iWo1Wq0t7czx6QQH4kWKyIB0/EomMole9PkIOyzsOqOSOP7mT8L70Eh4jv9Id0hIqAPDg4iGo0yqV1YXEDIDskI0P0nsjsdW+iraLFYmEc2Pj7OqSnixRS6V8J+UyUXBQfkZed0OrlUWyKRwO/3c2VTVVUV5HI5WlpauFKOyPbj4+OQy+VsL0Nin6QIXl9fz+gaccRIvX56ehpLS0vo7+/nCrXcyiXiYLW3t6O8vBwikYgXE7L3IfTqxIkTsFqt6OzsZE7L2NgYBgcH8cEHH+AnP/kJq5zTOHV2djIKotPp+DmkIM9isWB6ehp2u52lAqiSjQLNTCaDVCqFqakp5uuQijwFclqtFtvb25iamkJ1dTU8Hg9qa2uRzWah0+lw//591NbWMr+mvr4ep06dQmdnJ3p6enDs2DHYbDYcO3YMq6urKCoqQnNzM/ObTpw4gUOHDuHixYsQiURobm5GOBxGNpuFSCRCR0cHtre30dDQgMHBQRapfOGFFyCVSlFfX49AIICtrS3IZDLMzc0hkUiw0KlCocD3vvc9vPjii6isrER1dTUMBgM6OzvR1NSE+fl5lJSUYGNjA4uLixCLxdDpdFhdXeXnIxwOIxKJwGw2o7q6GrFYDMeOHYPZbEZbWxvzJGOxGIxGI86cOYPV1VWoVCr8t//23+D1evH48WPMzs7C4XBgaGgIBoMBlZWVkMvlHNArFApMTU2hpKQEm5ubrK5++PBhlJeXQ6fTMbfM6XTC7/ejtbUVSqUS/+pf/Su0tLTgO9/5DsRiMVcoulwuFBcXsygx8ZmSySTzqU6ePMnP7+bmJpLJJAKBAJqbm6FUKvHiiy9CqVSis7MT/f39MBgMGBkZgcFggEqlwtzcHM9hbreb5xAhD4/I6F6vFzU1Nejr68urRVdoPqf3UziP71XEQ787qFL6P7iA6tatW/j+97+PBw8e4KOPPkIqlcLly5cRjUb3/e3MzAzW1tb4T2Nj45fQ499f22thWl5e3rUYHpQcTk1IHNzLn+6LsKvJ19+DVr09TRNWsSQSCYhEIiZbA9hVNk8VdMCT1Wzp9KfGx8RTof4KF89CKEfuNQLYUzIhl+eRew8oMKAFE/jUqNjj8SASieDGjRu7VKUpiKOJmKxVEokEV+nR2BgMhl0k8VxJikQigdXVVT6vcMeaO265KKhE8qnIYDqdRiAQgM1mY90oShtSqT/9tqenZ1fQRjICOp0OW1tb0Ov1HOBqtVokk0m89NJLUCgUTNomREir1UKhUODixYuwWq04efIkFxHY7XYeexorelbEYjGy2SyjTOR/V1dXh7KyMlY0Fz4DRHwOBoNsxHz9+nU4HA7E43FMTk5y0LO1tcW7b3oXXC4XYrEYwuEwj3FtbS3S6TS6u7shFovZhHdychLj4+MIBAIcJITDYbS3t3MasKenB8lkklXIdTod+vv7WQRVqVRyJZvFYkF5eTlKSkpQU1ODK1euYH5+HqlUCmKxmP3lzGYzxGIx9/tb3/oWotEoysvLEY1GIRKJIBaLEQwGMTAwAIfDwZ5/VIFmNpthNBpx+fJlxGIxRKNRvhZK4lB6KRqNcrBw48YNjI6Owmw2c6VlIpGA0WhEVVUVVwt2dXXBZDKho6MDL7zwAmw2G+rq6jAzM4NkMsnvk5Cb5Pf72efx7NmzjJAqFAoMDg7i5s2bGBoawsTEBKf/amtrUVpayrxJk8kEo9GInp4e2Gw2lJeXw+v1YmRkBKOjo8hkMqzGr9VqoVar8bWvfQ0KhQISiQRarRbRaBQvv/wytre3ceLECcRiMfT397NJ+KFDh/Ctb30LxcXFsNvtcLvd+PrXv47q6mp0d3cjGAyyYC4h6tXV1ZiZmeFnNhKJwGazYWxsjFEhkloQopy5ZPR88x3NI0Rm3487u9fc/7Qb6X/wKT+yMbh16xbOnDmT9zs3b97E+fPnEQgEODf+tO33kfL7ItvAwACnTiwWS8F01X6psoNybD5LivFZuGV7fedp+rW8vIyHDx9y+oW8HAuJVObyf6gvQn4NkL+AYC+RTuE4E1+r0Pepyq2kpISRHGq0Q6VdIxGc6dgAdiltUxCRTqcRCoWY3EypMCGJXZjeo+vKJYgDO4R7r9eLmZkZfO1rX2NdHnq/KBVCfAmhSGs6nYbD4cCjR4/Y5mN2dpYn/ELPgDDF6Xa72cKptbV1l8WPkGxLXnWUCiLeF/Cp0CEpoUciEVb4JgFSu93OJH3hb3MJ//Qd8iYUBkO0uLhcLni9XiwuLrKW0YULF2AymXiswuEwPvroI7S3tyMajeLw4cOMhJEUw/b2Nq5fvw6DwYDDhw+zAGkgEMDq6ipWVlZw6NAhKBQKiMVilJWVobi4GPPz87DZbBCJRHC73ZBKpejo6GDz48nJSSiVSh6zYDAIn88HhUKBra0ttLa2oqioCJFIBMvLy/jmN78Jr9eL5eVlzM3NIZlMIp1OQyaToaKiAn6/H9euXUN9fT06OjrQ2NiI/+//+//4Gejs7ERlZSW2t7extLQEpVKJTCYDt9uN4uJiRKNRKJVKSKVSKJVKiEQiDgzVajXeeustJJNJKJVKtmdpa2vD3Nwcp1wPHTqEpaUlTE1NIZvNorKyEi+88ALS6TT+9//+32xPo1arUVZWhmPHjmFubg5KpZI3PiTC+sknn+DYsWMQi8Xo7+/H9PQ0G2KLRCKsr69DJBJBr9dDLBbz5oBQXOLdUQqQNkVbW1toaWmBTqfD/Pw8WlpaOM07Pj4OiWRHb+zHP/4xk+PtdjujyLW1tejq6kJPTw8GBgZw584d1NXVoa6ujgsphM8mvafEnYpEIjynjYyMQKFQIBgMwmw287ySyWQ4sM6lDRTiIwqLXT4Pl42vhD0P2Mg6gfQ+9mpUXn3x4kXcuHFjz+/G43GEQqFdf36f7aApuoM2Yerks0T4Xq8XarWaya/CvgIoqEH0NC031SXUlxK2Qukt4WeJRGJPDZR8bXNzE9vb2/B6vU+k9Sj1SchCvrE0mXabPeeiRsL0XyFEb2xsjIX16J5QAEPXTNdHKTxCjiQSCadnCRUTlv8L76FEImGjXhLfJLPkCxcuoLOzE8FgEAqFgmF7qrij9FZVVRWMRiOAT32/hONBAVNzczMeP34MkUgEjUaDmZkZKBQKjI6O7iKrA9iVhhoeHgYAJpCXlJRgcnLyiTGjNCtVXFG6zGTaMaImY9h8qWGq8vJ6vdBoNAgEAkwmppSlw+HAtWvXoFAoYLfbkclkoNVq+V6IRCLU19fzYiAUM3U4HEgkEkgmk1hdXcXq6ira29t3BX+Uxtzc3ERxcTHS6TTi8ThmZ2c5ZUmcN5PJhKGhITQ3N8PlckGr1WJiYgKJRAISiQSbm5ucHl1cXMTjx48ZSQoGg+jo6GA9t4mJCTx+/BiRSITfuQcPHuD+/fuQSqUoLi6Gz+fblWKlqi63242PPvoIk5OTiMfjiMfjOHv2LHMMFxYWUFtbi+npaZZaSCQSEIvFqK6uxtmzZ9HY2Aiv1wur1cro4ccffwyFQoH19XUmSjc1NXEgIxaLMT4+jtXVVWxtbeHo0aPo6OjAiy++CJlMhrq6OiwsLDAxuby8HOl0mp8bqlw8efIkEokEB8BFRUXMP4rFYnC5XPiLv/gLLCws4NGjR6itrUV3dzeOHj2K+/fvo7i4mEn6sVgMHo8HDx48YCTn/v37OHLkCI4fPw6DwYCHDx9ia2sLhw4dQmdnJ8rLy/nZJU0pSsfKZDL2C6T3rL6+HiKRiAOGsbExXLt2Db/5zW8wOzsLl8uF//t//y8T6GUyGaqqqlBWVgaLZccs2eVy4erVq3C73chkMgiFQlyIcenSJU6XT09Po7GxEYFAgIsRaIMHAHq9HnNzc1Cr1ZBIJHwuUorPTde5XC4MDw/zHJZv7i40j++1lnyWzMg/6IAqm83iP/yH/4BTp07h0KFDBb9nNpvxl3/5l/jlL3+Jt99+G83Nzbh48SL6+/sL/ubP//zPObesVqtRXV39RVzCgdvnnT6jdBWJF+6XOirUTCYTCxUK+TW5AUM+Ve6Dtr1SXYlEgvP0wvMW4h/lcpb2axaLBZcuXYLVakVTU9Ou1JWwb3tB2PRvAPIGhML0X6HAtrOzEwqFgkUvc1NjFCSOjo7yjo7Sebn8A9LMoaCM0nf5RGQtFgtsNhv6+vpQV1cHmUyG5uZmFhQUNuKQ0B8i2Op0Ok51AjvP3htvvMEaUBsbG6x1FYlEWGOI0DfaaZrNZnR1deG1115DQ0MDTp48icbGRhb9y31eCWnq7+9HJBKB3W7nflJgSKkpr9eLcDiM999/f5f2l06ng8PhQCwW2yVASqKbJB1gs9nYD83v9yMcDmNzc5O954Ad5HBgYACDg4MYGRnB2toarl69iqmpKTx8+BB+v38X8mk2m1n/ymw2Y3l5GT6fD+FwmE2GqXm9XvT09MDr9eL1119HNBqF1WpFKBSC2WxGQ0MDfD4fMpkMC1rSuyKXy3H37l2cPn0aR48exUsvvQSr1Qq3242urq5dZs80Xk1NTUgmk/joo49w//59LC4u4u7du1heXkZJSQmnqb797W9DIpFgfHwcTqcTmUxmV1B/8uRJmM1mtLS0oKWlBVNTUxgbG2MCsdlsZq7r1tYWvva1rzExe3Nzkxfv1tZWHD58GN3d3XjppZfQ19eHF198EZFIBFKpFHfu3EF5eTlu3LgBnU7HiElVVRUrs8diMdy/f59J3XS95eXlnFJdW1vjSsGOjg6UlZXBYDDg/fffRyAQwHvvvceorsPhwMzMDCYmJnD//n1Guq5fv84SCgMDA/jggw8A7JC65+fn4fF4+PmTSCTQ6/XQ6XRQKpUsc6FSqThQJoFWq9UKo9GIVCoFmUyG8vJylJaWsr4VGXPPz88z14uMlJVKJUwmE1paWtDU1MTP/tjYGAwGAxtB/+Y3v+FU8+rq6q45fm1tjccyd26jDVZuo0IYAHnnbuH/0zwXDof3XEs+C/3jmVJ+77zzzlOf6Pnnn38CUv99t+9///t49913cefOnV0VRAdpr7zyCkQiUcGxoN0VNarY+H2l/AqlqT7Pyr3cdlCZgtxqs3yVe7nyCJ9HRSCwg1JEIhEoFAoug9+rCjCf1tJBxhZ4UgrhafpKFXC5+lhPexzhWBPa4Xa7oVKpEIlEoNfrWdYhH4FT2AqlxPa61r3QR0KpcivRcgsW6HlQKBSIRCJob29n7SdCs4SVj1S1l1vNmC8VLEytptNpjI6OQq1Wc0GAMCAWehAaDAZ8+OGHWFxcRHFx8S6tpJGREUgkO6XdhDQkEglcvXoVKpVqlyaWRLKja/T222+jp6cHGo2Gj0Nl4sDOQhIOh1FRUYE333wTX//613HhwoVdKW1h38bGxhAIBHDr1i20trZCrVbj8uXLvBgJ3zEKjqenp6FSqZDNZhGJRDgV9/DhQ3R2dsJgMEAsFmNoaIjRtK997WtIp9O4evUqRCIRZmZmcPbsWTx69AgnTpxgRXqv14urV6/CbrdDqVRyGnhzcxNFRUW7TKqJQxMOh9HY2Ije3l4O5imF+8knn0Amk2FxcZEDe5VKxQEhIReNjY3Y3NxkY+iBgQEMDw9DrVbj+PHjUCgUSKVSSKfTXCn3zjvvsJTG2bNnIZPJsL6+zlmI8vJyDmZI26m9vR319fVYWFjg50er1aKqqooNjmdnZ2Gz2TA4OAixWIy5uTnodDrE43EcP36cSeYLCwtobW2FVqvFRx99hNLSUk6jTk5Ooq+vD+fOnUMwGEQwGEQsFsP58+dhNpsxPz+PsbExPP/88ygqKsL777+P5uZmpNNpKBQKPH78GOFwGN/4xjfQ0NDA3Fiv18uefEKl9bq6OoRCISwsLCCVSqGhoQEVFRWQSCSMQhEPcmFhATKZjFG4a9euwWq1IhqN7hpjoaxHvnkgHw0i9/3da84RzldCv8mnmUcPmvIrKvjJHu211157qu+LRCLOmf6htB/84Ad455130N/f/9TBFAAcP34cP/3pTwt+XlJSwqjI59WeJojI/a4Q5RA2ISrzLFpVe7XcRbZQo4UyF6WhRotR7svztP3ONwadnZ27uEV78aXoMyKA0rkL9YWqaNLpNBNED3r/hGlKWmy3trawsLCwS9hur+MJF8l840TPhVar3cXPIoHIXDQtt+VeTy7na2Rk5AkxTzqmEIFcWlrC7OwsmpqamG9FEytxtoh8TuNNkxs9F8L0HN1PIdE939jkjp3JZOJAbWRkhHfrHo8HMpkMUqmU0RZSUCdSfTqdRktLCyYmJpDNZjldQxYbZrOZkSZaODQaDTY2NlgnjMbtxo0bqKmpQTQaRUtLC4AdRMvpdKK1tRXz8/MAgFgshvHxcZw6dYo3b0JCLgBGVRUKBdxuN/7JP/knnKqjvhDviyQWqMKvvLwca2trnL6UyWQIBoPQarUIBAKorKxEUVERLl++jAcPHnBfAaCpqQm3b99Ge3s7kskkvve977HaOgCu5rt58yZqa2tRW1vLCuJutxtTU1Noampig2ORSIS6ujosLi4y0XhpaQlFRUVwu92cdlar1YhGo9Dr9XA4HLDZbFAoFPD7/TCbzfjtb3+Lw4cPY3Z2FleuXMGtW7dYFoJERckQ2mq1QqfTMcfp8OHDCIfDkEql2NrawtTUFM6ePYu6ujpsbGxAq9WyRhcJXBYXF3NqM5FIsHGzxWJBXV0drl27hu7ubjidTrz++uv46KOP4PV6mTvY1dUFuVyO+vp6lq4gUr5SqYTVakV5eTkSiQRKSkrY4FmpVOL+/fu4ffs2enp6WN7A4/HA4XDgBz/4AbxeL4LBIEpLS3Hnzh2eo0wmEzKZDG8iGhoaUFJSgqKiIlRUVLAR8+rqKkwmE1KpFPPwgJ1gPxgMwmAw4MGDB+jq6gLwqaJ6Y2Mjb+SIy0VzAb3ztCEaHByE0WjMWwGdO18XWgdyOabt7e1cVbtXyw3YDtKeOeVH+dKD/CF9nD+Els1m8Wd/9md4++23cf36ddTV1T3TcUZGRnYZQH4Z7WnSdgf97hdR3UbtoBUSB/le7neogq7QgnnQJkxdUtuvyi13zA46hk9z/3LTlAC4qik3DVnoeMLAg/pGCxmRlonrIKwS3MtSJncnme++Ea+mkI9kLsdBKpWioaEBUql0F7RfKJWZyykTfo/O6/V6eXKWSCRPqCuTHtTQ0NCu9Eh3dzdCoRBisRjS6R1BS6lUyjYbJIFAAbbw2qVSKZqamtggWaFQwOPxsLgjoYx2u50XwNbWVjidTjgcDk6dKpVKbG5u7gp6aEFwOBxQKpXw+XxYWlpCX18fysrKoFQq+Xu0+3e5XFhfX0d7ezsCgQDC4TDeffddTj2NjIxgfn4ef/M3f4NwOMwcIgqiyBKnra0N0WgU29vb6OnpgVar5crEeDwOqVSKzs5O3u1T+iaVSmFzc5MD++3tbeZJuVwuBINBVFRUwO12s4K9VCrF5OQkRkdHcf/+fX4+ysvLsbi4iJKSEvzt3/4tZmdn8cEHHyASiTDJWqfT4eLFi3jxxRdhMpnYekUqlaKtrQ3z8/N47rnncPv2bUZFnnvuObS0tKC+vp6Ddb1eD7d7R29rfX0dNTU1KC4uRk1NDXtprq2tQa1W486dO/jkk09w/fp1xGIxTitLJBJYrVZEIhFkMhnE43HmnjkcDra2IhPkK1euQCaTQSwWIx6P4/79+3C5XCyW+t5772FlZQWbm5soLS2FRCJhJKyrqwuZTAb379+HXC5HMBjE3bt3MTQ0hO3tbczNzUGlUuGVV16BwWDAyy+/zM9tXV0dvyPvvfcec70IOSTUa3l5GUVFRRCJRKiuroZOp8N3vvMddHV18TubSqXYd08ul+Phw4dobm6G3+9nNNLl2vE3JLmPtbU1jI2NMccxnU7v0mijTamQa7cfjUT4HUKCw+EwUz2ITrDfRvxZqCbPhFD9yZ/8yVOl7/7xP/7HfzCVbd///vfxN3/zN/jNb34DpVLJEz55jQHAf/7P/xkulwtvvvkmAOB//I//gdraWrS3tyORSOCnP/0pfvnLX+KXv/zll9r3gyI+T/PdQsjV77MdBInLRTr2u4anQfeE6BCAJ3ZHNGb04grRK2HLRd7ontAOe6/UIh0z9+/Ce7rfPabPbTbbE6lJukaaZHLHNvf6clOve415PkQx3/Gp9fb27vouVX7lQ78KnY8+7+zsxMjICKcshWmDcDiMq1ev4vz584xq0HmEY01oEPGKhOMuTPtSOs3j8TxxLyntSAtENptlZW2/3892Mvfv32e5CalUiu7u7l3VeQMDA0ilUqiqqmIitd/vR1FRETKZDKLRKKc8Ka01NDTEnBVKDwE7hQmURiID4Q8//JCJ3S0tLYjH49jY2MChQ4fg8Xg47QsAU1NT2NjYYGsXQiYohTUyMoLe3l4YDAZ88sknUCgUCIfDTBovLi5mFIUqQbPZLGZnZyGXy/H48WPmslJAKuR51dfX4+c//zlsNhs++ugjBW/p+QABAABJREFUBAIB2O12aLVaDkTW19dx5coVNvulijSNRoOenh4MDg6ira0N7733HqcHDQYD60e1tLQwT21ra4u1lbRaLcbHxxltuXz5Mv7P//k/EIlE+PWvf41AIICuri58/etfRzabhd1u53Gn9CIhMXNzc2hoaOAUKvEa19bWoFQqmbu3vLyM7u5uPH78GJWVlVhdXeWK6rt376KhoYEDuAcPHnCKUqFQoKioCEeOHMHi4iKUSiXGxsawsbGBV155hYPaSCQCp9OJI0eOsPVOPB7HysoKKisr4Xa7cfjwYbz11lsQi8UoLS0FAFRUVODEiRMsPSGVSnlzG4lEUF5ejuHhYTQ0NCCdTiObzaK0tBQzMzO8OSFhUpofCa3yer3QarWMKNLGQ+jVmUqlGLnPN4cKN5pra2v8LFy5ciXv/FOoEWKtVquxvr6+7/eBZ0SofvzjH0OpVB74+z/84Q+5+uD33X74wx8iGAzi3LlzMJvN/Odv//Zv+Ttra2us/wLslJz/p//0n9DZ2YnTp0/jzp07ePfdd/GNb3zjS+37QRGfp/3us7an3S0ctH0R6NqzokO5Gkj5jimsMBG23HtAf6dSc2FfaJyI/yKEwPMRLPMdP3escz8XjsFBxk54fcvLyxgaGuKy5oMG6k/7rNIkOTY2hq2trbxjS+keCniFjVIPTqeTbTqAnXtqt9tRVFSEX/ziF1CpVKiqqmK0Tni9EslOhZFKpcLIyAiAT9MJiUQCPp+PK+ZIEoHOS2k+l8uFZDIJs9nMpHCNRoOioiK0tLQgkUjg8ePHnNIhxXCJZIeYT+nFyclJDio8Hg+ne8gEWK/XA9ghANNCScFZIpGA2WyGWq2GyWTCSy+9hJ6eHpw4cYIRRplMBpFIhEAgAI/Hg5WVFWi1WgA71anEG7NaraioqEB5eTn8fj+rqldVVUGhUODjjz9GNBqF2/2piO3ExASqq6u5cIXSdh999BEWFxfh9/vx2muv4Rvf+AbS6TRKS0uRTqfR0dGBl156CVVVVdDpdKxn5vf70dfXx2nvqqoqDuyKi4u52nFychK9vb1QKBTIZrPweDy4f/8+4vE4jh49ysR6CjwymQyLd05NTaG4uBgSiQRlZWXY3NxEKBTCxx9/zCa+AwMD+OUvf4mamhoObnU6HRO9KTB2u92sQyaR7GiCLS0tsdQFpSk//vhjDA4OYnt7GzKZDJcvX0Z1dTVz665cuYL6+npcuXIF29vbCAQCEIvFWF1dhc/ng9vtxsWLFyGR7FTYOp1ObG9vo6ysDN/85jdhNBoRDAbhdDpx7do19Pf3Y3FxEUNDQ4jFYix82t3dDavVim9/+9tQKpWorKxEMBjE6dOnoVKpoFarGZEUypQQGiiTybjy1Wq1QqPR4MyZMzAYDNje3saxY8fQ2dnJ/D1KdVORC1niCEWKZTIZurq6eM4EwBWqheYA4dxG5yMrq/0azaEU/JLO30GFPf/B61B9We2L0KH6IgnlB2kHISUXIhTu1b6I6/q8SOz5Pqdd00FtanJz+sJxyrVGyHes3N/Tf3P7kXsNwG4/rELjQJpVBLtTgJJO75TZk2r5F/XMEZfI5/PB5/OhsbERSqWSr2kvyxyaEIXBEcH7ZGRstVoRi8We4HflanUNDAxgZWUF1dXV6Ovrg9v9pA2OkERLVkJkVZFMJjlgE/ZnY2MDq6ur0Ol0qKurQ0tLC/r7+9m+hu4tpV9kMhlMph17FtL18Xq9mJ6ehtVqhVwu53Eiex2v14u2tra8VbhCnbHm5mb86le/Qnd3Nx4+fMiSBqQjpFar2Sbm2rVr7AUn9Ft79913sby8DLPZjKNHjyKdTuPDDz+Ex+NBa2srJBIJp58JcVhaWsLJkydhs9lYBoLQNp1Ox8ThkpISrK6u8hwSDAYZEYlGo6wl1dDQgJmZGRgMBvT19XFA+c477+Djjz9m6Y5MJgO1Wo3S0lKuYp2cnMT6+joH3FRUYDKZEIvF8N5770EikeDkyZNobm7GL3/5SxiNRoyPj+Oll16CxWLB4uIiNBoNWltbWSQ6FothYWGBhTt9Ph+0Wi08Hg+6u7vR29uLjY0NRCIReL1elJaWoqmpCdPT09Dr9Wy709vbC5fLhY8++ggKhYKfDblczrpYlH5NpVJ48OABMpkMamtrEYvFOIVM8glSqRSlpaWoqqpCOBxGU1MTTCbTLg9Lkh6hd4w2CV6vl1E6elfS6TRu3LiBM2fOsFiv0H8TwBPFJvnmx9yCFeHaQRQF+izXk/PzarSm5fqSfuk6VENDQ5/Xob5qB2xPg7rs154FSRLuBIR92QsJOch5vgh07VmOud9v6HOLxVLQomev3wmRKiJVC7k5lGLL1byi45PuFP0XwBOoE313eXmZuQCpVCpv3+jejIyMIBKJYHJyko9lNpthtVphNpsL/j73WMvLy3A4HKymf9BGHClgZyPy8OFDJqgmEgnmge2Vcuzq6mJdJGEq8cqVK9BoNE8EU8BuTTQAbL0xMTHBqU+h/pbH42FfN5fLBZvNhng8jjNnzqC8vBzFxcXQ6XRwOp27guX6+nqIxWJGr95++22sr6/jhz/8IQYGBthao6enBw0NDZx2JM5VSUkJRCIR5HI5nE4nUqkUl5sDYATtzp07u/gn1CwWC2QyGQsvnjlzBsvLy0ilUhgaGoLL5cLU1BQePXqEkpIS3L9/H1evXoVcLmduFyEUhFqWlpaioqKCEd329nZeMEkCYGJiAhaLBWKxGEVFRSgvL2e1eblcjpMnT0KpVOLdd99FUVERk6Kbm5sxMTGB0tJSnDx5ErW1tSzlQAgGCWkWFxdzgOZ2u9lOZ3t7m1M3d+/eRSgUwocffoiVlRVoNBpsb29zWvXQoUPo6upCR0cHlpaWUFxcDIVCgVOnTiEcDjPJu6urCwsLCygtLUVzczMqKiqwtLTE4rXEqWtubkY0GmVun8ViYaFUQoWkUinKyspw9+5dbG1tYWNjg70LBwYGMDIywsFzXV0djh8/jpaWFqRSKXR3d/Omym63Q61WQywW4/79+1hdXcXm5iaMRiNKSkqYq0jSEVQ9SIUApFVHOoP07AmlUgBwsO92uzE2NoZoNMrvDb2fABhFEqbKhSh8LieTeI+5a0fuZ5Ruf5r5/CBrD3Fz9Xr9nlZghdrnFlC9/vrrn9ehvmoHbAdJ2xw0Lfe0YpXA7oAjl2i8n5/c0waB+a7jWYLApz0WBQZ7BQX5CPO59yXf8YXf83q9UCgUuHbtGldCuVw7th/Cqizh74isTf/NJ3NA3/V6vYhEIvB4PAX7RhOd0WiEQqHgSrlUKrVrQj0oAd/pdDLh9FmeK0JlrFYra0EJhUn3SsMKRUOFY0neYfl+m0umJ/sZ0tWhdFxNTQ0HX0NDQzy+SqUSV65cQTAYRDabRSaTgcfj4Sol8q0jqQc6TmdnJ+7evYvNzU0sLy+zCCiwW1qCrs3j8aCjowMqlQp/9Ed/xIGj0WhEOp1GJpOBWCxGTU0Ni1HmpjIIfaQ0ZGtrK0wmE06ePAm5XM6pq5/97Ge4ceMGy8CQqCqZQo+MjHC5PxGl6d6JxWI0Nzejs7MTNpsNZrMZS0tLLDR67949rK+vw+PxoKWlBX6/Hz/96U+xuLgIp9PJBPCBgQGIxWKMjo7yu7CxscHVeS6Xi9W3o9Eorl27hmvXrrGcQiaTYfkJqjIj7lUoFML29jZOnToFhUKBM2fOQCaToa2tDVNTU/D5fCgqKkJ1dTWbAKtUKnz3u99FOByGVqvF1NQUXC4XBgYGcPz4cd4MeDweZLNZWK1WtLa2oqysjIM2KoKh9yKZTGJwcBBVVVXMpTIYDAiFQhgZGcH4+Dg2NjYAgNE2m82GK1eu8LE2Nzc5VXjixAmcPn0aHR0dzFWz2Wyora1FeXk5qqqqsLW1BYPBgEAgAAAc2JJrBRl6OxwO3L9/HwMDAwiHw7h27RrPS8BOVV8oFGLyvVDnz+v1sp/k0NDQLsHd3I04XZtQoqTQvLrfpipf24sqQI0CNyLXP+2m/qlSft/61rfy/ns2m8X777/PO6Sv2pPt92U9k6tJky8Nlau/AzydZtLTtL3SYXt9lk/T6qA6V7ktX6oyX7qMvktpnoMYCT9N/3N/e/XqVd6V9vb27pnaetqWz+InN2VJpfbCCj7g2Z6FRCKB0dFR6HQ6VuN+1t0k7UYnJyefsCjKva5894DGnoja8XgcV65c2TMdu1/KlSZl0ngyGo3MeUkkEvjwww8Ri8WYB5JIJJBO71ijkN0MWfW89dZbbN1y7NgxWCwWXtyIZO50OqFWq+FyudDX14dIJLIrJUHX6PP5uDpvYmICW1tbqK2t5QWUUoaBQICFFMvKyrhPGo0Ga2tryGQyHKBEIhG0trbia1/7GgBwZSSRiGlsyAPvypUrGBoawuDgIBQKBc6dO4eRkRHMzs6yWfTs7Czb0mg0GjidTlRXV+O3v/0t1tfX8fWvfx3PPfccAGB+fh4DAwPQ6/U4ceIE7HY75HI5VlZWIJPJEAgEUFFRgUQigaWlJdTU1EAsFkMul6OoqAj9/f04fPgwy1ZsbGygpaUFd+/ehUql4gq8dDrNx7ZaraiursbDhw8hkewIuU5OTsJsNkOpVKKlpQXLy8vo7+9HTU0NPvzwQ9TV1aGiogKvvfYalpaWcOfOHRiNRpw9exYejwcikQjAzqLd09PDKeSNjQ0kk0kAO6iox+OBRCLB888/DwD4m7/5G7a3aW1thV6vx5UrV3al8gcGBuByuWCx7PhOEu9xc3MTTU1NePz4MXQ6HYaHh/n+v/HGG7zxIfXyWCy2yxIKAFckGgwGlJaWwmazIRQK7eIOZrNZmM1mbG5ush4VyXA4HA6EQiG0trayLQ7NZ7n0BZIhEQZ0z9py311hqpv04A7yO+Dg6/dTBVQ6nQ4/+clPoFAodv17NpvFt7/97QMz4f8hts8SUH0WTtFBeD7A7kXzWQOVz9KEFWQk3pnvOvbiEuUugoW86vJVuxUKOAmhIu5Art+g8HiFgrK9+ipsucGBkMskNEUu9PtC/SrEVaDqJaFHlpAnlBtA7hds5BvXfGOxl38jtUL8vFzO01tvvQWTyQSdTofe3t49x4FQFZvNxijMXoFToX7mBrq5f6cNSiAQYMTW7XYzokIEcuJhzc/Pw263M6E39z0dGhqC1+tFcXExbDYbSktLYTQamT9HYqZCD8H29nYMDQ1hamoKbW1t6OnpwY0bN5g/RgKugUCArW/UajW6u7uZxxWLxTA9PY1QKIS+vj40NDRw+m5zcxMajQYymQznzp3DBx98gJs3b+Lo0aNob2+HRqPBj3/8YxgMBr4vXq8XHR0dqKurYwFJkUgEv9+PWCyG0tJSpFIprKyswGw2M6coHA5Do9HwZ729vewj+uDBA9ZMm5mZgVwuh0qlwqlTpwDs8KPI5y8UCnE6b3R0FKlUChUVFQgEAtDr9RgaGsLQ0BC0Wi1effVV2O125kOtrKzAaDQik8ng9ddfx927dxGPxxGJRDA8PAyTyYS5uTl885vfZK7R/Pw8pFIpnn/++V2kZpLbGRkZwfr6OsrKyuDz+fDyyy/D7/djdHQURUVFXJX27rvv4tGjRyzI+u1vfxt+v5/nLZfLhdHRUYjFYpw7d47TkDdv3oRer4dKpWIfPbFYjEAggH/7b/8tpFIpbxjT6R0vR5vNxkEl+WICn64PwsrZkZERLCwsIBQKcVEFST6YTDv6VJcuXcLIyAhisdguFJ3ecdowATsFQD6fD6urq9BqtSgrK8ubmj9oKyRwS9y83Pl+r3X2C+FQnTt3DgqFAmfPnt3159y5c4xsfNU+/3bQNJlwV59L8NuL53OQlNUX3Yi0WqiCLF+aJx8XiY61n7cdNbrWfOkyOgfp4AhLuIVjTecDnuQw7ddXYcvVxKJFmGw3KIWW7/f5UoqFnhvalcbj8Sc8snJ5QsKWC5kLjy9MG1M/8nEQ0uk0rl27hmAwyJyLfI3ui8FgeCIdTdc6OjrKwUo+65h843vlyhWuUM73zAirCsn/cHR09KlSy8QB6+np4eoli8WC2dlZhMNhPH78eNd4OBwONDQ0oKysDNlsllOG5MUH7EzoyWSSlcQ9Hg/W19cxOTm5K6VKz8zo6CijItlsFuPj41AqlYhGo0y6t1qtaGtrw/DwMJxOJ4aHh1m/S6VSIRwOo6WlBXV1dRx0tre3c/UdBTg//OEPce/ePdaZ0mg0nMosKysDsJP+ymQyTJKna0qnd2QlVlZW4Pf7UVFRAYvFgsHBQTx8+BAffPABo+ebm5uQy+WIRCK4dOkSYrEYjh8/jpKSErS3t+O5556DXC7n6ru1tTUkEgk+p8vlwm9/+1t88MEHePToEe7evYuJiQmIRCJO7ygUCpSXl0MqlUIul7NWWXFxMfsKzs3NQS6XQ61Ww+fzsT3Ov//3/x5qtRoNDQ04evQoewBubGzAaDRCJBIhkUhgcnISQ0NDmJmZQSgUwszMDEQiER4+fIiuri4cOXIEZ8+eZa2rkpISdHR0wGQyoa2tje+FSCTiOYGCpZmZGWxubmJwcBCNjY1Ip9M4duwYm3Nns1n86Z/+KY8HpQ+tVivOnz+P+fl5lJaWMgJF7w1ZRwHgcdXr9YwwkndgMBhEV1cXpqamYLVa4fV60d3djUgkwil72qR+9NFHGBwcZLHcoqIiNt0uLS3Nq2P3NDQPmkOEFYHEJct9/4VzwGfhJD9VQPX222/j7NmzeT8jP6Gv2uffDhrgFCKGH/SYuUHYF1XFVag/QrHGp/3t03jb7RVM5mvCvH6+YzxNAPoswSpNeuTLtt81AbsVs3O/S0GT1WrNq2QuNCzObUI0TjguLpcL0WgUMzMzjNTl4yC43W7Wy2lvby94zcIAVKFQME+HkA3if2g0Gpw+fZoryfIJ8eW730SszvUrBD6daNvb21lHSSjhYDKZdlUOut1urnwUIpE0ThRsWq1WxONx9nY0GAwYHx/n8n2SIiATdgC8ANTW1kKn06G4uBgdHR2oqqrC4cOHWUV8eXkZdrt91/0HgNbWVj6XEIW02+149OgRAODIkSOQyWSoqKjA1NQU1Go1q32T+KZEIsHS0hKGhobg8/lgs9kwPT3N3Dyfzwer1YqGhgYOBAmd0+v12NjYQCqVwvLyMotW1tfXo7S0FEePHoXRaERZWRlzoih9ub29jYmJCZw8eZJ5YhQAdXd3IxaLQaPRYH19HdFoFA0NDQiHw2xiDICvg8RJU6kUDh8+jOPHj0MkEmFhYQEff/wx0uk0V9zRgj86Oorl5WVEIhEWsGxvb+d7Fo/HcePGDSQSCdy9exeJRAKhUIh1oIaGhhAKhTA+Po5UKoVIJML2LbW1tWhqamKdRrPZjLGxMXR3d2N+fh6RSAS/+c1vUFVVxUr9W1tbnAL2er0so6DX69Hc3Ay1Wo1wOAylUont7W0cPXoUCoUCMpkMxcXFaGpqYkNjsjKi+Y+C8Y2NDeh0OlahF25maJNx48YNZLPZXQbpwI4O3PLyMjo7OxGNRhkVKikpwbvvvguPx4O33noLLpeLU75CgWxhZWM+ceGnARdy0SaSHaEmEon4/RTOAftxX/dqn4mU/lkiua/awdtBK9QKEcOBJx/EfMf8PCL0Qm2/B/Og13iQ39LfC3F3niaoIaSCKnTyHUO4+AsX9HzXvN91Cn9jsVhQVVXFvxGiHXtdEy3gVKaf71zPMt7C6jC3280pJhqXzc1NtjihdFRuM5l2StGfe+45JrXu1QwGA+x2O2w2G6MxpP5MyFo2m+XJM59CO42NTqfjSsHcvtN4CJFcIm17PB7uay7plsrLCdlxu3cERN966y2Ew2GumlQoFIjFYqyIbbFYMDk5iVAohLGxMUYuqT9EupVKpWhpaYHFYkEsFoPNZuNz0fOwtrbGpf8AGEEi9XUqJiCj6aGhIVy9ehXBYBAejwfb29vo7e2F3+9HJBJBf38/Xz8hPPR38n771a9+Ba1WywUMFy9eRHV1NZqamrC4uMheg3K5HA8ePIBKpeKFeWRkBJOTk9jc3ER7ezusVisaGxtRXFyMZDIJuVyO8vJyNDQ08Lj/1V/9FfPxgsEg3nzzTTgcDjY5zmQyKC0tRTAYZA5PVVUVIpEI5ufnOWBtbm5mT8VIJIJEIoHFxUXmLZE9yo0bNyAWi+H3+5mLpVAosLa2Br/fj97eXojFYpZhEIvFyGazmJ6exurqKvx+P+x2O8rLyzE2NsYLuUajwdzcHGpra1miori4GGfPnsXg4CAGBwfx/vvvo6qqCi6XC6+++iri8ThUKhXbMBHXKJ1OIxgMIpPJsJYYAJSWlqKhoQHl5eW8oaJqwnzIc+68T6gOVf3dvXsXkUgEy8vLHEyeP3+e9bc2NzehUqn4vaegjgIttVqN1dVV9PT0YHl5mefMhoYGXLlyBV6v9wmyupDDKZxDTaa9HTJo/iS+FPHKaPMo1BekIP8ga+JB6UyfSYeKfNC+avu33xcpndpBeFifhau1X/uyeVmf17XkEvb3OlYuDwzAU19z7jjlG7f9rm2/Phe6F0/7jNCxhBNbrgAf8S4Kcdj2uzfCa+ns7ITL5cKjR4+g1WpRV1fHejVCLlQhlPWgRtjUR0KkUqkU60kJdaqIZ0QE87q6Oi4uKCoqQiqVwqFDhzi1ShVydM5EIoGf/OQncLvdLLmgUChQUVEBm83GiJfL5WKVczomFRGsra1hcXERGxsbkMlkeO6556BUKjE0NIRHjx7h8OHDePnll/m5nJubw+LiInw+H+RyOY4fP47y8nKen2ZmZtDc3AyJRILx8XGWqRCib+vr65ienkYikYBarcaZM2fQ39+PF198kY9DlYrUr/HxcXR2diIWiyGVSiGZTCIUCqGlpQXhcBglJSVwOp0oKyvbtXHZ3t7G2NgYnnvuOYRCIRw/fhz379/H+vo6mpqaUFVVBZFIhAcPHqCtrQ2VlZUIBAJwOBxYWFhAfX09pFIpwuEwm+GaTCZMTEwgEAhgZmYGnZ2dEIlEqKyshF6vx89+9jN0dHTg6tWrkMlkSCaTqKqqQktLC29YRCIRPB4Pc4Cy2SxMJhP/O/Eeiejf09MDv98Pp9OJTCYDYEd6QCQSwWazoaWlBdevX4fL5cLZs2ehVCqZ/J1Op3elLsvKyjA0NIS+vj4EAgE4nU6IRCIYjUbuk1QqRTabhcFggM1mY2QyV7tO+B7Ts15VVcWBtsPhQGlpKaLRKKOdwkCHAqGioiKIxWImtBPnlN4T4vZRsEu8RJdrxwLK7/eju7v7ieKbpy1GEqKb9B2hhybwKQ91Lz5r7lwll8sZ9fzCdKi+0gT9+9U+C0pErRAStR8q9LTQ6n7np4W4kA/TQc+XLxW5128pRZOLEubjt+X7faH0pXDcDpLOFfY593y5/SJZCKE+TKEmfEboz9raGtbW1iCVStHT08PISjwe38XveZaUsvBayJeNUkh03Fx0EgCcTucT5dGdnZ1QKBRob2/fMyikMU6lUrt4GLQweL1eToUIFwK6vqamJg40XK4dPz2yZhGmT6RSKS5cuIDGxkZsbW1BJpNxyoPuDX23oaEBiUQCTU1NvKC73TtK3KFQCMvLy5BKpQiFQsy1sVgsaG5uxsjICEpKSnD37l3U1dWhs7MTXV1dLMJpt9tZd4jSPBMTE0ilUlhaWmJkcHNzE5WVlZBKpairq0M2m0VzczN+97vfwWQyYWZmBkajEaFQCGtra8xZId2vpaUlJBIJHDp0CDKZDHK5HIFAACdPnsTW1haOHz+Orq4u9jRUKBRwOBw4dOgQlpeXUVFRAa/Xy2bKBoMBJ0+exMOHD1FdXY1YLAar1coIqk6nQzweR1tbGxobGwHspH0ohffJJ5+guLgYer0esVgMsVgMDx48QFNTE5xOJ77//e+ju7sbnZ2dSCQSGB4exvDwMH70ox/h7bffxr1793Dv3j2UlZUhFApx2pdQZbFYjIsXL6K2tpZJ0QaDgcewrKwM9+/fh1qtRjKZhFQqxYkTJ1BTU4NLly4hFAphZWUF8XgcpaWlMJlMLKVQU1ODUCjEhTIbGxvweDwIBALY3NyESCTaVbBAz+u1a9fyyuN4PB5otVrIZDLU1NSgt7cXdXV1OHXqFKxWK06dOsXXQM1gMKCoqIivNxgM4he/+AUAMOdUmC3Q6/WYmpraVeRB9AOaL/O9/7nz315rCX1GTgL0LBBvlFKle2UwhO1p18TPFFBRGehX7Q+/fZHpvIOcZ78H87P0rxBBfC+D3oNokhTq915kbyF3SAhbP3z4EPfu3ePy5kLXWmichNeYj9OVewyaRIVjkg/aFk40QGFSfaFmMBggEol4AqdUVG9v7xMphme5x/kKJui4NFkKx4gCw3zBqkQigdlshtvt3iU4mC/wpolZItnxixwZGYHL5eIUCqUXtVotB61kAEuGyDdu3MDQ0BDu3LmDGzduYHt7+4miC0qjKhQKLiknTonwWVYqlejs7GRD2Y2NDZSVleGjjz6Cx+NBIpHAysoKAHA14fnz5/nYH3/8MUpKSjAzM4O6ujq88MILkMlkkEgk7Gk6NjaGoqIiLCwsoLy8HGazGXV1ddBoNJyeKykpwaVLl9DU1IT/+B//I7xeL/r6+rC9vc0+fKRsvrKyAoPBgJ6eHrYu2djYwOTkJCNrq6urmJqa4iB5c3OTJQ8++eQTlJWVYWJiAm+88QZUKhWT3hUKBVQqFW7duoW+vj4sLi6iuroa6XQanZ2daGpqwokTJ2Cz2ZiLtbS0xHyqlZUV6PV6xONxtoMZGhpCJBLBxMQEKisrodFocP78eRgMBmxubkIikWB4eJgJ+dFoFHK5HFevXoVCoYDL9anxL6FsXq8XDocDf/EXf4GHDx+iqKgI3d3dUCgUuHv3Lmpra/Hee+9hfHwccrkcCoViF5pkNBohlUqRTCZZW2t9fZ3ff3Iy2N7exuLiIurr69HZ2YkrV67AZrOx9AA9r1arFXNzc4jFYhgcHOT3JRaLIRAIME+M5i/SM5PJZLv4k0LdOlLln5qaYm/LfJvAwcFBXL9+nedAet+Is0USDMLPKIgbGRlhfb691hJhAEdm6QaD4Ylim89rA5/bPjdhz6/aH27bi6D8ebf9ctx7/e5ZKwvzEcQtFgu6u7vzEhs/S9uP7J1r5En9c7vdmJ+f56qtQtea+6LTtQmr+3L5P3v9bj/SvHCiKVTpuFfzer3IZrPMYyK0CwBzd4QkdiH/g/qcSCQKiqrm46DV1NSgp6eHkSP6nPhKiUSCeUrCJiTiCsnj+QJvIXk9GAwinU4jFothYmKCzydEI4l4Gw6HWQ6BeENqtRparRalpaVPoIZutxsqlQqhUIgneyJ/GwyGJ9BKYXHC0tISDAYDdDodDh06hOeeew6xWAw///nPEQ6HsbGxAYvFgkgkgosXLzJaE4lE8Nd//dfY3NxkjlI6nYZKpcLk5CQqKyv5t8eOHUNdXR0aGxtZOZ+0tH71q1+huLgYjx49Yh87QjqISE/PKCE9hKL19/dz8EmkfvI7NBgMSCaT6O7uxvr6OktTkC+hy+VCXV0d7HY7XC4Xbt++jXg8jg8//BCDg4P49a9/DZlMxoHnzMwMWwgtLy9DoVDAarWivb0dL7/8Murq6iAWizk9mEql8Mknn+Djjz/GwsIC7HY7XnzxRdTW1uLb3/42Dh8+jP/6X/8rLl68yHY50WgUGxsbnA4dGxtDJpOBXq/H7du3MTU1hWvXruG9997jCka9Xo/19XWcOHEC4XAYUqkUFRUVWFtbY4V7q9XK0gg+n48tboRoOSGv29vb2NjY4ABIuKkSkvirqqrws5/9DKFQCG63m+ckALDb7XjnnXdw//599jaMxWL8nrnd7l2BlNfrhdPpxNTUFF544QVks1kWZKXnfHl5GYlEgqtHSfKBjkXFLFTIkbvBISI8VQgeNBASzpO5xTb7be6eNeD6ikP1JTXiFvj9fjYffZr2WThB9AKIRCJsbGzsqf/zebSDaAh9nu1Zxibfbw5ynL3y98JFUqvVsp4WTSp0bKF6N7A7ZZXLfwKwi/sgRHuE/59O59cZy8cT+Lz4ZcJJR5hqAz7VsBKOF4BdXngej4d5hSRSKXxeaNIrxEHLHSsKmEitOzc4nJ+fR39/P06ePIlwOAyFQoFIJILGxkb85je/wauvvopIJLKLj0WEcuLbVFZWQqfTwWw279K4IY6IUGCUgkUaf2HlJPXd7/ezwjTxNG7cuAGNRsMSGnRvc7XSEokEW36RUCT1Nx6P4/z584xkDA0Nsb/a5OQkB4avvfYa1Go1jEYjhoeHEY/HsbW1BZVKhSNHjjAvjI4biUTQ3d2Nq1evYm5uDm73jtxJfX09rFYrVCoV7HY76uvrcfPmTWQyGXR0dKCmpgZutxtzc3N4++232cKmo6MDR48ehVwuZ7NfjUYDAAiHw6itrcXW1hbOnj2LyclJiEQidHV1we12Y3x8HFtbW3A4HMwxamhoQCaTQSgUwpkzZ5hYL5HseCjGYjGEw2Ho9Xr2motEInA4HDhx4gSmp6cxMTGB6elpNDY2IpVKQSQSIRKJ4IUXXsDg4CDzpdRqNVKpFBKJBM6cOYNkMolf//rXWF9fZ4uarq4u2O12jI6OIpvNYnt7G3K5HGVlZVhdXWWj6ueee46DIJfLBY/Hw556xJEiTtTm5iYOHTrEwV9RURFXI9bU1ODll1+GRPKpnqBQsBcAbt26hUwmg83NTTQ0NKC+vh6hUIiD242NDWg0GiQSCQ6gu7u74fF4+F0AdnQpp6amkE7vGFqHw+EnBHbT6TTPCUajEbOzs+z5R9c6MjICnU7HXK9cPcJYLIYbN27w87wXPzSX41lonjsID1X4fn8pHKovclH++9qeVfw0N6J+mgiaEAoqcd4vCP6scKgQEfmidgLC3wLYtSM6yPGEsHEuhJ3bV+ExC6FQtOgsLS0xCVmICAm1XCSSHdXeq1ev4uHDh3wNtAsMBAKMmOSDt4UpPeozgF28KJoshLpXe13ns9wHSnEKbWlyNayEz4IQYQHAwZRQCuKgyBodW4guWSwWJnPn8xv0+/1QKpU8GQeDQcRiMfzqV7+CSCTCj3/8Y4TDYd4dU7AQiURgsVhw9OhRuN1u9qkTatx4vd5dARD1h+QIiFCcTqfZ39Dn80Gn08FkMmFrawtlZWWYmpriai4h6Tefdg7xY9bX11nOwWQysSUJIQG0Q6d729TUxNwhKrk3mUw4fPgwLBYLVCoVysvLdz1zRqMRPp+PEcjz58/DZrPhxRdfxPHjx2G1WtHR0QG73Q6r1YrZ2Vke88ePH/N1xONxtLS0MFFbr9ez1tPAwABfC7Bjx+JwONDR0cFpqo2NDUa9aNPS19fHhHDiKQFgP8Samhp4PB7I5XLEYjEcPXqUBTTD4TA2NzeRSCTwu9/9DpFIBFtbW2hubobJZEJ7eztCoRDa2tpw584drKysYGJiArOzsxCLxVAoFPjWt76Furo6FBcXo66uDnq9HpWVlZBIdhTWT548iX/9r/81+vr6ePMRiUS4YIGkDahSmN7Fq1evMudHIpGgtLQUq6urLFdBFal0T202G1544QUAYI0p+pz0qtbW1nDq1CmYTCb09fWhrKwMS0tLEIvFkMlkKCoqwqlTp2CxWHD27Flsb2+jvb2dEf9IJIJUKgWPx4Pp6WlkMhkUFxdjc3NzF2ouTFebzWaIRCK4XC5sb2/vMoQ3mT6tQKTgpru7G0VFRXA6nZy+Jmui3Hc+d+46KK0gd14txDOld+5LqfL7qh285UOongYpyP3us1TNHUShGjhYRd5B+y7cXchksid+ux8KsVd72gqQ3EbjQc7uhdTS81XN5avGI8SByKlCNCK3TwMDAxgcHERxcTGuXLnCCtu5yr7CySdf9Z/wu8JJhNCqfIhPvus86Ljl2wEWUqrf6++FyOn7/bbQPcxnqSNEjSiIFSreU2l1JpOBw+HAkSNH4HQ60djYyKli4bXmU/J3OBwYHh5GZWUlo0RChJJ24bQwGAwGPHr0CMlkchdZN5VKYW5uDiUlJRgaGkJtbS2qq6tZ66empgaJRAIjIyPQ6/VMqB0cHMTi4iLkcjkOHz7MiIVw3IgwL7SMuXfvHvx+P2w2GyorK9He3o7NzU0kk0mEw2G43W688cYbzNGJx+O4e/cuSktLd1XL0bND4+5wODAyMsL3IxgMorm5eRdSlE7vWNb4fD54vV4WkVQqlUgkErh06RJze1KpFAwGA4qLi5HJZKDVapnPpNPpUFVVBbfbjV/96lfw+/14/vnnEY/HEQ6HIZFI0Nvbi0wmg8HBQaysrMBkMrFafTQaxaFDh5BOp/HgwQOYzWZkMhkYjUbE4zumzcQtisd3fAxXV1fx4MEDNDY2orS0FDqdDtXV1ejt7WU0SalUYmJiAm1tbUgmk7h8+TK8Xi/C4TCmpqawsLCA4uJieL1etLS0IJvN4jvf+Q7Lrty5cwdra2uoq6uDXC6HSCSCSqWCSCTC0NAQF3+QNQ8JuZJERu57LtREEwYSkUgEb7/9Nl599VX4/X6Mj49DpVLxpiTf8y4MPOg+mkwmnpNyq/voHbLb7bh//z6USiUbLu813wgrcikTRu9x7txRKCNC6cODoFmF1iH6zpeCUCWTSZw/f553I1+1/dtByM2FfpdLzn1azlGuErew5UNh9jr2Qfs+OTkJuVyOycnJvAjJZ+FO5SNn5zte7iRA/0+5ea/Xu6daer5dUS5XzGTaqUbr7e19QhRT2Cc6f0dHB3p7e3Hp0iV+gYX8r1xdq3x8mtzvOp1O5gjtxfEqxKXaT9SOUDiqEqJnkkjetAjmImC5z0oueT83dSjkftBv6bjCvlB6NZdPRv2anJxkRJbOKRaLd71D4XAYFRUVuHDhAvR6PS5dusTIE32H+k06NkLelkSyYwicSCRw7do12O12RhWE35mcnMTS0hI8Hg8OHz6MmpoamM1mNhUuKSlBa2sr5HI5jh07htraWvT09KCqqmpXypieWzKbJTVylUq1C8kaGBjAO++8g5WVFf7d9PQ0bt26hampKeh0OjQ0NMBkMnHg6XA4OL3Y19eHsbExrsybmZlBRUUF4vE4DAYDk7hpcSNEcHh4GEVFRVhZWWGHAeKzkZRCKBSCWCyGVqtlO53Tp0+jp6cHR44cQSwWw7lz52A2m1FRUYH5+XmMjo4iFApBIpGwpcvCwgKPsVwuZ9JyVVUVSkpKcOjQIXR2dqKtrQ2JRAJtbW38vJSWlqKtrQ11dXWYmZlBVVUVqqurceTIEayurrL/IiFyZFGzvr4Ok8kEj8cDj8eDmzdvor+/H/fu3cPw8DDW19cRDAZRXl6On/70pxgcHMTAwADS6TRXq/b09CCdTuP48eOYn59HV1cXBybBYBA1NTWsh9Xc3MzVdH6/H21tbSgrK4PBYGDuocvlwtraGux2O65evcrpcwDY2trC2NgY69gJ37epqSnU1NTg7t27T7wbwKccQYPBwOMQi8Xw6NEjHnePxwMAXGlI5xOuVzS39Pb2orq6Gl1dXbvmm0Qiwfpw1IgXJjTjpuraeDzO5wWeNFSmd1an02Fubo618XKbcF7S6XSYnp5mdfjcueSg1IjPjFAZDAbcu3ePy1K/avlbPh2qz4vL8nm0p0W8Dtp3IYJAAUI+FOfz7PNeaB7wqTYUqfjmQzdyrysfMiPkLRESAewtCSDsS77zCxsFMIX8DXO/S5MrackI+TfPguIVQuFyNZUoNUVoBFXHHRShyt1REyIiPE/udeQidPk4YrkI1dDQEOLxOCMsLpcL4XAY8/PznMYj3SCh157T6YTZbH5iPOna6XrW1tZY7NDv9yOZTHK6j3a3hI7l459Req6oqIh3+YODg3C5XFCr1YjFYmhpaYHL5cLdu3eh1Wrx/PPPs7J3SUkJXnrpJQDA//yf/5MX59bWVvj9fszNzWFkZAQnTpzApUuXdnkAEuGe0n5jY2NQqVSYmppCRUUFI2iNjY2oqqrC48eP2Q+RNIg0Gg2n0U6cOIHHjx/D5/Ph/PnzKC0tRSKRwNTUFKLR6C4OFaFtDocDt27dwtmzZ+H3+7G0tASJRIL19XUsLy/jwoULWFlZQTgchtfr5bFtaWnB3NwclEolKioqMDAwAIvFwguy2+2Gw+HA1tYWFAoFFhcXcezYMZSUlGBiYoLTs88//zwGBgYwOzsLvV4PkUiE2dlZhEIh1NfXw2azYW5ujlEziUQCr9cLlUqF9fV13sgcOXIEDocDDocDGo0GL774Ijo6OjgYHx4ehlarhd1uZ/HTc+fOQSqVckVbJpOBwWBgmxuHw8EK9hqNBiaTCVKpFGq1GhMTE/B4PBCLxVCpVKitrUVvb+8T88HGxsYuziJxaltaWtDf388+j6TRRn6U6XQaa2trMBgMcDgcCAaDkMvlqKioYKmKvr6+PTMge6HShfThaJ7N5Y/mzon55ql4PA6/38/Xux9CNTIywn3I5wn6hXj55Wt//Md/jB/96Eef9TD/INvTRr9fZHtapOigfReiYrQDo135Xr89CKcnH/JD/xUiJrTAUfks/SYfYlcIeRNer5AfIISZl5aWWO04X78J2SDPqlxPu9xrJj5BLiqSr1EVC/Uxn8Bmbh9yx22v8aW/0y5byM0irlBDQ8MT3oC5Y0eTGLCDatC5iThLfQ4EAojFYnx84osUQujyIb9er5eJx5T6oNQTcUwikQjUajXW1tZw48YNRCIRTE9PPzEW+cZTyCErLi4GsKO/QymzhYUFPHz4EE6nk8eF+km/3djY4HGk9BrpBVF1FLAT1MlkMmxubnIqzW63M+dqaWkJa2trGBkZgdfrxZUrV1BfX4/nnnsOXq8XjY2N0Gg0aGxsZOuWdDqN0dFRpiIIgykS56R0eFVVFc6fPw+r1coSDevr6wgEAkgkEkgkEpidnWXE6cMPP8Ty8jIWFxcxNjaGkZERuN071iZkrkxjR4vgxMQEFAoFPB4PYrEYFhYWkEwmodFouAJPJpPB7XZDr9djZmaGz2u1WhGNRvH48WNsbW3h7t27GBkZwbVr15BOpxGNRpFKpbC4uIiysjLY7XYkEgn2N1QoFKzwbbVaIZFIoFarWQWdtKRqa2tRVVWF5uZmlJeX4+zZs6irq8Pp06dhNBpx6NAhtLS0oKenB6dOncKVK1dw8eJFTjMCYEI5nTuZTOLGjRsYHBzE+Pg4AMDn82FycpKtbBoaGmCxWHDmzBm232lvb0cwGEQqlUI6vaNNVlxcDKPRyAHRzMwMkskkJiYmIJPJMDc3x/IXFosFZrOZU792ux0ajYbfjWAwiHg8vqsy+Rvf+AZqa2tx9uxZXLx4EXV1dejq6uL0H+nF5ZufJBJJXm6jEI0Szr/C91iofUfV28RjLYTed3Z25rUzyw3uAECv10Mul7MZ9LO2z4xQ/eAHP8Cbb76JhoYG9Pb2shkmtf/+3//7Z+rg35f2+1ZKP2j7olGz/Y5Pn+dDVvZqwl0KEYU3NzfR0tKCQCDAu7RcJd6n7V/ud4BPd1FUaSMWizn1V6iPwE4Vk91uZ7Qgd6f1tGNBqSGqECISZy4fbD8l9tzjCXlHhcbpIPw8IeJGKFYikcDa2hrLNtAxXS4XnE5n3nuWb/zzIVS547a8vLyrYorI88Q/IYSqvb2dxy436CCxRBorOjel4srKyvDb3/4WZrMZW1tb0Gq1qKys5DQRXSdN6LQ73t7eZoTi9u3bkEqlzGUBdiqq+vv7cf78ebjdbly9ehWbm5v4+te/zt5smUwGR48eZR4NPZP0+euvv45bt24hFotBKpXC5/Ox51tpaSlzvlQqFSKRCHNXhPfLZDLhvffew/DwMBKJBJ5//nnI5XJks1nIZDIMDw9DrVajtLQUjx8/Zm2o0dFRdHd3o7i4mNNidXV1qKurg8lkgtPpRDKZRCAQgFgsRiwWw8zMDDweDywWC+rq6qBQKBCNRjE6Oso6VFKpFJlMBpFIhAPOWCwGs9nMvnnEP7t//z5MJhMWFxfx6quvMoJjt9thNptht9uh0+kgl8vR1dWFWCyG7e1tjIyMoLq6GkajERKJhAMWr9eLjo4O9PT0YHx8nDeKdFypVIqOjg74/X6ufmxsbITP5+PgsaioCMFgEGVlZSgp2TF5np2dRVNTE6e4DAYDZDIZOjo6MDk5iVgsBolEwkRuh8OBO3fu4MiRI0gkEuju7kY6ncZbb70FvV6Pubk5PP/88xwwUQWu8F2kIJYI8PQOCDe/BoNhVyUr8CQPVTh3FSoYEv5bbhPOI0IeVr7vPguPON/v8h0nd3770hCqiYkJHDlyBCqVCrOzsxgZGeE/o6Ojn/XwX7UC7SAIzrO0p+F1fREtH/pzkCZEUwgxaWxsZGG3g7ZcDs9+38nlg1kslrznS6d37CN8Ph8v3kqlEleuXNmlGiy85r3GIt/9d7t3NGXS6TT8fn9BPth+SuzC4w0ODuLjjz/m8nxho7L9SCSCa9euQaFQ7OIyUT+Jf0EcjEAgkBdZEiJZFouFFwz6rZAzQtwy4f8Lkb18qJbwmNS8Xi/Ky8sBgBcL4vwQ0pdKpTA9PQ2Px4OxsTEMDw/zwkCN0M75+XmuqCXR09LS0l0pZaHPolQqhdls5qB/Y2OD5QmEPC4q46dAj0yFqYqOys6JJ0O8Oq1Wi/HxcSwtLeH69euoqKhAcXExEokEMpkMZDIZent7MT4+jpWVFcRiMYRCIej1erjdbt7lA2AuW2trKyorK3Ho0CFWpTabzVhaWkJ1dTVMph1F73/5L/8lLBYLFhcXGVXr7u5GR0cH6uvrIZPJoFKp4HK5IBKJYLFYIBaLEQ6H2XhYpVJBLBbDarXi3Llz2N7eRmtrK/R6PSthp9NprpI7c+YMp8+OHTvG5Of5+XnI5XLY7XYcO3YMa2traG9vR3NzM49jJpPB3NwcNBoNSkpKsLGxgWQyyTprwpT0xsYGFhcXMT4+jo8//hgqlYrJ8h6PBw6HgwOnra0tPHjwACUlJSw5QOT/aDQKi8WC7e1tRovkcjkWFhYY0V9dXcWjR4/wwQcfIBgMIhAIwGw2M9lcKpXi+PHjcDqdHIiQ4KrX62Wj4tbWVmxsbHCwQAECVfBZrVYYjUak02lMTk5ia2sLm5ub/EyNj48/USVOPFQS8yTUiDZEQqeEvVAq4fuoVqv53d5rY/us/NuDzIHPug5+VeX3JbXPA6E6SFXCZ21Pi1A97ff34z0V8lc6aIUiHSsX0n3WPgqrRoQpK0I/hJMsadbkan3RIircWR6kenKvfhfaVR2Ex7Xf2NF9cLvd+OSTT7C+vo7u7m6uKqLzE5E0FovBYrFga2uL00Z0bkq/AmCfM/K9y71eIcJEwSKl2oQEdrPZzP9uNpsxOzsLm80GpVK5J5durzGmwEzIoRBW1Qmvx+PxcGoj9x5QVevJkycxPj6OjY0NXL58GVKplJ+beDyOQCDAATgARgLVajXGx8c59UQms8TB6u7uxsjICPx+P1ZXV6FWq7G1tYVUKoXvfve7jJBQapeMk0m9/fTp0wgGg0gmk5xOBXZ4KSKRCFVVVWz1Mj8/jwsXLjDfjMZubW0NIpFoF5eMSsupvPzKlSuYmprCo0ePUFJSgoWFBZw6dQpqtRoGgwFra2swGo2Ynp5GNBrl4DIajWJxcRFGoxFVVVW4ffs22tvbUV9fD5NpR15iYGAAMpkMXq8XIpEI0WgUlZWVvPD39/fD4/GgpaUFhw4dwvj4OJLJJKLRKA4fPgy3243jx4/z++n1elFaWoqBgQFks1nU19djZWUFYrEYHo8HNTU1KCoqYqFOIsCPjo7C5XLh1KlTjAKVlJSwByLdX7/fj1AohNHRUbz22muoqalhnpRKpcLQ0BAbXZvNZkxMTECpVKKoqAgejwc+nw8+nw9qtZqNrBsaGhiJp3Q5eU4KbZCEHCpS1Kf5J9+7QSiuXq/HwsICaz8V0jEUVnFLpVJGvcjCCAC6urp4I0Dv214Zinxz5ZfNN35WhOozB1T/9J/+U/zzf/7PcebMmc9ymL/37fMIqPZa6H9f7aDEcOG/51v094NvhcTF3t7evETnvYLNp3khc4n0wjHPTVnlmo3mBlrUHyJ40iR7ENL6QeULCgULB30u8o0dwf2FxGDT6Z0S+enpaZw+fRpzc3NPwP70PVrgqfqtu7ubA6p8faEJlfogrAYSksxJTVoYbOyV3sx3LnoWc9MZ6XQav/3tb+Fy7bjVv/LKKwCwi9hOaURK/VBKkJ4Dp9OJdDq9S4eLgipCj4TE2nA4jAcPHkChUMBgMCAcDkOtVjM5nlKvAHDt2jUuqV9aWkJfXx/kcjncbjcLKRJasr29jVQqhcuXLyMUCu2652RoS/yt8vJylJSU4NGjRyyj0Nrayv9OyEN5eTkWFxdRU1MDm83Gopl3796F1+uF0WiEXC7H8vIybDYbmpubMTMzAwDo6OjgBd3pdMLn87EHHSFSZWVlUCqVaGhoYASO+I5qtRoff/wxtre3sbm5CY1Gg2g0CqVSyZpSoVAITU1N0Gq1GBgYQHV1NSOHgUAANpsNUqmUA0Oz2cypwcnJSRiNRvzoRz/CCy+8gM3NTVitVgSDQVRWVqK3txdut5urHLe3t1FZWQmVSgW9Xo+xsTFks1kYjUau5Pzd736H8vJy9jUUFohQ8Ot0OpkvRe+TWCxGJpOBy+XCysoKOjs7WcNrfn4eb775Jg4dOgSr1coFDsL0ORWRkBTEfibv+dLle601wuIQj8cDmUyGpaUlNDU1YWJigpFEeo8PWvAkTIkTnypXLPmg1IyDmCALv59vTYlGowdav4v2vbp9WjgcxuXLl1FdXY1/9s/+Gf7kT/7kc0VM/iG33Buc+2Dn47w86yL7rDsAYZ+ETQiZCvtJSEPuZ4WOg8EfAwA6EymMLi5Dr1EinX4E90YQ8UQSbmkxLEYt3J4A/92kV8O9EYRJrwbWdrLaws8txr2V6t1rG0h4/HCv3YTFqIXLE0AagAuAOpFEMLqN7uYaSCRiuB7tHNf7/46bTmfg3gginc4gnk7v9OfKv4fb7YbNZtt3bIWVf0Dh+5Lv/gvH3eVyPVH9lq9Rub/NZtt1H4RVfPmCH4lEAplMhra2NgSDQU5BCKtx6HuEcGQyGU55FGput5vLnNvb23cZmC4vL+8qjfZ4PGhvb+cFPLfRtVAaIneHTCgbAPT29u6q7qFxnJqaQnl5OSNTxC8SpnzJm66jowOjo6O8wJBvIBncejwe6HQ6+Hw+RqmE4/7o0SNUVlYikUgwt4jGk+QqxsbG0N3djUOHDrG2FelFUUm7SqVinajl5WXMzs6yATGwg0KEQiFUVFRAq9VCKpWiq6sLAwMDmJiYQEdHBy5duoRf/OIXKC0thdPpRCAQQGtrKxKJBJaWljgISqfTsNlsnCqqq6vj1O7k5CSKiopYPiEcDiOVSmFtbQ2BQACRSARLS0uor69HMBjE9vY2YrEYTpw4gYmJCTQ3NyMUCrFuH80X4+PjiEajcLvdOHz4MGsE3bt3DzU1NYjFYjh8+DA8Hg8eP36MjY0NVs+/f/8+X3NtbS3m5+eZi0XBSzqdxs9+9jMEg0H86Ec/Qm1tLXw+H1paWlBVVcVpYJNpR0xUp9MhEAigvb0diUSCPfOAnWKC/v5+FiWtrq6GWq3e9QzLZDIMDQ0hGo3C5/NhY2MDzc3NMBqN2NjYgF6vx/z8PFpaWuB2u3Hu3DlIJBLMzs6iqKiIaTcLCwss1ElIsNfr5WfM7XbDarUWnOf3QscpiCFbKaEkAgVgarUac3NzsNlsmJycZMRer9fz8SnoK3ReWh+EbhK0MQkGg7uuJd/6kjuXUIFHY2Pjru/mu1YKIul7wnMolcqCc5awfWYO1S9/+Uu4XC782Z/9GX7xi1+gtrYWL774Iv7u7/4OyWTysx7+H3TLzePuV1lXKO97kHywcCF+Gm5WoT7tld/O99l+1yaVFsFi1CKLLAdLJdJiGDRKuDwB6JRl8Ie2YNAoIZGIOahKpzM75/x/3zfp1XmPn05ndgKndAbpTAaeQBjpTAYSiRgSiRip/zceclkJB1O5x6VgyqRXw2LU8r/vd23CRmkf8q162ly+0DC10O+EqBF50Nntdk7zmUymXS71wmdByIkSKjHnVuPkNuL9NDU17TkOxBtRq9WswA6AAyJChkibxu/3c4Cea3As5BLRWLhcLszPz+O9995jT0Fh5R9pDyUSCVgsFpw7dw4WiwVra2uQyWSw2+1cjUQK6dlsFnq9HiUlJdDpdJidnUU8HudgkIx/NRoNV3gKg126z+fPn4dOp8Ply5e53/QdYSUULTJutxurq6t8z8bHx+F0OrGysoK2tjZsbGzsKu9PJBLQ6/Wsdt3c3MwL/+joKCYnJ/H48WP09/fD6/XiO9/5Durr62E0GhGNRuFwODA3N8fvrVarRVNTE9zuHeFGt9vNIqElJSW4cOECLBYL+vr6sLy8jJdeegnnz5+H2WzG9vY25ubmWFj19ddfR1VVFRoaGhCNRtHR0cEL2+rqKnPBHj58iFgshoGBAahUKjZgnp6ehkQiYQmf4uJiLiAg8c1oNIq6ujr8/9h79+i2rutM/ANAAgQBECRAgIAA8U2KFCWKNGnqadmy5UeUt1MnmU6b6cNZyaw100ymndXVTjud6a8znTUzXX1Om6adSSdJ26R5NE7iOJJl6+GHLJk0KVB8U6RAAQQIECBBggAB4pK/P5C9dXB5AYJ6OG6TvZaXbRC499xzz2Ofb3/72yaTCb/0S7/ETq/f7+fSNwsLC4zIAsCTTz6JQ4cOoa+vDzU1NZAkicfdwYMHUVNTwyhfbW0twuEwNjc34XA40NvbC7fbzU44hWkHBgaYJ2Q0GjEwMACHwwG1Wo2ysjJWnidS9vXr16HX6zExMQGn04mhoSFIksRRoRMnTnDYu6ysDCUlJYjH4xgaGspxUmhMEedQ1NmSrzUU2pVzNL1eL/Ob5PO2vLwcp0+f5sxZynwdHBzMqUUqX4vosCDuPbRG2Ww2uN1u1NXV5SBrxfCnHA4HlpaWYDAYODoghkLl2YRALlf1bjha96U4stVqxec+9zkMDg7i2rVraG5uxs///M9jz549+PznP4+pqan7cZufONvtC833faXP5aRm+g6AXW3g+UzJidgtx0eSJHZygFznRaNRw2WvQnh5Fan0BkZm52GpKEd4eRUA7iBYkdiP2pP9vkajznWefvTffkKwIjFo1GrYq0zQqHOdJpe9iq9x5znvXFe8p/j5bkx0KGij3GkMyDlHolikvEQOkOs8W61WGI1GnD59OsfxoO/JCd8UpqHwnRL5W8k0mqxqtZi5ls9UKhU2Nzd5YSceFm2w5IyIoTSlAsckGChm6AHZmn6kh1ZXV4fGxka8/vrrXHamv78fg4ODcLmyxYG1Wi1vfI2NjUy8l6Rswefu7m709fXB5coqn7e2tnJdNtJDslqtCIVCfPqmMJ64kUWjUQ5rzc3N4e233+bNTiklPRQKIRAI4Pr168yViUQiKCsrwwsvvIB4PI6rV69ibW0Nb731FrxeL15//XUYjUZkMhm8+eabvLFYLBbU1NRg3759qK+vRzCYFW7t7u7GrVu3sLCwwJw5n8+H5eVlqNVqLilCbSVOVF1dHVQqFZ544gncvHkTarUa/f396OvrQ21tLRdAJoHOaDSKY8eOYe/evTh27BgqKio4K7GqqgoejwfpdBq3bt1CNBpFS0sLlpeXYTAYWJJhYmICLS0tuHnzJhfcPXToEFQqFQDgyJEjKC8vh9PpxCuvvIJAIIC3334bJSUlGBwcRCQSwdTUFKuSf+xjH8PRo0fxwQ9+EM3Nzdja2mJOmtlsxsWLF+HxeODxeDg7TqPRMAJGc4NEY6n9Wq0WL774Il599VWEQiE8++yzyGQyeOyxx3DkyBGsrKywI0QipFTmxuv18pycmJjAyZMnWRZjZWUFTqeT54PSOi7OFY/Hw3NZlC+xWCz42te+hmg0mkNAJ0SOnHMAinOTDhciQT6dTjOiKTpMpLEWi2XXafHgQ9cVixrvxmidKC0t5f5Ucp4cDgfz0O6VQnNfHCqyQCCAc+fO4dy5c9BoNDhz5gxGRkawf/9+/OEf/uH9vNU/WZOf9u9npl4+JEQpcy0f+pVvc7ybtsp/s1u0JRgM5nWKyMjZ6Wx25yBQIoI1F4hgLhBhx0x0fOi/AfDvXfYq1Dmr4bCa4Q9lQ1S2ShMGJ+aQTmfyttdhNaNEo2FHbTd9Q0abmJJaN/2/+FvxhCc6YJRteP78edZF4nYKzjPJBxAiJT+hKSnEy+v17YTAkWMjSdKOjnQwGERFRQW8Xi9ngAUCAWxsbOScmMWQJ4UoKe2f+oh0vi5evIh0Os2L/uOPP469e/fCZrOhq6sLa2tr0Gq1XJuM/iEuVCqVwuzsLPr6+jjc53K5mHi7ubnJz+RyZesJkkAhAM6gcjqd/M5CodC2agGiIjXNlRs3bmzLZKRsxc7OTpSUlLAOUW9vLz7xiU+gp6cHzz77LIxGI44fP848sitXrqC0tBRlZWUwGAxYW1tjjSytVouOjg7s2bMHq6uriMVi+MEPfoCBgQE4nU4YjUZ84AMfYBTJZDJhY2MDb7/9NtLpNOs0bW5uorOzExsbG3j44Ye5TIokSSzn4HBkFepPnDiB2tpa7N27F6+99hrS6TRqa2thNBrR1taGiYkJdHR0YHFxEU899RQTz4lg3tvby5thZWUlDh48yKHAN998E+Pj4/jCF76Amzdv4sqVK/irv/or6HQ6eL1evP3225iYmEAqlYJer8cHP/hB1NTUoLa2FmVlZThx4gSMRiO6urp4XaRx39nZiaWlJZY92dra4nfQ09PD/8zNzWFwcBALCwvMXTMajSgtLWW0b2JigmtMhsNhLC8v59SmdLvdzGU0mUzsrBiNRqTTacTjcc5SpHAsAK6PabPZctYLWl9Ic0msrUlhaY/HA5vNhtHRUXR0dOQchInDFo1GFeev3++Hx+NhjbGenh6+j81m45AaOUySdEdBvpiDmbhO5EO85EABrW009+TF0/NlH+52vwLug0O1sbGBb33rW/jABz6Auro6fOMb38DnP/95BAIB/L//9/9w7tw5fOUrX8Hv/u7v3uut/lmYWGRxpxd2Ny9UbkoQJ5Afzcq3Od5NW+S/uSvETSFMJyJM5GRRSJCcLRHB8oWi8IWi7JiJSFch9El0vDzTPsQTSXimfXnbS7/1haLsiBXTN/JFQD7B5d8lB4oKLOv1ei7GLL4/KtcxOTmZczKkTU2+gMnfvbj4it8pdGJUchQptZqyogodKhwOB+LxODsvALjumsVi4bEkH9eElgHgz+vq6ri22sbGBn9eW1uLuro6bG1twe/3Y2trC6WlpaipqUF1dTVv8lVVVYwqtbW1sTYTvR+1Wo1wOMxOj9iHFFohpXPiy3i9XgwMDLB8hMViweDgICwWC5d68fl8cDgcTMyOx+N48cUXWauMQpMajQbt7e1Qq9XbCMn0bvbs2YPjx4/D7XbjyJEjMJlMeN/73odTp05hz549cDqdsFqtkCSJRTpDoRAGBwfZEU+lUvjEJz4Bo9GIqqoqOBwO9PT0wGAwoKqqCsFgEG63G1arFdFoFLOzs4wQud1u9PX14ZFHHsnJPiOn6Nlnn4XJZIJOp8OtW7fQ2dnJ3LF0Os1EdZIKWFlZwezsLIxGI3Q6HdxuN4dNr1+/junpaayvr3O9Q+qfubk5bGxsYGpqCiqVCkajERsbG9Dr9VhZWcHy8jKefvpptLa2oqOjA+Pj4zmOA417erckfGkymVBWVsbhco1Gw2KyFCL75je/iYaGBhgMBuzfvx/t7e1oamrikCmQ3RfefPNNlJaW4q233kIymQQARCIRBAIB1teqrq6Gy+VCPB7H1tYWJClbl3F+fh5jY2MIBoOMllVXVyMcDrPWFh1qaIxSSJ2ei8R0q6qqEA6H8eSTTyIajeasP11dXSzmCdyRIhGJ4pS0Q85MbW0tampqGDUvZv0nZ5LmutzEvURcQ+R7DiH2fn+22HQikeD5m+96dE9yvt7VkJ/T6cSnP/1p1NXVccHXz372szkkrqeffhqVlZX3eqt/FkZxeIoPFxpgdxPDlZsSxHk3BPRiwoY7/WYnJEPJsVAKm8nDeQXbbTXDbbfAbbewYyYiXUp8KyXUqrPZDWO5Hp3NblmbN3MQMEnaRHhpNQehUuonsW+UnFWxPpX8uwSRk/aL1+tVzNwhQcDq6uptzpnf72fCtpwnJbYZyA3PinW3lJ5L6VmI/2Oz2bb9Tc7dA7KIjslk4lMrcTNExy4f74E+l6RsSjmV3CBCNHGPCNkYGRlBaWkpEokEzGYzxsfHsW/fPqhUKpSUlDC6RCfzwcFBDsN1d3djz549rIUk55fFYjFGDc6fP4+1tTVMTk5iY2OD3y3VG7xw4QKMRiNnZAFguYarV69CpVKhv78fwWC2jMqFCxcwOzvLzjLVcnzrrbfwV3/1V3jxxRcRj8dx8eJFbG1t8Ymc6g4GAgEu/xQIBODz+bC1tQWNJqsQ/tBDD2FhYYHDleFwGLdu3cIPf/hDJBIJuFwuPPLIIwCyaxqVP6HwGj17KBRiB2R5eRmrq6t44YUXUF5ezmGxQ4cOwWg0or6+nusuSpKEra0t5t1R3Ux6txQOGxwcZD0oEvlMp9PYt28f9u7di83NTRw6dIg5WWq1GsvLy6iqqsJjjz3Gm73P54PH42HxTrFEizjGyTnx+XyoqqpCSUkJjh49Cp1Oh2QyiRdffBETExMYGBhg6QHK4ty/fz9UKhVmZ2dZ0oFCxTqdDnv37sXo6CgnHxDy6na70dbWhkcffZSdFxH1bGpqgkqlQlVVFdRqNfeROC8ikQijtOIcp/FKa5JGo8HS0hKOHj2KZDLJITFCu+ShZxEpHhwcREVFBYxGI3p6erbxnURUiBymUCjE/Cly4gcHB/na+TSrxL1EXHOUUHbK7tTpdJienua5mu96tI6I9UaLtXuWTfjKV76C5557DmVlZfdymX/2RrIJ0WgUN2/eVKzPdjeOzk6mdE15Orn8Ozu1g/5OCxyl4gLbay/t5jkUZSF8P9zmUKXTGXimfehsdkOrvedEVeZP6WSZesTV2um33sAiAKDOWQ1J2oQvFIXbbkGtM5vd4nc+tev+LkaOgkjlO9XOohO/UkZLvnpX+e4vylfY7fZtauaFxg79TZ4NSGE9UqkuNrVavA9JXZDCM43N8fFxVFZWMpIB5FapX11dxbVr11BbW4ubN2+ioqICyWSSQ0+U+SdJEgYGBlijx2AwoLu7m8M65JyQZIEoSnrjxo2c0h70zrVaLTo7OzEyMsL11BobGxGPx1m12u12o7KyEpcuXUJ1dTXa29sxPT3NfBqtVotEIoHHH38cGo0GX//61+Hz+bB//3709PSgsrISgUCAuSyUSWcwGFBaWsrq2q+//joefvhhFhSNRqPQ6/VYW1uDw5HVwfr2t7/NxO7HH38cmUwGi4uLGBoaQjqdRllZGSwWC1paWvDOO+/w5k/hZUmScOnSJahUKiwtLaGnp4e/Q2OA6tUR342cxXQ6jfHxcUQiEQBZZ7OkpARra2sYGBhAfX09NjY2UF5ezn28srKCvr4+SJKEr371qzAajVhaWoLRaMTDDz+Mo0ePYnx8nB3JqqoqRlG2traYN9fT08M17mZnZ/Gd73wHe/fuRSwWw9bWFjo7O3PCeKWlpXj44YcRi8UQj8cRDAbx1FNPYXR0FH6/H6dOncL169dRX1/PYqw0fsvLy/Haa6+huroaH/zgB6HVajE9PY2LFy+ira0NR48ezVkz6EBEqGUsFkNVVVUOckcmOj/U3+vr61haWsKhQ4dyHCCl9VuUSCCHdnh4mBMfipFlEOeuJGXLLM3MzKC9vT2nXiQdnorZT4rZN/Mpuhe7vrxrOlQ/teKMXsjY2Bg0Gs1d6ebcL5MPFvl9d2qHXHuEnEMAORpGu9XLEhcJKnlRPvW9bTIHcgdI+VpZp8hWaWIkKx9JfCcHqtDfKfxI1wew7btS96dyFgZyZgq953yLRLFOdzEaTNQmyvghUcBC9xE1uiikodPpck6k8uvLF0O540zZTvF4nOfEbp5fkiScPXsWOp0OZrM5R6dM7rwpObK0KaXTaS4W+8Ybb+DUqVPQ6/V877m5OXi9XiwtLaGiooLriXk8HlgsFs6YA3KdNnlBabPZjG9961uw2+1YX19HTU0NnE4nUqkUZmZmcPLkSVy4cAEGg4HJ7XQKF0/f6XQaExMT2LdvHztMsVgMr732Gv7lv/yX2L9/f44sxtLSEhYWFrB//34sLS3BbrfD5XLh/PnzUKlUWFhYwIkTJzgz7uLFizCbzXA4HFhcXMTc3BxisRgef/xxOBwOXL58GcePH8fo6CjC4TCampqQTCaxubmJ5eVlBAIBnDx5Ei6XC0NDQ0gkElCpVFhdXUVjYyOT6T/72c9Cr9fnCFHW1NTgzTffhF6vR2lpKauWW61WrKysoKKiAjabDTdv3sT8/DwSiQQeeughLqmTyWSwtbWFvXv3YnFxERMTE7h16xaOHj0KrVaL/fv34+bNmywgWV1dzc+9tbWFmpoa/OAHP0BLSwsikQiOHj2K8vJy+Hw+3Lp1i5ELQpADgQAWFxchSRKPLyLvt7W1QafTYX5+HpWVlUgkEjAYDAiHw9wWsabh22+/DZVKxeWrvvvd7+LSpUuw2+34F//iX7AMiVjGKpFIsGRBPB6H1Wplon1bW1tOMojIXyIdL51Ox1pj+Q5wNH9o/RofH8fKygoSiQQLexazzivtH3Jdv2IOl/nWtEIH1d0IRIv2U4fqPWYiQrW6ms1EU8qCu98IVTFWzEBUmlj5/lucFOJGUKyTKG5C3dJ1RSdmJwTJH1pCIpnC1O0QTOU6aDRq1Dmrd9SgkqNfkrSJwYk5mI1lKC/T7fh7Rev9RX4u8YR3N++5kLhrseiVfFEhdWSn07ltUSw0FnIcX+FEKb532tzyoVjB4B3xwWIQMiV0dXBwkAUFT58+zWEA+fiUj8V8Tp94D1EXjP4mR9REGQT5ZqDUf/39/Ziensbo6Ci0Wi1KSkpw/PhxVkf3er2MaBkMBiwvL8NqtSIQCLAWz+rqKiRJ4rCuz+fDwsIC1Go17HZ7jkBpLBbDK6+8gk996lOYnp5mJ2B4eBipVApra2u4cuUKjh8/DqPRyKGYlZUV3Lx5E/v27UM0GuXsta2tLUQiEZSXl8Pr9aKysjJnnNlsNnzjG9+Aw+FAZWUlh9kuXbqEkydPoqqqClarFV/84hcRDodx/PhxPPHEE4zuAcD4+Dh8Ph+0Wi1OnDjBnweDQYyPj8NqtaKrqwsWiwWvv/46amtrYTab0dXVhWAwiGQyiStXruChhx7C4uIivv/97+PEiRNYXV1Fa2srF+YeHh5GV1cXIy6kIh+JRPi9nTp1CktLS4zCDwwMYGRkBAaDgbMZaf6Q/tfQ0BDXTKRMWxobPT09CIfDuH79OlZXVxEIBNDX18cOOTmVhHJ+//vfx/j4OBe7Ji6afK53dHQwh8psNuPy5cuoqKhAQ0NDzoGHVN5tNluOBAnVIxS135TmId3bYrHglVdeQXl5ORP4dyugKc7PndClnZygYoCBuwUtfupQvcdMfCGrq6u7Uhd/L1ixiMfdIip5rzX45btqLzlCRr0OsbUknD/K3isUwpOkTZy9cgM6rQamcj2H/1LpDURXE0VdQ9F+5FAV0xfFhluVHAT5qTXf+xLDdt3d3RwalCSJCxWT80POFn1GDgwhSqIAKDlHS0tLHLIhLoKIfonPYbFYtimUF4L5ldBVuUOm1A/EwRELPdP3RFV42oyI2EscjtraWvT29vKzU9ZWVVUVn67FQs+i8yjnotGGZjabMTo6inQ6Db1ej9bWVszMzLBTRUiVyWTiLMTV1VUm4FutVtTX16OrqytHw4eQlpGREVgsFrzzzjtQqVSorKxkZ4bqyC0vL7MCuMFgYL5URUUFZmdnsbGxwW3WarWwWq1MjJ6cnMTq6iqWl5eZ70b9brFYcO7cOWxsbMBisWBmZgaJRALpdJoLOPf392NgYABPPfUUjEYjOyAulwvJZBKXL19mCYqKigpMTU3B5/NhdnYWDQ0N2Lt3L0wmEyKRCOx2O0pLS9HW1obXXnuNS9zMzMzAZDIxp66+vp7fzSuvvIJUKoXOzk7U1dWxw3r58mWkUilsbW1xvT8AHEabnZ3l0CWFqpaXl9Ha2soIWWNjI4dLg8Gsqvrc3BwefvjhnNJGHo8HGxsbTAynKgtkgUAA8XicyzopFSgW58DGxgZ8Ph90Oh2PzZ6eHp6LSmgnoU4khULaT+Rkyu8nn78XLlxgZGw3iuiFrNA6J/87PZsSlUCcd/l4ocXYu1Yc+ae2e8tHNlci9L5XbCeCfL6270REV7K7+c32a6jRva8WJkMZultri3KCgpEYGvdUI5HaQDqTwYwvBEnaRLleB6fVjIwk5SXCi5mH2z4XUpaLkQ2Qaz/dudZ25fx8QnQiqV1uokhkMeRLkfNApPiZmRkYjUZOsaYFjfRvAoEAQqEQp087HA5FqQfa9CkUSsRU8bokuqnUhw6Hg1PAqY1EOE+n00in0+xMkbgg3YuyeIh3RSHMN954A5OTk6wQXlpaCrvdzs8ej8fR1dXF/Q3cSTmn/iJOy8DAAK5evcrZfsAdGRNSKK+trUVFRQVisRhOnz6NZDKJxsZGXL58GXV1dZibm0NnZydOnjyJiooKdHR0MDpGziGl+6vVamxtbWFiYgKjo6M4e/Ys7HY7Njc3UVdXh83NTZSUlODkyZOsFk5OBmW33bhxg8nu9Gyjo6MIBAIYHR3FzMwMXC4XDhw4gJ6eHi54nE6nGe0YGRmBJGXlIW7duoW2tjYYDAbs3bsXy8vLkCQJbrcbH/rQh9DQ0ICKigrcunWLEw0aGhrQ3d3NfXP16lUkEglYLBacOHECXV1daG5uxurqKiwWC6anpxGPx/GlL30Js7OzGB0dxdTUFFpbW+F2u9HY2Ijjx4/zvSORCJefoUwuu93OyUINDQ3o6OjAsWPHmKhOCQYLCwswm81QqVQYHx/HxsYGDhw4wCjpjRs3WAA1lUrxGOzs7GTpjMHBQXa+qaA0AE7pJ2febrfDbDbj6aefRm1tLScxiPpQNpsNU1NTMBqNALLSBtQ3Bw8eBIAc8Uwa96KzIkkSE9tVKhU/K4Wz5UXP6Xcejwcmk4lD2jslUe2U1CK/vhLRXP53+m/xYEcon7iu0ffk81Tp/uLatxu5oJ86VD8Gy7ex7uS0/DhtJ2fgQbc9n8NS6LsAcsQ/RWdI6XoOqxkmox6Hmvdmwxora6CMQFI+J2V2URSU/u0NLG6TSwhGlAX28k1Uh2O79hN9Vy59IX8n4v/TxiZfCIHsgtvb28unNpVKxY6IvHCzy+WCXq/n9Hh6z+3t7XxqEx0Vyj5yu928EYnFjCmbhzLaxEVYdNbE6+ZTWRaf2e/PlpGZm5vjRTQQCDAhm/pR3EhowSWEip7/5MmTOHnyJNxuN/bv38+EXQoJkfNGISrS7CHyOwDMzMzg3LlzSCaTLFrIY+JHv71+/ToCgQAAcFgvHA6jo6MDMzMzcLvdePXVV2Gz2XD58mUOfzU1NaGhoQHNzc0YGhrC3NwcCySSlADxchyOrPzC4cOHEQqFsLCwgFQqxQV8iT8n1vgjNfVUKoWVlRXE43F2KGOxGEpKSvCNb3wDiUQCer0efX19CAaDePXVV7G+vg6Px4NkMgm73Y7u7m6cOnUKXV1dqK6uhtPpREdHB/r7+/GVr3yF5QEmJiag0Wjw1ltvsQ6XxWKBJEm4cuUKlpeXEY1GsXfvXrz//e9HX18fTCYTnnjiCeZPJRIJVpnXaDQwGAwIBAJMxr98+TLKy8sxNjYGo9EIg8HANeeuXbsGr9eLdDoNu90OvV6PY8eOMX9LkiTMz89jZGSEZTjKy8sRCoUwPz8Ph8OBrq4uDn+p1Wqey1tbW2hpaYHZbGa0iOadiAZlMlmNu9nZWQwMDDA6KCKvHR0dfBgio/IyMzMz6OrqQm9vL+LxOMrLyzEyMsLzisah6GjQfKb7T0xMIBAIIBgMIhQKMflfnhlHvxPnOIU3+/v7MTs7y98X1zqSUKEsxnzVOXbaT8S/i/9N1wSw7ffytbUYAIO+I8odFbJ7dqiSySTXiAIAr9eLP/qjP8K5c+fu9dI/cXa3yMxuveh7/Z2S3Q9UqVC7ipFKUFI9B5TLzsivJy8b47ZZsKe6cpvUQnh5FYlkCoMTc9vuo2QOq3lXaCQtoIUkApTUz7fd13En1Xl2dhZXr15ldWOxDaSunclkFEvHyNtDThidXAkdonsFg1lBQtK3IQdNRHMI5aH0a1H9vLy8nDkrVKpFdLryjVnaNIeHh1m2wOl0svIz9bMSukf/XVtbi56eHuj1ejQ0NKC2thZbW1sYGxtDKpViNI0WY2rDyMgI166j0280GoXRaIRer8cTTzyB3t5e5m1JkgSn04lDhw6xQKrVasXY2Bijdi0tLfD5fHjyyScRDoc5JKXT6RgdW1lZQSqVgtfrhd/v53IoGk1WM+m5557D0aNH0dXVhYWFBQwODmJ4eBgTExPw+/2YnJxEMBjEyMgI3G43gsGsrIDT6UR3dzfW19fR3NyM3t5ebG1toa+vD1VVVXjnnXdQVVXF5YqIU6bX6zE7O8u120jYEQC+8Y1v4NatWyxkSfITL7zwAtdqm5+fx9bWFkKhEGf1BYNBrK+vw+fzYXV1NQfhIRSWHM/W1laUlZWhtLQUer0et27dgkqlwtTUFH7rt34LwWAQ3/ve9xCLxTA+Po7Ozk7MzMxw+Z7p6Wn4fD688MILnHGm0+nY0V1cXMTm5iZndZLqusvlwvXr1xEMBvHMM8+gqakJ9fX1OH/+PDo6Olh2w2QyIRgM5iCUVNuQnH0AuHz5MrxeL65evbpN7kRU0xfnejweR0tLC6LRKFwuFw4ePIhEIoG2tjau+djZ2ZlXe450qUjeiLh4Wq0WlMFHYUsRKRbnuCRlxXRv3brF/SFf60R0vFCZLHE/EX+vFLaj7wJ3Dk2iREO+tawYEIC+U1NTk/c7ot2zQ/XhD38YX/5ylueyvLyMw4cP4w/+4A/w4Q9/GH/xF39xr5f/qRVhxYYKxc1IDLvsNsRYyBHbjZOW77tKz7NTLT5AWT8KuOMMSdImrt2YwbR3Ael0BiqocpAmQphInyq1kcHQ5Nw2FCu2tg6jXotAJIYSjSZHXV1OWtdo1AXRSCXnSCmsJeq4yEvEKPUnXYPIr3NzczlhAjHktRNUL28PpbHT4i2H1JUQNHHhppNtvvtEo1FkMhkW1RTrChJKNzc3h6tXr/JJuKurCyaTCWazGbOzszh//jyALMfpwoULSKVSOfC/uAiLXAy56nw0GoXBYOANiZzCqqoq6PV6uFwudHR0QK/Xw2azwWw2c/+73W709PTkiKD6/XeKvVLokfrEZDJhaWmJVd9Pnz4Nk8mERx55hIVNATBiR4gabcySJGFkZITfATk0LpcLpaWlcDqdqKioQEtLC1wuF9RqNQKBADtlGo0GlZWVjGo1NDSgpqYGZrMZH//4x2G1WlFWVoZ9+/bh1VdfhcFgYP7O5uYm1tfX+Vl1Oh1SqRSGhoZw/fp1xGIxXL9+HQaDARaLhRGrp556iuUjjh07hmPHjsFkMuFv/uZvGF3t6urC4cOHuUj30NAQZmdnmVj96quvoqqqClNTUygpKWGl/bW1NYyPj2N4eBhWqxVXr15FfX09hoeHEQgE8PWvf51V4B2ObK3JCxcuoKKigqUsyPGxWCyw2WyoqanBBz/4QTgcDmQyGezdu5fvSWjo008/DZ/Ph5KSEly4cIE1l2gMkBjm/v378cYbb+DWrVuMdkqShKamJtTV1eHZZ5/dVh5FjhTRWJYfwqLRKNra2jA+Ps4OG/ECldYjjUbDBcJFnSs6DFEon2r5SZLECCfRCgYHB7F3714kk0kcOHBAkYpAaJaIotN4yXdgEtfKgYEBzMzMMCqbc+gugr6gtCYVAgF2CxTcs0P1zjvvsMDbN7/5TdTU1MDr9eLLX/4y/uRP/uReL//A7M///M/R0NCAsrIy9PT04LXXXiv4/UuXLqGnpwdlZWVobGzEF77whXeppTtbseE2edyZYODdhukKOXC7ce7yOXTy5ylWF6qQ6jkADE3O4Z0JLy68M4ZAZBmRlTVkpGy9wGAkBmkzN5wYjcWR2tiOQNmrTFhZW4elopydr93W7hMdnp36K5+DlQ/1EiF0h8OBQ4cOoba2NidMIC4+IkpUjMnVkoPBIFZXV3H9+nWoVKpt7ZIvkmLZFZFvJLZZXt6GuGXBYBAlJSUIh8OsATUwMIBgMIjTp0+joaEBKysrLOZHWXFieYt8fSaGIgltI7Kz0+kEkCUJ22w2vh6FDPft2wedToeSkhKMjY1Bq9VicnIy5x70vKFQCKOjo8xRIZ7Y1NQUZ1mJDqTP5+N7AuB5S5sdkBVYJtVz2ni9Xi870k1NTQCAAwcOYHV1FTabDU1NTThw4AAaGhpQVVUFm82Guro69PT0wOFwYHl5md+JyWRCV1cXnnnmGQSDQdTX12NkZAQ3btzA4uIilwdaXl7O6V+bzYb9+/cjGo3i5MmTMBqNiEaj2LNnD973vvdxWEmr1TIx3uPxIBaLYXBwEA6HA7W1tcwVS6fTmJ+fh0qlgtlsxvnz53HixAksLS3hkUce4VCVWq1mvlN3dzeam5vx/PPPcyIGIS0jIyM4fPgwenp6kE6nceLECWxubuIzn/kMtra2MDAwAEnKioxeuXIFWq2WszTHx8dx9uxZbG5uYm5uDslkkjf61tZWpFIpNDY2MmpL4WAg61SNjo4imUxieXkZOl221NT169ehVqsZKaX5Mzc3x1mBIlJElm+NEMvLkMMyNzeH2dlZzM7OciFwQn0obEfOvii263a7EYvFYDQaEQwGc8J3fr8fyWQSXq8Xx48fh16vV6QikGQDtV+OJintH/K1MhqNKq6b95t2cjcRnHt2qBKJBKuinzt3Ds8++yzUajWOHDnCdYXea/b1r38d/+7f/Tv8x//4HzE4OIhHHnkE73vf+1gxVm6zs7M4c+YMHnnkEQwODuI3f/M38Su/8iv41re+9S63XNmK9aLlYQ5xU9iNFSI878a5y+fQyZ+nULiP0KV0OsNOFwBFvpWt0gR7pQltDXvgtlvQ2exGiUaDQCQGQ5kOq2sp/r3LXoXufXVw2yyQpE2k0xn4Q0uYC0TgDS5CkjahK82PmOUnqSsXpS4mjJevf8jkJGkKLzQ0NODw4cO8oJHTovSelBYR+WfEwaKwg8PhwMzMDMrLyxGJRHLalU6ncfbsWSwvL3OVeqPRyM4DOdUej4fJ+AA4ZAiAicKUYRMKhXDw4EHU1tayfpNYrPnAgQPsAHR2djKJXKlcjsORLfg6ODiIlZUVDusQ8hIIBFBSUsJ1EcPhML7+9a/nhE8dDgeX7RgZGUFjYyMCgQDKy8u57eJ8UalU2LdvH9c3I7L/4uIiozLEswoEAohGoxwmArJhX5q3FDojwUvqY7JwOAyj0Yi3334bbW1tCAaDmJ+f57DV6dOncejQIYyNjWFubg5qtZpP76T5RNmL6XQaa2tr+LVf+zU+XNbV1WFhYYH7jRxPyjqz2Wx466230Nvbi6WlJZjNZiwvL2NiYgJzc3PQarUYGRnh5+rs7MQHPvABHDp0CB/60IcQDAYxNTWF4eFhdoCSySTi8TjC4TBWVlZw48YNvP/978fU1BRSqRQ2NzdhtVrR19eH5uZmuFzZItfz8/Mcbq6pqYHH44HD4eB+P3nyJPbt24dPfvKTWFpawuLiIhcPnp6eRjKZxNmzZ9mZq6urw+OPP47V1VXodDpMTU1hbm4O58+fh8/nw4EDBxCPx1lhX5KkHOVvQrw6OztZ1oCcS4fDwQWyBwYGcP36dSQSCQwMDPB4Fw8kcr4SkJvdJiaVkCr89evX+b/lBHA68FKBYjp47du3j+tZiuE7Wpc6OjpYSkR+UBKNElbkaFKh/YMQ2e7ubnR1dW373v2knQB3lyR2z7IJnZ2deP755/HRj34UBw4cwA9/+EMcPXoUAwMDeP/73/+ezFg7fPgwHnrooZyQZHt7Oz7ykY/g93//97d9/9d//dfx3e9+F2NjY/zZZz/7WVy/fh1Xrlwp6p7Fpl3+U7DdaHnIM9N2+nyb9X+pIELlDy0hsZ7ChDcIs1GPOkd1NlyX3kCJRgMqLaPRqLddR5I2MTB2C4lUCvFECvtqHSjX52pNEU8qupKApaIci8tx+ELZ+l697Q2shi6/do746Jl/n7OoKYl63q143W6+U8w9dqPdIurDSJKEV155BS0tLRwK02g06O/vRzQaxejoKJ555hkm8hqNRszMzKCxsZHLrYRCIeZlEUIj9pfDkRUBFasMyMOckpQr/VBIt4uMSmapVCrE43GUlZWhu7sbZWVlTJomjaiXX34ZNpsN6+vrePLJJ+FyuRAMZnWPLl26hPr6epjNZlRWVsLj8cDpdMLhcHCpFzpZu93unP8OBAKYn5/Hnj17cPjwYQBgcjYdgF555RWYTCY0NDTk3PfGjRs4dOgQAoEALl++jIaGBtTX1zP3h/okGo1iaWmJ9ZOIb+Xz+XD79m0kk0kcP348R9lckiSMj4+jvLwcs7OzaG1tRWNjIyNgVGtvcnISVquVJQH6+/tZkVqr1WJ0dBQulwubm5sYGRmBTqdDRUUFMpkMzpw5wyFTStEPBoPo7+9HOByGWq1m9fPNzU1MT0/D7XZjfX0dlZWVOehVMBjE5OQknE4nNjY2sLW1xf9eXFyE3+9HW1sb5ufnsXfvXhgMBuzbtw+Tk5NoaWnBysoK5ufnuQgxJRXQIYDES0+dOsWZoaS2r1Kp0NzcjFQqhUwmg+PHjyMUCiESibCw56OPPsqOvXyeyv//ypUrrC/lcrkQCoVYpgTIOhiiDpyS9hI5eGVlZaisrMTp06dz+H/kqMslSkjEVhTtLaQHJW/77Owsrl+/jpqaGtTU1OTVfrvbqhr3YsXuPeL31tbW3h3ZhP/0n/4Tfu3Xfg319fXo6+vD0aNHAWTRKhJCey8ZpTI/9dRTOZ8/9dRTePPNNxV/c+XKlW3ff/rpp9Hf34+NjQ3F31CGjPgP8N4gkBd77Xyf7wZVKUS+luuDKN5fyNZTCqc5rGbE4uswlpchGlvjz3TaUgBgZCudzmBwYg62ShNfJxiJIbWRQWw1iY4GF3TaUuZUkdkqTYiuJNDRsAc6bSm6WmvhsltgqzL9qI3ZWn79Y7eQSKbyEuELZZ+IfbqbsG0+02g0OQroO91D7H+l7+T7nQj5U6YcCTJS2LGjowOZTAZPPvkkYrEYJElCZWUlpqamUFdXh3g8DqfTiUwmA5VKVTBbR4krQuMoEolwpqG8XykEJs+SpM/MZjNKS0uh0WiQTCbh8/n4XhTmqKurQzKZxGc+8xmUl5cjk8nwBp5KpRCJRFgzyWq1wu/3M6oRDGbFFgOBACoqKljYl8IXGo0Ghw8fRn19Pc8pv9+PUCjECt7Dw8O4ffv2tjCiVqvFww8/zM6KyWTC3NwcjEYjJicnkUqlsLy8DIfDAafTib6+PjQ0NOCZZ55h7hXVg/vEJz6B8vJySJKEqakpXLp0CQDQ3NyMW7duMQJJSJtGo+GQ4alTpzgESf9WqVRoaWlh4c9QKITZ2VkcPnwYdrsdbrcb73vf+7C6uopEIoEvfOELmJycZJRSkiRsbm7CYrFwuJY2teHhYdbRIqeRnJempibWE5MkCWq1mhHOkpISlJaWorq6GjU1NTh48CAmJyexvLyMN954A+l0GgcOHEBdXV2OXhmFcd1uNw4dOoTx8XEkEglIkoS1tTVUVlbCYDBAo9GgoqIChw8fRjQaRTqdRiaTwe3bt1FTU8OHctqsCaWlcSI6VwBYfJNQZr1ez+gtPaOI8ivN1cbGRmxsbKCxsRHhcBi1tbVoaGjgxAulkL/L5UJjY2OOIGihzGGRk0hJCuTIKpHg6Z7y0J2c5/sg9rx8a6j8fneDeN2zQ/UzP/MzmJubQ39/P86ePcufP/HEE/jDP/zDe738fTcqDyBn7dfU1OTdpILBoOL3qZaVkv3+7/8+zGYz/7N3714A4LTl3SJ3dwM/3uu1lbIr5ITnndq0k6NQiEsVDAbZIcoXQiO9qcY9NnTvq2PHSy51cPbqDUzfDjLJ3B9agsVkgK60BJ3Ne1HrtEKjUW/TmgpGYkhvbCC8vMrXtleaONwXjMTgC0WR3thAbG1dsQCz2A/y7BMliL6QFepP8R2Jzs6dvlJeIIifRBuZUnaM0u9EyJ94T8TZAO44DKStZLfbEQgEMDIygsrKSq6P5nK5uAYZbSY+nw8qlWpbf9GJWjxli+Hjrq6ubdIPxNkCkEPspfG9vLyMjo4O7N+/H+3t7Thy5Aj3L2n6UPaaRqNBSUkJTCYTxsfHYbPZUFJSArvdznIRgUAA4+PjrOVjs9k46zAej8PtdnMpke7ubn4eIr0Hg0Em3k5MTPDva2pq0N7eDkmSuNafKKC6tbWF9fV17NmzBzMzM2hubkYkEoHBYEBJSQmefPJJ7Nu3D+973/s4rKS02Wk0Gib/vvDCC1haWmINpIqKCg6tEtGa+Fa02RIhn5wY0kkaHh5GKBTC+Pg4jh07xqHSyspKVnAndAgAS29QtpnT6UQymeSwImUAEg+NEh2cTiceeeQR5g06nU4sLS2xKvzt27fhdDoZATQYDFhYWOCMO3JyaczdunULXq+XxWwBsLxHJpOB2WzGnj174Ha7UVVVxZIiFosFq6urMBgMXKC8rq6Ow7KpVAoXLlzg4tjLy8v427/9W3auSECV5oScbyhy+QAoOh8ulwstLS34+Mc/jng8vo2mkc9pUZrzxRz6aE45nU40NDSgt7c3Z77mozyIXEm5vpS4L+QLcRbrdInJOPk4qPeyx94XHSrqlHPnzuG73/0uvvvd7zL0+l41qopOtrW1te2znb6v9DnZb/zGbyAWi/E/t2/fBgCGP3dLnNsN4W63gyzftcXPFTPvimjTTl5+IS6Vw+FglEeJRyXqTdU6rewUpdMZ9I/egiRtstSBqVyHlcQ6pM1NDscNTc4hsLj8o3aqYTEZMH4rCHO5Psd5kzY3EfiRUxeMxBCILCMjSQgvr8JhNcNtt6DOUY3ufbWQpE30j95COp0pqh9EkuZOC8VOULVIsLZarSxpsJNRFo/ZbFbUhBHvT4RW0nsiLpVGo+GTL6k+09gQs3nI6SIuBG1cIvJEOkahUCjHcZI/J41FkQ8oErqpv6jkE1kqleLsJOIj1dXVoa+vD8eOHUNPTw+2tra4r4kHEwgE4PF40NLSgkwmg+bmZnYgqMAuORodHR2oqalBY2NjDvG/u7sbQ0ND2Nrawne/+1288847mJubyxEcJUFRjUbDqu2k1E5h1FdeeYXDOYSU6HQ6fOADH0BjYyOqqqrg8Xhw8+ZNeDwevPnmm/w8RIKn0MuFCxcQi8UwNDQEv98Ph8OBY8eO8cFTrVYjmUxi//79rP5N7y2TyXCZlaWlJZ7Don5ZOByG1WqF0Wjk8A5pPt24cQNDQ0MwmUwwGAw4cuQIX9flcnF9Pgr97t+/H0ajkfu5tLSUU/0jkQjMZjOmp6dZDoRK5SSTSSSTSVgsFhw4cADBYBA6nQ5DQ0OIRqM4cuQIHnvsMdTV1cFisbAUhcPhQG9vL/r6+pj0b7FYMDU1xVplNHeoX0T5i/b2dqyvryOdTqO9vR3JZBJ6vR6Dg4OYn59HfX094vE4Tp48iYGBAahUKly4cIHHNKG3ooMxNDTE3CZ6n3Nzc5iensbf/d3fYXV1lecGjUkqgu7xeHJ4TTs5LUoHaflhUJyfhAjTnNZqtQWdpEIJN0r7i/z3u3WCgsH8mYD3g9R+zw7VzMwMDh06hAMHDuD9738/PvKRj+AjH/kIPvrRj+KjH/3ovV7+vlt1dTVnE4gWCoXyak3QoJV/v6SkhE9TciOOgPgPsB0aLdbp2Q38mA9Z2u21xc/vdwYFWSFyvEajYZTHYTWjRKNBeiODuUCEnRslsrpn2ofY6hrOXxuFJG3CYTWjcY8dXS21qK7MqgnrtKWQtjYRXFxGMJr9/fBNH1bXEvjWhX4sr6zh7JUbsFWaoNfpYDGVM0fKbbfAbbcoolGeaR/iiSQ80z7sxuRon3yhkCSJUQORdCzvy5KSEl40CFrfyUSHBkDO2BEdKMo483g8TIotxkR0jpwu4gApweuEfNntdsXFUk7y3pbEIPQd3VulUjFKRYV+/X5/TviB/u1yuVhp3e/3swNIjlIsFsOxY8cU9WzIsTx69CiefvppNDQ0QKPR5KA3zz33HGKxGJLJJIaHhzE2NsYh9OvXr2NhYQFVVVXsNIgOtM/nw82bNyFJEmZmZlBWVoapqSkA2bXNaDSyflYkEmERSofDgZGRESbbnz17FlNTU3jppZdQWlqK27dvw2w280Z99OhRPP/882hsbITVasW+fftQVlYGs9nMGVo2mw2Li4vcr2K4anZ2Frdv30YwGMTBgwfR19eH48eP4/DhwzAajTh9+jT0ej0qKysRiUQwOTmJra0tdtCuX7/OTrWYWq/RaLiYL62/FJZbXV3F7Ows6uvrWQeMuGtUvqayshKpVAptbW2Ix+NYWlrC0tIStra2GE0jxxbIJkeQkx0KhTA4OIgLFy6gvLwc4+Pj0GiyGk0TExPs1La0tHAZFq1Wi+rqaiwuLuLGjRvo7OyE1+tFMpnE5OQkpqamYDabMT4+jmeffRZWqxWnTp3iMS0eTESqBZnf78fMzAwGBgZw9uxZRKNRXL16lb9Dc5hkToxGI86ePcsIqIjW0F4hhsaV1iG5MyYewkRHWzzwFHKS5GuRkr5UPkqC/P932u8K3f9+kNrv2aH63Oc+h4aGBiwsLLAy6+XLl9Hb24uLFy/e6+Xvu5E2y8svv5zz+csvv4xjx44p/ubo0aPbvn/u3Dn09vaitLT0rtrxIEN4OyFLd2NKg00MFe0Gcs0Xpy40GUiawBeKYnDCC39oiflNtkpTznc7m91IbUhodFUjGIlBo1Gj1mlFT3s9Fzi2VZoQXV5Dpdnwo3Ztwlyux8jMPGosZgyMz6FEo8Yr/aOwVhgYKaNrERo2F4igf3QWc4EI39tYrkdn850U6ULPRZo08qyVfFA4IS1K16RFqKqqatdyGEoLeDCYzQgaHBzkdyyG9QotYuK4yzd2igkXK2nvFOJyyPuO+oRqwZETsLGxgWAwuK3dlMlFmW2UPUi8FRIipNI66XSa9bDypbKLfQpk16APf/jDeOyxx3Dw4EGcOnWK+6SiogJra2usXk/tpz4OhUL8eX19PZepCYfDvDGKYcjm5mY0NTXBYDCgubkZAJhYe/PmTWxsbOD27dtoampijhttkLW1tXC73RgZGUF/fz8uXryIixcv4tq1azh79izm5uZY44gSEeg5Lly4gDfffBM3btzA+fPnIUkSnnzySTQ2NuKJJ55gdKy7uxtOpxONjY1wOp1YWVnB2NgYxsbGcPnyZQ57EjdLo8lmwtntdj7MSpKE6elpLmkyNTUFu93Oivt0IGxqaoLFYsHm5iYqKyvR3t6OEydOoL29HSUlJazKn8lkmCQ/MDDAvLqFhQUsLCygoqKCBT/JUVlaWkImk4HD4YDJZMJjjz3G8hSkIk5o3enTp9HY2IiTJ09ymNdoNGJ8fBynT5/mMSaOIREVArLhUCJ5T01NIRwOo7y8HOFwGGVlZSytQIcgCqGvrKxw/cNwOJyD1hBaTo6hkgOkdFgBsA0xzhdK3glQ2O1aUugwpWTF7jd3a/ec5VddXY1XX30VnZ2dMJvNuHbtGgu//eqv/irzMt5L9vWvfx0///M/jy984Qs4evQovvjFL+Kv/uqvMDIygrq6OvzGb/wG/H4/C5bOzs7iwIED+MxnPoNPf/rTuHLlCj772c/i7//+7/Gxj32sqHvKs/x2Ct/cL3uQ9yH+k5hlspMVyjRT/Fv/l4T7ZbPyUhsZ1DmyDk0imUJsbR3d+3Lr9YnhQIfVzOE5IMuL8oeWsLy6htHZIJ452gGTIRvmm/YtYGNDwsdO9eLy0CTK9VpoSzSKop0AcO3GDLyBRbjtFtQ6rbBVmvhe1B6/8ynFZ97NuxErxNfW1vLCQfC6iA7cr/ctbq5KBY7J6L2JbQEKV5GXt1P8/8HBQRYSbG9vVyw4LL92oc9sNhtnQ8ViMej1egwMDODYsWPIZDKYmZnB6dOnodVq8YMf/ABLS0ss9kgIiHwRpj6JxWLw+7Mq5fv372dhRHlRabE9JK/Q2dmJhoaGnP4jQq/dbodarWbH9fz58ygtLcXFixeh1+u5jEtnZycikQjXkaMsrv7+fhBhmooIi7pVtJGk02mMjY3hwIEDcLlcjL5Q6LG2thaLi4u4desWO1wtLS1wu92Yn59HQ0MD9Ho9K6ITx2dwcBChUIhLoDgcDuj1ei4snclkYLPZoNfr+b10d3djdnYWL7/8MtRqNVpaWnDz5k00NjbCbDYzV4hI3KFQCCqVip1Pm83GOkokyOr1etHc3IwbN25ApVIxcd1ms6GtrQ2rq6toaWlhZJeuEw6HMT4+jmQyibKyMlRVVWF6ehpbW1tobm5GbW0tbDYbFhYW4PF4sLm5if3790Ov16Orq4u1tFKpFE6dOoXh4WGeu0ohM0KVdTodqqurFdeKgYEB1iRrbGzkceb1erG5ucmhR5LQoJA2PQ8VSyajcDzNGaUxu9O83Wku5/sOIaViUXNxLRGfP9+aVuw6kM92k63+rhVHliSJizJWV1djfn4eAFBXV4eJiYl7vfwDsU984hP4oz/6I/zu7/4uurq6cPnyZfzgBz9AXV0dgKx4n6hJ1dDQgB/84Ae4ePEiurq68P/9f/8f/uRP/qRoZ0rJioEX74cHfT9gzELXFrkvctKkkgZJIch1ZzhYjZ72ejS6bHDZq1i13Gws2xb2I0QrI0nwTPuQWM8tF2OrNCEjbeHJw+2IJ9OwVZpgqTAgvSGht70e4eVVVFca4bZVwW235NTwE62rtRYNLjscVjMS6ymcvzaak+1X6Ll2gx7SgkiLpfx0SJs8sJ1UXuw4knMngsGsIGFfXx8v4EqmdFLdadwVOll2dnYilUqhrq6Oi+wW+q34e+oH2tQTiQTXGCwvL0dHRwe8Xi/6+vqg1WoxMzPDXBq/34+TJ0+iqqoKHR0dsNlsWF5ezglfyK2trQ0HDx7EI488wuR86ksxdESHj0QigbGxMeYwEblYRNQos4vI9UNDQ1hZWcHt27fx+OOPo6OjAwcOHGBdqcrKSszOzkKn0+UkIahUKjQ0NCCZTOLgwYMwm81MenY4HIhEIohGo6isrORsufLyciwvL2Nubg7Ly8tcW++ZZ55BX18fnnnmGdYY1Gq1nAggSRK+//3v46WXXmJ+msFg4CwyUoKfmpqC3+/HwsICotEoOjo6UFJSgo2NDV5zKWyWSCTQ0tLCvKMXX3wRly5dgtfrhdVqxZ49e+B0OtHe3g6Hw4HV1VV0dXVxeG9gYAButxsvvPACxsbGsLGxAYvFAqvVyqiUwWBgHapMJgO1Wo2bN29yDbz19XW0traipKQEdXV1zJm1Wq1YWFiAz+fD5uYmqqursbKywoi91WrF2toaSktL8bWvfQ2JRGIbb4cQ4EAggK2tLYTDYSSTSSwuLsJiseTMWRrfQG5iBY0TvV6P9vZ2JoJ3d3dDp9OhqqqKi3ATak1oqzy7j65F9fjkparEuQfcccrpECXyFuWhQCXeo7xmqbiWiGtlvrVEaf0stO7I18EHQWO5Z4TqkUcewa/+6q/iIx/5CH72Z38WS0tL+K3f+i188YtfxMDAAG7cuHG/2vpP2sjDHRsbQ0tLS1EOzm486PeCUXsphZ7+fU/tFxAqJZMXQgaQI/AZjMRgqzTBM+2D2VAGnbaUOVmStAnPtA+dzW4EIzEMTnhhNpXDqC/D5uYmEuspGMv16N5Xi8GJOZiNZSgv0zFJXkShJGkTgxNzMOq1iCfT6Gx230GqDv+yrM13kBNaDAo5H7QQBAIB1mmSn96ItFs08gds05URT6jEDaETLunhEHdJSTum0OmQEDbilYjhISVEixwQyqySc+zynYqpH4iEq3QCFk/GkpTNiKysrORaeYS2BIPZtHZCk4irQ2ERvV7PukAkdxAOh9HV1cWbJYVmxGdpa2vD5cuX0dTUhEgkovgdsc2zs7Pc/0TypVIra2trXLqF2kH8tLm5OYyNjaGpqQkVFRW4ceMGotEoqqur0dbWhunpaayursLhcOCJJ57A6Ogobt++zZl1Fy9exOzsLNrb29lpISkOErE8dOgQ3v/+9yMUCuHatWtYXl5Ge3s7SktL2Tlzu905fTI/P49IJAKLxYK6ujp+16WlpThw4AAjfw0NDZiZmUF7eztGR0cxPDyM0dFRJq8/9thj7Fy88MILrPb+9NNPc19SmwKBAM6cOQOdTsdjMJlM4o033kBrayuqqqpw9epVtLa2oqurC0NDQwiHwzh48CC0Wi1SqRRu3LiBUCjEulDnzp3DzZs30dDQgJ6eHhw8eBAjIyOwWq3sII2MjGB1dRUbGxv42Mc+xugyjXnKNJQkietA2mw2Rs6U9NbocCVqTymhPUoIrTySoDRnqVA0JWoomRyVFtcf0bmSf7YbNKnQ38X+KBY0uJf99F1DqH7rt34Lmz8q2fF7v/d78Hq9eOSRR/CDH/zgPV165sdlu+Ez5eOQ3K09iJixaOTxEy9gpxpxd2uk/US8JVHuQCSqi2Rxa4UBS6u5fKvw8iosFeUIL69C2tyEtLkJXWkJuvfVoqu1FsZyPToa9mBwYg56XQmm5kKwVZoUyfAk32AyZB2w8PJqXnV3OlkRSbkQAgLcqf9mt9tzNJhEK0TOzHcSU5JWULre4OAg18ejDDnKghJNie8hyjh4vV5cunSJCe07cSO6u7thMpl4k5CHSFZXV5nvJIYaqT6hUrKDPAlCq9Wiu7ubQzyrq6s58hF0KBDFFKmUh91uZwdrYGAAFy5cYOeHTvvUf1TSxm63c501sUxLMBjMKRottpky/IjgThy5U6dOoa6uDh0dHfz8tJHX1taitLQUFRUVmJubg9lsxrFjx1BdXY1nn30WNpuN+WHpdBqXL19GRUUF9u7dy/UBV1dXUV1dzQrnlI1HyEdFRQXU6uwW0tnZie7ubpw6dYpLE3m9XtjtdtZzqq2tZeSktbUV0WgUXq8XmUwGpaWlnClXV1eHtrY2TExMYH5+Hj6fDxaLBWq1GgaDAQaDgXXLHA4HxsbGWCLCaDRibm4OHR0diMfjePbZZ/Hwww/jQx/6EMsaTE5OIpFI4K233kJ5eTk0Gg28Xi/KysowOTmJcDjMZHJy/ktKSljElLJaAaCiogIul4tLxfT29qK2tpazR0+dOsWoEZBbK5LG39bWFra2tuB2u7l/3G43rly5AovFwuOe5oXIkaS9QVTPl89HJb0qcdzJ9ySbzcbzTURYRfRaku4Uc06lUpAkiQ9bStxBObJFCG2h0FwhBJ9CpFTYvZg9dSdE6n7sj/eMUClZNBpFVVVVQRmCnzS7G4QKuL8o1Y8T8bprbo8CQkWFjAGgzlmdgxgB2xEqSdqELxSFtLmJ1bUUGl3VjCKRwyNJmwhEluG0VkKrLWHHKRCJwVimw8C4F30d9TAZ9IoI1fbnFZTTf4RQiSdGQniAwlwjAAW5Dfne6U7vmgRuKWxA11VqC6keHzhwAHq9ngnb1J5871Zsg81mK4hQKZ1A5X8Tr+dwOHD27FnodDrm1+Tj8+3EtQgGs7pP5OASckLPphRKpbZQWE+lUiGZTOL27dv42Mc+hnA4zIhRJpPB0tISn9jdbjdzfWgjIJVwQgELncqV2pJIJLC0tMQbGvU3kK29KEcWgSwS4ff7odVq0dTUBK/Xi1OnTiEcDsPn82FtbQ1+vx8nTpzAyMgIEokEUqkUTpw4we9Oo9Fsuz6V6VlZWWEng97HlStXMDg4yG2vrKzMeVeExly4cIEJ+Hv37sUjjzzCJVJGRkZQXV3Nkh2xWAw+nw+VlZVIp9MoLS1FWVlZDsJD/Uck89XVVbjdbly4cAFnzpxBbW0tXnnlFRiNRuh0OgQCAQBgHaWvfe1rqKqqws2bN/GZz3wGWq0Ws7OzGB0dxb59+3KqA8jHFx0oTCYTt110gMR3Su/T4/Ewv8zpdHIZN6fTiUgkgs7OTmg0Gi5Fo8RvlK83Sshyvrkhn0vi3AOwrfqAfE3IN5fF5JpC0Yt8Y13+990gVDtZoTWzWITqgThUP7XtJr4Qg8FQtHPxIEjGQHEikvfT7tqZ+5FDJTooAHZUUKfvUAka+v9kKo3ZwCKaXXY0uGw/CvvdRlutE8uJZJYPUWlELL6OZCqFcHQVao0aVcZylJVp0dteDwA7OlSiSd2f2jEsV/D3O0DfxRI2Revv70c8HkcikUBbW9uuFjb5Qq20mO5mrIltBaC4QCtdTwxZhsNhxbAHsHM5HYcjWzeNsgdDoRBnZjkcDkYInU4nPz+wXWSUQjGxWAxzc3OYn5+HwWDAI488gkgkgmQyiWg0CpfLxZpS5AyNj4+jsrKSHS2l96FUDgTIOsfnz59HY2Mjp+tTuRij0Yje3t6cEOrKygpncInhJovFglgshnQ6DUmSWEyTnLNwOAy9Xo+ZmRneDFtbW/meNBYoBDkwMIBoNIrHH3+c0ZGrV6/i0qVL2NraQmtrK0pLS7GxsYHFxUVsbW1BrVZDrVZjfn4e8XgcVqsVR44c4XI3N27cQDweh9frRXt7O2tCGQwGxGIxVFZWYm1tjYsd01igsVJZWcnvd2xsjOvwPfTQQwCyWZ5vvvkm3G436135/X7cvHkTU1NT+PjHP861aykMD9xBLskhP3/+PCoqKhhVTKVSGB0dRTweh8/ng8FgwP79+2EwGNDR0cF9RwdunU6X4ziR80DvSafTMemfxvxOh63drMGFiOZ0bXEuFkrCUAr97VRyppi23m+AoNCa+a6F/ABgfX0d165dw/e//30W9qR/fmrbbTdk5Hze993Ak0SKzAeR3i3kWczv7iV8SfwkInuTdIHLXsVlZZQI46RdRZ87rGasJtZh1Osw7QtB2txEeHkV66k03hq5iXgyieGbPiwux7lwMlRAtdmI0lINnEKdPm9gkZ06aqNSG4Cdy84oP3NxJ7B8f9vp1EYhsdbWVs6SUnovBK3T2BEXHdLOIu5Hvt8BhTXXxPkghkPFBVneDiC3SLM8lCf2I4UnxH4XxyP1F12/rq6ON0HR4SAO0PXr13kj9fv9XLiWODktLS1Mkvb5fBgdHeVNUKvVMhGXkjYWFxdRUVGBSCQCu91ecIxEo1GkUinMzc3h2rVrmJ6extDQEDtTFGY/depUTuFaCinOzMwglUrB6/XC4/FAkiQmVut0OnR0dEClUrHsQiaTwcjICKqqsvxEcjz7+/vh8/kwMzPDDsHGxgYWFhaYS6bRaDA/P4+XX36ZQ8S9vb04cOAAjhw5gr1796Kjo4N1oJaXlzE7O4t0Os3I1okTJ6DT6XgetLW1ob6+HqdOncITTzwBnU6HkydPskZWIpFAbW0tE9fn5uYwNzeHoaEhxGIxjI+PM2ettbUVZWVlOHDgAIAs6vLiiy/i1q1bLFxL83Z9fR379+9npXSfz4dbt25hYGAAlZWVcLvdkKSsNtg//MM/YHV1FdPT0znj74knnuAQYSwWw/T0NKuk+3w+XLp0CWtra5iZmeEwL4UXKXRHTjmQVWvX6XRcL5LWDFFJvZAUi5JJksRyC6JjIa4nSvuImEQhn9cAGKUuFhygthYqb3a/SeX3A+m6Z4Tqhz/8IT71qU8plmChhfqndvcIVT67W++8kBcuP7XvJv00HzpwN23OaePglzEXiMAbjEBXWoKe9npGheSFi3XaUiamp9OZbJmZzU1kJAkatRpuuwXpdAYXBsdhLCvF3ppqOCxmjM8F0OC04e2xWWhLNNCXaeGyVcFSYUBoaQVOayXf02Wvgj+0BF8oylIJYltKhGcn9IwQqt0gTO9GeJZOlRQiUrqXPHRx/vx5rmsnEqELhRJoYS0UfiSkSaPRKBJp5eOxWORW3o9K7SopKUEgEEA6nc4J9dH3iCclCiBSyn4gEEAikcD09DSXo2poaEBnZyeuXr2K6elpHD16FC0tLZAkCalUCrFYDJ2dnTh//jyn8h8/fnxb1pVcKoOeB7iTiUzkZZqzchSR+of6mJwfSnBYWFjAW2+9he7ubrS1tTGSVVlZCb1eD4cjq2v1jW98A2q1Gmtra6iursbm5ibXBgwG78g0kKCxXq/HxsYGhoeHuZYelRkSn4n6VqPJFj6mNtM4Iaddo9FwSSNyUgjNMZlMPF5aWlpw+fJlVFVVYWtrC16vF2+//TY+9alPYWRkBD09PaysPjMzg2g0yuV/SOx0aGgI73vf+7hkjSiSSbIIwWAQ58+fx+rqKhobG/HBD34Qc3NzjAImEgkcOHCAHQ9x/FGosLm5GfF4HAcPHmSEKhqNMudMPo4pLE0kfzp00PWBrFO4uLjIoeVCIfl884XCi3IHKd+6kO+a8u/kCxsWWt/uZh28l6hOvt++awjVv/k3/wbPPfccAoEANjc3c/75qTOlbPfDExa9890gS4XuLV5zNyhavhTYQtcH8iNbiumwatW2EBsVIO5sducUIgayaunewCICi8vQlpay9MGbwzehLy3B7dAyxm4FMLcQRWojg5v+EN5/pBOhpTgSyXUMjt9CaHkVdc5qdpp8oSirtJdoNDn3I5FR4mv5QlHmZxUiays9az5UJV9/0SJ99epVxVRn+Xfl1yBUROk0KLbd4/FAp9NhYGCAS6IUg5wpnSTFdohCneLvrFYrFhcXkUwm+cQMgNOx5anZSkZIVDqdZrSClKXJiQQAi8WSI04phvMcDgdrP2k0GkSjUX5vTqcTqVQKzc3NsNlsqK+vR0tLC4cI29vbeWOieUKOaGNjIyYmJuB0OrG8vJyjUQSAifxUq06jyaqwOxwOdmhOnjwJp9OJQCDA6tezs7N46aWXckqQyPuYZCQ0Gg327NmD27dvs+NgsVi49h2QRcV6enqwuLiI2tpaxONx7Nu3DysrKzyGNzY2sLy8zKVhLBYLXK6s0js5MED2AH716lUMDw8DuJPR1t3djb6+Puzdu5c5fYQQlZSUcP0+IIsOfec730E8HsfMzAw79N3d3ayVRc7dxMQEVlZW8MILL+Do0aMsGUFj0mKxALgjUjw5OYny8nKo1WrEYjGEQiHOVI/FYpidncW1a9cgSRKOHz+OxsZGnD59GkAWpenu7kZLSwvOnDmDhoYGOBwO5gvROF1eXkZVVRWWl5fhcrkYhWpoaGANK/k8JrK+2+1GRUUFPB4PO55yEU55vT55Akcho9Cl0+ksGE0oJnIiJ6KLiFmx6FKh78kROWorvcvdCE6T7WbfU7J7RqgqKiowODiIpqame7nMP3sr1sO9G3sQaMZuvfy7ORXka7ccocoheBfBWQLuIFS2ShOrmveP3kJ4KYax2QDcDguqzUbc8i/idmgJiWQKLbU10OtLcTu4hEpTOU491AajoQwOqxlzwQiuT91GjaUCGWkT0VicizET8T2V3uBMwpziyL2/mPe5xU0bQEGuVSExvLfffhsbGxs5GUU79Tmd6kVJAKX3kUwmceHCBRw5cgRvvfUWTp48yWrOhIbkI6SKlg+1UkKfSLwxGo1ia2uLiw8D2ZOtSqVCJBLhFPWduBZ06iY0ymKxsLaWyM+itlB76blIikCSJHi9XoTDYTidTrhcLkZ/CLGRc67ouoS4UQgrGAwyb0mOSlDohfpFdLaI/0aEYZ/Ph9nZWcTjcTgcDqTTaaTTaRgMBhw6dChnU5NLb4j8Kyo9JD47PUMwmFVxv3btGhwOB0ZHR7F//34EAgHU19cz8p5IJHDq1CmMj4+js7MTfr8fAwMDKC0tRUdHB1555RXMzMygt7cXhw8fxo0bNzixwGq14tVXX0VDQwOMRiPPAzEESwKc4XAY165dw+c+9zlMTU0hnU4zL4oyAXt7ezE8PIw/+7M/w7/+1/+aHcqDBw9uI9EPDg7inXfewTvvvAO1Wo0nn3wSPT098Pv9CAaD7JRPT09DrVazRANl9Slxjubm5nDjxg00NjbC6/WipaWFD55U95DGFc3rzc1NJBIJ5r4pzSElIrr8oCR3Zq5fv86cOnk5I/nclKNJu9lT5HIKxSDUuzGlNUROcKf1YzeC00rXvxuE6p4dql/6pV/C8ePH8cu//Ms7f/kn2B6kQ3UvEOf9+P3dWlH33UGH6s618jtd6XQGnmkfWlx2vPDaEJzWCqwm1+GyW1BlKMf/+e5lSJsSeg80IJFIw6DXokyrhbO6ElUV5YjF12GtMHAWYHh5FamNDbhtFkRW1ljfKrS0ylpVOarqModqpzCfXP1c/J3SQkGLdygU4oKk+e5RKBSX7zekHi5JEnNaALCTQhuI3KEqtEgXCinLs9boHmJmIG22lLoN5Ce/iw6TzWbD8PBwTrah2LZoNMqkbNr8CGGiUiskJWC1WpngHAqFsL6+jrKyMpZhsFgsuHDhAvObaP7b7XaWLLDZbExmFvui0GGDeEw2m42LulP4p6qqCouLi6zDtbW1hfLycnYOZmdnsbq6iqeeeoodOAotSpKE6urqnBCr2M9EuB4eHoZer8fLL78Mu92OsrIyOBwOTExMQK/Xw2QysWAn8c4sFgtWVlawtraGtbU1PPbYY0xmpqxGSZJw+/ZtzM/PY8+ePVhZWUFnZydrIYkHj69+9auIRqNQqVScZbiysoI9e/Ygk8ng6aefhkajwbVr1zAzM8O1IROJBJPoabzSeBsZGUEgEMDy8jKOHTuG5uZmOBwOXLt2jTlVGo2Gszlra2u5ALkY2nM4HOjv78fQ0BA2NjZgNBpx5MgR5riJvCPxAGE2m1FSUpKjJ6YUSifRTdGhokMD/VYcsyS5sry8zAcQep/Ea5I72ne7JxQaSzsR0YsxpTWk2OzFe7F3zaFKJBJ47rnnYLPZcPDgwW217X7lV37lXi7/z8YepEOVz2hQ7STEmA8ReU9YkQ4VcZhEHhVfYvQW4okkEusbaNlrx8RcEGZjOeoc2VDetZEZLK2s4dHuNoSWVxBeXsXBRjdc9ipcGBhHndOCtWQaDqs5RzxUkjaR2thALJ4tfUOfy526Qhwq0e6Gl5DvO6Ljlc95UbqW6HzQgk8I1cmTJ3O0bJROxLRBiGE5IhgDO0tEyO8v/418TItcK51Op+iIiiY6TuKpVs4xou+RMxIMBhkF1Ov1XBOOHCqLxYLvfe97OHToEKqqqtDd3c3FrI1GI5566imeg5IkYWhoiNcDi8WSIyoqPqeSsKhcikIU86TfUY09Ci/V1tbCYrHg8uXLaGxsZOK8iLotLCxAp9Ph9OnTObpbYrs9Hg+sVisGBwcxPj6Oqqoq6PV6NDQ0IBQKYWVlBY8++ij0ej1zxpaWsskbyWQSN2/eREtLC2fteb1e3Lx5E9XV1RgbG0NlZSX27t2L1157DQ6HA93d3SgrK+Pnp/dUXl6Ol156CR0dHdjY2EBFRQX8fj8XOCYtrHQ6jW984xvo6elBeXk5IpEIZ/rJOUbkXKyvr2NsbAwdHR1oaGjAwMAA+vv7odFomORPxH6dTge9Xs9lcci8Xi9GR0ehVqtx8uRJrK6ubnuH+Uo15UNeaPyurq7mlEvKh05pNBrMzs5icHCQ0VO6D6354gGCnqMYjmKhQ6G8HqB4aCmGa1vIflyH/3fNofrrv/5rfPazn4Ver4fVas3RnlKpVJiZmbmXy/+zsXfDocqHCOTT/NgJEbmfbblrU3ColNAoQqE6m93Qaktyvk/hP4vJAK22ZFttP39oCdLmJkJLq/CHlpDObMCoL4PVbEQilYYvGMXhA40wGfQ5zppcyiEfQjZnf2LHGln30+QLF4Wg8t1fjlqJZN1CmjL5QgO0qAaDQSwtLaGpqQlGo3FHtXP6rbhhEClZnvotKjQT0dtqtRYMPeYL7ZEzIt5HLlEAgFFAQqaIUE6cI6/Xi42NDZw5cwYmkymHbN/Q0MDtINSgpKQE1dXVWFxczBuG9Hg80Gq1jLpIkoRr165x7UDKsNRqtbBYLFhcXMTc3BwikQja29sRjUaRyWRQU1MDnU6HVCqFra0tVkynz4PBICOOpH+k0WgY6Uin0/i7v/s7aDQaGI1GbG5uMnJVXV0NAFhYWEBpaSmefPLJnJCwOC7ETd9iseDb3/42Ojo68JWvfIUz4BwOB9bX19lxDQQCrNothjsdDgejhiT34Pf7odfrsWfPHjz99NMAkDMXAGB6ehqvv/46Tpw4gebm5m1JABSCo4OAxWLB3//933NtycbGRm6/qPU1MjLCKBM5LeRMyInpSuhfoUODqB8mR6gKheeIKC+OLXHukRMpvqtiQn6FEFSaY/KQOYVPKyoqFAVs74eJawqw8wGuWHtXldJ/93d/F7FYDLdu3cLs7Cz/81Nn6v7aTuRzOaGOCH35FMvp7y6X677rUolt2andu762glK5qHouN622BC57FdQaFTQaNf8/XcthNSMSW4O5vAzOajMM+jLoy0oxfNOHGV8Ie+0WzPgXc1TWATBPCkCOrMODsGL7UCTkFrtgie9KTtYt9F1AmTRKxNbu7m48/vjjzN2Qk0TJ8aIFmH47MzODkpISnD9/Pm/qNwAmTSvJJSj1y8DAADsNFO7y+XxMeBfvY7FYmPtDyukNDQ04fPgw10Hr6upCd3c36urqWFOoq6uLuUyU+i7qaInPT89G16HUe6pD6PV6YTQaGXl58cUX4ff7MTk5Ca/XyxIAbreb5zg5d5WVlSywTBsKhbmmp6cxODiI119/HUtLS3C5XOjq6oJOp0M0GoVOp+PQJJH5SYzz7bffRjqd5nCO1WrF2NgY3nzzTfT398Pv9+Py5ctco47es9/vh8vlYl0mn8+HixcvwuFw4PLly+jt7UVZWRnsdjs6OjqwZ88eOBzZDMOVlRUejx0dHUgkEjh48CBcLheWlpaYFO9yufDJT34SLpcLx48fZ/KzOD7m5ubw1a9+Fbdv38brr7+ew5c7f/48JicnMTo6yusmkcqbmppQUlKSM0ZI/b26uhoXLlxgNXxyoCKRCDsp4u/oM/qcxrKIMDocDtYko2xCSkwQuXk0jogTJjciypNqPz2rSByn8UwyCDQGFxYWkEwmMTc3t23dyUcWp+vJEyxo3dja2mLn5G6J34VMXJ92QzC/X3vUPTtU6XQan/jEJ7gEwU/twdlOA0Q+yGniytOxyQpl/OWzYgee2JZ7zZzIvf8m0ukMFpfj7OBI0iaUMu9y2vOjjEDx76QnNTSZrdMXX0+jr6MRZ451wqTXY1+tAwea3DAaylDntODc1RuY9YUhak2JNfxia+uK91fSaNmt5csGlL+LYHC7XhPd3+Fw5Hyffi8vztvT07MNKaHfyBdvkXgqtkMce+Rk0CK60xhqbW3F/Pw86urqtmUSipuRSqXiUzZ9LvYz3SedTqO/v585JkomnwuUev/CCy/AaDTmbLxDQ0NIJpM5bautrcXp06fR3NzMZGxRy0futJJ2lriBRiIRpFIpeDweGI1GLC4uYmVlhUnNfr+fJRZMJhMee+yxnEK3tPm3tLSgrKwMqVQKk5OT/EyBQAA3btyAXq/H+vo6o2ik02Q0Glnxfd++fVwDb2ZmBgsLC9Dr9Th69Ci0Wi20Wi0qKysxPj6OGzduYHFxkTfikydPcqYYIZ6Dg4M5ma2SJKGtrQ2ZTAaHDh1CeXk52tvbQQETvV7PmXBUpkaSJC7bQ5mWJJvQ3t6O7u5uWCwWPProozAajTwfxBA1/WZzcxOHDx+G1+vF9PQ0rl27hpKSErz99tus60ROt8PhQFlZGdra2pjXJL7LWCzGPDmShtDpssWgSeuL5ohYOJ5+73K5WBNNnr06ODgInU6HmZkZfg75OCe+XjAYVMzSlTs4xGujElD0jOJ6HQgEOMNR/F6++aJkYjupnywWCzu5cmfsfpj4HPmcvnzr5v3Yo+455Pf5z38eNpsNv/mbv3lPDfnnboUgw524TvLv3W84czf2buiC5Hx/8Ms/+iwrnBmIxJDe2IBGrUadsxouexXmApFtulB3rqVMVpekTVy7MYNAZBmdTXuh12v5O0oFl89euYGVRAJ6rRa9+xv4c39oCYn1FPOoFLMQf0RKv5cwqBK3SeldFLqH/PvFvEv6jkh8JnRCDOUoXVcMNYsEUuI8lZSUsBo0bV4iB6OkpARqtZqJ9nKj8I+YEaVEuo9Go1hbW8Pk5CQOHDiAvr4+RZ6I+P/Evenq6spR3CY9IAqJAtimXi7X8hG5TlQcVyTAA9nsQ+rDrq4uDA4OwuPxcBiM+pJ0n5RCuH6/H8vLy7h69SoqKiogSRJKS0u5CPQbb7wBl8uFlZUVDldubm5CrVajsrIS8XgcTU1NnFVHG87w8DBWV1extrYGlUrFHCh69pGRERgMBoTDYTz55JO8afb392N9fR2RSASbm5u8sfp8Pu4vclAp9OTz+VBXV8ckehJLra+vZ3SL5gCQXQONRiO+853v4OGHH4ZerwcA/h6F1CjsXVNTww7QwMAAdDod4vE4qqqqMDMzg5qaGkiShMbGRiwuLnLYW0R0qEyQqGIObOebfe1rX4PD4UBlZSXUanUOZ47eJyVVBIPZgteEWNH/q1QqTE5O4tSpU1wYuxAXlsLfhRBbSmygJBbxGfKFZ+WyL7tdx5TWL3n7d3u9u11Ld7tuAsDS0hJn5D7QkJ8kSfgf/+N/4NFHH8W//bf/Fv/+3//7nH9+ajsbLbBUqyqflywO7PuJ+uzGCsHL+UzkUZAWUCGES+nZgpEYfKEo0ukN1pWSo0FKauWiqrn492AkhszmJjRqNfOqiGhOIcXQ0p3wYXu9E3U11ehs3ptzX4fVjPIyHZPS6fpKbSFuhpI+ivzUpEQ0pVAC9YvSu8h3cqRQoKhtJT/B5QtLERowOzuLGzdusGOVD7VSCjVTu6hQ69LSEv+3iBpRuLCurg5qtRrJZHJb8WZqZ0dHR44aOPWxPHzZ2dmZgzAAUNxAaKENBoPQ6/X45Cc/iXQ6jY6ODt6wHI6sHhCJQQYCgRzEgp6BwjLkQK6urmJsbGxb/1DIjlA26iuVSoWmpiYYDAa4XC4cOHAAtbW1OX3v8/l4LtE/s7OzWF9fRygUgl6vZz2h8fFxOJ1OrK2twe12Y//+/djc3MTs7CyCwSCGhoZQV1cHo9HIThohExaLBfF4HJIkMf+F2kvhRpPJBKfTyfpehMYsLS3BbrdjaWkJPp8PXq8XU1NTsFgs0Gg0XK4nFAqxw3nw4EHuy/HxcaRSKdy8eRM3btxgkU+R9/SlL30J0WgUL730EiMrPp+Px3sgEIDP58PU1BTGxsZQXV2NWCwGt9sNnU6HRx55BA6HAx/60IfQ1NSEffv2sTL+yMgI/H5/TiHekZERlmAgRw0Alz8iNK62thapVAo2m42dqc7OTpSUlKCyshILCwvwer3o7+9nnhfN3aqqKkSjUUYcg8Egzp49m6MtJp/zLldWgV0eXldaS8RakhRepvdNqFZDQwMaGhpy0C1JknIKPBdrSsg5tUucd7u53t3uf0rI1U6I28LCQlHXvmeE6tSpU/kvrlLh1VdfvZfL/7OxnRAquRjaTl73jwutupdMDfnJPR8qUgihArbX7yMnSJKyquhipp+osu6wmvnvDqsZc4FIDnqVkbJFbsNLq5B+VNOvvOxHHAchg1AJwZLfn35TotFA89C/4PeUTx9Fnr1F2kAmkykH3RERzGJkFkR+0k6ZnPkI5oRQjYyMwGQyschlMUhXPhRIkiSsrq5iYGAAzz33HCML4m/kGW6F2pnvfmSi6ricJCzvR+pnIg0r6dxQ+MhgMGB2dhZtbW2KMgxK71MekgRy0Q1yvEUiNTkoRDhXqVRcCJjqAqZSKWxubuLGjRuorq6Gy+Vih4/KslBYLRwOY3h4GMFgVvTRZDLhwIEDOHPmDMLhMOLxOF544QUOp8XjcZhMJqyurmLfvn2MtGxubmJychINDQ14/fXXYTQaYTQacfr0aQSDQQ5HUeiLyOPd3d3o6enB0NAQMpkMNjY2EIlEWMCT3geF+Ww2GyoqKjA0NMTjxe/3M0oZDofxvve9j7MLiQyt0Wh485+cnEQ6nUZ7ezt0Oh0WFhZw6NAhaLXaHAVvcn6j0SgefvhhJJNJ2O12ANtD3OQoOJ1OhMNhRpZKSkqwuLiIQ4cOMSpJY5I4afTMAFgeguaI3+9nHTKXywW1Wo14PM4VCgpJhBQqbCxHZAjVEnWxCkVHikXB8v1enoByt0lRhRCvB2HFIlQ/LY78LtlOWQJ3K6QG3MkaejeyyIjcKxeWK/R9OY8B2MUkkGX5FdKbUvqbJG1iYOwW60YRGiXW5AMAt90CjUaNWX8YIzN+dDS40OC2bcvgA7IE9GQqDY1ahTpnNsOJnSeNGrZKUw45PdPx7LbNOh9s73A4MDg4iFgshlQqhaeffppPY/kEUGnjV8oimp2dxeTkJNrb21FbW1uw35WcdHmGkZJjVyh0Rm1XymQ6e/YsizqKIoaFMojE+8vbVmhsidlOFNJSug5teCTMSdlzcukCKgNSWlqKtrY2djBIcLSjo4P1leR9Qv0oSVnZgPn5eSQSCTzyyCOcDah0WJqdncX/+T//B+l0Gs3NzcxbPXjwIDo6OvDCCy/g8OHDKC0t5RM48XXo+QglpAw1SZKwsbGB6elpDiuRRtbt27exurqK/fv346mnntomhhkOhzEzM8MinzqdDtevX0dFRQWamppYRZ7CWoFAAGtra5idncXjjz+OSCTCGXtbW1vw+/3Y2tpCJpOBx+OB2+1GTU0NI36vvfYah8s++clP8rsKh8MsjKoUzqK+npmZwdjYGMrKynDs2DFEIpEc0VYK1Z0/fx4GgwFANqTZ19eXoyPW3d2NYDDIoWly4ui+6+vr6OnpgVarVVyTKYN0cXGRs0b7+vq2hW+vXr3Kz9bd3c2SFaQ9Jg+XK81jpfmpNJd2cmZ24/wUG44r1K5inKt72TN3aw80y8/j8WBzc3sR2Hw2MjKCTCZzN7f6ibF8BLoftynBxbs5SYhhLgCKGSA7t2EzJ2QnL0xMlqNOLnyWdYRULJVAPKl0OgMVVHBaK+GyV9357dYWNCXqbZmAGo0awUgsK+RZWsJhRyK8u+xVcFjN8Ez7kNrY4PaImTz5yrWIyGRnZyeMRiPa29sBFM6oEbOFqHQMLTRAdiHIZDJYWFjIgduVTCmkLLY3X5KDHFUV37lY3kWE6DUaDU6fPg2z2ZwTsgOyGXbj4+PbMg3lbRJDbcS/8Xq9GBwc3FaOgq4rZrXS75XeiSRl6/UR0ZtCPGLo1Gaz4cCBAyzuqNPpEAgEMDs7C4/Hk7eP6DmAbNFYyo7+9re/jWvXruUls0ciES6L4nA40NHRAbVajY2NDbzwwgvQaDSYmprKCbMSYT0UCnEZG+IAVVVVQaPRIBaLobW1FRqNhvWrOjo6UFtbC6vVisrKSiYqy3k1ooL4wYMHcfr0adTX16Ojo4P7ifrbbrdDq9Vi3759AMAh24MHD8LpdKK7uxuHDh1CIpHIQYQItaqrq8Pk5CQcjqzqvEaTLdfS09PD72Zubg6vvvoqJw3QegVkeWqrq6uczUhEfpGS4PF40NjYiLKyMuj1evT19WFlZQVWqxVLS0vQ6/U4e/YsZ0y63W7Y7XZ0dnaitrYWe/bs4VCiHIWn9qXTaR4/+/bt44OOaA5HVoOrs7MTdrt9W3g9GAwiFovh3LlzfE0xyiGiaEocKArbFSofJW9PsRnhxYbjlKIxO/1W3I/u956pRHnYrd0VQkUTvVgeDUG1RGT8SbR/qkrpd0Pgk19bDkHvqr39X8oR7czqTd1GZ/NeNLiLG3+UiWc2lKFcr+MCx97AIiRpE/ofcaA0GjWSyTQuDIzjVE8b9HrtNsHQnRAyyviLJ9N8Tan7U7siZCr1WaH+LYQG0bXsdnuOIytqJCmdcOUn/0L3VQoziiTbYpE5+lwkmxMaQHwPsQ/lRZX9/julVUjlXB42k/ezUqhd3v9iyHVoaAipVAputztnQ6Y+femll7CxsYGenp4c7al8fQcAs7OzeO2111BWVoZ4PI62trZtKBoR5c+dO8eIxuzsLP7xH/8RTU1NeOqpp/DGG29wWSCxnwgRicViaG5uxszMDBobGzEzM4NkMolMJsMhPzGc4/dnldVXVlZQXV2NVCqFRCKBtrY23sjm5uZw6dIl7NmzBxaLhZFG0hObnp5m5+rSpUuoqKhg/g4VO6axUl5ezqhqLBZDdXU1v0vSvaK6hzRu6V0ZjUbE43FsbGzA6/XCYDDgzJkzOYijSqVCIpHA7du3ceLECajV6m3hbVLopywxctQoLLawsIDy8nKYzWZ0d3dvGyfivKF9UgzRi5mmVD9SDJ3JQ1k0p8fHx1FeXs79r1KpMDY2hvLycs66JJI7jeF8IX7xOcUMWXGOKM2XYu1e9qOdfvsgUalC1y52/y7J+5cCtrW1hd/+7d/Oqf1UyHYqyPiTZPPz8ygrK7tnCX4gd/Ddr5R8pZOSOMmAXJL5TtCxRqPhTVGcqPnup2QOqzmH4G2rMm1zZgqZRqNG977aHMK4w2qGJG0iEInBbCxDMBKDy16F6Ooa2uodiK6uwaXXwlZpYsFQupZciZ378UfoVWwtN+OPeBbkXIj9lk6n+eQvlpFIJpPY3Nzc8RAiJ2HLof5wOMwcG1qsbTYbzp07h7W1NWxubrKCshgqJA0hOsEWuq/4d3pWm83GtfYymcyurtPR0YELFy7g8OHD/HePx8MIE/WhWPDX5XLxST8YDKKuro6zCena8vvTdeja9BmhP+fPn0d7ezufWKkt0WhUkQNIcgeJRIL7m36XL/Tn9/uh1WrxyU9+Eq+88goXqk6n0xxmJMcsGo3i4MGD0Ol00Gq1mJqaQiaTwfLyMmKxGA4cOACPx4P5+XlsbW1xtpw4V6koczwex+nTpzE3N4exsTGcOnUKGo2G1eLF8aRWq2Gz2bC8vIzDhw9zKJMc2BMnTrCTQ+ZwOHD9+nVEIhF86UtfQnt7O4/zxx9/PEcHjHhSVOOwtLQUXV1dcLlcjDYCYEV26kdKcCGV+fb2ds5Graqqyul/ScqWRgqHw2hqamLElRBHEdXR6XQ5Y5acNsqcJBQ5GMxmGE5NTeH06dPcH8TdImeLxh8dcAhxo3WUrk9Fs6lPQqEQf3by5Elcvnw5p1oBZR9Sf4vOn1wzSzTxOYlQT31B9yZOXrFrtHxeFfMbJedJfA9Khy9CPcXnuldAgUxpr9ut3VXI7+TJk5iYmMDg4GBR/xw9ejSHdPqTbMVk8wHFwY/3kukg2r1Ap+KGl68tcmh3t/fTaNQg0rhGc0cuoZDJs+zEawQjMWg0atQ6rehtr0d5mY75UaJelSRtwjPtg9lYtk0wVCmLz2E1o1y/PeNPzIKj90qnoUK6SMUsEGJfKoXeRE0buqfH44HJZMLa2hqjzGIYAACHM+gdiRuYJEl5sz2pPRqNhjO55O96J9ieMpuGh4eRTqehUqlgtVpzFtJ8i6sYluzu7i5K74YcNeBOWHJkZATr6+u4ceMGj23qF4fDweFVMdTS1tYGv9+P1tZWpFIpDA4OMjpEG584Z4mHQxIJzc3NSKVSXJuOuE9K71qSJLS0tGDPnj04efIkgCzfZ3h4GNPT04hGo3wfch62trbgcDhgMplYikKv1zPfi8jrFy5cwPLyMs6fP8+OJslEyAs4U/vISaC+kCSJs/eqqqrg8/mg0WhgNpuxvLwMm82GQCAAu90Ot9sNlUrFGXzkrJLjUlJSApVKBZPJxCrhREi/fPkyZw0SWrO1tQWfz4fz58/D7/dzeZza2lqeJ/SPmDUrDw/Sf9OhMB6PM9mf0Ml4PI6WlpZt8zgYDDKiIV5HifLg8XgQj8eZ0+Z0OplbSE5dLBZjrh5t/ABydMjE8H+h0JxIFZDP83xjTXyv+fal3YbM8u1fhT6XZwoW+v5uTSkEuVv7KSn9XTKCDMfGxtDY2LiN6CvfPIuBNu+XZ17IdmoHtSFfRtY9t/NHpPRCoTbFdguhOkK40hsZhJeyPKpap5UdJqVyNUA2Q3DGH8JqMoWnDx/I+U6h2oHyv+PQJ3KyiJQyynYiZhbqw0LhN5G0Li+ICuRqWlFmGZ2KxevJMzTpOUSNqWLbu1MYGchmQyaTSWg0Gg5nKGUf7pTpBxQOY4ghFjrli6FSq9XKC7gYgiFelZgBSCVQ1tbWAGSpDqLWVkNDw7a2UYIHoSeU7EE8oXzzSewf+v61a9e4zl0oFMIHPvABLq2i1CfycUDtoZp7ZWVlKC8vx549e3JCcpQAAyCnhI68L+LxOEpKSrCysoLjx49jYmKC0UvieqVSKQ41iqE2GrfE3QKymVYVFRVoaGiA3W5Hf38/bt++jenpaTz77LPsWM7OzuKNN95Ab28v9wWFvHcaD/KwnxgGloft5Z+J15OkrL4WFeEWx1YwmFveid41Ec7lcwoAI3Ekx6GUhKKEguZbb/M9z057EYCceSf+hiQkik2O2mndutfP76e9a6Vnfmq7sz179uSQevN518WgOPfDo97JdmoHtUEk7srtfpwglAjnBdstIE3BSAze4CIuD04gEFlGILKMYCQGz7QP8UQSnmmfIuIEALF4EpXG7SVt5EiWElpFfxf7kP6bToj5VOzlFgzm17DK17/iSVR+T/lJ2eG4U6JDrqtEfxdPs+IzKbVNzkkST65KY0p8BkIE6urqcsqqiN9XuoYc/fP7/VygmHhdSv0UCoWQSCTg8Xh4UdZqtTh8+DD0ej0ymQzXzKP7EqpDqt0WiwVWqxXJZBIVFRXIZDJchoRQPPkGptFo0NXVBb1ezyEhMVRLiJAcHST0o6SkhMnNAKBWq7Fv3z4sLi7Cbrfj5s2bivel93X+/HlG3qhPKFRrMBjg8/lQUVHBz5xOp+Hz+bCxsYFAIACbzQatVsthSOoTm83GJWJ6enpw5swZmM1m9PX1obe3F7FYDMePH4ff78fevXvh9/v5d6lUCufPn2fk7saNG9jczKK8ra2tKC0tRUdHB4/HsrIylJSU4K233sK1a9cwNzeHaDSKw4cPs8NJIWwaA/n4eP39/czZSiaTrCdF/SOiI+TUirpYYriKwn8ejwc+ny8Hwaf+JLK/RqPhEkUkFSF/XyR/QWHTxcVFLmosjmsRaS603gaDd9TSac6I96S5RPcgxE4+7+5lbc+3fxX6XHS2d/o+2f0gmxdrDxShunDhAr71rW/h+eefR1dXF/76r/8azz///IO63Xva8nm474Z3LbcHcc+7QVCKaotCceTdty0rnZBIpbN6VJYsymWrNGFkdh6dzW6El1eRSm9ABRUiK2vobHaDpBWA7dpXou2EVpFSerGWD8FRIqornTTv1XaD8BRqW6Hnkd+r2PTtQqdUagOFHCUpK0tASICYHi8iEqurq7h27Rr6+vpQXl7OThBtiiqVClVVVTkFXemZ5EgVcXgo3En8IJvNxuiD2Adi34ibhYjYANj2HKLjSGFNIpS3tbXh8uXLOHXqFMLhcI6SO/XT5uYmP5PdbmfEg/6+sbEBtVoNl8vFKftra2sIBoO4ffs2HnroIRgMBthstm1q38StVXrnhABNTU0xMd5kMkGSshpVKpUK9fX1mJubg9lshiRJ/HzE9xER0vn5ebz55pswmUyoqakBkOX47t27F11dXdyfIkdoeXkZLS0tiMfjjMZSu8rLy2Gz2TA8PIyKigo0NjaitrYWyWQS58+fR1NTEwubZjKZbcTuubm5HLRJHjoUHRZSki8rK2OeY765LyZPAMjpC0KHiHdlNpuxsrLCDlC+ZBBRo06uLSW+p5aWlrzJMXezVtzL3nM3pPT7QWR/TyBUf/qnf4r/+l//K772ta/h/PnzeOeddx7k7f5J2ruBMsntfsWcRSv0HIX+9iDasv3+avS016Nlbw36Ohqh0ajhC0URXl5F7/561qYq0WgwMutHLL4Gz7SPeVa1Tis7UzuhUTtZvtPSTrwiQm3knKB8vIKd7q8kKyDeSwlBLYSEFeIrFUI56ZpiOORueIOE2iwtLTHXg1AM2liUxiHxYEhriJywoaEhXL9+HX6/HxqNJqcWIXAnfZ0Qqo6OjpyQCGXaXb9+nTc/uSq9mEIvto84M6lUiknClLVI/U2oyrVr11gPiRBGo9GIM2fOMG9V5FN5PB5GbohL5XJl6yJSezo7O9HT04Pu7m44nU5OkohGo/B6vSgpKcHVq1cxPz8PlUoFILvBJ5NJ5jMR/0vkDabTaSSTSbz22msoKSnB0tISWltbOSw6Pz+PdDoNr9cLs9kMt9uNlpYW9PT0wGazYXFxEevr65ibm+PQYk9PDx577DE8/vjjcDqdsFqt2Nzc5I07k8kwIgsAU1NTKCsrw7Vr16DX63H+/HkkEgnYbDbWk/J6vUin04jFYlhfX8fVq1cxNDSE9fV1fPe738Urr7wCv9/P4z0QCDCiRk44ADQ2NrJYJ31GY0+jycpBLC0tcV0/cVzJqx+QcjklXpBcg+hoBQIBpNNpLs5Nel4ij1JEkAmlpvEmjm+H406NQpEHJjdxTuVbN3aav7tBkIqJ3IimxLV8kIjVA3WorFYrzGYz/vt//+944403cOXKlQd5u59akbbbQfnjaMudQV+83lkh2ylkSKT1ZpcdqbTEWX1yo7I0onAnaV2RWvqdZyDna+cinCQWOTAwAEAZbZI7BJKULUa7uLhYlISJGA7Il0SgFJ6jMIRYRHl7/92dQy0PHe6kQaNERKfriBsciVNSij5lQMkXUtEZJO0jILuxkco1CSuKDmMwmM3QHB0dZYSKTr/j4+Osck0OhzxcQSEX2mhFR1IMeTqdToRCITQ3N8NoNPI9HA4H9Ho96uvrt21m8v4i4rfD4UBnZyfKy8vZ6SGUIhQK4Z133sG3v/1tANnxNzY2xlpF1P7Dhw+joqIClZWVHIaiDV6v16OlpQUjIyNcxiQYDGJubg79/f0YGBhgsj/JB3g8HqTTaajVas4mrK6uzhk3QDbakUwm8c4778Dn82FkZAQOh4P1tFZXV1FTUwO9Xs/OBY2VZDKJ119/HUNDQ6ivr8f6+jr6+vowPT2NRCKB+fl5FtgkTa1IJMIO1K1btwBk0aCmpiZUVFTkzDmn08kOKZHK5aFoGn+iuVwuPPTQQ4wyAeDEAFKWl49/el+1tbVYXl7OCVVTySaxQDOFywHkdWQA5IxvGp9UUmi3FTFofCqtFTuF+3ey3QIQSgfOB3mIf6AO1c/+7M/yf//O7/wO/sN/+A8P8nY/tSLt3UTFdkJkAGXngQe94Ljs/t7KvCiXvUoxU9BhNcNk1OPpo1kC+m7QKNHRot9R4WSRW1TImRWRhGKMNuX5+XnFhVKOQhGKQ8RzpXbIFxtaiMQ0ctGhK3TSK/TuiRME3Hn/hXhRxHEhYrycmyWiO263m2vYiU5gIYRNo7mTJk4Om1arRW9vL7Ra7bZwTSAQwMbGBpP9KUQoSRI2NzcRiURgs9nQ29uLzs5O+P1+XLlyhflcIicNuLPZyTdNIuSL4UZqc09PD44cOYLe3l4mCIvZWIODg/D5fNja2mLUgJ4jFAoxv8fv92NzcxOrq6tM4r569SoGBwfx+uuvY//+/dBqtejq6kJzczN+7ud+DocOHYLD4eBwV21tLXp6enJETilDMBwOs/RBR0cH3G432traYDQaEQ6HMTU1hXQ6DavVitXVVc7Ko1CW3+9HY2MjysvLGXkjaQeSLSCEkOQWyNkJBoN4+eWX8Xd/93fwer24desW66NVVFRgYGAAo6OjmJubw40bN7C8vAyz2czj5qGHHkJ5eTl6enrQ09OD3t5euN1uVFVVcdkcrVaL0tJSSJIErVaLzs5OjI2Ncd09CiHT2JmdncW1a9cgSZIiYipHi8S5KXIVSQCYdNhEXiS9ZyLEA9lScDQ25HNdji7JOYW7td3wnXY+VBeHJCl9Xwnxe5CAwgNxqL73ve+hu7sbzz//PJ599lmcO3cOQK6D9VN7d+zdJOQp3VuJIFkMcZIHfRFhtHymhCYBymiVUhZhMBJDYj2F/rFbmAtEIEmbeZEuW6UJ0ZUELCYDBifmkFjPkn1j8XUuVkrQvtIiRVwV8bS6k9Gmb7Vac587qCxlIRLP85HhlRabfAsQ3Yc2PSUHLh/sT6rm/f39fLJXWmxFAnUymeTaZ/muTxsL1WcjZXDiaYmK8uKcoI0sk8lwAVylUAnd12KxsOyERqPJUV1Xq9Wc3eVyuTA5OYmbN2/ipZdeykGoaByIKCDxPcR3ptPpYLVaFedxofAs8cncbjeHskiHrKSkBG1tbXxfg8HABPPu7m4sLS1heXkZkiRheHiYCd3Eyent7cXhw4eZNzQ7O8vXJmHLxsZGuFwudHV18bjWarVobW1FLBZj9LC0tBQ//OEPkclk0NzczM4j9SkAmEwmJrfv37+fEZ+VlRW0tLQwQkhyGSUlJRgeHsbq6ipisRhvrHq9HiMjIwiHw1haWuIQokqlwoEDB9Dd3Y3e3l709vbizJkzaG5uxqFDhwBkM08pS3F5eZnDjg5HVtWcVNtJ0X5mZoY3crHEjcfjYdV6pTFMWmTycepwZFX7k8kk65eRw1/ICKWh4s7ysSXeh/5ZWlpSdOpE22lvobkrzvHd2G6RJKXvi1p1ZA8SULivpPQ/+qM/wkMPPYRPf/rT+OY3v4nm5mZcv34d/+2//TecOXMGn/3sZ+/Xrf7J2YNUSi9kd0vIux/EdTEVXzxd5/tc0e6ClE7OkVhTb6cMQSViOSmfryXWsRRP4KF9dah1Wgv+PrqSgLFMi5n5RZzu2w+NRo1BzSF+9/L0/3s1pfe0W6L3vdybOCOUHSUvIpyPmEq/S6fT0Gg0eYtlk/NtNBq3EW3NZjOTr4n/IpJiiaQuV02nhVepVuDs7CwLXVIhX9JLikQisNvtHGoS6/UBd8KApLlE6FMikcBLL70Em80Gg8GAkpIStLS0YGVlJYeQTmgXGS36FDLb3NzkEKRYvFne37RB0n9TpqDP58u5FxHpS0pKcPHiRahUKhgMBpSVleHIkSN47bXX2FkPBAL8jsS+o1D15OQkWltbWRSTHAg58XlpaQmhUAharRbpdBodHR34m7/5GywuLqKhoQGPPfZYjgq6HIFMp9O4cOECWltbsbW1xcR9KqdDJPP+/n4kk0kOb1ImYWVlJZaXl1FTU4P29nb87d/+LVpaWmCz2fD0009vmye0Vk1MTMBkMrHzIvaBfHPOV4ibELd0Oo1oNJqjpi6GpYkgbrVaWSiUOGCka0b8MUK9Cq3VO60HSrIIYrUFGtuFfkdolHwdkst7KM3xfLVoC1VzULJCa+G9roE/FlJ6SUkJvvKVr+D27dv4xCc+gU9+8pP43ve+h+eeew5//Md/jJ9KXr37drfw5m5OB/lOKiIiIod45Z+LYaDdnGSUwnKETIWXVyGKeRYypVAeKayXlWlhNRsK/p4Qqo6GPYivp9FSa+f7Ez8hX5gt/7MVF1IjZCidTmNubo5DSsVKMtyLUVZRoTCivM20wDmdzpzwXD6CfHd3N0wmE3p6elBbW8vIxeXLl1FeXo6RkREAytIL1O9iGCXfnNBoNIhGo1hfX8fw8HDO38bGxjA3N4d33nkHFy5cYNFF8bcuV1atvbGxEW63m+uXlpeX44Mf/CBaWlpQU1OTg16Iyti0QdMmTGgW8YGWl5dzkEcgl+hObaD0+lAoxHwmScoWB47H48y7q6ys5Fp7zz33HCorK1ng87vf/S6cTidqampgs9mQTCaxb98+5iXZbLYcUn1TUxOjHfSOqSA1hWljsRiqqqrQ0tKCGzducDbm5z73OVitVnR1dcFoNObwh0KhEHw+H2ZnZ3H27FkMDQ2hvLycQ4UVFRXQaDQYGRnJEcdsa2uDwWDAvn37oFarkUgk2DnWaDSYn5/H+Pg4nnnmGbS0tOD06dMAkBe51Ov1uHnzJra2tlBdXY1EIoFMJsNcMXGu0ryj/U50ODKZDPR6PdcfBMDvjN4poVBKa6/L5YJer0dVVRX/Pd9aLadVFINK03+LjmK+6+/EfxS5gErioTuZErpUyJSQp3yhxwdlD0Q24fHHH8cXv/hFbGxsYHh4GB6PB3/2Z38Gp9MJo9GIt99++37f8j1vPy6E6m5tN579/UhLlQtH8nV2QKjyIUsUvgOwK0FQ0USkSyysvFM7iKDO3/+RbEK+k2K+k9VO9fyozyibik792/qQn+dOjb6DBw8yulLo/crbJv4/Qfr5kEb5uBCfSUSzAOUU+0JtEk/69CxycVmxv2mhl3PA5P2RTCYxMjICu92O6upqLC4uQqPRYP/+/fB4PFhcXER9fT18Ph/a29uRSqUwMzOD06dP59yT2tLR0YGRkRF+jzabLaf+4LVr1xAIBDhkJO9z6mMxPZ8QOtqg5NlbVHOQ0D+Hw4GxsTHEYjEsLCzg6NGjfB+xlhyhON/61rdw/PhxLhAsSRKSyWROHT8APF+p1IocGVxaWuL32tPTw231eDxYWVlBMpnEo48+isnJSRgMBr4myVeEQiFGJhcWFqDT6bi4cWtrKwKBAFZXV/HUU08BAD9zJpNBPB7Hvn37sLS0hEwmA6vViitXrsDhyNbb29ragtVqZSJ7PuSSxhqNN3JKxE2axpOIMNLnSu+KTEQXRTSGQuIk4ikft3LkJh8fleafiDbdzeGqGKToXpCgQkj2/UCX3k3ZhAfiUI2MjODnfu7ncOzYMRw8eBATExN4++238frrr+ek//4k2T81h2on22mzupvrKSr3nv3jgo7MbhXUd2M76ksptEPR+er9xbzOBIVF5BM+X1hUHtYSQyK0yAPK78Lv9+Pq1asIh8PYs2cPE3kLLTLytu0E8+f2Se6CKIYrKGxVKKSg3M+5NRBFxW5yJqitFEogJW8lTSQqZWIwGJhTRNcRJQbcbjdv8FNTU6isrITb7cbY2BiXCaFiuUajETMzM2hpadkWbpRvGEpaROLfaU6IG7P4HUKBJEmCWq2G3W5nx1p0tI1GI65evYq6ujouvBwMBlFRUcGcJQDc/lgsBqfTCZfLhWQyiW9+85vo7e1FIpHAwYMHOTwlSRKHr2izlR8cxAMEhQij0SicTidSqRTGxsZgtVpRXl6OhoYGJJNJWK1WfndEMr9w4QIMBgNKS0u5/RaLBW63G5FIBJWVlfB4PIyaJpNJHD16FIuLiygpKYHFYsHrr7+OhoYGGAwG2O12hEIhLlsjH8/inC0pKeEqFyaTiccRjTGn05kTWgW2VxQQ54/cyck3r0Qnj/5fHPti/U/54SWf87Zb282cfy/a/XDYfqw6VB0dHbhy5QqefPJJLCwsoLa2Fi+88AIA/EQ6U/8cTSQ+F6ODpBS+knMk5OrdwWAwmyU3MYd88gm7VVAv1qiIcolGUxQxntpBAqHyEGOhDLt8mShK4VJ5WEvUp1FSQBeNwmw2mw3t7e1MSFaCwundyKUSRJh/Jzg9H/mTss6U9Gt2MkLllMIhdrsdKpWK0QRJknjDzJfC3dHRAb1ej5MnTzK6QOHS7u5urjPn9/thNBqxtLSEzc1N1jqijDRCFsxmM2ZmZli/h2QKlBA8kdxOPB8lUn8gEMDQ0JBiEge9P7vdjgMHDkCj0XAmXUdHB9fAW1lZwcc//nG0tLRwX3d1dW3T17Lb7SgvL2flbo1Gg/HxcRgMBly7do0J+5TdJqbuy987oTnBYLZm4fT0NF599VVsbm7C7XajpqYGS0tLiMViUKvVjGpR39LYIL7X008/zWriHR0dHDKem5vDyy+/jFdffRUWiwV79uzBysoKgsEgLl++jGvXrmFmZgZvvvkmKioqoNfr+fmobh6NZ3EcEgWBUEoSA1XKRiOHkbJMlSoK0NgSQ2o0pi0WC6ufA7mZr/KEBaUQmPg9chRoXSYJBbHd4tq7E7Vgp9Dee93yrS+7pbUUY/e8C92+fVvx87KyMnzkIx/B7/zO7+Dzn//8tkykn9p2K5Yz827EgncymmTF8oKUBu9OA9rhcCAWX4fZUHZP8gl3Y8FIjIsxy7MBibO1G1mFQhl2xWSi5HNwdmMajYZ5SLRZilwdpc1cLpUgb9dO75DkDtLpNBwOB1ZXV7dlD8m5YDuNb0mSsLW1xcRnl8uFuro61NbWIhKJIJFIYGhoCOFwGFardVt/i6d3vV6P/fv3IxqNIhQK5WT2AeBiuxRGAoD19XXEYjHWadJqtZyertPp0N7eztytQtwNGhOnT5+GTqeD3+/HxMQEXnzxRczOzrKjLaKVSrwvh8PBDnUymcQrr7zCmWiZTAbj4+N8+KHNlt6Z3W7njZjQlng8ji9/+cu4dOkSC33W1dXh5MmT7KjRAUBM3Rf7VumZr1y5Ao1GA5/Ph66uLuh0Ohw8eBCtra38bshBi0ajqKur41AshTu1Wi2qq6sxPj6Oqqoq5lJFIhFIkgSj0YhnnnkG+/fvh9VqZW5WJpNBXV3dtrJfxHNTek+EwtGYl79T+r5Wq0VVVRUnAtCYFL+Xr0/oXZCTGggEtvGQaJ5KkoSFhQWsr69DpVLB4XDkjGVxPssPPkrZszsJ9optEEOgSjpw98Pe7f1tN/zihYWFoq55zyE/tVqNqqoqHDp0CIcOHUJXVxcOHTqEVCqF//2//ze+/OUv38vl/9lYMZDhTrHe3cSCi4Uz71eceie72wyM9Jt/VbCAcfH3311oMN/3c4oeA8WFBHcoPVNMPyhB+rt5b/R9SZJyso7oGn5/bmHT3Y6ffBlE/f39iMfjMBqNcDqdebM+xTIuO5Wo8Xg8Odwysa2SJGFgYIDFMJPJ5LaQKYW14vE4c5ysVivX3xOzq8RMNQojejwe2O12VFVV5fCn6FnoGe12e074R86VEfkoFAq7du0aysvLUV1dDYPBwFyhfFldkiTlcG/OnTuHdDqNvXv3oq2tDQsLC1hcXER1dTUjg06nE5FIhMujUL8vLCwgFArh5s2b8Hq92NjYwJkzZ/DUU0/lvNtCWbpKa1QymcSFCxdw5MgRvPXWWzh16hS0Wi1vnmJYi5xICiHmG/diSJbU1Zuamlj5e2hoCKlUtug0yTOInCdqG31GmXViYXDqW9GBpLGn0+k4tCiWOspkMlCpVBgbG0NdXR28Xi/Ky8tz+iqVSmFzcxOTk5M4efIkyzqQQyMP74pzd3BwkN99b28vgMJFyneat7sJud8PLlIhe5AZ6TutUzvZ0tISZzI/UA7VrVu3MDQ0hKGhIQwODuKdd97B/Pw8gGy19aWlpXu5/D8bK8ah2mlg7CYWXOzgfNCT5F5tp/YVO1HyXWc3jomc5wUUz/25Gyu06O32ve1EUFXiN+1m8dkp9bmjoyMnq0ncKJS4NnKnO58jqNQX/f39XLrl9OnTis7A+Pg4KisrodPpUF1dndMvonNJSIN8c8uXWGCxWHDhwgXU1dVhZWUFABhB0mg07GASqiUSiylDE7gjhkloYr65DQCrq6uYmZnByZMn8corr2BjY4OLLtPzyssCKRGoif+TSCTw4osvwmq14sSJEzCbzdvkMMgpjUajjJbQe5f319mzZ5lnRk4AhW4l6U5ZHXoX4juWczTF65PzTH1MqvNarTYnvC6OLXEc0fXS6TTOnj3L4UA5307k4lVVVbGzLK9/R2PA6/Xi9u3bSCaTOHLkCKanp2E2m9mpDgaDeOedd7CysoKKigrWuRJlMpTmEo0Ren6l/lay+3W4zkd+v9vr3ev3yYrZI/LxV4sxSZIwNTWF9vb2B8+hqq+vx0c+8hH85//8n/HCCy/g9u3beP3119HU1IT/+3//771e/r7arVu38Mu//MtoaGiAXq9HU1MTfud3fofj1vnsF37hF6BSqXL+OXLkyH1v3264JCI8qgTZFgtnit8TwzP3YsVAt/m+I/98p+cQuVw7hQ+LUQYvZHL+zm7el2jFQttyvpR4L3oeJZFKJZNzN+RtpnTsiooKrm+2U58qPRdpS4kp5L29vYhGo3lLQFBYUSmtm74D3Ek/l3O35PyRzs5OmM1mdqZEdWkKsx04cIDbTOVhxPCIuPmJv6d7yx0/MXTT0tICr9eLTCaDra0tVloHwCEylUqFeDzO3CMKZ+3ZswcNDQ04ePAgC4fK+0Qcy2azGV/72tewsLCAb33rW9i3bx/q6+vR0NDAoppGoxEHDx7kZyNODV2XkKva2lro9Xqsra2hpaUFer1eUe5Do8mmw8fjcfj9fly6dInr2Mk3xGAwiLq6Ovh8PphMJpZFIb7g0tISr8dieE8cG2IoS5wT4XCYw7EiB8xqtUKn0+WIg3o8HiQSCQQCgW113TweD0wmE5aXlwuKv9psNg7bOxwOdtjk4XC73Y54PI5jx47BZDLhqaeeYpFTslOnTqGqqgrt7e3w+Xwsv0BtCoVC2+a0yDMl5JQkUgqtQcWuccWE/sR3sZPtlm+Vbz3dDcdLyfz+O7UodytdIz5HMfZASOlHjx7FH//xH+P3fu/3HsTl79rGx8exubmJv/zLv8TIyAj+8A//EF/4whfwm7/5mzv+9plnnkEgEOB/fvCDH7wLLb5j5GUTMVUcrEoDqtjNXvyex+PJWeTv1oqZSOSciJko4m9FHkuh5yiWyyXfhOW/L3aC5SsPU6yTJH+P4udyHa5CbaP3RhuGnNC827aJmyQRqjs6OpgoW4gLIv6/3+/HwMBAUQ5+Mc68kiMo70P5Qi8qSDscuerS1G/kPFRXV7OCNAloStKdkiC0cYq8L6XxTaEqypxsb29X1NiitvX09ORwj+gahExpNBq0tbXlpMWLtfeofZcvX4bZbMb169exd+9exOPxHJ6P6NAmEgkMDAwwF48QIHJGgWxNt+7ubuzduxe9vb1Qq9U5ITIxiYRI+83NzXA6nQBy68XRc9OYGhkZyXG8wuEwjEYjvF4vOjs7OfRIzqqoa0VOkDhmHI5s+R4SEwWyHCwKutDz6XQ6dHR0YGpqCmazeZtTT1mNdrudxxnNK1pfydmnfqDQn1gjkt6PRqNBe3s7ysrKth0UaOzEYjGcOXMGDQ0NOSR2mot2u13RsRBrccodMSWjd1AM76mYtbDQd3Z7GC7WiuV4FdrrKNSdj09ZaG2k5yjG7jnkt7GxgdLS0m2fT09P48CBA1hfX7+Xyz9w+5//83/iL/7iLzAzM5P3O7/wC7+A5eVlfOc737nr+9yrbIKctwDc/3DTbpVp81kx0G0hWFse4rmXUKTYFpGrsRsOGnBncRbDD+Kzzc7Oct+RnpCS5eOf5NXhKvL5CvVXsdeWQ/oUvqDfAcp6UQS5j46OIplM8jvdzdgUuVYUFsoXYlCaC0rfo76Rp5nnCzX6/X6srq5uCxUCyPm+xWLB8PAwbDYbh/Lk3ClSBd/a2uK0/J3eqd/vx/T0NKanp/Hoo49yPTsRrSEtJJJYIBJ6S0tLDhJGIT1yCgHkqFZTjUCdTgdJyop+rq6u4umnn2bZhfPnz+fIBIhhYzHEuby8nKNlJY6fVCoFlUqFcDiM9fV1hEIhlkHweDxQqVQs3dDR0bFtw9uJOyhuiBqNhhXTiR8myhUsLy9jYGAAzz33HPR6PY+RgYEB+Hw+2Gw2RpLk64Y43pT+X+QAitIb8jGUTyutGG6pOMbIaZaPeaUx9W5ROu7HvXbqD2D3+16h/ajYNr9rsgkGgwFdXV34xV/8RfzxH/8xLl++jOnpafzpn/4pC669l41iqjvZxYsXYbfb0draik9/+tMIhUIFv59KpbCyspLzD1mxaIZoFKqghetuw02FrFBtqN20uZi2iWEVpd+Kqb53019kciSvkFSA0u/8fj+fCsPhcF5ZAtrsdlL1lb9H8XP5SbUYU+ovIPd9FXvtYDC3Mrv8d/lOnNSvbW1tqKurQ09Pz67HpjxbjNqjdAqX9yFxnqg/yPI5kvITL/VhV1cXUqkUGhsbc8KdcjRQKSNLRLIAMIcrnU4z6biYk/DKygqMRiMikQj3IaFflZWVmJyczFHR1uv1+MAHPoDm5mZEIpGc8CgAHsPBYJCz9dxu9zZE9+bNm4hGo/jzP/9zRvPW1tZw48YNVkQXT+oejwcejwevv/46JEni0BwALrhM7QbAvKTS0lKWQaDMvampKYyMjMDj8eSgR3J0RY5MSpLEBbMpHEbzUJIkdnCoLV6vFy6XCx6PJ8cJczgc27JnRVSOriUq7dP4o7+XlJRwn8pRLnENGRkZycnoVUJfxPVTPo/FTOFCEinimNoNNeBebLeIlNK6LvaHeKAix5YcoEKIvNwK7Uc7tXm3e889I1Svv/46rl+/juvXr2NoaAgjIyNIJpMAgKeeego9PT3o7OxEZ2cn2tvb7+VW991u3ryJhx56CH/wB3+A559/Pu/3vv71r8NoNKKurg6zs7P47d/+bWQyGQwMDOSFAv/zf/7P+C//5b9s+zwWi/Ep+L1KBFeyB5Fh+CDuvVNbir2WiPzIyadKdr/QvXs1OWJVSCVZjgABKOokqHRivF+IYqH27QbtpM02nU7n8KFElBHYLngoR6+UTsr5MrLk/aeE1iipcIvPR+Oora0N4+PjTKpOpVJYXFxEMpnEysoKI0lkSshnIfRS/ixra2v4y7/8S+zfvx9lZWVoaWmBx+NBLBZjnTMK6zkcDnbSyCmiTUsk9Gs0Gka06J7pdBqTk5M4deoUxsfHYTQaMTo6inA4jI6ODvT19XGbRQ0xeh4xG8/j8WBtbQ1LS0s4dOgQy0bcuHEDNTU1qKmp4ZAcHQqoNE11dTWjhoXmrjyZQz4ulBA0Ut/fv38/xsfHOYN0cXGR+48coULjTbz/brN75d/LFxH4cZrSs+WbM0BujUFxTJOzdT+jNfI2ptPpokjp910pfXNzExMTE5z5R86WEsnuflk+50W0t99+m0MJADA/P49HH30Ujz76KP76r/96V/ejQqFf+9rX8Oyzzyp+J5VK5RDZVlZWsHfvXsRiMRgMhgc2AB6U7TTxxe/czeZaCNYtBvK924Xmfjz3vVy/2GsU67DJN4BCCw+pbFsslm2k2UKOpzzLjMI6kUjkgTuUYtagvDCx2F9yB0MelrmXNPNCG95ufi9muoklYIA7IVAqV0PlccQyNvJs1bm5OQQCATidzpwNO1/YVOyPkZERLC8vY2pqCp/4xCdQXl7ONQSJf+Lz+RCNRtHd3Z3juA4MDCAWi8Hv9+NnfuZnGJUSnU3q//HxcZSXl8NoNPJ7EUOyGo0GXq8XoVCIyeUAUFVVhZKSEkQiEZa6EBXdAfD1ScWeQpei4jqQLVYtyl0UyoCVhxSBXCdc6e+Dg4OK6vs+nw/JZJLD2uK7kV8337i52+ztYhyq+30Q3sl2erZi94TdUDnuto1UZPvHUnpGyRYWFlBTU/NArr24uMjefz6rr69HWVkZgKwzderUKRw+fBh/8zd/A7V695HPlpYWPP/88/j1X//1or5/txyqd3uQ72TFbLS7qR2lxHOhk+1Om3mxDsD9MPH6hTbi+9EOpWsocYxEky/scmkC+cLjcDhw9epV+P1+uN1u9PX1Fe2gFkKodnr3xaJO+e5FKfipVCpns6L7KTlcxSABu3knhNAA+UvCFOpHsS1+vx/Dw8MwGo0wGo2sNUXaTU1NTRgfH4fFYmEem1LfSVJWnoBq3T388MNwOBw59SDFcUvvjfqDkJ0DBw7kcLdEzg5pO5GIKvXLzMwMfvjDH3Jm3UMPPbRtHaD7iTUOlRxiADnSALQWEDeNwoVU3oeconQ6jXPnzkGv18NkMuVIfyiVEFLSMcuHRouhY7FuYb6/UwiUECo6ZMgPReLvSBuMsgaVOH674RDl45opjR2lMX6/eKu7mWPv9u92Yz/WWn7vZfP7/Th16hR6enrw1a9+9a5eAPEbvvjFL+JTn/pUUb+5W4fq3RrkxZIji91oi90oaSMWoXmCe3c6mdzrRllMe5WuX+hEtJtr7uZdFEKoiFtCm0Y+4rncuZqZmUEkEsFDDz10V2EAJceKHGPKqJG/w2AwmJcgnw/FUdJcOnXqFKLR6DY0dCfHs9jnURrbFMqx2WyseSQ+g9KmpTR/5c80NTWFt99+m8sI9fT08BhbXFzMceTyhe7i8TguXrwIs9nMc0h0RvIV/y30LskZIRFUUfRSXA/m5uZw7do13Lx5E8ePH8fRo0cVNZ+KQRUI8UqlUuy8UH9S35HDIqJWVPsvHA5zeE9EZvOFtuVOqVJB8nQ6jaGhIZawUOoDJQd7J+QkH0IlSdkkgVu3buHIkSOIx+MFtZOKPaTstJfcL8ekmD3rxwkU3M29f6y1/N6rNj8/j8ceewx79+7F//pf/wvhcBjBYDCHUwEAbW1t+Md//EcAQDwex6/92q/hypUruHXrFi5evIgPfvCDqK6uxkc/+tEH3ubdEv3ymRL5kYwWEnkq/06ESfk1inEkaEGkawPgky1tTuI95G2Q35/+Li+Rcq99Iv+OeH2HQ5ncXuxEFe+rRHoUCbH0t0IJA8FgkIURCxHPxb6jormHDh3alaOu9A6Dwe06WVTGheaXmBjgdDqh0WiYMEzPLn8f1L9iyrzJZMLTTz8NvV6vSMZXKoUil6NQ6nOl+4u/9/v9rGlFm7a8r4PB7SR6pfkrfuZwZInG9fX1WFlZ2ZZAYbPZcoj+8mtRm9966y2k02mkUimo1Wp2+JTI0w5HrkwFvUuLxYLBwUHMzc3xmCcpDZIIkJOlaVyVlpbCZrNBrVbz9xwOR06NSkK8BgcHt5HAqT10byoFREkStEZJUrbskM1mQywWQyAQQDweRygU4vWjoqICwWCQ+y8YzJaDUSJw03Mkk0n09/ez2KvYx+FwGNXV1dBqtXwgoPFDfUAEcbncQr61O51OY3BwkPlULpcrZ025efMmSktLMTMzw2T3fMRypXEnfz5JknbcS/Kt7bu1YvasYtbeB2UP8t4/UQ7VuXPnuEAnacTQP6JNTEwgFsvWjtNoNBgeHsaHP/xhtLa24l/9q3+F1tZWXLlyBSaT6YG3+W4HuXzTKDTIaUOW1wrbjTO3k8NGWRnyxYY2RSVRx2LacC8OZzG/VfoOkXDlAnfFTlTxmoV+s5vrlZeXc50+AIoLr2iEtJDTWui7olOi9A7lY4YUwEWngTYEcr4ovV18Pvn1gsHcrENyZgkJk2cAiXwf0eEWN5t8hwe58ya+A6/Xy1wzo9GIrq6ubQ4vtUN0tPI52OKc1miy9RW7u7tht9tRU1OT82yZTGZbRjHNJ3KGSkpK8LGPfQxNTU342Mc+xm2guSXy5aiPRM05GmcXLlxANBrF5cuXWf0cAKxW67bi3aJzJEkSzGYzSkpK4HQ6+XckMREMBjnTLhaLwWg0wuPx5JSDofaEw2HU1dWhu7s7R5vq/PnziMViCIVCTFK3WCyw2+1IJBLo7OxEbW0tent7EY/HUVVVBY1Gk+PgiG2XO/sXLlzArVu3cOnSJf6ekiOSTqcxNjaGdDq9rQ+AO3pk9Nz5DldyzT9xTdFoNHj88cfR0tKCU6dO5YQulQpki+POZrNhbm4Os7Oz2+br/dpLdrJi7lPsur3bexdju9kzdnv/n7iQ34/L7ibkdy+w6G5ChfcjQ61QW++GW3U/7vsgbbdhud1cp5i/FbJi+F7ykGuhcbITh0T+3Z3qvOXLmCqmb+Rk6pKSkhxODJCrlSXnltHflXgySu0WQ1Aid2hubg7vvPMOrFbrNkK/0nugDVHkyIjPRaHKeDwOSZJgsVjgdrsxNjbGWlBAllA9NTWFlpYWlmlQyuyT9+m1a9fg9XpRV1eHvr4+xTCWxWLBP/zDP6C0tBTNzc3o6+tTlJ6gPg0Gg6iqqoJKpcL3v/997Nu3DzabLUdHjMaYPDtPXgaEnKb29nY0NDTkhEtJw2plZQWnT5/OIdLL9aaAO7UDT506BQD836L2lBjeJMeDHJWenh5otVrF8SD2Y09PzzaOGpXkmZqaQmVlZc6YEU1cK+hZaYyKzohS2ZtC2cb0vsgJ22m+FmO7pZ3czzX5fmZ438v9i83y+4lCqP6p2b1Ak7vxwmkxFTWUxFNwMR56oVOJHI3KB7sXcwoQv5sPbdjN7+/29KMUllPqx2Kvo9Rvd3uilCNg8lM0XZvGhkql2ha+lF9PCfXI911RWVwp5FAIlRTHnXwxFFEkIjVLksQbmM1m2zbuNZqsPpFWq2U17Xw6YHJFdPp9T0+PotNUVVXF5UrEtiuhwkqIkNg/HR0dMBqNaGtry3EUGxsbEY/HGelbWlpCWVkZJiYm0NHRsa3NtKGK3BwAOHjwIPR6PSwWC4eQXS4Xtra2OESn1+tx8uRJGAwGfiYl1G1wcBCpVIqR0Wg0in379mFiYgKVlZXbFN1dLhcWFxcxOzuLgYEBdHZ2bitpE41GuSg1hf5IxX1zcxNqtRqHDh1COByG1+vF8PAwLBYLNBoNO2Rvvvkmrly5gqGhIeh0Oly4cAHDw8MoLy/H8PCwotOi0WhYKV+n02HPnj08NwhNE+fOwYMHYTAYsH//fgSDQX4Wmmtmsxnj4+Pw+XwYHR1VnFO0VtAYHBgYQH9/P3w+H7dJbmLZm52QH9IZK2a+FmPyObXTGno/Q2r3EoG4H+2g+xebUPdTh+o9bPcymHazGSvdhwbjbuu5Ads3lp3ashOnKN9384UqC5kS3J/v2YpxuOT8oHvlu8kd2WIdWtHE/s7nKFDbM5kMbyj5+oGcEnk4MR//q7u7O2eT2U3Igcq/KJWvoWuFQiF2XgFgZmYGjY2NLC6p5KSRI5Zvg5G3W/yt0inX4XBwzbt8Io2i0221WqHX69HR0ZETWiQHKBgMstxBY2Mjh5dERILe5+rqKsxmM9cmI+FQeZvFMURyC6FQiNtH4SnxtxQ2o3ctvntCUpLJJJaWlrifDh48iK2tLXR1dSEUCm1bM6jt0Wg0RwyVnofa6HQ6odPpWOqA+jWdTrPzLIbWSN/KZrPh/PnzXFMQyKKQjY2NsNlsMBqNsNls28ZTMpnE97//fZSXl6O8vBynT///7X1rdFzFle4nt9xCsmShd8uSLWwwmNjIFjYvJxMgGDsJj0zIJSGZJJAErxACCY+sGXKHGUhmCIE7edzFTSaQy/UkK9w4sxKYYSbh5WCTIXAByVJkyzEYJCzUqJEsybJlCTVqzv2htQ/V1VV1qs45/ZBc31pa4D7nVO1679r7q12b0g4Z1NfXZyhVo6OjbowwEbeyrKwMDQ0NrhLIWq9ffPFF9PX1uVaPeDzuHiYBIJw7mpqaXCsX69qWgdqLYoexfDe/bjN+TLH9XKTAhzEPyvI2QRhymOZvXX45QtCrZ0wQhqmT0vBzes7Uxceav4nzoHMSBdA/Qiw6heP1fdDTKqbtQLt/1h3Cxk3yezJH9g7vDtOZOPgTamGd5qH3+vr63AuGjx07luYCYutHFuxRFRzRj8tZFaZjcnISo6OjaGxsVJ4eY68likajrizArAI5NDSExsZGNDQ0uO7BJ554AosXL3YXRgKRmevr67Fs2TJ3cWNdnGwfqqysxIEDB7BixQocOXIEsVgs7QSizD0rah/iQc7MzLghHCi2UVNTk3QTRRw8tm7IIgQgzaUYi8Xc05Tr1q1DIpHA7t278e6777rWF3IXU7ynaDSKY8eO4cUXX8Rpp52GSy65JMOtyrvYEokEOjo60N3djYaGBnz0ox8VhmHhXcqk1IjmRXKjkrIbi70XwLO9vR19fX2IRqNp7tnp6WlXORVtBNgyyPqi15yomsf8rBXsN/F4PNSAofmicHjBnvKbx9C14tAEyL+ns2OhCVFGFleBdgYAtKxbrKvMa1fBm+t1ZGOJyeyO0ut7nR2OKg2Zu00lJw1acod4Xfqsk4dMRqoDx3GkrgYebJ3I6sfLbcefumPLcejQIdTV1WFiYgJvv/02uru70dHRgf7+fgDIsCKRVaCtrU1IQGZlBsT9UXYxMyC24rBpFhUVufUPiI+ts9cSUXqpVAoHDx7Evn37MDIyknbqrbu7G2VlZe51VVRPRN6urq527+0TuTipjsh61dLSgt7eXpdMT1aOuro6HDhwAOXl5Z5jlMbQzMyMe8KSh6w/JRIJOI7jWk7Y04q8SzESmb1nsLa21pWzoaEhw4VFdToyMoL6+nqUl5fj/e9/v8t/4vs8O8eQVaWyshINDQ04/fTT007Q8RZNts+pxnt3d7frjhwbG0t7j679aW1tzei7dJiEtybxFk+Z640lnous7qp5zI9bjK0DsqCZ8ptkCNNdmA9YhWoOwqvTeS0gJp3Wj7mYBpromLdKXtWEFcRszU/apuXwu1NSudtE5aFTUGTJIIWW3Y3r5GFSV1T3oiPZfuucdxezij2r3PKT/tjYGKqqqtDc3IyLL77Yve5kenrafZ/aRKQ8yRYOL74Yf+KKBX9SLZlMuiRmsjCQUkKKH19f69atw7Jly9xTbSz3h+7+IxkTiQRWr16NyspKrFmzJs0VSwr32NiYWwbWbUYnu6guhoeH0draimPHjqGsrAxdXV1pi+/w8DBWrlzpcrRUbU5jiE7gEdi4ccRlZO/eo9N9MsWbrD2Dg4Nu3bFK5+DgIBzHcZUkSrOyshIjIyOora11lV2ShS8HuT7Zk4vEI9uyZYsbN4sUY7LCkVIomgf4TWsymURNTQ2am5uxcOFClJSUoLu725UjEom4QVvZu0H5sa2iEMhcbwCUmxzVPBaWey6oW5HSYN3hcxHW5ZcjhOnyM3WjiFw9umZVk1MWQeVSvS8KuJdLmMis45YU1ausrnWipOu4BlTQlcfL5Sdyr7JR8GOxWJrLiq0T2Z18rAuITk+yPCFKW+Vy4E8Hyk6FUawhqkvKJ5VKuVG6afErLi7GzMyMG+Wa5cJQSAq2DtgrUChv9gRhJBJJcyNSaAn2JBiBPZnJn+widxy1DY0firbOKpgq9xApeKI+z7sLAWSMUZW7lG2Lnp4evPnmm6irq8M555zjys7eAUjKw5EjR7Bo0SLs2bMH9fX1KCsrQzQada+zofHB5k2xquh5MpnEjh07sGLFCpSVlbkuRDp9SH0bSLc4suOMrIV0ypDtV+yJTpbCACDjqqHOzk5Xtra2tjQyv8k8w/bVoO4yP+uDFzVBB0FO9GUb1uU3j6FrOVG5eoIQ1gn8rkRk+RLtXGQnkWTv+yGfhw0Tqx7rhgPEk6OoXmOxzIChqVTKJTRTsEoefHvq7Dr5ema/UVkW2Dg7ot0kcSoACN3FqvhXIvcB6wIikrKfhYPKJ3KhEtF4dHRUSixvapoNvFhTU4PGxkY0NzfjjDPOcMtIgWlLSmavxens7ERnZyc6OjrQ29uLrq4u7N+/H8lkMs3ywZ4grKurw/79+/H666/jueeew7/+67+ivLzcdVNRvbKWX7LAFBUVYfXq1a7SyrYnydfc3OzWBZB5kXMqlR5zia0LUX9hLaOsq5HkEvUP+r2oqAg1NTUoLi7G6aef7p5sZE9qUr2PjIxgenoavb29mJ6eRldXF2pra5FMJrF27VpceOGFKC8vx+rVq11rEZs3H+yVtcwBSAtiyipT1I6i+Y0sl2RpbG1tRXFxsevmJmWKHUMiKx87tumQiMj9LpoXeZ6aLL4a+52OJclkrlONK1OEZS0jhGE1M4W1UOUI8+UuPxb8jkIkq2jXobqoU/R+GJa2oBDlpZLLr0WNL38YuzbddpHJIHom25HKrEy8xY4sPjpEcf57lphOIEuQyiqoqh+vQwtsvioLDMtrofINDQ25ilRTUxM2bNiQ0YfIqnHs2DG88sorGBkZQXl5OZYuXYq2tjb3pF5rayuWL1/ufsueEqOFWXaIRGZdZP9fRnbmye/8c7481L68pSuRSODo0aN48cUXcfbZZ6OiosK1WorGC1nCxsbGUFdX59bv+Pg4Lr74YvdOPAJZEfn4XKr+xLY9ud+am5sxMjIivPNPZd0jgn00GvW02MjmTxHhXfQua82iTZwovprpfOJnXi3EdSpMi5e9y6/AkOu7/Px2cFPFwctEbZKertyiSTsMd6TXO/xzXnnQcfV5IRtmfBMllX0mmtjZZ7SDlblFvNy+8fh7wSF1FU/W1USX5ZJbi9oiEpFfri2Tpb29HVNTUy5JGEhXoACkXRTMX1qrsiikUin3Pd7NySqodDqsvr4e8Xg87fQfe9clG1z04MGDrlJKgR9pIedddiKX1erVq13Ln2oMi8a5qK1pTLB3ObLKWCwWw2OPPYajR4+ioqICH/nIR9K4UV55sEoLuTZ7e3sxPDzsnraMxWKu+46/FJqfv/r6+vDss8/irLPOwtTUFKamptz7LUlRCaKY831ENEfw73htSvh6IMsj1R2bLj9G/VIXwqSG+IGfTXWYSp51+c0T+DWDmphtZd+xu21RWmSa9ophxE/UKpejjjtSRMY0KRcPr3LqpME/N3GrqsCSlWUxqbxM26I+pNMGIuI3PSOSMN/2qnRZOanvkBLAyqY6dReLvXeqLxaLKU/g0TUcIqI4KxNZeV577bW0+DpsvCU2X6oXOjEKZMbmorpwHAeHDx9GQ0MDotEoUqkUXnjhBfT19bkuNnIl0tUtTU1Nbjyo9evXo6Qk/a5Ltn6ovtetW4fx8XGsXr3adRuT8klWF3ZxIZdVT09P2n15FCuJd7mLXFG86z6VmiWRU/tSv6XwH2Rhevfdd93grJQeP5fI+jS5i2trazEwMOCeeASQJmNNTY1r1ZKN20QigWeeeQbj4+NuwNGWlhZXmeJdaqoxRos3tR25gvkxJJojZKdTWYjc+o2NjW5bs2WnPLq7uzPazaRMlI7otDh9S3OS6uBBGG43mSyqOTmsOdgEVqEqcPjtFCaKGNvpRRwKQK64hO331gHPsdDhG6jk1FXQ+DR4zo8f7pJMFnaCYCdIP6c2s9WHTNueFmA6JcdGf6bnZDmRnbpjF2ri1nV3dyMWi7lxjEhxGB4eFp4oZNuA0igrK8OHPvQhN41UKuUqAbQgsdY9lhvE1j878dN7LL+ku7vbvVevo6PDVUYcx3EDrLILIVl5WAsGRdZOJBJu/yMFaXR01FVMAGBsbAxTU1Po6uoSHsHnZTt48KAbzZ1tZ9Fl4CxYNzeFVaAgrRSbqaurC0888QROOOEELFq0yHVBUZpsiAq2z7NhQcjq8+qrr2JiYgI7d+5EW1uby3+ibwcHBzEzM6MMxRKLxXD++edjxYoVuOKKK1wFWXSJMpWFlHMRz1MVsoPyFsnCh+bQCUVAfaO2ttblcfF56IRc8XtanJ+TZJfT+93Y68hC/bGQTgVahWqewmQRZRcBdhfrpbiY5hMWvPIUDWLVNzrlFKXh9W9d2USy0KLO7v5kE2S2lFpWeRHtTgG900g8hoaG3Ek4Fps98t/R0eESaolETCRjnlBLlpd4PI79+/e7xG12t0/fEYGcrRvWskKWp/Xr16dFl45EIq4yxefN7/rZ+ucn/qGhobR+QZf4suEgAKRZqfh25vuM4zgoKirCggUL3HRZGdgFmhgdvAWBtTSysvGxkuhdkTWSXfhJMT1y5Ajq6+sBvBd/CwDGx8cxPT2NxYsXY2ZmBps2bUIikUizcIni0bW2trpKIbVXSUkJPvjBDyIej6OlpQXDw8OIRqOoqqpy43RFIhH3ombRuCRlevny5bjsssswPj6eZs0jCyVZAtlYYqIxLBuDOnMEa302seZQO8disTRLKbWN6monfvPMP2NlZQ9B8HmvXr061E2XDCJZ2IMauVx/VLAKlYV0J5IPZSkMmA5i2YSbjRMirDtKlD4rC03cpCzIgqzKFB8dqMpJVgf+5JDKFaDKR2SxoUV1YGDAXRwomnRPT09a3qwlcXx8HDMzMzjxxBPT4iixfXlmZgbRaFRocWDrTlSnvJVAZcVkrVe0IWlqahLGIItGozjnnHNw9tlno6WlxY2dRO5BsjzITm3Sib7W1ta0EBpsOVh3XnV1NUpLS7Fs2bIM9yTbNvH4bKyks88+241Mz0Kk6PMWYOIrkeK1bt06LF++HOvXr3ddlsuXL8eWLVsywl/wCzyr8LEcGPp9fHwc5513HqamplxFdnh42LX+1dXVuW5pyod1//JKUSwWw6FDh9Df3++Gsti5c6drKaU7/M444wxhsFdSwGXx4nTmE9oM8JZo4nq98MILrmJJ1jr27lDVZo3cxP39/VJagux70Rjxc28pL4uonrxQ6GuSVagslDuRfCCoMhPGoBNNLrpy8e/x3CFd3oTXIiaSl1dyZN/x1h5RpHWeR8TLBaSb373kIzfM6OhohmWlrq4OjY2NaZM7HyqDtSTSAk1H0NkFl96XuQJIWaJdrkhmEWfFy4rJW3rZi3NFu3/2jjwvawH9tmPHDkxOTmLhwoVpSgkf0oCsO6xLldxWrJJKSvPRo0fdPsCnR9fdsOEu+IVfNIdEo1Fs2LDBVWzY8lI+rPWJBckwNTWFRCKRdr0PWXOKi4vdsiUSCbz77rsYGhpyOVqsizKRmA0oe/DgQXcxZ4O8RiIRLFiwAO+88w7eeustFBUV4dRTT3VPTrKhNWSXye/YsQPj4+Ouq5p3LcvGO/XHdevWZViik8kknnjiCTdo7M6dO6WBP2VR/YH3gtcODw9LN3QmG1GVO5CFqNwqlz5fbyrouEZzDatQzQMEUUBEiz2QuYsNS04vkjDlzZNdsyGPCqLJRVfJ4t/TcRGI0uGtVaorZtgJjn1PRchlrT2iaO4kA2shYOViF08vVybxe+rr6zOsO2wsJrY8pAyI3CX8As2XTUSi5l2VOkotX2ZAbuEhtxqANMsiq4To8tx4Xtbk5CR27NiBlpYWTE9Pp8UkY9+lNudPjpFCQRcus+7EyspK9Pb2un2Al5VfAFUcnVTqPWI6Xz/8GKGrd/bt25dxKIRk2LlzJyYnJzEyMuLWDfGq6Df2xFt9fb373vT0tKuI1NXVobm5GdFo1A0Gy18K3tbWhoqKCqxatQrDw8MYGhpCfX29MJ4UP3Y7OjpQUlKCqakpt23YelQpK7w1jm237u5ulJSUuJbWCy+8MMOKR+Xlo/qz9U1u9DPOOCNDNlkfVEF3Ey4qNx8XjIfXWAlKOcgmrEKVZ8h2oiYKRBDin4oEzafn5R7yKkc8Hsfu3bvR19enfb9d0PL5hWhy0VWydIiouuZ2Nk0vxYcmOPY9FSGXtfaw9+MRvHaAbBlE+bDt39PTg/Lychw+fFjosjQ5CeoFNvgofyKIVTZV7ldZX1eNF1KgRIuMSoEW5cVaG2Kx2dOMixYtwsTERJrLjE2bXE6Tk5MZbqNYLOaGMli1apXrmiLFddOmTW4f4C2jNTU17t2AXu1GyldHR4d7YrC/vx+9vb148cUX3c1ULBZzI4QfPXrUJdHzSgsF7WTzXrVqFfr7+7Fq1ao0lyERyquqqpBIJDA2Nuby1MiKRpbN5uZmNxgntQFdRVNRUeFaefgTnTynjt20TExMuNdG8W0u6898P+Bd7K2traisrMSHP/xhnHPOOS7hXzQuZFYjcg+2tbVhdHTU+IS0TF5ZH2Ahes5aLkXwspTlYz3QhY1DlSPI4liI4neYxvSgQc1bEnQg+laWnkounXJQ3JzDhw9j1apV0thDfP4m5QvrXd10TGSVPZPtuPymDfiLgWUCnfph25+9jkM2karyAPTLRPnywUdpwSovL8fExIRr/dIdg7rtpFMuNjjp0NBQRlBL0dgRBcNlZUqlZmNxlZSUYN26ddLgkPv27cPU1BRaWlpw9tlna9WlzvyUTCbR0dHh/ntgYCAtFhUpUmz4h66uLpSXl6O3txcXXXQRSktLPeuvvb3djWr/F3/xF5iZmRFegVNcXJwWmX96eloY+JIChxL3jX4H0gO9st+wsbDIdQyYxePj6xKAMDinKfi82DyoLfzODaZrUzYQZL3zCxuHao5ApI2b+LKBYLt5E+uAakevU46mpiasWLECW7ZsEVpEZPl7lU+Xq8CDdy2y0LXSmViaZC7Dzs5OTE9PZ7io+PdVbif2XVF9he029XJBAulWFtGulGSSxdfi3V6iuhO5kGUuqUhk9iRbb28vysvL06w3vPUolUo/jq1qJx6yuqbf+/v7MTU1hdHRUQAQXqskGjsiayHLDerp6VFaDijNVatWuZG8vfoEz8sR1Q2BrGILFy7E+vXr0dLSgtWrV6O+vh6tra3u9Tc0f0QisyT4yclJlJeXo6enRyoHC7qmhe46pDhdVB/EHYtEZuNVEcl/fHwc5eXlaX2WLL+sJYt1GfMHBKj89fX17lU5In6Yn7AKIje3LkTUDZ7/p7KU6UK1BphCd04ytYrlE1ahyjHefPNNKU9G9VsuIevoJJcq4KOqHCxXQKd8ugNOl6tgAlk6Oq45Wf4yl6HsnkLZ5EUysAT0XJvJY7GYlFBM8DoJRDLJ4mvxi42o7vg4U6qFhWSie9xYRYtXimlBBWaVV3JdHTp0SNoeMs4cyUS7++HhYUQiEZdozS+iXnw6vo6am5tRUlKCU045BZOTk67LiwW7q1++fLmr3FI/YhVTNn/RSTLZfXMsNyYajeLss89GaWkpHMdBNBp1w1IQf4r6DfudTEmmMtCzFStW4J133sEpp5ziysG7y3hFoq2tDRMTE2luc94NKOtrBDpFODQ05N4vqXLbkczJZFKohLLtarJx5H8XncYV5aGCznwrWgN0vjNRMnkUsouPh1Wocoy50DGCKA0mlhCvd3UHkt8dGLvr190FeSkuKiuSympAsXtEafEKbCw2G2hxcHDQnUS9yh2WosnK5mVy98qTtSSJAkd6LTakTLBxpmix7uzsFCp6IisA3/as3NQH9+/f7yppovbgOXNseSgNAK47jg9CylsmRQFJVW2xbt06VFRUpHGh2LKxhG+qS+J6AXCtXFRv/AaFlMi6ujppkE+yQpKbKZVKSflsBJbfQ/fytbe3o729PaP9qF7+8Ic/IB6Po6ioCCUlJW4ZaWMCZB4KoHqiAKCs/GRhampqcutK1rcpHhXlzfYRsm5VVlZibGzMDQ9w8OBBDA4Oelo2vSCzCqs2Zabp665PbJ9ng56apK07J4U9d2UTVqHKMUQdI2x3TFAEURpE1hMZTBQ3VR3JlAmvemW/051MdBU2E5ch8Tu8TvCxFpVIJILq6mp3EjUpqwh++iAppHV1dcK4Ml55shbLSER9hZFumaiuqqurtb+RuVZJaSwpKcFFF12E5cuXY926dcL24NOk4KWsUkJKjOxaEuA9l5IoIClroWEDQRIJPRaLZXCWaLFLJpPSgxFNTU2ulYtcoWRNoXcSiQR6e3vdCO0q6wTrSmdjYtE3lB+9q5ov2DLTSb0PfvCDWLRoEVasWIE9e/bgpZdeQjKZdBVlUhRJCWQDdNLY4a+4odAQdGBGZnVlY2vRIQD27kRS2GOxGAYHB/H2229jfHzcDTIaBOSe5A+mmLgKVePcRHFh+zwb9FQGkWKtO5fm22NjAktKzxFUpLZCIPr5gYy4SxOV18XFPLlQRTY0qSMTGWSyBIUsPVmdsRfx+jmIoGoLVZn81BWP9vZ298QWG2zSC0RKrqurcxUM0/r3W24Wuu/TYgR4X+CrQy5OJpMZRH2+PGzaZH0DZq1BZAlxHAfV1dVu32HTIOWGJaDLyptKpdygli0tLWnk976+Pjz99NMoLy9HcXExli5divXr17vKFV3QTErG22+/jRNOOAFtbW1u/2IXRpKRrF1dXV1IJpOugkfKbHd3N6amphCJRDKsyVQfhw4dwpIlS9Da2pq22aMx9fLLL6eR8Pk6pQMM9G5lZWVa+WX11d7e7vKvtmzZklGX8Xgcg4ODrsIlsuqK+pSqPwadp7Kx1oj6sSzfQ4cOYWZmJuNwBSHsedgLuvlZUvocgJd/PZv5hmERM+ULeUFFEte1VgH+Lk8Oexdk4jIkV4SKqO+Vvoxj5GV181NXPLziysjA3h0numhYB6J+AZjFp6GFjhZ+GWSuOL6edSwGqdTsnYWVlZXuzp6sU2zASRoTNE8AQGNjI1pbWzE+Po6qqio0NjamBRBNJpMu14ssKuvWrXPzFo2zZDKJ559/Hnv27MHbb7+dEUsqEong1FNPxQknnODGEmMteKlUKi1o5pEjR1zuVSTyXhR4UhhIxlgshpGREQwODqKrqwtDQ0NuzKXh4WH3JCTv1p2ZmUEsFsOGDRvQ3NyME0880e1PZGEihfPEE090lT0qC2+BJCL75s2bM2KiycYRXY3U0tKS8YzciBs2bEBZWRkAMd2DlMLdu3e77aEat6p5Smdez4b7zCsMApuvKOgoi1zzpcLOz1qocgSRhssfv82VdSqbFjGTtHWPhpvmketdjhfyJY+JhYoulQVyFyyPtVDRCakgfdP0W558XVVVJbUksO8DZmETRM8phEhJSQnWr1+fVnbaxTc2NmJoaAjJZBLRaNRdKFVH9Yk0XV1dnaEYEETjrL29HTt27MDU1BSKiopw1VVXoaKiwv2erBCrV692rwhiy0+WreLiYjiO48a8YpUg1oJ38OBBpFIplJaWYvXq1ejq6kIq9V4sKdZSQ0FK+f+ylm1y2+3fvx+nnHKKe8ovlUphcnISBw4cwJo1a5TXEMnajOTn85VZIkXtrbIKkhJKVjG/80UuPR1+ZfQzVrKJsC1UVqHKEUQN4ndHLYJJR8xmpw0ih4nrRTTB5RKqCZL/XTbRFZLil23lXretg9SJyvUga5eDBw+6PJ/S0lLU19f7dn2yedG4JrcVWVrIUtLV1ZXhWiMZKZI3y5OjUAEAXLeeaPNBilpxcbHrPgPgWfdTU1N4/PHHMTo6irPOOgvJZNJVEkSLPgtWsVi9ejV6enqU7h/WZVdVVeW6Kr3c5MTBIfei6D1ewSF3Ou829IJozKrcsV5ufRVM571sKyM66YSpvAWVW8flGBRWoSowUIOMjo5icnIylEVUxAXwGuz5hF8FSoZ8cs9keXtxegAUZJvpKvdh7Z51rYw6SrOKB+b1jCfIAt4BRL3qgLXAHD16FCtWrMDExISrrBGJVxaAU6fsqkCffHkBZPCc+HQpPbpPka0TIqQPDQ253CmZBYmURxUXkL4jsjothF4bD8pHxvdTKemqvq1rUZKN4yA8J5N3szXf8TKI+pbMWhjGXKUql45VuLOzM43DmY151HKoChRvvfVWaD5b1v/L+8Zz7YvWAS9TIuEdHFIFvsxBuGE637LviLgIxHshPlgBSEQAAFbqSURBVJxoMmDLzN4PBpi1GS9vUF4ccT68XCK6bcbLw9dXLBaTHr+nfFQxqliwCoyMRwYgo68kErMnzig+EnF8vKzFonbi+wadmiNlij19RvfNxWKzUbgnJyfR0dHhxroC4BmvjQ35wYLSBeBysfg7BukuPLYNye1JaQwODrpcsVhsNrr50qVL02JcUT3Qwtrd3Y3y8nLP4/v0XU9PT1qMKxlPktqE6oPq0YRvyPdtNn3dccf2jbB4TiZjPsz5joUJ15LGIx+SIghUvC4d3iLP4czn2mcVqhyjoaEhNFIg2xF1SMoihDUoTeWlf4uOAevKxJc5yEAymVTIXUG8I3ZyZIMeitKUlZme6fYNVhY+zlDY4JUF1Z2C9D4faJBvK6ojPlQC5UVKgOgCXhlEC5lskQ7SV7wOANACvn79elRUVLjuJ5Jv2bJlrjJE9UmLFZGqZdHjVWWl8sXjcczMzLiX//J3DBKhnQ9wScoNhScgIjhbHpb8zm4eEonZWEhHjhwRxlTj66+4uBg1NTVpBHxdhUUGL0WXf5eUSip3MpnUVnRkYzWVygxMqup3qjHPpyWb73RC1KjAyyBS1lnyvsn6pTOXqxRQ2pzwIURYmXlSvMk8Gjasyy9H0DUZ5hphmJH9mFhVbg2/MgUx9eqY/UUcF1r4RS47L56QzHVhIi+lIeOVhAGemwKo3R2i+/JUZQja9jouMp4jRkpAED4Ka4EkaxNN4ibuU4qXRItsbW0txsfH0+4h1EE8HsfRo0fx6quvYtWqVUqLm6ivErG8sbERhw8f1joGz/d9VZ8WURTY+xbZNgHkfUyWt8lcwvbT3t5eVFRUpHGs/LrtyD06OjqKtrY2LFu2LM2FRi5UXRefitcYxjwiKkOY88dc4I/yEMlmXX4WWghDmw+ymxSZjv3KpOOuoUWQtwCIvuXLxb9TX1+vDPAok4d+510XJtZCPg02fo8udPPjrVKqeiZLhZcyxZbBtO15uSkdUaBMNl3e6sLG/eHrQddiSRYlch+SdUUV6Zy1JNEYiEajaGhoQFPT7FU0MkuAqs1isRh6e3tRWlqKV155JS1UAQ9RXyWF5L/+678wPj7uhh+YmJjAf/7nf+LVV191rUmsdYq+512NIqsQT1Fgy8mGc+Dbp6+vDy+++CKSyaSU3uA1l/BuxLa2Nhw5cgRlZWUoLi5Os4KwnDrZVTgEVm7Kr7q6WtlWomf8bxSVXhYUVDaP+EG23GSy8ew3P7aO/HhXdL4JUhdWoTrOoaOEeMGPAqT6xq9MJoOF5+aIOEn8okEgkzhdVyHiZeggDJelSV354W/Qbo0WPhnniVBXV+eeShPJRNdx8FHVZeUxUXa8+pSMIyZzzYo4cjwvjOeB0f+LIp3z+QFwv2ctnSr+lIrDFolEsGnTJlRUVODkk092Y1HJIFJMI5EImpubEY/HUVNTg+npaTz88MM4cOAAfvazn6G/vz/DtS1zNarah+dFiSxorJuMjVnGQ3f+4eNvkRJIMvB9g6xYBw8edBVnkRtPJE9LSwsikdkbEFjLl2z+ATL74fDwsHu5M8kvyi9fc7gOZLL5zY+to7DcwjxkY18HVqGy0IZsEvEzoINOAiYLLc8BEnEB+G/p30NDQ9qys2n42T2JFugwYcLf4L+hAI1e18N4XYjc3d2NiYkJ4cKo26Yyuf32KVF6IgsWy1Nj3QLs6TNSNig4JYC0HTUbyJfSZ3lOIk4UWx91dXU4cOCAe0UMD1IOWKVGZgkhVy4pCk1NTWhra0NlZSXOO+88RKNRlJSU4IorrgAAnHrqqa5LjR87k5OTGBwcRHFxsdS6xlp9RGOD5e5Qu/f39yMej2PVqlVoaWnB6tWrPfl5LHS4UGy8LP5bCndBkemp7VkZeLlJ2eStx1T3sjoScUxZVyjb97ysZqYIQynLRX5snYS9kVfJ9tZbb2mlbzlUOUKYHCpT/3NY/mqv46259Il7hSdgZdDh5Yg4JUGug6EJUIfX4Pc7U/hpIzbGC7mzVN97xYSRPefrm+pCxovKZX+j/lNUVISRkRG0trZieHgYR48exYEDB1BbW4uqqipMTEy4z0gutu8ByOBxqbhWIu6aDj+N5XYBsyf7xsbGEIvF0pSV4uJiDA0NZfRxUd16xfiitvMKjMpzfmRcNnqXeGF0vUs8HkdfXx+OHDmCLVu2uLKwMgPw/H8dzp6s75MCKbpaSNUvg4QK4eeIMGLGFTKPyRTZLsvY2JgbE85yqOYZTE2dvKnbL1TavR/zqx8rjkqWIOZlEadEdB2MyIdPfCzgvYWRLgP1umoBUIe/MIWqTmmho0VN5xvW4qSzqxRZqNh6Gh4eRltbW8aiTNYAOnIv4sXwbiAdd6UotITsBJ3sfXLHRSLvnYQjvlJZWRkWLFiAiYkJ9xoZ2WlbnsfFWjOATKsNz12Lx2cv+hVF5uZdd+TejMViOHDgACYnJzEwMOC+RxYyUR8XtbPqehF2rADpV6wkk0m8+OKL6OvrcxUKAELLC59mU1MT1q1bh+npaaxYscJ95/DhwzjxxBPT+hilE4/H0d7ejt7e3gwuloqzRwcD2PoX9X2q75KSEuPLiL0s0Cp3ICs734/8Ilu8qXwg22XRVdKsQjUHkS1/txdUC6ofmYIMAhOTsV/zsug7kQ9fNAF6ub5YiLglosUyDEIlr1zz7guVbDoQkYBpIVXFlIrF0u+/E+VrqnjyfCNVe7Hp86Eo+LAD1E6bNm1CZWUl2tra0hQTtp34BZ3lcbGLuagNREp9JBJxg2/K2pTF8PAwVq5cibKyMjQ3NwNAGv8pLL4ipdPU1JSmNPDcJ5mbS6TQULqnn346jhw54l6i3dbWhubmZkxNTWUQ1YFZJW5kZEQpL5u+7ECDaFPE88d49Pf3o7293Y0nxvZByk/mNqf8Vq9enVYnogM0OjHjRBDRH3K9jmQDYZYlyEb/uFOoTjrpJBQVFaX93XbbbcpvHMfBnXfeiSVLlqC0tBQXXHABenp6ciRxJkwnQVFckaCQTagmA3wuDmiRD1+HD6GCLgdEl1BpwsPiLUMmsoksPuz7tNDTjl4Vw0ZkIVSd2JJZ2/i6YC089D3dR8dbD9lFWRQMlOdVDQ8Puy4+ID14q0mgSLoEWNYGVM+xWMx4HNMhgXXr1mHZsmWoq6vD/v37pafQdPk5KssSMOva7OjowOrVq13uE/BeeAk2ZpfqhGY8Hk8LJknKRDQaRU9Pj6ussQpdS0sL1q5d65aHl1dUbtF4FW2KVOM6lUqhp6cHU1NTacFKRX1Q9D3lNzo6mlYnOsFtdSE7STnXEWZZgmz0jzuFCgC+/e1vY3Bw0P27/fbble/fe++9+P73v4//9b/+F1566SXEYjFcfPHFOHr0aI4kfg9+tOdsDJwgnY7leMy1AS1yIYhOKoVV56YkTJJLFjCTFmXi79TV1bmWIUBMFpb1OS+LDyuT6kSXLvg69eqDvIWHvh8dHUVlZSW6u7vTysQuynwoCr4OaGGiO/nYhZpchDKrCw/eOscikXgvBIMsOrVsw5RKpdDV1YWpqSm3jvbs2YNjx45hz549wvpj8/OjuJMlkJSB0dFRnH322SgtLXX7JN+PKQ3RiVr2WXV1Ndrb2zE1NYVUKuUqaxQhm9qQFC52DIgI3mSF5DcCbBl1aQVUd6eccgoWL16MdevWuXXR2tqa0QdF/DK+DlQbtlwjiNVmriHIRv+4VKgqKircBSoWi6G8vFz6ruM4+OEPf4i//du/xRVXXIE1a9bgZz/7GSYnJ/F//+//zaHUs8in31vHXKwaeLwLaD747rMBlctIRyERLVjkUqJFmRY8dpGW9S3Z7yKLDyu7iWVUZ8Lm3/HDjaPvVNHevVy9LChWEMk2OTmJ7u7uDEuMCiprmw5fRtYvSObR0dE0eaPRKOrq6oT1p8vPkSnuicTshceNjY2uUknpytzaMi5ZKpXC0NCQK+vOnTsxPj6OnTt3YmZmBqWlpTj77LNdayhvcWIVPraO2at4WJdwUKt7LBZDRUWFS5YX8QBlkLkS/ZKtZePJr7eiUNadXCDIZvi4VKjuuece1NTUYN26dbjrrrukMXEAoK+vD4lEAps3b3Z/Kykpwfnnn4/nnntO+t309DSOHDmS9hcG8ukmYweV1yQuGnj0LJVKaRO25ztERGgVp0kHogWLXEpkNeHvEQTkfUv0OzvRU7Tr4eFhrT4iqgOdMvN9S8ftJwMflJWVRTR589wwAO7lsZFIxJWLrF+sJUbHUqVyoenyZXi+XSqVQnNzs3uPIAAsW7YszRImsqx65cdb4vg+RCcGa2trpRxC2eaMtR7RiUbyBKxYsQLT09O48MILlSFPqBzULiyHjlWgeMU6qNLA93fZuPHqXwRda6EIXmR/U2WB78teVyOFiblEnj/uFKqvf/3r2L59O3bu3IkbbrgBP/zhD3H99ddL36dGbGhoSPu9oaFB2cB33303Kisr3b+lS5eGIn8+/d46ypzqHXoWiUS0CduFjDB2Tvxk4cVp8pM361ISWaYIor4l2yHLCOJ+FH4q89jYmJL7xSs1fq2dKmKxzkJE71CMMlqYyTLDu3d0LFW6Fl8Vx4lXRqanp914WCw3TUWMZtOfmprKCMIqsnYCyLCosgR+en7w4EE3rhTbbmzdsjy2yspKHDx4ECtXrkQkEnGtP6WlpZ6KC9surII7Pj6OZDLpulBZl7BJ3+WVV934fKL+JRtjutZCkVwiZTcI+L4cJq/LC/k0IphiXihUd955ZwbRnP9rb28HANx88804//zz0draimuvvRY/+clP8OCDD2acCuFRVFSU9m/HcTJ+Y/HNb34T4+Pj7t8bb7whfG8u+aZpUAGQTiYqhU822fpFmHXnJy1+x+snDX6yUPFp+Lx1JzTRguVV914Ki8iFQ3Kxi6iJwheLxZQLPZselR+A8c5ZR+lXWZX4hZq4WqQIiBZGXhEU8dQGBwelShKrcMusFuTmSiQSKC8vd5VyPk9VSI9EYvYuuh07duCJJ57ICMLKK/wi66LKTUULMpB54g9InyPKysqwadMm1+LV1DR7xx6v5PFzDlteskTSReatra1oaWkRXkHk16KqOxZlXDFe2WTnUtPTfJRWIpHIysY7H7yuMI0I2V5v54VCdcMNN+DPf/6z8m/NmjXCb88991wAwKuvvip8zpqVWQwNDWVYrViUlJRg8eLFaX8ihGnOVE3WYXYiVmY/8nsNEF15wyDG8wu0SVqmLgNRufi68MuT0oVu3YtiBqnS8bvIsGmpFG1ekSDlgeqC3zmzhGOTOhBZlUSbBlE4A5nlR2Td4t+RRZAXKdyNjY0oLi7OUIhIhqqqKhw5cgT19fVu3bGKvyqkRywWw8TEBMrKylBbW4vy8nK0tramWT5YhZ+UtwMHDrjyiMpI3J1169ZlEP5FoDrjDzKoIu0TKP/u7m7XEslaZk2UFJGFsKOjAxMTExgdHTWybKkso6nU7AlBXVe/H86hbpqqTYmsXeYKsu0+nBcKVW1tLVatWqX8O+GEE4TfUnyQxsZG4fPly5cjFovhqaeecn9LJpN45plnsHHjRl/yyvgDQWFKKlbJpUJQF48XaAHo6OhQHt8OkjdfJyZ8FwK/sHrJE+ZgDrprk7U1b/nxWvjY79iF1U/bqMrEuz94BYbfOQPpASZFC6Oqndn+IIsR5XUqjNxnfX19bj+W1Utra6urvIjqBIB7MjYajUr5Sby1j8oo4naJ2iYSiWDz5s045ZRTcPbZZ2PDhg2IRCIZbj7W3TYxMYEVK1a4pyZF6QddiKm9Vq1ahcnJSTcMg6gd+XhOQeYpkYVwenoa4+PjbjwwnbEos04Bs8pmaWkpTjnllAxXv0zJkc0lLOncdL5hFdF8cJZy4a3JtvtwXihUunj++efxgx/8AF1dXejr68O//uu/4stf/jIuv/xy994tAFi1ahUeeeQRALOuvptuugnf+c538Mgjj2Dv3r245pprUFZWhs985jO+5PBD3NWBikugu4OSXbzKwo+Z3ARk+Zmens64lJSgcivoDEy+Tkz4LmweADLqAhC7u0QLbjYnEFX6ssmWFqNYLGZ8wmliYgIrV67UjqpuWn4V6ZdfsHlrl2xhlLUzpZdIJDA1NeVe3WICsqp1d3e7ljWZeyoSiUgjkVNaR48exRNPPIHq6mop3yqRSLiWIrLgzczMCLldPFeO2oKPiq7i9dGmgiLF82U0saSoLCPUXvv378eqVavck4uiduTjOenMUzI5RRbClpaWNKK/DlTWKarDiooKtLa2ulZRtny8kiOb08mtT/3AT1Be3p2XjXlKlGa2rUdA9jnIx9Vdfrt378b111+P/fv3Y3p6Gi0tLbjqqqvw13/91+61CcCsErVt2zZcc801AGb5Ut/61rdw//33Y2xsDOeccw5+9KMfSd2IIrB3+S1atEiqDOQT5LaR3V+nUmL85uelFCUSs8eweXnIJUVWFBb0rLi42J1gdOVlZQIy7/4yyV/0zM97fkHH+Nm74LzKFkQmkZLpJZ9uXkHriu9run25v78fAwMD7ok+Vfr82GEXDdlErpt+MpnE9u3bEYvFUF1djQ0bNmS8Q3VEpy7Zk3Ne5fTTV/jym/Yn+iaVmr3bj5Vb9i5/z53ojkE/85TOnOGVrmru0JWJl4PKy5abT1uUhuyuQRG8ZMvGPCVKM+z1JUzo3sV7XClU+USQy5HD6GheyktQJcIPdNKTya1THpqoVRO0qk51FgM/E6/pe37BL/IAfNe3Ltg6q6urU16UbJKX16XLftLUeVf3HZ1Li0XpJpNJDA4OugqVSjGhy5jXrFkj5ADJlA6d8nj1Fb8KqUzJZvOjk79EHOffVcnupQiZjkV+zmC/j8fjSuWX7ft8/enKojN3ec2bpv1RJz0T5VoHYcyfuYTu+n1cufzmKsIwhVIaIrKurgvSxP/sx+0mgkwelZz0zIvk7Ocou8oKo/OMrY9sm591OV46lhRdsHmICMR+89K9G5F3WxOPSRVmQNUHZDKy5SCXGL94qcYAncYCkBZoUSZTLDYbNHLt2rVwHEc4jnXqU5a+V1/h5w/dcBXk4uLJ+vF4HBMTE9i/f7/rXo5Go8J3AWB8fBz/8A//gKGhobRnsdh7JxtFhG7duVM2Z7DlZl1xLKid2Qj5Ir6USBa+j+jMXV7zpsgNyyOZTLqnJXXS4w9V8P0vqPueRS5cf9mCVajmAMIg0lEaADI6q276JgtgkMUqCEQLNpDJafKrzKl4Zl7Pcj1J8Ds9WX37lc1LSRQRrUmRIMVTlRYLnfYiBYolYMfjszGZ6Ci5aZqyMrMKRSwmDnXB16uOUq3ixrALLZA5jmX5slCFTGBlEcnFKi5AergK1UIqy/Pw4cM48cQTte7K27ZtG6anp/Hv//7vaXmSrFVVVcIwESQ39Q0eMoWGb49UKuVawug7vr7ZWwhEfCm2bKJ+JGsLVTuJykDv8CdRWbCbHZN5WLaO6CiLuqA8TA4IFQqsQjUHEIbiodr5ZEOxCUMJ9APRwBb9pltmflKIxeTXlng9y3V96CpKfhULr+jmPLk5iKwq5ZhNgydgA5CSuKkcJpM2yQmIw0mwkFl5EolE2mksUTnJrcaTtUXjWNRHZbLpWvp4iBQXvkyAuD5FeTY1NeHMM89ES0tLhoJEJyvZWFNf+MIX0NDQgJtvvjnj4Aiv0PIyDQ0NGSufImtzJBLBggULMixofH3zCqQoLZN+5AWV1VE2x8lOlXpBto6IFFe/GzXKQ/eAUNjwqwgClkOVMwThUFnoQ+R/D+KTNyVPFpL/P5s8LxHx1S+HR+Uq5WHKa1PJJHO7qepBlo4OCdi0b4hI5iIZTUjIfrlQ/LfEJ2psbEQ0GnW/F5HsvfLg27S9vd2NhdXU1GTMi2Kfk0VNVjeyvsfL5NW3+TzZb/2OFV2EOecEmTNkdeZXrnzNpaI5xpLSCwwmCpXfSS7fC7gX5pKshGxMCqZphvm+DumVhUyBURGEvRQA3TxMy6aTB0tept8BpHGYRGmrFgsAytOxunLLlB2vRZclIY+NjWHBggVoa2vLsAyq2sz0oInsdKLuqUWVXHQAoaamBjMzM0plyLRORQjjxBmbBilVbDvyBHyVAmpSV2EjyOnluTi/iyAqhyWlz2GYmEplnJRChG65gphcw0ZQd6iuC9I0DZ33VQcQAD1XgxenR8QRMb2WwsTlKGsPXQ5WKpVyx0skMnu1B8WbUhGtVe47L74K/74IIhcqldUrGCblPzExgTfffBP9/f3o6urSivNTV1eHQ4cOIZlMCgnGfL3Sv2OxmNCq19TUhObmZvddHfBtSq7iZcuWSV3oVB6vuHk641fU/0z7GZuG6Fu6AgeQc9904MeNZjKfqjhnJuT1XCLs9SJIOaxCVYDIF/9IBd1Oq3pPt1w6E6Uf2XIJkkkUXE+XYM0Sa00C7bHEUb4e6RnxIGQWDz8n8XQUABmBNuhErMvBEuUhUjJ1ycrUJl5EYa82TyQy78gzPTXV1taGM888E83NzUilUjh69Kiw7VkZiEA9ODgoJBjzGzYam93d3UJLBHGNpqenXR6U37EpUlTZeqmrq8OBAwdQWlqaMVfIFEGRHCb9zw9fibh99A7PPSKXqQ505wL2dxMljNrP6wolWV75gF+uVjZgFaoChNcAZzuwjNwaNnTIp6L3WOhOXCpyt45shQCSib+qAzA/3s6/ryLS0gWrsdjsUXS+HmULP7vwqerT7+RJ3/FWoCCTsUrplEE0XkRKJqtI+JGRr0OvNpcRq+PxuDTsA49IJILly5dj2bJlqK2tRW9vr7LtKV/2Sh+2PkR1qTM22XeCXmOi6vvDw8NYuXIlDh48mCEPX/9hzREqC46J9QqAG4rB5JCArD54azRbXtMNuun7+Z5/s2GA8DsvWQ5VjhAmKd0v7yEIeL+yilujSzA2yU/1e1hcijCRLUKmqn5FJGtdIikfXVuVhx8ehYjDpOpHOsjmOGC5LWRxYfMJwifh+Veqfp5KpTAwMAAAriyq79hvRVG2TfuiznhTvROGDDJ5qA5EaXvl79UGquc8yZye6/ISgWC3OYjqg887l/PdfOFOseDHtyWlFxjCVKhMlI1sQZVXNhc6v2mHIVO2lCQTyEisvJsuFotpLWD8whNUYZYRfGXf6EZAN5Hd9Hs/So+oTLrysHUEqKPXs/mkUikMDg6isbERIyMjShK8LD+vgwV+6kxnbIV1WtZUZhlZnKwqxcXFGBoayqhLVRulUuKo8hSjClBvJv261FWYj0pNPsHXpyWlzyN48TkIQUyvJpwDlQyAuQnWxLxKadfV1Wm7QvzIJJJPRVrWgQ4x2aseUqkUhoeHha7WmZkZRKNRLFu2LCOGiyxtlvdEC43KhabiWADiemY5JHx/8RsXiZVdt6w8ZO4SNm2Sma0bth6IK8S6Sr3cXGwd6RB9ly1blnbVzPDwsPSyYoKOO1RnvuDrUsRvZMckX4/0Pc8lJKWEJeHzvB8Rj5KssOTa9mpjtuwiNxgAYV2q2ojndrEuY9XYYOt9ZmYGIyMjnu/qIizFbL7Br+vOb31ahWoOQFdRUvn3TfPQzVPUYU07oylpkhbRgYEBHDx4UIu8riuTqDwkHxAsCJ8OMVknunxdXV1GOdi0qf3Zqy900mYVDNVuV1UOGU/H7zUagD4J36Ss7HeA98krUZo8n4jSo1OOskjPvLKmO1aI/7Vu3TphZHaZvKI8RH1Ep9wiDpVMsWW/57mEiUQiQ5HhFR7KR6Tw6gZ9ZMtO8yPxBYlnKKpLrzaSPdfpz3w/CZP7o4MgvMW5lneu+V3W5ZcjmLr8dHgWIvh1benwIsLMT5W31+/0jBb+qqoqLdeHDnh+hEldBIVXPrr8NFHMJJ3veD5GUH6HDnTqNix3URAZ/PRRHbl128YUXvLq8n10OFQm74rcooCYCyXqj2Shfd/73of9+/cbu4rj8Th6e3sxMjKCtWvXpgUlPV6QSw4u395sv2NdsPmcX3TetxyqAoOpQhWWYpRtZDM/nToIO3+eHxHmhBNkcAPewSNl+Zj2JdNFNwhM2xjQIwDr1nUY/YdXikhGEZeK58CJDhKY5GuqnFF9FxUVYWRkxBd3jc+byqujkIraTUTQZtOk/0+l3iPoR6NRo+CxrBzt7e14++23ceTIEaxatSrUca6zKQp7vszGBiKs7/lDL2wbk1t3fHwcra2toRxaCArZfGQVqgJDEAtVIe+ewlqQwiCghoVs5WuqPJC5mo0ppXO9iCpNLyuD13dBIVM+dBdmfvGVnfASKZ+i8ugqm16WqIMHDyKVSqG0tBT19fVSZY9XqFT1IRoLbHmpf1BdsAoHr5zR99XV1ejp6UFNTQ0cxzFWSEVWIxGpW/U+b/XUTZOtq1hM79CFqDwA3MjyExMTxuNJBa/+FEZ/85tmWDDJT9RvReN0fHzcl4IcNqyFao5gvt7lJ3IvmS7ChRAGwusdQN/tGiRP2akkNv8wZMlHnVO+MouMicIpciGwFg+R8mnqOuTlVl09w7qf+etFePlNT0myv/PhLXhFhCAKdzE5OYkDBw5g5cqVShl5OWKx98JoAEhTjFKpFKanp6WKvkl4AFaxYtMEwu/vfi1sXpSIsCxUfpSWueCV0HEBF6IBwSpUBYYgClUhW6uCupdEaeQCpke9AfXx9rDgl1NkmjYQfJHyA5VCYdIPyNLDX86ryiOIG1DVz0mx0Y11RK6O0dFRNDY2asnotdP3WpTIGqBrleEtpaQEs7GwdPiFfvqc6ZwS1NpqOhfEYjF0dHRgenoaLS0t2ncWmshcyHO+X4RFp8hH3diwCfMIZNpPJAonEjghElFfyeEnDT+gRTSV0js9oiMn+05dXR1GR0dRV1enzJuXw1QunbrwU8eA98kvXZiWiUUkkhkGIAj4ctBkCyDjSLpumUXjTdXP6X3RSTZKh/3/WGz2BFsymcTAwICWjPS76lofNg++jSKR2aP+FRUVWi4uVo5Y7L1o6k1N6VcWieRl82af+53HvPq7Kl0dXpkqffqeDftA+Y2OjnrKnkwm0d7ejmQyqS0z4F2v2UI280gkMk92+k2nUNdDq1DNAfhdQPOBMJQjL4gGvekg05GTfUcVL0m2cIrkkk2wJvA72Yr6kZ8JlC8TpWFyb5voG682ZGWlEAL8LpfSAPyHuNAZb7zCIXqf/T0Wey+kCQC0traiuLgYRUVFQiVdB1QfZD0BkLHo+1EovcrrBXLrsm5CQD+si0oxFEHVXjrzgqpsImU5Fpu9GLqtrc3TytLd3Y2JiQl0d3dryyyDbNyFqfyEqazw8sViMc9wHzoo5PXQKlRzALlQUlRQWWDyAdGgD2uQycqnSp9fONn3+H/LJtig0F04WN6N7nc8+DJRGib3tom+MbFEyMYEpcFbUoJC1e+9rEqRSMT9o0CgiUQCjuNgZmYG3d3dwnS9xhqvPLJl5utSlpbod/43clF6XUDM/i4KPkt1wFoORWnw1r+BgYEMS56snnnZRJeT69YvLwubn66VtbW1FeXl5WhtbfWU2QuycSeK0+UXYSorfL8Jax3L93qoguVQ5QhzmZSeDy6RCtn0oWebrK1z1Yqf8oVBrvZblyyHhxY9rwnPDxk1V9wJUR8IK94acUhoLA0ODqK6ulrIKZGR69n0dOvDi+wuKysR0olwL7uehU1Tdj2SSGYdfpSfOF2mvKigYz3MvmnK9aNDCX7Kkc0xFRZnitLKJ6fMktILDHNZoSoEMrNMnmxMAvkuXzaVumyXLyzZTYnGQHj9UoeUrpLP5JnXu14Lkg5ZXVU/onfYtOLxuJL8b0qg16lrE3jJ4CdvPzKFOWb9xo3zU1ZVXmFutoKOy3ydSiZYharAMJcVqnxCNCBzNbj8TgbZWCRyqehlY5EyLYNOG7OWkEgk4jtOlx+oQjAEsRjw8FKKROEUVAEzTayXgPoybq+2zIY1lM+b3F58OwSJPu8noHA2LFRBQwmI6onvCyq5863EsMj3Rtee8jvOUQhcpzCQTb6UDDzZ15SgGZTYKeII+EnTbx+Q5SXj0vCy8zwtr3S9eDS6XBf+jjkTpFKpwJdtmxLidcrldUqO5BDdC0fPgPS7CnV5gvScTvex0OkLMs5PUMIzm46sHbx4VyrozC98WUx4PV7tTmmx9xX6GcuiegKgLbfJPJvt9aaQeVMsrEI1TxHmaY18QkYK9TO4dAc9G/naj+KWDYXPK01R2Uz6APu9LC9dpYXNVyddkZxeigS/2Ecis2EBysrKfNW76SIs6oMyQrys3/Hl4t/j/y0bC3V1deju7s64NJtkbGpqylBsRMoQX6ZEIoGZmRmXTM5Cpy/w6YU1Lth0ZO1AYR50FXKV3EBmW6jCqPAQkfx1xiVPzg9yeITtCzonLQGzedZLPq82ED2fi0YBq1DNU9Bgkt14HwSqju5n4KgQ1s6E+CiTk5Pak5LfvHUmZJF8qtADbJq6ypPJAsZ+rzq1pqO0yBYCWbpecsqsEPxi76e9qC7r6urSFmE/kOUvW2xUFhxRf+WtfyR7V1eX8uQo33dSqRRGR0elyhBbJ7J28aPAqqyXuvBy/dDzpqYm9xSeLIyDCfg2VIVR8fpW1J9FyjRbTj/WIuC964zYuGCRSCQjRltQeMnnpXCJns9Fo4BVqOYpRGbjsKDq6F6TV7YGiZfCkkjoB5WjGEdEyg1DGdWdUHRCD+gqTyYKhu6ErZMm+47O4uGVpsoaFNTaQXU5PDxsHHBUd2Mhs2aIFJ3i4mJX6RD1V7bt6f+rq6sxOTmJ1atXe8pHimhjY6NUGWLrRKXE+1Fg/VpNCbrzS5BQAjIXNGvZMel//Lsqlz7JzdMNgliLdBS6oPCSz8+mKdvUjmzAKlTzHNnwg+u4n2S70LAHiS7fKRbTDypHikB3d7eRRUsF3QlFxIWRvctaH70sWCzCWhxNOUCEMJRqSheAr4VTxwrj9X1HRwd6e3uFiztbRh1rBm9xk/VXth/R/0ejUaxatSojcrdK8Va5JVX8sKBjwa/V1HRuAt7jCsmCwOrkS+AtOybWNp2xRQobuWOB8ALT6ih02YafTdNc4U2xsKf8coS5cMov7Fg7QWOP6MD0JJNJurk8NeYHJrGFdL4LK38veLltciFD0DqIx+Po7e3F6Ogo2trasGzZsrRy0TvA7II2PDzsedeejitL9q3oVJtJPevEgxKlFWZbqvIkJUf3lJpXffmpa/73sEOEpFLqi6Yt3kM2+50I9pSfhTHCsB4FJQebQrbjDiPdMK5JMIEpv4x1JemQvwnZIAebIMydJyuDSf3pWFlZTlsymUw7BRiLZV4/wrqjWIsGuc5U7ne+TkyIzDJeTJguX5l8rGXYL4lY9h1rhZyamkJPTw/q6uoyiPOielGV3cvapuIQ+iXZq+qG5EmlUhgfH0dra6sR//J4RKHyq6xCZeEirIXOK50wJ4igMntN5rncJZpOEqwrSYf8TZA9T6XMQgfkyyTPthkrg0n9ecnOc9q6u7vTTgFGIt7Xj8hcLzoHRbx4L3y/5Tk+phDVh64SQEq916lF3bKKnu/duxdvv/02enp60p75Uep1vmEVatmYCMJrEskTiURQXV2NRCKRlqfpvDDfFTCeb1hIsAqVRdYgG9iFtLsoJFlMFwcRnybIBJNIvBc6IAipVwdBJn3dU3NB8uU5ba2trZ6nAHmlhue1kYtC56CIF++Fr4NsnN4yUQLIlekn7pSORXXt2rVYtmwZVq9ebXSgQQSdb1iF2jSmlYzUrjoxyYa3AJCWp+nYLqQ5LRvg+YaFBMuhyhEKmUOVLX6EjGOQa/+3CoUkS77BcnEAhBbtm88jkUggmUxicHDQjcBt0g5B2iyb0Z/J5QcggwTN5ktxo9j7HE3Lzx+LTySCR9bm4ffeSZkFMQyw9UjcKlaB81N2WRmoTkkx0S1H0D4m48SZfD+f57R8lM9ePVNgKDSFSkT4NCU38+mYkj+PVwSdMHMB3bbjidhe31CfOnTokHt8PxqNIpUK77oWlZxeSkeQPqtqV6/xZrII8+9mS0n0m25/fz92796NmpoarFixIisKOV+PgP9L21WXOQeVsRDHth/kqkzZyidoupaUbqEEaxaWmZR1TM1eZNlCVRjyCda1Vqhmed22Y9tf1Rf4MAXr1q1DS0sLAASKSs+nL3PlkWxsbCWv8pjmT0f0WV6VSMkSjSsTt47XsXgTmVV1pkrX69uamhr3MuUwwfZLXZd3rjlF83Hey5UbMVv55Er+40qh2rVrF4qKioR/L730kvS7a665JuP9c889N5As+SYOshOQ7qkWr3TmAvJd70Dm1RjZgklZdd8VkaF1FjVeoYlGo2l9y4QULfrda8LU7ad++7OMkC2KjyYqq8kizL9LygWdtGPzNyG+89/5PSnX1NSEFStWYMOGDVlVKlj5gpzqE8WpMj2gwSOZTKK9vR3JZNL420JErub5bOWTK/mPK4Vq48aNGBwcTPu79tprcdJJJ2HDhg3Kbz/84Q+nffe73/0ukCz5JA6auHP8BG6UfWuqzGRD+QnjGoqg0DkhFkbZTfqY7ruJRPo9cLqLmiy8gSrookwm0e9ep9x0FJYgbgF+wqZ+FtTyxsvndeqO6kSnPUWLTBhEclVdh9GvTdMwDQkBBLcid3d3K68DKjR41WmurG7ZyidX8h9XChWZoOmvpqYGjz76KL74xS+iqKhI+S27C4/FYqiurg4kSz4tOyaLp2oHa/qtqRIZhtJZCEqcH1DZg5y207nAlXfF6VhwdC5I5iELbyCyrrB56bqiVafcgvRZ3W91rLx+rYAq+Qh+3IAkG/BetHndeclkI8X+TgFz+YuZTWA6L/hZTHWtyLLytra2ory8HK2trdp5miLMuWq+nwzMFY4rhYrHo48+ikOHDuGaa67xfHfXrl2or6/Hqaeeiq1bt2JoaChQ3mFrzCaDy6/7I5XSv2A4KE/Ez/skoyogotc1FIUysVDZAfiWR/fKEx1uESESyQzcGtRiIKtzU1e0rL/oKqd+LTai8ov6WZCNjKp8gNgN6CdGUpB5STU/UB4AfCnkLKgesnHxO4G1IgPi641U5Y1Go9iwYYP0dGQYCHOuyscGP6hCWCibXxbH9Sm/j370owDg6b771a9+hfLycrS0tKCvrw9/93d/h5mZGXR0dLiLHo/p6Wl3AgFmTwksXbo0a6f8snkcnM1jrl3HYurGyecJHdXx7bCOg/t5xwumdc4/133fb1gA+t7PSUKd+tE9JaZb1zrhCsKSXXUy0RSq+YGVBYBR+8vK5ac9/ZZLdO2NrLxz/URcrvIJ4/qnbK95hOPqlN+dd94pJZvTX3t7e9o3AwMDeOKJJ/ClL33JM/1PfepTuOSSS7BmzRpcdtlleOyxx/DKK6/gt7/9rfSbu+++G5WVle7f0qVLA5dThVzsMGKx3F/HYgq+Hkx33KYummya3YNOZDplD8NSqmtxIvDPvWSg9ylquemOnNJvamoyjiYepiVZt2/JLIumfU3HgpFIiIMk+nGVE19MND+w7kW+T5vyGllrVy6J0kC6tVg0H5pY8YMiV7ygbFntg65ZhXggal5YqA4dOoRDhw4p3znppJNwwgknuP/+h3/4B9x3332Ix+NYuHChcZ4rV67Etddei7/5m78RPs+1harQEOauJl9WI50dUBhB/GQ791zuwMKEqYVKNz3eQuWnX2SjTsOWQ9YnaGHTld1vYE4v+UTQtdKJ0jWNAxWWBc8UOu1cqFb8IJbIfFrtCwU2sKcCjuPg5JNPxhVXXIF/+qd/Mv5+ZGQETU1NeOCBB/D5z39e65tCC+yZbYS5cIW9CKomCJWCY5qWzju6C+t8mcjCLJNuv5C1Kfv/fhU0r/z89huRW4uUKt2+GWTcmI4Dv25PPwt9oSktuv0rn5BF8Z+Pc0w2cFy5/Ezx9NNPo6+vT+ruW7VqFR555BEAwMTEBL7xjW/g+eefx+uvv45du3bhsssuQ21tLT7+8Y9nXVY/LqVCIOuFaY4N27SrMmHrnkAj6JjdZfmRm0R2yadO/nMN+SDSykjXvKspLNnYdGRjUdfNCbzn1pKdlJQhyLgxzUt12IOtA77cMpejCn5PmgY9ZSmDrH/l+oCLSm7ZqcVCOYQzX3BcKlQPPvggNm7ciNNPP134/OWXX8b4+DiA2Yllz549+NjHPoZTTz0VV199NU499VQ8//zzqKioyLqsfjp8IQwS0ZHsoGmFtYMi11EymfQ8qq+zOHpBdfrMazEphLYME7GYOl6UCXT7RZBTrfF4HMlk0mghZkNQqNpP1J/4NIj7pXuikYVO/ej0aZO8gMzxruJI6aTNyyg6aaoCG7IhyClLWV3JypBrjo+qr7GnFtn+UIg8pLmM49Lllw/4dfn5MckWkhm3EHlAMvO3CGxdmnJYvKDjVgmjLbPdH0zTL5Q+4SU3yTk6Oorq6mpPeUXlUp1oFPWnXNdN2PmFwZHyI6OOW50/pSeD7LRtZ2cnKisrUVZWFsg9L3s36DgtpHk/H8hm+a3Lb55AtMvkd0qiHVyh3CVViDsgmflbBLYuwy6LzD2gcpH4QRhWLlWf80qf/7ZQ+oRX3ZKcra2tWvKKAqmKXFwU2FIUTNWPxSYIdIK/mkAkv647UPa7Tp2w9SqzIMmsfXx+on6RSCRQXl6OAwcOCOvKZIzx75pa0GSyA4V72XouEKY13+8YswrVHATfcUw6Uq75VToKYa7Bm7915cmmosouGmG7+cJQYFR9TuYqo/rkvy0khV8FkpO/d5AHlTeRSLjhDlTuIeL/iIKpBuHk+QEboiEMjpFIflWZZGVhFSTAW1FQ8arCqNNYLIaJiQmsXLkyLZyFyM3rBRmtAHiPL2cyR843WoBfhLlR81unVqGag+A7jklHytXgU00IhTYBFIJCmitLmF+o+pzICsPH68mXRcrLmus3HRb8glhXVyeMRUTWvNbWVm3+j0gGk8XbC34Ued33dOpexT9iFSSvduN5Vez7YfDEZLwtqgvdmwYoLfZdkQXNhMdVKBbffCPMjZrfOrUcqhyhUMIm5MrP7hUOIIiJOmyugVd6YfGojheOQyGVk++HutG8g4S3kOWRi8jQQTiXupHodfPguVOm5Q8y7ti8ALj/T2mFxUkEshMaQVbHhcI/PN5gOVQFiny5uQi5creoNHw61Sa6yNYLRA4NEonY1AWlcm8FyZcQttWrEFyquehjppYHslaMjY0JXUMqy4vqdKLI4iC6USCoJUH2vQmfTfWNyX2OftrXtPxBrLYsNyxsdzqbRrb6uixda40qbFiFKsd46623lM9potM9qq2LQuBOsfA7MSQSCXenYMo18Ju3yr1lAlm+fid5WdlVBF2/aXo9ywd06o0n/s/MzLgKD8/5Yl1pooMeupsAWQiBoIuv7HtThZ/flIi+CaOtY7EYotGom26Q8ptyMVluWNjudF5J93M9ld/6nSv8w7BRaHOPDFahyjEaGhqUz2ly9HtvGSDufIXAW9I5veZ16qeuri5t9++nXKaTUtBJTOTiND3FJIIsvo+KoOsFVX0G6UPZmBD9Ksb8aS+RhUZUVtP8ZKe5wl4UTBV+flOiI7sfyO4kDAteFkVRW4WhkLAKs461XCRnIczHwNxRVAqlvrxgFaocw2sgmx7VFiGMxSAb0BkUqlM/IrdEIZRLBC83TDbdBiICre7EqarPMNyddDw8jAncVCk3caOIfpNZnmSQneYKe1Ew7T+8S1I2XwQNwJrtselFK8i2JUdHMZXJqZI9iJJj+q2fcZkPJaxQ53kelpSeI+SSlF5IpGAWOnLJCOuqbwulvDISrYgIG4bMJmnkm8xKsqZS791N5yWHqnyqC3L5sobdP0wI6uxvuqTvXMMSoP0hW/NOkHr3S/w3GZdzqV+E1UaWlD7HEKbWr7M7y8cuQ0cuGVfFTyybXIPd7aVS793RJ5I9yA7azynJXO7wRH2LytvU1BRKiI/u7m5MTEygu7s741k2LEO6LlqVNdLkaH0uMZcI0GHykYIiW1awIPXul/hvMi4LsV/IkOu1wSpUBYJcN3yhKCEiBCGN5xMkBwDjC19NIGo7r0Ull2RWVd8ykUPVrq2trSgvL0dra6tnHmH0D10Xral7xwTZVhxERHzeSpxvvk0h85F0oFOHpq5snW+9YPLdXCLG53ptsApVgSDXDV8oSogIuSaNhwU/uz0/ELVdoSwqxLkh61wQqNo1Go1iw4YNiEajoSmTqnR0x0vY1kgWYbWx6nSoKn0V3yYMZUsnjWwqrCo5wlImg7RhoYzxbCEbCnuu1warUBUIct3whaKEzEdku25F6ReKgkyhCcg65zVJhjGJhrXQsOEm+LAlYbSpV1mTySTa29uRTCaFz8NqY1l9eaXPWmCzYSUyDYOh+i0IsmkF021DUV8plDGeLcwHhdEqVAUKdkDly9ReCCb+4xWmdZ8PBVln0hdZNbxOQJoirIWGDTehE7bEdIx6nahS8cKA8NrYb0gBlQU27PhO+UQ2rWC6bSgaF/N9E1wo7R8E9pRfjkCnBEZHR1FVVeX5vuzqhFyeqphLpznmG6jui4uLEYlEcnYyLOyTg5ReMpnE4OAgmpubEYlEAl0Fks1TnSYn8kzHqNeJKtXJxTCR71OxQfLPRdvn6uRtLtKxCAf2lF+BwitSOoHV1vOluc+HHUMYyFfcleLiYtcNlS0zOF82E4uRTv/wck/62XWHzSVi3XskTzQa9ZRLZ4yy9evFsWN5YUGh6rOygLC5gp/2o/KQEst/Wyiu47D65lyxRlkvRjqsQpVjeEVKJ7ADKl+DK+x8C3nwqWTLh2+f2r2qqgrj4+Ooq6vLSt3xZTNRok36R1NTE1paWtKuACFrjSnC5BJNTk5ix44dvpRWfoyKyhSm68Zk/BQyH8VP+1F5APi6vsmE8B5krPFlK+Q5LwwUcj/LB6xClWMU+o4jm9AdfKlUCv39/ejv78/ZRKSSLZ8WQopoPTw8nJWJiy9bGPGxRG3GpxtkIubTIjL31NSU0eJFnKkVK1Z4RrvWgahMYfadsKyHrHKbD/jpY1Qe/tog/rmsnk0I70HGWpj9fC4g3/HtCg1WoToOka+OqTv4EokEBgYGMDAwkLOJSCVbri2EosCdIvnCaEcTa5FXfmG7C3VBZO6dO3cKSd8yuSOR2St6Kioq3GtY/IDSr6ury7iuJcy+E5b1kH0WpA+Zfsu/b/K9LmFeViaTuguzb2Zr3BYKCiW+XRCE2R5WoZrnEHWWfO2adAcfLUyNjY05swoVEmdB100UZrgAnUChXvlly13oBQryeeGFFwqP9YcVaFQGSn94eBiRSGaUf7/g2yAbfVTGpzI5tahbVv590+91Fz6v8eOl2PH1rMrXSybVuA3zXstCQrYUxmxZw3TnPx1YhWoeQXcRDLNjZmPwDA8Po7a2FtFotCAUnFxDt33CDBegEyiUiPKsBYZFvpRSInOXlpYKSd/ZdkuEdYAkyAEBVTp+oJO3aVn5902/160PU/efV7qq536UI1U8r/mAbG3YszW/6M5/OrBhE3KEXFyOLDrGnu3jt9kIrTBfjwzPpXLJZO3v78fAwACam5uxbNmyPEo4/xDWpc5sOl5hKWR55CqEgwmyFZLAK13Vc69QGLkoT6FhPpSLL4MNmzAHEXRnKdK0s201yMbuv5Dcb2FiLhFUw2yD+cQZ8QM+PAMfhZ2QDYujV5+TtfPw8DCqq6sxPDwcSBZTmBxs8As+HRN+luyZn+umsjHPmYy1bI3L+TB/+y2DVagKCEEX3Hx05PkweLKBoMTYbMviNx0AaG5u9tyFs3nOJUWSh18itaj8FH1dFIVdtKv3W2/smPTb57LZV3MZoiRXyrzJPJjNU8wUCqSzs9MX10wkq+xeQ9nGIGzMpQ2ZVagKCPP9CGo288xG2kHS1CGWByG7BpXFT16JRPo9fbp5mvZr1SSe60mVJ23rLvii8re2tqb9V4ezFnQ+8LvhCWOjJGuzoCFKTPpCvpR5L6UxW6eYKRRIZWWlMddMl4PLbxCyXbdzaUNmFaoCwnw4gpqvPLORdpDTODoLgw7ZNYzy1NXVYXR0FHV1dcZysPB79Ny0X6sm8Vz1V9mCyJZLtWiKyk/R10VR2PPhrg8buqT6ICFKUqkUOjs7tQOx+lVKgyrwXkpjc3MzmpubEYvFPC/FNgGFAikrK/Mss07MLFH98RuEoAYAr7rOl2XfDywpPUfIBSndBPkgDmYzz2wQVgH4Jpya5iUju4ZRV14HB0RlDquN/JRD9E2Q+tD9ln2PFhfVXYqmBzLmA1lXBb+kepN6icfjmJycxPj4eKDYYV4IetjGpEzt7e2YmJhAeXk5NmzY4FfkwMhX/5wLd8bqrt9WocoRCk2hshAjHyclsw3aAQLwtHiEPbnlcrKUtZOuDCan41T56aRfqAtHEIRxKlGHm5eLsUinHFevXo3R0dGs5sefqJzr840p5kJ57Sk/i+MGYfJr/Lpe8sXx0cmXOE86ASep/GHdHZhLc70fF5PsPZ02N3XJqeQoJOKtX1l03HVBTzfmyg1Kpxx7enqy7mrmL8WeS5yhMDDXXNsqWIXKYk7DlFPhBb+DO1+TYNj8Jyp/WHcH5nKylJVRV4Zsy6pKv5AWUZOTYiy8FDFZGQtxQQ2bJ6SLVGo2aG5xcfGc4AxlE4W0ydCFVags5gxkp1DIFJtr4imLfBEnTRWlMKwphYpCtiR6QVTf+ZK1rq4OBw4cQHl5uZGC56UUmvSpXB/N58EfJMiVsmdykna+o5A2GbqwCpXFnIHsFEpZWZkvgmqYAzZfu2zTfHXjKhWi1SAMFOokLapv1SnTbClbqVQK3d3dWLFiBSYmJowUai+FyaRP5fpofqFgLm5ksoW5WBdWobKYMwj7aPlcHLBBwSsUhapgZAt+2jyflqLR0VGkUillGImwY5ZVVlZiYmLCeJMSphKeL5cbIV9x+rJJzi5U66wMc3FTZxUqizmDsAfYXBywQcErFMebUumnzWVKZ7YXKCJGRyIRaSwgNsRDGEoxWXxbW1tdZY1FtsvMn0j163LLZhypbCHbeYaZPlu/c01RyyasQmVRsDgeB2q2y8wrFMejUmkKmdKZ7QWQ8qW74tg2CuN6GRG8DiUUwqLvNUbCOKgS9kZDZ1xne3MTZvpsOwXpE/NtjrcKlUXB4nhzRwHHZ5nnKrK9AObzdKKsbIWw6HuNkSAHVQhh16nOuM7nKVNTsO0UpE/ouq7niuI1rxSqu+66Cxs3bkRZWRlOPPFE4Tv9/f247LLLsGjRItTW1uJrX/uaZ8j/6elp3HjjjaitrcWiRYtw+eWXY2BgIAslOD4RRnyabOQfxnemaWejzKYyFNrklW955tJx/7AgK1shLPpeYyTIQZVsIez4brmCzqGVsHisubqKK5uYVwpVMpnElVdeia985SvC56lUCpdccgmOHTuGZ599Ftu3b8dvfvMb3Hrrrcp0b7rpJjzyyCPYvn07nn32WUxMTODSSy+dM4Oi0JHvBcvvYNX5zjTtbJTZVIZCm7z8yhOWImaq5GZTQc82csWRCpK+1xgpREU3zPhuuewn2Z4LdF3Xc4br6cxDbNu2zamsrMz4/Xe/+52zYMECJx6Pu7/98pe/dEpKSpzx8XFhWocPH3YWLlzobN++3f0tHo87CxYscB5//HFtmcbHxx0A0nyOZ8zMzDgDAwPOzMzMnMpf57tslk03bVMZ8t0ePHh5dOUbGBhwXnnlFeell15Kezfb5RsYGHBee+01Z2BgICffhYlsy3Dw4EHnj3/8o3Pw4MFQ0iu0vuqFMOTNZT/J1hyTrTSyBd31uzjfCl0u8fzzz2PNmjVYsmSJ+9uWLVswPT2Njo4OXHjhhRnfdHR04J133sHmzZvd35YsWYI1a9bgueeew5YtW4R5TU9PY3p62v33+Pg4gNk7gQoRqVQKb731FhoaGvKys6uoqMCxY8dynm/Q/HW+y1bZ3nzzTUxPT+Po0aNpfToMGfLdHjxYedhyNzQ04K233kJtbS0OHTqU1n/Lyspw4MABVFZW4sCBA24dmdSbH5SVleHo0aOoqqoyGu9+vwsT2Zbh6NGjOHbsGI4ePRpK+n7acq7PdbptFFY5deQNY0xle1wGAdWz43H18XGlUCUSCTQ0NKT9VlVVhWg0qiQ4RqNRVFVVpf3e0NCgNIPefffd+Na3vpXx+9KlS31IbmFhYWFhYZFPHD16FJWVldLnBa9Q3XnnnULFhMVLL72EDRs2aKVXVFSU8ZvjOMLfVfD65pvf/CZuueUW99/vvvsuRkdHUVNTY5xXoeDIkSNYunQp3njjDeWN2/MNtty23McDbLltuY8H+Cm34zhalrOCV6huuOEGXHXVVcp3TjrpJK20YrEYXnjhhbTfxsbG8M4772RYrthvkskkxsbG0qxUQ0ND2LhxozSvkpISlJSUpP0mO3k417B48eLjagASbLmPL9hyH1+w5T6+YFpulWWKUPAKVW1tLWpra0NJ67zzzsNdd92FwcFBNDY2AgCefPJJlJSUYP369cJv1q9fj4ULF+Kpp57CJz/5SQDA4OAg9u7di3vvvTcUuSwsLCwsLCzmNuZV2IT+/n50dXWhv78fqVQKXV1d6OrqwsTEBABg8+bNeN/73ofPfe5z6OzsxO9//3t84xvfwNatW11NNR6PY9WqVXjxxRcBzGqlX/rSl3Drrbfi97//PTo7O/HZz34WZ5xxBjZt2pS3slpYWFhYWFgUDgreQmWCv//7v8fPfvYz999tbW0AgJ07d+KCCy5AJBLBb3/7W1x//fV4//vfj9LSUnzmM5/BP/3TP7nfvPPOO3j55ZcxOTnp/vaDH/wAxcXF+OQnP4mpqSlcdNFF+Jd/+ZeCinOSC5SUlOCOO+7IcGXOd9hy23IfD7DltuU+HpDNchc5XucALSwsLCwsLCwslJhXLj8LCwsLCwsLi3zAKlQWFhYWFhYWFgFhFSoLCwsLCwsLi4CwCpWFhYWFhYWFRUBYhcoiDXfddRc2btyIsrIyaSDS/v5+XHbZZVi0aBFqa2vxta99DclkUpnu9PQ0brzxRtTW1mLRokW4/PLLMTAwkIUSBMeuXbtQVFQk/HvppZek311zzTUZ75977rk5lDw4TjrppIwy3HbbbcpvHMfBnXfeiSVLlqC0tBQXXHABenp6ciRxcLz++uv40pe+hOXLl6O0tBQnn3wy7rjjDs8+PRfb+8c//jGWL1+OE044AevXr8d//dd/Kd9/5plnsH79epxwwglYsWIFfvKTn+RI0nBw991346yzzkJFRQXq6+vxl3/5l3j55ZeV38jG//79+3MkdXDceeedGfLHYjHlN3O9rQHx/FVUVISvfvWrwvfDbut5FTbBIjiSySSuvPJKnHfeeXjwwQcznqdSKVxyySWoq6vDs88+i5GREVx99dVwHAf33XefNN2bbroJ//Ef/4Ht27ejpqYGt956Ky699FJ0dHQUXPiJjRs3YnBwMO23v/u7v8OOHTs8rzj68Ic/jG3btrn/jkajWZExm/j2t7+NrVu3uv8uLy9Xvn/vvffi+9//Pv7lX/4Fp556Kv7xH/8RF198MV5++WVUVFRkW9zA2L9/P959913cf//9OOWUU7B3715s3boVx44dSwupIsJcau9f/epXuOmmm/DjH/8Y73//+3H//ffjIx/5CPbt24dly5ZlvN/X14ePfvSj2Lp1K37xi1/gj3/8I66//nrU1dXhE5/4RB5KYI5nnnkGX/3qV3HWWWdhZmYGf/u3f4vNmzdj3759WLRokfLbl19+OS2Sdl1dXbbFDRWrV6/Gjh073H+r5tn50NbA7DV0qVTK/ffevXtx8cUX48orr1R+F1pbOxYWAmzbts2prKzM+P13v/uds2DBAicej7u//fKXv3RKSkqc8fFxYVqHDx92Fi5c6Gzfvt39LR6POwsWLHAef/zx0GUPG8lk0qmvr3e+/e1vK9+7+uqrnY997GO5ESpLaGlpcX7wgx9ov//uu+86sVjM+e53v+v+9vbbbzuVlZXOT37ykyxImBvce++9zvLly5XvzLX2Pvvss53rrrsu7bdVq1Y5t912m/D9v/7rv3ZWrVqV9tuXv/xl59xzz82ajNnG0NCQA8B55plnpO/s3LnTAeCMjY3lTrCQcccddzhr167Vfn8+trXjOM7Xv/515+STT3beffdd4fOw29q6/CyM8Pzzz2PNmjVpl0Ru2bIF09PT6OjoEH7T0dGBd955B5s3b3Z/W7JkCdasWYPnnnsu6zIHxaOPPopDhw7hmmuu8Xx3165dqK+vx6mnnoqtW7diaGgo+wKGjHvuuQc1NTVYt24d7rrrLqXrq6+vD4lEIq1tS0pKcP7558+JtpVhfHwc1dXVnu/NlfZOJpPo6OhIaydg9vYIWTs9//zzGe9v2bIF7e3teOedd7ImazYxPj4OAFpt29bWhsbGRlx00UXYuXNntkULHQcOHMCSJUuwfPlyXHXVVejt7ZW+Ox/bOplM4he/+AW++MUvoqioSPluWG1tFSoLIyQSiYyLpKuqqhCNRpFIJKTfRKPRtMulAaChoUH6TSHhwQcfxJYtW7B06VLlex/5yEfw0EMP4emnn8b3vvc9vPTSS/jQhz6E6enpHEkaHF//+texfft27Ny5EzfccAN++MMf4vrrr5e+T+3H94m50rYivPbaa7jvvvtw3XXXKd+bS+196NAhpFIpo3YSjfWGhgbMzMzg0KFDWZM1W3AcB7fccgs+8IEPYM2aNdL3Ghsb8cADD+A3v/kNHn74YZx22mm46KKL8Ic//CGH0gbDOeecg5///Od44okn8NOf/hSJRAIbN27EyMiI8P351tYA8G//9m84fPiwciMceluHYueyKGjccccdDgDl30svvZT2jczlt3XrVmfz5s0Zvy9cuND55S9/Kcz/oYcecqLRaMbvmzZtcr785S/7K5QP+KmHN954w1mwYIHz61//2ji/N99801m4cKHzm9/8Jqwi+IKfchN+/etfOwCcQ4cOCZ//8Y9/dAA4b775Ztrv1157rbNly5bQy2ICP+WOx+POKaec4nzpS18yzq9Q2luEeDzuAHCee+65tN//8R//0TnttNOE36xcudL5zne+k/bbs88+6wBwBgcHsyZrtnD99dc7LS0tzhtvvGH87aWXXupcdtllWZAqN5iYmHAaGhqc733ve8Ln862tHcdxNm/e7Fx66aXG3wVpa0tKPw5www034KqrrlK+c9JJJ2mlFYvF8MILL6T9NjY2hnfeeSdjh8N+k0wmMTY2lmalGhoawsaNG7XyDQN+6mHbtm2oqanB5ZdfbpxfY2MjWlpacODAAeNvw0SQ9qdTa6+++ipqamoyntPJoUQigcbGRvf3oaEhaX/IFUzL/eabb+LCCy/EeeedhwceeMA4v0JpbxFqa2sRiUQyrFGqdorFYsL3i4uLhX2hkHHjjTfi0UcfxR/+8Ac0Nzcbf3/uuefiF7/4RRYkyw0WLVqEM844Q9o351NbA8DBgwexY8cOPPzww8bfBmlrq1AdB6itrUVtbW0oaZ133nm46667MDg46C6gTz75JEpKSrB+/XrhN+vXr8fChQvx1FNP4ZOf/CQAYHBwEHv37sW9994bilw6MK0Hx3Gwbds2fP7zn8fChQuN8xsZGcEbb7yRpmjkA0Hav7OzEwCkZVi+fDlisRieeuop9zLyZDKJZ555Bvfcc48/gUOCSbnj8TguvPBCrF+/Htu2bcOCBeZsiEJpbxGi0SjWr1+Pp556Ch//+Mfd35966il87GMfE35z3nnn4T/+4z/SfnvyySexYcMGX+MhH3AcBzfeeCMeeeQR7Nq1C8uXL/eVTmdnZ0G2qy6mp6fx5z//GX/xF38hfD4f2prFtm3bUF9fj0suucT420Bt7cuuZTFvcfDgQaezs9P51re+5ZSXlzudnZ1OZ2enc/ToUcdxHGdmZsZZs2aNc9FFFzm7d+92duzY4TQ3Nzs33HCDm8bAwIBz2mmnOS+88IL723XXXec0Nzc7O3bscHbv3u186EMfctauXevMzMzkvIy62LFjhwPA2bdvn/D5aaed5jz88MOO4zjO0aNHnVtvvdV57rnnnL6+Pmfnzp3Oeeed5zQ1NTlHjhzJpdi+8dxzzznf//73nc7OTqe3t9f51a9+5SxZssS5/PLL095jy+04jvPd737XqaysdB5++GFnz549zqc//WmnsbFxzpSb3Hwf+tCHnIGBAWdwcND9YzHX23v79u3OwoULnQcffNDZt2+fc9NNNzmLFi1yXn/9dcdxHOe2225zPve5z7nv9/b2OmVlZc7NN9/s7Nu3z3nwwQedhQsX+nJ/5wtf+cpXnMrKSmfXrl1p7To5Oem+w5f7Bz/4gfPII484r7zyirN3717ntttucwAUpCtXhltvvdXZtWuX09vb6/y///f/nEsvvdSpqKiY121NSKVSzrJly5y/+Zu/yXiW7ba2CpVFGq6++moh12Tnzp3uOwcPHnQuueQSp7S01KmurnZuuOEG5+2333af9/X1ZXwzNTXl3HDDDU51dbVTWlrqXHrppU5/f38OS2aOT3/6087GjRulzwE427ZtcxzHcSYnJ53Nmzc7dXV1zsKFC51ly5Y5V199dcGXkUVHR4dzzjnnOJWVlc4JJ5zgnHbaac4dd9zhHDt2LO09ttyOMxs64Y477nBisZhTUlLifPCDH3T27NmTY+n9Y9u2bVKOFYv50N4/+tGPnJaWFicajTpnnnlmWviAq6++2jn//PPT3t+1a5fT1tbmRKNR56STTnL++Z//OccSB4OsXdn+y5f7nnvucU4++WTnhBNOcKqqqpwPfOADzm9/+9vcCx8An/rUp5zGxkZn4cKFzpIlS5wrrrjC6enpcZ/Px7YmPPHEEw4A5+WXX854lu22LnIcx/Fn27KwsLCwsLCwsABs2AQLCwsLCwsLi8CwCpWFhYWFhYWFRUBYhcrCwsLCwsLCIiCsQmVhYWFhYWFhERBWobKwsLCwsLCwCAirUFlYWFhYWFhYBIRVqCwsLCwsLCwsAsIqVBYWFhYWFhYWAWEVKgsLCwsLCwuLgLAKlYWFhcU8w8c//nFUVVXhv/23/5ZvUSwsjhtYhcrCwsJinuFrX/safv7zn+dbDAuL4wpWobKwsJjXuOCCC1BUVISioiJ0dXXlW5yc4MILL0RFRYXw2TXXXOPWx7/927/lVjALi3kMq1BZWFjMe2zduhWDg4NYs2ZNvkXJO/7n//yfGBwczLcYFhbzDsX5FsDCwsIi2ygrK0MsFsu3GIGRTCYRjUaxfv16TE9PZzx/8sknsWTJEmUalZWVqKyszJaIFhbHLayFysLCoqDw7LPPYuHChWkKQ19fH4qKinDw4MFQ8rjgggtw44034qabbkJVVRUaGhrwwAMP4NixY/jCF76AiooKnHzyyXjsscfSvnv88cfxgQ98ACeeeCJqampw6aWX4rXXXnOf//rXv8YZZ5yB0tJS1NTUYNOmTTh27JhQhp///OeoqanJUIw+8YlP4POf/7wr5w033IBbbrkFtbW1uPjiiwEAHR0d2Lt3b8aflzJlYWGRPViFysLCoqDQ1dWF008/HSUlJWm/nXjiiWhpaQktn5/97Geora3Fiy++iBtvvBFf+cpXcOWVV2Ljxo3YvXs3tmzZgs997nOYnJx0vzl27BhuueUWvPTSS/j973+PBQsW4OMf/zjeffddDA4O4tOf/jS++MUv4s9//jN27dqFK664Ao7jCPO/8sorkUql8Oijj7q/HTp0CP/5n/+JL3zhC2lyFhcX449//CPuv//+0MpvYWERLqzLz8LCoqDwpz/9CW1tbWm/dXV1Ye3ataHms3btWtx+++0AgG9+85v47ne/i9raWmzduhUA8Pd///f453/+Z3R3d+Pcc88FMGs9YvHggw+ivr4e+/btQzKZxMzMDK644gpX8TvjjDOk+ZeWluIzn/kMtm3bhiuvvBIA8NBDD6G5uRkXXHCB+94pp5yCe++916hsW7Zswe7du3Hs2DE0NzfjkUcewVlnnWWUhoWFhRmshcrCwqKg0NXVhXXr1qX91tnZKVSo7rvvPnz/+9/3lU9ra6v7/5FIBDU1NWkKUENDAwBgaGjI/e21117DZz7zGaxYsQKLFy/G8uXLAQD9/f1Yu3YtLrroIpxxxhm48sor8dOf/hRjY2NKGbZu3Yonn3wS8XgcALBt2zb3FB5hw4YNxmV74oknMDw8jMnJSQwMDFhlysIiB7AKlYWFRcEglUqhp6cnw0K1e/fuDCULmLVmnXnmmb7yWrhwYdq/i4qK0n4jpebdd991f7vsssswMjKCn/70p3jhhRfwwgsvAJgli0ciETz11FN47LHH8L73vQ/33XcfTjvtNPT19UllaGtrw9q1a/Hzn/8cu3fvxp49e3DNNdekvbNo0SJf5bOwsMgtrEJlYWFRMHj55ZcxNTWVRq5+/vnnEY/H0yxUe/fuxYUXXoiHHnoIW7duxb//+79nXbaRkRH8+c9/xu23346LLroIp59+eoYFqqioCO9///vxrW99C52dnYhGo3jkkUeU6V577bXYtm0b/s//+T/YtGkTli5dms1iWFhYZAlWobKwsCgYUODN++67DwcOHMBjjz3mnnij03BTU1P47Gc/i/vvvx8tLS349a9/jTvuuCPrslVVVaGmpgYPPPAAXn31VTz99NO45ZZb3OcvvPACvvOd76C9vR39/f14+OGHMTw8jNNPP12Z7l/91V8hHo/jpz/9Kb74xS9muxgWFhZZglWoLCwsCgZdXV24+OKL0dfXhzVr1uC///f/ju9+97tYvHgxfvSjHwGYDV1w3nnnYWZmBitXrsTKlStx5MgRdHZ24lOf+pRLNA8bCxYswPbt29HR0YE1a9bg5ptvxv/4H//Dfb548WL84Q9/wEc/+lGceuqpuP322/G9730PH/nIR5TpLl68GJ/4xCdQXl6Ov/zLv8yK7BYWFtmHPeVnYWFRMPjTn/6E9evX4+677077nT1d96c//QlnnHEG9uzZgzVr1uBPf/oTWltb0dbWhnvuuQf/+3//b898du3alfHb66+/nvEbH/Jg06ZN2Ldvn/Sdxx9/3DNvEQYHB/FXf/VXaaEiZHJaWFgUJqyFysLComBAypEKixcvxiuvvILu7m6cfvrp+M53voPrrrtO+c2Pf/xjlJeXY8+ePWGKGxijo6PYvn07nn76aXz1q1/NSZ7XXXcdysvLc5KXhcXxBGuhsrCwKAgkEgm89dZbngrV5z//eXzsYx/D3r17EYvF8LWvfQ0f/vCHpe8/9NBDmJqaAgAsW7YsVJmD4swzz8TY2BjuuecenHbaaTnJ89vf/ja+8Y1vAAAaGxtzkqeFxfGAIkcWxtfCwsKigHHaaaehp6cHxcWz+8K+vj7cfvvt2L9/P26++WZ89rOfzbOEFhYWxxOsQmVhYTHncPjwYVx00UXo6OjItygWFhYWAKxCZWFhYWFhYWERGJaUbmFhYWFhYWEREFahsrCwsLCwsLAICKtQWVhYWFhYWFgEhFWoLCwsLCwsLCwCwipUFhYWFhYWFhYBYRUqCwsLCwsLC4uAsAqVhYWFhYWFhUVAWIXKwsLCwsLCwiIgrEJlYWFhYWFhYREQVqGysLCwsLCwsAgIq1BZWFhYWFhYWASEVagsLCwsLCwsLALi/wN7p5YVj97xgAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plot_proper_motion(centerline_df)" ] @@ -697,7 +862,18 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHICAYAAACiZIUjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACmSUlEQVR4nO29e3xU1bn//xkmZJiQEEgyYYaEhIS7gUgERbRVqCja1tra2mPrafV81R5/1uNp1XqObb8VbdVvtV7Oy3619qa239Oent5vtiiKWk8VDCQGIyCamCEhY0IScoGYgcn+/ZHX2q5Zs/ZlLrnAfN6v17wgM3uvvdba6/Ks53nWszyGYRgghBBCCMlCpk12BgghhBBCJgsKQoQQQgjJWigIEUIIISRroSBECCGEkKyFghAhhBBCshYKQoQQQgjJWigIEUIIISRroSBECCGEkKyFghAhhBBCshYKQoSQrGHz5s1YtWrVZGfDlieeeAKzZ88e9+csWLAADz300Lg/h5CpDgUhQk5QrrrqKng8Hng8HkyfPh3V1dW45ZZbcOTIkcnO2pTA4/Hgd7/7Xdx3t9xyC5599tnJydAkYSVYvfrqq/jCF74w8RkiZIqRM9kZIISkzoUXXojHH38cx44dw9/+9jdcc801OHLkCB599NGEa48dO4bp06dPQi6nxvMBID8/H/n5+ZOah6lCIBCY7CwQMiWgRoiQExifz4dgMIj58+fjs5/9LK644gpTCyLMQD/+8Y9RXV0Nn88HwzAQDodxySWXID8/H7NmzcKnP/1pvPvuu2aa4r7HHnsM8+fPR15eHi677DIcPnw47tmPP/44li9fjhkzZmDZsmV45JFHzN/eeecdeDwe/Pd//zfWr1+PGTNm4P/9v/+nLYPH48Fjjz2Gj370o8jLy8Py5cvx8ssv46233sL69esxc+ZMrFu3Dm+//XbcfY8++igWLlyI3NxcLF26FD/96U/N3xYsWAAA+MQnPgGPx2P+rZrGRkdHceedd6K8vBw+nw+rVq3CX//614Ry/OY3v8GGDRuQl5eHU089FS+//LLte9m8eTMqKirg8/kwb9483HjjjeZv0WgUt956K8rKyjBz5kysXbsWzz//vG16f/zjH7F69WrMmDED1dXVuOOOO3D8+HHz98OHD+MLX/gC5s6dixkzZmDFihX405/+hOeffx7/9E//hP7+flN7uHnzZrOOZNOY23bx05/+FAsWLEBhYSEuv/xyDA4O2uadkCmPQQg5IbnyyiuNSy65JO67f/mXfzGKi4sNwzCM22+/3Zg5c6axadMmY9euXcZrr71mjI6OGnV1dcYHPvABo76+3njllVeM0047zTj33HPNNMR9H/rQh4yGhgbjhRdeMBYtWmR89rOfNa/5/ve/b4RCIePXv/610dLSYvz61782ioqKjCeeeMIwDMNobW01ABgLFiwwr+no6NCWA4BRVlZm/OIXvzD27dtnfPzjHzcWLFhgfOhDHzL++te/Gm+88YZx5plnGhdeeKF5z29+8xtj+vTpxv/9v//X2Ldvn3H//fcbXq/XeO655wzDMIyuri4DgPH4448bnZ2dRldXl1m2U0891UzngQceMGbNmmX8/Oc/N/bu3WvceuutxvTp040333wzrhzLli0z/vSnPxn79u0zPvWpTxmVlZXGsWPHtOX55S9/acyaNct46qmnjLa2NmP79u3G97//ffP3z372s8ZZZ51lvPjii8Zbb71l3HfffYbP5zOf+fjjjxuFhYXm9X/961+NWbNmGU888YTx9ttvG08//bSxYMECY/PmzYZhGEYsFjPOPPNMo6amxnj66aeNt99+2/jjH/9oPPXUU8bIyIjx0EMPGbNmzTI6OzuNzs5OY3Bw0DAMw6isrDQefPBBwzAM1+0iPz/fuPTSS43du3cbL774ohEMBo2vfvWr2nog5ESBghAhJyiqILR9+3ajuLjY+PSnP20YxtjENX36dFMIMAzDePrppw2v12uEw2Hzu+bmZgOAsWPHDvM+r9drHDhwwLzmL3/5izFt2jSjs7PTMAzDmD9/vvGzn/0sLj/f/OY3jXXr1hmG8b4A8dBDDzmWA4Dx9a9/3fz75ZdfNgAYP/rRj8zvfv7znxszZsww/z7rrLOMa6+9Ni6dyy67zPjwhz8cl+5vf/vbuGtUQWjevHnGXXfdFXfN6aefblx//fVx5fjhD39o/i7qa8+ePdry3H///caSJUuMaDSa8Ntbb71leDyeBKHwvPPOM2677TbDMBIFoQ9+8IPG3XffHXf9T3/6UyMUChmGYRhbtmwxpk2bZuzbt0+bHzU9gSwIuW0XeXl5xsDAgHnNV77yFWPt2rXa5xJyokDTGCEnMH/605+Qn5+PGTNmYN26dTjnnHPw8MMPm79XVlbG+YLs2bMH8+fPx/z5883vTjnlFMyePRt79uwxv6uoqEB5ebn597p16zA6Oop9+/ahu7sbBw4cwNVXX2363OTn5+Nb3/pWgvlqzZo1rspRW1tr/n/u3LkAgJUrV8Z9995772FgYMAsx9lnnx2Xxtlnnx1XBicGBgZw8OBBV+nI+QuFQgCArq4ubbqXXXYZhoeHUV1djWuvvRa//e1vTTPWrl27YBgGlixZEld3L7zwQkLdCXbu3Ik777wz7vprr70WnZ2dOHr0KBobG1FeXo4lS5a4LruK23axYMECFBQUxNWFVT0QcqJAZ2lCTmA2bNiARx99FNOnT8e8efMSnJFnzpwZ97dhGPB4PAnpWH0vEL95PB6Mjo4CAH7wgx9g7dq1cdd5vV7b51sh51s8S/edeLb8ndsyWOEmHae8yMyfPx/79u3DM888g61bt+L666/HfffdhxdeeAGjo6Pwer3YuXNnQl1ZOXGPjo7ijjvuwKWXXprw24wZM+D3+50L6YDbdqG2L7k9EHKiQkGIkBOYmTNnYtGiRa6vP+WUUxAOh3HgwAFz9f/GG2+gv78fy5cvN68Lh8M4ePAg5s2bBwB4+eWXMW3aNCxZsgRz585FWVkZWlpacMUVV2S2QC5Zvnw5XnrpJXz+8583v/v73/8eV4bp06cjFotZpjFr1izMmzcPL730Es4555y4dM4444y08uf3+/Gxj30MH/vYx/DFL34Ry5Ytw+7du1FXV4dYLIauri588IMfdJXWaaedhn379lm+59raWrS3t+PNN9/UaoVyc3Nt6wFw3y4IORmhIERIFrFx40bU1tbiiiuuwEMPPYTjx4/j+uuvx7nnnhtnxpoxYwauvPJKfOc738HAwABuvPFGfPrTn0YwGAQwtoPoxhtvxKxZs3DRRRdhZGQE9fX16Ovrw0033TTu5fjKV76CT3/60zjttNNw3nnn4Y9//CN+85vfYOvWreY1CxYswLPPPouzzz4bPp8Pc+bM0aZz++23Y+HChVi1ahUef/xxNDY24j//8z9TztsTTzyBWCyGtWvXIi8vDz/96U/h9/tRWVmJ4uJiXHHFFfj85z+P+++/H3V1dTh06BCee+45rFy5Eh/+8IcT0vvGN76Bj370o5g/fz4uu+wyTJs2DU1NTdi9eze+9a1v4dxzz8U555yDT37yk3jggQewaNEi7N27Fx6PBxdeeCEWLFiAoaEhPPvsszj11FORl5eHvLy8uGe4bReEnIzQR4iQLEIEGZwzZw7OOeccbNy4EdXV1fjFL34Rd92iRYtw6aWX4sMf/jAuuOACrFixIm57/DXXXIMf/vCHeOKJJ7By5Uqce+65eOKJJ1BVVTUh5fj4xz+O//iP/8B9992HmpoaPPbYY3j88cexfv1685r7778fzzzzDObPn4+6ujptOjfeeCNuvvlm3HzzzVi5ciX++te/4g9/+AMWL16cct5mz56NH/zgBzj77LNRW1uLZ599Fn/84x9RXFwMYCzswOc//3ncfPPNWLp0KT72sY9h+/btcf45Mps2bcKf/vQnPPPMMzj99NNx5pln4oEHHkBlZaV5za9//Wucfvrp+MxnPoNTTjkFt956q6kFOuuss3DdddfhH/7hHxAIBHDvvfcmPMNtuyDkZMRjGIYx2ZkghEwdNm/ejN/97ndobGyc7KwQQsi4Q40QIYQQQrIWCkKEEEIIyVpoGiOEEEJI1kKNECGEEEKyFgpChBBCCMlaKAgRQgghJGthQEUHRkdHcfDgQRQUFKQUvp8QQgghE49hGBgcHMS8efMwbZqN3mdyznpNn7vvvttYs2aNkZ+fbwQCAeOSSy4x9u7dG3fN6OiocfvttxuhUMiYMWOGce655xqvv/56Us85cOCAAYAffvjhhx9++DkBPwcOHLCd509YjdALL7yAL37xizj99NNx/PhxfO1rX8MFF1yAN954wzzo8d5778UDDzyAJ554AkuWLMG3vvUtnH/++di3b1/cCcp2iOsOHDiAWbNmjVt5CCGEEJI5BgYGMH/+fMf5/qTZPt/d3Y3S0lK88MILOOecc2AYBubNm4cvfelL+Ld/+zcAwMjICObOnYtvf/vb+Od//mdX6Q4MDKCwsBD9/f0UhAghhJATBLfz90njLN3f3w8AKCoqAgC0trYiEongggsuMK/x+Xw499xz8fe//90ynZGREQwMDMR9CCGEEHJyclIIQoZh4KabbsIHPvABrFixAgAQiUQAAHPnzo27du7cueZvOu655x4UFhaaH6uDEAkhhBBy4nNSCEI33HADmpqa8POf/zzhN3Wnl2EYtru/brvtNvT395ufAwcOZDy/hBBCCJkanLDO0oJ/+Zd/wR/+8Ae8+OKLKC8vN78PBoMAxjRDoVDI/L6rqytBSyTj8/ng8/nGL8OEEEIImTKcsBohwzBwww034De/+Q2ee+45VFVVxf1eVVWFYDCIZ555xvwuGo3ihRdewFlnnTXR2SWEEELIFOSE1Qh98YtfxM9+9jP8/ve/R0FBgen3U1hYCL/fD4/Hgy996Uu4++67sXjxYixevBh333038vLy8NnPfnaSc08IIYSQqcAJKwg9+uijAID169fHff/444/jqquuAgDceuutGB4exvXXX4++vj6sXbsWTz/9tOsYQoQQQgg5uTlp4giNF4wjRAghhJx4ZF0cIUIIIYSQZKEgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCs5YQWhF588UVcfPHFmDdvHjweD373u9/F/X7VVVfB4/HEfc4888zJySwhhBBCphwntCB05MgRnHrqqfjud79rec2FF16Izs5O8/PUU09NYA4JIYQQMpXJmewMpMNFF12Eiy66yPYan8+HYDA4QTkihBBCyInECa0RcsPzzz+P0tJSLFmyBNdeey26uromO0uEEEIImSKc0BohJy666CJcdtllqKysRGtrK/73//7f+NCHPoSdO3fC5/Np7xkZGcHIyIj598DAwERllxBCCCETzEktCP3DP/yD+f8VK1ZgzZo1qKysxJ///Gdceuml2nvuuece3HHHHROVRUIIIYRMIie9aUwmFAqhsrIS+/fvt7zmtttuQ39/v/k5cODABOaQEEIIIRPJSa0RUunp6cGBAwcQCoUsr/H5fJZmM0IIIYScXJzQgtDQ0BDeeust8+/W1lY0NjaiqKgIRUVF2Lx5Mz75yU8iFArhnXfewVe/+lWUlJTgE5/4xCTmmhBCCCFThRNaEKqvr8eGDRvMv2+66SYAwJVXXolHH30Uu3fvxk9+8hMcPnwYoVAIGzZswC9+8QsUFBRMVpYJIYQQMoXwGIZhTHYmpjIDAwMoLCxEf38/Zs2aNdnZIYQQQogL3M7fWeUsTQghhBAiQ0GIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVnLCS0Ivfjii7j44osxb948eDwe/O53v4v73TAMbN68GfPmzYPf78f69evR3Nw8OZklhBBCyJTjhBaEjhw5glNPPRXf/e53tb/fe++9eOCBB/Dd734Xr776KoLBIM4//3wMDg5OcE4JIYQQMhXJmewMpMNFF12Eiy66SPubYRh46KGH8LWvfQ2XXnopAODJJ5/E3Llz8bOf/Qz//M//PJFZJYQQQsgU5ITWCNnR2tqKSCSCCy64wPzO5/Ph3HPPxd///vdJzBkhhBBCpgontEbIjkgkAgCYO3du3Pdz585FW1ub5X0jIyMYGRkx/x4YGBifDBJCCCFk0jlpNUICj8cT97dhGAnfydxzzz0oLCw0P/Pnzx/vLBJCCCFkkjhpBaFgMAjgfc2QoKurK0FLJHPbbbehv7/f/Bw4cGBc80kIIYSQyeOkFYSqqqoQDAbxzDPPmN9Fo1G88MILOOussyzv8/l8mDVrVtyHEEIIIScnJ7SP0NDQEN566y3z79bWVjQ2NqKoqAgVFRX40pe+hLvvvhuLFy/G4sWLcffddyMvLw+f/exnJzHXhBBCCJkqnNCCUH19PTZs2GD+fdNNNwEArrzySjzxxBO49dZbMTw8jOuvvx59fX1Yu3Ytnn76aRQUFExWlgkhhBAyhfAYhmFMdiamMgMDAygsLER/fz/NZIQQQsgJgtv5+6T1ESKEEEIIcYKCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEuCAWi6GjowPRaBQdHR2IxWKTnSVCSAY4qQWhzZs3w+PxxH2CweBkZ4uQcUdM2mKyVv9ONZ108xONRhEOh9Ha2opwOJyQbqae55QPu/StrolEIhgZGUFTUxNGRkYQiUQs04hGo6ivr0c0Gs1Y3p3QCWqZrs9YLIZwOKx9d4ScqJzUghAA1NTUoLOz0/zs3r17srNEpjh2k0cyE8t4Tepu0hWTtpis1b/dpul0n1tEOo2NjWhoaEBDQwPa29sT0s3U85zyEYlEXJdZXBcIBODz+VBbWwufz6ddVIlrGxoaMDQ0hKamppTzKudPCFbDw8OW714nqInvOjo60hKMxfXhcBi7du1Ca2srGhoaxl0YGm/B2Oo5TgLfZC8sSGY56QWhnJwcBINB8xMIBCY7SycNcqdOdWAV14/HCjrVQcduMtZNpMPDwwl5j8ViaGhowNGjR11N6nL5nfLtRlgIBoNxk7X6t0pHRwfa2trQ0dERV4ZYLGb2IfGdG42AWgbx/EAggKKiIoRCIZSXlyfkxymfyaCrRzn9SCSCo0ePJkzoah6s6lungRHXlpaWIj8/H7W1tSnnX35uU1MThoaG8Oyzzya8JzXfsqAmvgOQlGCsy8vRo0fR3NyM2bNnY2BgAIWFhQnCYqY1fHb5zKSwols4tLe3a4V1p3w5PUfX5iggTS4nvSC0f/9+zJs3D1VVVbj88svR0tIy2Vk6aZAHg1QGVvl6MdCns4J2eoZb7CbjYDCInJwccxBua2vD1q1bE/IeiUSQn5+P/fv3uxK+5fJbDZZu8ifwer0oKyuD1+vV/u2GSCSC48ePw+v1mvc5TRDyvUITEQ6H0dHRgWAwiLKyMvj9fqxevRoVFRVx+RGCRDAYTMhnKhOF0/sPBoPo7++Pm9CBxLpShQmhcVH/FXn3+XwoKytDKBRKqr7VsgoNVDAYRG1tLfLz87Fs2TLL+0S+c3NzzfyL78rKyhIE45ycHNNU6VSvoq4WLVqEvLw8rFixIkFYHBwcxJYtW+KE+Y6ODksNnBufK7u2LjRvbW1tce9P1l7phEYnAVn8XV5erhXWASAQCKC3txeBQCCptmnV5txoKt2Qyr3J+L6drALbSS0IrV27Fj/5yU+wZcsW/OAHP0AkEsFZZ52Fnp4ey3tGRkYwMDAQ98kWrDQ8Vo1fHjx0A5Zdp5EHEgDmQJ/OClolWe2CyC8AcyJRyyAml+PHj6O7uxsAsHz58oS8B4NBDA0NYfHixeZ1dsjlDwaD6OvrM80gKqkINU6UlZWhsrISZWVlcWWQ60+0BSttjowsPAjBqaOjA01NTSgsLDTrRK5ft5o4t+jev5yO1+tFXV0d8vLyXLURVeOi/isEuLKyMnR3d7vOr9rGRB67u7vN95ybm4s1a9agqqoq4T3p0lM1JSJfAMw25fV60dnZmSDUWt1fV1eHgoICBINBGIYRJyAHAgHs2LEDOTk5pjA/MjICAHEaOHmyFxpTO58rXVuX66uoqMjyHev6nZWmNhaLobOzM668FRUVCcK60Nx2dHSgqKgI3d3dSQkxVm1O1VQm09bl9yULnm5JxvctEwLbVBSmPIZhGJOdiYniyJEjWLhwIW699VbcdNNN2ms2b96MO+64I+H7/v5+zJo1a7yzaLsqHm/C4TDa29tRXl4Or9eLkZGRuJWwWOm6QQw4hYWF8Pl88Hq9Zpnk3/Ly8lynqXuGnQYh2XoUg4gop1U+RdqBQADd3d0Jz1B/l68D4Cpf8ruoqKhIqk5UYS5TqPWje7ZaNjk/wFg76u/vR11dHbxeb1yaYhLIxPu0ekdu0lGvcSq3jmg0iqamJtTW1iI3N9c2n2obs8qj2zoQZk4ACUKTWt9iQpIFDrv7rdpXR0cHBgcH0dLSgo0bN8Lr9WrbgvhOaD37+/tRU1OD5ubmuLqSrwUQ93+rcUXNo1oukc+jR4+it7cXoVDI/K2+vh79/f0YGRnBpk2bLOu3vr4eQ0ND5rOLiopMgTAYDJqCvm5cs+ofdn3GTR+W35cYu5MZ95zGM6syCKEomX4h8pvKfakgTLhO83dWCUIAcP7552PRokV49NFHtb+PjIyYKxlgrCLnz58/YYLQeDUSNwOzPPmWlZVpB6JkhAox0JWWluL48eNmmdRB026iUFEnVjldu9+STVuUX5RBTNxuyy6/Q/lvYKyN5eTkWA7iboQsq4ndbhJLFzsBz0lgsBrc5TTFSlTcm86CQLS//fv3Y/HixUkJ3DqBONm+4LYfy/3EqY2JNK3ajkCtaznPuvzryqtqQUU6O3fuxMjICCorK+MEdCfhTSeQ6vqqmGBjsZj5HYC4/uNUX3YLLZEfOf2ysjJEo1Fs3boV1dXVKCgoSFj0iHxHo1E0Njaa9wutdmVlpWXerJ6pq3v1XTstEACYeQoEAgkaLN370bUBp/eoI9VF+0Qu9ikIaRgZGcHChQvxhS98Ad/4xjdc3eO2IjPFeDUSsZLJz8/HmjVrxv3Zdh1PDFT5+fkYGhrSDmhWE34sFkN7ezuAxNWPbmXkZpUjP08erAKBgKtVvZqOOgnpJiV1ULQbLGXshCxVGLRaTSY72KnpiWf29vaapgk7TYYu37pyyQIckLwWUs23UxtLpsxuyyGn4bTSF+npNBd22gPRRoRApAqRydS9U1nldxKLxfDqq6/C4/FgzZo1rjSVdgKpTrATWgb5O8BekFPL09DQAL/fj7a2NnOhpRNo1L6tq3Nd3Yky9fX1IRAIxAmKurzZCbButH9Omhc3bVK3GNNdb5WWyE9RUREaGxsBAKtXr05qETsZUBACcMstt+Diiy9GRUUFurq68K1vfQsvvPACdu/ebQ62TkykIORk6knH5KF2fLfq0GTUucmaLuzMY+pKWR4gBerEoVvF6gZW3YCjTi5uVb92ZpRgMOi4MhX1r3u+m/cxnqYe8Y6Gh4cBAH6/H7W1teakGwwGE9pOqmYdOy1GMqvWVLQ3bidAwL3JS5d+LBZDW1sbent7TcFMJ1Cqz1c1Amqb7e3tNXcs6rSAdm3Gro2r70QIRsJfya0QHYlEMGvWrASBNBPjiEprayt27dqF6dOnY/ny5aYJS+1fsVgswUxrVQa7PALObcxp7E5Gm6Z7ntsxQORB12+t8iK3tZGREbz88ssYGBjA0NAQPvShD+GMM86wfhlTALfz90ntLN3e3o7PfOYzWLp0KS699FLk5ubilVdecS0ETTQ6JznRgMUgtGvXLq0DrRO5ubmoq6szJ123DnK6PFl9Z7fTScXrtXdUDQbjd1cIZ8KysjKtE2Mk8v4Op56enoRdPAC05RT57uzsRE5OjrnDRggjTs7Wal3I93R0jG2t7+vrS0hDCGrCqRaAWT6rwVI3mKqahGTzqHuGeH+RSMT0xfD5fCgsLDTbS1dXl/bZ6rOS0VCJsttpN+yeIbfrSCTiqm5EekePHkV9fb3pIGxVR93d3aaTrFtEnoCxd1xUVARAv91doHOeFeOAqBuxE6y2thbl5eUIhUKIxWIJ/U+tB7mO7Nq41xvvMFxWVobq6mrXQlB9fT1aW1tx/Phx5OXlJQgcuvfj9p1Z0dXVhdHRUZSUlCAvLw8A4upe/lseX2Ix/VZ8Wdujc/DVjYWi/LK2Twi9uvHRKg3RLpuamkzBRHetmzoTvwnHeKvr5UWg3J9Efa1atQojIyOoqqpy3A2rjifJ/j6RnNQaoUwwWRohIN6EkpOTg87OTkSjUZSXlyM3NzfpVZNulZlJjZCTA3QqWqNk7dXySq+2tjZuJWXlo2Ll9+AGO82aG4dnt2VMx3cs1Wfo2qMwF1o598ZisTiNSSbV9lblsfJtS8YUJjRfXq9X6yCcrJbJKr/p3J+s2dRNfsbLR6OjowMtLS148803sWTJElRXVzuaT5PBKh0rzbdOGwa8/y4ikYitb53VRhJZW6emp/alHTt2oLOzE3V1daiqqnJVFtVvKVktmvxbR0eH7XjkZgwV5uaBgQEEg0FbAcyNOXy8naZpGssQ4ykIufGp0NnKnQbEVJ5nd49bk5xT+m6dPdPBTu1v1fFS3aEl4yRkAslNgKmYwNLF7TPsTG1AvDN4sjtRgOQFhXR22In3JPqVbnU9ngN2KsK+1SQohNCamhr09vYmZZ5MxcTqlFerHWmZqMt009H1L7txzo2w7XTNjh070NbWhsrKSlcmJZ0jfTJmXPU3KxOr2o9zcnLQ1dWVlLO5mzpO9vdMQNPYCYCVShR4XzUum0rEgCJU4oFAIEG1aKduVAd5N6rJSCQxgJ7VfU4qWiczlds82SHnQVX7B4PvB0OU0y8rK0N5ebn5/FTQmTLkODDyuxZltDsTSm0b6ZoM3OD2Gep1ctnVdyzXgds8yKp5N5SVJcZAskM2Nwvz8PHjx5Gbm6vddePGRJoKQhOli2njtn/J7USY7Zqbmy1NLVYxYOxM22p9OY0Dcl7l4I6APjaV3Rhm9XssFh/x3Kme1TTs6kKH3MbcmqLUa1auXImZM2di5cqVtnkTBAIBUyujM2sK1DqNRqPYvn07Wltb44Jy2plI5XTKysos3Ras5iA1GKMbIWiqmMUACkKTipN93so2rfqXyJ1C+BK58SOyE8TkPKoRVt3cp0PtRLpyp5q2wGolKp7v9Y4FQ5QHc/F/9ftkOqqVACbSkQckUUYRFVc4lMp+IPL144VaxlQHJ7nsboR1FfWd27UBXR6TFRJVnx27s8PU9N3WkdtFhlitys9Opg/rhFBdeVThQTcJ6iIei3yK+pIXEk59VVcOp8lY/c7qdzXiuSijWz8edeHS3t6O1157zdWCzwohLAkzlHpfb28vli1bht7eXtu8CXT+aPJiTggf4tmifW7duhXvvPMOXnvtNduFiDr/yIsQOU0d6hwk+5paCfhAvFDtJkL9REFBaBJxM4C70RqlOlm6ud/rTYywmupzrdTP8oDjZsVoh9PgrKavTopi4lZXv1ZlsVsNAzAHBHlAEnkoLS1NyBeQnCYlnYk5XQHE7nc7YV1Fp7kbL0FZTl8IbKrWwq6sbp/v5jrdij9ZdBo0K82RLDwIk6U4DsPrtd68INeXvJCw66uyCUX9Ta0D9agKeRGgawtW7cNKy6O7Xq4jsQV+xYoVlgu+ZNqd1bXJlEUVXOXydHV1JSyk5GdXV1cjLy8Pp556quPYrradZPuXTvi2EvDl9AHYHmEy0dBHyIGJjiMkkP0X3MTBUe/LlK0/leutsLJlp2rjtsprMmEG1HoWtm8nPya3TsB2wd909Zrse7eqHyDe10aXX52fhFX9ivs9Hg96enoSto9b1Ucm2o6chlquVNKw8psRadv5P7gtj5tt9qnWmfq7SEe3Dd/unlQCb9rVo7zpAADa2trg9XpNs7OuTlUnZBGfJxi0d8R1ypvsGOzkQO+mD8n/t2o/YpJPxwdStJvZs2ejq6vL9HsTeTx06JCZ10AggM7OzjjfuGTDO6htMJXwEGpd2AWDTWZszgT0ETrBUf1MYrGYeTq5elK7ag5y8rFIduWfrD3dKi2r1Y/uezuTkp3qOhaL4fXXX3d96rusuRD3qNvoRbry9lr1rDT5+eK6QCCg3TasPlv+LRlNilp3sp+HqtGyWhXLbcXOHCvK29nZiaGhIfMZTu82E8jvPVVfKas2r1v1A0jwJUt2ELfbZq9r2zJ2ZdSZHexMYlZp6kzebvq2Vd7k8Ursbu3t7YXH48Hx48cBwDJvsdjYOV9CQzYyMpK0icpOeFTNzmo6ah8S18rp6cyj0WgUO3fuREtLCzo6OhI0jW7bqFy+xsZGtLa24vXXX9fmsaioyBx3KioqTCFWpBGJRJIK76D221TCQwjE+CNv95fLJmsl5flsKkBBaJJw6txqA5VPJ1dPak/GxAGMTWqHDh0y1eIyTvZ0O/8FtUxqWlaDqJ0TqM6kJOpEl5empib4fD60tLQkNSkLH4k5c+Yk+B6I/Mg2basBQ73Oqm7s6k3kx0mwUAd/2c8DiJ94nCYwnY+GPHGI8oZCIeTn56O0tNTVu82kKSsdIcuNEG5lApLLYTWZJpNnXdtW24BusRMOh7Fz5074/X7s37/fFMKtHJN12Al0siAthECdI6wuzVgsZmpfCgsLsWfPHhQVFSUIB0C8kF1WVga/32/2pbq6OlRWVjr6JKpmOFkgEekKIUE1O6vpqH3IbkOHLIgKvxgh/OnqVL1XF6tIrveioiLk5uZixYoVcZo6+R0LU57OBA9YC5w6dAKyncCqy78gGEw8LFruN8LUFwgEsHXrVvT396OpqSlp94fxgKYxB8bLNObGtCIjqywBWMbKEGkD1p1SVourx1Q4qeXVrco61bBdHJpMmOPEb9Fo1FI1rNtC7MbkYOVorU4ganlktbA8eOrOS7Iz/yWzFdiNucsJO/OcbCJSzZLJHCqaCbNqpnBrOlbbAZBe6Ar52bqwCmq66pE4os/GYjEMDg4mfX6aQG4zABL6qxwLTPxuZ3JT0wwGg7ZHm1i1WbsxS/fO1HK0tLSgt7fXbI9244ZVOvKYZXVYbywWH2MnEomgs7MTRUVFju9Dfod+vz9uS7yos/7+fvMwWACW7UUuQzgcRltbG3w+H1avXm053qVrmrIyp1qZJOX5QW7fsVgMLS0tGBoawnnnnYfm5ua0D+C2gnGEMsR4CULjNUGIjm13pIQ8yAPJHU5q5Z9g58OjDrCp+l24LaN8jVwut349bnwn7OpBHSCczoJKpS1YDWqZaldO6aciEOgG5vEWkty8JxXZ50b0fbs4Lm7R9RVRj2pbVgVN+WBNYTpNJQ92ixMrYV/n82GXTjQaRUNDA0pLSxPCEVjVn9N7sWs74n6BEFTq6uoS8qbLu1xmdTGn5s/qvDCRhnivIj3d2NvR0YHjx4/HBXDVBU904/sFWMfR0gmouqChbhaIduOY7D8oNMdCOyl+j0ajpm/h7t27TV8y4ReW7MHWbqGP0BTHypSQrppQVu2qcUGEQDIyMmLGTLHbyu4m37IqVVemaDSKLVu2wO/3a3cRAMn7ILmxxasq3lhsbLupODVdh1Czl5aWmipc3TW6XWVWPjhi0tJt97WqUzfI9nadSdGtf4XV77r0xbscHBxELBbT+kg5pZmMCTcTqM9wUv13dHSYfhg1NTUJW8pT9VFSny37I6ltWZgi6+rqTG1bd3c3SkpKkJub68oEZoWcf9XvRZhXurq64q7VPc/Ob0tsOmhvb08Yf6wm3GBQH+NL9zxdOcTO1rKysrh3pjNpqnmXzaBq+4hGo9ixYweGh4e1voMiLyKNpqYmy7hrAMw8quXv7u7G4sWL0d/fb9aBle+XaqIqK9PHQVPbW2FhITwejylY6epW13dlU67ueCPxnEhkLDr33r17zfoUrgKvv/46YrEYmpubMWfOHPj9ftNsaedHOVFQEJpiJDM5qI1WHmjKysq09lp1W2M6A7vT/bHYWEyLnJwctLW1WTZ20ZECgYBl/Am3z7S6RqiwxSSjQ0z+hw8fRklJifY6Yc8XZ5OJ7faAtbpZLl+qjubq9zpHWzGAyoHmVL8PXXl0fhNyOuKZjY2Npv+V1+u1dKq0asPqJJMJ3x8n1GeI1bwwrep82pqbm01hyO48PBUnoVNukzphXhWy5clbJ9hn0q9CjA0tLS1xgp866YrvYrEYPB6PVnAJBoMIhULo7+9Hfn6+K8FXFUhU3LYVrzc+DIDO50ftj4FAADk5OWZ7kDVFjY2NaGlpwYsvvmimL+pAt1mgtrYWoVAobiGlljsQCODw4cNxiwghEIRCoYQ60I1l8rmTct2JNhONRrW+T4cPH4bf70dzc7OZvrzxQyc42rU9ec4JBoPIzc3FsmXL4vzuysvLceqpp6K8vBy1tbVxgo/cHzPVllOBgtAUw2llJGO3wtaZjJKVvtMdbCORsZgWx48fx8aNGx2fqRPUMjXgiw4pnDB16YoBoaamxnLQDQbfd0ju6upyJbjKmqFUY5Gok6QuzpBOiyPnV/dcneO8sPOLvIu8BAIBFBYWYuPGjbaaRKs2rA7o6QrhOtT3qnuGKI964LBuBZ5MHnXvTAgRqtBlly8ACZO3bjJMRpvm1I/E2LBx48Y4wU+s6GUNh2hnPT09WsHF6/UiNzcXS5cujdNw6GIGWWkwVJJ5D+JakVcxIYtnq/2xu7sbXq8XnZ2dZjnlNp+fn4/q6uq4Z1hpqITGTl5IqTtMm5ubkZeXFyeMiPvlfuW0SCkuLk6ou1gshra2NjQ2Nibkz+v1YtGiRRgZGTF9TYExbZQ4UFkssIDEtgcgQRsu57GiosLUYoq+I2vrVC2kKI+bxe94k5SP0B/+8IekH3D++efD7/cnfd9UYTLiCLl1ntXZze0cescrH27zZ/W7lZ9Eunmw82NI1YdIpCt8nnw+n1boTKc+7PJr5xelS9/K10cQDoexa9cuFBcXmwdj2jnEu3lmMnWZbB054ea5ss9Dqr42dunK70z4m+Xm5jrG+LFy0HXy0XGT93Teh9p+3NSf2rdV52z5/5l2kBXYOYbLedT5CgH2MYSS6RNq3VttNNCN5+oznMYB0XdDoZC5w0zWRDU3N2ufqzq468qse7ZaT1a+oFY+lHaO9ZlgXJylp01LToHk8Xiwf//+BGn6RGIyBKF0Bup0hRddPjIxUaTSqdPNg9MOmXQGNychNNOTeKr14HQgqdhxkpubizVr1pj5EOUA7IVpqzy7GdSTrQM75D4jBn637yHZunV7vdAIdXd3Y+XKldqDUIHkTukOBAIpBbxLRghPtu3aCfDyb7FYzMy70DRmSghNNl+6a5zeZbKLgWTvFdqVZIV4uWxqOa2EcfE8+T05Le6cxriODusAsro6sNrtlknGzVk6EolgdHTU1UdswSTJIatu7fw7VGS1aTL+KE75yEQD1al53dj908mDnL7OV0Tn9Ghlr7ZShcumCmFCkO3rqeZXZTzMSMDYgFZdXY01a9aYk5NsXnMywVjl2U6dbodVjCvVlKL+HQ6H8eqrr5o+E6rJxs7nSqjm3b43MbnIO5XUNMVvwkzS29ublGO/nA9hWikqKoqLv5IMTu3HjanNqg7le+36iRx7S2ciSXe8EmnIZ3AFg0HzvcqTvjBZOrVLcW19fb2l+cap7qzqXjULJTMeymZ21SVC3cwiXALUYzDU9yR8q4DEjTbiGq/Xi5GREe2cVFRUhP3796OmpiahrHK+5HftVps+3iQlCF155ZVJmbn+8R//cUKPpTjZcPLvUJEnMbf+KG4GoGSusQq+puvkonNEIpGEiSUTA6Pc+dwKElaDmtMgFQyOOYiKjp5M8D01v0BiZOdUKSuzP5ldN3Am49Csq1f53al+L3aDPABzh11nZ2fcO1Dfi+7vd999N25CCQQCjhNeJPK+XxqgD6KXLCJvog6cTknXCdVyPoQPx7Zt21BZWYmRkRHU1NRkpN8KrN6z7l3a9Q279iK/F6udSW6EVyuEgCp2xnZ0dJjncak+TmLRAiS2S7XM7e3tiEajlr6LbgQYFdks1NfXZ5bR7WLHbZ3LPjry7j/5XbS2tmLHjh2IxWKmn1J/fz/8fj+2bNkSF/1ZNyeJuti9e7fp+2S3cBHv2uv1JnW8y3jCOEIOTNZZY4JkVNZuVMEqbkwbblS2Qi26f/9+y2BvVuaonTt34ujRo/D7/aZmIpMmvmTIhClOmPpk/4hkypBK2TOh4s8Usoq8trbW8twhK1OFTv2umgRUs3Fra6tpdqmqqjLzYRU4VJcPwNl8ItJV8yej849xeo+y34hqNtL5Urjtk6n4GlqloZpTksFpPLEznbvtB6p/jFiQ9Pb2mkEK7czYuvcmNErqtaKNq2knU6+ij4go7eMVS8eOjo4OM4J5VVWV2bZE9Gefz4f8/Hxzk4nOzC3K8u6776Kvrw8bN25Eb29v3LuTx0ZBJvxYnWAcoZOEZEwidipYdWUlvrM67ygSeX/btdU1MmKlUF1dnRAvSDxLtyqPRCKYM2cOjh49iqKiIvO3VFZZmSATpjixqhI7QJI1U9qtnK2QtRDy1lbdytuNuTUdjZy8arQ6RsJKuyCvYHWTlrzTR35PFRUVWLNmTZwflGwW0MV/Ec+zG5BV84WsdQX0mjuRpt3OOrV+5WNz1DYozBYFBQXmRBkMOu8utToPT8XOtCOnkUrf0PV9Xb50aSc7Bgjtp4jVI9qhEC7lZ4k2BiChTQLva4nU9ijnrb+/H9FoNOE4HYFar7LWPBaLwefzoa6uztTAOGn+rbQsTkeg2N0fi8WwbNkyzJgxAzU1NWaeu7u7sXHjRhQWFjoepyPqwjAMFBcXm75wOs0yMKZ1FbGq3JhkJ4KUNUI33XSTPkGPBzNmzMCiRYtwySWXxAVuOhGZbI2QW3RSut2OCafVluw85zb0udUKyGo1IK8u3DqGp3M6slusNFfJatsEqTpBu3lHap7k1WwsFks4gVs42zq9VzvHRzf5130vO26L/CSrsUxG8+XGed1Je9PR0YHBwUG0tLSYISCS0ZRa1YWqaRFO1atWrdK2a6s07N6RnaO82/acrvO6qFd5Q0RHR4etA38yuOk/coRwVUOZrMZLjfAtJnA3GiE7rbl6rRsNmVw+u8jTVu9C/C3fr6sDuzFXHr/t6kK+Xp5X0tEyumHcj9jYsGEDdu3ahVgshqVLl8IwDOzfvx9erxfLli3Dvn374PF48NJLL+GUU05JuSCTzUQJQumaNuy2aKqqdrfPS9WMYtep0x0E1TOY5Gemu2tLoBv8nQRLO1IVdpzq32pLqq6uhZOj3YCvTo47d+7EyMhI3FEAav6SEZZ1E7PThJxqG5TNYnZ+CE47F3VmqWTz5vSeUjVzOdV/a2srXnvtNaxYsQJ+vz/OtCc0sWKHkNVElmz96yZdgUhXNmOWlZWltbCxe38iL0VFRdi2bRuqq6sxNDQUJzQkW776+nq0traamiK37UGMT52dnSgsLIxrS27Ngup1VucqWi2KVQFI/G0VtkEnLKptzGqhYicYJbv4TYdxN41dcskl2LhxIw4ePIidO3eaUS7PP/98fOYzn0FHRwfOOeccfPnLX071EVmFWxWhk8OiMKeIAUDs0BADbjKmDlkFGovZnzycSlmssFP51tbWIj8/Py4gmHim7tT3VNCp5OXv5F08blTSdiaFdEyAunvlZ8mO0vK1VvmR35s8qViZySKRMUfj3t5eWxONnF8RbE1OQ5jqdKZT2XRlZd61MvnKATSd6lDUkegjsmBdV1eHoaGhBAdRuwlUzpv6ntR7de9RLZvVu7aKfB2LxdDV1YXi4mL09PSY9Sp8Qtra2tDX1wdgTKjXHQ0h17/biUq8TxF5Xdwr7+ITk6/X640zCVphZ6ZVTS66vPf29mLx4sUYGhqK2zmVipBdW1uLyspKBINBFBYWxpmi7cY9YVINhUJxJk7xm5sdteq7ELvw1B2JanpWJnvxf/UIFav7df1I/U3ca9We5HIkE2B2vElZI1RWVoZnnnkmQdvT3NyMCy64AB0dHdi1axcuuOACHDp0KCOZnQwmUiOUjCrfTktw9OhRHDp0CF6v11S1qyrgZNWTblfYujy6cZ7VlcHO8Vr3zHA4jK6urrgzmtzmMRncqqTTZbwcxt2as8SKs7i4GIZhJKxO5V1+slnJrdZSpCM0T+Xl5ZYnhztp6ay+S0bTqjt53WrV7PRu7DYhCOdUK02buF81eyXTZnV9ThxhEw6HAcDUaIjf3Jg27OpPLL6effZZFBQUoKqqShuQU/47Fos5ml2szJa6a3XO9KI+1LI5xdjSpa+WQc6bHONJ1cI7aYvS0bw7aXScyqL+ZjcPOQWDlOvfqT2lMwa7Zdw1Qv39/abDk0x3dzcGBgYAALNnz47bekes8Xrtz9qRr7MbqITj2vHjx03JXKxKhXNlR0dH3FEWbjQ4weCY42koFHK1+tflSXWedbpe53hthag/0blkdCvKdLRWbo7iSBUnTUKqDswyVmW3WnF6vd6EcooVrrhHtyp00lrGYvFxRJLVnMnfyZogN3nR1YncJ+w0DVZlAd4XyIeHh3Ho0CHTIVgc3rl9+3a899576Onp0eZDLofqQCvK0tHRodXOqm1HHKcjVvyRyNj5auXl5aisrDQ1xkIroHMKdovIW3NzMwoLC3H48GHzN/W9yhpqr9eLNWvWaBcuIk0ACe9Z7QOqlkE+PkU3tsqCjBvEQlAICeJ5ctuX4ySp7c6ubauad7d9XNRjU1NTXIwjuX5lrbpom/X19RgcHNRumBDmdJGOSkNDA1pbW9HQ0BD3vShvMu0pWW3jeJKWaex//a//hd/+9rdmELnf/va3uPrqq/Hxj38cALBjxw4sWbIkU3k96UnHTCIQ6vLKykrk5ubGDaRdXV2m2lrsWLBSzevSFbEorAJqCWRzh5jskjm8Ulzv8/kwOjo6LhO/LBi6SV8eoOQBz+pa3UGVbnZ4yHUHxK+m0jU5CqwmcavrdDuudKY2ALY7EeXJSm4fsglPoE4IukFTfq7Y2aUK2m77lCw4yEKZmOgAJLRpnXo/EhmLifXCCy+YEwMwtiusra0NkUgEM2bMwGmnnZagXZPNK+L0ebnPyMKZzuygmjbtdsmtXr3a0qSWjLCtCqDCdCR2Q1nhpi3rdpc53Sf6dXFxcVz8JlVobmhowKxZs8xT0FNFrmf5GW77mIpd+awWdOr5jHI6skAorDTvvfdewuG6dsjjWXFxMaZNm5YwLmdi7ppMUhaEHnvsMZx33nm4/PLLTRXv5ZdfjvPOOw+PPvooAGDZsmX44Q9/mLHMnuykIyHLjRV4fzuxbPoSp0uLVb68QnP7XFm7YzcYqdfonmE36Hq9XvT09ODo0aOuo+iKCTUYDLryr/B6raOkqsir8Vhs7ORtIbSo9aDzV9INTDrs6tdKeEt28nJjo09FbS1P4nY+aWoZdW1DFaatEJNafn6+Vnvotm1brcplgUj3XtS2JfygFi1aFOcPJQSEmpoa8zqRJ1nbYDehyHnR+T/pNGRy3ckCpxs/MTftKhVNgGi/QlCxeo5YcDQ3N5t5cvKnEv3aMAzLMS4SiSA/Px8tLS0JW+ut0AnrKrJgLvLq9nQAUYaioiJtZHWRprodPxaLxS1qBaKeZJ8oACguLkZubi6WL1+ubWe6MVQez3Jzc1FeXm6edK+W3coElsw2/8kg7YCKQ0NDaGlpgWEYWLhwIfLz8zOVtynBePsIufUNEtdaTU5OPjxW9uRU8+w0STptc5d9Q3S+EkKws9tSbIXwj7ALdiae4XbXk+oTIG/J1Z2ro77TZOrf6T2ru2TEAOlmm72dT5D8t9PuvnR3QrnxY3Djx+Z2m79bdG3CzbuTywNYb0fX7XpUAwG69UOyI91t77p3qCtjKu1Z9c2x86ey8vuxawOxmLXfkUjXTdty229U1DARbsYY2e9QuJPotKTyc53qTe3Xov7EGGZ3n1iI9Pb2orS0FMD7JrfGxkYMDw/D7/e7OiNM1EdOTg5KSkpsz5bMNBMSUPFvf/sbrrvuOlx33XUoKSlBfn4+fvrTn+Kll15KJ9msQqc9sLvWarUmfHisdskIiV3dIeAGN2YKFSfzkShLb2+v9jmRSASGYZh5TgahcbALdibK4dZkJ8ocDAZN/6C8vDzU1tYmaD7szDhu6l81NelU0ABcB7x06xOUjOnNSssm0nMK5idfG41GTQdimdLS0rjt/la+OsKkpdaXTtPg9J3O1KBqPcTkIps/3ZilAP2uR7EKFxpK0Z5krYmKXTmENkF3r3qf/Lcq6KhpyFpROcikHULosLtW1nTaaQ2sxj/RJ4eHh80ds9Fo1HW/12laxG4wnTbHbT8R9VlbW+tohpQ1OFbjuNqu1D5olW9VUwsg7r3K98maNzGGdnZ2mpq+7u5uzJo1C21tbZg1a1ZcHThpEMU4BcSbmZPVaI8HKQtCv/71r7Fp0yb4/X7s2rXLdGobHBzE3XffnbEMnuw4CTDqtVYTg/DhcVJJp9LgrDq+XXpOE2EwGIzzJVAHTKvDN3XP1glqwk/Krl5TMf+oW1atzEuZ8OfRpaEz1Tg5oCfjJyOuc/LbcRKGRT0J3wS7AU+3hToSiT/81aoMqslD9ddRJzJdncrfieeIVbBV/akLGLd1nJubm+AcrPojyf1btyHFSriQza9y3cmodSKXXRxcK5xhR0ZG4tIQfToWi5nCYiwWM816uverEyzLysoQCoVMgUU84/jx43GmY9WcHIvFzDFBnrS9Xi9KS0vR09NjK/TKAre82IhGo3GO7eK5AMw+Jm+Td3rXqmBr1T9lwVK0IZ1p0WqsU/ugsArEYrE4M65u3pDblVxe2e9PaNRCoVCc6XdoaAhnnHEGBgYGzDzZCbzClCv6sWpmzsRYmS4pC0Lf+ta38L3vfQ8/+MEPMH36dPP7s846C7t27cpI5k52xEBUVlbmareGlWOem+eoEr/b/Nk5v9o1YDuNkK7cYsAUBxCKiVA9fFP3bCuBwUkwTKUD6nxCdHWTCedBqxWfGARra2vR39/veISCG/u9OrBa+e0kqzECEPeedCtsnZZELbsbLaTu3ah+Pbo6lTUf8qQsLzJUn6dAIICcnBxzknDri2Sl/VLLqMu7QBUuxDsUArrYzSgcdYXgIBYVfX192kmyq6sLx44dw549exKEF2FuKiwshNfrNYXFWCxmmlvUnVWivmUndFFO1f9P59OifgcAnZ2dCIfDiEQicT5GImaS0NSJPMnttbGxEa2trWhsbIyry/b2dhw8eDChjZSVlcWdyG6l8bPSqgnBVj7810q7a9evnMY6XTuSNV66dpWfn2/2QyHgijyLcglzZG5ubly7Li0tNdMW/UQn8Iq6EXkV18r5CwQCtprPiSJlQWjfvn0455xzEr6fNWtW3NZJYo3VxAA4a2/cDrziOarE7zZ/disau8leVnerZdB1ZjFgis4FwFZTJj/brdChMyfKzqVuAkaq9W41KALpR7h2Ml2JU8mbmpqSckQUZW1tbTUPvFXNAqrpZHh4GO3t7fB4PK7aj07LYTW567Qkujzryme3QtYJi7o6VbUnarvQLSK6u7tRUlJiThJuta1uAgha5V0WeOQztES7aG5uNoWhYPD9bdVCoyI0RXJfk+ujtrYWM2fOxIYNGxLMjWrIja6uLtO0LYIjWpVD1w9U4VdM0jofIDmNoqIiDA4OYs6cOeY7i0TG4hf5/X50d3fjb3/7Gw4ePIienp44gVBsEpHHJKGFEUKU2nd17VjFSlAR93Z3d9sGq7RLWxXU7cY6N87wwJggI3xnIpGI5aJVPEve+Sb3F7VvqwKvqBs5wKa6sOnu7rbUXk4kKQtCoVAIb731VsL3L730Eqqrq9PKVLYgTwyy6hVIfhul03N00XN16OzWVhOfXWfTrazV/MjpqoOC0BZZqYidtBc6dOZE2aySicjUbt5bqrsn7DQeTrvR1Dy2t7eb9wgtnGoqkcuzbds2DA8Pm/FvrPKvCpTqe3Lrk2WVj2RNkOogr74DWdupmwitFhHqu3DbX60io9vlXZgXhe/Htm3bTJOonBdZmyKv0MX3alRl9R329vZi2bJl6O/v15ZfTHRCAO/v78eqVavMyVc1p9qNUzrhV2iUwuGwVvgsKytDdXU1LrjggoSwAiJvwWAQ1dXVZnll87UwO5WUlMS9p1AolOCjpaLTCgrkSPM67YaT+4OdhkkV1GWTnlq3bsZBkZ4sDDuZnWXzvywcib/tNM0iHpa6U1mum6mw7T7lXWP33nsvnnzySfz4xz/G+eefj6eeegptbW348pe/jG984xu44YYbMp3XSWEido2JzuUmOi+Q3k4Zp90k6u+6fLj1rUnFB8fuvnR20VilK77LVCRUp/cmVtGZikgt59/tbkBVoATejwwtBnuRjkhfbGMWUYqt3oPsp+D3+121T6v3Iu8aFJOyWj6nd6L+bvUOYjH9Lkb5flE+QH9+ktVvbvqrmk85vVgshs7OToRCIfT09MDv96OtrQ0bN2603BVll8+dO3fiwIEDKCkpwcyZM+MiV1vtdrTqM3Ztzs1YIhMOh9HW1obDhw9j2bJl8Pl8pgDidvwQviqFhYXm/WqUaV170LV9XXl071FtU+nuinKTp1QOMBb1k+yYrLtHfbdqnifyYFU7xn3X2K233oqPf/zj2LBhA4aGhnDOOefgmmuuwT//8z+fNELQRKJKxnbSvZ0mKdnnqKhOzrqVrhs7tZsJqrW1Fdu3b0/wl1DTd/JVcouuTmXzn5VPUTI+Vk7vTRfbQzzD7VluuuclsxvQ6x3znxJHIMgqbivTn9/vN1fwOtORrGEpLy+Hz+dzHbDNysdL9iOR82VnDrOqH9Xspb6Djo4OHDhwIME8IN/f0TF2Tld9fX2cH4y4zk4D6hR7S6cBE5oAAGa+6urqMDw8jMWLF8flVX4POkdncU1DQwOGh4dhGAZaW1uRn58fpyEVZRDtXeRf1oQIwUwILmpdiGtk7Yh4tt3uMdHOFi9ebO4mVQVDJ22qbFIUPkJ2mwnktuzUlqzeo9qmAJhO0E67FnVaM9mtQNSLk5bHrTbYrfbc6R6ddlqnjXRTr1OBtLbP33XXXTh06BB27NiBV155Bd3d3fjmN7+ZqbxlBU5+OAJ18Nc58TndBzh3BNWUoBOc3KgzrYQZ2fT32muv4Z133sHWrVvjBoZYbCxgoWqucXM8h13ZBbLDajJlAfQ+Vm5NlXZCizBXtbW1uQrwmEmc2oRdGxJ1I8xsQqCUIxfbOQgD+vYUi8Uwe/ZsDA4OmkEIBTqnXDfIwrn8DsTEXlJSglAoZB6HocuvYRgYHR1FZ2dnwmRmJ6jLoQDs6qCoqAj19fWmtkpMJMIPRzUvRqNRvPzyy/jzn/+MwcFB06FZ+BapW/xF4MmcnBycfvrp5s4f1VQIxDu5yxN7Y2MjhoaGsHfvXsu6Vk06HR0dOHLkCPbu3WsbUqG2thZDQ0MoLi42TywQ6Yl2pvOrlAUl2alb9VPUmced3AXk/OlMu2q/FgsLuQ7letGZfGWhyU6oFshmyEyYl5J1t7BaMIn6VHdepvOsiSAtQQgYsxuvWbMGZ5xxxkkXTHEicNuIrfxb7BztdPdZYTWY6yZJq4nTzr9IzUcwGMSpp56KvLw8VFdXJ6yEe3p6zIHAaSu9FeqEKfLX0NBgOqy6Wa3IPlZ222DT8S0SfgTJaFImCrvyBYNBeDweDA8P4+DBg+Y7kuu1qakJ/f39cQIvYB14sqNj7Cyt119/HbNnz46LNWWFm8HVzs+oqKgIM2fORFlZGZqbm9HW1obGxsa4NMvKynD66adj/vz5pu+OnK4aZ8hJQyMjhJ1f/vKX6O3tRXNzc5zTq+x7o9atOOlbREqWfXmEYN3RMRa1emhoCHPmzEFxcTGGh4cRDAbjtq2LMqiOsD6fD7FYDC0tLYhGo8jLy8P69evjomer7ULdnffmm2/ivffei6t/VdMj3oV8FpusXRLaHrWPyIKSEARFHckChZqv4eFh/Od//icOHz6clkZFp6UMBoOmdt1qfBX5AeKFJqcxT85HKhoX3cLU7RjmpNVyEuScFsmTQVI+QjfddJPrhB944IGUMjQePPLII7jvvvvQ2dmJmpoaPPTQQ/jgBz/o6t6JOn1eYGVSyrS/jUq6/je6NFT/Cjfl0vkfRCIR26jZVlhFsPV4POjp6bGMPOuEVZ6t/k4mXdkckcyJ0umWwep3N75T9fX1aG1txcDAAJYvX57wjqLRKLZu3Yrq6moUFBTEOXuOjIxFyZY5fvw4uru7EY1GTadaAAn5EXUkTv12it6rti1dxGLhQxOLxTBt2jQEAoGENN28b+FPsn//flRXV2NoaMjchWVV79u3b8ebb76J7u5u/H//3/8Hv9/v+P6KiorQ2NiIWCxmbjAQ6cZiMezYsQMHDx7EaaedZvYBebKW69XJxywcDmPXrl0oLi5GdXW1KeSFQiGcccYZtu1SHPYJwDwIVvRt2b9G9M2amhpz91skEsHg4CBaWlqwceNGUxPpxm/JqZ0/9dRT6OnpgWEYuOKKK7Tvx03f0/n1xGLv+33GYjHLSO26BYFYxAH6MU9ovuR6ciqv/JuodzFWW6WnK79TZHBdeazyAcB1dP9UcDt/JyUIbdiwIe5vMWAsXboUAPDmm2/C6/Vi9erVeO6551LMemb5xS9+gc997nN45JFHcPbZZ+Oxxx7DD3/4Q7zxxhvaowNUJkoQEo1D7jxOjSKTwlEqApjdhAAgzvk0GYc+XX5VAcEp7L5T/tIRJpycGZMVKnXvXgycoVAIXq8XnZ2dKCoqythgYSUUiryIiLIiLL5aVuD9CUP4f4hzjHSOtuKZQKIjrtA0tLS04OyzzzbNYfKALPJ76NAhHD9+3AzQpgobwplbzqPaRlpbW9HU1ITS0lKUlJTEOb/Kjq/yriu1jVlNvPI7FWegDQwMIBgMmn3Aqm20trbiueeew6JFi7Bo0SKtg/Hw8DC2bt2KOXPmYO7cuaaZxmoykSctAGhrazOFSzd9wO4d1tfXo7GxEYFAAGvXrtUKi2LrtfruVed84YxfXFwMwzDi6icWi2HLli3w+XwoKCgw61x39I56tI/TpDw8PIxt27Zhw4YN8Pv9ccK5bDbT9fdoNGrem5uba5ZXHEEh+kIgEMCzzz6L/Px8VFdXJ8w7uvHCKd/19fXo7+9HR0cH1q1bZ753q7TU8UUdt+w2coj+Ultbi6qqqgRBSK5zr9drtnsh/DstwDN5RI7KuAhCMg888ACef/55PPnkk5gzZw4AoK+vD//0T/+ED37wg7j55ptTy3mGWbt2LU477TTzIFgAWL58OT7+8Y/jnnvucbx/ogQhXQd0mrxT1eI43adbOYh8qZoau91DLS0tpqo9FAq5FvCs8qLrsFY7sJyEtHQEIruVle7ZTujefUdHh3k+z/HjxxGL2e/Ccho4rcrQ3t6O4eFh5Ofno66uzpxQRQRh+fwruS10dXUlTPJO7VPVAA0PD2Pfvn1YunQp3njjDbS3t8Pv92Pp0qUoLy+PO3dLlK+trc08mb2iogINDQ3w+/1obW1FTU0NYrGxwH8i0GF7ezsOHToEwzBQW1sLv99vOvn6/X6EQiHMmjUrQWMjC9pNTU3mwC6EInF8i9jhJILDqZOwbgJKZueZ2jYaGhrQ2tqKGTNmoK6uDrW1tabPzpEjR7Bp0yZTOFAXEI2NjWhvb0cgEEB1dbWr9qo+v7CwEC+++CI2bNgAr9drCkLi/XZ3d2PlypVobm42DzZ97733zHQ++clPoqKiwhR+hEAqhCOrHVfDw8N49tlnzbABx44dQ0FBATZt2hQnnG7ZssXsM5s2bUrQJlsJ86qAKxYCYiEi3onol+Xl5Xj99dfR19eHOXPm4MMf/rAp/IrzNxcvXozq6mp0dnait7cXkUgEl112maPGxc2iNBaLYevWraisrMTw8HDczj+rhZndbjZVIySP8zt37kRbWxsqKytxxhlnWI7JwsQnFieLFy92fYZjpjTdKuMuCJWVleHpp59OcGR8/fXXccEFF+DgwYOpJJtRhC37l7/8JT7xiU+Y3//rv/4rGhsb8cILLyTcMzIyYjrGAmMVOX/+/AnTCKkNwk5o0R1s6qZhOV1jp+aVBQ83g3okEsGcOXMStsKmarKzMm/o6k1eacgCC4C0zYBOdZlMB7fT0KmmKUAvxAkhwUlgUpHbUHd3Nw4fPoydO3fi0ksvNR1uVVOUEAJEhFpx3IiqZdD5EohBtrOzEy+//DKOHj2KsrIyLFu2DHv37sXMmTMxY8YMBINBM3qzTEtLC/bt24dQKIQLL7wQXq8XO3fuRHt7O4qLi9Ha2orh4WGUlpYiFAph7969GBkZwbRp0zBv3jzU1NTA4/Fgz549qKysxMDAAHp6erBo0aI4s51cr4ODg9ixYwfOOOMMDA0NmSeEHzx4ELNmzcJ7772HjRs3mr5QIyMj5gQdiyUeHpzMAkYVpkZHR7Fnzx4sX74cVVVViEQiaGlpwd69ezF79mxzO7WqfQLGJqh3330XfX192LhxI/x+vzl5W211Fu1j9uzZ6Orqwr59+zA0NISqqipcdNFFcQuC+vp6DA8PIxqN4owzzkBLSwuqq6tx6NAh/M///A/ee+89rF+/HosWLUIwGMSOHTvw7LPPYvr06fjkJz8Jv99vOyaJ9u31etHb25vwzuR3tXr1agwMDAAYO3G9r68PtbW1poA2NDSE0tJSy8WZEJbFeCcEcyEglZeXm5qeZcuWoaKiwhSY+/r6zP5SUVFhCi1Ca2m3xV59H1baPZGuW/O2k9ZctUTIbVQV8K2eI2sNo9Eoent7kz4wO9OM+/b5gYEBvPvuuwnfd3V1YXBwMNVkM8qhQ4cQi8Uwd+7cuO/nzp1r6RR2zz33oLCw0PzMnz9/IrIaZ7OXJw/VuU9GFxHUjdObk3NdMJgYFVrkQ14x2DnFeb3euN1DYnAW5XOzFV1XfqGVampqMsuu6+DBYPxWV5GOXUh3N0576jW6uhSD2eDgIHbu3Jl0tGr5O/XsIav3GwwmOlvryqN+l5ubawqKw8PD2LFjB6ZNm4bnnnsuTmvU2tqKrVu3xr13cZRDT09PnBOsrIkQZj3h1HvgwAFEIhGEQiFcdNFFCIVCWLhwIerq6rBx40asXr0awWAQtbW1yMnJMVf07e3tAMY2Z0ybNg1Hjx5FY2OjOdAHAgEcPnwYFRUVmDt3LubNm4fS0lIsXrwYK1euNNP3+XyoqKjAxo0b0draivb2dnNi1PWxQCCAlpYWrF692tQI+Xw+rFy5EnPnzsXg4CCqq6vR3d2N2tpa0xQsn+XV2dlp+j2JdyWHHxBRvnXtRLSDYHDM8baiogIXX3yxKQQFAgFUVlZixYoVmDZtGjo7O7XnnwWDYwH0pk+fjoKCAjQ3N8eZ78RW50hkLBKwaLdiUhN5r6qqwsyZM7Fs2bK4tijeWX5+PlatWoWWlhZs2LDBFFRmz56N3Nxc9PX1mem3t7ebIQt0juZyXYj2XVlZibVr1+Kiiy5CQUFB3DsLBoMoKCjAZZddhpaWFjQ2NmLnzp34n//5H9Of6ciRI3jllVfMjT2iftSdjcJZXJS9u7sbR48eRXd3tylsigXHtGnTTB810Y4MwzD7idfrxYoVK8xDmmXBVHegq7zrzylUgLxQVRHvR91tG4u9H7okHA5jZGQE0WgUe/fuNYNCymOkGvxSfj+qMCY+XV1dcW1exs04O9GkLAh94hOfwD/90z/hV7/6lRmR91e/+hWuvvpqXHrppZnMY9p4PJ64vw3DSPhOcNttt6G/v9/8HDhwYCKyaKJOdKqAJMfR0AlJdoKTW2QBp7GxEW1tbYhExs4GEysku+31alpyJxQDbSQSSRBG1A5mtaNImAK2bdtmGwlWPqJA5MMupLuVkCHny42gKQazt956yxQi3GyJtxsgxG9i14l8jlRrayvq6+sRDAbjtq2LvIpdWOJIjcHBQTQ0NJhtKRwOo6GhAU1NTZgxYwZ27NiBAwcOmCaF8vJy9Pf34/Dhw/jzn/+McDiM0dFRAGPvf9myZaYWR65Hkb/R0VEUFxejtLQUHo8Hx48fR25uLgoLC3HKKadg+vTp6O7uhtfrRW5urrmC7erqwqxZs5Cbm2tOPqtXr8bGjRtRWVmJWCyGo0ePwuv1orq6GrW1tZg+fTpyc3MxZ84c9Pb2orKyEuvWrcMZZ5wBv99v9qWmpibk5eXh8OHD8Pl8lhq07u5uLF682DQ/CL+P3t5eGIaBoqIiDAwMmKedb9y4EcPDw3ECuBpVWO4TQtAUO7+s2pW66BH9qKmpCWVlZebKu6amxnyW/Bzx/7q6OjOytWinsi+HWECMjIygvb3dPJwzGBw7JPmss84yAznKO6C8Xq+pJYpGo2YsIKFFXLx4MWpqarBixQr09fWZWveqqiosXLjQbONy+9EtrnQTv9pvuru7MXv2bFNgzsvLQ29vL44fP45XX30VZWVlGBoaMgXMSCRijini6BPxLPEJBAKmGUweO8T4J+/W0y2KxK5B0X6CwSD2798fF8dJpCfv+hP1IMom+oHAbjyyGpsjkbHQJeFwGF1dXfD5fOjt7UVeXh6am5sRiUTMY47kZ4t6lhexuufr2rz6fLlcU0EoStk0dvToUdxyyy348Y9/jGPHjgEAcnJycPXVV+O+++7DzJkzM5rRVEjFNKYyGbvGdDuHZOk+Fotpdx+4Td+NyUZVibtVx9o9S+5IwuFV9gORbdldXV0J6mFh7jp06BAAmAcCWmm3xPW9vb0IhUJa05Ib3yEn52ircst+JIsXL7Z0HnTrzCjvnBGDZG9vL9ra2nDo0CHzSAEg3owWi405XovJdHBwEIsXLzZD37/77rs4ePAg5s6di66uLjQ3NyMnJwcf/OAHzYCL4XDYFDz7+/tRXFyMmpoaM9qxzjwrntvV1YXS0lLTYVfOnxgEu7u7MWfOHHg8HtPMU1JSoq2zWCxmmmHy8vKwevVq04wj/CZaWlpMU5HcxsQzBwcH8fLLLyM/Px9r1qxBVVWVbZsVJhlVKBf3CA1ldXW1aTJW77FqK+Fw2PRHCQaDZgRvna+P/HzZhNLW1obdu3dj5cqVOOuss7TPsmqnOvOM1e5FUX9OPoZy3bS3t5ttWvgBid+AMcFF56ele6Zwlped+MUzhLZYTR8YE2zC4TAaGxsxY8YMc+s/MLZL0ePxmKZ2oX1V+6XqJ2nnKC+bDK2iUScTbVzni2j3Dp3ee2trK/bs2WOaSFWHZ125xXiWk5MTJ0QC8f1Z/O3GNUP2uUplPnNi3E1jeXl5eOSRR9DT04OGhgbs2rULvb29eOSRR6aEEASMqf1Xr16NZ555Ju77Z555xvVgMRGog63QxsjnRwnpXgSpEvfIJ0u7kazl1brd9WLSzM3N1cYwAazPm1KfJTqLWGmIDtLc3BwXaVaUEYD2JGOxWp0zZw4OHTqEzs5O8zddXgKBAPbv34/33nvPXG3rNFQij7qJTtW8OU1sch0J9fnGjRsxNDRkGR9I5AFAnBAkr5pisRjeeOMNvPPOO9i5c2fcSnTevHlmkLq2tjbs2rXLPKE7GBxzZC4vL0dNTQ1yc3PNQzXl6MqhUAgVFRVYsWIFjh49isLCQgAwg9oJc9LKlSuxcOFCLF++3Ny5pZpn5fKXl5fj1FNPNVeysplPmE+FBqe/vx89PT0YHh5GZ2enGRdHp7mLRqM4fPhw3AQga29WrFgBANi9ezdaWlrMdym0asLPRT00VTXZinzKJifxvVwW4TcnNHVC06MLkKn2d1lQ27ZtG3p7e7Fly5a4QIiqFtPrjQ/u5/F4bDXddu1UrV+dJkm+xo0WWDaZ9/T0oKioCADMSVRENq+qqjL9eYaHh9HR0ZHQD8PhMKLRKHJycsx2rsbjicViGB0dNctfVlZmpi9HUM/Ly0NhYSFef/1109wqzKVlZWUwDCNBGy/MZOL/YhFid76f3NZUTVEsNhbAsq+vDzU1NZamLZlUY6np8gQAfr/fdHMA4s9+U8sNjPlUdnZ2Yv/+/aZ2S9WuizYv9xNV4zNVNEAqSWmEmpqaTFu0G5qbm7F06dIEh8eJRGyf/973vod169bh+9//Pn7wgx+gubkZlZWVjvdPhEbIySFY50QrpHW3u6fUVYysfXBa1bnZESQ/S3aak1fFwPs7cuSdOLoVv9WKWqz6fT4fBgcHcdppp8Hr9WrzUl9fj6GhIXNn0+rVqxMc96xWVFZaILkMVucXOaVhpRHSvWdZKHr99dfR2dmJ2tparFu3TvuOhclLpCOvtKxW8vKz6uvrsWvXLuTk5GDFihXmilD28dJp1OSzyMSg6CYGkXinYjUKwIyLU1JSonXgtWqbavurr69HOByG1+s1YxG1tbXB5/Nh1apVCbuc5POp1Hcha0hE/1PbtVjh7tq1CwUFBRgeHkZRUVFCLCKr/i5MfTt27EB5eTkGBgZw2mmnmY7POi2m3C/sHFrdYqUFcatxUCc6IcTJpjTdeKM6AgvE7tPe3l7U1dUl1IV4pvB1Eru1dLuV1LypY4vVWGml8bG6Tjh2A0g4hFbWlAIwTcQ6zZC6G0uXZjKO907jkZ2GUNZw+3w+rF692ny/dv1SF3PIahefW41WMozLrjF5gHPDrFmz0NjYOOmn0T/yyCO499570dnZiRUrVuDBBx/EOeec4+reiRCE3Kg3dSp7N51WNESh0tUFO7R6pl0n0wlrYsKWTVvC/KIOqE4Dt9VgIlTKfX19prYD0KvS33rrLdMnYHh4GBs2bDBNIE51LKcpq6UBaOPZJKu2tvtNFwslEhk7HuF3v/sdzjzzTCxatMh2cB4eHsbrr7+OU0891SyzTv2tPl84lZaWliIYDGLbtm3Iy8tL0Ayq7Nixw9xiGwwG47b+q+9Q967VAdptmAa7d7lz504MDw/D7/dj9erV6OjoMIP6CcFI5FNopNSVu9oeYrEY2tra8Oabb2LJkiXmNnSdOVQ+ONSN4KwTaOUDYHX1lUx9uJlwRNoivlRxcTGOHz9uxlNyEmzlfitP8rpYTHLedKY/UReNjY2mE7qV+UQWhpxM0FZjqGqidxuaQyfY6gR12fQvCAQC2LZtW0KwUfU54n41zXRcFXTvzm1YFbdCiy7mkBxywe1B0akyLoLQtGnT8IUvfME848qJRx55BG+88cakC0LpMJ6CUDINK5XBD3i/IcrxYJKxJdvlT/VTkFfLwpdEDICqBioZPwNVm9TR0YGuri5zsLOaVIQfSWtrK/x+P6qrq7Fq1SpLAcxKy6XmQ5hQotEo/H4/Vq1apY1ma6cRsSu/CJY2MjJi+gMFg0EzhoxQY8v3yYOsEDTFNl+dRgiAo4+C7JNlGIZpPtNNMNu3b0ckEjHTkoNB6sqv3m/nC2GnIbVC54MhhCMxqQJjglBpaSkOHz6cICDK/h1iq3VOTg7a29tx8OBBzJs3D2vXro2bDHXxtnSTpa7sALT/V7VA6m926Hz9dFoVNT+yRkhe1IhdVVaCrZN/kdW7UusmFe2FG42G3CfE2CjMiqofpJXwqrZRt9o4Xf6s2mkq7zpdUlmQJ5MmEB9FGshcGBMrxkUQWr9+fVI2aAD42c9+hlAolNQ9U4nxFISSEW5Skcat7rNaGSWTtuyYeuTIEVM7Y6XtsXsm4NzZ5brq7Ow0BQXZfGO18pbNNk1NTRgaGjKdZOV6slvFqYO0HFsmLy8v7tmy2dJq4nBj/pPjjgj/E7GaUgUSNyYNu0HJbgUoq/J1E6A6mLt5n1bYtcV0+ovd5CYL6QDiJmBRR7LJTOfg6TQZWpVLXjFbaRZ1ZXfbf4R5WLSjUCiErq4uS22TyKvVIsSNqTMZhA+QyL/qqOxGeyHeiVW+xLXqRhMrQUiHnWBmZdZzW36dcKRqoK0EbLdpZgo3Tt525crUOOGWcQ+omC1MFY2QbuBLZoUs09raitdee800m6SibZK1FkIYcavtUXHjSyOXPxqN4pe//CVWr16NgoICc+BUAz7qnm01YblZset8EuTAbOLZ8qAlTxxAfMe3Mv/Jz032HaerKrf6zm6iyYRg7YZUTY2AOzNvMDgW10cWNgF3Z0/pdii6MV/Ik6gbTY0sxIrgfWLXlTi+QW7jsVgM27ZtwznnnIP+/n7TtNfT02OeP5ZMXbnFSTuj9gFh3ndzlqBsvhVRqu3O5bLqS8l8D1hP2skGOhR5supTViZZN+MbYC2sZKJfqlYAN+ZunQ9pJvNkBwWhDDHR2+dlrEwGAGxt2E6IQFoVFRVYu3ZtSo1RPqNHPmdH7DaTtwC7MbHZmUZURNRXEQzQ6uwxwP2KI12Vr5PQohtArFbeE6EGtyIZgTDZNNySijCnMwWmkqadcOqUj4aGBgwPD8Pr9cbda6cxSKXdyY7BIpDljBkzsHHjRlRUVJhaoPz8fIRCIVf+K3JedIKBk7nLyW9Grl9VKyDMzD09PWasJrv6kcu3Zs0aSx8ju3La9Tt5q74ogwjRoHt3bs2gMsk6DSezMLISVjIh4Mp5yYRWKlN5soKCUIaYTI2QlaYkFotZnhTshkzsMLGz66sCWiomDTs1vHqQpDrJqGai8bRBq/m2e5dufHKszB9OAmSmNDFWaST7Du00SE73JnMatZXZI1VSybtTm03GdOI04YlFgNj5Fg6H8cYbb+CUU05BVVVVgmla9nmyK4tdvasO0LrND04+Uk7PsROc1O/tTkqXnzEwMIB33nnH3CRhZeoFoBUWw+Ew9uzZgyVLlpiH4MrIfVr4QgofRqtDYeU8yu3MzQIwGSZD+6J7NmBvVp0qGqGU4wiR9BGNXzQQlWBQH79GaF3EGU/JNiA1ZLoOEXJexPaIxeLjPoi8yWHgxXfyMRxqOZwQ5ezu7raMSREMBs0VdywWMydB8bsYPAE4Plf21UkH3buU0w4GxyLG1tTUmDuCVAKBQFy9ObUP9Xen692g+iuJMqhxW5zS8HrfjyOTTB1HIu8fMeDmWcHg2HEwImCjPJGl8k693vj4QFbIRzKIeu/u7k64V+RBjQisorZduxg1QgDJzc2F3+/HihUr4Pf7zWfqYsI4jRFyvatHO4jI7KFQKO6IiMHBQWzZsgXRaNTs4wDMutA91+sdi38kAiGKZ1iNEfL3oo683rFwCL29vdo6EmU5cOAAZs6cGReNW4wLcuRjtd+J9msYBmbPno2BgQHtTulg8P1jfJqamnD06FFs3boV7e3tlsdLyPUg2gow9v51x/7oiMXGAiLu2LFDO46I9NX6d9MWUu078n2RyPvHtOzcudOMgK6O527zNBFQEJpEnAQEq0aSjGCRLKJB646xkBu7LLCIAI1CshcaoUgkkrJmIBhMDNMuTzhiUhFCoVj5ygJQWVmZ43MzITyI/KrvRE5b1Fdzc3NcKH8Z9RgFp/es/q67Xj1DKVl0da4OlKJdWB3/kkwdC4HR7aGx8qQl/p+pd2qHcLpvamqyfU+RSGIwRB1q25WDXcqUlZXFmd2snp3shCbqXWwokAOdCk1Hbm6uGcm9rKwMLS0t8Pl8aGpqMtt3IBAwz6yyQhWUxXdWgpP4XmimZDOdlfCUl5eHT3/601i4cCFWrVoVd31ZWVmcECLOCRP9Tgho4myzZcuWaYUaIdSJBc7+/ftNDZMYA928D/HuxXEmTnR0dGDbtm1oaWnRjiPpYNd3YrExx3bdmXjyfUJAHBkZMU+iF0e/hEIhRKNRx/MXJxoKQpNIqtJwOlK00wApGrQIArdkyRJzpaLrJOpKUHQE9Tu7vOiiYosVk1Abi8lVPgw2Enn/ZHsAceH1depyO81WOkKllXpXpzUTB1OK4IF2eXF6z+rvuuvlCTsV1DypbUCYIcSqT/1N1SY5tT+h7RDv3Ap5UFa1VfIK361AkKzAKL9Hu/dk175UjaEsvItQF2o9WL1zIF5AFe9JaJmcyi8vbFSNnK4MXq8XGzduRGFhYVxbbmpqwuDgILZu3aoVllUNkNPBom7yrBOexIJM9jnStS2dBlLsCvR6vXFn99nlobe314xq7vP5kJ+fj+bmZvM6u/ch8iq071Z1JlNdXW05jqSDHMFaCCxyhHOdVkeUQbzPSCSC2tpaVFZWIi8vzzx3TkSRV6O0TwUyIgipL1AgNwSSSKbMMsmaHtyY44QQMm3aNHMFZzUgisFbNuOJa+xOeXdjBlC1KvJKUqz8gsFgnCpaHAuhS0cdiDKhmhWqYPkgUyutWXd3t9YhNFXNmUo0GsX27dvR2tqqFbx0qzq79qPWj04wkoPmyVogMWjKZhKnFafcLuwGSjV9eYKTNWtutUN2AqNOYHdjXpbrD0jUpOk0hvK7T0azpV4rFg2dnZ1x2h0ndBo5qz6iq4PS0lIMDAyY7d0qf2rfcFosxWKxBG2Y1fXhcBj19fXacuvqKRkNpBVyOqtWrUoQUpwWh7qwNFbvv6ysDIsXL8ZFF11kbkYRdeQ0Fzj9Lo7N6OzsTDBnCS29TqsjxnyhTRRm4lWrVpnmVlEPqqY/U/NgOqQtCP3qV7/CkiVL8OEPfxi1tbXYvn27+dvnPve5dJM/qcmUCj9Z04NbDUgyGgr1Nzt1r1szgC4POr8pWQhzKgugH4jS6Yyqr4AbrZmuPpzen5s8NjU1IRwO47XXXkMkEkmYrHSrOitBToe6qpYnAGE2EXkNhUIJJ1A7mZHkdmGlLRADvpy+qpoXz3BrOrLT1Im0GxsbsX//fvzlL39J2tRop021M33KGlA17/I5g6qPieiH4kwrtxrPdBcGFRUVqKmpwbRp0xK0Hk4+QDqchEXd9e3t7YhGo5b+TrI/kA5Z4HLbN+W86QRE8bvQ/sjPF5ptv98fJ+QVFRVpzYy6sVb45FgJgPKzRF/XtalAIGAKKrW1tXFCi9DSW2l1dNo11dyv88GbCFO2E2nvGlu1ahWeeeYZBAIB1NfX48orr8TXvvY1fPazn0VdXR0aGhoylddJYSJ2janbzVNNR16lp7qN3O3uICdvf2EyUaNOJ5ufVJ6byu+Z2vJtFZPErtxOeZbz6LTzTI2xol6j0z7FYjHTLOR0JpRcV1bnUKVal2o9WD0nEzFK3ORRfafRaNQ8cmTRokWoq6tzrclz+45VdDtHY7GxyO379u0zY1ktXbo0YbdXOBxGa2srBgYGsGnTpqQCPSaLnI4wLSUTV8dNum7ulY9wEDGG5PesvnendpCpM9wEbtsukBgmwAox1h45cgQ9PT0oLy/XbveXr01na72VBtuuDzqFFslEG9QxYbvGjh07Zkq3a9aswYsvvojHHnsMd955Z9JRqLMNNw60yaQjmx6EirKhocGVqUHgVmPkJMXLjoTqil3Or50DnkBevVs91615SX22zrk3WeSOLLQiutWOG4dQu7LLmieres/NzcXatWvNrdS68qsrMq/Xax6HUVpaalsPsdjYydmHDh0yJ2Qrf4F0/K5EOrJ5R5jNdDvYkjUtucmjuF+Y9ioqKrBhwwZUV1eb525Z+UzIpDPQy/mUNWb9/f0oKChAS0sL/H4/9u/fn6DlKCsrw5EjR5CXl2c5tqh1ZKV1FP20tbVV21dlR2bVhKU6OSeD/F7d+HF1d3ejpKTE3DGn0yjLWjandqBqNOzQ1V06vlG1tbXIy8tDcXGxrRlbjLV+vx+BQMC2nanjsiCZPqvz3xTfWwlGkUjEsg1kwj0hXdIWhEpLS+M6WXFxMZ555hns2bMn4x7tJxuiUdfU1GTM8U006NraWnPSBKy3kasdy22jlDuO1eApp2V1vZvJxMrsYXWNW5JVu+sQKywrdXS6QoGaR90gpstTsmY+MXmJAQ7Q7w5raGgwtwd7vV6t6SbVulTV9rJ5p7e3F4D91mwVu7p3yqMok2puqqqqwurVq82dVKFQCDk5ObamFidBwK2PlihPWVkZamtr4ff7cc4556CgoACLFy9OmKx1Ds1WE7OssbQy37a3t6OhocFcXFmhmxCFRs1u0WNXD7FYDFu2bMGbb76JLVu2WPrDqOOMrI0VeZb9DO18uHT1Y4eu7tz4RsnXyAKnyLthGHFmbN378Xq9ZtwitT+q6Nq+mz6r1rfTmDsVTF5uSVsQ+ulPf4q5c+fGfZebm4uf//zneOGFF9JN/qRGNJTe3l5Lx0s3GhMZ0aBF1GWh/rRq5Kk2VrnjiIE+HA67GtBVwUa2QzsNbroOq5u03JAJzYXOLm5VbrfYaarcaI+EBtDtjiE5XQBxaeh8AHw+nxkXR55U0sVK4yU0Vm58wXRlSmWlGYlYb3uX229PTw/mzJmDSCSSso+ZW62M2oeOHz+O3Nxc7c4mkYbX603wERNtQzeu2PnyCEdZ3dZ4VQuklsEwDG1sMLUedP4r4rdZs2ahvb09LlyH2ka93rFgjg0NDQiHw1phQy1jLDZ2GG9LS4spLLnVMKt1pNadk2+U2Nko78xtb2/Ha6+9ZgZ9lDVIdvG8hLDZ1NTkSvuW7IJJfT9O46fsj+XG0X0ySUsQ2rVrF37961/jN7/5jVb7c/bZZ6eT/EmPW/W8G/W7DrGKlNWXdnlIVugC4qM4W+0AsVuFyqYaALbaFSvsJi073NSPE8Gg/a4TtexOq15VCElmMpdNJ27CF9g9W6ShDup5eXlYvXq1aVoTtv/h4WGz3Yi0nByvVXQaL3kAnUgVul3fFL8BMIVgwLqunSYBO62MXXs5duwYXnvtNcRiMa1ZUCdUyHmXJ1xVY2FlVl29ejWqq6sTyqLep2oyS0tLbRc94tPX1xcnCAtzWFFREaqqqvDBD37QXHhbvSOxA7Crq8v8XZ6UrfLa3d2Nzs5OSxO8GB/feustbN++3XRSd9pcYGcOF7u0xNgl8rdixQpzsSGuEyEqrExfoj7sYjjJWJXRqjzqQsVpUSbHZ7K6NhXt9XiQsrP0Qw89hJtuugmzZ89GTk4ODh06hJqaGjzxxBNYvXp1pvM5aUz0WWOqP0EqKxOZZML7C80O4P6cJTXkv84hzq0jnpUzsNP9Oh8MN34ZwtTj9jgHN6jPTcY5U3UOTvfA1WTajpVjslM9ijYjH5oJJH8Wns4pNR3fmkxhl4dUjrJw8xwAcSt63TExwlTk8/lQWFhoOtOKdAKBgDkRqZsVVP84NwKm23FEfr7dZg217wFjbcbj8aCnp8dsB/Lhzps2bYqrG6uJNRwOJxxxoXM6V+uis7MTRUVFZn2p9SP8XPbs2YNZs2ahqqoq7iw3UYZkNgmofVQIJyINq/dp5Wht5dytti+RphCCZO1+smOt7vdYbMx/0Ong13Q3qTgxLs7SP/7xj7Fr1y6MjIzg7rvvxv/5P/8HPT096OrqQltbGy655BKsX78eL730UtoFyFZUfwKdvT2V1bYTYkWm2/LshJg4VUdhgVsTlKxdAd632YvVXFFRkaPJQJTFjWbJyaylw2kFo66ydM6aTpoGeRWYjNlS1XCJVaYb05X6bN3K3uq+8vJy1NTUmL4ysp+aW1OWHMdHaAGEaSMZE58b3Go+ndqR7EibrrZK1aCI9wbA0g9LF9BQ1m5YbVYQ97s5SkTUg9AaOb0DK3OVTmOVn59vOnmLNuP1euOck2trazEyMoLKykrU19eb46LcpuU+GYlEYBiG6R4gkPudTlumaiPFOxDbxEX6oVAI5557LioqKlBbWxuXbiqmdrWPWmkH5fcpzGRih6gaBVzn3C2/FzlNID7umlMZnLToslZa1ZTr+lMm3BMyQVKC0H333Ye1a9ciPz8fPT09ePXVV/Hggw/i+eefR0FBAb71rW/h3nvvxS233DJe+T0pSWZyFf+3C0Io42S7l58hfA7Eis/N5GOn9hcTTkdHR9xK140aWS6zfKK9mzI7CTiiDkT07GSCqVkJBnKadj49yUyYqQwSToKYnFfZXGe1ynMzMIrYIqoDqioY2wnxchwf1bQBuItQ7lZQ6ujowK5du9Da2qr1RxE4tSPZz8PJ3OmUNyuB2c4PS8Sr8Xq92ijbcluzyqsbH8FIJGLGI3Iqn1i0CI2AmDBVwTMYDGJoaMh08hZ5LSsrixP8vF4vli9fjtbWVgwPD8f5zehMiVbtVa0L2cQjCwZye5VNeQDM8XHRokVYs2aNKUiIe1Q/O7v2YHUcjZqGOFNSNumJBZLQEMnxkuT3L++yCwbf3y2nRnoXvkVutcd2bcZqQSXuU/vTRJq77UhKENqzZw8GBwfx97//HdOnT8e0adPw3//93/jIRz6C4uJiVFZW4pe//CUaGhrwxz/+Ea2treOV75MKuWHpBAudY53b1bad7V7tKG52jzilr5ZL9m8SKzGx2rebHHQrLbdldvLbEWUT6nC3E5gYnHVO2W7ryw55pSoO8xTqayfNRTLO1Wpe7XxSMjlQ2QnxchA6IRTV1dWZA6pdUESdY7cdsVgMo6OjOHz4sG0oAqd2JE9Mdk6+yfQjAHGrc9EGnIIO6qJ4y0SjUbz22mtxDsTiGTqNk64eqqqqsHv3bjNqua584oiO7u7uBAdg1RdJtwNS1ZBEIhF0dnaaTvoiTVVgycnJMSdznUCvmgLlZ9sJT0JrprZBu52Aap3oDuiV+4BdH21ubk7Q8MjjoWifQjiS339jYyNaW1vR2Nhopi3egSy8zZ49Gy+99BIGBwdd9SG7xZHdeOHUnyaTpJ2lZ8yYgdNPPx1nn302Tj31VLzyyisYHBxEU1MT7rnnHixZsgTHjh3DVVddhYULF06IX82Jjm5FIDcUnWOdlRkqmWfJ5gj1ucloI6xWvWJFFQqFEIvFUFhYiJdffhlHjhxxdP6W8yNrGFS1rG6F5TR5i7J1dXVZxm/STWDiO120bJEm4N5BWZdGX18fhoaG8PTTT2vP7xLI5ZZ3vLgRXOzMdW4nbvWdCwFe9q2weq6TQKtqOtTJTRWAAMStcJ00MEIrICYSK22Zm7qMxcbiKu3btw9+v9/SOdlKiLMTnKw0Feq9wWDQcRv/tm3b0NfXh7179yYIyk7mU693zEn6vffew/DwsLkrKRwOIxqNxi0MhLZlzpw5ZtqyZsXNeKIugsThp2VlZSgpKdGGCRBmrLa2NlcCqWziAZy1IKlocoWWpqGhIeGA3traWlsB1K6v6DSuunZWVFSEgYEB03laaH/k55WVlWFwcBA+nw9vvfWWq3bqpPnSaZxlbZPVfZNJyrvG7r//ftx777245pprsGvXLixZsgQXX3wx8vPzMW/ePPT09CAcDuO///u/M5nfkxK3nUxevaXqIyQ/y+5YAR1uBm/1WcIHob29Hc8//zyCwSDC4TBCoVBKdmErbYYsMDhNhqIO6urqzPKr6nvdwKKq1HX1kuzEp+ZLPCM/P988v0s3YIpyNzY2mpoAt9iZ69wKwFYTiwjkqfPrsTKZ2T1D1STIfgYAEtTwbgQ5IbSJlb6dtkxG9w5ljUVbW5t267+urFbPsTJh2N0rFkY6IUGwYcMGzJkzB+vXr48rhxhLDh06ZBsLyev1YsOGDZg5cyZqamoAjGkXOjs7TUFEXFdXVwefzxdn3tL5I9mNG/IiSI5tZRUiQwhMwnlcV69qXaaqxRXvX+zq0tWVbMIqLS1NOKBXBHy0EkBFf3K7WULXznJzc7F8+fK4Q2eFiU1GbGioqamB1xvvSG9XR1a/2Wmc7e6bTFIWhFatWoWdO3eira0NZ555JmbMmIHZs2fj4Ycfxre//W0AYw3lwgsvzFhmsx159ebWR8gOu4Mj7TQibgYZgehMsVgMy5Ytw/Hjx3HmmWeaA0GyWGkz1AM/3dSNXH7dpKtipc53Y5qwU6XLCAGturraPL9LN2DKq04Rp0PdVZSuoGyXltXEottOnkpexCSqOu/Lz5DL7CSIOpVRLZfqSyMLYLKQFwgEkJOTg/LycmzcuNEUAORzwHR+UXbmGPG+5bbkJGw7ldvv9+PDH/4w+vv7E8zVnZ2dcYcWW9Hb24ulS5fi8OHDjlqerq4uxz4o5zkWi6G1tRU7duxI2JYu6n5kZCRO6FK1dxUVFVi9enWcECauE/5D8jt3c+6YipwXALZma1G+ioqKuHFWLLqGh4dtBdBkBQYrLa3oIzqtrTC9lpeXm+1MNtHbmWWtzKp2Gmf171THqUyT9lljAPDuu+/ilVdeQTQaxZlnnon58+dnIm9TgonePu+E3HiT2Vqd6nPk9J3O3dHdo26JB9yft5XKOT/qWUNu60ZV33Z0dLgOO6Deq3tmMmEMdOnr6szut0xuS3WblpwX4P33LAZ0MfhZmZ7k++V7VAFPLW86deu2zHKYiEAggPb2duTm5iIUCsVtbxf3iV2O4t9Dhw6Z6YnwIsm800y9TzEJi+3lXq/XtZOsEAKEv47QWqj3yHWlO/NK1687OjpMPxrdtnQxhtTW1prjnlUbUcccq75sV6d2/UqkXVpaqg1t4JSOLuREKlvVVXTlcWpLsqvB8ePHTcFm9+7dKCwsRFVVlW2fsut7bvJ/Qm6ft2Lu3Lm45JJLcNlll51UQtBUJFnzQrrPUVXZwuFPh87pVt2Z5WQqkFfbsg+TW4RppqenJ6m6sVLfZ+JeWZVu50NjtTqy02BY/ZaMj5cTbtPS+XWJyVIMsGJSampqMrft6tTwdhqTidhloq5aZedir9eLnp4e88wrOw2l+FcsXNrb2xEOh5MOHJqp96ma0WTTk512Q9wrNKKxWMxWw2klJAHQ9mvhs1VZWandlq46BYs2ImskRPsqKirC/v37kZ+fb+lb56Q9tNN+i7xYOfHLCKFHmN3Fzj75dHcrMzqQKJzaaVDcmv/k60R/EmUBYGoIe3p6LDeT2CHyqNvEoPNvmwrb5zOiETqZmQyNkCpJO/2dTtrJ4LTydrOid8qXWJmIySMVjZBdkDu35U+nnlTkVQ9gHXRtvFdHmSxTsoiVdF9fn2kKEHkQ71sIicD7TpXj+a6c7pPbpAgOJw5bFRqtQCCA5uZmxzYai40d4yCCVooy6zQmoh3oAmu6rRO7fOgmWau2Z6WBTkcTkErwTGE6e+ONN3DKKaeYhwrr+lZvb685ZtfU1GD37t2Wp9Hb1ZNbzbVd3kU9iXcOOAer1WlsxLu3CgCbTH7tkAWV7u5uzJkzxzbYrJ0V4NChQ/B6vZaBLcdjjFOZUI0QySzj6Wzm9l7dysMqZpBQt8u7e3SSvt1qRl2ZBINBWx8mK1S/H7mssp+HU/mdNA/J2LbV1a3VCsiNz4Koazn8gNu8pNNuUvXzkVfffX19pp+HULnL71v2jxH+K+mGcLDLk1P6YjUfjUbjzDJyvK3m5uY47YbTil34aNhpTEQbAZCwEcAqz8m0AflIB1mLomt74nnqZgTAWsMpvw9dvnT92uldRCIRvPjii2hra8PevXvNXWuyD4usjRNam+bm5jgNsds+ZiU86LTeduEbxDi2cuVKrU+V6gslduJ5PB7zN/ndW8W1sqo/p3ehIjSE4nBhpwOedekLjdzIyEiC75mqaU32SKfxgoLQFCQZZzM3uFUHy+g6lp1ZSxcnRHVk1aUp8pZMQC+3iLIKx9eOjo6kI0lbIau8nUxdQGLQNV351KiwuoErEomYW4RF2m4FhnTU0KkIUbKDuNXEr7YT3cRmF7AwnXKo6VvtxBR+PkIjItehuvPSqp5kAUQOBaFDXRTIGwGs3mGqbUDcp4tXI19fW1sLj8eD9vZ2tLa2moENnaKf2/V5OwdbGSEknH322aiqqsKyZcu0mxN0bgM1NTU4evSoudPNybzvVJdyPsV1QOK5fALRp3t7ex13zsnj6J49e8y05V2EVnF43PTtZPtwsmZouS1VV1djaGjIdnewCC3Q1taW0uIsk1AQmoLoGqA8eKTaQCORxOBdukFJTAgej8dyYFLtvGK1Yxe51s6GnYldcCqirGKwBhLDvtvhZgUldsfotovbDTxuJgM7+758sKLdKjeddiPjNNC6qSsrjSIQf5SAOrHZTbbJrip1/hFCuGxsbIx7jsjvqlWr4u4Rk2A0GjWPPsjNzTUnbLHF22oBIibHSOT9E+tVzYAsQMvxs8R3qfqEqW1A9Wmy8snKzc1FT08PhoeHsWfPHvPAV7H12srPReyqE+WS37W6yBJlVN+jECLz8/Px0Y9+FFVVVa7jEvX29mLZsmWIRCKmM7YOeUFmF05A9X1TwzeoacrtQYf83gKBADweD3p7e1FZWWnujBRaUqsdqWq+rBgPfxy5/4lFTG1tLYaGhrB06dKE3cGRSPzxJlbtZ6Khj5ADU2HXmFhZA+4PQ5WxU/XqbLb19fUYGhpCfn6+eZij0z1Wv7n1wxjPXXDqM9w+y8pWL/tpibRkPxIhaCVb71b5FpNqQ0MDSktLTeFApJvM+xgvVL+WZP1Z5LKq9znVYzp9A3jfjyMUCplCh5t2cejQIRw/ftz0k9HtNJP9aHRtRvgKAe/7jsVisQT/m2Tf43j4gwnfnpqaGmzbts2M2eM0RshlsxsTnPyU3Prl6NqS8FsRph51YSB+379/PwoKCuD1etPazSX6azIHOofDYezatQtz5szBzJkzteNILBZL2m/SilT8h3T+QGr/s/JDE2m42XmYKegjdBIRDNpHjnVajdutFnSrBGFjLy4u1poL7FYW6m9W2i2xigDeX/VmyidHvV7VLNhFa7YKqqiuYlU1fFlZWUKwRSvtm4iTIvwA1DLpBpKmpiaEw2G89tpr5soQSDQnOb2PTKHTCsqTXkdHR4Iw47aNJqPCl7WRqZiKAfsAi1bPFCY13fdW+ZC1XmJSE4J5MGh/1EWyMW90/nHpmheFb4/f79ce+Coj14VqggSg7RdW7Vj1QwmHw9i5c6elr59OA75q1Srk5+ebIQPUKNTB4Fgg0+rqani9Xng8HrOf2qVvVa+qP4/uOtUtIBaLYfbs2RgYGDA3e6jlb2pqQn9/P7Zu3Wo5bqgaRiuS6WdCgFHjaOn6n+qHpuZv9uzZ6OvrQzAYdNXfJgIKQlMAN5OEXeTYZG2/TuYSMbkbhqEVGnT+P+pvdo1b51PkRLJmJjuzkpUZQM2XTg1u59ehC7aoK0NTU5O5PVUXWVZcJwacaDSK4uJiBINBzJ0715wMdeYkXb6sTA7pYCUYBoPBhEM3ddfb4cZEKAuLbsIeyG1El/dk6kiUtaKiIk5roLZ91RSoCtZia7LYxi5MIDpthO5Ucbtxw00d2uE0qTptZJDrQl6I6M5kU9sxYH10g/ApEdpXt8K/fGxLLDYWqFNotERfr6urQ0FBAcrLy2EYBjo7O7WLJdncZVWvwWD8uVq661S3AK/Xi/z8fCxbtizBT1AISzU1NRgZGUF1dbXluCH8jZwE4WR88GTBDohf7JSVlSEQCGDLli0YHh629WNrb29Hc3OzqwCeEwkFoSmAm0HKbsWY7Krf7fPshAa36Vh1QHUV4SQM2pXRTuiRr9c5U6rPkM9GUwU8p8nSSQhU69SqbtUTvJuammAYBvx+P+bOnWsOIG7fu5sVbLJYPVtM2F6vV+vgLw+6Vnmx8mOR7012Yld91ez8VuTJR2gIdZpRVVOhru7Vcsh/C9+ZUCiUcHK4zudErW8hFAwODmrP1lIXK04Ht6rIju6p9nMVoXUpLCw0hfzh4eEEf0QrwbehoQH5+fnw+XyorKx0PAxXZzITUaFzc3MTdkXJJt3S0lKtBl7Vdlj1A6s2LF8nvqupqUFvby+CwWDCYiocDuPVV181Qy/09vZiw4YNaGlpifMTVJ+hE4RVIVTng6e+R1lbpx79ArwfPV6cZbdt2zbLsVKMr1bxkyYTCkJTALsJTV75ihWjOiAl6wRr9zxxUnIsFnM0WblR11s5RqqreKfB1k4QsRN6klG7inzl5ua60tSog4XdJCDb10WdWtWtKkxYCU5uy2hn4ksVK5OncDRV1d66QdetgKa7VycY2L0D4ZcjnGXVvqSrIxH0sa2tDVu3brUNu6Cu7p3qV8Ro6enpMYUOsbrWmROAeHOSWKG3tLSYWg07zahOa+hWKHYjcLtpV7LWFBibRJ999lm0tLSgubnZ9nmivENDQ1i9enXSgU9lQUpoknRtWAg6srZWNWnLzs/paFzF8+VdiWqeIpEI3n33XcRiMbNOmpubkZeXF1dncnqyFk4I6bFYDH19fY7nsKnvUf57z549GBoaQnNzc0KoE3GW3YYNGxLuk/MntuanErh2PKEgNAWwm9DUlayb2Dyqr0syz9NFfbUaMHXqehlVjaz+JufRSaiSbdTqSlH2RckEVgO/6geTjNnH6Rq5jsVzxGDjJDg5oZr4cnJyTG1Hps1lIiptJBLRthmrVWsyWspUtJPCOVmYO9S0dGZQsXL1+Xyorq5Gf3+/pRnBjQZVvb63txfDw8O25gvdSl7cn5eXh40bN5oaBLeaUTd1JgR2K4FBd30yu9bEJLps2TIcPXoUfr/fLKOszZJ3JCWz41NXViFI2aUhylFaWgogftwRJm3V98XOdKtqHHW7S+2EetFPZC1hsodld3SMRXMXdWinvVK1pfKYV11djZGREdTU1CQI57m5uTj11FNNU6lcpkxpoccTCkJTHLlBWa1gdLbnZH1wBLpOZjcY29mYRQcUwopsNohExrYs79q1C62trdi6dSvy8/MthSrZRq2uFDOh4bDym9J9LwZx1aRhp51wmijkcqSizXJTLkFXV1fK7cMO2eQJQPterFatbiZS+Xr1vTsNvKo51q6OZROqOMizoKAAdXV1ZrsVE4HuHp2fi5onr9eLUChk3i8OvVQ1ZIFAAH19faYJya5OdCY/u3La1bndIkdXv27brHpvRUUFNmzYgOHh4YQjMeRxzM4Pzg1CcHQSpFT/L6/Xa447tbW1rg4ZBRIPWbZaREWjUfNwU512XBzYKkfvTiXQbCwWs9wpq45xQlsqb3goKytDQUEBNm3ahN7e3gT/I3mRqi5Ok1kEThYntSC0YMECeDyeuM+///u/T3a2XGGlElexsj0n64Mj0HUy2bYvD9Iib05B1XS7tcSKs7i4GHv27IHP50NLS4vlRGg1kLldieqQ68Sqs1qpeOVyq4O03T3JvMd0EGUTW5Jl7ZXYumpnp7fSNDo59QuTp6w2d4MbE4OsRVSFT7l+5UlIbqvpnCVn5XOi+gUJ7EwMgrKyMvj9fpSUlJjPUDVk8uTl1F7lScyNPw8AW3OzlU+iW5OmDtWE2N3djdzcXCxduhRDQ0Nxiyp1HLOrbyeSXVzIix4x7oiYOKrJDNBvExdaSDU9ud3qdoE5LX6TRbSzOXPmaNuF1aICgHZxpmrvI5EI8vPzsX//fgQCAdtFio5MLWbT4aQWhADgzjvvRGdnp/n5+te/PtlZcoXbxqHrKFY+OLJWJ5mJTrbtqyp4O/OX2DUjAtLJZgOv14s1a9agurra3Iq7ceNGyw6vltOtoGiHk9kRSC5UgJt7rLDyuUnWF0ktG5B4KGheXp65jdjpfnWF7nZLtpsB3Mp8YOeHY6XJssqLXZqqedauPOK3YDBo7uiy8wtS24DO/BGJRMxQFeqkJ082oh8BMAW8dNqeXCd29WOl/ZKFJFXQdkJnQpQXOeqiSqcFHI/gq1ao7dht2cU7tBuvYrGx7fIHDhxAZWWltsyZ0Jao47ecH9n8pfo9AdCO66q2MBgMYmhoCNXV1WhqarJdpADv+6EKf71MLwJT4aQXhAoKCszOFgwGkZ+fP9lZcsROuEgVVavjZqKTsRqkIxF9zAj5HuFroKpmxe9+vz9BC+UkBCS7ihD3Dw8Pm53QbuXlRtCymuwzZdpShddkyizKpu5AUrVZVmnpTE3qAJeOZkC9X32mjPx8oSGIRqN49dVX0dramqD5kretO/nIyIKVlQlYzqus/UvGL0htE7r05LJGIhFLB1pdek7fy8h1YlU/In+9vb3asgjNCGB9vIRVPahjgcizKL+6NV28XzlysdMzM2lusTIdyWVXn6eGTtC1rUgkgq6uLixcuBBHjhzJuPbNytwPJB5/Iwte4XAY9fX15pZ+cb1OYwW8L2j19/ebPm92i7rGxka0traisbHRvD9TrgCpctILQt/+9rdRXFyMVatW4a677rIMsS4YGRnBwMBA3GeisRMu0qG0tNR2ANR9pxNImpqaUFhYqD17KZWVuQ4n04KTf5JVetu2bcPQ0BAaGxvj7NhOz58o5PoLBALYv3+/6TuRzMopXVOcztSkDnByGrr6chq4dQOqbiUsJpGmpibTf6OnpwfHjh2LO5NJtAf5vTr5yMimFysTsHgXqjO/LOjrfPfUic9uFS7fp9PkAfZHlCSDXCdW9SM0X3V1ddrnpbOKt2orYmu7yJdqohFCo+qHJZvKxERuF3Ax3fzqFhnqNTpNkhpwVbQ/cRCvzqTp1MesUP121N9kc6ja19rb282DhnXPtRLMQ6GQpflYXqgEAgHk5ua6Dg46EZzUR2w8+OCDOO200zBnzhzs2LEDt912Gy655BL88Ic/tLxn8+bNuOOOOxK+n8gjNlRns0wgGqLowKne19ExFopePkpCvV73e7JlUq+3ut9tucT9RUVFaG5uRnFxMQzDiBtk5LQz8Q6Gh4exbds2bNiwAX6/31WZ5bD8AGzreqJQj4rQoauvVNucem8wGIyrl2AwiHA4jO7ubqxcudKMwSKEtlSfCbzvvFpaWmqu/OXJWE3Xqp2o71L0Hau8iXSEIAckRl9OpT2m047lPFk52iZb31aaVnncqK2tTfCNsuv7vb29pkNzaWmpuUHD7/dnpN/IzxfPlfMfjUbR2NiIQCCg9UHT1aNYUIqjMty8J92YaKW1thun1d+EoCP6ms6E56YN2Y0BqR69ky5uj9g44QQhK0FF5tVXX9Wef/PrX/8an/rUp3Do0CEUFxdr7x0ZGTFXZMBYRc6fP39SzxrLBJkaSJ3S0U0A44mqdXCrZpXLIQ8EsoreTbnt6uOpp55CX18f5syZgw9/+MOO+RFxTsQWXyC5AWM8BOh00s3EJKyrf937ku9Lx3dMaL8AmLvfgLE4RM3NzXHB71TBSxWok+k7cjpAotAVDofR1tYGn8+HVatWmROquFdX3nT6onxvf3+/eTimlQDn9h3rBCehxenu7jbLZidcqYJFIBAwtdQ+39hZbV1dXaaDs1VeU2mfHR0daGlpQW9vL+rq6lBRUeF4NmNra6sp9FRVVSEWi2HLli3w+XwoKCgwTbjJtlVxNllxcTGqq6tdCeiZqge3jGfabjhpBaFDhw7h0KFDttcsWLAAM2bMSPi+o6MD5eXleOWVV7B27VpXz5sKh66eaEx04xeTV1dXF0pLS5M2H7jRZlitfK2+j8ViaG1txZ49e7Bx40ZHjZCTps0N6WpDkiWd9+y0inbzXCtNRTr1oPpVxGJjsYdycnJQUlISp31QhVU7Ac1tmXQr5lgshp07d5qxYPx+f4IGBEg8dNauTenenSps6jQ0at6s0rJCHNwqa0IaGhowPDwMAPD7/QkaIRX1/arCr9V7UO9zo+nUvScR5VmcT6eWSWXHjh1oa2tDZWUlzjjjDHR0dGBwcBAtLS1Yvny5qZlOts0I4Vg+PoTEc9IKQunwpz/9CRdffDHa2tpcN3wKQlMfO6fAdNJMRyOUiskgXeFxMgTQVCf++vp6tLa2moO4G7Om2zp2mpjcINJ+99130dXVhZqaGvj9/jjtg6plcRIunFbmdnk5evQoent7EQqFEAwG0dTUhPz8fAwMDJi7k3QaISvhSld3Ou2WKmw63efUDqxM7X19fTAMA0VFRY7aK7XedIKRm76aiiCkS8cJnfBn9V6SYbK1LScCWS8Ivfzyy3jllVewYcMGFBYW4tVXX8WXv/xlrFmzBr///e9dp0NBiKRCNgxSE6URstO6pSqEOpnQRNrRaBSdnZ1xk2Uy5bbLS7L+baqAlYzZy42w4EYzmqyw51SWTAgFk2G6JScGWS8I7dq1C9dffz327t1rqjEvv/xy3HrrraYjqhsoCBEyuaTraK9D9gWyM6WmO1lmQiOUStrpXJvJPBIymWS9IJQpKAgRcvKRrlM1IWTq43b+zpnAPBFCyJTA6/Um5RdCCDl5OekDKhJCCCGEWEFBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQECKEEEJI1nLCCkJ33XUXzjrrLOTl5WH27Nnaa8LhMC6++GLMnDkTJSUluPHGGxGNRic2o4QQQgiZsuRMdgZSJRqN4rLLLsO6devwox/9KOH3WCyGj3zkIwgEAnjppZfQ09ODK6+8EoZh4OGHH56EHBNCCCFkqnHCCkJ33HEHAOCJJ57Q/v7000/jjTfewIEDBzBv3jwAwP3334+rrroKd911F2bNmjVRWSWEEELIFOWENY058fLLL2PFihWmEAQAmzZtwsjICHbu3Gl538jICAYGBuI+hBBCCDk5OWkFoUgkgrlz58Z9N2fOHOTm5iISiVjed88996CwsND8zJ8/f7yzSgghhJBJYkoJQps3b4bH47H91NfXu07P4/EkfGcYhvZ7wW233Yb+/n7zc+DAgZTKQgghhJCpz5TyEbrhhhtw+eWX216zYMECV2kFg0Fs37497ru+vj4cO3YsQVMk4/P54PP5XD2DEEIIISc2U0oQKikpQUlJSUbSWrduHe666y50dnYiFAoBGHOg9vl8WL16dUaeQQghhJATmyklCCVDOBxGb28vwuEwYrEYGhsbAQCLFi1Cfn4+LrjgApxyyin43Oc+h/vuuw+9vb245ZZbcO2113LHGCGEEEIAnMCC0De+8Q08+eST5t91dXUAgG3btmH9+vXwer3485//jOuvvx5nn302/H4/PvvZz+I73/nOZGWZEEIIIVMMj2EYxmRnYiozMDCAwsJC9Pf3U5NECCGEnCC4nb+n1K4xQgghhJCJhIIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrIWCkKEEEIIyVooCBFCCCEka6EgRAghhJCshYIQIYQQQrKWE1YQuuuuu3DWWWchLy8Ps2fP1l7j8XgSPt/73vcmNqOEEEIImbLkTHYGUiUajeKyyy7DunXr8KMf/cjyuscffxwXXnih+XdhYeFEZI8QQgghJwAnrCB0xx13AACeeOIJ2+tmz56NYDA4ATkihBBCyInGCWsac8sNN9yAkpISnH766fje976H0dFR2+tHRkYwMDAQ9yGEEELIyckJqxFywze/+U2cd9558Pv9ePbZZ3HzzTfj0KFD+PrXv255zz333GNqmwghhBBycjOlNEKbN2/WOjjLn/r6etfpff3rX8e6deuwatUq3Hzzzbjzzjtx33332d5z2223ob+/3/wcOHAg3WIRQgghZIoypTRCN9xwAy6//HLbaxYsWJBy+meeeSYGBgbw7rvvYu7cudprfD4ffD5fys8ghBBCyInDlBKESkpKUFJSMm7pNzQ0YMaMGZbb7QkhhBCSXUwpQSgZwuEwent7EQ6HEYvF0NjYCABYtGgR8vPz8cc//hGRSATr1q2D3+/Htm3b8LWvfQ1f+MIXqPEhhBBCCIATWBD6xje+gSeffNL8u66uDgCwbds2rF+/HtOnT8cjjzyCm266CaOjo6iursadd96JL37xi5OVZUIIIYRMMTyGYRiTnYmpzMDAAAoLC9Hf349Zs2ZNdnYIIYQQ4gK38/eU2jVGCCGEEDKRUBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZCQYgQQgghWQsFIUIIIYRkLRSECCGEEJK1UBAihBBCSNZyQgpC77zzDq6++mpUVVXB7/dj4cKFuP322xGNRuOuC4fDuPjiizFz5kyUlJTgxhtvTLiGEEIIIdlLzmRnIBX27t2L0dFRPPbYY1i0aBFef/11XHvttThy5Ai+853vAABisRg+8pGPIBAI4KWXXkJPTw+uvPJKGIaBhx9+eJJLQAghhJCpgMcwDGOyM5EJ7rvvPjz66KNoaWkBAPzlL3/BRz/6URw4cADz5s0DAPzXf/0XrrrqKnR1dWHWrFmu0h0YGEBhYSH6+/td30MIIYSQycXt/H1CmsZ09Pf3o6ioyPz75ZdfxooVK0whCAA2bdqEkZER7Ny50zKdkZERDAwMxH0IIYQQcnJyUghCb7/9Nh5++GFcd9115neRSARz586Nu27OnDnIzc1FJBKxTOuee+5BYWGh+Zk/f/645ZsQQgghk8uUEoQ2b94Mj8dj+6mvr4+75+DBg7jwwgtx2WWX4Zprron7zePxJDzDMAzt94LbbrsN/f395ufAgQOZKRwhhBBCphxTyln6hhtuwOWXX257zYIFC8z/Hzx4EBs2bMC6devw/e9/P+66YDCI7du3x33X19eHY8eOJWiKZHw+H3w+X/KZJ4QQQsgJx5QShEpKSlBSUuLq2o6ODmzYsAGrV6/G448/jmnT4pVb69atw1133YXOzk6EQiEAwNNPPw2fz4fVq1dnPO+EEEIIOfGYUoKQWw4ePIj169ejoqIC3/nOd9Dd3W3+FgwGAQAXXHABTjnlFHzuc5/Dfffdh97eXtxyyy249tprk9r9JTbV0WmaEEIIOXEQ87bj5njjBOTxxx83AGg/Mm1tbcZHPvIRw+/3G0VFRcYNN9xgvPfee0k968CBA5bP4ocffvjhhx9+pvbnwIEDtvP8SRNHaLwYHR3FwYMHUVBQYOtknSwDAwOYP38+Dhw4wPhE4wjreeJgXU8MrOeJgfU8MYxnPRuGgcHBQcybNy/BfUbmhDSNTSTTpk1DeXn5uKU/a9YsdrIJgPU8cbCuJwbW88TAep4YxqueCwsLHa+ZUtvnCSGEEEImEgpChBBCCMlaKAhNEj6fD7fffjtjFo0zrOeJg3U9MbCeJwbW88QwFeqZztKEEEIIyVqoESKEEEJI1kJBiBBCCCFZCwUhQgghhGQtFIQIIYQQkrVQEJpgnn/+eXg8Hu3n1VdfNa8Lh8O4+OKLMXPmTJSUlODGG29ENBqdxJyfmPz5z3/G2rVr4ff7UVJSgksvvTTud9Zz+ixYsCChLf/7v/973DWs58wyMjKCVatWwePxoLGxMe431nX6fOxjH0NFRQVmzJiBUCiEz33uczh48GDcNazn9HjnnXdw9dVXo6qqCn6/HwsXLsTtt9+eUIcTUc+MLD3BnHXWWejs7Iz77n//7/+NrVu3Ys2aNQCAWCyGj3zkIwgEAnjppZfQ09ODK6+8EoZh4OGHH56MbJ+Q/PrXv8a1116Lu+++Gx/60IdgGAZ2795t/s56zhx33nknrr32WvPv/Px88/+s58xz6623Yt68eXjttdfivmddZ4YNGzbgq1/9KkKhEDo6OnDLLbfgU5/6FP7+978DYD1ngr1792J0dBSPPfYYFi1ahNdffx3XXnstjhw5gu985zsAJrCekzqBlGScaDRqlJaWGnfeeaf53VNPPWVMmzbN6OjoML/7+c9/bvh8PqO/v38ysnnCcezYMaOsrMz44Q9/aHkN6zkzVFZWGg8++KDl76znzPLUU08Zy5YtM5qbmw0ARkNDQ9xvrOvM8/vf/97weDxGNBo1DIP1PF7ce++9RlVVlfn3RNUzTWOTzB/+8AccOnQIV111lfndyy+/jBUrVmDevHnmd5s2bcLIyAh27tw5Cbk88di1axc6Ojowbdo01NXVIRQK4aKLLkJzc7N5Des5c3z7299GcXExVq1ahbvuuitOdc16zhzvvvsurr32Wvz0pz9FXl5ewu+s68zT29uL//zP/8RZZ52F6dOnA2A9jxf9/f0oKioy/56oeqYgNMn86Ec/wqZNmzB//nzzu0gkgrlz58ZdN2fOHOTm5iISiUx0Fk9IWlpaAACbN2/G17/+dfzpT3/CnDlzcO6556K3txcA6zlT/Ou//iv+67/+C9u2bcMNN9yAhx56CNdff735O+s5MxiGgauuugrXXXedaUZXYV1njn/7t3/DzJkzUVxcjHA4jN///vfmb6znzPP222/j4YcfxnXXXWd+N1H1TEEoQ2zevNnSCVp86uvr4+5pb2/Hli1bcPXVVyek5/F4Er4zDEP7fTbhtp5HR0cBAF/72tfwyU9+EqtXr8bjjz8Oj8eDX/7yl2Z6rGc9ybTnL3/5yzj33HNRW1uLa665Bt/73vfwox/9CD09PWZ6rGdr3Nb1ww8/jIGBAdx222226bGu9SQ7Rn/lK19BQ0MDnn76aXi9Xnz+85+HIR3EwHrWk8pcePDgQVx44YW47LLLcM0118T9NhH1TGfpDHHDDTfg8ssvt71mwYIFcX8//vjjKC4uxsc+9rG474PBILZv3x73XV9fH44dO5YgHWcbbut5cHAQAHDKKaeY3/t8PlRXVyMcDgNgPduRSnsWnHnmmQCAt956C8XFxaxnB9zW9be+9S288sorCWcyrVmzBldccQWefPJJ1rUNybbpkpISlJSUYMmSJVi+fDnmz5+PV155BevWrWM925BsPR88eBAbNmzAunXr8P3vfz/uugmr54x5G5GkGB0dNaqqqoybb7454TfhIHbw4EHzu//6r/+iI14S9Pf3Gz6fL85ZWjimP/bYY4ZhsJ7Hiz/+8Y8GAKOtrc0wDNZzpmhrazN2795tfrZs2WIAMH71q18ZBw4cMAyDdT1ehMNhA4Cxbds2wzBYz5mivb3dWLx4sXH55Zcbx48fT/h9ouqZgtAksXXrVgOA8cYbbyT8dvz4cWPFihXGeeedZ+zatcvYunWrUV5ebtxwww2TkNMTl3/91381ysrKjC1bthh79+41rr76aqO0tNTo7e01DIP1nAn+/ve/Gw888IDR0NBgtLS0GL/4xS+MefPmGR/72MfMa1jP40Nra2vCrjHWdfps377dePjhh42GhgbjnXfeMZ577jnjAx/4gLFw4ULjvffeMwyD9ZwJOjo6jEWLFhkf+tCHjPb2dqOzs9P8CCaqnikITRKf+cxnjLPOOsvy97a2NuMjH/mI4ff7jaKiIuOGG24wOyFxRzQaNW6++WajtLTUKCgoMDZu3Gi8/vrrcdewntNj586dxtq1a43CwkJjxowZxtKlS43bb7/dOHLkSNx1rOfMoxOEDIN1nS5NTU3Ghg0bjKKiIsPn8xkLFiwwrrvuOqO9vT3uOtZzejz++OMGAO1HZiLq2WMYkvcXIYQQQkgWwV1jhBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQgghJGuhIEQIIYSQrIWCECGEEEKyFgpChBBCCMlaKAgRQqY8y5Ytww9/+MOU71+/fj08Hg88Hg8aGxttr/vSl76U8nN0XHXVVeazf/e732U0bUJI+lAQIoRMaYaHh/HWW2/h1FNPTSuda6+9Fp2dnVixYkWGcuaO//iP/0BnZ+eEPpMQ4p6cyc4AIYTY8frrr8MwjLQFmLy8PASDwQzlyj2FhYUoLCyc8OcSQtxBjRAhZErS2NiID33oQ/jABz6A0dFRVFRU4MEHH8xY+keOHMHnP/955OfnIxQK4f7770+4xjAM3Hvvvaiurobf78epp56KX/3qV+bvg4ODuOKKKzBz5kyEQiE8+OCD42JeI4SMH9QIEUKmHG+//TbOPfdcfOUrX0FxcTFGR0dx+umn46abbsIHP/hBrFmzJu1nfOUrX8G2bdvw29/+FsFgEF/96lexc+dOrFq1yrzm61//On7zm9/g0UcfxeLFi/Hiiy/iH//xHxEIBHDuuefipptuwv/8z//gD3/4A+bOnYtvfOMb2LVrV1wahJCpDTVChJApx3XXXYdLL70UX//61xEOh7Fu3TrceuutmD17Nv72t78BAD7xiU9gzpw5+NSnPpV0+kNDQ/jRj36E73znOzj//POxcuVKPPnkk4jFYuY1R44cwQMPPIAf//jH2LRpE6qrq3HVVVfhH//xH/HYY49hcHAQTz75JL7zne/gvPPOw4oVK/D444/HpUEImfpQECKETCkikQiee+45XHfddYjFYti9ezfq6uowbdo05OTkIDc3FwBw44034ic/+UlKz3j77bcRjUaxbt0687uioiIsXbrU/PuNN97Ae++9h/PPPx/5+fnm5yc/+QnefvtttLS04NixYzjjjDPMewoLC+PSIIRMfWgaI4RMKV555RWMjo5i1apV2Lt3L4aHh7Fq1SocOHAAhw4dwtlnnw0A2LBhA55//vmUnmEYhuM1o6OjAIA///nPKCsri/vN5/Ohp6cHAODxeJJOmxAydaBGiBAypYhGowCA9957D42NjSgvL0dxcTEee+wxnHLKKRnxv1m0aBGmT5+OV155xfyur68Pb775pvn3KaecAp/Ph3A4jEWLFsV95s+fj4ULF2L69OnYsWOHec/AwAD279+fdv4IIRMHNUKEkCnFmWeeiZycHNx5550YGhrCwoUL8cgjj+DBBx/Etm3bMvKM/Px8XH311aYz9ty5c/G1r30N06a9vzYsKCjALbfcgi9/+csYHR3FBz7wAQwMDODvf/878vPzceWVV+LKK6/EV77yFRQVFaG0tBS33347pk2blqAlIoRMXSgIEUKmFBUVFfjxj3+Mf/u3f0NnZydycnJw9OhRPPXUU3H+OOly3333YWhoCB/72MdQUFCAm2++Gf39/XHXfPOb30RpaSnuuecetLS0YPbs2TjttNPw1a9+FQDwwAMP4LrrrsNHP/pRzJo1C7feeisOHDiAGTNmZCyfhJDxxWPQoE0ImaIUFRXhxz/+MT7+8Y9rf3/++efx3e9+Ny62j47169dj1apVeOihhzKfSYkjR46grKwM999/P66++uq43zweD377299aloUQMjnQR4gQMiVpb29HX18fVq5cqf1906ZNuOyyy/DUU0+hvLwcr776qm16jzzyCPLz87F79+6M5bGhoQE///nP8fbbb2PXrl244oorAACXXHKJec11112H/Pz8jD2TEJJZqBEihExJ/vKXv+Cyyy7D4OBg2j43HR0dGB4eBjBmehNb8NOloaEB11xzDfbt24fc3FysXr0aDzzwQJzw1tXVhYGBAQBAKBTCzJkzM/JsQkhmoCBECCGEkKyFpjFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjWQkGIEEIIIVkLBSFCCCGEZC0UhAghhBCStVAQIoQQQkjW8v8Dfxx62S4rybIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plot_first_selection(candidate_df)" ] @@ -748,7 +924,18 @@ "cell_type": "code", "execution_count": 52, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG6CAYAAAD07mc1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTTUlEQVR4nO2de3wcxZXvf+ORR0iWrVj2mJElS9gJ4AcZS1g8Awazxjx2DYQlCZ/kEmCBkPDIJ5BwA9nllZvEkAckvALL5bEbHpsPLDjchBAg+AUhAdmShxhsDDYaa9DYg2UkyxIaNMz9w1tDT091d1V39WNG5/v5+JMw6q46Vd1dderUOadC+Xw+D4IgCIIgiAphgt8CEARBEARBqISUG4IgCIIgKgpSbgiCIAiCqChIuSEIgiAIoqIg5YYgCIIgiIqClBuCIAiCICoKUm4IgiAIgqgoSLkhCIIgCKKiIOWGIAiCIIiKgpQbgiAIgiAqikApN2vXrsXy5csxc+ZMhEIhrFy50vDaSy+9FKFQCL/85S89k48gCIIgiOATKOVm3759WLhwIe666y7T61auXIm//e1vmDlzpkeSEQRBEARRLlT5LYCW0047DaeddprpNalUCldccQX+9Kc/4R//8R89kowgCIIgiHIhUMqNFZ988gnOO+88XHPNNViwYIHQPaOjoxgdHS0qo7+/H9OmTUMoFHJLVIIgCIIgFJLP57F3717MnDkTEyaYbzyVlXJz6623oqqqCt/+9reF71mxYgVuvvlmF6UiCIIgCMIrduzYgebmZtNryka5Wb9+PX71q19hw4YNUhaX6667DldffXXhvwcGBtDS0oIdO3ZgypQpbohatuRyOezcuRMHHnggwuGw8N8IYjyg+hugb4og5BgcHMSsWbMwefJky2vLRrlZt24ddu3ahZaWlsJvuVwO3/3ud/HLX/4S7733Hve+6upqVFdXl/w+ZcoUUm50pFIpRCIRDA8Po6mpqeTvU6dO9UEqgggOKr8Bq++NIAg+IgaOslFuzjvvPCxdurTot1NOOQXnnXceLrzwQp+kqixisRjS6TRisZjfoowLcrlcob9p5T7+oO+NINwjUMrN0NAQ3nnnncJ/b9++Hd3d3WhoaEBLSwumTZtWdP3EiRMRi8Vw6KGHei1qRRIOh2kF6SHpdBqjo6NIp9PU7+MQ+t4Iwj0Cleems7MT7e3taG9vBwBcffXVaG9vxw033OCzZAShnlgshurq6opfuedyOaRSKeRyOb9FIQhinBDK5/N5v4XwksHBQdTX12NgYIB8bghDynXLKIhyp1IpjI6Oorq6miwVBEHYRmb+DpTlhiCCgnbLKOhoLSNBlHu8WKgIgggOpNwQBAfthBz0bRWtQhNERYL5lgTFkkQQROVDyg1BcNBOyEG0hmjRKjSkSBAEQZByQxCWBNEaooUUGsIpQbdOEoQspNwQhAU85YEmg/KFnl0pQbdOEoQspNwQhA1oMihf6NmVEnTrJEHIQsoNQdiAJoNgImKVoWdXCm1tEpUGKTcEwcFqknRrMqAtE2eIWGVoIieIyoeUG4Lg4NfWBW2ZOIOsMgRBAKTcEAQXvybJcsqvE0TIKkMQBEDKDUFw8WuSLKf8OkGCFEGCILSQckMQAYW2WMRxUxEkxYkgyg9SbggioNAWizhuKoJkQSOI8oOUG4Igyh43FUGyoBFE+UHKDUHYhLYrxgdkQSOI8oOUG4KwidvbFaQ8lR/0zAgiGJByQwSCcpwU3N6ucEN5Ksd+LifIP4cgggEpN0QgCOqkYKYMuL1dwZSnaDQqpJCIKC5B7edKgfxzCCIYkHJDBAKvJ4VcLodkMolkMhlYZYApT5lMRkgGEVl5/UzWnGKc9Af55xBEMCDlhggEXk8K6XQavb296O3tlVYGvEZUBpHrtP3MJvFUKkXWHA1k3SKI8oeUG2JcEovF0NzcjObmZmFlwCl2LQKiMsjKyiZxAL4rcH7BeyZBUGgJgnAGKTfEuCQcDqOlpQUtLS2eWouCZBFgk3hTU9O43UrhPRPaWiKI8oeUG4LwiKBZBGgSD94zqWTIt4vwElJuCMfQoCWGW8oE6/+RkRF0dnYim80qLb+SIQXPO4JmuSQqG1JuCMfQoOUvrP9XrVqFoaEhJBIJv0UiiBLISkZ4CSk3hGNo0BLDLQsX6/8lS5agpqYG06ZNIyuaC5CF0hlkJSO8hJQbwjE0aInhtoUrEomgubkZ+XyerGguQBZKgigfSLkhCBfwMsRYO+mSFc09nPYtWX4IwjtIuSEIF/AyxFg76crWQROuOFZ9a9WXZPkhCO8g5YYgXMBqla9SqZBRaPT10oSrDqu+JKsaQXgHKTcEoUGV0sEUDgDc8vxSKvT10oSrDqu+JN80gvAOUm4IQoNqpcOoPL+UCn29NOGqg/qSIIIDKTcEoUGl0pHL5ZDL5VBVVVVSnl8TIU3ABEGMB0i5IQgNdiZ/o62sdDqNsbExhMNhUiYIgiA8hJQbgnBALpdDV1cXhoeHpbae7Pj2UGQTQRCEGIFSbtauXYvly5dj5syZCIVCWLlyZdHfL7jgAoRCoaJ/Rx99tD/CEgT2W2fq6+sxMDDA3XqKxWJIp9NKHIopsokgCEKMQCk3+/btw8KFC3HXXXcZXnPqqaeir6+v8O/ZZ5/1UEKCKCYWi6G2thbt7e3crSe7DsVeJgEcr5AljCAqlyq/BdBy2mmn4bTTTjO9hgZ3IkhorTMsiZ4W7d/097FQcR5apYhdp70nl8sZ1kmIwetjgiAqg0BZbkRYvXo1ZsyYgUMOOQSXXHIJdu3aZXr96OgoBgcHi/4RhBNkEuHZjU6ystKkUin09PQglUrJN4AAQJYwgqhkykq5Oe200/Doo4/ipZdewi9+8Qu8/vrrOOmkkzA6Omp4z4oVK1BfX1/4N2vWLA8lJioRlYnw9IoS+28AFLLtMhQWTxCVSyifz+f9FoJHKBTC008/jbPOOsvwmr6+PrS2tuK//uu/cPbZZ3OvGR0dLVJ+BgcHMWvWLAwMDGDKlCmqxSbGASq3hFKpFEZHR1FdXY2mpqaS//ZCBhFoG4wgCL8ZHBwsBHBYzd9lZbnR09jYiNbWVmzdutXwmurqakyZMqXoH0E4QeWKX2/1EbUCqZJB1KlWb60iZ1yCIIJMWSs3u3fvxo4dO9DY2Oi3KARha8LXKyna/xYtz4miIRperle6KCydIIggEyjlZmhoCN3d3eju7gYAbN++Hd3d3UgmkxgaGsL3vvc9vPrqq3jvvfewevVqLF++HNOnT8cXv/hFfwUnyh67CoL2Pq/OpbJ7HQ+7liI/nXHJakQQhBWBUm46OzvR3t6O9vZ2AMDVV1+N9vZ23HDDDQiHw3jjjTdw5pln4pBDDsH555+PQw45BK+++iomT57ss+SEE4IwWdlVELT3qc5ILKpAOFE07G5v+emMS1YjgiCsCKxDsVvIOCQR3iDqROsmRg6zVo60oo62QWhjpUDOzQQxPhk3DsVEZRCEfCNGlggrK4HRfXpLjd02BsGqFTQqJYSbni1BuAcpN4TvmE1Wfk8AdpUSvVJkd0LWluN3XxBqoe01gnAPUm6IQOP3BMBTSkSUDFX+N9py/O6LoFApSl4QLJYEUamQckMEmiBOACJKhpmlRkZJ0ZYTxL7wg0pR8iple40ggggpN0SgCeIE4FTJsHt/EPvCD0jJIwjCClJuCEISp0qG9iRx/ZlSqrdaKmULRwspeQRBWEHKDUG4iJFyod9a4W21qFBMKmULhyAIQgZSbgjCRYyUC5EzpWQUEyNFiLZwCIIYj5ByQxAuYqRcmJ0pZXUvDyNFqBy3cCpxK40gCG8h5YYgXIQpFwAcH6ppRiVZaGgrjSAIp5ByQxAGmFkQZK0LshO2bPnlaKExopIUNYIg/IGUG4IwwEwhkVVWZCfs8Wy9qCRFjSAIfyDlhiAMMFNIZJUV2QmbrBcEQRD2IeWGIAwwU0h4f8tms/jb3/6G7du3O3aGHc/WC3IoJgjCKaTcEIQiEokEkskkNm7cKLWdpNK3pxIYz1tyBEGogZQbgrCJXvGIx+NoaWnBwoULpbaT0uk0hoeH0dXVZZnsz66yU05KEm3JEQThFFJuiEBRTpOwXvGIRCI46qijMHv2bKntpFgshoGBAdTX11sm+7Nr1QiKNUTk+Y7nLTmCINRAyg0RKIIyCZvBJuhoNGppYRCdzNvb21FbW1tUVi6XQzqdRjQaLZxDZdeqERRriJ3nW04KL0EQwYCUGyJQ+D0Ji0ykbILOZDKWFgbRyZxnrWD3JhKJQhlmVg0z2YNiDbHzfMtB4SUIIliQckMECr8nYZGJVGaCdqKssXvj8bhQGeWgBOifr4gy6bfCSxBE+RHK5/N5v4XwksHBQdTX12NgYABTpkzxWxwiYLCtoFgs5pmCpapOP2R3SiqVwujoKKqrqwvHVBAEQfCQmb/JckMQGry2HOVyOXR1dWF4eNhVi0tQ/VbIKkMQhBuQckMQPpJOpwsrEaeOySqPi/AKv7chCYKoTEi5IQgficViqK2tRXt7u2PHZGYFiUajJYoQWUgIghhPkHJDED4iarmIRqPo7+9HNBot+l1r0WFlZTKZkqSAfmy3BXEbjCCI8QEpNwRhAZuos9lsYcL2evJOp9PIZrMllhueRccsKaBXBHUbjCCI8QEpNwRhAS/fTFAmb952Ey8poNfKGG2DEQThJ6TcEMT/YKQAsIl6wYIFha0hryfvpqYmtLa2loRLG+WNYfew391Uxnj9JrMNRltYBEGohpQbgvgfjBQANlH39/ejoaEBmUymaPL2YnIWVRaM2uCmMuZUcQqKFYwgiMqBlBuC+B+sFACjv6uYnGUUJLNrjWR006FYRHGyIzNBEIRdSLkhiP/BrgKgYnKWUZDMrvUjb4xInUGTmSCIyoaUG4IQhDdBqzrywKvzqvyiHGUmCKJ8IeWGIATRT9CyRyeoOrXbD0tHLpdDMplEMpk03DqTbR85EhME4Rak3BCEIPoJWvToBEY5O86m02n09vait7cXqVSKq5TItq+c+6NSIAWTqFRIuSEIm4genaC93u2tGbcmq1gshubmZjQ3NwOAkoisIGxVjffJ3a6COd77jQg+gVJu1q5di+XLl2PmzJkIhUJYuXJlyTVvvfUWzjjjDNTX12Py5Mk4+uijkUwmvReWGPfIbg8ZXa9yonDLGhIOh9HS0oKWlhY0NTUpicgKgiOxbH9V2qRuV8EkqxsRdAKl3Ozbtw8LFy7EXXfdxf37u+++i+OOOw5z587F6tWrsXHjRlx//fU44IADPJaUINShcqLwwhoSBKVEFbL9VWmTup8RggThJqF8Pp/3WwgeoVAITz/9NM4666zCb+eeey4mTpyI3/zmN7bLHRwcLPhJTJkyRYGkpaiKoCEqC6P3IqjvS1Dl8hPqE4LwD5n5O1CWGzM++eQT/OEPf8AhhxyCU045BTNmzMBRRx3F3brym0pb3RFqsMqA7OZ2lR2M5PVTrmw2i87OTmSzWc/rBirLakUQlUzZKDe7du3C0NAQbrnlFpx66ql4/vnn8cUvfhFnn3021qxZY3jf6OgoBgcHi/65DZlsg42KydlOGaq2QFQqF2ZlRaPRwllaInJ5QSKRwNDQEBKJBAD/FUCCIIJJ2Sg3n3zyCQDgzDPPxFVXXYW2tjZce+21+Kd/+ifce++9hvetWLEC9fX1hX+zZs1yXVZa3QUbFZOznTJk3wsjZSiVSqGnp6dwQKYTzNqRyWQKZ2mJyMVDtfIRj8dRV1eHBQsWFELSg2ZdIgjCf8pGuZk+fTqqqqowf/78ot/nzZtnGi113XXXYWBgoPBvx44dbotKBBwVljW7ZchMuiqVZKsTz3ntUHFOlRNFkidzJBJBR0cH+vv7MTo6CgCunfdFEET5UjbKTSQSwRFHHIEtW7YU/f7222+jtbXV8L7q6mpMmTKl6B8xvhGZnHkTq/Y3O4qHbEZjI5qamtDa2oqmpiZTebXI+vtY/U0UJ4qkmYLCym1qauLKSFvDBDG+CZRyMzQ0hO7ubnR3dwMAtm/fju7u7oJl5pprrsFvf/tb3H///XjnnXdw11134f/9v/+Hyy67zEepiXJC1HLCm1hlrAG84wpkMxobwVM6rGTza7J3oiCZyWx1nANtDRPE+CZQoeCrV6/GkiVLSn4///zz8fDDDwMAHnzwQaxYsQK9vb049NBDcfPNN+PMM88UrsOLUHAiuDAfDbbqN4IX8isTBsz8YgAUrCxuhhGblT1ewpdFny1BEOWJzPwdKOXGC0i5Gd94NdEzKwKAIguCaP1O5dTez6w6lT7pjxcljiDGKxWZ54YgVODVdoX2uAKZ7SPZ60TuV7kl5WcUklXd+mdLEVMEUb44/X5JuSEIDxFVNJwqJNr7VSh0bKAxCr12E7t1U8QUQZQvTr9fUm4IwkNEFQ2nWYtVWzHYQAPwQ6/dxG7dFDFFEOWL0++XlBuCKCPsrmacroKsQq/dxG7dFDFFEOWL0++XlBuC8BgZK4r+WrvZgZ2ugvxUFLxIZkgQRGVByg1BeIyMFUV7rWw0kPZelX435awYkB8OQYwPSLkhCI+RsaJor5U9SFO1z4kKxcBvBYn8cAhifEDKDUF4jIwVRXut0cRs52gFHnrFQ9WWmIisXkF+OAQxPiDlhiAChpFiYDQxq7JG6BUP/X8zBYttkYmUxUK4VSpIBEEQVpByQxAeY/eQSyPsHgSqR6948BQRUdmi0Sj6+/uRy+VKFCQvThR3AilVBFH+kHJDEB7jxyGXIoqC3jLDU0REZctkMmhoaEA4HLbdllgshqqqKuRyOU8VDb+3zgiCcA4pNwThMVYKght+IaJKidXELiqbWW4amUSE4XAYY2Njnioa5HRMEOUPKTcE4TF+OLXKKiVOJ3az+mQsI34oGkF1OqbtMoIQh5QbgihT3JjseBM7qyebzSqpLxaLIRQKobe3F9lsVloeNwmyAkHbZQQhDik3hO8EeUIJMvoEf8lkEslkUnk/snoSiYSSyTUcDmP37t0YGRlBIpFQIqMqBSzICgRtlxGEOKTcEL4T5AklyGgnu1Qqha6uLvT09CjvR1ZPPB43nFxlFdR4PI66ujrE43ElMqpSwIKsQMhYsewuGGihQVQKpNwQvhPkCcUpbk4W+smuoaHBlX5k9UQiESV+NAAQiUTQ0dGBSCQiJYtVNmYzBczsfkZQ/W1k8euAVYIICqTcEL6jekIxmsD8WJV6NVk0NTVhzpw5WLRokS8Ts1cKqlU2ZjMFzOz+SsPu86jkhQYxviDlhqg4jCYwPyY2lsyuoaHBVcUqSBYHN5VIJ5Mvy5dTVVWlZGstyNjdwgrSe0QQTiDlhqg4jCZAP1alLJndpk2bPFGs/JqgtYqj7AGfMjiZfNPpNMbGxgr5c8zaMJ4Yr+0mKhtSboiKw2gCVLkqFZ2oRX1BnNShxa+JSqs4yh7w6YeMdv5eqYzXdhOVTSifz+f9FsJLBgcHUV9fj4GBAUyZMsVvcYgyJZVKYXR0tJCF1w2SySR6e3vR3NyMlpYWoXtyuRzS6XRhomL/PwjbDFrZgiBP0KH+IohiZOZvstwQhA38OPdIxJKjtU75bSnRY8dyVkl+MLLIPr/x3FcEoYeUG4KwgRfnHjU1NaG1tbVgGZKd7PzeblAx2QZNQfMS2ec3nvuKIPSQckMQNnFbedBbOvxWVmRRMdkatXk8WClkLV3l9n4QhJuQckNIUemTikz7vA6bla3P75W87GTL63ujNvvdtiCg7y8K4yaITyHlxgMqSSGo9ElFRfu8fN5mdfm9kndTGeO1rZK+MxEq/VskCCeQcuMBlTQI+T1hug1LuheNRk2vM5tIvXzeZnU5Xcl7rSzIvFu8tlXSdyZCpX+LBOEEUm48wGwQKrfVZrmZvmX7lyXdy2QypuWxUHDeRKpq0tHLzmuLmxOcU2VBtu+dvltBmey9+qbL7VskCC8h5cYDzAah8bba9BrVEUasPACG16madPSy89ri5gTnVFlIpVLo6elBKpVSLBkf2b5wSwmhb5og/IeUG58JymqznJCZlGT712qCZOU1NTW5vmrWy+71u1LplgG7SojV+0fftBjlZrUmygvKUEyUHV5kB9ZCmWLtEfR+syuf1+9fpUL9SMhCGYqJika/MlaxApR1EHZSZxBWrGYy5HI5JJNJJJNJ3w659AK78pFlRg3Uj4SbkHJDlB36SUmFj4NZGbxB2Emdsqdmu6EMmcmfTqfR29uL3t5eZQqdyjL8JuhKm5Yg93c59SNRfpByQwQWK+sC+5uKFaBZGbxB2EmdsqdmiyhSspMYkyEajSKVSiGbzRb1Z3NzMxobG4vOzpJR6Izk8ToCa7xDzs3EeIWUGyKwWFkX2N9U5HOR9b0Ih8OIxWJIp9MFBUBEEWP38uQ1UnpEjiCQVYCYDJlMBqOjo0gkEkX92dLSgkgkUnR2lmgOIMD42clsKfL+RpO1OOy9rKqqoq0fYtwRKOVm7dq1WL58OWbOnIlQKISVK1cW/T0UCnH//exnP/NHYMJVtBOhfqJzaq2RVQx4aO8TVcR49TP0CpP2d6sjCET6gycHU1gWLFhQcr++TH0OIDvZkWW2FLV/Y3VFo9FA+WkE2ZKUTqcxNjZWOOSVIMYTgVJu9u3bh4ULF+Kuu+7i/r2vr6/o34MPPohQKIR//ud/9lhSwgu0E6F+EnRqrZFVDHho7zMrQ8ZnR/+7qAIh0h9GcmSzWWQymZL7rQ7udJIdWURZ0dbH6uLJ6SdBtiSRwy4xnglsKHgoFMLTTz+Ns846y/Cas846C3v37sWf//xn4XIpFLw8UR1W7HeYslH9+t/dDpdNJpPo7e1Fc3MzWlpaLOUTaYMIsu3y+3kZ4Ydc2WwWiUQC8XgckUjEkzoJIgiMi1DwnTt34g9/+AMuuugi0+tGR0cxODhY9I8oP1RHVvgdqSG6BeX26rupqQmtra0lCoaIRcKoD0W2alQnVzTC7W0jP96jRCKBoaEhJBIJz+okiHKjbJWb//iP/8DkyZNx9tlnm163YsUK1NfXF/7NmjXLIwmJoBIUPwknCoQqZJ2bRQhCu2RkMYP3rnjx/pjVEY/HUVdXh3g87lr9BFHuOFJuPv74Y+zYsQNbtmxBf3+/KpmEePDBB/G1r30NBxxwgOl11113HQYGBgr/duzY4ZGERFAJip9EkH0inCgfbrbLbsi7XVl474oX749ZHZFIBB0dHbQlRRAmSCs3Q0NDuO+++3DiiSeivr4eBx10EObPn49oNIrW1lZccskleP31192QtcC6deuwZcsWXHzxxZbXVldXY8qUKUX/CO9xY7Vrt0wnE57KdqgIYdfmqNHmqrEim82is7MT2WzWsFy71go3rTKyioXR9p8ovHeF95u2f4z+v9N6CYIQR0q5uf3223HQQQfh/vvvx0knnYSnnnoK3d3d2LJlC1599VXceOONGBsbw8knn4xTTz0VW7dudUXoBx54AIsWLcLChQtdKZ9QjxurXbtlOpl83V61y0yGTBaWoyaRSGB4eBhdXV2W95v5baTT6ZJyvLJ2uXEopRPZte8Kkw1A0fuTy+XQ1dWF4eHhkrQAfryjxKcEZQua8B4p5eYvf/kLVq1ahc7OTtxwww049dRT8fnPfx6f+9zncOSRR+Jf/uVf8NBDD2Hnzp0444wzsGbNGilhhoaG0N3dje7ubgDA9u3b0d3djWQyWbhmcHAQTzzxhJDVhggObqxEY7EYqqqqirLo6lE9uKnMr8PDbDI0yvUTj8cL/zswMID6+nrLydTMbyMWi5WU44UlQa8k8LAz6auS3Sx8n0Vw6NMCkAXGX4KyBU14T6BCwVevXo0lS5aU/H7++efj4YcfBgD8+7//O77zne+gr68P9fX10nVQKHh5ow29BYCuri7U19ejtraWG1KsDTlm2xN+hhNbhUCbhRaLhE/r+8due/0IcU6lUhgeHsbAwADa29sL1hK/nxlDNHzf6nc/CaJMbjLe2lvpyMzftpWbN954A/PmzUNVVZUtIf2ClJtgITMZs5U9U2YAlEyGZuWzVVwoFMLu3bt9yRPiZLCVvZenDKka7N3Ig8O7XkWeH78mOLdzFNnBL5lIySBU4IlyM2HCBEQiEcyfPx8LFy5EW1tb4X8/85nP2CnSE0i5CRbawRaA6cCrX9kDcpYJNsCycurq6tDR0aG2QTZxY/B3S1kQLUd/jZ02qugXmtA/xa9kmDyrHEHI4kkSv5dffhkNDQ2YPXs2RkdH8fDDD+Okk07CtGnTcOihh+L666/Hhx9+aLd4Ypwg458Qi8VQW1tbGBxFU/zrD6xsa2tDbW0tpk2bFhhHQ1HfgFwuh2QyiWQyaSk7L1LIrI9l/JNEDvOUOa7BrA1OHWv98nuRld0L51eVjsoiPlIMnh8XQbiJbcvN4YcfjhtuuKHoeIQ1a9bg4osvxoUXXojnn38ePT09eO2114ROEfYKstyMH8xW7EHbMpBZAff09AAAN7OwviymUIi0U0WfmK3Qrdro5ZZdELHb/35uu8lYYyrhGRH+4onlZvPmzZg/f37RbyeccAJuv/12bNiwAatWrUJHRwd+8IMf2K2CIArYWdXqV+xmVgU3EZFddEUdi8XQ3NyM5uZmQ9ntHgqqok/MVuhmbZSxAvCohKgYu/3vV9v1llQrKLyd8BLbys0RRxyBRx55pOT3BQsW4Pnnn0coFMI111yDF1980ZGABAHY39LQbsswq0cqlfJ0oLU7+fCUonA4jJaWFrS0tBjKLntauLZsp30SDofR3t6O2tpa6Vw02nBqWSoh5Npu/5fLthtBeIlt5eaee+7BL3/5S3z1q1/F5s2bAezPenr77bejoaEBABCNRrFz5041khLjmnJb1WrxWna/Jx27uWi0VgBZS53fbfaTcmg7JdMjvMa2crNgwQK8+uqr6Ovrw/z581FTU4NJkybh/vvvxy233AJgfw6SmTNnKhOWKD+cDGrae1Wsao1OwHabcluR+4G+j7xWSmnydZcgLDKcQu9IeaEkiV9PTw82btyIcDiMRYsWFQbjdevWYefOnTjnnHMcC6oKcihWi5WToEyuFf3vqpx+x5MjY6W01c2wcbMQ+aqqqsJ2Zjn3nx6/3wu/61dB0IIQxiOu5blJJpNoaWkRFiSVSgXuJRDtnEr4GL3ATsZdo3uSySR6e3vR3NyMlpYWZc9gPA1K5dJWN74v0babKdy5XA5jY2OB7z9ZyuW9CDI0J/iPa9FSRxxxBC655BK89tprhtcMDAzg/vvvx2GHHYannnpKpvhAUQlmVC+w2jrhbcmIbrewewE4MgePp+2dcmmrG9+XaA4f3nXsXWtqalLSf0HbwiiX9yLIlINvE/EpUpab/v5+/OQnP8GDDz6IiRMnoqOjAzNnzsQBBxyAPXv24M0338SmTZvQ0dGBf/u3f8Npp53mpuy2IMtNcDHqc9kzlSrheVVae/SoOgNLpHyVW5yikKXEfyr9GxqPuGa5aWhowM9//nO8//77+PWvf41DDjkEH3zwAbZu3QoA+NrXvob169fjlVdeCaRiI0MlaulBW02KIrLq9NvSprpv9e0xK9+qbv3fg/AeaL8vJ8/OqC36MlVZLkT7jiwl/uP3mED4S6BOBfeC8exQHPTVpJMTvP06t4gnu4q+lbE8WNWt/3vQ3gMnz8GoLW6t2oPWd4QxZLmpPDzJUDwwMIBvfOMb+NznPod58+ahr6/PblGEBE5W3UFfTWrlk1l12R3EVK7sVPet3nJoVr7ImVzav5tlbvYDJ1ZSo7a7ZXkN2jfk97NThRvtqETrOyGObeXmsssuwxtvvIGf/vSn6OnpwcjICADgO9/5Dn71q18pE5AoxsmEHPSPXSufzARst09kJyomQzab5WYOdrNvzcq3qlv/d79zyjhFRf4jo/KsCNo3pPrZifaF29uwKqkUBZCQw7Zy88c//hH33HMPzj777KIP/dRTT8VvfvMbJcIRpQRt5egWvAl4eHgYnZ2dJSdisz6JRqPKstryBkQ2ACcSCVcGYjcGYZEyy+2dUj0RujWxejGpqn52on2hus/cfAfLTXkn1GBbuQGAurq6kt8OPvhgvPPOO06KJUwI2srRDXiTAjuQMZvNore3F6lUqmT1nslklA1ivAExFouhqqoK06ZNQ1VVlfKB2I1BWKTMILxTMooAew65XE6J4uDWxOrFpKr62Yn2hdvbsCrxQ3kna5H/2FZuTj/9dDz22GMlvw8NDSEUCjkSiih/nHzcvEihdDqNeDyO1tZWNDc3A0DJNblcDlVVVdIWHB5GuVDC4TDy+Xzh/6vEjgXKqp/LwSojeyI46/uxsTHu9UE5l8rNvs/lckgmkyVWTJn7eX0k2hcyfeb3RO+H8i6i2Br1i9/9VSnYVm5WrFiBe+65BzfffDPy+TxCoRBGRkbwwx/+EIcffrhKGYkyRNYhWPsx6ycFdpp3Op0unIitT7aWTqcxNjaGcDhcZMGxO1AYDYh2JixRGfQWKK11ygirfg6CVcYKOyeCmz2HoGxD8Ppe1cSVTqfR29uL3t5eW+30so+C8jy8xEn6ivHYX25gW7mZNWsWXnnlFbz88ssYHh7GkUceialTp2LdunW49dZbVcpIlCEySgBTXlKpFACxCZkXTcS2KqLRqK2oKxHsKAuyMrC+A2B5X9AinxgyeXn0J4KLYPYcgmytUvU+xmIxNDc3o7m52VY7veyjID8PtxAZJ4z6ZTz2lxsoyXOTTCaxceNGTJw4EUcddRSmTp2qQjZXGM95boKK/kwpPaKh3jKHdIqiIlcGm8wBSClGMnWLno3kVe4PJ3l5yhHRfnWz/ymvC1HpuHZw5rHHHou2tja0tbVh4cKFiMfjqKmpcSywl5ByEzxUDcpuDO5OJ2JRpUOVnFanWnulWJg9C68nYdX18coLgsJmRwZSiIhywrUkfmeeeSY+/PBD/OpXv8Jxxx2HKVOmYN68eTj33HNxyy234LnnnqNkfoQ0qvxCVB20qUXERCySgweAq6ZmJic7/NGoL70yeTvJy8OD18eiW3BehI7bTUcggsyRD7JRZOTfQVQqtrel1q9fjzPPPBOLFy/GxIkTsWHDBmzatAmhUAjTp0/Hzp07VcuqBLLclDf6lWYQVtFm9fHkM1ot0yraGF4fiz5nLyw3ZnI6RaZM2fq93Cbz6v2m76hy8eT4hW984xu4++678dhjj+E//uM/8MYbb+D3v/89Ghsbcckll9gtliBM0a80zVbRPOuEfhWswgHXrD6elUJllERQHIjNsBvyqv07r49FrVCqI8a8dmaWKVO2fjej6US+VTcIgjWqHL7LSse2cvPWW28hHo8X/Xb66afjnnvuwd/+9jfHghHjF7OBweqcJKB4wNaX5caAq58g7OaesTMxBmEgt8KuMqf9O28S9ivM3ez5uiGTTJmi17qh5OsR+VbdIAjRRuXwXVY6tpWbo446Cvfee2/J75///OfR1dXlSChifGM2MMhOHtqytIn+RAZc7YAvM/jbzT3DHIGZrCIEYSC3wq4yJ+JD4scKuRImLi+sKlZnmrlFEHI7yViPCXewrdzcc889uPfee3HBBRcgkUjgk08+wUcffYSf//znmDRpkkoZiXGGjBMv8zHQD8rs7/qcNyzRn8iAqx3w9bl4nMpvhOwkE4SB3AozZc7qwE+zTMSAP4qGSoXSr4nODauKFxl3y0UxEB1XCPewrdzMmzcPf/vb39Db24u2tjbU1NRg8uTJePDBB7FixQqVMhIBw+0BxmxbiWEVhcT+nslkuCeNZ7NZdHZ2IpvNGsphd8B3onB4aYkph4lCxLrjteVK9vmabQH5NdG5YVXxIuNuJSgGdt/Zcvheg4SSJH49PT3YuHEjJkyYgEWLFqGxsVGFbK5A0VLO8TIayaguq4gI9vdoNIpMJlNyXWdnJ4aGhlBXV4f29vaSQzj9zM0ShER7IlD0izW53P5zs+rr61FbW4umpqaifmcWxSDmeFIlg0rZgtBOv+QIQi4lHl7mKXMtiZ+W/v5+NDQ02LnVV0i5cY4XWX+tlBNRUqkUhoeHMTAwUJTeP5vNIpFIYMGCBdi0aRNGRkbQ39+PaDSK1tZW6cFDZdI6mUHM7rOwmzVZL+fw8DD6+/vR2Njo2vZYUAd1EXjvn9fJJoOiEFQSfryTQX2OqvpCpBxPlJsJEyagubkZCxcuLPp38MEHB/pUcFJu/EfkJbaTr4M3WfNWzlrFKZFIoK6uDoODg4hGo7bN87LHDahShkQzE8vIKwrr25GREYTDYVtKoWg9fh9tYBdVSrpoPV7l3hnvBPFd84uKs9xs3rwZ3d3d6OrqQnd3NzZs2ID+/n7U1NRgwYIFgQ0HJ+XGH7QvLgBhy43MZN3T0wMAJZOsviw22Pf39xfeBd6hjTIyyCgrPIXLLqzsXE7ueAcVA5LWByAIjs1BnsT9lK0St1TLgUrpiyC1wxPlRk8+n8dzzz2HK6+8El/+8pfxk5/8REWxyiHlxh9UD+56ZUk/yQIoUSj0yhVbTRutqt2akIy2ypxAPgDBGoT18GQLsrx2Cdo74SeV0hdBaocnGYr1hEIhnHbaaXjkkUfw/vvvqyqWqBBUR7Wk02kMDw+jq6sLqVQKY2NjiEQihVPFu7q6MDw8zM3jwRSgSCSCpqYmZDIZbgSGW5E4sVgMtbW1yhQbQE20i2w0hkzIvhcRHl5Zj+wkwOPJVgmRP3rKIe+SV1RKX5RrO2wrN5988gn396OPPhqrV6+2VebatWuxfPlyzJw5E6FQCCtXriz6+9DQEK644go0NzejpqYG8+bNw69//WtbdRHeonriicViGBgYQH19PYDicPB0Ol3Q7kXyePD+5uaqOghbODxEJlvZrahKPFJCVQK8ICZ6E63X6Do/3m0rmf3oy0qyygV1vLLCtnJTV1eHI488snDG1CuvvIIPPvgAzz77LIaGhmyVuW/fPixcuBB33XUX9+9XXXUVnnvuOTzyyCN46623cNVVV+HKK6/E7373O7vNIMqUcDiM9vb2gs+K9uPTWkYA6xPCtVtZfucf8QNewkMjZPulHI+UsEpGp+8nN/Ih8frAi0latO9VPyMnbZM5xkMVVvL6/Q4TDpSbp556Cv/8z/+MoaEh3H333TjxxBNx4IEH4owzzsB3v/tdW2Wedtpp+NGPfoSzzz6b+/dXX30V559/Pk488UQcdNBB+MY3voGFCxeis7PTbjMIGwRlZa1VSpLJJJLJZIlFgQ0yiUTCcrDRDkjlaorVIvqceAkPjdD3i1UdVqs+3v1Wfe/2+2eVjE7fT25sCfL6wIsJMxqNFlIimGHn+zB7btq2qd4edeNbtnoWQduy9Rs/2mpbuTn11FPx/e9/H4899hjefPNN7N27F4lEAr29vbjuuutUyljguOOOwzPPPINUKoV8Po9Vq1bh7bffximnnGJ4z+joKAYHB4v+Ec6QOYrADrIfQjqdRm9vL3p7ew39ZuLxuOVgox2QytEUq8+6LDoZGg3EvOeg7xenEy7vfqu+d3uSN+oPNxVe/TfF6wMvFO5MJoOGhgZkMhnT63jWTivMnpu2baLPVzRXkxvfstWzcGvLtlzxo622lZtjjjmmSFE44IADsGDBAlc/vDvuuAPz589Hc3MzIpEITj31VNxzzz047rjjDO9ZsWIF6uvrC/9mzZrlmnyEPLwJVOsszBs0eavc5uZmNDY2IpfLcSdj5jxsNtiUo0KjJZFIYGhoCIlEAoD4ZGjUbpEByemEa+d+tyd5o/4wez+8WJnaeT/tWkGi0aiU1U9k0jJ7btq2iT5fP5UDmWdh9AwqwTosih9tta3c/O1vf8NHH31U8vvg4CCuueYaR0IZcccdd+Cvf/0rnnnmGaxfvx6/+MUvcNlll+HFF180vOe6667DwMBA4d+OHTtckW080dTU5DhhWy6XQzKZRGdnZ1FUE1DsLMwbuPSDWjgcRktLCyKRiOkhi1boLR9sUMpms4FzWOQRj8dRV1eHeDwOwLmyJjIgOa3Dzv1BVEKdTrQqvimg9F2UlYv1rVEEoR6ZSUv0uYleJ7tF6hf6Z6AiO7ibyPSj6LV+fLPSys3ZZ5+NW265BaFQCLt27Sr5+759+3DbbbcpEU7LyMgIfvCDH+C2227D8uXLEY/HccUVV+ArX/kKfv7znxveV11djSlTphT9I5yh4kVlW0nZbLYQ1aT96JmzMG+rJJvNFvLTaBH1F9DD6u3s7MT27dvR1dVVkFHEX8evFaR+YIlEIujo6EAkElFSvh1/GVFZKw2nK1NVg7/+XbQrl1OrnxUq3gfVW6Ruoe/LoMrJkJEvyG2RVm5aW1vx+9//Hvl8HgsXLsSMGTNw8skn43vf+x7+8z//E7/4xS9cOTjz448/xscff4wJE4pFDofDhmHpRPDQRpw0NzejtbW1kO+Fl4uGt1XS19eHXC5X4hcg6i+gh9UbCoUwceJEzJgxA0Cxv05VVVXJlhfDL/Oy3wNLpQyCKvArx44e/btoVy4V2y5muPE+xGIx0+/UCU6UMX1fBn07Ska+ILfFdobi6upqvPzyy0ilUuju7kZ3dzfeeOMNfPLJJ/jxj3+Mr371q9JlDg0N4Z133gGwf+V+2223YcmSJWhoaEBLSwtOPPFEfPDBB7jrrrvQ2tqKNWvW4Fvf+hZuu+02fOtb3xKqgzIUF+N1PgazE5FFZDEz6fKyEIu0i91ndv5PEE/Q9juXhkz9fssaNDnsEqRssQw7Mrn1HNzMKh60frdCVR8H6Ztx7fiF//W//hfuv/9+1NTUYMeOHcqdc1evXo0lS5aU/H7++efj4YcfRjqdxnXXXYfnn38e/f39aG1txTe+8Q1cddVVwod1knJTjFcfrVaBYOGeu3btQkNDg+3zlcw+OjeOe9AqVYC48qRaHj8HmyANdHYo90kKkHvvjMpR+eyC9E7oZclms0gkEojH4462a4PURlFk3nUvx1InuKbcfPOb38Qtt9yCz3zmM5gwYQKmTp1aOA28ra0NbW1tmD9/PiZOnOi4EW5Byk0xXn202g8kl/v04Mi6ujrDYwisZDP76OwMajL1AZA+tdxOP/PuM2u3288zSAOdHSp9kvKiHFGC0NednZ0YGhpCXV0dOjo6fJHBL2T6388xRQbXzpa699578ZnPfAYAsH37djz44IM48cQT0dPTgx/+8Ic4/PDDUVdXh4ULF9oWnvAWr3wF9HuzzGKjV2y0e9tOEmXZ8b+RqU92r1nfz1ZZcM2iXbR1O4mOseNHEOQ9diO07XQj4Z4q2YxQ1eey5ehls5N/yo5fjcr+1UcQul2fSpzKJfOui4bplxPKTgUHgL1796K7uxuJRAKXX365qmKVQpYb/xE1gep9clTV4cU9slYndn0ul8PY2FjJ77LlOF2tOWlb0JC1WNi1GNrpF78sYSKy6mVT3Y9GeN0nQbVGBlUuu6gYN3w5FRwAJk+ejOOPPz6wig3hPbzVh9lKQLuCcLJiELWU2JFfi9HqVNbqxK4Hig8BteoDJ9ExVit5u21zAydh56IWC3Yfm1Ssnp0+0Z2dzN1BjrTTy+bUWimK130SVGukkVxBtTRZ4fW4YVu5ef311/EP//APiMfjOPvss/HDH/4QzzzzDJLJpEr5iDLHbhIx1RYBETl41/B+0w4uRhOdVc4do/BQ/SGgevQDm0oFUI/R4Go26GrP+FKJnbBzpqgAYsnSjBRMgL+1JZroTn+/Fr9M/iITul42r2T1uk+CEsYvKpebSoKbipMdJdKJPLaVm/POOw/hcBjf/OY3MWfOHKxZswYXXnghDjroIEybNs1usUQZw3sRzV5otz4knq9ALpdDVVWV6YfFk1X/G3OGZlmVjSY6UZ8fs9B2Hl6ufowGV7NB1+iML6fYyb0BwNYJ5jwF08j3SZtXxSzLcNDy/JSrH0U5o+odcNPS5OZ7auedcyKPbZ+bSZMmIZFI4LOf/WzR7z09Peju7saZZ55pp1jXIZ8b95DdI1YVqsgrd3h4GAMDA2hvby98ICr2rvVla7e9ZHP2sPL0spndG2R/F1lFzW30EXNO+s7oXvb8qqqqEA6HDcsO8nMjvKEc3oGgyaiXxxOfm2OOOQa9vb0lv7e2tgZWsSHcRXZFwbOKGFlyZDT4WKz4bCqVKx1WFstizLBrwufJZtbWIK+4w+H9Z3y1tLQYRsCpQLQ8vfXMySqQ1+9aiyBgbiUK8nOrBMrBD6Uc3gFZGd3udyd9Zlu5ufrqq/F//s//QX9/v90iiICg6gWVfRH116fTxqeByygo4XC4cDaV6OnGooTDYYTDYUcHdOrL0/dZUB0cgWCk2hctz6lDrIgcY2NjhWdYSc+s3Ajatp8IlfBc9P3u10KGh23l5p/+6Z+watUqHHzwwbjgggtw33334bXXXis45BHlg94BU+ZF0r58Tl5Edv+ePXu4p4GLKk76rZFMJmPpByIrt4zFyQ6qV3gq5bMziahWKkTLc9shViSyz+0JTKR8K6f4oCMia5AXBEY4UcicPj9Vz98o6lM7lzipS9tHuVwO77//vvC9tn1u3n33XWzcuLHoX09PD6qqqjB37lwkEgk7xboO+dyUYpRjRQSRrL0i2YJFfRdE5WHlsOMeAGM/ECf5JJiDcX19vekxEn7uZVfK0Q/liNu5SkTK5z0zL3OoOH1njPzcygleHzjpF6fPz63nz5tLALFs7lZ9lEqlsGXLFixbtsxdn5vPfvazOPvss3HzzTdj5cqV2L59Oz788EO8+OKL+MY3vmG3WMIH2KrTjmldGwqdy+UQCoUK2jojkUhgaGjIVOE1i1SR0fxZCHY2m0VPTw/S6TTXD4RXt51VXzqdLijLZvdbrdJE2mh3BaRyVVsOfgMq4UXeObHyidQhg52QbtH7VMgHON+60PvQqZTRKwsW7/t38i05/abdsnTx5hLRunh5opz0kW3LzRtvvIF58+YVnOnKBbLcuANbCfT396OhoaEoY24ymUQmk0FbW5utw+tkVhns2kwmg1wuh+bmZrS0tEjXKbqqEolsUmU98iNjqd3VZaVYeJxm6bVTR9BwKp/2O2DfpayF2Op9sht5qTKSUrTOcv4e3CSZTKK3t7dozNb2GwBs3boV8+bNU39wppYJEyYgEolg/vz5hYMz2f+y86eCCCk37qAfwNhHrGLglhkYjOSQRcVBcsycvnXrVhx88MGOt63cHiCtti/YZCAajq/qiAI/EQ3xdyPM3C/spjWwQmTr2QtlWtURL0EjaO+RLCLbp56Egr/88stoaGjA7NmzMTo6iocffhgnnXQSpk2bhkMPPRTXX389PvzwQ7vFE2UGMx9GIhFu5l1R8yfPTKw3TZqZko3kkMVMblEzOzOnz5kzx3LbSsQh1e0tIaNEddpJQCYcn9d/Krbn7FxrtxxRp2TVYeZ+om+LKvnMtp6N6hZFRkYjR3Cr98mLLSxVzrfliOrIUdvKzRVXXIF77rkH//3f/43HHnsMXV1dWLVqFebMmYPzzz8f69atQ3t7u9SpzERw0X902WwWnZ2dyGazpvfJDowik582Q7Bb8Aa9bDaLVCqFaDTKjRBgjnRaZaS9vR2TJ0+WcoTUluHlgMUbSLT9IBuOz3vuVmXItFdV39gpR/89lGO0jhFu+2OYfQde9KNdBdWLb9FJHZX0DjJ8yXOzefNmzJ8/v+i3E044Abfffjs2bNiAVatWoaOjAz/4wQ/sVkEECH2IX3d3t6WTsBG81Qn7Ta848OQQceC1K4dRnaOjo0gkEgV/Hu0Hpz1HSsWqV1tGkAYsFSt4qzJk2quqb+yUI/ucyyn02k9Lkp91W70HXnyLTuqQsXCPB2wrN0cccQQeeeSRkt8XLFiA559/HqFQCNdccw1efPFFRwISwYB9dMD+sL5oNIq6ujrE43HLe/UfGW91whL4JRIJ0z3jWCyG2tpaJSGhssng4vE4N79NOp0uZMJVMQCK5E9hmCmKsoNaEMzaMpObqonQTjnaZ2Q318x4ohwmWqv3wAvFS2UdRhbl8YJt5eaee+7BL3/5S3z1q1/F5s2bAezfqrj99tvR0NAAYP+KdufOnWokJXyFbUsAQFVVFVpaWgrbjkYfDNu6SiaTRQM7TwEQCfdkcqj6+EUVESM/HjZ4AHCkjBjVJ9JGffgk27bbu3dvSaZnq7qDZCUC7E2IXg3i7HtIp9MFp0ez91abMmG8TTIAKXcqcJKGYDz2v23lZsGCBXj11VfR19eH+fPno6amBpMmTcL999+PW265BQDQ1dWFmTNnKhOW8Jd0+tN08+Fw2PKDYfltMplM0aTJm7yZf0ptba1nk6tTRUnEQVKPUZ/p/Xrs5rtJpVIYGRnBO++8U6Ioyg5wfq/27AzIXg7iPOXWCPau6U+PHy8ETXH2E68sq3b95YKAirHHdii4lvfeew+JRALhcBiLFi0qdOC6deuwc+dOnHPOOU6rUAaFgttHNkRUJDOx17gV5ioK65MFCxagv7+/JGRenyeIJ3s2m0VfXx+am5vR1NRUJD/LFdHY2IhIJFLULl5bzXJ+uJ3F1EkOIZX32C3XK/lEcikFMfyXTVBAME6JDwp2v6sgP2vVGPWRzPytRLkpJ0i5Gd+oSMqmH7QBSOfY4CU7tMrPw+794IMPMDY2xk1QKDsA6nN+2G2XDH4nrbMzSfgps1ndquRyY+JkW6YA0NraGsgEhUa4kc9IX4bTXFyqCZLyZCSLJ3lucrkc7rvvPlx11VX4xS9+gT//+c/YvXu33eLKBr9N9V7ipK2y93qRswRQc1J0Op0uHMaZSqWEQ9Nzuf3HUlRVVZU4J4vk52GytrW1obGxsWDF0SKy1abtI73zcjj86YnnqvybghY2bWfryk+ZY7EYqqqqkM1mkUwmi95tVXKpCIfnyd3c3Izm5ubAbIfIRkjq+0OFk25QtyiD5JejYuyxbbm57LLL8OSTT+Lkk0/GE088gQkTJuDjjz9GU1MT2tra8Mwzz9gWyk2cWm78XnV6iVVbzTR92XtV9asXz0drucnlcujt7UVVVRWampoQi8VKVmOsrblcDqOjo9izZw9isZitj5eVxbIf19XVoaOjQ6oMFdmXZa4N2jcTpBWqKG5bQcrNmiWL9hsUOfpBxHKj38a1K1NQ3sOgycPDE8vNU089hd/85jd49NFHUV1djc7OTtxxxx346KOP0NraarfYwOP3qtNLnCRck73Xz5wleqxWZOFwuOgwTq3Fg+XC4TnyAsDAwABGR0fR29tra4XEympoaMDw8DAWLFggXQavj3hbbTLhzWZ9FrRvRnVIrxfWXLetIE7D4VXhVl/KOH8Dxv2h0knXz5w+PIIij6p3wLblpq6uDm+99RZmzZqFhoYGvPLKK5g3bx5uv/12vP/++/jZz37mSDC3IJ8bdTjR9IO8SrBzCB/bP+fto2sdq5mVCih2shRxvtReA0D68EGZNov0gdkqNsjPVzXMijYwMID29nYA7vgqiaCy3/14hn47sZcbQWiXahnM3gFPLDdz5szB+++/DwCFwRAAli9fzk3uR1QeTjT9oKwSeMisyPS+MixCiVkzACCTyaChoQHpdBrpdBpNTU0Fqw9D68fDs+iw/DWjo6OFOpmMokdh6Msz84MR6QOzVWyQ9u/dRp+jyc+2q6yblcWyknvhZ+iWlY833lSC/2QQvjOeDE76VtU7YFu5+dKXvoTnnnsOAHDiiSfiwQcfBAC8+eabGBkZcSQUUR5oX2CRl7lcBhOnipc+sR5zCO3r6ys4HvOUC/22g/aadLr42AmtjCyfUHd3t+XzYL/rE8/p2yzaB0YWp6BtRbmJPkeT387HqupmZQEwnEBVf9NeLnqCoBg4JQjfGU8GJ32r6h1QEgqeTCZx5JFHIpfLYXBwEBdddBHuuecep8W6Am1LqYPlVGlubkY4HLY0J5eTA6ITtP3CQrX1Wxcizoj6MG0j0y/b9po2bRry+XzRhKQvn5VZVVVVsLg4GUR4z1RVThgiGP3mJHAgyGjbBfi3lViJuPXe7tmzBw0NDe5sS91000145plnivb+W1pasGnTJtx222146qmnAqvYEPYQWZ2JrCBkVxl+WnqsLB9mMjU1NZVEtMRixWdisb7QpuM32yoyW81EIhF0dHSgqampcICn9l6j0G/RNpvBa4fecgWU/yrZr3cxCP1m9u55bTlQmWJC2y4/+7lcLNoyuGWBkznOSdpyM2HCBIRCIQDA9OnTsWjRIhx++OGF/w16pBRZbuQxWp3Jauf6663u92NVqA8ZZRYO5igsGkpqVra2vdo2Anxri0hYqlk4Pe930d9YHQ0NDdi0aVMh27RZ3Sw8Xmu5srOSC4LVguGXhSJIfaASu+2SfQ6i1/vZz+Vs/fIaGcuNtHJz1FFHoa+vDxdeeCFisRg2bNiA9evXY9OmTRgbG8PUqVNx+OGH4/nnn3fUCLcg5UYekQ/fTHEBUEg4x44NaGlpsVSavM7gyZx26+vrUV1djXA4XJC5qqoK06dPd7SdY7WFA/BN40ZbSfryRJUgmd9YHZs3b0ZtbW0hr45Z3UbtkIW3vecXlapk+IXd7VHZsSEoz81MjqDIWA64fvzCww8/jB/84Adob2/H7bffjkMOOQQff/wxEokENmzYgK6ursBuTZFyoxZ9gjqeTwmAomMD2LlHRgOUXysZvV9MOGx+VpMsMsoH7z59HwPu+wkwk3k2m0V/fz/a2tq4lhs3CJJy4zbjYYLjKcB2LaHlZu0oN3mDiidnSw0NDeGHP/wh7r33Xlx66aW48cYbUVdXZ0tgLyHlxhlG2xFVVVXYtWsX6uvrC1Ej+oHMbGuHN/A5tdyIThhmq0EvnGNlTOfMslRbW+vZIElbMu4zHiY/UedzEcrt3Sg3eb1A1k0B8CjPTV1dHX76059i/fr12Lx5Mz73uc8VwsGJysUos3BTU1NROCxQGibMcsFoc7TwymXOaJlMBsPDw+jq6rLl2MtzbDVrUyaTKXGC4znGqXY+FHXK1Iccq0AknF8vnyoHSKtyWN8D1tmSg4hMP4m8A+XueBqNRgsO7wy7jqci9wWpv4Kc18sv9OOo6nHVtnIDAB9//DFGRkZw7rnnoqWlBZdccgn6+/uVCEYEE/0grP1o9dEHZknprMplv7HkaCw3Szab5eZpEUF08rYjq2ydWvQDn2iEh5269GgHFKPBRV+nqkFItBwV9fGUOPYuuTX5ycgtMvkFIXLKCdpkll4oHeXeX0FDtbJoJ3GoDNLKzY9//GOce+65WLBgAWpra7F48WLcd999OOqoo/Dv//7vqK+vty3M2rVrsXz5csycOROhUAgrV64s+vvOnTtxwQUXYObMmaitrcWpp56KrVu32q6PkEd0BcJLSsfgDTq8crWWCmC/3w47uwmwPiNGH5ItOnkzjD5mmVWYnQHW7qCsvU/EIgMUDyi8sG4eRoOQ7OAnOpipGPR4ShzvHDArVFtjZHAr7NorC4dIUkA36vMzwV0loVpZtJs4VBRp5eb666/Ha6+9hq985St488038eGHH2Lt2rW48847cdFFFzkSbN++fVi4cCHuuuuukr/l83mcddZZ2LZtG373u9+hq6sLra2tWLp0Kfbt22e7ToKP0wHPaW4M/ZYW28qKx+OFbTCRM5icZM1V8THbGWDtDsra+0QsMkDx1g/b785kMqbtNnq2otuAPOxaq0TL4Slx7F2S6WfV1hgZ3Nra8MrCweTnbUsbIaqkm9XnxlZQkLa8vKLclEVph+LFixdj48aN2Lt3L2pqahCPx4ty3Rx22GFKXqZQKISnn34aZ511FgDg7bffxqGHHoq///3vhZOQc7kcZsyYgVtvvRUXX3yxULnkUCyGUwdHI+dX0bByJ46zqpwzjZQk/TVeOwqKhJVqnaOB4qgq3v3ayKSmpiZbbZKNbhLJ8SOLymdvJ7KtHAlym9x4R1TL5bcsKgnyuwC47FC8du1aDAwMYMuWLXjggQdw/PHH46233sL3vvc9tLe3o66uDkceeaRt4Y1gWxEHHHBA4bdwOIxIJIKXX37Z9L7BwcGif4Q1PC1dZLXCrkkmkxgZGcGePXsMHYeN7u/q6kJdXV3hHCUVstuB+RGNjY0ZyivSHqdnbun/rq9T+3eec7SIz0wulytEstld8fIyM5vBs6Y4fWaqyjHqY8BY0S1XvHJ2tWPt0G6V5nI5VFVVST1bJ5YfEblisZjScv22CIla8fyWUwTbDsUHH3wwzj33XPz0pz/Fn//8Z/T39+Pdd9/Ff/7nf2Lp0qUqZQQAzJ07F62trbjuuuuwZ88eZLNZ3HLLLUin0+jr6zO8b8WKFaivry/8mzVrlnLZKhG7UULayRXYv52oxWrySaf3HxA5NDRUyDUjgvZjUzlYm8nLBkyzAVemz8wUKBY1ls1mkcvlEAqFCvWz+5nlJBQKmUY28doUDu/Pwmynv7VlyPS7kTO6nbrNZHAyqWotX+Sc6gw7fcgS/DH/KPau2KnT7jO0etfNFhuy+P2eiS4O/JZTBCUHZ7qBflsKANavX4+LLroIGzduRDgcxtKlSzFhwn797Nlnn+WWMzo6WrD6APvNWrNmzaJtKRuIbimxbZFEIiG9tWTXLOrETOxmnTJ9ZnRNNpvFiy++iDlz5mBoaAgNDQ3o7+9HQ0NDkY9Nb28vRkZGClmERWVkdSQSicLxCira7hay2W1VyBp0c3054OQ70yfXtFMnYC/ppVX9+nb5MRZ5jV9yepLnxg8WLVqE7u5ufPjhh+jr68Nzzz2H3bt3Y/bs2Yb3VFdXY8qUKUX/CHuIrK7ZNZFIxFZOFruhzk62I2RWIVoZROqU6TPmD6NvYzqdxuTJkzE4OFhwgtU6w7L72bbwggULTGXM5XJIJpNIJpOFeliYLrO4WcF8epglSQanJm2WLyWXywmtmFVsVamyLI1nRPtQ33/s+c2YMcNRnXYtutqUFGZO+XYDF8zKUoEb76MqOd38VspKuWHU19cjGo1i69at6OzsxJlnnum3SGWDlwOvqi0ChkjUj52PTWYw0srgxkBkZOLOZDKIRqOFRIgA0NfXV9SP7HTw/v7+IhmZZUfrs6PPQSQ7IDP/nL6+vpLQc9k2ysIUsXA4XOT30NXVheHhYeFQf7cIgsm+nBUsff+J+L65iTYlhdH34da2uAr8fh/N3kUR2ey+y4FSboaGhtDd3Y3u7m4AwPbt29Hd3Y1kMgkAeOKJJ7B69epCOPjJJ5+Ms846C8uWLfNR6vLC7xed1c8S8Tnxg1CFzGDkVAarD5Xn6zE2NoYJEyYUyZdIJDA0NIREIiFUhj6rtD4HkVUf8FbT2jJkHBFlHENFfYaYr5ZdJ3SjuuyU4dTx1U6dPGuf3wqWXXjP1+8wZKvvw6y//VY0/e47s74Rkc3uuxwon5vVq1djyZIlJb+ff/75ePjhh3HHHXfgZz/7GXbu3InGxkZ8/etfx/XXXy/kI8AY76Hgfu/psvpzOXsH5pU7svvxRlE62WwW3d3diEajaGlpMX2WWj8okbOz7MhtVods+7UysYGNd722LHatk/fa6UGdzHpkJ4WBEz8NlWc2EcWI+qKZ9Xelho2L4vRd1N6/b98+9w/OLFfGu3ITFGQdWBm8D8VuWbKomDC0SgBbicj4cjhxXORdL+qsqVoJMitHVGlRPYE7VW5UOb7KtsUPRWa8KE+dnZ0YGhoqctKXZbz0lRd4cip4uULKjT/ITMxmygrvPhUDkAiyUTpGsBX+yMgIwuFwUW4YkRUgq1/21HRe2U6sDaJ1+FGGH/WOp0lsvFgjvFo4qWA8vH8VGy1FlC/aXC36KB79nrTen8QqQikej6Ourg7xeNzVNrC6AWdn4zD/kOrq6pKzt3gOxSyyKRqNorq6GrlcDj09PUin07atPtrf4vE411nSjq8AczJ24l/gl0OmUb2i/RA0R1I38duPwyuYk75TxcbutyRzTzn7WbkBKTeEq7APlIXvjoyMIJVKmSbB0isrVhFKqgYg0fbYcRjV319dXY1FixaV+Mvolb6uri709PSgt7e3KOuwLLyBj/2mLVc7oNoZLM0cnbV9oNrB0k2nTZo0ShlPipwK7LxDsvfEYjFUVVUVxpjxDik3hKtoJ9DGxkbuYKhfBeqVFdWrRLsTIQuh7uvrk86Uqi1jbGzM8H690sez8DQ1NaG5ubnQFhFEI1C0A6qdfhexormhLDg5tNMKq37wOxqGCD52viXZe+yGzFfq+0vKDeEq2g/U6Owh3iowm83itddew/bt2wGUOt1ms1l0dnYim81Ky2R3cuWFUMsis7qKxWKora3lWnh27dol1QZeH/N+YxY2dhSDWXJB3m8iVrRy29JwEgZcaZTrROi33FbfktU9otj5tir1/SXlhnAVowyhWl8S3keeSCSwbds2vPTSS9zVeHd3dyEPkix2J9dwOIyWlhbL0GurMkRXV0aDm2xOF/1gapVUK5vNlshmtq0lm7PIjS0N2UM7VVJuypoTynUiDJLcbsrilULkt7IoAik3hC/wsuRqicfjmDRpEj772c8CKP2YWLZedlqwqsnVi49WZDAxk4NZdETDjfWDqd65267MqhysVcDLxOwm2ufjlv9JECeQclXkgiR3kGQB7ClEQVIWjaBQcMJ1jCJ1eMnpePfpD+GMxWJF95olepPFqxBXq7BNlXJo62Jl9/X1oaGhoST8W3+tSGipqhBUp+V4mczOi/fEbh3jISQ4KIzXvvar3RQKTgQKnpbP2+LRr1TZiiKdTmNkZAR79uwpKDa9vb2Fa1SuhMxC1FVitfJR2Sa9k/LY2BgaGxsLYeXa9plFsVmVD6DQX9q+E+1HO6tBqzQBbq0wvVh9262jHFbVetz81ljZ2WxWeR1u9bXq/lBdXjlEy5FyQ7iO6CCtHSh4io7RKoE3udrFzuRuB6s+sRo8jAYrq0GM1cvKNvP9kZ1ctf1l9P/NEK1P20ZtlBSvz+yUKYIXg7voe62X3c9tDyeRiHa+NZH6WNmJREL59+xWX6see6z844K4BeoUUm4I1xH1cdEOFNqPW+8syv6bWXHYB8kbEJx8tG5OErw+kZHVaPCzGhS19dpRsMyck7XlGf1/2T4xa3sqlbL0sZEtk9dvfg/8Vs9U/3c/V9VOIhHtWqms/MdY2fF4XPn37FZfqx57rPzjVI+dZmV49T2RckP4ilGCPu3HrXcW1W5XaXOb6AcElgRveHjY1grIjYHLKlJJdGIwGvxkBkUZixeTm/mBaJ2Tec/P6P+L9IMVLFw9l8th6tSpqKmpQVNTk2UEnhlm/eb2No+otc3omQbJQdVJJKKdby0Wi2FgYAD19fWWCn0kElHyPauc9LPZLPedVT32sPKampqExw0V771ZlKXb26ak3BCuITIIyGxZDQ8PY/369di+fTt3AtMPCKlUqshXR6XcdtF/2FY+I0YYDX5mg6JRbiCrwUarJAIoktHNFbcRmUwGDQ0NCIfDRVFjVhF4Zpj1m9vKg4y1zc7fvcRrWcLhMNrb27nHh/Cw4wumR2RyNitb+z0lEgn09vaip6fH1rcgi8y4oeK9N4uydNuvkZQbwjVETJ1muVy097IV2ujoKNavX48//elPSKVShYR6TJHRT95GvjqqLCiy6D92nuUDgG0LhBG5XA4vvvgiBgYGSo5GsBrE0ulP8+qw1R/rTzdX3Gb3Mr8hbd2xmPMkizzcnrCDZHkpR2Sejx1fMD0iz8usbO33FI/H0dzcjEgkYutbcBMV7z2vDK/8Gkm5IZTAUxa02W4Zdp1Lw+FwYc88FAphbGwMu3btQjgcRiaTwejoKFatWoWBgQH88Y9/xGuvvYZoNGqY2M1MDjcmG6PQdyNzsF0LhBHpdBpz5szB6OhoydEIVoMYk3HGjBmmdciswmRX3CLy8iLwrDDzIfIKJ5OI3/5AogRFTju+YHpEnpdZ2bHYp3mqIpEIWlpa0NHRYetbKCd474Cbij3luSGUwMvJwX6rqqoqWFAA49wpVrkTWHmhUKiwNRGJRAr+ONlsFm+99RZGR0eRz+cxe/ZsdHR0cOW1qkt1HgeZnCVGipAIRnKLtsfoOhH5vcoRJCKvKPp3NJfLYWxszJU2qH6ngODkZbJCVE7V36XM9W48H+JTVOShojw3hOeY7a0CKNl64b3IorlfWlpacOSRRyISiaCnp6dwBMOECRNw2GGHFQ6WNDu80Wr1pdpcKutPY/eYByO5nUYNGcmvdYzM5eyflm4X0edk5Gysf0cBuLaSdCMixastLaffg4xvnUxkmBUy13vl6FoJ2Hlv3XJaNoKUG0IJZnurRh76ekRCk5l/DZuk+vv7iyYlAMjn84XoCLtYyaKd1EUijbxaETqd7Izu10esMdjg1N3dXZRY0QkyA2csJnYQqdFWn/4d1fvxqMSNwd3ouajGyXsl8/7zIh55OXyi0ajQOyIjN/k+iWPnvXXLadkIUm4I1xG1Guiv401y2kmK+W00NzcDgGPlQVufqGVHJDGYl6HEsv4bog7eAD/CSTvZqEKmv1io+ejoqGWuEzNnYy+ifFQM7kbfhMz7JaI8yrwXVsg+T209+nvZ35mfnVWZonLb2e4Kgg+RX6hSStz87ki5IQKLNvssQztJNTU1oaWlBZFIpJBp18np0HbyzIgkBrMzEMgMnmbh5bL3msGLcGKDU0tLi2G/y04EsqGiopFXQQqZZsjKxHtesu+XyDNXqZA7mQiN7lW94ndzu6tScLKIsiqP999OIeWGKCv0/ihsO0LW18Op5z77uEUSg4kMBHp57ChaWodtvYXFaOAQ3dZh7TCKcNK2UZ9LRDaRorYsnoIrIxejUiYj3jvKe7/MJgqR91yl8uBkIpTJy+IE2faOxy0sJ4sohvYe/Til+hsl5YYILForjNGHlE7vPwiSbU+IfiC86/xc2fPy+thN6MezZJg5GofD5mdMya7Y9LlEWHSDWVuskp719fWZ+jdZ+Z5UymTk1DFcX4ZRvwfRygW4tx0k214/+sfvrTDeIkpWGdHeox+nVH+jpNwQgUU7gBh9SPpcOnpLhFWUjOyH5NYAo5fH6WqXWTKY42U0GjXNu2HmpCk7iGnbEovFirIIG2FUR1NTE2pqatDQ0GDq35TL5bB+/Xps27aNa+UxU35kn6nqd8CqPKeRKWb3l5tFq9zkVYnfbectovRjitW7qr1Hb3FVrTCSckOUBUbKCMt3k8lkCr/t2rWryHJgFiWjKtTaKao/bL3jZSaTMV2tZ7NZPP/889i7d69wGLhIW8zapZXDaDLWDoBm/k3sufT39xvKZfTsjH43sxY6Sb9vJpcKh2FAPAtsuVm0yk1elXjVdtF3l/dtW21d6e8hh2Ji3GP0EfBMpdptEOaA3NjYWOJXoipXQ5ARCT9Op9NIJBLYt28ftm3bprxtVkpCMplEV1cXotFoyWTM9uKj0SgymYxhNEssFkNrayva29sNncllnVONlAKRd0DWZ4pZG/UHk4rWZ1W+0f0iW1RBIqjbZaphz0K7FetV250s4FRsXamCMhQTgUE2HNOsDP1kKJpB2Wm9TsPRvUDfR2w7KpPJoK2trSQ/kFl2WZF2G93P7k2lUhgeHkZtbS2ampqKnp3WItPQ0CCciVcrFwAhBcmof+w8U9n3QeW7aJcgyEDshz0L2fcecD4WqRzLstksEokE4vG4o7xjDMpQTJQldrX8XC6H7du347XXXiscmqn3xOetXtlvAByvLvzeD5eBt2U1e/ZsLFq0CJlMhhtRZZSdWCQSysry8PnPfx51dXWIRqOGVgu2JSWavE3v1KzPSaSP6NJHqrETm+0O8LKrbNZOlkQQgOdWlFgshlAohEQiwd2eLDdELVFBtFjJpJrQ43QsUmkh4rkNeAVZbojAYHfFnEwm8eKLL6K2thZTpkzB3LlzUVVVhV27dqG+vr5gEbCqlw0g2nOdAOOzsIzKKJfVrl5m2XOKmMVlYGDA0mGYV/f69esxOjqK1tZWtLS0FOTJ5YzPdxKxLrDJCih+hjyLkFa5ZfUxpU3k3XELp2dG2X0fOzs7MTAwgNHRUZxyyimBepftWsOs+tCN87n8HA+8qlukHtWykOWGKEv0FgWZlcecOXNQV1eHJUuWFAYp0VOn9c6XWgdk0VWQKt8Fo3vdWF3yoh+Mct7o62fXVFVVWZ4WzkPvAKwdBI2O69DWCRhb2/TpAXg5ifQRXfpINbsnlmtldfK89FGAsthdvcfjcdTX12Pp0qWBUmwAZ1F7Kq6TwU9LbpB8c6xSNLgJWW6IwGGk7Yv+zrMAAZ9aYIBi6wwv+Rn7G7tPxpokewK4iPXEq9OfResX9Qkwe2bafmYDpZlFRisDGzCNLDd+W9GcPi8Rq5hZO4PQB6oppzb5LasX9YvWoXLskpm/SbkhyoZkMone3l40NzejpaUFAP8DYxPDli1bUFdXV1iBs60OAOjp6QGAoiSBZh+qE4XFDH25soqdaozqYY6Bc+fOxebNm7FgwYKCZYGn9Gm3mEZHRwuTNMDf5mPlT5s2Dfl83rbzsll7jOp2Uj6vDBXRLWZbYyLbdwQfv5UOr/BqMSSCSiWctqWIcQPPNBqL7c98OXnyZGzbtq3o1HC2DdHY2IiqqqqC2T+VSmHbtm1Yv34913yqN12bOaTKTGq8LREvQ11FZWeOgWvXrsXQ0BA2bdpU2OrhmZ3ZcwFQlIWUlweDhYLX19cjHA4LhS2Lon2uvDBrLSq2Eti2Zl9fX2FLzA68rTH2rJLJJHp6epDL5coqLUEQ8GK7KAgOykFKWWH23erTPtDZUsS4hHcoJk/pSKfTiMfjaGpqwrRp09DY2IimpqbCJAwAkUgE06dPL/Li7+/vF0pZD/CjcfT3iXysoknu3BqUWbmpVMr0+APm67J48WIMDw9jwYIFJWXwopz0vk96XxKmDGSzWQwMDBSihVQqd+y5AjA9R0t0QjB7rrGY+enjMuj9uFhkGoto0265+j2ZlgvaZ+yWEhKEyMlyyQekfR4i/SbzrEi5IcoG3gdrpHRkMhl8+OGHqKurw9tvv134GwsPZ8cRsNDiWCyG9vZ2tLa2Ck1KZg6pDKeDHE9e1SsxkXD4VCqF3t5eAPutMHPnzi3KBMxrv/a5aP+/PjSUWdEikQji8bhlRJrsZMSUK6YUh8PG52iJTghmz9WtSSWd/jQ5ZVtbG2pqajB16lQpp/cgWBT8Rh884IYS4oXVpFKepfZ5iPTbzp07hcsm5YaoKNgHEo1GMW3aNIyMjGDOnDmFfV22RcKOI9DmetGeNm6F0eTNk8XuIMeTV/WkyWQ3ilDiycRTZEQjInjbcJFIBNFoFOl02nTA5m1piVjGtM9V9pnw6rAqw2zSNNvONCMW+/SMrkgkUmQNE21TECwKDDciCmXxauvGDUUkSM9Sj932iiwMDjzwQOHyAqXcrFixAkcccQQmT56MGTNm4KyzzsKWLVuKrsnn87jpppswc+ZM1NTU4MQTT8SmTZt8kpgIGtpw8nw+j3g8jsmTJxcGsBkzZhQNaKoHOFGHUtEBQC+vSL2qYGXGYrEiywevTXZC5hki1iOmDIRCocL/tzPAy1pWeNt2VmWYvVNamVOpFHp6ergHfVrJbaRc80L29ed38RIhem0JcDI5q5rY3bSy6Y830cvrtL+D5FOjx03FS+ZZBUq5WbNmDS6//HL89a9/xQsvvICxsTEsW7YM+/btK1zz05/+FLfddhvuuusuvP7664jFYjj55JOxd+9eHyUnggBvINf6cGi3V7Qh4zy/BaPBh/2uPfNFi95Bjnciuf46I/T5WsxQsQWmv1+7xWc1CTgZbEWsR6wvdu/eXdhWclMxZcRi+3P/sC1CkQmKN2mya93aXmSYTaxaxd/oWXtlCXDy7II8sQOl8rH/bmhoQGdnJ7LZrGV/Wyk/bilmKpRcmecjW5+MXIEOBc9kMpgxYwbWrFmDxYsXI5/PY+bMmfjOd76D73//+wD2r/QOPPBA3Hrrrbj00ksty6RQ8MrFKvxRH0quvR4ozlKrvZblYYnFYgUFqaqqCtOnTzc8L4lt02hDzrW5WQDjsGRWhvbsJ6scO05DXHn3+x02a6R82hnYRdqifz/YPdlsFr29vaiursaiRYuKUg6IhtvyrnWjf/Vlij5Xv5910HGahiAcDqOzsxNDQ0Ooq6tDe3u7aXl+hXJ7Xa9sfZs3b8a8efPKPxR8YGAAANDQ0AAA2L59O9LpNJYtW1a4prq6GieccAL+8pe/cMsYHR3F4OBg0T+ivDHS9s1WDOxapqzor2cr9FwuV1hZsXt4q6xoNMqNvNE7yGkjZ3iraLPwSL1fkNmq2ulKLkjRFez5plIp7N27F3/6058KSk0+n7cVYm3HMsHu2bVrV+F58rbTjFaoPEuikdO1/nq7mG1fsTp4k6rs8xeRNYhOr3ZlcvL+sHvi8Tjq6uoKjvN2tzadtsUMs61LN5C1wpWtz42WfD6Pq6++GscddxwOO+wwACi8JPoGHnjggYYv3YoVK1BfX1/4N2vWLHcFJ1zHaKAx2w5IpVIlWzzselYmAIyNjSGRSGDq1KmoqakphIxqc+Kwlb1Z5A0r344zq5FZ283wVR5+OS2yegFg27ZtqK6uLhxi6cZWBts+zOVyBeVXG/6ujbbSYva+sf9lPjUiyoPT/hZ5N1Q9U9Ft1aA5vdqVyc67p78nEomgo6ND6HRsmffFLI2DLGZbl24gq1SXrc+NliuuuAKJRAKPP/54yd9CoVDRf+fz+ZLfGNdddx0GBgYK/3bs2OGKvIR3yAw02onSKAmf/pq5c+di69atWLBgAdLpdMFPJ5PJFClIVhOm3jdHNKrIbPXt5oShnxzd9G0wm4i1/lJLlizB6OgoFixYUOg/lsjOqA+N+t7MUqZPvKf1d9KeSWXVBifPx2l/M7+grq4uw74xqsNKMbLzbgTRN8auTHYsm25bQ0Uc8Z2WLdNPQbPUBVK5ufLKK/HMM89g1apVaG5uLvyu9VXQsmvXLkNzVXV1NaZMmVL0jyhvZAYNnmMxUDwJ6a/ZvHkzamtr8cYbbxQpIrwwZiM52Kq9u7vbMnJCFK01QcWEoR+M9LK5OTgb9YN+26S/v78orw5TRHp6erB+/Xps3769RNFhZScSCaG+1m8fivYzrw3ad4SXdNIMkW0qK6Vwz549GBkZMYzAMoqssnov7bwbbr4/difSIG2/OkXEEd8Msz60skryCJqlLlDKTT6fxxVXXIGnnnoKL730EmbPnl3099mzZyMWi+GFF14o/JbNZrFmzRoce+yxXotLlAFGg5nZyoTtjUej0cL2lFkYtBn66Bgnq1mZ6CnR8rSDkdsrbSsfFBGZmK9TVVVVQYFhJ7gz2D3xeFzIbyGdTqOpqamwfWjVz6wdDQ0NJSd3G4Vo24G37WA2gWj9gmS3qKyevZ9WGNUWskrD7nsmu63F63ORb9ovAhUtddlll+Gxxx7D7373Oxx66KGF3+vr61FTUwMAuPXWW7FixQo89NBDOPjgg/GTn/wEq1evxpYtWzB58mTLOihaigCKI5ISiUThgEK2bcSSygGlJ4fLlO9mJIzT+ryOkBGJjLBqIzuDipnjtdt9oqe2W8lk1S+8E9G1kXBGCpHd55PLfXpApmg92nvM+lp7MntQrRleRZqNN7TRgH19fUUHEptdr+1zr6OryvZUcCO/mYceeggXXHABgP3WnZtvvhn33Xcf9uzZg6OOOgp33313wenYClJuCKB4gmLvQ3t7u2mot5PJQMVgbFZGkE4BNkIf4m4VEq+HnfbOnpX2ervtN+pTs2fNawdb1VZVVXEjq5w8H5F3RyQEnIcb7w2vf5woIKTIyCE7TulTIMjW5eWzKVvlxgtIuRk/iFg69BPta6+9hr6+PsTj8UK0lHaVwk5jrqmpKZpgs9ksEokE4vF4UTSEzEraCrOJyM8JQLZus/xCVvVYKRyq2s+eNVCco0g/YevfI6PnrMKypv1voFgpVK3cOYFn2Qqqwm2GVd8EVenSv7si31UQ28FDZv4OlM8NQajEyj+hqampKBLGLEIml9uf/2ZsbAxbt25FTU0NkslkIeNoIpHA0NAQEokEVwYAJfvRLASZF/nD8zMw29P201FS1v9B2w5em4z8RZgfizb83q41zazvmYy8HEV6J2X2O8tJZOTcafZ8jNqr71ftf6vyl1L93midsePxuOkp7EFH1snaD4zGCZmT6SvJyVoLKTdExRKNRkscPs2IxfafodTe3l6y2mFROq+99hqqq6vR09ODTCZTUGi0Cbr0ZZqFoPf29hYcYrV/4507xAYhANzJ0C9kJ1Yrp1uzSUNfl90JRt/3PBl5OYr0TsrsdydJz4zaoG+rmVIYlAlKv0DQK6NOkYmSMrpW/7vRdUF2smbw3h39uxs0vAoZp20pomJRaarP5XJYv349hoaGMDw8XMiSzduKMpNF74SqtTowfx+W/sBoH9ypY67VNX6bqWV8NuzKqh1gVSgGTrZi/O5vlXLY9f1xw0fI6Fr970Hd7tVjNC55KZ+K+pz4eZHPjQmk3Iwf7H6IRh+fCoXBbMJmjn2NjY0A9icNbGtrK1GcROQQaYORE6z2XhZNJqLAqcbI0VGlwyprq5EjsCiqnWj9wCundCdRNzLftKjyXi6O+kGQRYUMThQk8rkhCNg31RttJQEo8cMRzb+h9/EBSreWWNK3cDiMvr4+jI2NIZPJ2GqXSB4Zdg0AQ/8NI18iFdg1Txv5v9jBqA9k4flwqcKqn2T70e42jApYOL/+hHXRumW+aaNr9b+blelVn4g8vyBsgzmRQWYcVQFZbgjCAv1qRZ8forGxsfChNjQ0YO3atVi8eDEGBgYsc6Xoc5ewv6naLtEja9o2igJzWidgnb8E4IeJu2ElsdsHXmwLWK2WZVfTqqxVdjAL5/eSIG03uWmRKYd2yrSfLDcEoZBYLFYU9aGNkAH2H//BnFPXrl2L2tparF27tmAJsIp80kfBjI2NIRKJSDsEiqyA9AoTz0SvLUPmsD8jRB1m9dcaOVAbWUmcrADNFEkz65XqiBnZKDnt35lTs/ZMLbPrAXlrldNVdiwWQ21tra+KDSD/3Nx0gnXTIuP0/VTZbqN2an/X1ue0blJuCMICfQgy+xjb2toK0VUs9HLx4sUYHh7G4sWLucqLtkw2mWo/btkIL+DTAYitgGQGMr1svCgtpxgNaqztTAE0upbXfzJbgkbow8GNBlNtJJz+GtUTk9W7wuTWKjEAik5y7u7uLnqGeplZeSxsXR/pZRZlxNtSkiEoUV2yz030HbSDm33iNJrPi3B3bfvN0h3IQttSBCGAk2gOMwdGwHkyNqttBjPZ9X9zkq3UDiKRKrztJ7tbWvq6t23bht27d+Pwww9HOBy23K4x62s3oo14f2dHUAwMDBRl12Ztzmaz6O3tRXV1NRYtWlSYJES3tfRbplpFd3R01PctJZU4ieYKgoOvKF4meZTZhja7Fyj9hmlbiiAUI7q64q0I9fcy60gymSxZCduxBLBtM/b/9TKarYD0smlPsnayMhU1L5u1V7v9p+97nimbya9fARoRi8UQiUQwdepU9PX1FQ45BYy3a8y2dFSscq3es1QqhZGREXzwwQeYNm0a9uzZg/r6+qJtvJaWFtTU1GDSpEn405/+VJR6QGTbS79lyrZcASjZUrLzXrm1LWT2zKzSBdj5VrPZbCHxp5fYtTDasSpZbUObWZG09fEsuzKQckMQCpH5IPv6+jAyMoL+/v7CoGNnMNFvm+mRGdi0fi5OtiBEzct2I1WMTNki92rL6OjowAEHHIBsNot0Ol3YrjHKrMueLwBUVVUVle9VNIv2eQOlma/D4TDa29vR09OD6upqvPHGG4W/iWx76bdM2ZYr6xunFhs7SqDoPbJKkIhybVSnnW9V67/lph+PHi+3A822obXbp0b9qu0XJwsGUm4IQjFWHySzjsyYMQO7d+/GjBkzHA86zHqTzWZLjhQw8tkwG1TT6XTB/GtnstYOcEaDnZUcstYy7YpQ9N5wOFwU7cZ+M1MW2fNNpVJFq3CrOlVYLNi709bWhoGBAUydOrUgr75dS5cuRX19PaLRaEn4v+gzDYf52W6dTMyiMmjrEL1HVgkCjI/tcENZ1fpveeHPIosKhcvqO7DqV166CjvPgHxuCEIxovvU27dvRyKRwIIFC0oO6bSD6IF5qjIcO0HrO1JbW6vEZ8GpX4H+EFWjyY/JzpTI2bNno6OjQ1o+s7B8q4M42bUi52oZPUsnz9gLfxM7mYOd+MZ5TZDCtBlB7xfyuSEIHX6YgAGYHoyZyWTQ0NCA/v5+JSs47RaCmZXEaDWk9Qdw24zt1DLEw+lKWx+GzrPesIE3Ho+jvb0dLS0tJeeJmcnHSynA89thCQqz2Sw2b96MhoaGQv1a6xRzgu7q6pK2gIn6mxi1xe0tOH1/aUmn0xgeHi5pdy6XQ19fn+V37tUWohm85+LlOMXDjX6RbZOqsYeUG2Jc4IcJWOuMqa+XrZAikQja2tpsDSi8EF+jA/N4+WP021RdXV2uZSPWE4upz3diZ1DUhjcDxf4rZmHpmUwGLS0taGxsLPKvMhvI9QoTr3z2Gzugc/fu3aitrUUikeCG+8disULUlOy77bW/iSxm24NG7RbNqO3UWdUt/N6qcuO5+tUmUm6IcYEfKzUzSwrwqb8HL2W/2SRpJ6+NWfvZdta0adO4J5urwCjXit/meK0FSe8waxUhw1NeeXmCjKxm2vK1W0yxWKywPdbe3o66ujrMmDEDo6OjAIoVMOY8XFtbqzQSJgiWDTM5jNqt9Wmxwm9FgoedPFdWyFhO3LAc+fUukc8NQfiAmb8FmzhZmvp4PF6U50V1+nwvctsEYS+fhxO/B57PC68vRZ6Xtn8AWOZKcgun/aEqz48XB5CK5BTy2ifGje9EpkzRa1Ucy2IH8rkhiIBi5gSqjcLJ5XKFHCb6AyLZSkhVaK42t40q9CvAoFgC9DixIPG2AXl9aZYbR3+NNrrMTvQXD5nVuBNrhtG9duo3OxRVlXXBqk/9sOy48Z3IlCl6rZsH6hqRy+Xw/vvvC19Pyg1BOEB2oDVyhASKJ8GxsbGCXwrzv7A74DkNubYzmegnBi+3obxIlGbUJzxfDtZ2dtyB0Ral/j5Vk6tMOU4mV6N77dRv9s57pXT44VzrxnciU6botTLbf6pgz10UUm4IwgGyA62ZA6h2EtRGiegHHNk67UwGThNp+Wmp8WJVadYnRn/j+dhoJzm91QIoTdBnR3HjPQsz5cyJJYt3r8y7wMrg+aHZKY+HUdu98AtzQzHzI8JKxYG6WkTaoF38iUDKDUE4wE5SNCsHUBYl0tfXx420ikaj+OCDD5DNZoUGNKskerxTpO0k0tKHKRtNDG4Pxl6sKs36RKS/eJMcz2qh7ytZxc3Ib0TFJCv6HGWVBLetG0Zt98IiZBbebpcgOkbLItKGcDiMmTNnCpdJDsUEEUDMfHP0yfrYdoas4yNzHuzv7y+cP+TEgVXUGTGozsVavEhiaFU+LymjrCOnUV+Lts/M8d0swaAT3H4/7CYAVPVOqG6f307gKsoUvYccigki4OhXp3orCgDDnDX6EHP9qkd0RW3m32BndSxq4Qmqc7GWIKyGo9EoQqEQQqFQITRYdjvALJSa93z1745ZokGgdNvMqBxRmEVDf26XSozaLuJgbOQvJ4PWYdwoyacMTixZbrzndsoMh8OIRqPo6upS5itHyg1BeISZH4tIlAhDG6XDyq2qqipE15jlv9FvHWlzqjhduYkOskHJcWOGSgXMzL/G6DnncjkkEglks1n09fWhu7vb0keEh2xf6+UySzRoFq0nMsEZ9cvY2FhhazZIOEmYqIU9k0wmY5jk0ys/GtULDSfKqWpfOVJuCMIj9H4s2oMuo9Goqb9FLpfjrvK0kwE7bRcwXlFrw83NFCE/nBS9wg2lwAwj/xoz3wuWXHBwcBDApyHkso7eZm3l/U3/XgKl26IifePU70i11UbF+yziLydTD7PANjY2lrwHdi0qsu1UvdBwopyq9pUj5YYgPEKfnVbrNJzJZAzz3qTTaaTTafT09GDDhg1IJpPcjLciK2p9zhWArwgFYVvGCrsTlt1tPLvyMcVVv+0XDhufPM7SAJxyyino6Ogo8q2ScfSWiepiChMAQ2d2UewqQHYnW6tnqOp9Vpkbh1lgI5FIyXtgV8nz+7vl5WgSRXUEFik3BOETet8ZwDhKKRaLIRKJYNq0aQULTTr96TlR7F6z7SWt0x4LN2dyOAnf9Qu7A7m+bSK+FEaWMyv5hoeHkUgkhPtY70geiUSKfK/0CrKIAmFkIeL1A1N4zY4NUYWoIiOifFq9C17krGF9HAqFpKKhVCp5Xny3Zs9Du+Xm9+KIlBuC8Aj9AMzLcKtd+WiVlXA4XFjBR6PRkj1tkYleO4mz+sfGxgrbU9rtr1QqJeyHI2P5sGMlMbrH7kCunzii0Si2bt2Kurq6ov7TbwEx/whtf5mh99HgtUPEgVc0xN6orWYWIr28zPJn5MwugmpLmMi7bfUu6PvNSEYZ2Xl+c2NjY9i9e7dQfxvJ5gQv/NlUPA8rVLxDpNwQhEeIfPBmKx82UeXz+cL/N9v64NW/Z88eDA0NYf369YV7ABRtfxk5OQL2nGO12LG2GN2jaiDPZDI4+OCDMTQ0ZKgwaq1sgPExCnr5tD4avMlQ39e8d8TJVoOZgydP2VZxxIPqrRFtn6jKPm0ko4zs+mdlFn1oh6D6vcmMY3bzXKl4h0i5IQiX0H/EMpOH0QBitJXAfHYAlJjK2XYKu39gYMAwIsbMyZHVp9/CkVml2VnRuW1qZ/4t7e3tRc9GvwXErBlmxyjo0W4b6pUMXl/z3hGtHHoncxFLkJGDp8p+lfUFEkG/RRcOhw0javSO8iJWNZHvywz9s3LDOdfvrR0ebiVR1KLidHRK4kcQLuFFsjqtH004XHpieC6XQ29vL4BPE/6xCQOAYRI2s+RvXV1dqKurw9DQUIlC4EUbyxGzd0H7N2bh0beV9UE2m0Vvby8ikQgaGxsLz4/dl8sVJ9az23dWyQL15brxjHh9ZiQXq1/ffrcwa6+q796qT53+3S9E5DLqQ0riRxABQMUK1mqlrl1FabcggP1bJ8wa0NjYKGWBMJKdbbUMDQ05zvchilF0E+/YCK+Q3TIwW4lq+9pquySTyWD37t2FbRn9fblcrqgeu6tsq5wjZltaTvyqtM+U9w4aRdSw+mWsalbfltG1vPZrUWW5chqZVc6WHxV9SMoNQbiECjO1dhtIm5PGyPeFbUGwQZ5l/gyHw4X7ZGXnba9Z5ftwgr4+fXgp6wd9wkMVTqIi8gDyE0cmk0FDQwPS6XTJtqF2FWu1XdLW1obDDz+8cBwDe0bs7+FwGA0NDchkMpbtMVMOzXKO5HI5ZLNZZDIZrrJmpIyK+Fhon6kdhUnmm9PKKasomCmrTr970bZaKQB2FASVDv9O7uP1YS6Xw/vvvy9cPik3BBEwtB+9NuIGKF2pG+XG0K9kgVInWHZ2kXabigevLqY0adOlyw5yRpOskVVAn6RQ77ipwklUtP2yEwcLyU6n09i7d2+h37q6ujA8PFzUVu0WE+snpgDpQ8MZIpYL1t9GyqGWSCSC9vZ2pNNpbuLIvr4+5HI5rhJl5BcmEl1j5IxrR2GyQu9rJqMosC1CN6wiot+lFXaULDt12/2+ZO9j14tCyg1BBAztR6+1kvBW6ma5MbSTooy5Xo/RwK/furA7WGknWbPoHm2oMssBow/p5q2mZRURI8uRWV9bwRx6p06dim3btqG+vh6JRKLgP2AWHSXTr2ZyaScHkageXjQX6w+zPDh6GWSia/TPVFunrMJkht5iZvU8vQix5snoRWJCp9jdQhK5T7/QYws1EQKl3KxYsQJHHHEEJk+ejBkzZuCss87Cli1biq556qmncMopp2D69OkIhULo7u72R1iCcAHe5M4zzwOlafG1ZbAVujavjf76pqamwvaGGUYDezweR21tLaZNm2boI2HURm34unaS5UX38NqsjQJjgz/b+tFbE2QnJpUh0lpYVNbSpUtRW1tb6L/29nYAKBnEtVFVdvxIePWbKYf6cnK5HBobG0uUGK3flkifqOg/fRki0TRmfWFlobDa4oxGo4hEIq5sy7LvMhwOe56YUHRM0GLn+Yo4Q+uPhwmHw5g5c6ZwHYFSbtasWYPLL78cf/3rX/HCCy9gbGwMy5Ytw759+wrX7Nu3D1/4whdwyy23+CgpQbiDWegu+7tIsj62Qjc66E82ksJosP/ggw+4PhL6e7T/X9YZk3c9z6oguxI0wq3Qc711Qqtc6K11dkOMzbZvZMpJpVLo7e0tKDJeRMTpfZHMnpORIqtFxrIh6jDMft+0aRO3fhXbZaLO0Wbfmx28jK4S9XECjM/JsyLQoeCZTAYzZszAmjVrsHjx4qK/vffee5g9eza6urrQ1tYmXCaFghNBRkV4p/YagH8sg1m4qr6OXG5/+Hd9fX1hewwAOjs7CzlzTjnllJKQYDZAaX1+eGHL/f39aGhoMAyd5bVZb81h7YxGowVHV95p5yrCdJ1MAry+1cot+lxFr7Hb3mQyid7eXjQ3NxdOn3cTvZxWctvpC7O/MSvnwMBAwZLGu9fqecn2t0qFwum77UXqCoZVu41C/ismFHxgYAAA0NDQ4LMkBOENKvb+tdcYXc+zTvBMwcCnJ1TrfUPi8Tjq6+uxdOnSQvnaFZmRw6Z+ZWrl+8GuB1BkhdBujej9d4ycZVUkB0unrc+iMruX50/DOzjV6l4edvxdGNqVv53tCSeWA9mtONnvwOpvWsd9nvVMf5+Vb5DowZEq/WacWhxVWSxF3gOr5ydimbMisMpNPp/H1VdfjeOOOw6HHXaY7XJGR0cxODhY9I8gKh2rAYY3uBiZgpmviDZhH4uUaW9vRyQSKfGj0SoxrGz9Ks1qotAjsp3FFCUjhUnFoGl0FpUITvxp7Ew+sltaPB8tUaXFyURtthXnRGmSCSFXkd6AyS16cKRTZ3de3XYtQKp8y2Qirozao0LRCqxyc8UVVyCRSODxxx93VM6KFStQX19f+Ddr1ixFEhJEcBD1GTBD73Bq5vMhY4FwGtrKU5z0bTbzZ+G10cmgaXQWlQgi/jRGA76KycfK4ZjnoyX6Lrnlq6TSUmaGXcdYnl+ZqP+X7JZUUCKkjMjlcoU0ASIYtUfFux5I5ebKK6/EM888g1WrVhUOqrPLddddh4GBgcK/HTt2KJKSIPzDSpmxsx0BGEdg6XFigZDFSHGyM9BbDZqiDscs2on5DsliVo+bE5hZ2UbWC9FnKzshiVpVYrH9B76OjIxIK8iyEXxOlCczp3Cre0Vx8ztTQTqdRkNDA2pqaoS2NFVsExsRKOUmn8/jiiuuwFNPPYWXXnoJs2fPdlxmdXU1pkyZUvSPIModK2VGdKJhzsLaRHIiyET02PHf0KJvm5ElR98uJ5OV2QGMslsPsvUY+W0YWQlksOPLYhWVo0IxMCMcDtt2uBXd3jKThd3Hy+hs5FcmQiy2P7Eje56y7dHKZnW/iiguEXhb2Gao2CY2IlDKzeWXX45HHnkEjz32GCZPnlzQhkdGRgrX9Pf3o7u7G2+++SYAYMuWLeju7g6smY4g3MCuMqPHyFkYUDcgqvYFEHHCtWv90CYKMzvqQnutnVU0rx6GkfJkZCUwgqcMAeK+NEZ/N9qSdOp/ZIaVgizyrsqmINDfx3NSN3LeF3WqDYfDGBsbsz1/ib4HRgsY1UqP7LfupiUqUKHgoVCI+/tDDz2ECy64AADw8MMP48ILLyy55sYbb8RNN91kWQeFghPEp5jt+3sZGiqD0zBg2Tq0Ie2q+8Hs9G2jsHGzEH8t2ucHoKQNVs+X93etkhSLxUzD7vVtkd36lMGoLTx5Zd8JmXB9K3mMylbxnmqtOWZh7tp6vA75d4rM/B0o5cYLSLkhCDFU5uAIev0yOVFUyuqmAmmlDFnJzJvUmXPvwMAAZsyYgbGxMSHZmVM5AEdblCJt1U/eXV1daGhowJw5czxT0o3kUflOG5Wlf6fM6rRSbvweA/RUTJ4bgiDcQUUuCtm6zE6h5snkZWSIlaOtrHNoNptFZ2dn4VBRI5ya5a1Cg5lCApRaTKzaxdse00ZUARDO6RKLmZ9HJdtO/X+btYUliIzFYob9pXJ7xkwhUPlOG5Uls2Vttd3Hi3T0yn/HKaTcEMQ4xA/FwewUap5MXkaGOKmL+bRozwPTHypqdB+zjNiNurJ6jiqes7ZvtBFVLGVAOp3Gtm3b0NnZadiGcFjuPCqjdjAHbH2iST1sAo7FYpgzZw4WLVqEcDhs2B9eKB1AcV86VbSM3lkjZYZXrjYXlajCEvRwdAYpNwQxDhEZZGWxcry1ykSsyknaDk7qSqdLzwOLx+Ooq6tDPB43vU9E6QPsJztToSCKRMbt3r0b2WzWtQlP74ANmJ85ZOR0btQfonlpjL4TrXVSr+hq0fadU0VL9p01K9fobzzLjpeLDidjE/ncEMQ4R5Xfh5njYrkj45Mj6qcg46gaVOduwH1nYX1dMn2r0lfE7Bmwv5mdkyb6nth9n7T3856HU78yP9D3OfncEAQhjKqVmNYfIygma1VWKRmfHNmVt8jxE34mb7PqQ6stJ5V+LqqteTIy8J4Bu5/lXDKzTtq1yMhuA6XTafT29qK3t7colQFgrHzKhrHbwU65Tt57Um4IYpyjasLQ+mMEJYOqKv8AmUHWDUXE7BnZzVcjeq1oH4rmxZEtV6XMTpzWtQ7a+vvZ9peZoqp/L0TrlnmfmP9XY2NjwXlbX4/V++CWT43oM9HiZGwi5YYgCGV46Sdjhn5F7VTRsOOk6VUfqHQq5l0rOrnqnX5Zn8j6uciu8GVktnJal534YzHxLMP690L06AGr90krM/P/ikQiBUualVKlb7Nq5dzqW5R5P2WsPuRzQxBExeGVj0oQfGFE89WI/B2wTg5oJUculxPOf8NDtk9l/EWsrmV1V1VVFRQDqzw1VveoaqdRW7T9zSw1ZnIDxc/Y7XfYqnwZP6p169ZhyZIllMSPByk3BFH5eOUgGVRHTBlUT25O+8SpsubkejsKmsg9PBnsOGJry2EWDxGlyuwZq36HnTpEG5FKpbBr1y4cfvjh5FBMEMT4xKutoaBswzG8dtrk4bRPrHKv2HGwFQ21B1DI3yPaJ0xes3t4MrDUATJnS2nLYc+tqampxBdIj9kzVv0O69sqW742rF6/XVZTUyMsByk3BEEQFYIdZ1CvFTStAmamjPGy4wLyypjI9XYnZG0marN7nOTXMbpeJGcOYM8y4yRiyqmybJT/KRwOY+bMmcLlkHJDEARRIfgZMi6KdiL2QhkTiTSz63gukolaL4NWcbDbFgCmTsB6J2PZaDcnEVNOw8pFk35aQcoNQRBEhRC0bTIe2onYTBmzOveIITqBmoWM6zMZiyKSiVqPilBrK0sTb/tKNNpN5h43wspl8j+ZQQ7FBEEQFYoTZ04VjqBeOFyLRivxnGr9cAj3ol/tbkXJOgKrioSykgfYryjV1taioaGBHIoJgiDGM06sBG5YGPTkcjkkk0kkk0nbGXGZlQGAaV08awQvMZ9dzKwYTraieFiVYacOq8zIvJPurSw8TtrK2758//33he8n5YYgCKJCceKDo8J/x6qMdLr4qAA7iEQraa/TT7SqMvKaleNW1l8eqo5P0D87nn+RVWSb0/pZgkTmEyUDbUsRBEEQvmAn14tM2aLJ4WQT34lew/4ucjiqqrYyRUp1Ur5sNotEIoF4PI5IJFJUr9PEjUbot7327NkjvC1Fyg1BEARRcdjNHKy/X7vlpZ+8rXxO7Pj52PFT0dZjlKVYFXYTCTqtKxwO06ngBEEQxPhBvxXDcuhUVVUBMPfFMYIX1RWNRot8hKy23Xh/t9qisrOFpc9/E4vFkEqlCnLKblWZXW8WVSXiQ2VUNi//EWDfokeWG4IgCEI5XkYi6S0kMpYMGTlZYkEAQmHqPGQtN3YtOVo5Ab7lyex+meMa2PX9/f0Fh2Oj/jEqW28pGx4exsDAANrb2wv1yMzfpNwQBEEQyvHyUFEnCoGMnG76CKmQj6GXE5A7ENXu+V3RaLRgcTJLnGjmv8TKSKfTmDp1KmprawttIJ8bE0i5IQiCcJ9yOVQ0iPl87J7UriK/jReY1cnzlQL298GHH36Iww47jHxuCIIgCH8oh2zJgBo50+k0hoeH0dXVpSQcWuvXIiOfHX8dL8PUrerU+kqx8H7t2VkykHJDEARBEA6IxWIYGBhAfX29EiXBbo4hszOm7NalKm+OSJ3pdBpjY2OFE9P119PBmQRBEAThEeFwGO3t7aitrVVyaKndwyd5WYaHh4exfv36oggmmYzJqiw7vDoB8wNAjdolAvncEARBEERAkXV41jtWd3V1YWRkBOFwGM3NzYXfRZPu8fxjnOTiYeH5DJnkf5TnhiAIgiAqAO0xBFbWG95p4e3t7WhtbUVzczMAFHxXRLe9eFYTM58ZvZWJ/aY9QoEduSEjhyxV1pcQBEEQBOEHzP+EKRNmeWe0OX2097e0tJRc68SBmlcPUKz0aEPQR0dHkclk0NTUVKT46LfeVEZs0bYUQRAEQQQYs60ht851Ui2nmeIielQGbUsRBEEQRIVgtjUEuLe1IwtPThFnYOZIDBgflZHL5fD+++8Ly0LbUgRBEARRZrh9QKaXMAVIn7xQi2yuG7LcEARBEESZUS5JEmUwa5PWuiMCKTcEQRAEQQSacDhMSfwIgiAIghi/kHJDEARBEERFQcoNQRAEQRAVRaCUmxUrVuCII47A5MmTMWPGDJx11lnYsmVL4e8ff/wxvv/97+Pzn/88Jk2ahJkzZ+LrX/+6VHgYQRAEQRCVTaCUmzVr1uDyyy/HX//6V7zwwgsYGxvDsmXLsG/fPgDA8PAwNmzYgOuvvx4bNmzAU089hbfffhtnnHGGz5ITBEEQBBEUAp2hOJPJYMaMGVizZg0WL17Mveb111/HkUceiZ6enkKKaTMoQzFBEARBlB8y83egk/gNDAwAABoaGkyvCYVC+MxnPsP9++joaFHiH1bm4OCgOkEJgiAIgnAVNm+L2GQCa7nJ5/M488wzsWfPHqxbt457zUcffYTjjjsOc+fOxSOPPMK95qabbsLNN9/spqgEQRAEQXjEjh07CqecGxFY5ebyyy/HH/7wB7z88svcRnz88cf40pe+hGQyidWrVxuaqPSWmw8//BCtra1IJpOor693Tf6gMzg4iFmzZmHHjh3jenuO+mE/1A+fQn2xH+qH/VA/7CcI/ZDP57F3717MnDkTEyaYuwwHclvqyiuvxDPPPIO1a9caKjZf/vKXsX37drz00kumHV1dXc1N2VxfXz+uX1TGlClTqB9A/cCgfvgU6ov9UD/sh/phP373g6hRIlDKTT6fx5VXXomnn34aq1evxuzZs0uuYYrN1q1bsWrVKkybNs0HSQmCIAiCCCqBUm4uv/xyPPbYY/jd736HyZMnF449r6+vR01NDcbGxnDOOedgw4YN+P3vf184QRTY73QciUT8FJ8gCIIgiAAQKOXm17/+NQDgxBNPLPr9oYcewgUXXIDe3l4888wzAIC2traia1atWlVyH4/q6mrceOONUqeLViLUD/uhftgP9cOnUF/sh/phP9QP+ym3fgisQzFBEARBEIQdApWhmCAIgiAIwimk3BAEQRAEUVGQckMQBEEQREVByg1BEARBEBVFRSo399xzD2bPno0DDjgAixYtMjy+gbFmzRosWrQIBxxwAObMmYN7773XI0ndRaYfnnrqKZx88smIRqOYMmUKjjnmGPzpT3/yUFr3kH0fGK+88gqqqqpKIvPKFdl+GB0dxb/+67+itbUV1dXV+OxnP4sHH3zQI2ndQ7YfHn30USxcuBC1tbVobGzEhRdeiN27d3skrTusXbsWy5cvx8yZMxEKhbBy5UrLeypxnJTth0odJ+28D4ygjpMVp9z89re/xXe+8x3867/+K7q6unD88cfjtNNOQzKZ5F6/fft2nH766Tj++OPR1dWFH/zgB/j2t7+N//7v//ZYcrXI9sPatWtx8skn49lnn8X69euxZMkSLF++HF1dXR5LrhbZfmAMDAzg61//Ov7hH/7BI0ndxU4/fPnLX8af//xnPPDAA9iyZQsef/xxzJ0710Op1SPbDy+//DK+/vWv46KLLsKmTZvwxBNP4PXXX8fFF1/sseRq2bdvHxYuXIi77rpL6PpKHSdl+6FSx0nZfmAEepzMVxhHHnlk/pvf/GbRb3Pnzs1fe+213Ov/9//+3/m5c+cW/XbppZfmjz76aNdk9ALZfuAxf/78/M0336xaNE+x2w9f+cpX8v/2b/+Wv/HGG/MLFy50UUJvkO2HP/7xj/n6+vr87t27vRDPM2T74Wc/+1l+zpw5Rb/dcccd+ebmZtdk9BoA+aefftr0mkodJ7WI9AOPShgntcj0Q5DHyYqy3GSzWaxfvx7Lli0r+n3ZsmX4y1/+wr3n1VdfLbn+lFNOQWdnJz7++GPXZHUTO/2g55NPPsHevXvR0NDghoieYLcfHnroIbz77ru48cYb3RbRE+z0wzPPPIOOjg789Kc/RVNTEw455BB873vfw8jIiBciu4Kdfjj22GPR29uLZ599Fvl8Hjt37sSTTz6Jf/zHf/RC5MBQieOkCiphnLRL0MfJQGUodsoHH3yAXC6HAw88sOj3Aw88sHBMg550Os29fmxsDB988AEaGxtdk9ct7PSDnl/84hfYt28fvvzlL7shoifY6YetW7fi2muvxbp161BVVRmfh51+2LZtG15++WUccMABePrpp/HBBx/gsssuQ39/f9n63djph2OPPRaPPvoovvKVr+Cjjz7C2NgYzjjjDNx5551eiBwYKnGcVEEljJN2KIdxsqIsN4xQKFT03/l8vuQ3q+t5v5cbsv3AePzxx3HTTTfht7/9LWbMmOGWeJ4h2g+5XA5f/epXcfPNN+OQQw7xSjzPkHkfPvnkE4RCITz66KM48sgjcfrpp+O2227Dww8/XNbWG0CuH9588018+9vfxg033ID169fjueeew/bt2/HNb37TC1EDRaWOk3aptHFSlHIZJ4Opctlk+vTpCIfDJauwXbt2law6GLFYjHt9VVVV2Z44bqcfGL/97W9x0UUX4YknnsDSpUvdFNN1ZPth79696OzsRFdXF6644goA+yf5fD6PqqoqPP/88zjppJM8kV0ldt6HxsZGNDU1ob6+vvDbvHnzkM/n0dvbi4MPPthVmd3ATj+sWLECX/jCF3DNNdcAAOLxOCZNmoTjjz8eP/rRj8aNxaISx0knVNI4KUu5jJMVZbmJRCJYtGgRXnjhhaLfX3jhBRx77LHce4455piS659//nl0dHRg4sSJrsnqJnb6Adi/Erngggvw2GOPVYRPgWw/TJkyBW+88Qa6u7sL/775zW/i0EMPRXd3N4466iivRFeKnffhC1/4At5//30MDQ0Vfnv77bcxYcIENDc3uyqvW9jph+HhYUyYUDxMhsNhAJ9aLsYDlThO2qXSxklZymac9MeP2T3+67/+Kz9x4sT8Aw88kH/zzTfz3/nOd/KTJk3Kv/fee/l8Pp+/9tpr8+edd17h+m3btuVra2vzV111Vf7NN9/MP/DAA/mJEyfmn3zySb+aoATZfnjsscfyVVVV+bvvvjvf19dX+Pfhhx/61QQlyPaDniBGAdhBth/27t2bb25uzp9zzjn5TZs25desWZM/+OCD8xdffLFfTVCCbD889NBD+aqqqvw999yTf/fdd/Mvv/xyvqOjI3/kkUf61QQl7N27N9/V1ZXv6urKA8jfdttt+a6urnxPT08+nx8/46RsP1TqOCnbD3qCOE5WnHKTz+fzd999d761tTUfiUTyhx9+eH7NmjWFv51//vn5E044oej61atX59vb2/ORSCR/0EEH5X/96197LLE7yPTDCSeckAdQ8u/888/3XnDFyL4PWoL40dpFth/eeuut/NKlS/M1NTX55ubm/NVXX50fHh72WGr1yPbDHXfckZ8/f36+pqYm39jYmP/a176W7+3t9Vhqtaxatcr0ex8v46RsP1TqOGnnfdASxHEylM+PI9sqQRAEQRAVT0X53BAEQRAEQZByQxAEQRBERUHKDUEQBEEQFQUpNwRBEARBVBSk3BAEQRAEUVGQckMQBEEQREVByg1BEARBEBUFKTcEQRAEQVQUpNwQBEEQBFFRkHJDEEQg+O53v4vly5c7Lmf37t2YMWMG3nvvPedCSXLppZfiq1/9KgDgnHPOwW233ea5DARBkHJDEIQC1q9fj3PPPRczZ87EAQccgM9+9rP4l3/5F7z99tvCZXR3d6Otrc2xLCtWrMDy5ctx0EEHOS7LTt33338/AOCGG27Aj3/8YwwODnouB0GMd0i5IQjCEf/3//5fHHXUUaivr8dTTz2FLVu24P7770d/fz8eeOAB4XI2btzoSLkZGxvDyMgIHnjgAVx88cW2y3FCQ0MDJk2aBACIx+M46KCD8Oijj/oiC0GMZ0i5IQjCNi+//DIuvfRS3Hnnnbjvvvtw9NFHo7W1FSeddBJWrlyJ73//+wCAv//97zj99NMxZcoUxGIxfPe730U2my2Us2PHDuzevbtIuTG757333kMoFMKTTz6JxYsXo7q6Gk8//TT++Mc/oqqqCsccc0yRnJs2bcLixYtRU1ODtrY2vPLKKwiFQti4caOyvmAy9fT0FH4744wz8PjjjyurgyAIMUi5IQjCNldffTVOOOEEfOtb3+L+vaGhAV1dXTj22GNx+OGHY8OGDfjtb3+Lxx9/HLfeemvhuu7ubkyePBlz5swBAMt7uru7AQC33norrr/+emzatAnLli3D2rVr0dHRUSTDpk2bcPTRR+P4449HV1cXbrjhBpxzzjmYOHEi5s2bp6wvuru78ZnPfAatra2F34488ki89tprGB0dVVYPQRDWVPktAEEQ5clbb72F119/HU8++aTpdZdccgnOO+88/OhHPwIAfO5zn8Mll1yC3//+97j++usB7FcMFi5ciFAoJHTPxo0bMWnSJDzxxBNFvjXvvfceZs6cWVT/FVdcgdNPPx0//vGPAQBz587FI488gm3btiESiSjpC2D/ttrChQuLfmtqasLo6CjS6XSR0kMQhLuQ5YYgCFts2LABALBo0SLDazZv3oz169fjyiuvLPo9EokUWTO0zsQi93R3d+OMM84ocRoeGRnBAQccUPjv9957D6tXr8YNN9xQdF11dXWJIsK46aabEAqFTP91dnaW3McUNC01NTUAgOHhYW5dBEG4A1luCIKwBZuw6+rqDK/ZtGkTJk6ciEMOOaTo9zfffBOf//znC//d3d2N008/XfiejRs34tprry2pb/r06dizZ0/hvzdu3IhIJIIFCxYUXffWW2/h/PPP58p8xRVX4NxzzzVsEwBuJNbGjRtxxhlnFP3W398PAIhGo6blEQShFlJuCIKwxWGHHQYAWLduHb74xS+W/H1kZASTJ09GLpfDxx9/jOrqagBAMpnEk08+iZUrVwIA9u7di+3btxcsN1b3DA4O4r333kN7e3tJne3t7XjkkUcK/x0OhzE2NoaPPvqoYNFZs2YNdwuJMX36dEyfPl2qL5hM+jL//ve/o7m5Wbo8giCcQdtSBEHY4phjjsGyZctw2WWX4Te/+Q3eeecdvP3223j00Udx/PHH491338VRRx2FhoYGXHvttdi2bRteeuklnHbaafjSl76E0047DcB+q004HC4oS1b3bNy4ERMmTCiy/DBOOeUUbNq0qWC9WbRoESZOnIhrrrkG27Ztw+9//3tcdNFFAKAkpw5j48aNCIfDJRaidevWYdmyZcrqIQhCkDxBEIRNPvroo/yKFSvyhx12WL62tjY/derU/BFHHJH/4Q9/mM/lcvl8Pp9/5ZVX8h0dHfmampr8nDlz8itWrMiPjY0Vyrjzzjvzhx12WFG5Zvfceeed+QULFhjKdPTRR+fvvffewn8/+uij+VmzZuUnTZqU/+IXv5j/0Y9+lP/c5z6nshu4bRgZGclPmTIl/+qrryqtiyAIa0L5fD7vt4JFEAShimeffRbf+9738Pe//x0TJhQbpz/55BMsWbIEX/jCF/CTn/zEVTnuvvtu/O53v8Pzzz/vaj0EQZRCPjcEQVQUp59+OrZu3YpUKoXt27cjk8mgvb0dH3zwAX72s5/hvffew9NPP+26HBMnTsSdd97pej0EQZRClhuCICqWJ554Atdeey1SqRQOPPBALF26FD/5yU9w4IEH+i0aQRAuQsoNQRAEQRAVBUVLEQRBEARRUZByQxAEQRBERUHKDUEQBEEQFQUpNwRBEARBVBSk3BAEQRAEUVGQckMQBEEQREVByg1BEARBEBUFKTcEQRAEQVQUpNwQBEEQBFFRkHJDEARBEERFQcoNQRAEQRAVxf8HNd43XbG9tXUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plot_cmd(candidate_df)" ] @@ -764,7 +951,76 @@ "cell_type": "code", "execution_count": 53, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
        \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        color_loopmag_loop
        00.63217121.411746
        10.61023821.322466
        20.58844921.233380
        30.56692421.144427
        40.54546121.054549
        \n", + "
        " + ], + "text/plain": [ + " color_loop mag_loop\n", + "0 0.632171 21.411746\n", + "1 0.610238 21.322466\n", + "2 0.588449 21.233380\n", + "3 0.566924 21.144427\n", + "4 0.545461 21.054549" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "filename = 'gd1_data.hdf'\n", "loop_df = pd.read_hdf(filename, 'loop_df')\n", @@ -792,7 +1048,11 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# poly = Polygon(loop_df, closed=True, \n", + "# facecolor='C1', alpha=0.4)\n", + "# plt.gca().add_patch(poly)" ] }, { @@ -818,7 +1078,18 @@ "cell_type": "code", "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHVCAYAAAB8NLYkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXRb933njb+wECBAgAABggQJkuC+ShQpUpJlW5bkyEucNHHcOp0knWRy2s6SZ6anT9vJc/o8czrOTJ70NG0zmTOd9knaGbuTaZomcezGjm3ZkmXJlrWYFPd9hwgCBECAAIh9ub8//Lvfklocu7VjJ77vc3REABff+70b7vt+lvdbJUmShAIFChQoUKBAgYKfe6jf7wkoUKBAgQIFChQoeHegEDsFChQoUKBAgYJfECjEToECBQoUKFCg4BcECrFToECBAgUKFCj4BYFC7BQoUKBAgQIFCn5BoBA7BQoUKFCgQIGCXxAoxE6BAgUKFChQoOAXBAqxU6BAgQIFChQo+AWBQuwUKFCgQIECBQp+QaAQOwW/UHjsscfo6+t7v6fxlnjiiSewWq3v+XoaGxv55je/+Z6vR4ECBQoUfHCgELsPMP7Fv/gXqFQqVCoVJSUlNDc383u/93skEon3e2ofCKhUKp5++uk97/3e7/0eZ8+efX8m9D7hdkTxjTfe4F/+y3/5s5+QAgUKFCh436B9vyeg4K3x4IMP8vjjj5PL5Xj11Vf5jd/4DRKJBH/xF39x07K5XI6SkpL3YZYfjPUDmEwmTCbT+zqHDwocDsf7PQUFChQoUPAzhhKx+4BDr9fjdDqpr6/ns5/9LJ/73OdElEpOO/7P//k/aW5uRq/XI0kSHo+HT37yk5hMJsrLy/n0pz/N5uamGFP+3re+9S3q6+sxGo08+uijbG9v71n3448/TldXF6WlpXR2dvLnf/7n4rPV1VVUKhXf//73OXHiBKWlpfzv//2/b7kNKpWKb33rW3z84x/HaDTS1dXFpUuXWFxc5MSJE5SVlXH06FGWlpb2fO8v/uIvaGlpQafT0dHRwXe+8x3xWWNjIwCf+tSnUKlU4vWNqdhisch/+k//ibq6OvR6PX19fbzwwgs3bcePfvQjTp48idFo5MCBA1y6dOktj8tjjz1GQ0MDer2e2tpafuu3fkt8ls1m+fKXv4zL5aKsrIwjR47wyiuvvOV4zzzzDAMDA5SWltLc3MxXvvIV8vm8+Hx7e5t/+S//JdXV1ZSWlrJv3z6effZZXnnlFb74xS8SjUZFdPexxx4T+2h3Kvbtnhff+c53aGxsxGKx8M/+2T8jHo+/5dwVKFCgQMEHCJKCDyy+8IUvSJ/85Cf3vPfv/t2/k+x2uyRJkvQf/+N/lMrKyqQHHnhAunbtmjQ2NiYVi0Wpv79fuvvuu6WhoSHp8uXL0sGDB6Xjx4+LMeTv3XvvvdLIyIh0/vx5qbW1VfrsZz8rlvn2t78t1dTUSE8++aS0vLwsPfnkk5LNZpOeeOIJSZIkaWVlRQKkxsZGsYzX673ldgCSy+WS/u7v/k6am5uTHn74YamxsVG69957pRdeeEGanp6W7rjjDunBBx8U3/nRj34klZSUSP/9v/93aW5uTvrTP/1TSaPRSC+//LIkSZIUCAQkQHr88ccln88nBQIBsW0HDhwQ43zjG9+QysvLpb/927+VZmdnpS9/+ctSSUmJND8/v2c7Ojs7pWeffVaam5uTfuVXfkVyu91SLpe75fb84Ac/kMrLy6XnnntOWltbk65cuSJ9+9vfFp9/9rOfle68807pwoUL0uLiovTHf/zHkl6vF+t8/PHHJYvFIpZ/4YUXpPLycumJJ56QlpaWpBdffFFqbGyUHnvsMUmSJKlQKEh33HGH1NPTI7344ovS0tKS9Mwzz0jPPfeclMlkpG9+85tSeXm55PP5JJ/PJ8XjcUmSJMntdkv/5b/8F0mSpLd9XphMJumRRx6RJiYmpAsXLkhOp1P6v//v//uW+0GBAgUKFHzwoBC7DzBuJHZXrlyR7Ha79OlPf1qSpDdvxCUlJYLUSJIkvfjii5JGo5E8Ho94b2pqSgKkq1eviu9pNBrp+vXrYpnnn39eUqvVks/nkyRJkurr66Xvfve7e+bzn//zf5aOHj0qSdI/EKJvfvObP3U7AOk//If/IF5funRJAqT/8T/+h3jvb//2b6XS0lLx+s4775R+8zd/c884jz76qPTQQw/tGfepp57as8yNxK62tlb6f//f/3fPMocOHZK+9KUv7dmOv/qrvxKfy/trZmbmltvzp3/6p1J7e7uUzWZv+mxxcVFSqVQ3kdyPfOQj0u///u9LknQzsTt27Jj0ta99bc/y3/nOd6SamhpJkiTp9OnTklqtlubm5m45nxvHk7Gb2L3d88JoNEqxWEws8+///b+Xjhw5csv1KlCgQIGCDx6UVOwHHM8++ywmk4nS0lKOHj3KPffcw3/7b/9NfO52u/fUUs3MzFBfX099fb14r7u7G6vVyszMjHivoaGBuro68fro0aMUi0Xm5uYIBoNcv36dX//1Xxc1ayaTia9+9as3pUsHBwff1nb09vaKv6urqwHYv3//nvfS6TSxWExsx1133bVnjLvuumvPNvw0xGIxNjY23tY4u+dXU1MDQCAQuOW4jz76KKlUiubmZn7zN3+Tp556SqRNr127hiRJtLe379l358+fv2nfyRgeHuY//af/tGf53/zN38Tn85FMJhkdHaWuro729va3ve034u2eF42NjZjN5j374nb7QYECBQoUfPCgNE98wHHy5En+4i/+gpKSEmpra29qTigrK9vzWpIkVCrVTePc7n0Z8mcqlYpisQjAX/7lX3LkyJE9y2k0mrdc/+2we97yum71nrzu3e+93W24Hd7OOD9tLrtRX1/P3NwcL730EmfOnOFLX/oSf/zHf8z58+cpFotoNBqGh4dv2le3a+ooFot85Stf4ZFHHrnps9LSUgwGw0/fyJ+Ct3te3Hh+7T4fFChQoEDBBx8KsfuAo6ysjNbW1re9fHd3Nx6Ph+vXr4vozPT0NNFolK6uLrGcx+NhY2OD2tpaAC5duoRaraa9vZ3q6mpcLhfLy8t87nOfe3c36G2iq6uL1157jc9//vPivddff33PNpSUlFAoFG47Rnl5ObW1tbz22mvcc889e8Y5fPjwP2l+BoOBT3ziE3ziE5/g//g//g86OzuZmJigv7+fQqFAIBDg2LFjb2usgwcPMjc3d9vj3Nvby/r6OvPz87eM2ul0urfcD/D2zwsFChQoUPDzDYXY/YLh1KlT9Pb28rnPfY5vfvOb5PN5vvSlL3H8+PE9adPS0lK+8IUv8Cd/8ifEYjF+67d+i09/+tM4nU7gzQ7J3/qt36K8vJyPfvSjZDIZhoaGiEQi/M7v/M57vh3//t//ez796U9z8OBBPvKRj/DMM8/wox/9iDNnzohlGhsbOXv2LHfddRd6vZ6KiopbjvMf/+N/pKWlhb6+Ph5//HFGR0f5m7/5m3/03J544gkKhQJHjhzBaDTyne98B4PBgNvtxm6387nPfY7Pf/7z/Omf/in9/f2EQiFefvll9u/fz0MPPXTTeH/wB3/Axz/+cerr63n00UdRq9WMj48zMTHBV7/6VY4fP84999zDL//yL/ONb3yD1tZWZmdnUalUPPjggzQ2NrKzs8PZs2c5cOAARqMRo9G4Zx1v97xQoECBAgU/31Bq7H7BIIv2VlRUcM8993Dq1Cmam5v5u7/7uz3Ltba28sgjj/DQQw9x//33s2/fvj1yJr/xG7/BX/3VX/HEE0+wf/9+jh8/zhNPPEFTU9PPZDsefvhh/ut//a/88R//MT09PXzrW9/i8ccf58SJE2KZP/3TP+Wll16ivr6e/v7+W47zW7/1W/zu7/4uv/u7v8v+/ft54YUX+PGPf0xbW9s/em5Wq5W//Mu/5K677qK3t5ezZ8/yzDPPYLfbgTdlYj7/+c/zu7/7u3R0dPCJT3yCK1eu7Klv240HHniAZ599lpdeeolDhw5xxx138I1vfAO32y2WefLJJzl06BCf+cxn6O7u5stf/rKI0t15553863/9r/nVX/1VHA4HX//6129ax9s9LxQoUKBAwc83VJIkSe/3JBT8bPHYY4/x9NNPMzo6+n5PRYECBQoUKFDwLkKJ2ClQoECBAgUKFPyCQCF2ChQoUKBAgQIFvyBQUrEKFChQoECBAgW/IFAidgoUKFDwAcOFCxf4pV/6JWpra0Xjy25IksRjjz1GbW0tBoOBEydOMDU19f5MVoECBR8oKMROgQIFCj5gSCQSHDhwgD/7sz+75edf//rX+cY3vsGf/dmf8cYbb+B0OrnvvvuIx+M/45kqUKDggwYlFftTUCwW2djYwGw2/6NcDxQoUPCPhyRJxONxamtrUas/nM+hKpWKp556iocffhh4c5/U1tby27/92/xf/9f/BUAmk6G6upo/+qM/4l/9q391y3EymQyZTEa8LhaLhMNh7Ha78tumQMH7gPfq900RKP4p2NjYuK3+mAIFCn42uH79+h5v4w8zVlZW8Pv93H///eI9vV7P8ePHef31129L7P7wD/+Qr3zlKz+raSpQoOBt4t3+fVOI3U+BbIh+/fp1ysvL3+fZKFDw4UIsFqO+vl5chwrA7/cDUF1dvef96upq1tbWbvu93//939/jGhONRmloaGB5eZlMJkNlZSWTk5NYLBYMBgPV1dVsbm5SXV19k+9xoVBgc3OTQqFANpslGo1y4MCBm5a7ERsbG2QyGfR6PYD4W15XZWUlm5ubYntCoRCFQoF8Po9er6e2tnbPGLIl4tuBPOfd66itrUWj0XD9+nU2NjbQaDTY7Xa0Wq34DrzpkS2v+/r16+K1PO/dYxUKBVZXV5mensZms+Fyuaitrd2zb2tra8V85P0rb5dWq0Wj0VBRUcHExASSJFFdXU02m2V4eJiBgQFMJtOebZe/q1KpuHjxIvF4nEwmQ19fH5lMhmPHjhEKhcR+HR0dxe/343Q6sdvtRKNR9u3bt2d/y/PIZrOMjIwQjUbp7u5GkiQKhQLRaJRMJoNaraa3txedTkd1dTXXr1/nlVdeoVgs0t7eTjKZpKWlRVgfhkIhKisrxRj79u1jc3OTzc1NKioqbrt/AFZXV5mamqKzs5NIJEI6nUan0wGIOefzeba2tpAkiZ6eHiKRCNlslvr6empra9nc3CSbzbK5uUltbe1tAze3Wr+8r1OplJj75OQkJpOJnZ2d214Dtxvrvfp9U4jdT4GcoigvL1eInQIF7xOUVOHNuHGfSJL0lvtJr9cLQrUbmUyGzs5OAI4dOyZu+DK5uBW8Xi86nQ6tVksgEMDlcpFMJnG5XG8557KyMvx+Pw6HA7/fj9FoxOVy4ff70el0ZDIZzGYz6+vrmM1mOjs7KRQKe+ZUWlrK+Pg4XV1d4qb+dlFRUYHX6yUajQJvusi4XC7MZjNlZWVUVVURDAbx+/3k83kcDgfJZJK2tjaSySSdnZ2kUiksFgt6vZ54PE4oFCIcDqPVajEYDACkUikaGhqIx+MYDAZWV1dxuVxEIhGsVitbW1toNBra2trEjV7eN7Kt48jICHq9Ho1Gg9lsZmZmhrvvvptYLEYsFqO5uVmQJb1eTywWI5VKkcvlKBaLdHZ2ks/nqaioYHh4mM7OTrRaLaurq9TV1WG1Wunt7SUYDNLb2yuOgUzo5P2dzWZZXFwknU5TX1+PwWAQx39lZYXGxkbW1tbo7OwkmUxitVqpq6sjn89TLBbp6upieXlZHK+enh7gTb/yXC5HIBDghRdeYP/+/RQKBbFP5HXI51WhUCCdTlNXV4fdbqenp4fTp08TiUSQJAm9Xi/u0eXl5RQKBVKpFAaDgZKSEsxmM8lkEp1Oh9FoxG63i218q/MF2HMONjc38+KLL2IymUgmkzddM7fCjdtyI97t3zeF2ClQoEDBzxHkG7/f76empka8HwgEborivR1UVlaKvzUazU8lZ9lsFq/Xi8PhwOVyCWImz+vtwO/3k8lkiEajuFwunE6nGMPr9e5Z9sY5BYNBbDYbwWDwprneSAJvBafTKSJx8pxdLpeItgUCAXw+HyUlJeh0OiwWC6FQSMxNJkOFQoHx8XEuXLjA6uoqAwMDnDhxgpqaGjQaDSqViubmZqLRqPiOXq9nfX2dQCCA1WplcnKSU6dOodPp9myn1+vFYrGQy+XI5/OMjo5isVjY2dkBYG1tDUmS6O/v58yZM5SWlhKLxZAkiUQiQSwWo1gs4nA4CIfDlJWVsbm5idPpxGKxEIlEBLmW973NZmNqakpE33bvbxlbW1u43W6cTicjIyNYLBZSqRRtbW1Eo1Gam5v3HAv5+/K22u12AoEAPT09vPrqqzidTl5//XW0Wi0+n48TJ04I4p/NZsU5Lh/XiooKcc74/X6sVivBYJCamhpxLGVSOjo6yvr6OlarlXQ6Lc6Jn3Z+7D6PHA6HONb5fB6v10sgEMBsNrO9vX3L8/N259w7vUb+KVCInQIFChT8HKGpqQmn08lLL70kPJKz2Sznz5/nj/7oj97xeHJq7K2QzWYZHx+nt7eX0dFRkfKVvaPfLsGSCZ1WqyUSiZDJZPB6vTQ0NIgxZJJ1u5vgrW6S8vrkG7Df7xdRnt3Lyn83NDSI73m9XpxOp1g+m82iUqno7u5Go9Hg8/nE//APN/JsNktVVZVIK9rtdurq6igUChQKBWpqatDpdCICJY9fKBRQqVRiX4yOjjIwMCDmls1muXbtGu3t7WK9m5ubhMNh7rvvPgqFAj6fj2KxyOjoKHq9nrW1NUwmE1VVVXR1dWEymUilUrhcLkKhEIuLi1RXV4t9C7C+vo5GoyEQCGCz2RgfHyebzXL16lXUajU1NTV7trOqqopcLseVK1fo7e0Vn9XV1aHRaNDr9WJfwpvkVI5U7d+/n7q6Onw+H6lUijNnzojj+MUvfpGLFy9yzz33MDo6Ks6JfD4vSKU8Z61Wi9VqZXh4WET43G63IHrJZJKtrS1cLhcOh4P19XVisRg9PT3iQWD3+SNHJEdHR3E4HDQ0NAjyl8lkGB8fx2azodVq0ev1FAoFLBYLxWKRpqamt33evx3y925CIXYKFChQ8AHDzs4Oi4uL4vXKygqjo6PYbDYaGhr47d/+bb72ta/R1tZGW1sbX/va1zAajXz2s599x+t6O1G+8fFxdnZ2GB8fx+Fw4PP5cDgct11evjHKBEuGw+EQBBHeJBc34qfdBG/1udfrZX19nZqaGvR6/R4iJ88DIJlMMjIyQn9//54buDxPjUaDwWCgq6uL7e1tEb2So1vyNni9XgqFAtXV1Tz66KPMz89z8uRJdDodQ0NDFAoFQU53E0uv10swGKSiooKNjQ3i8Tg2m23PPMbGxojFYly5coWjR4+Sz+epqqpCo9GICJLL5RKEQ61Wc+zYMaFjWFtbK4iqDJ/Ph91uF9HQiooKYrEYDodD1L1ZrVYuXrwoIqnt7e1sbW2RSqXY2tqiurqamZkZUV927NgxCoUCk5OTtLe3Mzs7K7ZlfX2d+fl5IpEITqeTtbU1fuM3fgOv18v09DRut5uNjQ0+9alPsbOzwwMPPCCI2fLyMvfcc48gRlVVVYLo6XQ6/H4/qVSKUCjEAw88II6zzWZjbGyM5uZm/H6/2P9yBDWbzeLxeAD2kP/x8XHW1tbw+XzodDoR0dVqtSLSKhM1mbg1NzffMuJ3u/P+Z40Pp36AAgUKFHyAMTQ0RH9/v4jI/c7v/A79/f38wR/8AQBf/vKX+e3f/m2+9KUvMTg4iNfr5cUXX/xHFWHLTRBvhd7eXkwmE729vTQ0NDA4OCiiXreC0+kUBEuOihUKhZvSqHK05VbY/b2fBnlsYE9Uavc8HA4HCwsLmEwmQdJ2fy5j93LyPDUajSCUwWBQyMbo9Xqampo4efIk586dY25ujuvXrxMOhwWpkyNQV69e5YUXXmBnZ4fl5WUqKyux2+2Ew2FsNhvhcBiHw8HJkyepqKjgkUceQavVotVqcblcVFdXMzExwdraGsViEb1eL45FU1MT/f39GAwGKioqxHwBdDodg4ODLC0tCQITi8UEWQkEAuTzecLhMGazGbVajdvtRqvV0tnZydbWFvl8nmw2S3l5OcFgkGg0ytmzZ3nuuecIh8M8//zzWK1W9Ho9NpuNzc1Ncrkcbrebra0t9Ho9f/AHf8Da2horKyucP3+e0tJSLl68KMi2w+FAr9djtVrRaDSCUM/Pz5NKpZifn8dut9Pb24vBYMBoNOLxeBgZGSGZTDI1NUVbWxs7OzvYbDZ8Pp+IOvr9fkZGRkSkWa/XC4Le09OD2+2mt7dXHLN8Pi/msPt82k3Wb3Ve3up8ej+gEDsFChQo+IDhxIkTSJJ0078nnngCeLPY+rHHHsPn85FOpzl//jz79u37R61rd0TrRsjkSqPRMDg4uKcWTL7Z3YqA7V5GjsTsvnnbbDZGRkZEhOdWN8ndpOinETw5mnVjFGX3PILBoKgFk1Oiu6N/Ho8Hj8eD3+8XBOHGyJ88D5lsyWOfO3eOSCTCc889x+LiItlslmAwKGrcstksk5OT5HI5EokEp06doqmpiZqaGpGOTSQSnD59Go1Gw0MPPYRGo+Hv//7vCQQCjI2NEQqFsFgsLCwsCGIp7zuNRkNDQwN9fX1Eo1EsFguXLl3i2WefJR6Pi5RtKpWit7cXh8PB8vIyo6OjopnDZrOh0Wiw2WyYTCba29s5d+4cmUyGSCQi0q1yM0Q2m8XpdBKJRLj33nspKytjYGAAjUZDJBLB6/WiUqk4efIkCwsLdHR0MD09jSRJVFZWsrGxwV133SXm6/f7UavVog7P4XAQjUapq6tjZGQEk8mERqOhqamJ3t5etre38fv9WCwWUcdoNBrp7+9namqKnZ0dZmZmxLHL5XLMz8+TSCRYW1vj6tWrLC8vEwwGOXz4sCgrkI/vjal++djfGAW+3fl2u2vp7Tyo/FOhEDsFChQo+BDjrSIMb3UT272MTNx237TkG5nNZrspAjY1NUU0GuUHP/gByWQSv99PNptlaGiIbDYL/EP0A96afAI3Rf9udROVx1OpVDeNJ6cP5dSw0WgUnaKFQuGWc/F4PKysrLCyskJrayvl5eU88MADlJeXE4vFsFgsjI+PY7FY2Nraor29HZfLRVdXl0jPqtVqisUiwWCQ2dlZPB4PL774IoVCgXPnzlFRUcHQ0BDl5eVsbGwQDoepqanhzJkzXLp0iXg8LrZDbuawWCxcuHCB8fFxvF4vCwsLZLNZlpeXRXPD2bNnef7551lZWeHKlSuk02m2traoq6vD6XTS1dXF3Nwc6+vrQibF6XRy4MABkskkzc3N7OzsEIvFuP/++0mn09jtdrE/VSoVJpMJh8NBW1sb/+E//AeRDi4UCqysrFBVVcXFixcFIZO7XhcWFlhbW8Pj8VBVVYXH48HpdBKNRgkGg2SzWQKBgOhq1ev1IlUtk6re3l4ymQxutxu/309dXR1GoxGTycRPfvITxsbGeP311/H7/fh8PnGeyNE6+e/d79/4cPJOo3Jv51p6t6AQOwUKFCj4EEPWX7sVbpdS3Y1bpTjhH25kU1NTNDc3s7y8LOry5BvvwMAA0WgUp9O5p44P/iH64XK5bnsjlclgoVDYEym5VbRPTk/KnZW7t8nhcFBXV0ddXZ0osB8dHWV5eZmVlRVxQ5clS9bX1xkZGWF8fJyRkREmJyeprq7GYDCQSqXQ6/X88Ic/JJFIEA6H6e/vF6lrOSU4NDSEx+NheXmZxsZGNBoN8Xgco9GI3+/nnnvuQaVS8X/+n/8npaWlFItFbDYbV65cIRqNcu3aNREd9Hg8opM2EonQ3t5OT08P/f397Nu3T5AVnU7HzMwMGxsbRKNRstkszc3NqNVqVCoVfX19uN1uwuEw6XSaYDDIxsYG5eXlIjXZ3NwsOkWLxSJLS0vk83l8Pp8gQ5IkYbfb2b9/PwAXL16kra1N6N5VVVWRSCTQ6/UMDw+Lc2p7e5tCoUAkEmFmZoZ8Pk9nZycWi4Xu7m7Ky8s5c+aMkJuBN+sW19bWxHGW90VLSwuXL18mHo+j0Wg4deoURqORj33sY1RXV+N2u9HpdNhsNnGeyKQN9j5MyMTSYrHsSc/fDre6VuTo7VvVpr5bUJonFChQoEDBLXFjqlK+gcopN2BPirOtrU18V65F6u3tZXx8nLa2NnFT1Ol0omC+s7NTRFl2N1bcag43drm++OKL7OzskMvlaGhoEE0OcjoN3rxBezwetra2hIaa2+3G6/Xi9/spLy/H5/OJQnn4B2IYDocJhUIEAgFyuRxHjx7F6XSKzl5ZAmVmZgabzQZAX18fExMTdHZ2sri4yPHjx/H7/UxNTZFMJtnZ2UGn04lIncPhwOPxYLFYhIBxoVAgHA5z9OhR5ubmKBaLAITDYT75yU/y/e9/n7q6OsrLy0WUUdafczgcokZMFhNWq9Xi70OHDnH27Fk+/vGPY7VacTqdlJSUkMlkGB4eBt5sMtne3iaVSlFdXU0ikRD7X6vVYjKZMJlMVFdX09XVJUizw+Hg9OnTlJWVkUqlmJubo6KigrKyMgKBAG1tbWxubiJJEhqNhpWVFcxms/hsa2uLlpYWkVINh8MUCgU6OjqIRCJEo1HcbrfQxfP5fGxsbBCLxairq8Pr9XLt2jWKxaLoul5dXaWtrY1wOExPTw96vZ7BwUFRqzg7O0tXVxdqtVo0Sshp5N0p+/7+/tt2Y9+u+3t3E8WN9aWFQoGNjY1/wtV5eyjEToECBQoU3BK79bz8fr8gIrtvWDKBu7FTcLfER1VVlVj2xs9lyEX+bzUXWTtN1hMzGo34fD4CgQCVlZVCsgMQemtymjWVSjE1NcXg4CAej0dE+gwGAx0dHSKNOTIyQm9vr5DS8Hg8BAIBAKGtVldXJ6QxZAKl1WpFNObBBx9kYWGB9vZ2/H4/MzMzGAwGstnsHveGkpISQTbX1tZEXV8+n0elUjE3N0cqlQKgpKREROx6enqYmpqivLycTCaDJEmUl5fjcDhEmtLr9TI7O4tWq8VmsxEKhUSTjSRJzM3NcfjwYSYnJ6msrGRubo7NzU2SySRut5uKigrMZjNGo1F0qWYyGZaXlzGbzej1eurq6pAkSZwXo6OjNDc3i+aRRCKBz+dDrVbT0tJCSUkJTqeT6elpUqkUWq1WRM0uXbrE9PQ0fr+fU6dO7WmAkWVQqquruXz5Mn19fUK/rlgsUiwWRS1oRUUFJSUlIpW+u5tYJuNyN28ymUSSJMLh8B4pFLmZRK4BlSN0Nzb63IrAZbNZ1tfXqaqq2nO+y2Pv7qre7d38bkJJxSpQoEDBhxy3S7Pu1vOqqKigrq5OECYZu2ubdo8j/y1LVezu1PzHzMvv92MymVhYWBB6YnKnbkdHB9FolJ6eHjQaDVVVVWJbXC4X/f39Yll53HA4TLFYxG63o9fr6enpYWFhAYPBwPj4OC6Xi4aGBg4fPszAwAADAwOMj4+TTCYJBAIiMmiz2VhZWcFmsyFJEk6nE6PRyL59+6ipqWFhYYFEIsHExASZTEZEgNxuN/fff7/YJ3q9XqSzVSqV2HfFYhGXy8XBgweJRqM4HA6Gh4ex2WwMDQ2xvr7O7Owsc3Nz/PjHPyaTyfD6669TKBSIxWIEg0E2NzdRq9Xk83kCgQCpVIr9+/eztLQk3Bq2trYYHh5meXmZcDjM2tqacK4wGAy4XC5hHZfL5bj77rtxOByEQiGRmk4mk6ysrHDXXXdRU1PD+Pg409PTLCwsiEYISZIIhUKsrKywtbUFQE1NDeXl5ajVarLZLK+88gpXr14VpEmSJAAmJycJhUL81//6X1Gr1fj9fmEfNjMzQyaToaysjMHBQQwGAw0NDVRWVoomEPkcDAaDuN1uYrEYNTU19PX17YkKy1Inu0sA5DSvx+PZI3B9Y5nA+Pi4kIh5K0kU+Zi/F1CInQIFChR8yHG7wm75xiUXuA8MDIhI1W7IN73h4WHRDHHjDex2xea3I5VyhE4eT+7kdLvdwsVhYGCAwcFBzGazSN05HA62t7fJZDKioUOOBspWVQCtra2kUikhDxIOh2lra2NlZYVUKiWWk7+r0+mE1EYul2NhYYGrV6/y5JNPolKpWFhYQK/XC5IrSRLz8/O4XC4kSaKxsZFgMMiLL75INptFp9MRDAZZX18XUa3NzU3Onz/PyMgIQ0NDvPLKKywvL9Pf37+nJrC3t5eNjQ36+vpIJBIEAgHW19epra3lySefJBqNsrKyQktLCw6HA5vNRkVFBTMzM5hMJuLxOCqVCoPBQCKRwOVyUVFRgdFoJJPJcP36dfR6PaWlpdTU1Ai3kd7eXnw+Hz09Pbzxxhuidg/e1JszGAxYLBZ8Ph+Li4uUlpaSTCaJxWLY7XY0Gg2Tk5PMz88zMzNDLpdjY2OD6elpHA4Hx44do66uDr1eTygUEo4UFosFnU6HSqVieHiYWCzGj3/8YyF4nEqlaG9vF40UXq+X5eVlvF4v4XAYt9vN7OwssViMZ555BpPJxNWrV0kmk6J2UL4Obid1Ikd+19bWbmoU2o3d0kA3XmPJZBKfzye6qt+J1/E7gULsFChQoOBDjts1ScjROFm4Ve5evZGI7U53Liws4HA4xJhyisvr9bKysoLH49kzxq1IpUzqTCaTiFKNj4/T3NzM2traHq223RFDp9OJVqvFbrcTiUSEjMbueSaTSYLBIAaDgUOHDomuUblwXu7ulMmqPGeZIMpRp+XlZdbX10Vjw4kTJ/Y0Y+j1ek6ePInNZuNf/+t/zX333UdZWRmtra2srq5is9lEmrpYLJLL5YhGowQCAS5dusS1a9eIxWJMT08zPDzMmTNnSCaTOBwOJEnioYceorKykvb2dpqamigvLycej/ORj3yEcDjM4OAg999/P7/6q7/KwYMHsVqtVFdXEwqFaG1tZXl5mZKSEiorK3G5XBw4cIA777wTs9mM3W4nn8/zyCOP0NDQgM/nY2Vlheeff56ysjLS6TR9fX1MT0+LqKLD4RDbsbCwgNPpRKfTYbVaqa2tJZPJcO7cOXK5HLFYDKPRyNTUFMViUXTldnd3c9ddd1EsFjl58iSA6JSVXTX2799PQ0MDPT099Pb20tzczK/+6q/S2tqKy+US4sPT09NMTExQUVHB/Pw8U1NTPP3008zPz/OVr3wFrVbLzs6OiAbC7RscdruJ6PV6cV7d6tzd/SBw4zUWjUaFrIwc4X4voNTYKVCgQMGHHDf6lN7o0AB707K7a4/gH/xX/X4/tbW1okB895iyR2pVVZWIjMjdrDcWpXu9XlKpFIVCgcHBwT16ZSdPnmRqakoUy+8uXJf/l8VpdzsJyEQyHA5jsViIxWLs7OxgtVqFbVggEKCiooKdnR00Gs2eOcv7SB5PtsiSa/Gi0egeJ40b6w11Oh0DAwOsra1x5MgRpqamsNlsbG9vEwqFyOVyItpYVlZGb28vL7/8Mg0NDfj9fiorK9nZ2eH+++8XTR5Op5PV1VWefvppHA4HKpWKxcVF2traSCQSe+Z86dIl7HY7HR0dbG9v09LSIpweZmdn+eQnP8mlS5doamoiEonwkY98BI1Gw+rqKgsLC5SXlxMKhfB4PJhMJkHiPB4PU1NTwlFDPiZzc3PY7XZMJhPpdJqxsTHhu/upT32Kv//7v6eyslKQNpVKxcTEBAsLC9TV1bGwsIDVauXSpUtYLBZaWlpYWFjgyJEjhMNhKisrBZnf3ZAwOjoqOnYjkQijo6OMjY2JWrtXX30Vt9tNMpnknnvuoaqqisXFRUHoZJma3ee+LIQs183JNYUajeaWmne3srHb3YAh19nJfrPvNhRip0CBAgUKBBwOB2fOnBHWTDc2SciF+7tTTbJA7q1Imvxd2YNV/kz2Xr0dNBqNsIOSC/PlG6LX6yWXy1FdXX1b+6YbO3plQWS32y0InOz/6ff78Xq9lJeXs7y8LIr3ZV9X2blCjsbJ48uuH/L7smH98PAw+XwerVZLKpVicnKSo0ePEo1GueuuuzAYDEI2pLe3F6vVyvT0NK2trWJdckH/6uoqlZWVQoRXrnfzer2MjIwIyZLFxUUKhQK1tbWk02mSySRXrlzB7XYLL9uhoSFaW1uxWq0kk0kSiQRPPfUUVquVSCRCTU2NaEoIh8PE43HGxsbweDzC9WFmZoby8nJR+zc5OYnRaBRyNvv372dsbIz6+nrq6+vJ5/O88cYb2O12JiYmuO+++8hmsxw8eJBwOLzHc/W1115Dp9Ph8/no6+vjwoULxGIx3njjDcLhMCqVCqvVSkNDA2q1mqmpKYxGo4gQ9vT04PP5MBgMoglkeXlZdCzX1dXR2dnJ2toad955J3V1daJG0Ww2i25dk8m058FGrlOcn5+nsrISm81GIBDAYrGws7NDoVC4yWdWjuLdaFknH7v3qnEClFSsAgUKFCj4/0MWuZUFaG/VJCF3C8pRo924nfK+HLGqrKwUJu27zdtvTGfdKDgcDAbJ5/Osr69z8eJF0uk0wC3Tx7cSK5YjfnJquLe3l0gkItLNkiSRz+dZW1sTsizynKurq0U9nByxlGutxsfHRZ3c1NQUGo2G+fl51tfXWVpaolAoMD09zfb2Nq+88orort3dbCJ3bsrSG5IkiUhjXV3dHkcIeb/KpE7WzKutraW1tRWbzUYikcBoNLK6uioaG9LpNMPDw8KjtrS0lPb2dmKxGGq1mlQqRXd3NyaTiebmZsxms5AikUlSKBRienqa7u5uAPr7+xkcHOSzn/0sbrdbWIq9/vrr5PN5UaeXTqdJJBK89tprHDp0iHA4LBo2WlpaqKysJBwOI0kS9fX1wl/2O9/5Dtvb2ywsLKBWqwkEAvh8PqxWKxaLBa1WS1NTE6OjoywuLrK6usqrr74q0vz79+8Xkbzt7W0+/vGPs3//fvr7+3n44Yfp6uoC3iR799xzj7AVs9vtLC4uYjAYBHF2OBwiBW40GqmqqqKqqkpEfcfHx0UzzW7nitulduWSgfcKSsROgQIFCj7EyGazXLlyRaQb5ZTn7lTUbtxobP924XQ6hVyJfMO91Xi30gbbneqVNcgGBgZEHZMcAZEbHnZD1qrb3NwU6VtAiOrKwsS75yLfoG+cm6zLJ0f4UqmUiNLJc29ubiafz+8hA6urq6ID0u/3s729jdVqZWRkhEgkgsPhwGw2s7q6Kjp6JUlicXGRXC5HIBAQ3cgrKytMTExQWlrK0tISx48fx+VyoVKp0Gg0WK1WFhcX2dnZobGxEXhT+PeOO+7A4/GIqJJaraanp0d0yZpMJtRqNRaLhZWVFRoaGjAYDHzqU5+ivr6eoaEh7HY729vbVFVVYbPZOHPmDG63W2gRPvvsszgcDlpaWqitraVYLHLo0CEuXbokXCva29vZ3NwU9WahUEgcT7PZTEdHB5cuXaK8vJzx8XEOHz7M6uoqpaWl2O12zpw5Q29vL/X19Wg0Grq6uggEAiSTSZGePXbsGNvb23zxi1/khz/8Ifv27RPpW5fLJdKouyO6kiQJJwqLxSJkXU6fPi0s5txuN2azGZfLhc/no7u7m2AwiCRJIqK7vr5OTU2NqEeVJXJ2eyvLNXa7m0/eTaik3ZWDCm6CbA0TjUbFU4YCBQp+NlCuv/cO8r49d+4cwWCQkpISDh48KOqW3ok0ye2EWv8xy8kkTY6uvZ3vy+8XCgXW19eFPl1/fz+FQoHTp08L1wM5ElYoFAgEAvT29oqoilwQL3eIynVbu5tFdqfT1tfXsdvtXLlyhb6+PtLptIjOZLNZZmdn6ezsRKfTifq+bDYrOiMXFxfJZDJ0dHQIXbd0Os0999zD9vY2zc3NPPXUU7jdbkpLSykUCly5ckXUMcpkp7S0VBBWu93OhQsXsNls1NfXU1VVRVtbmyBHjz/+OJlMhvvuu4+uri6mp6cxm80i/VpZWUl1dTXBYJBQKERnZydTU1OcPXtWRDhra2sxmUx0d3czPT3NiRMneOKJJ4jFYmi1Wj7+8Y+j1WrRarVMT0+jUqkEubHZbCwvL7O2tsbdd99NIBBgY2MDt9st0teRSIR0Oo1OpyOVStHY2IjZbOb8+fPodDpisRh33nkn+/fvZ3Z2Fp/Ph0qlwm63U11dLZw+/H6/kG/p7e1la2uLVCqFRqMRZF5u/JFrJXc/YIyPj2M2m1lfXxcC2o8++ijBYJC1tTW0Wi1qtRqbzYbRaCSbzTI2NkZlZaVw85AkSege3nguLyws0NXV9a7/vinE7qdAubEoUPD+Qbn+3jvI+/batWusra2xb98+mpqa3jah202y5HTqrcjYrZZ/O3ZMwE1p3bcqTN/9XTlKt7Ozg91uF/IUckOFLHAru0vYbDbC4TCpVIrNzU30ej0PPPAAOp1OWFYFAgFUKhU2mw2DwSCcKq5du8b29jZbW1t87GMfE1Zdr732miAln/nMZ0QEZ2xsjK2tLTo6Osjn83g8Ho4dO4bT6eSHP/whLpdLkL25uTmuX7/O9evXqa2txev1otPpsFgsHDt2jMcff1zIkch1j/X19USjUTweD7/+67/O1taWiMBtb29z8eJFVldXOX78uPB7bW5uplgssrq6KqzL5LSjJEn09/eLejebzUZ7ezv33nsvTz31lCCVWq0Wv99Pe3s7x44dE520er1eOGvYbDauX7/Ozs4OiUSCrq4ufvmXf5lXX31VkN2VlRV6enooFouMjo5SW1uL0WjEarWSTqeZmZkRBFGtVrO1tUUkEsFsNpNIJAQJ7u/vFwRcPpeAPVFdmdDJBK2/v19EgW88l5aXl2lra8NoNIrosyweLT9EyGRfJnQ3NvDIziryOt6r3zelxk6BAgUKPsSYmZnBbrdjMBhuIlG30peTsbs27qd5yt6oSXcjbpRYkdNUt5JAkcfY7REqQ27iGBgYYGdnB5PJxNjYmOhi3S2HsVujT/5fp9OhVquxWq34/X4hzVJTU8O+fftEulouri8UCpw8eRKr1cpHP/pRIXSs1WoZHByktLQUjUbD//7f/5srV65w9uxZ5ubmUKlUNDQ0YLFYuPvuu9FoNFy4cIFDhw6RTqcxmUxEIhHa2tqIx+N0d3dTWloqNN4aGhp45ZVX2Nra4tq1a0xNTWEymYRmmxw53N7exuPxUFJSwtWrV0Wd3cGDB0mn04TDYQKBAKurq6KBQiYzXq8Xn88nSLTZbKapqYnm5mYaGxuJRqMEg0HGxsYoKyujvLycT3ziE9x///0UCgUuXbrExsYGKpWKw4cP43K5qK6uxuVyUVpaSltbG42NjUxMTGCz2Th69Cjb29s88sgjmM1m1Go1hUKBiYkJ5ufnKRaLNDY2Mjg4yKlTp7jjjjuora2lvr5e6NgdPnx4j5bebske+ZyVHwTkyK3b7aavr++WDxsajYa+vj7MZjMnT54U0jsajYaenh62t7epqakRZQtyfefAwABut1s0FAGcOXOGaDQqvJDfSyg1dgoUKFDwIYbNZhNRhd240S7pxojb7vqz3a8LhYIgT7tvqHJkorm5Waxjdwp1N+GSu1F3e3XeOMat6ul2o6qqCp/PR0VFBZFI5KZI4u4bvvz/4OAgNTU1YhlZvkTuLJUkiaqqKubn5yktLWVoaIi6ujr27dsn6vXkdKbVamV8fJxoNCosxKqqqkSTwe6oYyAQQKfTcfXqVaxWq/CG1Wg01NfX4/P5ePDBB0V0qqKiAovFwurqKlqtVmzjgQMHWF5eFvZfs7OzwhdXrj9bX1+np6eHgYEBnnnmGRKJBDqdTkS7tre3MZvN5PN5SkpKiMViFItFtra28Pv9NDU1UVVVRTqdRq/Xk0gksNlsNDY2Cju0q1evsrKygt/vJ5FIUFJSQjAYJBgMYjQaASgrK+Oll16irKyMXC5HJBLhl37pl8hms7S0tHD+/HlUKhVbW1vE43GqqqpobGzE4XCwtbXF4OAgLpeL//Jf/gvRaJS1tTXuv/9+Eb2UxYwlSSKbzRIMBoWMT0NDAy+99BJ33303DQ0NvPjii0SjUfx+v5CTkbuZDxw4QENDA8PDw6RSKUZHRxkYGBAdufPz8zQ1Nd10Tu2+PmTLvcXFRZqbm8U5/V5BScX+FCipIAUK3j8o1997B3nfTk5OiuL33biRyO2ufbuR1ME/1MbJN2M5AvZWqVX5O7KB/e60rpwiValUwv90txvAbh9bWVdMNnGXx9jdeXirqM2N22qz2URKc7dLxW6/Ur1eT0VFBbOzs0J7Tq/XC8sqWaJlbGyM7e1tUdMlk4hz587R3NxMJBJhcnKSXC6H3W4nkUiQy+UoLS1lbGyMf/7P/zlLS0v85Cc/wel00tTURF9fn+j29Hq9QkBZTnMmEgnMZjPFYpG1tTVMJhMlJSW0tbWh1Wp56aWXMJlMSJJEe3s7paWlXLt2DY1Gw3333ceTTz5JdXU1er2esbExofknSRKzs7OkUilqa2s5cuQI3d3dwn9Wq9VSWVlJZ2cnBoOB1tZW/uRP/kQQwcrKSpaWljAajYTDYTQaDaFQiGw2i81mQ6vVYrFYKCkp4ciRI/zwhz+kq6uLfD5PLpdDq9XS0tJCX18f0WiUsrIy1tbWOHXqFC+//DJ/9Vd/xac+9SmOHDnC2bNnCQQCqNVqKisraWtrIxaLkclkWFlZES4UJpOJWCzGQw89RDwe57nnnuOBBx4QdnV+v5/Z2VmcTienTp1ifX2d+fl52tvbBdGfmJjAZDIJCZrd55j8sKLX64XAtt1uR5IkUbLwXv2+KRE7BQoUKPgQ43Yerjeant8YgZC7UGVCtjtiJwsYywRMvsHduJ7dxujBYHCPXITcfTo2NkYymWR9fV0Ut8vz2K0JJqdGs9ksAKFQiL6+vj01U7tJ3e7Xcm3UtWvXMJvNewRq5fWVlZUJId+FhQVOnTq1RyhY9gj1+Xy43W5OnTrFuXPnKC8vJ5lMcvnyZba2toS2WllZmdhmuc5NkiQmJiaoqanhiSeeoKqqCpPJhM/no6GhgUwmI0jdwsICQ0NDwlKtsrJSNEBYLBZBsFtaWtjZ2aGhoYHOzk5ef/11BgYGhJjv9vY2jY2NjI+P09PTQyaTwe12s7S0xPb2NoVCQaQ7tVotzc3NoiHDbrcTDodJp9MsLy9TLBaFTdYDDzzAxYsXiUQiAKjVahYXF4nH4+RyOWpqakgkEpSXl3Py5EleeuklzGYzf/Inf4JWqyUajXLo0CGOHj1KOp0mnU4zPj6OwWAgHo9z7do14vE4kUiEkpISIc8id9lGIhF6enrY2dmhrq6O7e1tLBYLa2trtLe3Mz09LTqQE4kElZWVeL1eIXcjS5lkMhl8Ph86nY7jx4+LhxW5Pm9hYQFAWJEB4qFi90OQrKUXDofp6enB6/WK6OW7DaXGToECBQo+xKiurn5by+0mejL5Am7SoJM1uvx+P/F4HL/ff0t1/t1RvN0acfINUnaCaG5uRq/XU1JSgslkYnx8fM86ZVKYy+UEWZOX2a21tzu1LNfrxeNxoVUmF8kbjUZ6enr21PM5nU4hIXLu3DksFgtTU1M4HA6hTdfZ2cnS0hJWq1Wk/h544AEOHz6M3++npKQEr9fL8PCwSHm2t7fjcDgoFArMzc2xtrbGPffcI0iszWbjwIED/NIv/RIdHR1iv3q9Xs6cOcPGxgYvvfSSEBXW6XQimri0tEQgEGBtbY3W1laGh4d59dVX0Wg0LC8vC6mN+vp69Ho9n/jEJ7BarRw7doxCoUAqlWJwcJA77riDEydO8PnPf57jx4/z6U9/mo6ODqLRKIVCgVwuh0qlEl2m6XSaVCqFSqVCrVYTiUTY3NwkmUwKVw+9Xk9/fz+HDh3CbDYzPT2N2+1meHiYkpIStra2sFgsZDIZNjY2hA+sVqtFp9Nx+fJl1tbWOH/+POl0mlwuh9lspry8nMrKShobG4XmoizMvLy8TEtLixAV/shHPiKIlcPhwG63Y7Va0el01NTUcMcdd3DHHXfQ0NBAVVUVDocDg8EghIjlDudoNIrVakWlUuH1erFYLITDYfHgsft6kfUIp6amyGQybG5uvsOr9e1BIXYKFChQ8CHGO6312W2U7nK59kQlZOLk8/nY2dnh8uXLlJeX3xQVvFGUWBZy7enp2TOexWIhlUpx8OBBurq62NnZEc0Osm6YTNQkScJgMOB0OrHZbHvq2G4UjvX7/cII3mAwMDMzQ6FQYGtrC4fDIZoRotGoiPDZ7Xai0SgWi4WFhQV0Oh3f+ta3CIfDjIyM8OSTTxKNRrly5QojIyMMDQ2JiOadd96JyWSipqaGw4cPi/RpQ0MDJ0+epKSkBIBkMsn58+c5ePAguVyO9vZ2UVs2NjYmHCWcTicf+9jHqKqqQqfTMTMzw8WLF3E4HMzOzrKxsUEmkyEUCqHVarl8+TJ1dXXU1NTgdDr53Oc+Jwr9M5kMLpeLv//7v0elUvHKK68wNDSEwWDg8uXL1NfX43K5yOVyHDp0iLm5OTY3NwmFQqJrV/a4lXXpvv/973PhwgVB8uT9vbKywvb2NjMzM1y6dImWlhZBgFKpFBaLhUKhQF9fH/fee69Ia//d3/0d4+PjGI1GJicnaWtrI5lMMjg4iMlk4tixY6RSKa5cuUIul6OyshKz2cwdd9zB4uIiCwsLrK6uMj4+jkqlolgssr29jd1uJ5PJsLW1Jc6VfD6Py+XCaDSi0WjE+avVasV55HK5hKTKkSNHaGhoIBwOs7y8zCuvvLJHwPvG60Wr1YrmHDm6/G5DScUqUKBAwYcYu8V1344cyY31dTcWi8vp0JWVFVpbW9nZ2aGtrW3POnbXsgHiJhcMBoXe1+6ic3mZ5ubmm2yZtFqtiBbJc5GbQXb73O5OBzudTtbX12loaBAyFouLi0I8uaKi4iaRZqfTSWVlJdvb23R1dXH16lVaW1uZmJigubmZ6upqNjc3MRqNBINBkXqTmyMqKiooFAq8/vrr1NfXiyhbMBjE7XYTDAa5evUqZrOZK1euUFZWxpNPPkl7ezvnzp2joaGBN954g46ODvr7+xkYGMBgMJBIJIRG3fDwMH6/X0SeOjo6GB8fx+l0kslkhF+t7PSwtrZGJpPh/Pnz6PV6fvKTn1BeXo7NZmN2dpaKigpeeeUVoQW3vr5OS0sLXq+XaDTKwYMHUavVoiNXpVLh8XhYXV0VKd3y8nIGBga4fv06/f39rK6uEovFmJ+fZ2Vlha6uLvR6PXNzc+RyOeLxOGazGbPZTDabZXR0lMnJSaxWK16vl2KxSCKRoLW1lXw+L0SCNzY2hFhwWVkZOp2O9fV1Dh8+TCgUwmw209/fL3xhbTab0Lrz+XxUVVUBb6ZKjxw5wvj4ODs7OywsLOB2u0VDinz+Tk5Ocs899xAOh0WqPhQKMTg4uOeh4sbrRY5EB4NBEonEu3EJ3wQlYqdAgQIFH2LI6aBbWXvdCm9lGybfzOrq6rj33ntpamraQ47kdUxNTd3Wlux2zRY3yqjIciUul4uGhgaRIrtxHLnmb3Z2VpCt3U0OMok7ceIEer1epNLkBord2ydHcGKxGEeOHBFdnolEgs3NTe6++24RMZSjh7Kshl6vZ35+no2NDYaGhoQ5/cTEBGtra2g0GhobG5EkCZfLJazFlpeXOXnyJMVikb6+PorFItlslomJCcrKyjAajbS1tbG9vY3X6yUej3P+/Hk2NjYA6O3tJZVKEQwGiUQiXL58maeffpoLFy6Qy+VIp9N0dHSwtrZGVVWVqIm79957hSvH66+/zvDwMBcvXkSSJHw+H/l8nu9973u4XC7W1tZYXl5mdnaWSCRCLpfDZDKxuLgoUvaf/exnaWpqEv8fOnQIeDOV/+yzzxKLxZidnaW+vh6DwYDZbKasrIympiYGBwfR6XRCvFiSJCoqKlhbWyMej4uImuzusbCwwIsvvkgikSAYDHLy5EmOHDlCKBRia2tL1OJNT0+LqFmhUBANJ7KHr8FgwGAwiBSrfA6dO3eOSCQibOLKy8sxm82cOnXqJiFi2etY1r2T9RR7e3tFPeK7DaUr9qdA6cpToOD9g3L9vXeQ9204HBbRpJ8WsbtVxE1uToC3do3Y/f3dnaxylO9GR4fdav1er1dEjeQU2O0gz0GOyuj1epEaNplMDA4OirmMjIyQSCSEHlkmkxGdj83NzULmxePxMDExgcFgIJPJCLN5r9dLOBympKSEwcFBVlZWsFqtYp+63W7gTa/b/fv34/F4eO2114RxvWxUL4vtRqNRzGYzNpuNtbU14aARCASor68nFovtaQ5ZXl7m3nvvJZlMEo1Gcblc/PVf/zX5fJ5kMsnJkye56667SKVSXLt2TRyTN954g+bmZjKZDGazGa1WSzwex+Px0NLSIojKsWPHmJiYYHR0lJGREQ4cOIDVakWr1fL888/T0NDA6uoqdrtdOFLEYjEqKipEhG1zc5NPfOITbGxsUF9fz+TkJJubm8KHN5FI0NDQwOuvv048HqempkZc65WVlRw8eJC//du/JZ/Pi3RvdXU1+Xweq9WKRqPhM5/5jPDZzefznD9/nkAgQFNTE+3t7eTzeVQqFaFQiHg8TnNzs9D3q6mpob6+nrKyMmHV9pGPfASn08n3v/994vE4tbW1qNVqNjY2qK2t5dSpU1y4cIH29nYkSSIaje6xmsvn89TV1aHT6XA4HJw+fVp4+FZWVopzWxEoVqBAgQIF7zpkEne7SNxuyBG3c+fOCfPz3dgtVHy7dblcLiFbEgwGWV9fx+fz7anDKxQKQmB297hyxE3GjVG83bV0PT09BINBstksPT09mEwmkfqV59Lf34/BYMBmswnZkpaWlj26fn6/n5GREdbX19nY2KCjo4NsNsv8/DyVlZV0d3dz8uRJIZY8Pz8vbvaBQIDx8XHW1taYmJggGo3S0tJCaWkp1dXVHDhwgJqaGkG4LBYLLpeLdDotUtBzc3NotVrRzVlbW8vk5CTPPvss8/PznDlzBo1GQ1NTE9PT07S1tYnxTSaTSIurVCpef/11JEmioaGBUCgkImPl5eUiVRuLxVhYWGB7e5vvfve7lJSUsL29zYEDB0TNoKzl5vf7kSSJnZ0dKioqhI3ZwMAALS0t5PN5ysvLOX36NMPDwzz11FNotVqhibdbrqWyspLS0lIhKyLXKv7lX/4l0WiU0dFRSkpK0Ol06HQ6crkck5OTaLVapqam2NrawmazUVpayic+8Qk6OjqEo8jVq1dpa2ujs7OTxsZGKioq2LdvH9XV1VRVVXHPPfeg0WhIJpPCQuwHP/gBlZWVZLNZ4Y0bDoeZnZ0VjTE6nU40guw+lzc3N7lw4QLb29ucOXOGsrIyofd347n9XuDnusbuwoUL/PEf/zHDw8P4fD6eeuopHn74YfG5JEl85Stf4dvf/jaRSIQjR47w3//7f6enp+f9m7QCBQo+MPjxj3/8jr9z3333YTAY3oPZfPAh1wudPHlyT42cjBslUmTcKhookzA5JSoTKYfDwSuvvCKIw+4aPvl/r9cr5hKPxxkbGxPyI3ItXTgcFjdRnU4nInU3znf//v2cO3cOp9Mpaq52z9PpdArR4p6eHqLRKNevXycejxOPx+nr6wOgpaWFqakpmpqaRCTT4XBQLBbFtmazWdGd6XA4WFpaoqenh9XVVUKhEABarVZYWGUyGSG0XF9fj9PppLS0lIaGBs6fP09DQwOVlZXkcjl0Oh379u1jcnKSj370o0xOTrK4uMjMzAwnT57kzJkz2O12pqen0el0xONxwuEwBw4coLKykpmZGbRaLaFQSPjfHjx4kJ/85Cc4HA6uXbtGeXk5MzMzZDIZcrkcR44cIRAIEIvFOHToEOvr6yQSCUKhEBsbG8zPz2O320mn02xvb9PU1CQ6ZOFNP90DBw7g9/ux2+1MTk5SU1PD8vIyarWatbU1dDodyWSSgwcPolKp+MxnPsO1a9eErt7169dJpVKi0ziXyxEIBKipqRF2atXV1Zw/f55HH31UyLI4nU7q6+vRaDR8/etfx2azkc/nxfnocDi4fPkyd911F5IkodVqxUNJMBgUYs91dXVieY/Hg91uZ3l5GafTyfDwMAMDAywsLNDd3U1fXx9TU1NCJ89sNv+Trsfb4eea2CUSCQ4cOMAXv/hFfvmXf/mmz7/+9a/zjW98gyeeeIL29na++tWvct999zE3N/ee7VAFChT8/GD3g+DbgUqlYmFhYY97wi8KbpeKvfF9mWjJ3phws/DwjbiV7p3c0CDLQMiYmpoSdVudnZ3i+zJhk6VR5JTu2bNnhY5cf3//Hi9ZuSHD4XDcdpvPnTuHVqvl3LlzPPDAA3skKuSxZMmSbDZLKpUin8+j0+lEBDGfz7O0tERFRQUlJSVoNBqRqq2oqGB5eRm3283i4iKtra1IksTMzAwGg4GhoSHKysqIRqMiJb62tiaEgbe2tsjn86ytrfHqq6/S2trK7OwsdrudbDbL9va2kG5xu920tbUJaZVQKITRaOSv//qv6e7uZmlpie7ubqGX53Q6sVqtXLx4cU/zSiaT4ejRoywtLQmnh5qaGiRJEunMVCpFU1MTgUCABx98kNXVVRKJBBqNhq2tLV5++WWSySSpVIqGhgba2trY2toSuoZra2vce++9lJSU0NTUxNTUFNXV1WxtbWEwGMjlchiNRjKZDH19fbS3t9PU1EQikRBRWq1Wi9lsRpIkrFar2F8+n49r167R2NiI3W5namqKffv28f3vf5+qqiq0Wi319fV0dHTw2GOPEQgEOHPmDA6Hg5aWFg4fPszs7KyIzsoC0LLryP79+0VTTFVVlZiPJElsb2/T3NxMIpHg0UcfZWpqSggTy6UE8vLvVdTu5zoV+9GPfpSvfvWrPPLIIzd9JkkS3/zmN/l//p//h0ceeYR9+/bx13/91ySTSb773e++D7NVoEDBBxF+v59isfi2/r1XgqIfBNyueeJWnqzy8uvr66yvr9+24UJOlcppTvgH3Ts5vVooFFheXmZoaIhCoSBEck+ePLknaibLTchjOZ1OgsEghw8fJp/Pi2YHmWRqNBp0Oh2VlZV7mjR2p2/lTlv5f6/XKz7bvd0yGZVtsaqqqkSDQ6FQQK/Xc+rUKXp7e3E4HExMTLC6uorP5xOkbnh4WNTfzc7OMj8/z/r6Ou3t7Wg0GiwWC1VVVfT29tLW1obD4aCiooKamhoCgQBlZWWYzWY2NzexWq3s7OxQXl7O9vY2iUSCxcVFJiYmqK2tZX5+npaWFvbv309lZSVHjhwRbiBarVakH1taWnC73VitVrFvKysrkSSJRCJBaWkpS0tLFItFbDYbJpOJ2tpacrkcqVSKnZ0durq6mJ+fR61WCz/Z1tZWHA4HWq2WXC6HJEmUl5cjSRIdHR1YLBba2trIZDK0tLQwPz+PwWCgs7NTpFmLxSJqtZrBwUHa29vp7+9nYmKCqakpKioqMBqNHDx4UGjVTUxMMD09LezP6uvr2dnZEXPa3NxkYGCAbDZLZ2cn3d3dPPXUU5jNZsLhMGq1mq2tLUZGRgA4efIkTU1NtLW1kcvl2NzcFFE2mdTZ7Xa2trZIJpN4vV5UKhU9PT00NTWJVG1VVZVoQtndGZvP5xUdu3cK2afu/vvvF+/p9XqOHz/O66+/ftvvZTIZYrHYnn8KFCj4xcQXvvCFd5RW/bVf+7Vf2CaOG+vjbqxfu9Xyu29YqVSK5557jlQqJZaRyWIwGBSWS7IG3e4o4NbWlhAJDofDdHZ2ilSqPIdAILBnLJlsGY1G9u3bB4DH48Hj8Yg5y/p4sgiwTNx2k0uj0cixY8cwGo0iWrabxMrNE8PDw5SVlVFSUoLL5drTYetyuYR4LbwZKdTr9ezbt4/y8nKWlpYYGBigtLRUSKSUlpbS0dHBwMAAOp0OlUpFOp3m9ddfJ5FI8KMf/Yjp6WneeOMNKioqKCsro6GhgXg8zvb2NgAlJSW0trbidrupqamhUCgwOTlJa2sr5eXl3H///fybf/NvMBgM7N+/X3Setra20trayt13381rr70GvHl/NBgMQqduenqaeDxOaWkpnZ2daLVa3G43kiThdDpFFEun0xGNRoVgb1dXF/F4nLa2NhoaGjCZTKyvr/PMM8+wvb3N3Nwc/+Jf/AvKy8spLy/n6aefZmxsTKRVLRYLyWRSpJcTiQRbW1ucPXuWnZ0ddnZ2iMVidHR0cOHCBbLZLENDQ2g0GtbW1ohGo3R0dAibtOrqakECl5aWRNTtySefFJ20d999N8ePH8fhcAiiLXdZv/LKK7z88sv85Cc/YWJigs3NTSYnJ7FYLOj1eqqqqgiFQqJTeLeIscfjYWhoCI/HI5qE5JT85ubme6Zj9wtL7OQnyBtV1aurq9+ynf8P//APsVgs4l99ff17Ok8FChS8f3j88cffUVnGX/zFX1BZWfkezujt47HHHkOlUu35d7umhX8M/H4/yWSSQCBAXV2d6BDdTfZ2p2Z/8IMfsLW1xZkzZ8QytyKLcopSJlcul4uDBw/idrsFAcvlcoyMjDA/P88bb7zB8PCw6B6UhYnlTlo5+iE3KVy7dk0Qs2AwiMlk4vTp01y9epV4PC5SlBaLRdiQ5fN5MS+/3y9EdeV6q/X1dTKZjEgPb29v43A4hL2Ux+Mhm82KsWQHirm5OfHdxcVFMpkM3/3ud0Wd3v79+/F6vczMzBAIBBgZGRGOCjs7O3i9Xu644w56enqoq6tjdXWVVCpFNBqlubmZxsZGKisrOXToEPPz8/h8PuLxOMFgkE9/+tPEYjEuX75MSUkJqVQKtVpNLBbjjTfeoK6ujrGxMTQajfBoraiowG63YzQaqauro6+vjwceeEDcD+VmifLycrGtXq+XxsZGVCoVDz/8MG+88QbpdJqysjJMJpPQo8vlciL69+qrr6LVapmZmcHn87G6usqVK1dobm4mGo1SVVWFSqUS3bpDQ0O8/vrrrK6uYjKZOHz4MNevX6dQKDAzM0NbWxupVIpMJkNJSQk+n4+jR49SUlKCWq2mqqqK4eFhGhsbWVxcRK1Wc/XqVdRqNfv376elpYVisSjS5aurq1y6dImlpSWWlpbw+/3o9XrUajU6nQ61Ws13v/tdEomEEIKWfY3X19cFYZP16q5evcra2hrj4+Mi0j09PS0kad5t/FzX2L0dqFSqPa8lSbrpvd34/d//fX7nd35HvI7FYgq5U6BAwQcSPT09nDlzRrx+py4Su7E7FetyuUTxdyqV2hPByufz4uF4d+p2YGCA4eFhoYlWKBRoaGjYU7N2+vRpkskk2WxW+L7K0RFZfsRisXDlyhU0Gg0vvPACdXV15PN5ISmxu8ZOnqfX68Vut+Pz+aioqMDn84nPZK9Zn89HJBLBbDaTTCb5kz/5E1pbW2lpaaGkpIR0Oi2K/efm5gSp3Z31sdlsXLhwgbvuuou5uTnS6TQvvPACarWa3t5eqqurWVtbI51O8/zzz9PY2Eh1dTU1NTV4PB6+973vkUqlCIVCPPTQQwD88Ic/ZHR0lLq6OioqKojFYiIyVlZWRjKZRJIkLl++zNzcnHCMKBQKQvD3lVdeIZ/PMzMzg9/v56GHHuLll18mHo+zsrJCIBDg1KlTwsmjUCiwurpKeXk50WiUpqYmKisr0ev1gvjU19dTU1MjxHhlz9j19XVMJhMVFRVEIhEMBgOvvfYaH/3oR/n6178uUtNarZZ8Pk88Hqe8vJxwOCyEiE0mk5AYicfjqFQqAoEAFy9epLe3l2vXrommC5mUynZqy8vLQnomn89TUVEhorzZbJZz587hdru5cuUKbW1tbGxs8OKLL+Jyufjbv/1bBgcH+Z//838K4vmRj3yEy5cv09nZyczMDKlUip/85CfU1dUxMjJCXV0dbrdbpLBbW1v59re/TaFQ4OrVq9TU1DAwMEAqlSKbzbK6ukogEOCBBx7AarVSUlLCgw8+SCqVEuUC6+vrNDU13VLH8d3ALyyx292qLnc0wZsM+q28EfV6vagFUaBAwYcPcifbzwNu9GB9K2QyGTKZjHh9Y5mJ0+nE4/GImjhZ8mNoaEgU8Ms3ODkioVKpRGQO4J/9s38momA3QvZilTsWb+yelS3EotEojzzyiGiKiMfjVFZWMjk5ycbGBvfdd5/w4pQjiOvr6yJ1ZzAYqKioEMTv1KlTXL16lXA4LJwCzp07R1lZGVevXqWxsZGBgQFGRkZob2+ntLQUu93OhQsXRF1dQ0MD2WyW733vezidTi5evIjVamV+fl4QJHjz/vGpT32Kb3/728TjcbLZLHV1dQwMDBAIBEQn7IMPPkhDQwNer1dIkcidsltbW9xzzz1EIhHGx8eZnp4mGAyKejGr1YrdbsdsNrO8vCzq0a5fv05FRQUul4uNjQ2hgbe5uUmhUGB+fp67775beJvq9XqSySR1dXU0NjYyMTEh0ugbGxssLy/T09OD0+lkdXUVm83GxMQE5eXlLC4uUltbSyKRwOPx4HA4+Ju/+RvR/VpVVUV5eblIOcppZIvFwtzcHGq1GrfbjcvlYmRkBI/HQzwep1gsEg6HqaysFJGw1dVVenp6yOVybG1tsbS0hM1mw+PxIEkS8XicRCLB+vo6Ho+HYrHIyMiIqH/b2toC3pSN+chHPsL58+fJ5XJ4vV7q6ur48z//c/L5PMVikSNHjrCxsUEgEODatWu0tLSQTCYpLS3FYDDg8/nY3t7mwQcfZHp6mv7+fiRJYnl5mVOnTjE6OkosFsPpdAoB6mw2y9raGh/96EfFg9fg4CAjIyNUVFS8rWv3neIXltg1NTXhdDp56aWX6O/vB96sezh//jx/9Ed/9D7PToECBR9UfOpTn8Lj8bzf03hbWFhYoLa2Fr1ez5EjR/ja1752247dP/zDP+QrX/nKbceSa92SySTj4+MMDg7icrmEFIUsOiynkgDRGRoMBnE6nYyMjGAymVhbW9uTfpU7WAuFAk1NTTd1njocDlKpFDMzM3R0dBAOh6mpqRFyFwsLC1y7do3a2lqmpqaEdInc4DA9PU0kEhFjRyIRIQ6s0WiIxWKUlZUxNTUl/Fqff/55jh49iiRJBINBBgcHRd2d3MQhm797vV48Hg9qtZqpqSl+8zd/k3A4TFVVFV1dXWg0GgYGBtBoNIyMjNDY2IjBYMBkMtHd3c3IyAgnTpxgfn6e1tZWoZ0XCoXo7u4mk8nQ3d3N9evXuX79uti3FRUVBAIBYcflcrmor69nfHycQCCARqMhFAqxvr5OMpkUqUtJklhfX6e6uprq6mq8Xi96vZ6rV68yPj5OU1MTpaWlFItFQbYkSWJjY4PS0lJhH7a5uYnb7cZgMDA/P4/ZbGZxcRGj0cjy8rKwc4tEIrS1tYk5ZbNZksmkiN7lcjk6OzvF3LxeLxsbG3R2dgqB4uXlZba3tyktLaVQKFBaWkoqlRLRVpPJRLFYFJ25ra2teDweIpEIQ0NDHD9+XOyvrq4uYdklR8YOHz5MZ2enGDuRSIioXzqdJpfLYbVaUalUxONxuru7xUNOLBYT0bXm5maKxSL/9t/+W7xeLy+//DKtra1MTU1RWVlJb2+vqHeUO6Llhgs5ugxvOoIsLy//U38Cbomfa2K3s7PD4uKieL2yssLo6KjwgPvt3/5tvva1r9HW1kZbWxtf+9rXMBqNfPazn30fZ61AgYL3G5/+9Kdv+b4sSfDzgCNHjvC//tf/or29nc3NTb761a9y5513CnmFG/HTykwKhQJ2u51CobBHn04maLsbFuRGB/lGKEfOLBYLCwsLtLW1iSYHOaImp2blZbPZrKiP2l3fFgwG6erqoqqqikAgIAhDX18fOp1OyHzIfqzDw8OiY3l0dJRQKERVVRWSJAmy1tzczPLyMs3NzaytrTE7OysaHurq6rDZbIyMjIhUmUw2Zc2yTCYjSOjBgweFy4PX6xXpZo1Gg9frxWQyodPp2L9/PzqdjmvXrjE5Ocno6ChGoxGfz0cmk6GhoYFcLkdTUxPd3d2sr69z+fJlJEni//v//j9+/dd/nZqaGkGeNjY2aGtrY3x8HK1Wi1qtprq6WkStksmkiACtrKygVqvZ2dmhqqqK9vZ2xsbGKBQKBINBkskkDzzwAJWVlUQiEXQ6HYFAgNraWmFQr1arUavVRCIR4vG4ICkAq6ur5HI5VCoVFosFu92OSqUSrgqXLl1iZ2eH1tZWcrmckLfp6enB6/USiUTQ6/XMzs6STCaFW4WcVpU7YmVyJNdW+v1+ITQdDAYxGAyEw2HKyspE/Z3dbsfhcNDc3CwihvI56/V6RV2kzWYjl8sJX9poNMrzzz9PX18fbreb9fV1jhw5gtfr5fXXX+fOO+/EaDSSTqfFdoyMjJBOpwVpS6VSoh4V2EP4ZVI3MjKCzWYTTh3vBX6uid3Q0BAnT54Ur+UfrS984Qs88cQTfPnLXyaVSvGlL31JCBS/+OKLioadAgUfcpw5c4bvfOc7mEymPe9LksSFCxfep1m9M3z0ox8Vf+/fv5+jR4/S0tLCX//1X+8hcDLeqsykUCgwPDwsjNtlm7Dd+nG7HSp0Oh2SJBEIBETUTqvVYjQahVDw7VLEcsRvdnaW0tJSrly5wl133SVSjICIeBQKBZF21Wg0BINBPB6PSGuOj4+TyWRQq9WCpO3s7Ig08m5NuwceeAB4sxzHarUSjUapra1Fp9MxNTVFNBrl9OnTHDhwQKRg5fSjw+HA6XTS3NxMSUmJaJgYHx8XTQVyRHJ2dlaQkWQyicfjIRwOU1tbK1wcuru7uXTpEk6nk+rqanQ6HUajkSNHjvDss8/S19fHyy+/zODgICdOnODpp5/GYrHw8ssvc+zYMQC6urr4wQ9+ICJcslRJMBgUDT5VVVXk83mmp6eRJImVlRVMJpPwSZU7U4PBIOXl5Wg0Gt544w3i8ThqtZp8Pk8sFqOyspJisSgIYDweJ5fLiQgZvGlxJkfDysrKiMVirK2tYTabmZubEz60AwMDjI2NEQ6HhfZdPp8X9e8qlYpMJkM+n2dwcJC1tTXRTWswGNDr9Vy/fh273S7IbKFQoLKyEr/fz+rqqtAubGhoYHNzk1QqhUqlEunPtrY2Ufun1+tFCtdoNPL666/jcDjY2dkR+0Ov17OwsMDx48exWq1cuHCBdDotCLRsS6fRaAiHw3tkd270O5b195xOJ4lE4h1c8W8fP9fE7sSJE7yV1a1KpeKxxx7jscce+9lNSoECBR94nDhxApPJxPHjx2/6TC7d+HlDWVkZ+/fvZ2Fh4R1/V26cCIfDIoUJ3ESOdr+/2+5LlnKAvZ2y8ntVVVViHPm7VVVVzM7OYjabCQQCuN1ukZKbmprCbDbj9XopFou4XC60Wi2JRIKFhQUefvhhITUhN07snqPT6RTODzLpktc/ODhITU0NqVSK2dlZqqurMZvNTE1NUVtby7Vr1zh48CAul4vTp0+LbsiqqiqcTqfofAREOnVhYYGKigq0Wi3FYpFIJEJlZSWhUAiXy0WxWKS2thaLxUIoFCKXy3HnnXeyuroqNPHkruOHH34Yn8/HRz7yEVZWVsjlcvT39zM+Po7ZbGZsbIwTJ07w93//9xQKBdRqNX19ffh8Purq6tBqtWxsbFBdXc3Ozo5w93jttddobGzE6/ViNptZWlri4MGD4hjIEUez2cza2hrFYlFEY+XzoqSkhGQyic1mo6KigtXVVRwOB5lMhmw2Kwh/TU0NFouF7e1tdnZ2UKlUbG1tUVVVxdTUFF6vF4PBQCgUIp1OYzKZCIfDGI1Gtre3UalU1NTUsLKyIlwyJEkSn8vp4kQiQXl5OcVikZWVFfFAEAqF0Ov1vPLKKxiNRnZ2dkQNpsfjwWq1cv36dQYHB9nZ2RF1ozLJfv3119FqtczOzgqPV7kGNRwOMz8/j8fjwe1209XVxcGDB3n66ae54447hIAyILqGb7x2fpqg9z8Vv7ByJwoUKFBwO/zoRz+6JakDeOGFF37Gs3l3kMlkmJmZ2dMs9nbhdDpxu92ijkvGrfxjs9ksIyMjwoJLju6NjY2xtra2R05KroF77bXXiMfjjI+P79F9u//++4Xml+wOsby8zM7ODtFoFL1eLyJiNpuNsrIyDh06JCJyst9rbW0tkiShVqtFOl12o5BrBpPJpBCfdblczM/Pc/36dZ5++mmmpqZwu914vV7Ky8tFari5uZlkMimIo9zJC28a1MfjcaG7tri4SDabpaKiAqvVSiAQ4K677hLpblmI+fr162xvb7O9vY1arb7Jq9dqtbK9vS2aDrRaLY2NjZhMJqLRKMVikWeffRafz0cymcRoNNLe3k5fXx9Hjx6lrq5ORNvkaJJer+fBBx8kl8vhcrnI5XLU1NSwtLREOp0WciOFQoFUKkV3dzd2u52qqipqa2tpbW0VtW4Gg0GQYb1ez9TUFCqVSjQlVlRUUF9fL6ROJEkim80iSRI+n4833niDra0t1tfXUalUOBwOcrkcFouFzc1N8vk8AEtLS6yurjI/P4/RaBQR3cbGRtbX15mZmRFOJHJdYiQSoaysTBDY3t5eQqGQkHRJJBJIksSlS5eE9p7f72dlZYVoNCpEjXU6HbOzs8TjcfL5PJFIhEwmI4j79vY2R44coaenh+PHj3P+/HlMJhOXLl0S2yZH5nw+H2tra6yvr6PRaETTyHsJhdgpUKDgQ4+30rb8oOL3fu/3OH/+PCsrK1y5coVf+ZVfIRaL8YUvfOEdjSNrab3dKML4+Dg7OzuMj4/ved9ut4somTwnuRbOYDCQSqVEbZKsYxcMBsV35Jq8kydP0tzczH333cd9991HWVkZmUyGQCBAf38/TU1NFAoFhoaGhHG97NepUqmEGfvo6Cgmk4mFhQXh8WqxWPB6vQwPD5NMJonH45jNZux2O/F4nEOHDpFOpwWZNBqNHDhwQOjkyWS2rq6Oubk59Ho9kUiE+fl5lpeXxf+XL1/m8uXLTE9PE41GMRgMrK2tUV5eLtJwsvbd+vr6Hms2eb/95Cc/IRwOiyif7LYgNySYzWZBSJ577jk8Hg+bm5vMz89TLBaJRqMsLy+L2vOBgQEOHjxIWVkZZWVlRCIRTCYTBoOBTCaDRqMhEAjQ1NREdXU1+/fvp7q6mu7ubhKJBIFAgNXVVdFYpFKpyGazVFZWYjQaMZlM9Pf3i1S+THCNRiMGgwGj0YhGoxGRRDkaKEfnAoEAFosFjUZDeXk5arWaVCpFbW0thUJBRAW3traIxWJCkFh2F1Gr36QzGo2G2dlZTCYTo6Oj7Nu3D51Ox87OjhjLaDSKdPTq6iper5d0Os34+DihUIirV6+i0WjY2dkBwGAwMDMzw+zsLMvLy9TU1JBIJLj77ruZmpqio6ODRCJBR0eH2PdyLanH4xHbCNxk2fdeQCF2ChQo+NBjt1bZzwvW19f5zGc+Q0dHB4888gg6nY7Lly/vSaW+HciacLezFNsNucHCaDTuabBwuVw0NzczODhIMBhkbGwMj8fD1tYWdXV11NbW0tPTw/j4OMvLy4KcOJ3OPe4QsqadbLbe0NDA4OAgbrd7T1H62NgY6XSaaDQqUltut5uBgQFcLhcOh0PUSbndbs6dO0dPTw96vR6fzyfEequrq0VXazqdZmFhgZMnT7Kzs0NZWRmTk5M4HI49pFD2jJXr52RXCJPJRHV1Ne3t7VitViGB4na7CYfD9Pb2UlJSQnd3N8FgkJKSEmKxGNvb28KN4OrVqwwMDLC1tcWnP/1ptFotkUiE/fv3iwimnHotFAp88pOfZHt7G51Oh9/v56mnnsJoNFJRUcEXv/hF6uvriUQi5PN5zp8/TyqVYnt7m9raWra3t8nlckSjURoaGjAYDLS3txOJRKioqCAej4tmC6fTKZwSKioqsNlstLW1YbfbsdlstLa2kkqlKC0tpaGhgY2NDTY3N7HZbNx33324XC5KSkoIBAKk02nRcCBbrq2trQnC53Q6icVi4hgFAgEMBgORSITNzU00Go3oOna73ULCp66ujkwmw87ODhaLheXlZdE1HA6HBTG1Wq1kMhmKxSJra2ukUinq6+tRq9Xo9Xpee+011Go14XBYdLNubW0RiUSEhd7CwgKDg4O8+uqr+Hw+zGYzv/Zrv4ZOp0On09Hc3Mzs7Cxer5dwOIxOpxP6dTemZt8LKMROgQIFH3q8Va3uBxXf+9732NjYEN1+Tz75JN3d3e94HDlystuD9XaQnQdk4iXjxrq6ffv20dDQQH9/PwMDAzQ3NwsZjK2trT0pXtnpQda/8/v9xONxTp8+TTabFWRPtuuSu3FLS0vp7e29qb6vv79fiNn29PSwtrYmUoayJ2s8HqempoaWlhYRSZJ9YIPBIP39/UJ+48yZM/T09BCJRPB6vSSTSSYnJ0UjgsFg4NChQxw7doyuri6RQpXTyKurq9x1110EAgEqKyvZ2dkhm82SSCSw2WxYrVZSqRR//ud/zunTp3n++efZt28f8/PzIn28srJCe3u7aFiYm5vj3/7bf4vZbOYzn/kM2WyW7e1tGhoaWFpaoqenh7NnzwrfVkDIwuRyOTGX69evYzQaiUQi3HHHHej1ekpLS/F4PNTU1JDP56mqqhJyMblcjng8LrT8IpEI0WiUlZUVNjc3qa2tJRaLMT8/TyAQwOPxoNVq0el0rKyssL29LaRL9Hq9qMlLp9NsbW1RWVnJ9vY2BoNBRBZLSkpE56vD4cBoNGKz2aitreX69eusra1hMpmYmprCYDBQVVWFxWJBpVKxsbHB/Py8IHepVIqmpiZ++Zd/WRDE+vp6IXTs9/uFRV53dzcrKytotVqSySRNTU1CMNrpdHLp0iV8Ph+hUIhQKEQwGESj0dDa2ko6naa1tRWXy0V/fz99fX3iWpEbb3Zb373b+LlunlCgQIGCdwNv5Ubzi45wOIzJZBKRmd0erjfids0UMuQuWoPBwJEjR8T7cmMAIGqMZBJXKBTY3NwkEolQVVVFQ0MD165dI5FIMDo6yuHDhwGEM4VsZ5VOp/mbv/kbDh8+jM/nw2KxcPXqVUKhEDs7O6ytrQFwzz338KMf/YgjR44IkdmOjg5RNyVJEn19fYRCIaGYoNFo6Orq4umnn+bAgQOcPXuWbDaLzWYjGo2yb98+isWi0LlTq9XY7XZGRkaEbVY0GmVubo4DBw6g0+k4duwYfr+fxcVFDAYD5eXlNDU1sb29zdWrV4E3LdBqa2tF6nJoaEiIQXd1dVFZWcny8jJut5sXXniBmpoaXnzxRbRaLZWVlaytrVFbW8vVq1dpa2vD4/EI1wfZGcHhcGC1WllfXxfpzr6+PhKJBK2trbzxxhsYDAbS6TRNTU2ifu6NN95AkiS0Wi2vvvqqIMQlJSUEg0FUKhUvvfSS6FaVCfzFixdZXl7eE1mrrKwU5DsQCFAoFDCZTOzs7FBRUUEmkxHuFrFYDJVKJSKgPp+PkpISQqEQW1tbgrR3d3eTTCbp6Ojg+vXrRCIRgsEgVquVYrFIPp8X2niSJHHkyBHm5uZEl7fsqFFSUoLf70ej0VBXV8fa2hodHR1C2icSiQhJHZVKhVqtFlG7uro60R29tbUlfIDla0C+RuTUt+w3/G5DIXYKFChQ8CHGvn37yGQyQmdrt+YcIGqFANG9uRs3ChDfzg1DjrzJkKNfcqpKlt1oampi3759QkpkaGiIzs5OLly4QF1dHQsLC+Tzea5cuSJkWB599FHOnj0rujrlblpZfsTlcnHhwgVOnTpFVVUVhUIBi8XCxYsXaWxsJBgM8tBDD+0hrXJEx+PxUFpayvXr1zl69KiQZBkcHKRQKIh5Tk5OEggEKBaLwntUbrwwGAwiHdfc3MzKygp33nknOp0Ot9tNKpUSdZJyGrBQKHDfffexvr7O0aNHRRoT3pQW6ejoYHZ2loaGBi5fvkx3dzebm5uEw2EMBgOrq6vC11WOtn3sYx8jHA6ztLRENBpFo9Gg1+vZ3NzkjjvuIBQKkUqlWFpaoqqqSkh+AKLz1mw209/fL2zfysvL0el0woHj0qVLRCIRisUi09PTQqBY9nGtrq4mn88LAWO5sWJnZ4fy8nJBuGtrazGbzeKBoLq6mng8DrxZ8yZHL+PxOM3NzYLcyvV0Ho+HTCbD9vY21dXVqFQqDAYDxWKR2dlZisWiaIbQ6XRUVVUBcPXqVUHgLBYLZrNZEOT6+nphl9bc3EwikSAcDpPP50mlUpw4cQK/3y8eKuSHJdnbWK4jlN0p3ivpNYXYKVCgQMGHGHLx+W7IZO5Woqq3sgLLZDKMj49js9n2aN7dCruJoPwdWYxYJodyt+36+jqpVIof/ehHuFwuhoaGRHTH7XZTWlrKo48+KpoM0uk0er2eT37yk0xPTwuSNjk5yaFDh8T6Njc3ee2110gkEmxtbdHU1CQ6c4eGhsRNXqvVYjKZGB8fp6amRpCilpYWkeI0m8288cYbGI1GYrEY5eXllJaWYrVauXTpEmfOnBHyKpcuXRKOFGfPnhWRzVdffVVElSYmJrDb7WxsbNDc3ExHRwcul4vp6Wmef/550uk0FRUVbG5uYrVaicfjHD16VAhTb2xsCMJRW1tLaWkp5eXlVFdXE4vFhNNGNptFr9djMpmoqqpifHyciooKEQWT5UcymYwgVHfccQeNjY1MT08Tj8fR6XSo1WqSySQ1NTVCeNhisYi0u9woUSwW0ev1jI+PC9cF2SZNrjPc2toSrhzxeJySkhIikQjZbJZ0Ok2hUCCfz5PJZMSDQGVlJeFwWDRcTE1NEYvFiMfjxGIxSkpKyGazorlnbW1NWMhtb29TUlKCVqsVhgdyZ3CxWKS0tJR8Pi+2U+4mrq2txWg0YjQaMZvNlJaW0tbWxvDwMPv37xd6ddlsVuhDbm1tUV5eztzcHI8++igGg+EmW793CwqxU6BAwYceu+vFPsyQ697kLkS5kUImbA6HQ3RFysvKBK2np0fIjLwVZCIo17LJUTKdTkcmk8Hr9QqlfnnsRx55RAjq+nw+Kisr+djHPobD4WBqaoqenh4KhcKeNK/cOenz+WhpaSGRSIgGDVkTLRQKiW7FQqHAiy++yOrqKnq9nlOnTnHgwAHGx8c5ceIEmUxG1MOtrKxw+PBhEZ2R05xdXV1otVrKy8tFB6XVaqWyspLvfve7orHA7Xbj8XjQ6XSMjY0JciSPdenSJdF0MT8/z6VLl4A33UKKxSL19fXCLWHfvn3MzMzQ39/P1NSUiAyZzWZ0Oh2lpaU0NzczNzcnHCzgTdIKiKiUnG6Vbbu6urrY2NggmUwKn+G1tTXhlyp7u9bV1ZFKpYQvq9FoxG63C1IUiUREyjKbzWI0GkXErKSkhFwuh8PhEM0Z2WwWn89HbW0tHo+HdDqNJElUVVWRzWYFqZMbITQaDfv37yeZTDI8PExDQ4MgY2VlZRSLRRG93d7eBt6UNEqlUmQyGcrKysTYxWKRdDotyKPX66WlpYXy8nLW19dpbGwkmUyiUqkIBAKUl5cLYeKnnnqKhoYG1Go1/f39jIyMCO9dvV7PgQMHmJycxOVyMTU1RX9/vzgW7zbeEbH78Y9//I5XcN9992EwGN7x9xQoUKDgZ4WhoaH3ewrvGzY2NigrK0Oj0YiInBxVk8WEA4GAaFSQo3eAaIiQZU12p29vVat3o/L+7gjgbqFjmVS6XC56e3sZHx/H4XAQj8dZWVnB4XAIaZCJiQmy2Sx33nmnWMf4+Dgmk4lAIEBVVZXoupUkCY1Gw+DgIFqtlt7eXorFovA4NRqNXL9+HbPZzOrqKjs7OzQ0NDAxMcEjjzxCMBhka2sLl8vF6OgogUAAo9FIdXW1sLLa3NwkFAphtVppbGykvb0djUZDRUUFS0tL7N+/H7vdzv3338/LL79MXV0dwWCQ/fv3o9VqBWmU06ihUIhYLMbY2BihUIja2lp2dnZobm4mEomwtLSE3W4XNXN6vV5Yjel0OnK5HBcuXODYsWMsLS2JSN/Ozg6pVIrFxUXKyspE9DIWi3HgwAHm5+exWq0kEgmy2Szl5eWk02nRISvX18mkNBaLkc/nRSTPbDbjcDhEtC6dTlNWVibSu7IAssFgYHt7W+jupdNpdDqdqJuUJImKigp2dnZwOBzY7XZSqZTQ+6uqqhJRylgsxvXr15EkCYvFgsFgIBgMiu7fYrEonCFyuZyojZQkiWg0Kgi6xWLBarVy+PBhenp6eOqppygWi7zxxhsMDAzg9/uFULNMWPP5PHNzc3zsYx9jeHiYVCqFTqfD5XIJJ5NTp06JBxFZU/G9wDsidg8//PA7GlylUrGwsHBbU2oFChQo+CAgl8tx//33861vfYv29vb3ezo/U8gdqf39/TeJ5QJCHFg2QZftw7xeL/l8XkR+dkO+8cn+q7sbM260KNudmgXETVCO/Mm6ecViEbPZTFNTE4FAQNTRyd6iu9dtMpm4evUqhw8fZnt7m/LyckZHR4E37dc0Gg2HDx8WeniJRILh4WEAamtrmZ2d5fTp0/T29nL+/Hn279/PmTNnUKlU2O12oZlmsViAN+Vy/H4/r7zyCsViEafTyfHjx2lpaaGzs5Pvfe97giSurKwQi8Xo6urCbDZjMBj4pV/6JVGDt7GxgcvlEhIrarWaUChEQ0MDoVCI1dVVYZFlNpuZnZ1Fp9MJImG1WnG5XFRXVxMIBFheXqa2tpbx8XGCwaCw/aqoqCAUChEIBBgaGiIQCKBWq4U7Q3l5ORsbG1RVVaFWq9nc3BTacNFoVKRyp6encTgcVFdXi/FNJpOoNZQkiVQqRWVlJWVlZSIFWywWReOCHP2TI6n5fB6r1So0BWWR5dXVVWH9JUkSuVyOtbU1DAYD0WgUm81GMpnEYDCIMeWHj9raWkEaZf28VCpFPB5ne3ubdDpNIpGgUCiws7OD3W7HarUyNTVFWVkZ169fp6urSxD2RCLBoUOH0Gq1BINB0YR04cIFzGYzy8vLnDx5koaGBqHbGA6HGRwcFL7K165de1evZRnvWO7E7/eL0OZP+2c0Gt+LOSv4kEGu93m3WsN/Fu3mCn6+UFJSwuTk5IeyO1YmELfTr3M6nUIGxel0YjAYcDqd5PN5kXqtq6sD/sFCzOl0inFlP1c5gqfVakXkDhDyJt/97ndZXFwUkTqZ+PX09JBMJtm/fz99fX1otVoymQxDQ0Pk83na2tqEYTyAw+FgeXmZgYEBdnZ2RD2Xz+djbm6Oqakpsa0ajQa73c65c+fweDzk83my2SxlZWW4XC7MZjNf/OIXyWQy2Gw2Ib8idz/G43FaW1tFzZrVaqW1tZXW1lYhy3LmzBmSySQ6nY7u7m4cDgcVFRUsLi6i1WrZ3NxkYGCA7u5uvvWtb1FSUsLly5dZXFzk3LlzLC4u0tDQQHt7u4gAlpSUsG/fPra3t0mlUoTDYWw2myAnHR0d5HI5jEYjTU1NlJaWEo/H2dnZIRQKCTIuSRJ6vZ6NjQ1Rk6bVatHr9UiSRHNzs9AtNJlMpNNpGhoaROrWYrGIejzZwzafzxMIBCgrKyOdTouuXo1GQyKRoKysbM91lkwmRXpcJl0Wi0W4ZJhMJtRqtWi+kAmZ7C2r1WpZWloCEELA6XQag8FASUkJZWVldHd3i07UfD6P0WgknU6jUqkIhULiuMsp22QyyerqKs8884xogpEt4uLxOHq9ntraWs6fP8/GxgZqtZru7m6MRqNIxxcKBRKJBM8995zYT/LDitPpFMu+F3hHxO4LX/jCO0qr/tqv/ZpoUVbw7kMmPLKO1T+GpNxImm4cM5vN3kSCbke0bjXW7b67e9zbzb9QKLC4uMh3vvMdtre3RZrmrbb1VvOXl5fnc/XqVYaGhlheXmZkZIRsNrtHKf92466srHDp0iVWVlb2jCdvg8fjYWVl5SbCKM9pZ2eHZ555RhTovtW+vPGzt0Nu5WVSqdQemYTbfTebzTI0NEQqlXpXifPPKz7/+c/zP/7H/3i/p/Ezx4EDB4QX5q2wO3onpziDwSB1dXVCpFi2t5K16OBNf1i9Xk9vb6+4qcnp3nw+L8iVw+Hg6tWrqNVqrly5ctM5LEtW+P1+UeAvCwX7fD4mJycxGAx7dPDMZjOxWIyqqio0Gg333HMPBoOBw4cP09vbK2oFPR4PgUCA7u5uysrK0Ol09PX10dLSgl6vp6uri2g0KsijwWAQmmSTk5OUl5eztrYmiuOrq6sxGo34/X5+8pOfcPbsWTKZDMlkkpaWFiGIXF1dTWNjIwCHDx/m3LlzvPjii1RXV7OwsIDVasXn8wnbK7khYN++fZSUlHDvvfcKfbelpSWMRiNarZaamhph0aVSqUin02xubqJWqwXBMxgMQm7FarVis9k4cOAAFotFRE1LSkooFAqsrq6yvLxMKBQiEonQ1dWF2+3GbrczODhIS0sLhUIBs9nMhQsXSKVSRCIREokEMzMzbG5uCh07r9dLJBIRncIqlYp8Pk+xWCSbzaJSqUSXbaFQoKSkBEmShMSKyWTCbrdTW1srIoSlpaXChWNnZ0ekjQ0Gg9AKlCQJv9+PVqtldXWVXC5HMpkUzRa7PX7lyK9sgyYTv4GBAcrKyjCbzeRyOcbGxpiZmSGXy/Hcc8+xsbFBJpMhEolQKBTEdnz/+99na2uLc+fO3fKaku3m3m2opJ9HZc6fIWKxGBaLhWg0+p6S1N3pCPkHT/4x3S01sLtexePxCL89SZKoq6vbIydwq/FvrHmRQ8RarVaErD0ej+j80ul0BAIBbDYbzc3NuFwuIVMQiUSw2WyEw2H6+voIBoNkMhn0er1YTm77loua5TnLBdpyQavVahUm4DJhmpiYYGpqSvwQ/Kt/9a+YmpoSTz9ygfWttkfukpubm8NiseB2u9FoNCwvLzM7OyvqRQYHB1lbWxNdZH19fUJ/68buPY/Hg9/vR6/Xc9999wlLm0KhIKyJwuGwqEs5deoUGo2GkZERTCYTzz//vLjZ1NbWYrfb0Wg0VFZWotfrxTrli14uMtfr9cKfs6amhoGBAbxer6jLkVNk2WyWyclJ1Go15eXlmEwmenp6+MEPfkBfX5+oj5HPo6GhIXZ2dkgmk3R2dopzYPc+lY9FMBikr6/vpiaDG6Uw5ON6Oy20t/rsVvhZXX8A/+7f/Tv+1//6X7S2tjI4OEhZWdmez7/xjW+8p+v/WeOd7lv5ur/xmtp9DTQ3N4s0lmxKf+Nv0u4HDfkcSCaTXL58Wbg3xONx0XUIiN+ofD6PRqOhqqoKv9/PxYsX0Wq1QpdMdt1YX19Hq9VSUVFBJBIhEAig0+lIp9NUVlYKUiGPNT8/T3t7O/l8nvn5eTY3N8lkMlRXV+N2uykUCvh8PhwOB83NzRQKBdbW1tBqtTgcDjY2NkSdXmNjI08++SRarZauri70ej35fJ50Os3Q0BAHDx5kbm6OyspKSktL2dnZoa+vj2g0yvz8PGq1mpKSEpaWlnA4HEJMeHNzk0QiQSaToaqqirvuuotnn32Wra0t0uk0n/zkJ9m/fz8rKyuUlZWxuLjI1NSUEAAuFouEQiHS6bSQ2ZDlQbRaLTabTRyXWCxGQ0MDo6OjJBIJse9dLpcQIYY3m46uXbvGzs4OJpOJXC5HIpGgpKRE6Bk2NjYSj8cJhUIkk0lqa2tFlCyXy1FSUiIaEkwmExaLRTQ2yFE3+bxpbW2lUCiIbu14PC7St3IqOZlMCmHjVCpFMBgUxC+fz6NSqaivrxcRtVwut6e+UkZZWZlwPJH9azs6OlhbW6Ozs1N4z9psNnEc1Wo1KpWKz33uc8zPz6PX61lfX6e9vZ3q6uo99y2AhYUF8fDwbv6+KV2x7zLe7o3rxuVk/ShZQwoQ319fXxffkYuBGxoayGazzMzM0NraKk5++AeT7qqqKkEQ5HqYG/Wpstksm5ubSJKEw+EgEomwuLgoimrlkL5M4uRoVCgUwufzMTY2htVqBd4ML8sq9qlUivX1daqqqoRh927IT9J+v5+ysjJmZ2dFQbVMojY2NohGo6hUKnp6ejh37hzNzc1Eo1Gqqqr2FFjL25NKpZiZmeHkyZPCLzAcDuN2u3E4HFy7dk10yB04cIDl5WWam5uZmZkRhbQy5GPi9XqpqKigpqZG+CN6vV4GBgYEmXK73SwvL1NZWSla9k+fPk1lZSXJZFL4CV68eFEcb/nYhUIhKisrRZRCJrjy/sxms0xMTAjCPzIywvj4OPl8XhRCy1pKoVBIGHYfOXKEs2fPEggE+LM/+zMeeeQRfD4f8CYJs9vt5HI56urqROpANqseHBwU8zx37hxGoxG1Wi20u3bb4qytrREOhwFoaGjYU1+1u24L/qEjcvdx+6BgcnKSgwcPAjA/P7/nsw9jivZGyDVyPT094jySmyvkv2VNt2AwSCqV4uWXX+ZXfuVXiEajwg9W/s2Tz5ve3l6MRiPHjx8HEJ22snxHPp8nGo2KBgGtVktTU5Pwn71w4QInT54U59mN3brRaJSJiQm0Wi0NDQ2MjY2Jm6usBdfa2opGo2F6epqNjQ3y+byQwUilUqJ+S+4M9nq9guyMjo4yPz/P9vY2LpeLl156CUmSxEPc0aNHxTKZTIYzZ85QWVnJ9PS0aDiRJImPf/zjIuV8+vRp0YhgNBpZWVlBr9cLGzVZtqOsrEwQa/k7kiQxPDxMNBoVunErKyvU1NTQ1tbG9evXCQQCIj1bVlaGVqtlY2ODxsZGRkZG0Ov1eDwe8XAja+vFYjHUarUgfpOTk4RCIUGO7HY7JSUlIgqn0WiEy4esq+fz+UTqc3cKVl5PJpOhtLSU0tJScrmc6Cw1GAwsLi7icDgYGxujtLRUHAfZkUKenywdYzQaUalUxGIxamtr8fl8whItHo+TSCTQaDSiJk+n05HNZlGr1ZhMJvL5POvr68JiLpFIUFtby9zcHAMDA1RVVZHL5WhoaBD6eO3t7aJbeWRkhMrKSiorK2+6bwFCtPndxj+a2P3O7/zOLd9XqVSUlpbS2trKJz/5yfdMWfmDit0Cn3LUCm6Otsk3v+HhYRGlKxQKovU+GAyKgmW5q8vv97O+vo7P5xORNLmTqK6uTqQLp6amSCQS+Hw+YYgtdzFptVpxQx0aGtrz5KzVaunr68NmszE5OUl3dzehUIhC4U1l+NHRUSRJEnpDhUKB9vZ2DAYDDodD1NzYbDZBBsLh8E1ddvKPrpwq3draolgskslkGB0dFU+kWq2W7u5uDAYDGo1GFN6ePHmSYDAoLujdelvnz5/HZDIxOztLf3//nhSj1+vFarWKH/hwOMzJkydFpG59fV1Ev+Too3zjkcmpHNZPpVKCuLW1tbG8vCy6q+x2u6iLkaUB6urqhH5Tf38/W1tb5HI58QSdyWTweDzCLFxOQ8g/NOXl5TQ0NNDZ2cn6+jqLi4uYTCY6OjoIhUJks1lKSkrED1xTUxPhcJjOzk5efPFFqqqqmJqaEgXjsraSXEsTCASw2+1i+2VCXigURBRGTrt5vV6uXbuG3W7H7Xaj1+tF/dFrr72Gx+PB6/XywAMP3ETgfppzwfuJG9MlCvZid8fs7t+y3RE5Wb7E7Xbzve99D41Gw49+9CPuvvtuRkdHxcOlHL1Pp9OMjo7idDqFy4AsfSI/RMjjeb1eotEora2tInq+s7PDqVOncLlc4rdOjkoD9Pb28t/+23/D7/dTXV0tzNvLyspEl6pOp+PKlSu0tbWJdJrNZqOvr0/U38nSKHfddRcXL17kzJkzwukgl8sRi8UoFN50xlCr1SwvL2M2mxkfHyeVSuFyuairqyORSNDY2EgqlRKdmbJP6vj4OLFYjKtXr2IymYSRvCy9Ind+ejwe+vv7BeGx2+3E43EikQhDQ0O0tLSI+04ymSSdTlNfXy/q0uQIkSRJ3HnnnQQCARYWFlhdXWVhYYH29na2t7fR6/WC0G5tbQnJk9XVVQwGA2NjY0JOxGQyYTKZsFqtJJNJ8vm80CQsLy+nWCzu+UxOwcpacXq9XnTPlpSUEI/HKS0tFVkQWdC4q6tLiEBHIhEA4WAhnzf5fJ6trS3RtGE2m8VDe01NDRsbG0KCpaGhgUwmQ6FQoKysTDzQyeUCZWVl5PN56urqhIZdKBRi//79LC4uolaraW1tZW1tjfb2dn71V3+Vl156STwgyilZ+byWG4Pke/6tGo/eDfyjRx0ZGeHatWsUCgU6OjqQJImFhQU0Gg2dnZ38+Z//Ob/7u7/La6+99o/yL/x5hhzR8Hq9+Hw+bDYbgUBgT/TC6XQKYrW+vo7D4cBgMIgOGlmoUvbOq6ioEHUt8gVTVVVFdXU1dXV1wmA4GAyKFvF9+/YBb0ZUIpGIsI+Ro3mJRILFxUVaWlpwOBziwjAYDPT09LCwsIDb7ebKlStCsLOurg6/3y+ELOWaE/kJRO6AO3nypHji3i1eKlu1+P1+xsbG2NzcBN58UtNqtaKmpre3V9ww5JvJ6dOnMZvNYr/o9XqCwSDxeJyxsTHa29tpbW0lFovR29srlO49Ho+IDlitVpEG0Gg0e4jn1taWiADIT5MOh2OPgbOcOpDrOfx+PwcOHODUqVN7jNTlGp2mpiYAJib+f+y9eXSb53Um/mDfAQIgSIAEQYL7Lm4itVCUZMmS13iZuE2ztE0yPdP2dNpJm5kzc6bTM9OTac9Ml8yvM6dL0knSduI4URJnsR1Loq19o0hx33eQIEDs+0oAvz/Yew3KTtskdu2mfc/xiUJR4Efg+9733uc+yzTkcjkikQjkcjmOHj2K9fV1zM/PY29vDxaLBYODg/zQExep2AKC7h1y3qdA70KhgHg8zp9NR0cHAoEAc+yGhobg9/sxNDSEaDQKt9uNcDiM27dv4yMf+QiT3GksNT8/D4fDAYlEAovFckDVTsU4ubZT4Pobb7wBn8+Hubk5jI6OorS0FGVlZfj4xz/OzwRtvn9fbNX7tX7xF38Rn/rUpzA0NPR+X8oHYr3T9IG+BoB5cg9/nlRUvfDCC7hy5QqGhoYYsSOkj75vbm6OY72CwSA0Gg17pVksFk66oL1Up9MhFoshHA7zJCMajcLr9cLlciGbzcLv9+PQoUP875RKJWQyGfR6PSQSCU6cOIFgMAiTyYRMJoOrV6/C7/ezSOTEiRP8u7jdblbUKpVKXL16FdPT04jH4xAIBDh9+jQcDgfOnDmDra0tmEwm3L59G2fOnMHm5iaUSiU36wDQ3NzMXmydnZ24fPky9Ho9AoEAFhcXGQWsra2FVCqFRCJBXV0dfD4fdDodJicnodFokMlkYLPZWBFLxUk8Hsfs7CyDAoVCAbu7uyx4mZ+fx/DwMNRqNaOeVqsVCwsLiEajSKfTEAgEGBoawtjYGCwWC7a3t9nKpFAoHBDG7OzscMOr1+uxvLzMqltSMdMYvaKiAktLS5BKpUgkEgD2930y+SX0itDSh7OIyaw4l8shHA5Dr9dDpVLB7XZDqVRyZmwsFuNCnBS3zc3NiEQi0Ov1XPxptVoUCgWUlJRgdXWVxSakqlUqlchms7Db7XA6naipqWHgKpvNQqFQQKPRwOVyobW1FRaLhbNlb926hUOHDqGtrY3R69HRUXR3d/PrkZfje7F+7MKO0Lgvf/nLPBuORCL49Kc/jcHBQfzSL/0SPvrRj+Izn/kMLl68+K5d8Ad1FW+CHo8H8XicfYDIKNPpdPJo1Gw2w2KxMEFTKpVyMZLL5eD1etHc3IxAIIC2tjbMzs4yGgOAo3h6enq4MHE6nWhra2PvnOLXAvbRVIKSt7e3sb6+DqVSidLSUn7wgf2ic3x8HLW1tVhZWUFnZyebe+ZyuQNIIqFsVGjRzwZwoOMmDywqWq1WKw4dOsRFC6FT9HAvLCygqamJ8widTiey2SwXt8WxRZOTk5DJZPD7/aivr+dNmfhhU1NTyGazKC0tRTweR0NDw4EOihZFDVksFr4uqVQKg8GA2dlZlJWVwe/3o6KiAgKBANevX4darT7Ai6Pf12Aw8GiGDgiyIyBuIfkrFavCJBIJF4NEEC8ecRFvx2g0oqWlBcFgkJG2hYUFyOVyXLlyBYcOHWLElojaEokE09PTsNvtHIi+vLyMxx9/nNHE7e1t5PN5+P1+7ioJLX3zzTdht9sZvaQDnXiTer0eZWVl6OnpgVAoRE1NDZxOJ0wmE4/RgX2qwOTkJA4dOsS/6wdhRaNRnDt3DlVVVfjkJz+JX/iFX/jAjYv/Mdc7jc3pa6ScpHvgncbrUqkUhw4d4qQFep7omausrMQjjzzChsTE03W5XMhkMszFJR+w4qYPANM+0uk0XC4XysrKEAwGoVKp2CPM6/XyYV5XVwdg3yy2q6uL0bRwOIxsNovZ2Vk8/fTTkMlk8Hg8B0aAVqsVkUgERqMRR48exczMDE6fPo1oNIrq6mqo1WqcPHkSw8PDOHv2LHQ6HV544QUMDw9z5iuJGEQiEaqrq2E2m9He3o6qqipsbGxAKpViZWWFpwdlZWU8iRGLxZienkY6neaYrbm5OUgkEuzu7jKfjIrT6elpdHV1semv3+9HbW0tv9eFQgEGg4HPKbPZjI2NDRiNRqhUKhZVpVIpyOVy7OzsQCaTQalUQiKRoLe3F1NTUygvL0c6nUZDQwPu3buHfD5/wEsPALa2tpg2Qp9XcXFFXnhUVOZyORYxEBUlkUhAp9PB5XIhnU5z0aXT6XDq1Cncv3+fC06LxcJnSjweh16vx9raGqxWKxYXFyGTyVBSUgKPxwObzcbFolqt5gKU0EO6L8rKyuBwOKBWq2Gz2VBZWYlUKsXcxUgkwpMVAl/0ej08Hg8WFhaQTqchFAp59E40qveqsf2xxRPEJXgYjZudncW5c+d4XHPu3Dn4fL535WLfj/UPJRhTBU4cjEuXLnFFT50qWQJsb2/DarVykZfL5djbqbKyEuvr62zIWWw1UGwYOjw8jNraWi586IEJh8MHfKNEIhGSySSGh4fR0tICm83GG5rb7WaDR5Jq088hPkyx2tNut8Pn87FKjEjBFovlwIZNYwB6LQD8u66trSEQCKC7u5tvcPKP6ujowOzsLPL5PKvNzp49y75Km5ubCIVCaG5uPnCtVHjRyJSKq1xu36OKfh+FQoFTp04xH6x4PF78+dGYiIxYieeiVqt51ESK0vX1dQwMDLC3ViwWQyAQQDQahdVqhU6ng8ViQSKRwPLyMjQaDdslxGIxvPTSSxgYGGCjS7VajbW1NWi1WiwtLaGhoYEJxcUcDdqM6L7Z29vD1tYWZmZmMDQ0BK1WywUfoY5U5FZWVqKlpQU3btzAyZMnoVAokEgk4PP5+HczmUyMOBBHh4q0c+fO8YiYUJKlpSW0tLSwGz8d9gCwvr4Os9mMdDqN9vZ2TE5OIp1Oo6am5kBQ/E/y/L1by+/34//9v/+Hr3zlK5iZmcHZs2fx6U9/Gs8888wBHutPw/r73tti8VCxr9zDKF4mk+HGoBhlKRZm0Xp4T6CmrfjZeydBDr1eIpFAOBzm6UcxrYAEWiMjI3C5XNwok8iICiOLxYKlpSVYrVasr69zPmlLSwsnE5DoIpfLYWdnB36/H6Wlpfz8z83N8bhULBbj7NmzsNvtSCaTuHz5MgwGA/r7+/n3SyaTmJmZwc7ODtbX16HX61FeXg6tVsvijFdffRWlpaWc7JFOp9Hb24v6+np8+9vfhlKp5MJPq9XyKNvlcrGtiFqtRiaTwebmJmpra5HNZjn5IpPJYGVlhT3xjEYjlpaWeFJCxr/ZbBZbW1uIRCKwWCwQi8VcfMnlcm6u/X4/fD4f5+AStUSr1WJvb+/AZ017AXnfZTIZZLNZjhkjgIP2NBqDFgoFJBIJiMVi6HQ6yOVyCIVCjilraGhgqpLP5+NmUiwWs+EwGRFHo1G+lwgplEgkXBASJ49GylQEt7a2YmJiAtXV1SgpKYFSqcT58+eRy+UwOTnJ+6VAIIBWq0VfXx+bGNPZGY/H0d7ejt7eXni9XhbxKRQKfOITn3jX97cf2ceOVjgchsfjedvXvV4vK2ZKSkp+qH3ET9symUzsbu71ehltyuVyyGazAN4SK5CJo0gkgsFgwOTkJPL5PPPFgH0T0Hw+zwcz/XtCcRoaGhCLxQC89dAEg0Ekk0lMTEwgkUhgdHQUDocDY2Nj2NnZgdfrhVQqRXd3N6qrq3Ho0CFGiIhL8dprr7GXFCmyyKl7bW2N0Z9wOIzW1lZG6KhTHx8fx+bmJjY3NzE8PMxkfHo9sj8gTtzo6CgmJiYwMzPDqGRlZSXi8Tg0Gs2BQ6C2thbnz5+HUqmEyWTC+Pg4I5d9fX18qBQXFRaLhYtjhUKB69evs0iAcicf/vzoQCM+Xk1NDTY2NtDQ0MAP6sTEBHK5HI8zAECtVmNzcxP5fJ5RURqbEE+muroaZWVlGBsbw1/91V8hGAxiZGQEWq0WAoEAq6ur2N7ext27d5m7YzQaIRaLeeO9desWotEoI3I0lpfL5RgaGsLW1hZ7W+n1ety4cQN37tzhA7mzsxM1NTVob2/ne3BmZgbf//73eRzj9/vhcrmYME3FpcVi4Y6VNkmJRIK2tjYenXs8HnR0dKC6uhoCgQAymYw755GREVazGY3GD5zFitFoxG/8xm9gfHwcIyMjqK+vxyc+8QlUVFTgM5/5DJaXl9/vS/xHW4SWEd+U0Ft6dsnmZ2Jigi1zijmt9NwBYGHY1NQU/5maCKfTCYFAwE1rMQez2Bopk8lwMDv9fKfTiY6ODshksgM/F9gHGajA8Hq9rGycmprC5uYm7t+/j1wux+M1Muvd29tDLBZDZWUl/H4/PB4PQqEQwuEwnE4nZmdn4fF44HA42C6DmuDZ2Vn+XzJEFolEqK+vx5EjRyCVSrG7u4udnR3odDpIJBLe43t6eqBWq3H06FGUlZWhs7OT+W79/f2suo1EIkgmk4jFYnC73dxYA+Cix2KxYHJykq+9vr4esVgMCoUCVVVVKCsr45zUWCyGwcFBmEwmHD58GFKplDNlt7a2uIgqLy9nY+JAIAC5XM45smQ4rNfrmYtH6D99BgaDAXq9HtXV1exTR4kU+XyeEVL6HIkOQzxgi8XCqme9Xs9fJ1EKCUui0SgCgQBUKhVOnDgBrVaLTCYDsVjMfockBquqqkJdXR1qa2tx5swZVFRUoKurC9lsFlqtFkePHkUsFsPzzz/PKGJnZycKhQJCoRCUSiWamppw9OhR2O125jnTc2IymbjpKKbXSKVSNDY2vmdc459oFPupT30Kf/RHf4TDhw9DIBBgZGQEn/3sZzmhYmRk5J+Ni3ux2IE6FaFQCIfDgbm5OQ7Zpq6ExhYXLlxAoVDA7du3GZ4Wi8Ws+KJuuKysjEUZxUIHANwtA2C+HjmzEwxPAggqLCsrKzE+Po7y8nK8+eabbCUSjUaxuLiIyspKDA8PQyaTceROV1cXbDYbPB4PqqqqsLCwwL8z8VmIFCwQCNhbiUYpbreb5fVOpxNTU1OsqPX7/fyw0s1Ov+/D2ZT0swhtKOaA0ZiTVIzUIel0Orz00ktIp9Ps2k6jRjq8iANI5pokKJibm0MqlcK1a9cY1SopKYHNZkNnZ+eBonZgYADBYBC7u7tQKpVcrNKom3h9LpeLX+vw4cPY3NxEQ0MDI69U4BLaS9yb+fl5zpfs7e2FVCqFXq/H/Pw8dDodIpEIE46tVitu376NSCSChYUF2Gw2qNVqPuhItdja2gq3281+YRSgTnY32WwWRqMRCoUCzc3NWF9fRyAQQEdHBwDwPWYymfieoSzE0dFRLC0tobS0lBHbaDSK9vZ2zM7OQiqV/lCLnvdzuVwuXLp0CZcuXYJIJMITTzyB2dlZtLa24n/+z/+Jz3zmM+/3Jb6n6504keT9RsKvUCiEiooK5goRml5sMEwIHK1iFIcoH4lEAn6//wD3aGpqikEBj8fDf7ZYLPD7/WynAux/VsRVBsDNTi6XQyAQYJ5YLpeDQqFAWVkZW2B4PB6srq7iscceQzKZ5Lzb5uZmzM7Oorm5GQC4CF1cXASw3wg2NDQwxzWRSODOnTucgVpaWgqdTofXXnuNfdkqKyvR1taGVCqF7e1tFi25XC7s7u6ira0NFouFx8o6nQ6rq6uoqqpCNBrFs88+i7/5m79Bc3Mz0zYKhQJ753k8Huzu7qKzsxPLy8u8v/X19eHy5ctYW1uDRCJhrhjZi0gkEhbkjYyMIBAIQKPRIJlMMj0lk8nA4/Gwnx2phUlZq9FosLe3h3g8fiDxQSAQwGq1Qi6X8+iSrFEUCgX29vZQXV2NZDKJnZ0d5HI59iDUarXQarXw+/0QifYTOahYVKlUrDTN5/NYWlpCbW0tvF4vwuEwI207OzusllWr1dzg7+3tob+/H2KxGHNzc7BYLAgGg2hqamLlrNfr5YJ2cnKSeYbr6+uIRqMIh8OIRCJsiUOAA+1ndMalUik8ePAA1dXV2N3dxdmzZ3lcvL6+/p48vz92YfcXf/EX+MxnPoOPfOQj3AmJxWL8wi/8Avs9NTc34y//8i/fnSv9gK/izY9QNyq2yEKDNpxsNouZmRl+2Kenp/Hoo48CABc2DxOGAfDo4M6dO+jr62PunE6nY0EEjXjJk04mk+H8+fO4cuUKqqurcenSJeh0OuRyOXR2duKrX/0qJBIJJiYm0Nvbi42NDezt7cHhcECpVCIajeLQoUMwGo2IxWJ8bW63G1arlXPvqHsG9jdfj8fzNouI4rDw4eFh9hBKJBKwWCxYXFzEE088wd9fPLoGDhql0vtdW1v7NrUxqXN1Oh0r7mj8urGxAbFYjO7ubj60aOPy+XwwmUzQ6XRYXl6GTqdDOp1m0u3e3h5qamqg1WohlUpx5swZRusINQMApVLJhwDlUxaHWQsEAr431tbWIJfL0dLSApFIhN7eXohEIqTT6QN8JeoCy8rKcPPmTT7gKisrEYlEoFKpmHxN4eHf+973MDg4iNnZWS5e4/E4JiYmUFlZCZ/Ph93dXTQ0NMBoNMJgMKC6uhrz8/NQq9XY2tqCSCSCTqdDIBBAOByGUqnE0tISm7JWV1ezt+CVK1dgtVp5E3M4HNjd3YXL5WJ/J1JwkwHqBwmxy2az+N73vocvf/nLuHTpEjo7O/GZz3wGH/vYx9j366WXXsKv/Mqv/NQXdg/z5mg/ogKJEFe6L6VS6Ts2WgBYxAS85dNITQ7ZGNFInp5r4uQC+/f+9PQ0/yyDwcB0BuCtUbBWq8Xs7Czq6+shFovh8/n4ObNYLAcKTYlEAqfTyerJ9fV1bpT1ej2+/e1vw2w2w+/349y5c5iYmOBxoVAo5OfJ7/dzcUeTF6JH7O7uYmtri6ciItF+jNno6Cjz2ChrtpjPWlJSgmg0irKyMk5Z6O/vxyuvvIKqqiqsra2hpaUFU1NTPColPlhjYyPkcjmam5vx+uuvQ6VScW4tAGi1WpSWlmJjY4NpOKTozWQyrMQVCoWoqKhg/hjFi/l8PgiFQoRCIVRXVzPfjd4bmk7RxIRGp8WZsVQMFgoFqFQq5tCJxWKeUpAfHXHKs9ksU06Iy0YRZF6vlxsMvV7PPnYrKyuQy+Vwu91sftzT0wOv14u6ujocPnwYU1NTzCG02WwIh8Po6+vD1atXYTQaWd0ciUT4s9rd3UUoFEJnZyfzium+8fv97MVKbhRerxeJRIIj1q5cucL8eb1e/148vj9+YadWq/HFL34Rn//857G2toZCoYC6ujqo1Wr+HnpQ/jmsYiSpuBChDcvpdLJVCHVkhHI888wzBzhq1CnTyKuY0zI5OQmJRILJyUkcPXoUbrcbi4uL0Gg02N7ehkKh4I24eAM9e/YsLl26hHg8jlQqxXyWhoYG3Lx5k4nNMpmMH4rS0lIevZEQgNA56rZ1Oh2PH6gjps13cXGRw5GJ60cdTG1tLS5fvgyLxcKFYF9fH8bHxw+Ymz5slVGMJBT/HY2piWhMweHpdBqbm5usdjOZTDw2pMLY7d53sKfPRiwW4/Tp03C73ZidncXAwAA2NzfZq66yshKlpaWsqKXXoA3dbDazcbRer+fN0u/3AwCbPVNHS6ajRGEoVg8+/DkC+/YSY2NjnN0Yj8d5A1UqldjZ2cHOzg7cbjdee+01fOxjH4NYLMbk5CTbTVBgOI15e3p6EI1GYTabIRQKsbq6ypY5VquVN9/19XU2dF5cXOQ8ynw+j5aWFqytraGuro4L+3w+D6vViqNHj3IxJxAI4Pf7+YD+oCyLxYJ8Po+f+7mfw8jIyDvuX+fPn+dD8qd5vZMtTbFnXXd3N65fvw6z2cx7DlFE3ukzpeKLLIGoYCR0jJ6l4uaN9lOySaG/czgccLlc6O7uZu5oc3Mz/H4/1Go1C6PS6TTu3LmDQ4cO4erVq3jsscdYwEb8V7/fz8XC5uYmLBYLlpeX0dnZiatXr+LRRx/F7OwsysvL4fP5sLOzA6PRyAkVhUIB3d3d7Oc5MjKCpqYm9tOMRCIYGBjgyQM11Ovr62yaLBQK0dTUhGvXruHEiRPY2dmBSCTC8PAw2traYDabOVt2enoa+Xwek5OTLIZwu93MfU4kEnjuueeYA0ik/o6ODuTzeSgUCuTzeayvr3PRWFZWxgVSJpOBwWBgCxWiCCWTSRiNRuzu7iKfz6OpqYnFbvl8nikcZNZLpsgCgQDRaBSrq6t8LbFYjK1eCoUChEIh/5m4fNQEk7qf3BrIFzSVSgEAF8Ner5cNn6uqqhhx9Pl8kMlkkMvlsFqtKC0tRWtrK8LhMFZXV6HRaFAoFFiY0dPTw4rpjY0N1NTUQK1W48iRI7h79y5SqRRTowiQsNvtmJ6eBgA0NjZyQ5LJZBCNRnlqVVlZCYlEgqGhIQQCAX6P34v1E5mo3LhxA3/xF3+BtbU1XLhwAWq1Gn/zN38Du92OwcHBd+sa/0mtYgSIyOZUtBH34uTJk5iensaZM2cOGHcCB8OziSBcTCg+ffo0gsEgent72a/O7d6P0KHXKu6yadE4kvzO9Ho9b9wk0sjlcmhpaWFS6uzsLBcA3d3dbyNQU4de3F0XFzrNzc2YmppiBesPfvADxONx5mE+8sgjzNt77rnnMDs7C7Vazf/7TgTq9fV1TE5Oor29nf3zaKx45coV9nsD9hFTp9OJ6elp6HQ6mM1mPPPMMwDeSu0g1JQOnmw2i/LycgQCAUilUjQ1NSEQCKClpYVjkwjxeuyxxwC8Nf6l35PQBPKgGhgYwPT09IFChgi3VVVVqK6uxt27d6FSqZBOp2G1WiGVSvmzfJioPjExgWw2i3Q6jZGREUZaGxsbuQhcWVnBa6+9hqeffprNXdva2vjPRC4nFNntdqOxsZF/dl9fHy5evMjIoclkwtLSEvR6PeRyOe7fvw+bzYYbN27A5/OhqqoKIyMjeOaZZ+D1ejE/P4/GxkaUlpYiFotBIpGgsrKSPfhkMhmi0egHSnX6+c9/Hi+88ALkcvkP/R69Xv+ejU/er7WzswOVSvVDi+ziZoqerTt37mBrawsTExM4evToAWued7KxmZqaQiwWY7sgQvmLn5uHf+b4+DhisRhWVlYYTRaJRPD7/YjFYrh48SIOHTrE/5YyZAGgtbUVd+/eRWtrK15++WWEw2F8+ctfhsFgQH19PTo6OlgwQTQEv9+PQCCApqYmrKysoKOjA6urq+wVaTAY2GKI9nUq2ubm5uDxeHDkyBGO6UqlUshms5iYmIBQKGSkS6vVor29HSUlJXj55Zeh0+mwubmJ0tJSzM/P4+zZs/j85z8PmUyG1157DWazGX19fRCLxYxAlZaWQigUsnghGAyywwFZxej1ekSjUTYnbmlpQSQSwfb2No8n7XY7F2/xeBxra2vsS0n5qLR3zszMMJWGOGsajQbRaBTZbJaN7Ds6OlAoFJjTt7e3h0gkgkgkwvtrNBrldApKnSDkkV4bAIMQUqmU0cNUKgWxWHwALFEoFGztotfrkUqlWHxBQMPx48fR39+Pb33rW9jZ2UEoFGK3BEJdyfCdxAzZbBbV1dVoa2vD3bt32TGA7KGkUim+8pWvwG63w2w2Y3l5Ge3t7VyMV1dXw2KxQC6X8/QmEAjA4/FArVa/zQj93Vo/tnjiW9/6Fs6fPw+FQoEHDx7wAxWNRvF7v/d779oF/lNbNHYIhUJIJBKYmprir1Oh4HQ6UV1djbm5OR5PJhIJVnjeuXMHCoWCiyVgvxAZHR2F1+vFCy+8wLEmdJPQhkTj0oeX2WxGdXU1+vr6WIBAJM6WlhZIpVLmBXZ3d6O+vh5Wq5XJuMPDwzwKodeTyWQwGo1cSNpstnf0u6LxdENDA+x2Ozo6OlBbW4uJiQk0NzfDZrNBoVCgu7sbsVgMdrsdDocDyWQSDx484DFvLrefvJFOp3Hz5k1Eo1EO2J6ZmYHX68Xq6ipmZmawubnJYhGtVovV1VUuuEdGRpiMTddICjsKxSaPK5/Px+MVgUDAr7u7u8v/9mGUlt4f8vgTiUTsnSeVSiGVSuFyueDxeNDW1oaNjQ22a6FYL1L6FruUA28Rv2/fvo0HDx7wexSLxdj9vlAoIJvNcvevVqsxMzPDI+jKykreOP1+PzY3NzE3N4dwOMwNAVlVEJdFrVbj6aefRn9/P2pra/H8888jHo8jkUggl8vh5s2b8Pv9+M53vsMcHa/Xy5wp+n1pNEtinQ/S+sQnPvF3FnU/reudhA/Fo9jiP7/TKvbtLP6+YhSd8mK9Xi8UCgWuXLnCfnVEKi9exNel4oMaHaKI0Ahtc3MTU1NT/Gyvra0hmUzijTfeQCqVwubmJk6fPs2pMR6PB/fv38fNmzfhcrngcrkQjUZZla7RaDA7Owu3243d3V3s7u5iamqKr1OlUjGPkK7x4sWLHBGoUChw7NgxnDt3DjabjfcSr9eL5eVlyOVyBINBFgaYzWbodDrU19cDAFpaWnDnzh3odDpEo1FEIhGMjY3h+9//Pnw+HyONjY2NiMViLHCgZ0kk2o8oHB0dZeQM2OchxmIx3tPKy8tht9thsVigVqshEAiYj1YoFKBQKGA0Gtm6w+l0oqmpiVGvVCrFAhIquogHubKywgVVKpXi9AeJRAKRaD+Jwm63s0MA8d6EQiG/xt7eHqOBNIkgFI9QzvLycqaeGAwGLiZXV1cRjUahUChQV1cHlUqFQ4cOobW1FSMjIxCLxSz2kEqlUKlU6OnpQUVFBaRSKba3t5FMJlFeXs5iD6fTySPZ2tpa9PT0oK+vD263G1VVVXC5XJyDOz4+jvHxcaTTaRao9Pb2Mv3F4XBww0J5we/2+rELu8997nP48z//c3zxi188YANw7NgxPHjw4F25uH+Kq9hPjrI6aXMj5WVJSQk7eZM/WTgchtlsZj7U5ubmgQKNUKnZ2VmOx/n2t7/NsDl53HV3d7PNRyaTYVuOXG4/Ssxmsx3wuaPijpA7guOBfeHB4cOHkUwmIZPJeAMlJE0kEsHlcrHCrXiDp4SMUCgEt9uN8fFxNmm22WycoxcMBhnNHB0d5ZzV/v5+HgUQijk2NsY+S4cPH+Y4MIpvaW5uRl1dHfL5PKvsTCYTwuEwc6QmJiYwOjrKQhFCLgHwxtzR0cGxZnNzc8w9MZlMsNvtqKioQG1tLY9vCYl1OBwIh8P4yle+ghs3bnBBOjU1BZlMhrW1Neb10UHjdDqRSqUQCAQQCoV4pE3j5GIxSS6XQ0lJCaOAxAmx2WxQqVQoKSlhCwayXzhy5Ai+8IUv8D1UfFBfuXIFsViMHenpwKSinDa45eVlzpEEwKRt8jKsqKhAc3MzxxQZDAY2CDUajYjH4wgGg2hra4NMJoPNZkMqlWKxyr+s93eFw2EAOFCUFdssFf+ZVm9vL/9Hz6fb7T6AvhUXhGS2q1KpcPfuXTb4pcLB4XAwgle8SEkfj8fx1a9+Fffu3cOtW7dgsVgYuSHrpmAwyGT73d1d+Hw+FAoFHDlyBI888ghOnjwJuVyOQ4cOob6+nukUSqUSVVVVOHv2LIumZmdnMTs7i7q6OuZ+EfdPqVQiHo/ja1/7Gl599VUIBAK8+OKLHPNF/1av10MkEkEoFGJjYwMSiQRra2tso+L1elFTU8NxVu3t7ZiZmUEqlWKOW0dHB6RSKUpKSrC7u4toNAq1Ws17D1kfPXjwAFNTU/D5fOwrSkWoVCple5IHDx5gZ2cHa2trnAQRi8Vw8+ZN/j3FYjESiQQbqgcCAcRiMabJ0B6VSCQgkUgYhTQajZzEo9VqORrM4/EcsDERiUQIhUJsX0KWOGQQXCgUIBaLGcXLZrOcwxoKhSAWi1FVVYXy8nIYDAZIpVI0NDRw4UhpEaQcpvvjlVde4ffo6aefRmVlJerq6rjY1Ov12NraQigUglwuZ6N++jmHDh3C8ePH0dXVhaamJkSjUVb32u12GI1GhEIhTlKiz35vb4/PARrRe71ePm/ei/VjF3aLi4vv6NCu1WrZC+if46Lge6/Xi76+PgQCAd7ciLx++/Zt6PV6iMViKJVKLC4uchfY1tYGnU6H48eP4+LFiywBJ+8iu92OTCbDaJ9UKkVvby+6urrYAmBiYgKxWAxTU1OYmJhgew5axZ10sZqXirrx8XH2lrPZbDh37hx0Oh2PXOn3oQKFECZSuAH7wger1cqcG51OxyMM+jmrq6s8ChweHsbGxgZmZmZgMpkQi8VYkUbmlmSV0NnZCY1Gg5aWFiiVSvarItm/RqPhuBlSehYThIkMTF5VNIqOx+Ow2Wz42te+htXVVQQCAdjtdgSDQZSUlDCf49SpU9DpdFzszM/Ps/fTZz/7WYyOjuLll1+G1+uFx+NBZ2cndDodzp49y8iE1+uFw+HAzZs3kc/noVQqodPpsLS0dADFKP6sSLGr1WoRi8VQXl7O0H5bWxvzSLq7uxkB/epXv4rS0lJcuXIFOp0Oa2tr7PNExq1tbW0cj6TT6fizpZifbDaL6elpJBIJDA8Ps3oum82isrISQ0NDUCqV6Ovrg16vx61bt2AwGNDQ0IBAIMCCk4WFBZw/fx4GgwHnzp37oejyv6x/3EUpDcXFW7GtCUX2FaNqNK6nppCSAIrRN7PZzBnEhNrpdDo0NTUhl8shFAqx+TZZJJFFk8lkQigUQjKZxOLiIlZXV7lRbGlpYesjUnjncjm0trZCIBAwYh2Px7G3t4exsTE+WCsrK5FMJjnvlLJNrVYrbDYbLBYLDAYD0uk0mpubodVq0dXVxWNDamBfffVVbG1twe/3Y3t7G2q1GouLi4zclZSU4Nq1a9je3sbW1hba2toYwfH7/bh79y62trbgcrlYrbq1tYWamhpUVFTAbDajoqICgUAAra2tsFqtUCgUuHXrFlwuF7a2tqBWq1FTU4OGhgYoFAqIxWJEo1H2N21sbGQvtunpaSiVSkilUnYu8Hq9EAqFLIpKJpNQq9Xwer1c4BQKBTbujcViuH//Pr8GFSwkiNFoNNBoNNjY2ODUh1AoxM06FWyUKxsIBPgzInEbFetkoKxSqaBWq2EymWAymViYk8/nEY/HuZhbXl5mdBAAVCoVKioqMD8/j7KyMuzt7SEYDMLn8yESiSCdTuNnfuZnmNenVCqhUqlw/Phx/o+EYXfv3sXm5iay2Swef/xx9PT0sG2VTqeD3W5ne5rOzk40NzejsrIS3d3daG9vZ5EPuRbU1tYiHo9Dq9W+Z8kTP3ZhZ7FYsLKy8rav37x5822qqH/O6+HOl6Dr8fFxJJNJfO1rX0MkEsH169c5m7Svrw+3bt2C3+/HhQsXWNhw+vRpNuMk4m5vby/6+vqwsLCA5eVlfPvb34ZOp4NarUZnZycb7BoMhgOIWjQaxcWLFznYmtAt6nY3NzfZLoWUrCT5p648l8uxzcb09DSSySSCwSCPZWls19vbC7VajYaGhgPGyxKJBGq1GlNTUyx5J84L+bCR79DKygqUSiULEUisQKkONC4h9WpDQwMXKJRdPD8/z95zZP1Cm/XIyAi2t7dx584d7mgNBgO2t7eh1WoxNTXF/566LeJ5KJVKWK1WJJNJ1NfXIx6P49lnn0VnZyePqonoDbw1ul1fX4darYZSqcQLL7yAiooKNDU1sfce+fyNjIxwpjA54MfjcQiFQjQ3N8NoNOJ73/sexGIxQqHQAUPX1tZWZDIZ/OIv/iLC4TCTkUmB29fXh66uLojFYmi1WlYG071LIh+dTsc8nrGxMSQSCTgcjgMHucFgwO3bt5FOp/HKK68gHA7j8ccfR1dXF2pra9nAlgQIxRF7/7Lev0WfYXFaTTHy/jAiT/xhKtioIaURI6Fu9Lr0jFHz1dvbC61Wi/r6ep5YyGQyyFYvITXxbTz4xh9g+uu/B+XWNVz5f5+HOToFc3IZg6VRtIs20C+cR29hGt7h/4PM/a9h/dpLSEy+jLsv/gGyi5cQfPA9SJwj0Ke2IHLcxfwP/pL3hsrKSpw8eZJFSyKRiOkJtKdUVlbi0KFDvIdWVlbCYrHAaDRieHgYd+7cYcXqsWPHIBQKOeaPkB6Xy4WNjQ1sb2/DbrfDZDKhsbERPp8PY2NjmJ6eZvRRp9Ph3r17OHLkCMrLy1FZWYlHH30UKysrHGBP3GO5XI7l5WWIxWKMjIxAKpWyZ2R7ezuMRiPC4TDbiVRUVCCRSKC8vBwajQbHjx+H0WhkI+O1tTVEIhG2IIlGoygpKTlgu0RcNL/fz9w8qVTKwpNEIoGSkhIIBAKsra3xdIn4ael0GlqtlpXxIpEIwWAQ0WiU93BCuKRSKQqFAuRyOUQiEduIkJ+oSCSCQqHgMTglPAiFQkbvyC6MMm2J+1hVVYXa2loMDg4yVebZZ5+FzWaDXq/H888/z4XZU089xROLO3fu4LXXXmNRC3FJady8trbGnp+VlZWorq7myZhWq8WNGzd4/2xsbEQymWSLK3K8eLfXjy2e+Df/5t/gN37jN/ClL32J5/N37tzBZz/7WfzO7/zOu3mN/2QWOfFTxiEt2hBNJhPq6+uxtLSEvr4+PHjwAE1NTchmsxxGTx3z6dOnceHCBR51kC2KVCpFPB5HV1cXDAYDhoeHcfr0abS1teHGjRtsItnf3w8ADFO73W4sLCygvr4eSqWSSbKzs7Po6+sDsF8IkAljIBBgxVUikcCVK1dYDUgk5vHxcd5gjh07BqfTiZ2dHfbyKX4ISKVKhZzZbEZdXR0UCgX/3fHjx9kBPBAI8KbqdrvR29uL8fFxtLS0cF6iz+fD2bNn+bARi8WwWq18fYQy9PX1YWxsjB9EKsBIcFBsOlpRUYG6ujrs7OzwOHdzcxMlJSWoq6tDPB7nYtdisbCZaXd3NwwGA775zW/i6aef5gilyclJtrshZJMUdIODgxCJRGznkMvl2JSa7Go8Hg+CwSAKhQIXXJQwcurUKajVajx48ABGoxELCwtoaGjA+vo6H9AKhQLnzp1DSUkJm4SSyIS88sbHx9nsmBAQYB8pJRLx3NwcO6trNBpIJBKW9bvdbuTzedy7dw8lJSWYn59HV1cXfD4fPwtUqJIlkEj0VsTevxR37+8qLtDoc9re3obFYmG0gZ7jdDqN8fFxjvyiZ4DMgIvR5mIPvOLXzWQynGNN3mPV1dVw716H0xuEXq1ELp9HLJlBS60F3mAMA+11GJvfRG9LNaZWtmHUqeDyhbDrj0AmkWB8fhM2iwEysQR9PXa4A2GY9FqYjTqYDTp4K7oPZDCTCIOQK7PZjLW1NSwtLcFut7NQ4sUXX8Tg4CD0ej1effVVFAoFji4cGhpiTnBNTQ2sVitaWloOcAHz+TwOHTqEpqYm3Lx5k4sUMss9duwYFhYWMDAwgLm5OSwvLzMPjhpayoFVKBRIpVLo6elBJBJBIpHA4uIiDAYD7HY7JiYmIJVKWTTS2NiIRx99FDMzMwD2+XsOhwNmsxlbW1tsDkzUj1AoxBFbdA7dvXsXMpkM4XAYAoEAoVAIdrsdOzs70Gg03BBSegW9tyQgCQaD7GGnUCiQyWRYBUtq/mg0yoVcoVCARqOBWq1mJW8gEGDlLXF3g8Egf39TUxPW19dRWlqK2tpajI6OMoeXUNmrV6+ivr6ekypkMhkXrIQa+v1+RCIRTtM5fvw4Hjx4gFAohFxuP4GEPiPK/Ca7EvKnpWeCGp979+4hEongS1/6EgMwJSUl2NzcxNDQEEZHR9+TZ/rHLuz+w3/4DwiHwzh9+jRSqRSGhoYgk8nw2c9+Fr/2a7/2bl7jP4lF40SZTAaRSMQZmMRVAoCZmRkolUpWRB07dgyLi4s4e/YsWwYUG/J+5CMf4U45l9vPaJ2enkZfXx8qKyvx1a9+FQKBAK+99hri8TiOHTuGO3fu4Nlnnz0wwpPJZLyhrq2t4fz585zf2dbWduD3oIxTMpw0mUzw+Xws0Qbecnbv7OzE8PAwR+eQcSORUqkoIwNT+v7a2louYqmQIIUmEVWpMAHA6lC73c7mpGSGSkUQZboSd4NSUehgodcKhULo6enBm2++iba2Nja2bGtrQ2VlJU6dOoU333yTuR57e3v8WSYSCZw9e5Y9rSiM3GAwIJPJYHp6GjU1NVhdXUVDQwMWFhaQTCaxtLTENh9LS0scMt3R0QGz2QyXywW3280Kura2NrhcLphMJo4Qu3btGm9yCwsL3P0dPnwYe3t7LNSgApzGYKFQCA0NDXwvzs/PI5VKsTJVJBJBrVZDKBTye0BkaZ/Ph9OnT+Pq1atwOp3QarWIRCJc0BUT3GncDgADAwOcfTk7O4umpiZMTExgamoKHo8HpaWlrOoD8IExKC7mGgLA5uYmXn75ZbS2tuLcuXPv89W9d2t8fBxqtRparRYul+tAI1L82dCzVFZWhsnJSej1erZuohSRQCDAaM/o6Ch7fJGxMSHelC1djC67PAFYjCXwhqJIZ/fQZq9AKJZEm70CV8YWYDZoMTa/iaMdtXD5w/AGozCUqBCMxiESAZFYCnVN5bBZjJjfdEGnUSIYTaC3uQaKv40vnJqagsFggNVqRUVFBXZ3d7lxnZyc5CKi+He8ceMGSkpKGH1/8sknuQElkRPRYchknnz+KO5qZWUFHo+HCf2pVAq9vb2Qy+X40Ic+hFdeeQVGoxF3797lDHChUMiigtnZWZjNZrS0tEClUiEYDEKhUCAcDuPRRx/F5OQkjh8/jps3bzLtwWq1YmtrC1KpFAsLC6xep3FnTU0NZmdn0dPTg+npaeY8Dw0NYXx8HHt7ezyqpZEssO9MoFKpOA+WfEKJTiKVSiESiSCRSBCPxxEIBKBWq5FMJpHP59kkHgDblqRSKTZPB/btdGpqavDmm28yZamkpATBYBDpdJrtUoRCIbtCUEwZJT6R1RRRbxYWFti+hPh66+vr/Jp0toyNjXETW1JSghMnTrCrRDqdxtLSEkeERSIRWK1W5PN5mM37OfHEKQT27U9u3rzJfoIdHR0IBAIoLy/H9evXYbFY3pNn+ieyO/nv//2/4z//5/+Mubk55PN5tLa2HvCx++e0nE4nZDIZtra2cOzYMe6ASV3p9XoxNDSEhYUFLmLIE4iCgUniTxwI+q84zqe0tJTHj729vRgbG4NQKEShUMDXv/51PPbYY5ibm4NQKOTXIYIyZSbSBltbW4srV65wHmtlZSU8Hg+OHTuGSCTC/4a4Ug8vGqvR69XU1GBxcZGDm3O5HB8GBoMBly5dgkwmw9LSElpbWxm12dnZQVVVFaOMxSR/oVCIsrIy5l3QuLixsRHBYJAjZmhsaDabceXKFcjlcoyOjkIikfBoweFwoKurCxMTE3jkkUfw4MEDzmwtzj+l+CGpVIrBwUE4HA5MT09DpVKxf1wgEEAgEEChUIDP58Pq6ipUKhXW19eh0+mQz+eh0WgYTaPYsGAwiFAoBL1ezwU/CSXm5+fR2tqKzc1NdmC3WCxYXV2FSCTCxMQEdDodNjY2mKs5OTnJmxD5WJGylja6SCQCmUyG8fFxZLNZKBQK1NbWcrcZi8VY2ADsC0xIkXb9+nU0NzezIuzs2bNwu93Y2NhAS0sLnE4nE5D1ej0HiTscDiY6E/qQzWah1+v5sydj8w/KeuaZZ/D888/jl3/5lxEKhTAwMACJRAKfz4c//uM/xq/8yq+835f4niyy8JBIJGhubuYR2MP8x2LrJRJOGQwG9iQMhUKcsLO8vAyVSsWmvcFgEDU1NUin08w9pr2BkCddvgCRSAizUYdtTwBSiRh9rTXIZPagVcvhCUYx0GaHTCqBxahDJruHcCSJ450NcAfDCEeS6KizYmplG0qZBNOrO+io2y8KG8yPYHFxkcVH5Mmp1+uhUCjQ19eHVCoFn8+H48ePM2+V+IU3btxAOp1GfX09VldXUVNTg/HxceTzeU6bINeDpaUlHDlyBD6fj/Njv/KVr6CpqQlNTU0AwGNDrVaLixcv8jSgvr4ekUgEra2tKCkpwa1btzA9PY3S0lJIJBJW2YrFYly6dAmtra24desWfuZnfgY3b97E2bNnsby8jFAohBdffJER0Wg0Co/Hg/HxcahUKiiVSty/f5/3F7VajVAohL6+Pk4ESiaTjKrRnkJRXfl8nj3rtra22Nako6ODOduLi4vsJhAMBnl/FQqFkEgkyGazzInUarWcsEGUHp/Ph2QyiVQqxVFspKoG3pocnThxAtPT01y0ajQaqFQqHD16lFOYiL9IObnr6+vY3d3lvGQybibenM/nw9TUFPr7+2E0GvGrv/qr8Hq9jAaSl2F1dTVmZmZw6NAhPmuJF0pef62trQd4hzR9qq2tfc/EYz82x44Wkab7+/s/sEXdn/7pn8Jut0Mul6O3txc3btx4T34Oja2oMCGkioqzubk55loRd6F4xk4ICKmBiBdXrDQj+Tpx9/R6PXNGPvrRj8LlcnEYtEwmY5Nfu92O/v5+BAIBJBIJOJ1O3Lt3D2Kx+IDa1Wg0QqlUHoirItXcwxmPpLYli4za2lp0d3ezlxIVo5WVlZidnUUsFmOTXI/HwzmMROgfHR3F2NgYZ/0ZjUaUl5fDYrGwOgwAtra28N3vfpeVWhMTE7xRBgIBNDQ0IB6PAwBnsJKXk8PhQHd3N9588032ryOuTyaTwfDwMCoqKqDT6dDb24tMJoMbN25AoVBgZWUFr776KmZmZniDoqKRoP1UKoXbt28zd66lpQWpVApWqxUGgwFqtRoGgwFPPfUUrFYru68vLS3h9OnTMBgMaGpqgtfrxeXLl5FMJtHb2wubzYaPfexj+PCHP4xz586htrYWQqEQDQ0N8Pl8qK6uZkVwf38/k63JBgDYR5UjkQhOnDjBvCIA7G9HwplEIgGZTIZIJAKxWIz5+XnY7XY88cQTHPh95MgRFAoF/OzP/ixqa2vR19fHRp6pVAoDAwNMAicupsFg4Fi63t5e1NbWfqB87B48eIATJ04AAL75zW+ivLwcm5ub+Ou//mv8yZ/8yft8dT98/aT7G/lBtre3c3H/Tl50tAjJ6+vrY/ESZUATCtfQ0MAKVIvFgvr6eiQSCW4Si1X54XAY9fX1kEn2cQazUYdqSykqy/Ybj/ElB2ZXtuELhLGw6UIul4dIKEQklkQwFseLl+4inc1iL5/H+LIDJWoFZDIJehqroFTIMNTViOXlZdhsNqaxeL1eRqAJdaP3gCx8EokETz9MJhMXfpTDTekSkUgE4XAYOzs7uHr1KhwOB/73//7fEIvF8Hq9ePDgAerq6jg6jbhser0em5ubaGlpwf3792G329HY2IiKigqsr69jb28PFosFx48fZ784gUDAAoXGxkZsbW3BZrPhtddeg91uh1arRX9/P+dFj42NcfFKI8VEIsHFYzgchkwmQyAQwN7eHicPOZ1OeL1eZLNZeDwerK+vsxDNaDTCbDZDqVTC7/cjm82y4fLKygp2dnawvr7O6RHkYalQKFBdXc1j66qqKuj1etTW1qKiogLBYJAFFcvLywiHw3C5XGxzEo/HUVJSAqVSySNVg8GA5eVldHV1IZFIoKKiAiqVimknv/qrv8pZtXQ+k3JWp9Px+xoKheDxeGA2m3Hs2DHIZDKo1Wrs7u4eOHPNZjMGBwfR2NiIkydPQqvV4tChQ+xtKRKJeFJz9+5dbG9vo6mpiYtNchbo7u7mxJH3Yv1IiN1v/uZv/oO/l2LF3u/19a9/Hf/u3/07/Omf/imOHz+Ov/iLv8Djjz+Oubm5d3UERGPHRCLBrujFY9RAIMD2DtQtNjc3s3dYse+bVCpFaWkpZmdnWdwAgLNLATBnLhQK4Xvf+x5OnjwJr9eLqqoqzM/Po729nUekwFvO783NzYwKUodDatfiPEU6kMViMSNhtCh1IhAI4KWXXsILL7zAmzW5xdP30ers7EQ+n0dfXx8jkaQqPXr0KAdPj42NcXEjEong8XiYg0ZBz6urq2wU3NPTwz5xQqGQI4TOnj3LneedO3eQz+fxne98Bx0dHWxKOTk5iaeffhqrq6uorq7GD37wA+4OT5w4AZFIhO9973u4efMmuru72WIhHo8jHo8jHA7D7/dDq9Via2sLuVwO09PTUKvVGB8f5w2CxESbm5vY2tpCIBDAwMAAGhoaeAy0srKCaDSKo0ePcqcsk8mwuLiISCTCylIidkejUVRXVyObzeLcuXMwGo24dOkSTp06hWQyycosSgeh+6qkpIRHBfPz8xgYGMDExAQ8Hg/7XIXDYRw7dgyZTAZ/+Zd/iTNnzhwQSZhMJmxvb3MMGrC/oRFX8vTp01hYWEBvby8WFhaYw0J0g2Iy/QdpJRIJtsW5dOkSnn/+eQiFQhw5cgSbm5vv89W983o39rfu7m4kEokDPDrap2gVc/CKPzcyzKYxZLGZOvErbTbbAfXkwwkydN8YNCpse/YnAzaL8W9/bh75fB7GEg3y+Tx2vCF4AmHUWc3I7O3h3swahEIBro0uobvRhi23H/NrOzDpNdCq5JCIxQgnkmhoaMDy8jJqa2s5W9vlcqGkpAQzMzNs5tvW1gaTyYRvfvObsFgsuHnzJp577jnkcjn2OJRIJGhoaIDf7+eRIgXNu91uKJVKTt6pqKiAXC6HQCBAWVkZUxKeeOIJ3LlzB1VVVbh69SosFgu+//3vo7S0FDMzMxAKhdDpdGhtbcXU1BQikQgLApqamlixabfbcfXqVS4im5qasLq6CqvVimAwCJvNxvSYsrIyTksgxe358+cxOTmJcDgMoVDI9A2FQgGFQsEFHzWFdB6Rea9Wq2Wz4WQyecACikydpVIp5HI5bDYb+3kSRy6fzyORSCCTyUCj0cDlckGj0TDqR3tHLBaDzWaDXC7n8X5raytisRgWFhaY8ywSiVBbW4v6+noMDg5icXERp06dYv4hGQxT/Oa9e/cQjUY5upMSJEidvLKygmAwiIsXL0IkEiGRSCCRSECtVnOko9PphN1u5/NVr9fzZ0BG9/X19SywoWfrvZxa/EiF3fj4+IH/PzY2hlwux/Dy0tISq+0+KOuP//iP8elPfxr/+l//awDA//pf/wsXL17En/3Zn+H3f//337WfQ783+cdRDiEpvmj8Wqw4dLvd+6Thvy0AtVot1tbW0N3djbm5ORgMBiZlUuj93NwcFhcXYbfb0dDQgHv37sFms3H009TUFAdCk2qxsrISExMTWFtbw+zsLKqqquB272e9njx58m2brVqtxvDwMBoaGphDRuNi4C0/tWvXrsFkMuGll15CfX09e+VRkfvw+0OweFtbG6ampvDGG28ciMu5desWPB4P+xuRb9M3v/lN+Hw+qFQqxOPx/Y3eaERjYyOuXLmC559/Hg8ePGC4vqmpCcPDw2hubsaf//mfo6WlBffu3YNAIMDi4iJCoRCHO7/yyis4deoULl++jPLycib7bm9vQyQSMVopEonQ3t6OdDrNebNra2uorq5GS0sLlpaWMDc3B51Ox4aYhGYajUbcuHEDhUKB44noeiil4f79+5yHqNfrodPp2N3c6XRiZmaGiyciqlPMGxWAAoEAExMTOHXqFPM0S0pK4HQ6sba2hrKyMty7d499+srLy7GyssLeVMFgEJFIBPX19XC73ZicnGSz01OnTjFvhNBNMh3OZDLsQebxeNiHa3p6mq1qxGIxWltb+d4g8j3dMx+EVV9fj+985zt47rnncPHiRc6DJYuZD+J6N/Y32iOAd44SA96eHUtfo3tBKBSyCIuagIcTdEgBKRKJDiS/UJPnm4kf+JmxWAp/+b0bGOyqh1wmQSqTxYbbB7lEhKnlbZTpNVDJpAjHkzDb1BAIgPUtHxQKGeyVMiRSWfQ12xGIxiEWi9HS0sJIHRV3tA/SwU6IS1VVFW7cuAG73Y7vfve7OHHiBO/HpET1er0YGxtDRUUFkskktra2kMlkUFVVBWDfOUKj0WBrawsNDQ3Y2NhgNHNychJ+vx/z8/Mwm824evUqSkpKOON6b2+PVbIvvvgiPB4PysvLUVNTg6mpKahUKvT392NnZweZTIaFEMvLy/D7/cjlcjh8+DB2dnbYjSGZTKKxsRG1tbXY2tpCR0cHlpaWIBQKYTabefQpkUggEAigVqs5DYeQRp/PB51Ox8pTQgAJBKAGdHt7G3K5nJvoaDTKDgJbW1tIpVLI5/NcBGo0Guzs7EAoFDI/L5vNcjFG16DT6WC1WpmjuLi4iN3dXZ50ORwODA4OQqPRcNqP3W5Hd3c3pqamMDY2xv58jz32GLRaLRewpaWl2N3dxfT0NKxWK9RqNex2O1ZWVqBSqVBdXY3NzU1UVVUhFAqxcKiyshIzMzNIJpNs9VRfXw+ZTIampiYWDtHkjZ4tk8mE5eXlH/PJ/7vXj1TYXblyhf/8x3/8x9BoNPirv/or5uoEg0F88pOf5HHG+70ymQzGxsbwH//jfzzw9XPnzuH27dvv+G/S6TSnaADg/M5/yBKJ9kPaKUartLSUI7empqbYDJcKKar2yaAxFouhtrYWV69eRTwex+TkJFpaWiAUCmGxWBCLxVitSmTVEydOMCJIOahkPXLp0iUuJA0GA27cuIHOzk7EYjEYDAa+wYhHYrPZYDabMTw8jOrqaoTDYTQ3N+ONN95gE2RKqPB4PLDZbHA4HLBarfB6vcxdIS8/h8PBikgy/E2lUvjOd76DhYUFNDY2YmJiArW1tZienoZcLkcmk0FDQwOrc1955RVIpVIeUyuVSuj1eiiVSty6dQvhcBh/8id/gvr6erba+da3voXW1lZcvHgRarUa3/jGN/Drv/7rzGv0+XxQq9W4du0adDodvvOd76CxsRGRSATJZBJ1dXXw+/2wWCxsgHzixAm4XC7Mzs4CADY2NrigaW1tRXNzM9bX19llnPIQabNxuVzw+/1obm7mkcGrr77Kma7JZJLHfp2dnbDb7SgUCujv72c1NKF3ZEfz4MEDbG9vQ6VSsTt/LpfD0tISrl27BrlcDplMxpv+zZs3odFocP36dahUKiSTSRbJWCwWzkykTMdUKgWn04mSkhIudCkKJx6PY2lpCRUVFbhx4wYqKirYqJx4MwKBgNVmxNH5IK/f+Z3fwUc/+lF85jOfwSOPPIKjR48C2Efvuru73+ere/v6Ufe3H7a3bW1tMbeuuMgrRtWo4CNhDX2NiiMSTwBgdI4Mg8fHxw80tsVWKaQiFAgEMGhUCETjMBv3EeZvX32AXC6LV25O4XRPE9a3dxGJJZGVypDOZOANxSCTSlFjMSKayMLpCcIXjkAYFUAuE6HJZsbsxg4MGiWW5+fR0NAAk8mEmZkZaDQaOJ3OA2btxHlta2vD5cuXcfz4cWxvb/Pkw2q1YmZmhsfJIpEI9fX1mJycxJEjR1hBGYlEOJ4sk8lAqVQiFApBKpUiFotxTCEpRVUqFbq6urC7u8s8s4qKCoRCISwvL2N7e5upKevr6yzcGBwchEQiQXV1NRYXF5nPDYAVn9lsFuFwmDmwhFjZbDb2DCRhV1lZGRuLl5aWcuA97euU9ZzP56FWq2GxWLC7u4twOMyWJvF4nM+OfD4PlUoFv98Pn8/HY1xCcAEgHo+zOIKyaEnUQugcGf6m02kUCgUuEF9//XX09PSw6EKn0yEej2N2dhatra08TSEPRSpKr1+/jp6eHrz++utobGxEe3s7gyWUamE2m9Ha2oqrV69Co9FwupFOp4NQKGTLLjJpP336NHOTKRu2OImJFLzFYiESeLwX68cWT/zRH/0RLl26dODC9Ho9Pve5z+HcuXP4rd/6rXflAn+SRaTt8vLyA18vLy//oaTF3//938d/+2//7cf+mdR95nI5hqIvXboEu92OcDjMKkfaMKnToTHm2NgY4vE4JiYmGMolwUR3dzc0Gg1u3LgBlUqFiYkJthbRarVsj0KEfofDwRYltDFtbW3h+PHjrN6hTrpYiUpIXXd3N8bHx+FwOHD79m0EAgE8+eSTLOe3WCzo7OzE7u4uFhYWkE6nEY1GMT4+zvl+NKpJJpMs//Z6vZiYmMD29jYGBgZw+fJlhMNhtLS0oKOjg5MKXn31VTYGbWho4HEtqWc9Hg8WFxchEolw//59JBIJ3LhxA7W1tVheXsazzz6LL3zhCygvL4fL5cLjjz+OjY0NXL16FYlEAocOHYLD4eCMQ7fbzb5vPT09bINCtiM0opyZmcHhw4cxNTWFjY0NpFIp2O12PPXUU5ibm+NcRAqZdjgc/H6IxWIcP34cSqUSWq0Wm5ubLLTw+XyIRqN8ID7xxBMQi8UYHBzEysoKamtrkc/nsbu7y6PTa9euMVpCCRA/+MEPmNTd0dHBBfPQ0BCWl5eZ0F1XV8cE56qqKjQ3N/O4ioq/xsZGNjIGwH5Mq6ur2N7exvj4OHfAjY2NAPYLDqIeEOppt9tZ9BONRjlT8YPEsfvwhz+MwcFBuFwuHDp0iL9+5swZPPfcc+/jlb3z+lH3tx+2txEf62FfwYdROmraipE4OgyLUyuoQLJYLJidnYVGo4Hb7eYDPZFIHCDTb29v71tZBEIAgLGFDeRyeVSaSpDN7eFjj3bipTfuIRpPQCGVIBqLwxeJo8Ikwer2LqymEkilYoTjYmhVSkTjCYwvbmJvL4ee5hoEognUttUy6T2bzXJjXFpaivX1dbYKAvYPXWpa2traWGU+Pj4OpVKJlZUVNDc3w+l0MjeODG8XFhYgFotx9epVNr7NZDKw2WzY3t7mwq21tRXl5eUwGo3swdbV1cXP7c7ODntoNjU1YW9vD/X19djb20Mmk0GhUMDOzg4sFgtn7+7u7vLUYW9vD+vr65DL5VhfX4der0ehUEA0GmVze4r6ikQiTLepq6vD8vIydDodRzIGg0FGm5qbm5mft76+znuaUCjkserMzAwkEglKS0uhUCgQi8Wwt7fH+3pjYyMLrIo9D8lUmHLPybi9ubkZCwsLzOG3Wq3Y3NxkRwiKG6utrYVcLuec3AcPHmBxcRGFQgHXr1/Hxz72MVy7dg1HjhyBy+VCY2MjC96qq6uhUCjwyCOPYHZ2FkajESKRCG1tbcjn87yHSSSSA3Zm1JzQWLY4WvJh6kIx3Wpvbw9isZhpVu/2+rELO0IOHrbL8Hg8iEajP/GFvZtLIBAc+P+EJrzT+k//6T8d4BJGIhGG1v++RTepTCbjfMxbt27BbDbj/v37GBwc5ELOZDJhdHSUUSjqGk0mEyYnJzm6prW1ld3dCakrTorY3t7msGqDwYALFy7gyJEjHPRM7v7r6+u4evUqKyLVajV0Oh0XoOSVRMgKddZtbW2YmJhAPp/nTEmPx8PcgNXVVYRCIdy8eRNlZWXIZDIQCATI5/NoampiY9179+5Bo9GgpqaG48QIwSx2G/d6vTh58iRu3brFBe1jjz0GiUSC6elp3L17FzU1NdjY2MC5c+dYUi+VSrG1tQWv18tI1+3bt9HT04OZmRnOHiQir8lkwv3799loeHx8HJWVlXC5XHj22Wc5QiwWi8Hr9eL111/Ho48+Cq1Wi2effRZTU1Ps+xePx/lBJ44RyePn5uZY6n/48GGMjIygqqoKvb29yGaz/DkZDAa0t7fj1VdfRVNTE3p7e6FUKnmEXhw/plAoMDAwwB5cS0tLcLvdaGhogNfrxaOPPoq7d+/i8OHDSKfTzBuTy+X46Ec/irt376KtrQ3xeBwqlQozMzNoaWmBTCZj/0TyS+zt7UUoFOJ0D7fbDZlMhlgsBp/Ph6eeegoul4vFHIuLi/B4PKxmlkgkfPi73W40NTXhG9/4BiuuyUrmg7LIuuHSpUuMfgD7RQ4loXzQ1j90f/the5tUKuXEkWK+L31G78SvLf7+h8e3tA8C4AKB0B5gf7Kj1+v5UKOfFfHcAQBse4JY2HBBKBTgZE8TLo3OQaVUwBOMokyvQTiRhFgEzG+4IBOL8GBlCzaTAQPt1aiuLMeuP4xttw+Lm7totlegutyIUCyGzs5ORoosFguLKEZGRjAzM8P358rKCsrLy9kAl34vKgplMhmuXLkCr9fLrgbHjx/nFBeXy4Vz584hFAohn8+jUCigs7MTc3NzmJub44QXq9XKqlGr1YpcLoetrS2IRCIolUosLy+jrKwMarUaZ8+eZaVuZ2cn7t27h2QyiZWVFfT09CCTyaCsrAw2mw3j4+PY2dlheyg6j1QqFTdW0WgUfX19fLZFIhFuLilpp7S0lJv/RCIBn8+HVCqFZ555Bnfv3mUhidlsRjKZZEEfCSdIBV8oFKDX65mfTF6nlB8rk8mQzWaRTCZhsVgQjUahVCpZdU30IoFAgIaGBrhcLtTU1KBQKODw4cOYnJzksS/xjV966SWOQ5ufn0d5eTkuXLjA51lVVRUSiQR2dnZQVlaGa9eu4ZOf/CQWFhaQyWRw7do11NXVMa+Q7oPiQs1kMsHlckEgEDCP2WKxcBIK8eno/qEzj/5MaUfvxfqxC7vnnnsOn/zkJ/FHf/RHOHLkCIB9M8N//+//PZ5//vl37QJ/klVsDVK8iK/wTksmk/1YVTRZleh0Ov4gxWIxSkpK4HA4YLfbWXlFvDryCiPbCLphmpub+YNPJBJsJ0Nh9mQuSzyHUCiEs2fP4qWXXkJfXx9mZmagUqmYJzE2NoaZmRn4/X6kUiksLi6yL5fX60U6ncbu7i42NjZQVVWFSCTCPDZSu/p8PkYYY7EYy8Sj0Simp6dhNpuRTqfxi7/4i9zZbmxs8GbS1NQEgUAApVKJX/u1X8N3v/tdCIVC9nSSSCTQ6XTIZDK4f/8+k2XtdjuGhoa4oOzp6cHu7i4effRRSCQSPPPMM1hdXcXQ0BCmpqZw/fp1Foro9Xo4nU40NDQgGAxifn6eLQcuXrzIETexWIzJxh0dHbh+/ToaGhogFovR1NSEUCiE8vJyRKNR1NfXM6fo4x//OB48eIBnnnkGo6OjLKgwm83o7e3lyB6HwwGDwYCNjQ00NzfDZrNxqkZlZSUSiQR6enowMDCAY8eO4bvf/e4BviPlARuNRiwuLsJoNHKsUjgcxte+9jVYLBbU1NRgZ2cHiUQCZ86cgUKh4BEG+YutrKywV2B/fz/u3r2LyspKDqQmEvLm5iaP56iRINSGDmgKLm9sbIRYvL+VCAQC5kJSVNX09DTcbjdCoRC+/OUvQygUYmdnB8ePH/+Rn7P3cq2treG5557D9PQ0j5OBtwqn4oLlg7B+1P3th+1t5eXlB+LESAQ2NTX1NhSPJgcPj2WLkddiLi793HQ6jcnJSSatEx2FRr9utxsNLTUAAJ1SgdXtXViMOniDUXQ1WvHNN0YhFYuRzu1Bp1YgFImjrsKE+U0nWqorsLnrx8y6G91NdpztbcVffu8GGqrkWNvyIJHMoKFVzXY/wH6BSu4Efr8fQqEQarUay8vLsFqtSKfTKC0t5WmG0+nE1tYWTxCUSiVEIhGqqqq4KX4npDKZTKK1tZUbcolEgkwmA7/fD6vVCoFAgJmZGRQKBfZ1LC0t5f12c3OT+WKDg4NsuUJNokAgwMrKCvr6+rhQ0ev1/GwODg4yd00gECCVSnHBJJVK0d/fj0QiAaFQCI1Gw2dEIBBgQ2Rq1ulcuHjxImfq6nQ6VvHG43Gk02kGIVKpFEeQ7e3tQa/XIxKJQKVSwev1QqlU8jRBLBZDrVaznUoqleLGlfKv6+rqmLdMauJ8Po/GxkZO8kmlUigpKUEsFoNCoYBcLsejjz6KVCqF559/HouLizh+/DjkcjlaWlrQ1dWFL37xi6isrGQusdPphFqtxsrKCts8kejM5/Mhn88zX1yn02F5eZmLvtHRUbb3IhEiJZrQ/U4N03u5fuzC7s///M/x2c9+Fh//+Mf5YRGLxfj0pz+NP/iDP3jXLvAnWeQZc/ny5QOjlMuXL+OZZ555V3+W2+2GTqfjESZtXFNTU3juuefYD4w+bEqiKCkpYWK7RCKBWCxGbW0tF1Ff+9rXsLW1xaHKhMIdP34cMpmMlbJutxsvvPACrly5AovFwuaa4XCY/73dbodAIEBJSQlcLhfbmQSDQVRUVDAnENjnkAGAUChk4uz6+joqKysRDoeh0+mwvr6ORCKBzs5OLC4u4vTp08jn83jsscewtrbG8vzz58+zz5tEIkFZWRkGBwdRVlaG6elpNDc3Y2BgAJlMBtevX4fdbodGo4FcLsf58+cP8H46Ozt5kyTDz/Pnz8PhcEAgEOC5556D1+vFzs4OgsEgfuZnfgZjY2OQSCTcjUkkErS2tmJubg5PPvkk/H4/FhcXcfLkSSQSCeaIGI1GFAoFlqaTeGJ2dhbRaBTf+MY38G//7b/FrVu3IJVKcfXqVQ69lkgkrKSleKHa2toDD3t7eztEIhEXUIRe7u3tYWRkBEeOHIFarca5c+fgdrt5fJBIJGC1WlnJTLFB5KVIRWN5eTlKS0sRi8XYpNpoNCIej+P5559HOBzGc889hy996Utoamo6IIQwGAxMZKbibnR0lJE7ur/p3i8+pGm0EwqFUF9fj8rKSmi1WoyMjKCtrQ1ra2uw2+0fqDEsAPzGb/wG7HY7m2iPjIzA7/fjt37rt/CHf/iH7/flvW29W/sbUQ2KBRTUpFLDWYxU0OdcLICg4uydvo+alPb2di6mqMkt5vVlNvOYWHLA7Q+jva4Kixs7qCjTI57MoK2uEpdH5hGLx5EXCqHWKLHu8sFi0kMgEiCfF2DXE8L0igOxZAaffPI4rk0sIpvLodqy7yNJqkziFpKpfGVlJWffulwuLnIp4aWsrAxOpxNjY2MoKSlBQ0MDMpkMJ7LI5XJcvXoVZrOZJ1gURdXe3s4m6Ds7O+jq6sLk5CTq6uqYf1ooFLhwKSsrQzgcxpEjR7CysoLt7W288cYb0Gg03Gwlk0kuGL/5zW9yIRSPx5nyU15ejnQ6DafTiSNHjuDs2bO4cOECmxATvzYej6OxsZHzdQGwz2Y6neboseKoOMperaqqYvEL8XBlMhknUFAcJN0foVAIarUa2WwWzc3N7ONaKBQYqXQ6nVCpVMzZtFgs8Pv9qK2tRW1tLYspYrEYPB4PlpaWYLPZ2IaJpgmLi4uoqqrCkSNHIBAIcPjwYYTDYfT19SESifB5R2bQ9+7dQ21tLfPgYrEYVCoVU0zC4TDHXAoEAqYhXbp0CfF4nMfWxD8PBALsy1qMaNPvSNQFmqa82+vHLuyUSiX+9E//FH/wB3+A1dVVFAoF1NfXQ6VSvZvX9xOv3/zN38QnPvEJ9PX14ejRo/jCF74Ah8OBX/7lX35Xf47JZGKlFXHVKELru9/9LiorKxGNRllBTKNXiuVaXl7mWCpSmhEvzuVysefN5OQkuru7EYvFmHdGhrZutxstLS3snE1qH0IRn3766bfZFRSrmKkLn5iYQGlpKeLxOFpbW5HL5fCDH/wARqMRN2/exODgIKtkCaF6+umnmZtAGauPPPIIb9xkbEvr6NGj8Pl8aGhoYHjabrdDoVCwQSVt/HSdZN9BnC8yUXU6nXjzzTehUCgQDAbR3t7O0Wqtra1obW3Fa6+9xnJ+skQ5fPgw5ubmWBEXj8dZ1t/f38/Cgc3NTfT29rK6eG9vD2+88QYA4Pd+7/fw1FNPYWtrC4888gi/H2RuajKZ+KCIxWKorq7Giy++iJ6eHmxvb6O1tZXHDtFoFJubmxwiTiN4GtEEg0HOh52enobH40FdXR3W1tZYHUuJDyMjI7Db7ejp6UFXVxfW19cxPT2NQCCAwcFBttkZHR3layUeHMVIZTIZTE5O4uzZs+xDSIheMffq4Y2LrGba2trgcDjY+sBqtSIcDqOtrQ3l5eWMAn5Q1p07d/Dmm2/CZDJBKBRCKBRicHAQv//7v49f//Vff5srwAdhvRv7G90LxTYMxXZNVCA8XOAVL0L5ilWw9HWXywUAbHczOjqKWCyGiYkJpkV4vV44lxzYdPkAARCKJtHRaEU0noJUIsb6jhfI5eAJRhGOJyETixGOpxBLJJDZM6LRVoZwIoVwPI1QNI43x+bhC8egVcnhcPvR//jPMK+vtrYWuVwOFy9ehNVqhcPhwIkTJ/heJKPwcDjM3ysSiaDVamG1WiGTydDW1obh4WFWdj548ACVlZUoKyvj97Czs5OTJpaWlth6yev1IhQK4cSJE5zEcubMGcjlchaJLS4uwuFwQK/XQ6vVQiaTQS6Xcz4sKeDJG4+EAmQ9Q+IusViMbDaLl19+mYsvp9OJ8vJyzMzMoKKiAo2NjbDZbLh58yaSySRKS0sRCoUA7KOvOzs7SKfTzO0jtI1ivsgPtLW1FUtLS8hkMigvL0c+n0dbWxvS6TS2trbQ09ODhYUFyGQypFIpTiCh1JuJiQkEg0EA+2p+AibkcjnUajVcLhcnw1DuOACsrKygu7sbQqEQ7e3tWF1dRXl5OduoiMViTExMQCwWs5UYfb5UrJaWlvIeajab2ZKloqIC0WgUdXV1GB0dZdSVmgFyeCBefVtbGzfCyWQSs7OzHI1Jq7hWoOSNd3v9SIXd1NQU2tvbGTIGAJVKxQflw4vihGhM836sn/3Zn4Xf78fv/u7vwuVyob29Ha+99honFrxby+v1HhhZEYK3vLyM3t5ebG5uHnifaJMkYuiZM2cglUrxgx/8AA6HA2VlZaiqqoJSqcSRI0cgk8k44kUul/NrEUwuFot5fFJaWsojQ8r0i8fjXAhS4VlsPwCAbz5KtBCJROwQ/+ijj+LChQsYGBhgm43t7W2o1WpG+miEMTs7C51Oh/n5eY6PKn5faCOvrKxEaWkpgsHggSg1p9OJlZUVtuqg94pGk8vLy5yWQcWHzWbD1tYWb46VlZV8wGQyGb6Orq4u/p3IjBcA1Go1I5nF93c8HodCocDU1BRCoRBMJhPS6TTOnz+PqakpDA0NIR6P4+jRo3xwUVe2ubmJ5eVlaDQazp29ceMGYrEYLl26xFYCjz32GFvk1NTUHIiXI0SEbGcOHToEj8fDEUFisZi7UL1ez8gaCULovZ6dncWDBw+Qy+UgkUjw8Y9/nMU1W1tbfHhTcUc2NgKBAFeuXMHp06dx5coVDAwMcGdarKpeWVlh5Gh5eRltbW2YnZ1FJBLBgwcPoFKpOKeSComHLTXe75XL5ZigXVpaip2dHfYMW1xcfJ+v7p3Xu7G/HTp0iLlStB5G26jAK859JUSFUBnizhVbolBjQn8GwC4BRqMR6XSaD0ZTyT56YSrRoLJMD6cnCG8oikxmD5bSEixsuCGTiBGKJqGViREMxeEL5aHXarC06UZrXSWy2TzCsSS2d4OQycUQoIDephqE/pZrTHtVIBBgFLuzs5OvgygD3/rWt5gCAuwLA4nvRvFUpAameL7V1VWcOHECDocD+XyehQ0ejwclJSUQCAQQCASIRqPQarW4ffs2BAIB/H4/TydyuRzm5ubg8XiQTCaxsbGBRx7ZT83IZDJcnIXDYaZaqNVqlJeXY2dnB+fOnWPeV6FQYKPxaDSKhYUFCIVCDAwM4M0330QoFILX62X+XDKZZO6jw+FgTvLjjz+Oy5cvY3d3F8D+qF+j0bAl09zcHPR6PRu1kxq3pqYGOp2Oi7nV1VU2NU4mkwiHw0ilUnjiiSc45jAYDCIej0OtVnOMGt1nTU1NuHr1KoRCITKZDGpqahCJRFBeXo5sNstc3l/6pV/Cf/2v/5UzbMk6i0zmyaDeZDLBYDAgEAhAo9G8hRz/7ai8r68PExMTiEajeP3113Hy5EmOj6P722azsRsBRcnRmHZpaQlKpRJTU1NsBQQcrBXeK8ROUCAiyT9g0bjoH+qWTB0EGbT+U1zEJSPX6h+2SP1JKlUAB4qYdxpbESRLcnKHw4F79+5x4dHa2srjVp1OB4FAgNu3b6Orq4t9eyg3j0ZzJLcuFArY3d3lUG7iy1VWVjLnqqysjG/mh7vw9fV1XLlyhSFwt9uNWCzG/C3iCJDkm3JsKVj+0qVLXKDabDa+2WmkS7mkXq+XOXGkFNrd3YXf70dLSwt6enqwt7fHUTpkxZJMJjl7lgKojUYjZ6zSOJvGlclkEgqFAiKRCAqFAsvLyxzD1dHRAbvdjlwux58hqYXJa4661bKyMszNzSGTyXA+Lf2MZ555hrktuVwOY2NjnOJAhYzD4cD8/DwSiQRGRkZYKk+8mr29PVitVraS2d7eZtsQmUyG3t5eOBwOvPbaa9je3saZM2cQj8d5bEwb/oMHD1BTU4OBgQFUVlZiZGQEb775JsLhMD70oQ/BbrdjbW2NszHpMG5tbcXs7CzKysqg1WoxOjqKnp4ejI2N4fDhw6wQLDahnpiYwNWrVyGTyVAoFNDR0XGAw0dCDDJwPXbsGN+Pf1fCwY/y/L0b68SJE/it3/otPPvss/joRz+KYDCI3/7t38YXvvAF5qn+NK2/770ttjsBwJ858JbylZorAG/jzr3T69FrFHvh8R65/TpEIiFyuTzc/jCSyQxm151orrbg3uw6cvksvn9zGsJCAe5wFF5vCFKxENl8AQ1WM8LJJM70tcJqKoFELIIvFMeHhrohEgnhKhuExWI5gIITagKA9xXKdVUoFBCLxRCLxTh06BA/42KxmEeoOp0OLpcLLS0tmJ6ehkajgclkwsrKCjKZDPb29nDs2DHs7OywYnxtbQ1jY2PsUXfv3j1sbW3hyJEjKC0txdmzZ7G+vo6XX34ZHo+HpxOJRAJLS0usjr1//z5PZYj33NnZCZvNBqvVildeeQV7e3toaWnhvFKfz4f6+npG+l977TU4nU4UCgXOUKXziLjBAwMDsFgsuH//PqampiAUCll0deLECVa8ut1uVvmHw2FoNBqUl5fDYDCgpKQEExMTHM+n0+lQX1+PcDjMKRwf+tCHAAB/+Id/iHPnzmFmZobjEcmKSy6XsyFxR0cHzpw5g1QqxRYt29vbaG5uht/vh8lkwtzcHLssNDY2YnFxEdvb2zxG9vl8kMlkqKqqwubmJpqamvDkk08y71wmk8HpdGJ4eBjZbJYdI/R6PR5//PED93ix4IgaoUwmg6WlJQYhiv+enoF4PP6e7G8/EpRWKBTwX/7Lf+GQ7L9vFavKftoXPfjk90VGvcBbmxhJ/cmclnzhir2dzGYzqqurWbFlMplYZUlchYmJCVRXV8Pv9zNPgCKinE4n2008+uijXIQUCgUu7Ig/M/+33k4Pu8zTolxFs3k/qF4ikTDHjQoNurmnp6d5LGC329Hc3AyXy8WkUkKexsbGIJVKMT4+Dr/fj87OToyMjGB7exsSiQQnT56E0WiEx+Nh8j0dLuSDt7S0BIPBgNdff5392Nra2rC3t8eCCHqA0uk0eyEZjUbs7e3hzp07iEajrOTt6uri30MoFDKSSUhzb28vnE4ntre3sby8zMpPhUKBxx9/HPF4HEKhEDdv3mSVp9vtRkdHB2ZnZ9HW1ga3242xsTGYzWacPXsWr7/+Ons6pVIpTE1NoaWl5QAHkw7UZDLJGwRdp1gsRnV1NXvVUV4njQLokKJDtr+/HyaTCfPz84xakvl1SUkJb7jT09PsyJ9MJjE0NITh4WHs7OwAAD7xiU/wvQ6AD59jx44hGAzi+PHjeOWVV9DZ2Ym1tTV8+MMfxsLCArRaLa5du8ajfUI+f9i9936s3/7t32aV2uc+9zk89dRTOHHiBIxGI77+9a+/z1f33q53UsLS81Ms7KLmi8b19H0ADjSI1Kx1dnayVQ7dN5lMBjMzMzh79uwBMc7+v9vD67enkdnbgwCAJxiBAAI8c6IL//d71/H0sVYsOQNoypux4vQglclDIAJ8oSj0KgWkYiHqq8wYmVuDzWyAVCrm65mdnT0gGiNvPTLIXV5ehtFoRFNTE3K5HPx+PzQaDWZnZ9Hc3MzIWzQaRWNjIxcAa2trzOEi5GpmZga1tbW4efMm5HI5F30jIyMoKSnhLNONjQ0olUq2g3E4HPjBD37A1iDEHyu2/4jFYjhx4gQymQw2NzfZO5NGlkKhEP39/VhcXEQ8HsfCwgLm5+fZqcFsNiMUCqG3txeBQIARPRJ/kQcnefQtLy9zZBYVOOFwmD00t7a2oNFoUFZWxvxcMu+VSCQQCoU4deoUbt++zTGHP/dzP4fFxUVcuHABIpEI3/jGN6BUKmE2mzE2NoYnn3wSt27dQlNTE4u7KOJLr9eznYrX68X4+DjKy8uhVqtx584diMVirK+vY3BwkO8vsqoaHR3l2D36vGKxGAqFAu/RNLEwm818jpADAr1/Fy9e5IINwIGpEp1ZLpcLRqORc9aL0Wk6O98rQdaPVNgNDQ39SCMJGk/9c1wPd6f0wY+Pj8PtdvPm2dfXxxsEcRb6+vrYOLN4pNfQ0ACNRoPnn38eV65cgdFo5Ky/Cxcu4CMf+QgAcBQZkeiJQF/MnxkbG4NSqUQwGHwbokoJAoS+UVIAFTq0+ZtMJi4SSV3W2dnJm2JjYyMkEsmBEQ/B4Ht7e1Cr1ZiamuKUDJVKhbt37+LZZ59lm5hi4QRFYYnFYhZjkLiBrpMsBIoPJ7PZDLvdzofN888/jzfeeAPBYBCpVArT09Ow2WxvG/XS50JFt1gsxqlTpyCTyfDiiy+ira0NUqkU/+pf/St8/vOfx4kTJzA2NsYZwRaLBeXl5ZidnYXD4cDS0hIaGxshl8uh1WrR3t4OgUCA7e1tjkwj5Rdl/pK7PbnJP/3007xRETJMIgWv14vr16/j2Wef5RD2H/zgBygrK2OX+YaGBiwsLLAqzmw2I5/Ps1J1c3MTOp2OlYIA0NLSgr29PbbHMZvNfG1tbW3Mtzx69CiPc8n0lgjLdDAQx5GERT+MxvF+rPPnz/Ofa2trMTc3h0AgAL1e/0PtkX5aFnHkKHGGnhtCHx72HixGK94pOWRqaoojBz/ykY/wvUZWEhUVFTyiYr88fxguXxhbuz5se0Loba2BTCqBTq3AjaklSKVirDiDqDToML22DatJD6FQgEwuj97GKhi0apQaNPCFolDIpfAFYxib30BrTQU2A5uwWCzMEU0kErh06RLUajXTGMrLy7G3t4e9vT0WMPyP//E/0NnZCaPRiO7ubh47z83NYXJyEi6XCyqVClVVVSgrK0NZWRmi0ShOnDjBsWperxebm5vs60Y2IJQCND4+zo0YoV1vvvkmnnzyScTjcdTX18NmsyESiXCKEeWxVlRUsAo6Go0yNzuZTHLRSpZXm5ub8Pv9kEqlbNtCKRJUoJBPnkQiwc7ODlNcNBoN2299//vf5yzVdDp9wMPu0KFDvHcQlYd4cUajEQKBAEajEdevX8fS0hIXVMRl9Pl8qK2txcbGBkwmE/N5JRIJFhcX0dbWhqWlJdTV1eE73/kOpqamIJVK0dzcjObmZnZsOHr0KKc3EdL6+uuvY2BgALFYDBKJhNFEikYkAEWlUkEoFHKT3tXVxY0o5ZErFArmiNL5Nj4+zlxAOgeBtygIbrebmwn6Go233+31IxV2V69efU8u4qdhUfFBUUvEj/J6vcz5It5XSUkJpqenOc2BxrKTk5NQKpWYnZ3lmbzJZMLly5d5fErmwXRo9vf348KFCzymbGxs5Hgoq9XKhrKEChb75U1NTaG6uvptkDIVa8XqMeLiFRdN4+PjPNY8e/YsPwgUf7a4uIje3t4DtglOpxOlpaUsUiBlMAAsLCwgEong5ZdfRk1NzYH3IZfLwWg0coSOQqFgBPFhH61i82cazRKNIJlMYm5uDo8//jiMRiNu3brFliyETJIfHCFn29vbzKehgOeOjg5Eo1F0dHQw9+zmzZvo6urC4uIij7qJaL2xsYFCoQCj0chpEsSb3N3dZbWxw+FAJBLhMG6Xy4WJiQlWvI2PjyOVSrEbeqFQgEql4oJya2sL//f//l/09PTg2rVrSCaTHJRdWVmJtbU1LloJFU4mk6zkohQR4hsGg0F2cY/H43jttdfQ09MDAKwMPn78OIRC4QFxTGlpKY/PHQ4H3G436urqEIvFGB0q5qR+UJfBYHi/L+E9X6R4pCaPRAPFnKOXXnoJZrOZEfni9fDI1u12o62tjfelS5cuMYFcJBIxN4qUj/T8GjQqOFx+GEs0iCbSaKuphEop+9tr3INzNwhrmQ55AEKBELFUGgqpFHKJFO31VTAbdXD5Qtj1hxFLpBCNpZFHAf5wFLquBiSTSZSUlHBTEo1GcefOHZw6dQoKhQJtbW24cuUKo7Z/9md/hkwmgxs3brCNVF1dHaanp7G6uoqmpiYYDAb09fXBarXyWHprawvhcJiTS8bGxlBeXs4OBuROEIvFEIvFDiRC1NfX48GDBxgaGkIymcSjjz6KsbExKBQKdk5IJBLY2tpCRUUFdnZ2oNPpMDk5iba2Nk5huHfvHtbW1qBQKHDixAkEg0H24dva2uKGXyqV4vDhw4hGo/B4PDAYDCzkqqioQD6fR3l5OZRKJT71qU/h61//Oivz+/v7cfHiRWQyGcjlclRWVjJfmsz5Q6EQq1z9fj8XoCUlJWwZ09zczJY5zc3N7JUZiUR4LE6WIul0Gh/96EcRjUYhk8k4eqy/vx9LS0vQarVszZJOpzE8PIyenh7s7Ozg0KFDkMlkXNBptVou6OjeLC0txdraGjecZFVSfG46nU6mH5FwEdifrLjdbtTX17+jVdA7xfb9MNu1n3S9f6qGn7JFm+DFixchk8kgEAg4zokMcul7FAoFysvLmefR1taGmZkZzqIrVmJ5vV6Wvjc3N7P0nNzDRSIRPvKRj7BFg9/v5wIM2FcvE0mYrpMKFkLAiscwpOSNRCLI5XLY3NyE1WpFdXX1gTGNw+HA6uoqtra2WEFns9n49UhZura2hoaGBh7nGAwGOBwOHpcWCgUoFAo888wzKCsrw+zsLKqrq6FUKllVSYuKj3g8jpWVFTz99NPw+/0AwAgXIQMikQgjIyNs1vnkk08CwAGDZ5vNxsXQsWPHAIADpou5Em63G9lsFhsbG+jr60M2m4VKpUJDQwPeeOMN2Gw2NmKmhAiKpSHUlTZUQmvJIJmQgfHxcVRUVGB1dZXJvMvLy8xtLC8vZ3PiiYkJiEQiHDlyhGPmzGYzNjY2oFar0dXVxWIWIkV/5CMf4WsDDiLKdD1tbW1s0aBQKHjsQxF5VHgqFArMzc0hmUwilUrB7/fjueee44OdOKF0/9IYPpVK8SFEm+wHTUBBY3GPx8OxdrSIB/TTtq5evYr29nYA+/sFcWrpOfJ6vfwsvxPCWpxQUSz4oX2JOJ/A/n1HvpCE1lDTO/rGDtLZLFKZPdRVlSGSTKGlrgK5XB4Olx8lOiVWtzxQK6TQKGWotpRCLBYht5fD/PoODBoVOuurMCcSoVWtQGYvh61dP+xmE/x/i7iS8KCsrAyxWAwWiwXJZBJNTU3wer2ora3F0tISTCYTWlpa8OKLL6K5uRmXL1+GyWTi1Bfidg0NDXExJJPJuEAGcCCuzOVyMdKzubkJYJ/2IZVKUVdXh42NDRZlEGXk53/+5/Hyyy8jkUjA5XKxnxoAbhr7+vowOjqK7e1taDQaDA4OorS0FDabDSqVCiLRfvYtWc1QVjZ5shEN46mnnmIeXEtLC49o6Rknf0+73Y58Po9Tp05hdnaW9xC5XI61tTWOZtRoNEilUmwkXJxhq1KpsLGxwc++3W5HVVUVnn76ady/fx937txBWVkZSktLAewXTF1dXYjFYujr64PD4UBNTQ0OHTqEhYUFdHV1cdG8tLSEpqYm3r8o/aa9vR2pVAonT56E0+lEMBhk70BSFZOqmZ6F9fV1fg6KRXFEa3p4jCoS7SdVEP+yGPUu5p0WPy8fOLuTf1lvXwQpr62t4cSJE1xg0WhyYGAAwFtKMVLOXrlyhYuv9vZ2tgcg/l0ul+MNdX19HZcuXeK0BpFIhKNHj+L8+fP884G3+I1E4iRVJt1ou7u7SKfTuHnzJoD9w9jpdEKr1WJtbQ319fW4du0a9Ho9F3XFdi5er5dTJ8jI0Ww2Y2RkBHNzczh58iQ7phM/kBSzxXodclOnDZ42HDKxpILUarXCarWirKwM169fx+HDhw+oYH0+HwQCAccpVVZWolAocOdG49SysjJ+T00mE65cuQKBQICXXnoJDQ0NKBQKqK6u5jFscWdGIgJSOYdCIY5Eam5uxpUrV9iXqXiRw3gmk8GDBw84lobGe+vr6wesY+rq6vggAfYNT5ubm/HRj34UV65c4QidWCyG0tJS5s4dP36cRSU0Pr927RpKSkqwsrLCwhmiAxAXs1Ao4NChQ1AoFBx6/cgjj6C3txcTExPI5fYzDX0+HzQaDW7dugW73c73EYWqA2CbB0I6ifNHxrSEfBaP2D8o6/XXX8fP//zPw+fzve3viI/407hqamq4AaNn+2E7GwDsKUnrnXh5xQILqVSK8+fPY3R09AAXieKrCC2hJraz3oqplW18+HQfFhxudNbv8/jc/jBc/hDWnT6s73iQyuTQVG1Gna0MC+u7MOmVCETiCETiUCnlaKwqRySRglwGnOhqRCCSQPBvlZThcBglJSXI5XI8gjOZTNje3kZZWRkXJ7SfPfvss5wOs7CwgHPnzmF2dhbBYBDhcBhra2twu92csyyVSjE0NATgrRFcaWkpVlZWoNVqWVAWCoUgk8nQ2tqKtbU1NoF3OBzc1K6trUGpVOLatWuorq7mxAjy+NRoNFhfX2dxGPnl0WTI4XAgGAxCpVIhl8vhiSee4GbtlVdeQW9vL5aWlniK8cgjj+DatWsoLy/HysoKF3YlJSW4desWJ0g0NDSw+tNutzPyJhAIMDc3x1MEpVLJCmQqfo1GI2KxGCoqKmA2m7kBNJlMePDgAe7evcv2ThqNBmKxGL29vVhZWUFpaSkuXbrEMWdGoxEnTpzA9PQ0+vv7cf/+fQwNDTGlxu128/26srICu93O4rjS0lJks1n++2w2y/GO5eXlnCxE1lvFoEUxh9tqtXKRR16QROspnvgUgw7Fxd57lTzxI6li/zmuH0WVVzySoBvG4XDgwYMHMBqN/NA9/P0Gg4H9bohgTNA8kY9Jkr6wsIBwOMxZhmfOnOFxJ1mntLW1cdIA+RZFo1GcPn2a1Z8Oh4O5LolEAgKBAG1tbQiFQixRTyQSUCqVOH/+PKtP9/b2cP78eWQyGbz44otQKpU8xgiHwxgfH8fu7i4OHTqEJ5544m0jmmJVELDP6aAHXywWw+Vysf+b1Wpl2LutrY1D5nO53AGTYnqv2traWHxANifFKldCEsigMxwOc6wXjVK0Wi0ikQjq6uqgUCjQ1dWF2dlZqNVq3oBJgUbX1tXVBWC/MHA6nfwe9vX1sUnl4uIi/vqv/5qDtoeGhjA/P4+9vT10dHSwIIWKn/HxcVYz+/1+TqwgexdSkt27dw/Nzc2orKzke4jGzrlcDmtra8yNojSMeDyOK1eu8PsfiURw8uRJ9PX14eLFi9BqtSzjL1YQEpFcr9djc3MTMpkMa2triEQibC1w5MgR1NfXMzdUJpOhtLSU7RfoUKN79IOkiq2vr8f58+fxO7/zO+/ZiOSDtOi9nZ+fR21t7Q9V7/+w9bCqH3jnPbD4a8VTCrJFItK8++L/B7NRB5FIeODnZDJ7mFhyIJ5I4eLILMp0ahh0GhRQQDAah0ohg0Iqw0CrHUKxAMsOD2orSxGMJJAr5FEAIGh+EoVCgakGm5ubEIlETPWgvWFhYQEtLS3o7+/n5sftdiMQCKCxsREymYwbVUKzH3/8cYTDYezs7DBaRqiNQCBgA/NivjHFQ1JkZCaTwfLyMuLxOFKpFI4ePYqKigqMj4/j7t27B0al9fX10Ov1mJmZgUgkwurqKnZ2dmA2m1FVVYUzZ86go6MDc3Nz7JmnUCiwvr4Ou92OW7duQSAQoKOjAwKBAMvLy8xPi8fjWFpaYgECify2traQzWZRXl6O7u5uqFQqpoPs7e1hc3MTGxsbSCQSSKVSsFgsqK+vx8rKCoD9xohspyiBiBI7iM+n0WgglUp5P47H49BqtVAoFGhqasLIyAiy2SykUimOHDmCxsZGXL16lY2Lu7u72XPu4sWLkEgkiEQikEgkjHSSILClpQXLy8tsgbKxsQGr1Yqenh52caCscLvdjlgsBoFAAL1ez+JRcqAotg+jKUSx4G9qagplZWWc8FJcA7xX+9u/FHZ/z/px3viHpc/ki9Pd3c2da/H3FW+CRPCn6Jfq6mp0dHTgwoULsFqtEAqF7AxOzvNTU1OIxWJwOByw2WxQq9Xo6+vjcdv4+DhisRh0Oh3OnDnDBQCwT3KmuBSr1cqkdioSiewZjUYxMjKC/v5+aDQaHtPKZDJ0dXXx7+lwOLC5uYkXXngB4XD4wM3/8EFB10cde7F6mP7u9u3bXDxSSgYZYRer2lwuF9uEFL828Ba3YX19HTdu3EA8HofD4UAoFIJQKMTp06chl8vR3NyMmzdvYnZ2FqlUCmfPnsXAwACbNut0Oi5Gii1tigvJS5cuQSwWM4pHhR1tNDMzM6iqqoLNZmO+IikMqZCmayfz1suXL2NjY4Nd7zc3N5kAnUqlmNhdWloKsVjMo1AaDU1PT/NG3Nvbi5GREVy9epWtS/b29mCxWPi9l8vlaGtr43sC2D/4yAWeRvU00na73dypU0FPG1pJSQm8Xi8X4pWVldDr9Qfupb8LufvHLOy0Wi3Gx8dRV1f3nv6cD8r6cd/bd0Lq6HD7uwrCYv5uIBA4YMIOAHsPvgaZVILKMv3ffv++7Ukms4dtb2Af7SvRwB+Jo7vRhmQygy+/egune5uw6vSizKCBrdwIs1GHiSUH1p1eTK9so8luhqbzKVRUVPBeNTo6CgDo6+tj4dXdu3cxNzeH5ubmA4gTAI6IotQFsVjMIzWKTCNRUkVFBfb29jglYWRkBG63G08++SQLjF566SXE43FoNBrmOafTaczMzKC1tRUulwt9fX2QyWSYmJhgO5VIJMLWH3NzczAajQiFQlhcXEQwGGQD3UcffRQOhwN1dXVM+N/Z2eEMb6fTib6+PoRCISwsLHD+dygUYm8+r9cLuVzOBvJyuRwDAwNsG2Wz2XDnzh221QoGg8hkMkgkEmhsbERzczOEQiEmJiZQV1eHbDbL48/FxUVEo1E2CZZKpbBYLJDJZKioqEAmk0EoFIJEIoHNZkNZWRm2t7fZELm6upo9Xb1eL0dKUoOeTqeRTCZRX1/PiODi4iIr/jUaDWpra3Hv3j0kEgmk02kUCgX88i//8tusSZxOJ6ONdO4U8+w8Hs8BK53i+4LAleK/L3423qv9Tfj3f8u/rB910Qc7OjqK8fFx5jAV58PRJkdRUGRTMj4+zoHKNAKlLNatrS1YrVZUVFSgoqKCi4tMJgOZTIbnn38earWaizZ6+B5//HHo9XrY7XZcuHABgUAAw8PD3LEWozPFXSotk8mEWCyGF154gQsPKsbo5nc4HByMrdfruQCiDTCRSBx4Tbo+kUjEMS703hFJm94TuVyOEydOQCgUwmazYX19nU2DCdom8+Diz4DsZ9bX13Hx4kW43W4olUpIJBLU19dDp9NBrVYz9y8cDmNwcJDVWDTGdjgcmJ6exsTEBObm5lhMUcyVAPa5ak1NTcjn8zx6mJqaYo7axYsXEQ6Hsb6+zoikVCqFSqVi9ZrBYOCusLe3l5FGr9eLYDAIiUSCp556Cna7Ha2trdjc3MTKygqr2xwOB9bX1+Hz+dgdnRA2ulbKGTYYDOjq6oLdbkc6ncarr76K0dFRpFIpLCwsvCOHhFJP9Ho9FAoFjh49iieffBKnT5/GmTNnDkTAUbG4srICt9vNB8/rr7/OGZcfJI7dhz/84X8RiP0DFt33JHx5J+4QsL/Hra+vY2RkhPcUOsTIQ5NU4ZlMBoFIgk2Kgf0RbDqThTcUhT8cR24vB4VcioH2WkilYsTSaXxo6BA2XX4sbbrg8oUhEgkhlYphKtFg3eWFUCTArm+/wXQ4HIzgV1ZWMu2FaCutra2Qy+UIBAKcId3W1gaNRoPFxUUezxIqYzabYbVaYTAYEAwGUVdXh6qqKj689Xo95ufn2ZGAzOGB/YJSrVYjkUhgenoa4+PjyOVyPKWQSqXsawnsj3Oj0Siy2SwWFhZw+/ZtPiPIfYKKJ5VKhatXryIYDGJsbIyLvUAggFAoxJQVANjZ2cHGxgYikQg8Hg+nXFitVqhUKshkMrYo6e3tRSgUwvz8PILBIObm5iCRSPj3kkgkXKyWlZVBIBDA5/NBKBRyziwA+Hw+VlpTwotSqURzczN+5Vd+BYcPH+b9jAQNBoMBR44cQVtbG4aGhtDY2Ijq6mqo1WqcP38ek5OT2NnZweTkJPx+P+93IpGIeXQ6nY6N/0+fPo1YLIaBgQEcOnQI9fX1OHfuHKanpzE6Ospm/xQKYDKZoFAo0N3dDa/XC5fLxdMm4C2OPQEYxfcIcS2LVebv9XpXOHaUofZw500eXv9c1sOdLBm/Go1GiMXiAwURbXJEtNXr9YzUERROnCiSoFPqAyFXVCwolUouUkjIUNwZSKVSnD17FsPDw+jo6MC1a9fw6KOPMqLldrvZMZ4UvfPz81AqlRgeHkZ7ezt0Oh2mpqaQz+d5ZEibECUPqNVqlpLT7wnsQ9bvZKsCgHkIhFKR5QKZnZaXlx9QrS0vL+PIkSNYXl7mZAqPx/M2NTFZK3g8Ho7DymQysNvtXADqdDo4HA6YTCaOXisUCjhx4gSmpqawuroKg8GAra0tKBQKxGIxHjkWj1TocyUe4unTp1kkQUX2Sy+9hOrqaiwtLXFBJxKJ0NTUhMXFRaRSKbYXoZGv1+uFSCTCqVOneIM+c+YMFAoFGz1rtVrkcjncuHEDzc3NmJmZgc/n47E1qVIbGxsZARwfH0dPTw83EAA4codyGBsbG9kaghAN2pDoHivOjyXxSSaTwcjICPb29pDNZrG0tASdTgehUIiWlhbMzc0hFAohlUphcHDw7xz1/WOv//N//g9eeOEF3LhxAx0dHfwe0vr1X//19+nK/nHWw4jbDxurEs+I7p13QvCA/X2F4hGFQiG6u7vhdDoPcOxoBBoIBKBVyDA8Moez/a2QSsUwG3Vw+8PoarTBbNQBAP8v/dnpCcJQokJdVRkspTpkMntwuPyAAKizliMUiaO5tgLevy1sysvLMT09jVwux8Xa8PAwjEYjAKCxsZFtPM6dO8dc4sXFRfh8Ppw8eRJm874pN0VeUW5sIpHA4OAggP0m7+rVq3A6naioqEBnZycLx+h3F4lEePXVV5mrdefOHajVarS2tjJi5XQ6MTo6yhZJwWCQM58nJiZgt9sxNjaG2tpaRCIR/NIv/RKnK1y+fBlisRijo6NsON7U1MTxYFNTU7h69SrUQIDkkQABAABJREFUajUkEglUKhVqamrQ0dGBGzduoLS0FIlEAuXl5RAIBMjn81w4lpaWQqPRIBAIIJlMckyYSqWCXC5HPp9HXV0d3G43FAoFSkpKsLu7C4fDgUKhsP95a7XI5/MoKSlBZWUlnnrqKTQ0NHDzXl5ejvb2dkgkEshkMrjdblgsFszMzKCzsxOxWAx1dXXw+/2MplJxS44NBD6UlZUhGAyitLQU1dXVkEqlMBqN8Hq96Ovrg0gkwujoKJxOJzf5NBGiYo4+t2K7J6LRFDeoxdMn2ifdbjdPUoi7Ss/Oe7F+4sLum9/8Jj7zmc/AYDCgUCjgi1/8IosEPvGJT7Aa6p/DeriTpcKi2NyzmJBMsm4Km25ubsY3v/lNaLVa7tTC4TCjO2Q8SwHaLpcLGo0GsViMlbSEjo2Pjx/wzPF6vWhoaMDy8jIee+wxxGIxaDQa7pZ9Ph8aGxuRTCYRi8UwNDSE7373u5wjGwwG2aRRIpFwZJHL5eIw58rKSnR0dBz4nQEcQPYehqJpg6OR7draGsRiMTY3N9HS0sKZooT+EeG5paUFs7OzsFgsLOMn+wQAjLLpdDo0Njbi3r17aGxsPOCraLPZUF5ezoRuAOz/R93m2NgYHnvsMWxvb6O/vx8ej4e5E4TEFgoFLjBpzGS329k7b2JiAgMDA/B6vejt7WUkiw7CtrY27tgnJiYQCAR4FETFImVGLiwssLeT2WxGY2MjVlZWEI/HMT8/j0KhgFgsBqfTiZGREZjNZubmSKVSHh/4/X40NTVhdnYWyWQS+XyeN2yPx4Ph4WGUlZXhu9/9Lts2UIoJLTKlLs78fP311zEzMwO73Y54PI69vT00NzdDqVSirKwMOzs7kMlkzBn8IK0XX3wRFy9ehEKhwNWrVw941wkEgp/awo6emWLEjdTctD8Uf+4Pm5PTnvOwxYPZbOY9iLif9KzTQUeHqMlkwsxuB5QdSkxJdVwEwgKIKithKyo0D4yA3W6UJxKQBoP79hYLC2hoaEBtbS0GusHXUSwWovFZY2Mj25bs7u5CIBBw0Wmz2XjfMhqNnN/scDhw48YNVFVVQaPRcAoPHeAvvvgi6uvr2RMtlUqhubkZEonkbc+P1+tlPuvi4iIjTKurqzxKJRN2kUjEPDECDFpbW7G+vo6enh5cvXqV3QROnjwJh8OBzs5O3LhxA5FIBPfv38epU6dQWlqKkpISfOMb34DT6WTzY5PJBI1Gg5KSEjZcDwaDjM5/+MMfZtuRQCCArq4uKBQKzMzM4ObNmxCLxWy2XigUUF5ejq2tLZw6dYpFHxSdJhKJUFFRwVy7+vp6lJaWYnNzE2KxmIs+u92OmpoabGxsIJVKwWw2s6n85OQkKisr8cYbb/CYtr6+HlVVVZienoZSqWSlLCG0lHREZxGBGHTfWiwWpFIpRKNRHDt2jJG2d5pcUOYsFXU/rCEyGAwYHh6GXq/nOLtigIOM39/t9ROPYj/3uc/hwYMHmJycxJe+9CV86lOfwosvvggAb1MH/rSvYgiWECur1cq+bbSpOBwOThaorKyEUqlEd3c3FhYWUFVVBZlMxghfsRCCbqC1tTVMTExAq9ViZWUFqVTqwJhteXkZarUaExMT2Nzc5J+lVCpx9uxZaDQadHd3840ok8lQW1uL+fl5BAIBqNVq3Lp1C/39/Ugmk1yI0gNCKBShVGSRUFlZCbvdjurq6gMPhNVqRS6Xw+jo6AH7kofft8rKSgwNDbFRL20e5Ofm9/t5bEuKYYLFSYE8Pj4Op9PJqqbV1VVEIhE0NjZieXkZ4+PjGB4exoMHD2A2m6FWq1EoFA6kTRRL7dPpNFZXV9HY2MifIW0G6+vrmJqaYjI1jZmKk0TGx8cxPj6O2dlZ2Gw2JvoSv45UVN3d3ZDJZJifn8fY2BiWl5eRSCRw4cIFlu0Tv4PeLzLm7OvrQ01NDU6fPo1Dhw7BbrcjGAxiamoKExMTSKfTrOqk/OLjx48jGAyipKQEhUIBhUIBAwMD2NvbQyqVglqt5hBsgUDACG0ymcSFCxewsrICk8kEtVoNg8GAtbU1jijKZrNwOp1QqVQIh8PMx/N4POjp6cEjjzyCJ5544gOF1gH7yRO/+7u/i3A4jI2NDayvr/N/a2tr7/flvWeLTFIf3r8IpSV1OinUH7apMZvNjNwUo+/AvpVFf38/W0WYTCbmHiWTSUQiEU4p0Ov1nCJTTKWg6xgbG+O9r3i/oxzlhYUFVosbDAbMzMxwuk9lZSVPO+g59/v9aGhogFwuh0Kh4H2ALJTo+TUYDDh16hTOnz/PQoe1tTU4nU5uarq6unDx4kXcvn0bk5OTbJI7ODjI6RFra2swGo2MwmWzWcjlcrS2tqK9vR0dHR0oFApoaGhgl4KWlhaYTCbo9XqUlJSgtrYWnZ2dXKQ999xzWFxchEgkgsfjgd/vZ/+60tJSNokfGBiARCKBQqHAvXv3kE6nIZfL2TC8o6ODuWfAvu2NUqmEWCxGSUkJBgcHIZFIMDo6ikAggGvXrkEikSAajUKhUCAUCnFzbLFYoFKp0N/fD5lMBpVKhfb2dk4sOXHiBA4fPoyjR4+ipKQE/f39fP6QabFer+cij+IiM5kMenp6EIvFIJfLMT8/DwBYXl7mxI9cLoeTJ08yx4/OJSrU0+k0j+OtViubNFMzo1Kp2PqG7mMSCRVTiQhoyGQyHB3pcDj4jKPvJ762x+NhCgKtXC73wTAofqeVzWZ5tNXX14fr16/j+eefx8rKyk+9W/vDqxiCpZxPIk3mcjlWv5IhKG1MVOUbjUbk83nU1tbC5XJhe3ubv5/k0h6PB2trawdy+ZaXlyGXy/H444/D7XajoaGBjSKpuCq+Niq6iuNNPB4Pmx+TNQqpP4u7kWJyKMVaWSwWTqqg1y9+D0jpSWRfUuYWd9/FRFWNRoNgMMhRaYSOFQs66D0bHx9HPp9HR0cHR1dlMhmUlZVxt0bcRkpJyGaz8Pl8XPBms1kA++NwiuYiIm+hUIDX68W1a9cYRS0pKYHJZOIYLiripVIpqqur+eDJ5XJscdDU1AQABxz86XCkf0uHjkAggEajwdLSEoRCIdbX19Ha2ore3l4W3xQXzlRIi0Qi2O12WCwWTrLIZDKIRCKQSqUoLy/HlStXkEql2OYlmUyyx1QoFMKjjz6KN954A4888ghsNhsLbejnvvLKK4yo1tfXo7OzExMTE5zvS/cTRd6RzY3P50NpaSmjNrRp/n3Ky3/Mlclk8LM/+7M8Ev/nskpLSw80msA+xYBGjbQHAAdjw2iJRCJYLBYu/IqnBt3d+7AZGWjncjmOziJEjNSoGo2GBTkAOAqwOB6wGL2nvYiC6LVaLcrLy3Hu3DkMDw/D7/fjwoUL+NjHPvY2fh/ZUJGROI1ivV4v1Go1xsbGsLe3x4KDqqoqAPsoe0NDA7a2tpDJZFicRoVHJBKBWCzG+fPnD4ylL168CKvVitXVVWg0GqY81NTU8PtAClSHwwG73Q6r1YpEIgEAiMViSCaTaGho4HQLq9WKa9euca5tSUkJC6IohzWTyaCvrw+Tk5Ow2WyYmpqCQqFATU0NgsEg86zn5+dx7NgxVsXev38fuVyOr/XatWvY3NyEWq3mUejc3BzKy8tZ7bq9vY1CoYB0Og29Xo9QKIStrS2OUuvs7OSEJZpEqFQqzM3NMRdNKpXizJkzeOWVV2A0GnnfIGRscnIS3d3dCAaD0Gg0PLpOJpNMpSG+tcFgQHV1NU+daLpEHqM2m43FgiRgKaYyFZ9zDzc8lH1O0w6fzwe9Xo90Oo1sNsvm+SaTiX9fAh+oiCQK1HuxfuIdrKysjD2sAMBoNOLy5cuYn58/8PV/Tqu426WCqrKykuNgrFYrKyfHx8exvb2NqampA3muIpEI+XyeERBC8Do7O3H8+HFYrVb8/M//PKqqqtDT08OO3cWjDb1ej2g0eqC7zmQyuH37Nl599VWG4c1mM9tw9PX1obe3l1G9Yj+3YnIoXc/m5iZ/zmQ4+k5LKBTCYDDwoel2uxGNRvHSSy8hGo1iamoKiUQCuVyOo7joYSDYm1RnJNa4fv06IpEIHjx4gOnpaTbLJS6N3W5HNBqFy+WCx+PhA8NisTDPkXz1COlsaGjgTeTcuXNobW1l0YbRaOTrN5vNLDwgLyOC+iklBAALBEjNRZYGxJ+jRcjC4OAgDh06xJYpqVSKY45ovLq4uIiRkRE+JKkbBcDF3WOPPcZ5xYT23blzB/X19RynQ9FJKpUK0WgUBoMBmUwGjz/+OKLRKKRSKcfbkUVOQ0MD6urqMDAwgPHxcYyMjCAajcLhcKC6uhoqlQpDQ0NQKBQcJr66uso2MxMTE1hZWcEbb7zxti74/V6/8Au/8FOfCftOy+fzve2zICSMivqH77NiRXsxMk+HXzAYZCSEDkh6JoC3EA8qjIi0T/tKOp3mTGgqkKiBIfSXXofUmERyd7vdGBoaQqFQQG9vLx/UMpmMR63UuJWVlcHlcsHlckEqlaKjowP37t3D+vo6dnZ2mNgfiUTwv/7X/8/eu8e1Wd7//6+QkJAQTgmBQDgXWs6H0laxtS2Vtp6r3ZzOs85uzjmnTt3cnKfN6ZzHr9PNYz1Mp24ePh7bWqUne4ZwLFAolEBIyiEUCAkJhOv3R3/X5Z2QcGihHHo9H48+lDv34bqv+07u9/0+vN7PseKACy64AAkJCdDpdMzYod40tVoNg8HACq+MRiOLRCxdupQVBQQGBsJiscBisSA0NBQWi4VJHPn5+WFgYAALFizA8uXLERoaissuuwy5ublQqVRMd2358uVM9mrx4sXQarXw9/eH3W7H119/DYfDwTT6Ojs70dPTg/z8fCQkJDAx+3379mHZsmUYGhpCRkYGe+GTSqWQy+VwOBxoaGhgnSji4uLw+eefo6urCw0NDTjrrLMQHR2NwsJCnHvuuUwiivYDp1JJ1JNVX1+PvXv3IjY2Fm1tbQgNDYWfnx8iIyMRFxfHtE1pVIV6D0tKSlguY1BQEDIyMpjndWBgAB0dHTh06BD6+vowPDyMmJgYZGVlQa/Xsx62UqkUhBB2z9LUFPps8CyCoG006QsolXGiKgl0jlJSUlgEiIZgOzo6IJVKsWTJEpZ2IsxN1Wq1U9Zy9ZQ9du+8886IJGOpVIr//Oc/uP32209197MSaon39PSwN2Chx4xeZBr+oz+Iwv6mGo2G6TwFBgayQgramUGn08Fut+OGG25gRiT9nKpt096CW7ZswZo1ayCVSlFRUcGSh/38/FjptslkQlRUFDs2RaPRoKSkhP0/9dzQtxVaPUl/KIVvNUIvH30jo2Fc+val1WpZm6uKigqWhyBsN0XnhObrUG+jVCpFTU0NEzMODw+Hv7+/W0Ir9QgMDg6ioqKCvU0BJ15CAgICmMCvQqHA999/j9TUVEgkEiQnJ7OkZSo/8P3332NwcBBtbW0Qi8WscpWGnuj502sUEhKChoYG1gM2PDwcAwMDboU09J5xuVyIjIzEwYMH4efnx37gaJ/eyspKNDc3sx6OAJCfnz9CMkYsFjMv6ODgIBoaGlheVHd3NxYuXIimpia0t7ez+zQ3N5c9vKkkBd1ve3s7ewACYPlPNGeps7OTtUwqKChgnkvqraFCoNRAtdlsTMphJlXFulwuPPnkk9i8eTOys7NH/K4988wz0zSyqSUyMhI2m82tGKKiogIhISEjWr4JX1qp94FKOlCNuKGhIbfvPjUCaRoBbTFHXxgBMP1J+ptIe3bSoita4a/T6dj9KcxXdjgcOH78OIaGhlhBxoIFC5hGHvUU01zAiIgIhIWFsZ7OdKx6vR4ymYx1x8jJyYFOp8OLL74IhUKB3bt34/e//z06OjqQmZnJvI1U35KGCKmnsaurC2FhYQgICMCCBQtQX1/PDAua42Y2m9HQ0MDGER4eDqVSCYlEwvJxw8LC4OfnB5fLhR07diAgIAAmkwnh4eFuoUOadvLVV1+x3DRhqJu216qurmbzfPHFF7Pe24ODg1i8eDH8/f1RUVGBc845By0tLQgODoafnx/S09PxxRdfQKfToaWlBUuXLkVPTw+kUikSEhIQHR2NTZs2sbkOCQlBVFQUCw/b7XYEBAQwY/mPf/wjampqkJeXh3//+9/4/PPPUVBQAKVSifj4eOzduxcXX3wxhoaGoFKp0NfXh4CAAFx00UU4cOAAtFotK8gSiUSQSqXYt28f1q5dy7Q9e3p6WBs1KogszAOlzzzPCIJnTqjwe0CfhfHx8W7ebM9oFN2n2WwekZs6lZySYVdaWoqdO3dCKpVi6dKlI9rNLF269JQGN1uhF5L+IHlD+FZA1/HsJVdUVOQmOkt/0IAf8lzow5zeTJ5NhquqqqBQKFjD7ezsbLdOFDTXCwAzjmiIlv5oU+PJ39+fNe0OCQnB8PAwCgsLWTItNfpoToLwoUBd/hSxWMyMOXp+NP/A8xyoKG9hYSE7V6fTidraWlxxxRXYt28fUlJS3HLXqFI4raRyuU70ja2vr0dvby+io6PR3NyMpUuX4vjx46ywJC0tjb1V0aTv4uJiLFmyBLW1tejq6sLg4CArPvHz80NMTAyam5thsViYh0MYWo6KisLevXtZpwhaneVZHWU2m1FXV4eIiAgcPnwYeXl57D6hhrvdbkdsbKyb+jmVQ6EeTqExXF1dzfpLhoWFsYdHV1cXDAYDjh49ioSEBAQFBTGPDA1HuFwulJeXs1A11RujBrOfnx/Lh/KsEKP39MUXX+ymCUWP7y2kN91UVlYyY7Sqqsrts7mcViJ86QTgFrb0rGT3Fp4yGAzM+KfGglCzk77oUg8RNbxoBIPeu/SeBcDSVoReQgqtZqQFXLRAaNGiRczAob971INN16O/obQqlorN0he07OxsVvlPxZt1Oh1uvvlmPP3001i6dCnztgvz/xobG7F27VoMDw+jtbWV/Z65XCdaqCUmJrL0iN7eXiQlJSEmJgYVFRWs56ndbodcLkd7ezvq6+uRmJiI48ePY3h4mLWRpG3Ptm/fjqCgIBw7doxFXFpaWlBdXQ2Hw4FzzjmHecjsdjvsdjtiYmJQXV0NhULBjMf4+HjExcXBarVi9+7d6OjoQHR0NGsj1tXVhcLCQtTX1+PQoUOsTdjAwADrEd3Z2Yne3l4MDQ2hvLwcAFgBGe3iolarYTab4e/vj5iYGFitVoSGhmLPnj2srzDtsVtdXY28vDx2n23fvh0JCQmQSCQsVL57924sWbIEu3fvhk6nQ3R0NMLDw1FdXQ2dTgeTycQcClu3bmW//+3t7cxYF9779JklbH1ZXV3tlv4DjHxuG43GEQab5z6FoV3hiyz9Lk0FJy1Q/Nxzz+Huu+9GaGgoJBIJOjs7kZGRgTfffJPFtOcCp1MgdSy8yQ+MtT7NTxMaXp77E+a5Cf9LpUiamprQ19fHvH5jjWOi4wS8q9hTvvrqK3R3dyMsLAwXXnih2/pU60kopEuFiqnbHPjBKCkrK0Nvby86OjqwZs0a1oKLPhDolxQAGw/9UtrtdpSXl8Pv/29P1Nvbi6KiItYrlq5Pc0JUKhVEIhHrXEHL7D2FXYET+Yh6vR5KpRJ2ux2pqaluvSaFoS/A/WHszWNHsdvtKC4uxvLly1nYnR6PVjlLJBIWcvV2/7S3t48Q1z5dzKTv31zD19wKv7/ASBFuoRacUCBcIpGwkGteXp6bWDi9t3t7e91eQIxGo1tnHur9o9DvMr3/qe6cWCxmXnHP3w7aaaexsRGFhYXsxZV+j6kXmrbhEolEKCoqYlXstDMGbfVI9c88RY2NRiMMBgOqq6uhVquxZMkSaDQafPjhh4iOjnYLs4nFYpSWluLzzz9HVFQU4uLiEB0djf7+flRVVWHlypUICwvD/PnzUVZWxrqz5ObmorKyEsAJY7esrAw2mw0RERH48MMPkZiYiOzsbOTl5eHbb7/F/v37odPp4O/vj/Lycmg0Gub1DAgIQE9PD4KCghAeHg6TycRy7UwmE1paWhAaGorY2Fjk5ubi4MGD+NWvfoWGhgZs374d/f39zEgMDw9nnRTq6uowNDQEh8MBf39/Jmlz9OhR5hl1OByoq6tDf38/MjIykJCQwH7n9u7dC5vNxtJu5HI5YmNjoVQq0dXVxYrHdu7cyYo+UlNTmahyUFAQk0ZRqVTYs2cPFi9ezApBqIYi1VhNSkpye/EX3uf0GVBbWwuZTAaj0YiCggIoFIoRzyVhkZC3F9XxPCepM2FaO0+88cYbyM3NRUZGBmJjY3HPPffg3nvvhUgkQktLC15++WU8//zz+Prrr5mez2znTH+wnIyRNtnHocZJYWEh+7EcTTtLWHbu+cUT/nB7epdGe6B5HtMzmdyXkexrX97Of7QfiTOVqf7+VVRUIDMzc9wFE9XV1ViwYAHLvZnNjGduvRlN9GVJKpWyVoC0AIAWDlFPkPCFhMpLxMfHs6R1qkVJX5KoV4tqPXrmNrlcP3Qp8HzpAX6IetDvYllZGVpbW5nALJUzksvlOHDgABQKBTo7O5GXl4eCggIcPHgQVquV6aLRlxqaCxgREeHm7XE6nfj2229BCMHatWsBAFu3bmXCtsCJsB01vL7//nv09vZi2bJliI2NRVNTE2tluGzZMshkMlRVVbH2jWFhYTAYDAgMDERGRgYqKiqgUCiwa9cuDA8PY2BggBk2NpsN27ZtQ3JyMutEZLfbodFoEBAQgKKiIiZFRAWYe3p6MH/+fJSUlKC7u5sVyqSkpGDFihXMuDEYDOjp6cHw8DCCgoJQVVXFUoicTieam5sREBCAlpYWVkCRmZmJvXv3wt/fH4ODg+jq6oLdbkd+fj7y8/NZ14kjR47AZDIhNTUV4eHhTAPzxhtvxM6dO2E2m9HZ2YkDBw7A398fKSkpyMnJQXt7OywWC/z9/TF//nyEh4eze6OrqwtqtRqtra2ora2FWq1Gdna2WztDasQJOyPReyckJAQff/wxcnNz4XQ63WR8APcuKt6MPrrOWL/7M6KlWFpaGuv9Njw8jPXr16OgoAALFy5Ebm4uQkND8c9//hNvvfUW9u7dO2mDnE7OdMOOw5lOpvr7R4tohHmloxEcHIyysjKvYtuzjdHm1tuLky+PnfCB6PnSI/TIyWQy5l1vb2+H1WqFQqFguU89PT1MtF3o1aPGm6f3WPjgpJW4nZ2dEIvFyMrKQnV1Nfr7+9HV1YWYmBjk5uayl67NmzfDZrOxrggrVqxAcnIye4mcP38+CCHo6elhhh0NsdLj0nArDSEWFRWho6MDjY2NLMGfFpEoFAosXboUn332GWJiYtDd3c26OpSUlGDevHnIzs5GT08P0tPTsWPHDsTHx6O2thYHDhxAdHQ0cnJyIBaLsX//fmZc0T6ufX196O/vByEE0dHRuPjii/HJJ59gcHAQNTU10Gq1yMjIYP1yW1tbMTg4iAULFiApKQnffvst0tLS4HQ6MTQ0hODgYAwODmLZsmVMgH7+/PlMeP/YsWNoaWlBVlYW0z6l6gxUTUHYtWdgYADJycno7+/HT3/6Uxw9ehQZGRkwGo3w8/PDvn37EB0dDeBElXZmZibLyevo6EB7ezvq6uowODiIs88+GwqFAl1dXazFIU0NOPfcc1lLsc7OTla8ExoaykT+qRwONeg8W1JSaa7+/n709/czmRshVEyf3h/C+1+YK+8rCjWe7+CpMKHXzpqaGgwMDKCyspK1ePrwww/xpz/9CQMDA4iJicG8efOg1+vx+eefIzMzk+U3cDgczkyDEII//elPLNdqLGj7qbmOsLhB+FCiebhUmoLmvB48eJDJMtH2TdTAU6vVkEqlzLCiuU/C/Fqz2Yz4+Hh0dHRAJpOxcKxQYol6Bek+hEUU9G/qFezs7ERKSgqGh4exaNEit+I0sViMzMxM6PV6iEQiJCcno6urC4mJibBYLKx4yrNTAD2+2WzG8PAwE8Dt6upiQue5ubks99RoNKKyspIZF52dnViyZAmampoQFRUFu92OkpISGAwGREZG4quvvoJWq8WxY8dQWFiIjz/+GP7+/iCEMKM2KysLUVFRqKurY0LzwnxekUiEBQsWoKamBqtWrWJFC7QAb3h4GHq9HgsWLGDhxl27dkGr1aKzsxPnn38+mpqaWJpGe3s7k2ICfhBV7+npwcDAAHbu3ImgoCAYjUao1Wo4HA5kZGQgMjISISEhMJlMiIuLQ2dnJ44fP47o6Gh8/vnnWLlyJUwmE8455xx88cUXzACluXJUuFer1SIvL48V6IWGhrJ+tvRlrLa2FvX19dDpdLBYLMjPz2etOevr6xEbGwuz2YzU1FQWnq+srGR5nWVlZRgcHGTXmWrXdXV1MbUJz3x4zzx6auht2rQJQ0NDLBXBM6/udDHheEJAQAAWL16MpUuXIicnBx988AGGh4dRU1OD8vJy7NixA9u2bcONN96I7u5ullfB4XA4M43ly5ejrq5u3OvTvpxzHW/J3r6W0wchcKKoi1ZaU6+m8KFIDUFaYCH0mFAvIM0jFR7Ps2CDhsuo5ws4UXQ1ODgIl8s1oiK/oqICSqUSJpOJPXRpK6qDBw8iISGBVTDSkGtGRgZTIQDAvJU0PHf48GG0t7djwYIFTDfUbDYjLy8PTqcTX3zxBUQiEWw2G2tov2/fPgQGBrI+o7Qbw9GjR3HOOedg165dWL58OT7++GNmsF1wwQVoaGiATCZDf38/QkNDWVpKamoqq5RNSEjA4OAg/Pz80NfXh6qqKiQkJCA1NRU9PT2QyWT44osvEBsbC6PRiDVr1qCtrQ3z5s1DTU0N09lbtmwZ3nzzTaatR8WeQ0NDYbPZEBoaiuDgYNTV1TFv0/z582E2m5noMSEE+/fvByEEiYmJGBwcZG0QNRoNqqqqsGjRIlRWViI6Ohrt7e2Ijo5GZ2cnmpqamLB8cnIy4uLiMDg4iCNHjuC6665jQs/Ui0ZF6s1ms1sRiMt1ovduX18foqOjMTg4iFWrVuHbb79Ff38/WltbWfeTzs5OREdHuxXvUEFlmvdJ7yv6QiL8LtD7huaYtre3IzEx0aenbqo56USRp59+GitXrkRjYyNuvfVW5OTkIC4uDqWlpYiOjmaq4Z7VZRwOhzNT2LZt23QPYUbgLfTqTebEczlFo9GwSm1aXSp86An3bbfbWR/iJUuWoKKiAlarlXVx0Gq1boUXLpeL9c6moVBaVavRaNy8e5GRkbBYLPDz82PSKyaTCSEhIdi/fz+WLFkCg8HAvDE7duxATEwMjh8/DgCsGKS8vJx5J2nxhbDvLc01E4vFzLCkoVrgxH1FBZBXr17NQm4AcOTIEWRlZaGnpwcJCQmwWq1YtWoVKisrkZmZidbWVmRlZeGLL77AunXr4HK5cNVVV2HHjh1Yvnw5zGYzamtrkZ+fj9raWtjtdsybNw/Nzc1YtmwZ/Pz8sGPHDmRnZyM6Ohpi8QnR85KSEtYX+9prrwUhBL29vVAoFMjNzUVNTQ0zdqhUy+LFi7F3714MDg6ivr6e9Yjt7+9HbGwsBgYGEB4ezmRtiouL4e/vz6rmaStEapTOmzeP5eHt27cPnZ2dSEpKQlhYGPr7+1lRh0qlYp0gKioqcPjwYVitVrz77rvIz89HVVUVFi5cyCqCo6OjERQUhCNHjqCxsREKhYJ14RkYGGDSMDt27EBPTw+MRiOSk5MRERHBeqkLhfJp3hwN+VPovUrvX6EUCn2xiImJYeHZ6eKkDbvc3FyUlJTg1ltvxdlnn83ah0kkErzxxhsAwNoQcTgcDmdm0tbWBoVCgaGhITepI08JFG96XoB7YRLNVaIyPLRa2+FwsH3X1tYyj4q/vz8yMjKYtqbNZmPH8ExQp0YTzXeLiopi+wHAuhnQ5Hhq9IlEIvT09GDJkiXo7e3FsWPHoFAosGPHDiQlJaGhoQEZGRlMRokKBgu7Amm17n1vAbjpgLa0tCAyMpJ5eOh/L774YuZZovvy9/eH1WpFZGQkRCIRa2FG8wOTkpJQXV2NlJQUlJeXY+nSpTh06BCCgoJQUlKCkpISRERE4Ntvv2U92vv6+rBu3TrU1dWhpaWFSTL5+/tjeHgY3d3dyMnJYT3JtVot3nvvPaZnmpaWhl27drHcOgAsT1Gr1aK1tRXBwcEIDw9nxmBLSwuioqJYrmRLSwvCwsKgUCjQ2tqKSy65BL29vSgpKUFLSwtSUlKgUCgQFRWF+fPno729nQkSL1iwANHR0dDr9YiJiUFqairEYjETJY6Li0Nvby8SEhJQU1PDJGs6Ojrg5+eHBQsWQCaTQaVSISUlBY2NjVi1ahWkUilKSkpYoYdKpWKiyrQ4h8rXCCusqZxWUVGRW34dvVeFXY2ELSRppfB0KAgIOaXOE/PmzcM333wDo9GIjz/+GO+//z4aGhpwzTXXTNb4OBwOZ9opLi7G7bffjrKyMgDAa6+9Nr0DmkSolpZEIoFarXZTx6fQzg3e8oVG0yWkxlJnZydSU1NhsViwcuVK5OXlISYmhokg+/n5ITg4GPX19Sx3ShhupYn4Qu8JFdiWy+WskINWvdL+oLRnakREBEuaDwwMRGtrK5YvXw6r1YoFCxbAYrGgvLwcZWVlzBtIz0eojSnM96MSQe3t7aw7Aw0BBwQE4LzzzoNSqYTBYMDWrVthNBqh0+kQHx+P3NxcyGQymM1mNDU14aOPPoJMJoPVakVcXByWLl0KpVKJgoICJthusViwf/9+WCwWfPfdd0xst7u7G3a7HTt37sTQ0BDr/SwSiVhbLlpgQD1rn3zyCQghGBwcRGBgIGpra7F27VpIJBImpr5161a0t7ezLhwlJSUYHh5GWloa0tPTERsbC51Oh+DgYPT19WHZsmUIDQ1FfX09HA4H9uzZg66uLiZMTiueIyMjERAQgISEBCiVSqxZswaRkZE4duwY8vPzkZWVhfz8fPT19UEkEqG4uJh5BQ8ePMgEll0uFzO+o6KioNVqkZiYiKSkJHavVVRUMBmWuLg4BAUFYc2aNW73jLDrilZ7oh2b2WxGW1sbKisr2X3Q1NSEb7/9FhqNxq3LklCPbqaIrk9KzX5kZCTWrVs3GbvicDicGccLL7yAjRs34vHHH0dnZydKS0une0iTBm3jRXW+pFLpuHUyhXIOQvFW4AcPFfXc7dixg/WjXrJkCZxOJ+v1HBYWhsbGRqSkpIwolPAsphAWMlDBXmGRhfD4tKKViiRbLBb09fUhKSmJVTSazWamwUdlMsRiMZPCoA9ro9HItOyAHzoI5eXloa6uDtHR0aioqGC5g3QcBw8eRGdnJwwGA/z9/dnnOp0OTqcT7e3tyMjIwMGDB7F48WLW8UDYFSgyMhIRERFISUnB119/zQo8pFIpUlJSsHfvXmRkZLDK4vLycpx11lk4dOgQzOYT7RtlMhna2toQHByM48ePs16rVKrEarWisLAQIpEI7e3tOHr0KKKjoxEZGYlvvvkGQUFB0Ov1IITg888/h06nQ2lpKVJTU6FSqbB582ZIpVL09fWhtLQUK1aswNGjR9He3o7g4GA4HA5mnEskErS0tCAuLo610uzo6EBraysyMzMhlUqRn5+P8vJyZGRkoLm5GQUFBWhra8Px48cRExPDZGtCQkKYYDE1tii0lzXtBTyWcDCd97a2NqhUKrdqedqdo729nXlkPXM/R/venC7pMGCSDDsOh8OZy6jVaoSEhOCJJ57AI488gj179kz3kCYNYd9ib90mhCFRqswvLGoQVo0Kw7TCQgiTycSMqfj4eNaSjkpRWK1WludEQ7I0SV3YsURYFOH5kBQup7lSVIxYqVSivr4ey5cvdwvdCg2srq4urF27loVxPUXEvUF1MdevX886FAjHoVKpAABJSUmQy+VQKpU4ePAg0+GjnTWMRiMLN/b39yMsLAzd3d2oqalhFaUZGRkICQnBbbfdhuLiYmi1Wvj5+eHYsWMIDg7Gvn37EB8fjx07diAkJAQHDhxAVFQUjhw5ArVaDbvdjqCgIKjVaoSHh8PPzw92ux09PT0sN4x2iqirq0N7eztqamoQHh7OxNVzcnLwzTffICAgAIcPH2YOHZvNhtjYWHR0dCAhIQHz589n1bsrVqxAQkICk0pJTk5GX18fent7ERYWhsjISKSnp7OwZnBwMPP0XnTRRdixYwdyc3PR29uLrKwsREREsGukUqmYF412/6DXXHgNafs7YVceeo+oVCro9XpkZGSgo6MDZrMZ8+fPZ95Tei9Tsevc3Fx2zWheKW3lSYXpads6YeeU0dIZJpuT7jxxpsB17Dic6WOmfP+oQDblvffew9VXXz1t45kM6NyWlpbC6XS6if4KEWp2RUREsO4snkUR3owgb0UZVHOupqYGDoeDdWIQFkdQQ5KGIT21wITCyUIjasuWLXA6nYiJiQEhhEmSUC9dfX09BgcHodFokJSU5Na9xWazwWKx+JwHoRAyPWZ5eTkUCgVCQkKQl5fHOv3QcB2VFHE4HCgsLERxcTFrz0g7ZxgMBuzfvx/d3d3IzMxEcHAwSkpKcNZZZ8FsNqO7uxvp6eno7u5GXl4eCx9SNYqgoCDs3bsXcrkcwcHBrFWZVqvFkSNH0N/fz7Rm6Xy2t7fDZrPh//7v/6DRaBAZGYmhoSHY7XYkJCSgoqICu3btQmZmJtO/i4yMBCEEra2taGhowIUXXojw8HBkZ2dj3759+Oqrr5Ceng6Xy4XFixfDarWyHtMul4t5AqOiopCVlYVt27YhNDQU4eHhOHToELq6ujB//nzWdkyn0zE9ub6+PpY7d+6552Lnzp1M5y4xMRHNzc3M8KLeWaEuIi36EV5Tg8GA1tZWdHV1ISgoiFX8ulwuyOVy5lkdrUOFTCaDyWSC1WqFzWZjLcj6+/vh7++PxYsXj2gbKdwP7aox2b9vp5Rjx+FwOHOZzz//HHl5ebjllluwfv16bNmyBQBmvVEnRC6XY9GiRV77sgInjBiFQsF6F3v2qfbMUxLiqYdHvVn0oUv18KhHBfghhKpQKNwKIYAf2tzRftdOpxP79+9HY2Mjvv32WxiNRhw5coQZEuHh4YiJiUFRURHr70yLCZxOJ/Pe0TE5nU7WA5YeT+hdpF42s9kMvV6PgIAAGI1G1jNZr9ejtLQUZrMZIpEIwcHBkMvlKCoqgsViYT2tJRIJVCoVS7r38/ODWq2GVqtFc3MzdDod6zG7cOFCBAQEsCR9qldnNBqxe/duVFRUADghRXbuuediwYIFOOuss9DS0gIACAsLg7+/P+RyObKyslBbW4uIiAhmyFDJFq1Wi9jYWCY7Q9t+9ff349ChQwgICEBISAjkcjkKCgrgcDjc2jGGhYXBarVCqVSioaEBvb29+O6771gonM4z1ZsLCgqCxWJBZ2cn6urqUFdXB4vFgoiICOj1ejQ0NECtVqO3txeDg4PYuXMnWlpa8MYbb6CnpwdlZWWsQjczMxNmsxmlpaWwWq2oq6tDaGgoa0VJw9veSEtLg1KpRGFhIWJiYhAfH+/WaULoafOWT5ednQ2FQoH58+dDJBJh/vz50Ol0yMnJYUacZxiW7ofq9U023LDjcDgcD5577jns2LED99xzD95++21UVVXhvvvuwz/+8Q/861//mu7hAQASEhIgEonc/v3+97+f8H6oJIY3PB9INLdNr9czsWbPwgphGzGtVsty+IR9jqmWnFarRVZW1ojt6TFpaIsK8NKKWJPJhK6uLphMJphMJmY06XQ6nHXWWbBYLLDb7ejq6mI9SPPy8piXbmhoyM2Ao2OKj49HVFQUGy/1Lm7duhV9fX3Q6/XsM5fLBbvdjoKCAmZ8+vn5ITw8nIXnWltbWfs5WqErFosRHByM4uJi9PX1MU0/2oN2/vz56O/vZ3lh1KigfaePHz+OsrIybN26lXnBFi5cyMKMVVVVsNvtCAkJgU6nY6oVdrsdL7/8Mrq6ulBbW4v09HSEhoYiPz8fBw8eZF4u2rYtPj4eMpkMer0eZrMZ33//PRwOB5MsGRgYwP79+9HU1ASLxYLc3FxmgEZERKC0tBTfffcddu/ejcrKStY7u7m5GQaDAYcPH4bdbkd3dzcSEhIgk8mQnp6O6upq7Nq1Cx999BG2b9/OtPloezW1Wo2AgACmE6fVamGz2bB9+3YEBwejv78fQUFBqK6uhkajgUKhGFHQQO/FmJgYJCYmYtGiRZDL5YiLixvxgiO8v+n/63Q69qJChbr9/PzQ1dUFQgikUqnPMKxwn1MFN+w4HA7HA4lEgnfeeQctLS248sorcdVVV+Hzzz/HFVdcgeeffx4zJYPl0UcfZcaNyWTCAw88MKn793wgAe5aXsDIqli6jdBTI/TI0W2kUinTVfO2PTXu6AOQekqojFZ2djbTDMvLy2MeKbvdjsDAQBgMBpbjRo9JQ74ajYbp4BkMBhgMBgAnCiJoSyq9Xs/Gp1AomCFC8ww1Gg3Cw8OZzMbWrVuRkpKC6Oho1NbWQiqVwmazMRkWu92Ow4cPs0IRKrXicDjY2MxmM6qrq2Gz2bBjxw44nU4WpqupqUF8fDwOHToEo9EIQgg6Oztx+eWXw2w2Izk5GTt27GDFJv7+/pg3bx6rDP7qq68wb948dHd3IyUlBe3t7Vi3bh3zmG3btg1NTU2or69nhvePfvQjXHvttVi8eDGuuOIKVlyj0+mwa9culJaWYteuXaxzQ35+Pvr7+5Geng5CCDQaDRwOB0JDQ7Fp0ya0tLSgqqoKNTU1mD9/PuRyOebPn4+EhAScf/75kMvlUKvVCAsLg1qtRnJyMrvGYrEYSqWShWZDQkJw/PhxaDQabNq0CeHh4TAYDEhLS2N9jL1VbDudTtZSbjRPnvC+ofvwVQFO71PaFk7YeUX4uaeBGRkZOeqxTxZu2HE4HI4Ht99+O1599VWcffbZ+Oyzz/DEE08gJycHdXV1MJlMSE9Px+LFi6d7mAgKCmKeBK1WC6VSOWn7FooDCx9I2dnZUCqVTM/NE2oM0apBAG5eO5fLhaamJjQ3N0MkEo0qrUIfpDQETEOh1ACLi4tDYmIiM9hkMhkKCwsREhKCK6+80i2PjqLT6Zi+KvUACr13NCyrVCpZuykabhR6E+VyOQsRb926FcePH0dDQwMsFgszDouKihAXF4eMjAzYbDYsX74cCoUChYWFsFqtTK9NiEqlgtVqxcDAAPPmUe245uZmrF69GlKpFIODgzjnnHOwfft2aDQa1NbWYt68eQgKCsK5556L5ORk1re1v78fqamp6O7uxm233Qa5XA6Xy8VaqQUHB8NisWBwcBDDw8Noa2tDcnIyZDIZMjMzcffdd7M8RHpuoaGhaGtrYyH1/Px8lJWVIT4+Hh9//DHr3RseHo7GxkYmQkwLJKhXddu2bXA6neweyc/Px5o1a3D99dcjOTkZS5YsgVQqRXh4OPPW5eTksBB4dXU10tPTUV9fD7lczvILhdde6EWuqKiATCZDY2Oj271Hw/xNTU0jpHXG+p7Qe4J6hj29hL5efmixymQzaw27xx57DOeccw4UCgVCQ0O9rmMwGHDJJZcgMDAQ4eHhuOOOO86YXo8cDufUeeGFF3DFFVfgH//4BywWC8vnqampwdatW6d7ePjb3/4GtVqN3NxcPPbYY6P+vjkcDvT29rr9owgffBSz2YyhoSHmqaDrCDXcvEH15Oj/031Srx0tOqD9OD0NG2FVqTB8K3wwehsv3a6jowNqtdprQQd9CHd0dMBms6GjowMxMTFu4VcalrVarXA4HGhvb0dfXx/CwsJgs9kQHBzMJDSoN5HmegFgnjdq1AFAZWUlyymjbansdjszrux2O5qamuByuRAfH4+VK1eyMCP1Dvb09CAlJQXNzc1ITEyEWq2GyWSCzWZDZWUl6+3q5+eHuLg4yGQylhtYWFgIQgjWrVuHiooKaDQaSKVS9Pf3w+VyISMjAzfffDMiIiKQnp7O1q+qqkJDQwOampoQGBiI7u5umM1mLFq0CIQQpKens3zBxsZG5Ofno7m5GQqFAp2dnVAoFDh27BgzcgoKChAdHY3e3l60tbWhrKwMnZ2drD2byWRCR0cHoqKimEf34MGDsNvtiIuLw8KFC1FQUACj0YjExESYzWYEBwejra0Na9euhb+//4j7hXro+vr6YDabkZ2djZCQEBQVFQEAu4+oqHZFRYWboT8Wnl7t8dyr9OVlqjx2s7Yq9qGHHkJoaChaW1vx+uuvs5YwFJfLhdzcXGg0Gjz99NPo6urCDTfcgPXr1+OFF14Y93FmSlUeh3MmMhO+fwMDA9i0aRPKy8sRHByM66+/nuU/TSfPPvssFi5ciLCwMOzfvx/3338/1q1b51M8+eGHH8YjjzwyYrnFYsGRI0dYhwdvVXxU3sGzEpV+5lkxSg06qj8XExPjpu1Gm9rn5eVBKpXCbrdj69atSEtLQ2JiIvOk0epIz2Pp9XoolUpYrVa3RHeDwYDS0lIMDw9Do9Gw6kbgxAOYdseIiIjA8ePHkZ2dDalU6nZu9Pxpb1hqpFosFmRlZaGyshKtra2sspZq3BkMBqaJl5GRwbw2er0e/f39OH78OBtrY2Mjurq64OfnB5PJBD8/P5abRr2J1Mik2muNjY1obm7GokWL0NTUBKVSifb2dnR3dyMpKQlWqxXAiWIAhUKB8vJy2Gw2JCQkICYmBjabDbt372b5aSqVCm+++SbEYjGio6NZZwbaG/e///0v03OjxTNHjx6FWCxmsh/Nzc1QKpUQi8VQqVTo6+tDWloam++WlhaUl5cjKyuLedCcTieKi4sxNDQElUoFuVyO9PR0Nse0olgkEmHnzp2s8GPx4sVsrqk2Ig07m81mxMTEuMmm0JCxXq+HxWKB2WzGVVdd5fZCIqz4pl0lVCoV23Y8Vd70XH1J43i7tyhT9fs2az12jzzyCO666y5kZWV5/XzLli04dOgQ/v3vfyMvLw9FRUV4+umn8eqrr7q9qXI4HA4AVkXoSUBAAC677DI89NBDuOuuu6bUqHv44YdHFER4/qMiuXfddRdWrFiB7Oxs3HLLLfjXv/6F119/nbWo8uT+++9HT08P+0fP99ixY+zh4quKD3APkRqNRjQ3NzNPhF6vR3NzM1pbW90eeFFRUaydE0UsFrOEdWoAFhcX4+jRo9i+ffsITwktYKCFC0ajEXa7HfX19Uxbj1aumkwmhIWFISIigoVThdWMtO+rVCp18zp6y4Gi29DQanh4uFuFLg1R0/w42ld0eHgYtbW1CAkJYQYoNTCpFy4qKgoSiQTJycnQaDSYP38+IiMjERUVBeCHbhetra2sY4XNZkNUVBSam5uxZs0aJCUlITo6GuHh4bDb7azrBO2FGhgYiICAAEREREClUqGqqgpGo5GdQ1dXF7RaLWshFhQUhL6+PtadIioqimnFaTQa9Pb2oqCgAMPDwygqKsLAwACWLFmCgIAAZGZm4vjx43A4HGhtbcXx48dRUFCA2NhYBAcHMzkQmpc5f/58REdHY8mSJbjooouQnJzMqqNdLhc6OztRVlYGPz8/2Gw2ZGZmwm63o6SkBC6XixmRWVlZzLsXGBiIw4cPs9Z4er0eRqORhaLtdjvLpRRWV3d3dyMkJATV1dVMxNoX9J6oqKhg9yQAr0YgZbSuLVPFnBUo3rNnDzIzMxEdHc2WrV27Fg6HAyUlJW6aVEIcDgfLCwHAjUAO5wwhPj4eYWFhyMnJQU5ODnJzc5GTkwOHw4EXX3wRb7/99pSP4fbbb8dVV1016joJCQlel5999tkAwGQiPJHJZF4r8SIjI2Gz2VgHB8C7mKqnADE1/gAgJCQEw8PDLNePhnGpl0Ko9k/3ITxGYWEhXC4X0tLS3LoAUBHZ7u5uBAcHQ6/Xs84QtEMBlSgxGAwYGhpCQEAAoqKiWG4X1TeTSCTIzc11Mzwp3s6NhgWFhpxQHkUY6quoqEB6ejo6OztZeLO4uJjpolH9OXqs48ePQy6Xo7GxEYsWLYLT6UR1dTVCQkLQ2NjIujlUVFRAJBJBp9OhqKiI9cKlVcJms5n1Sj18+DDmz58Pi8UCo9EIPz8/pudXWVmJ+vp62O12yOVyZrzFxcWxnD2z2Qx/f3/W+SMwMBBLly6FSCRicidmsxnz5s2D3W5HYWEhKisrmWRKR0cHlEoljhw5gnnz5qGpqYnp06nVajQ2NiIwMBA1NTUICwtzC00KQ5U0NF1bWwuRSITLL78cx48fx9GjR9HV1YWMjAz09vYiPj6e5dNptVq0t7dDp9Oht7cXUVFRzEikAty0/2tycjKMRiP0ej3zUIrFYrY/apwK70F6z9B7Ozs7GxUVFVAqldDr9W5eY0887y3hd0ehUHjd5lSZs4ad2WweEb+mFT2jxc4ff/xxr+EKDoczt2lsbERZWRnKysqg1+vxv//9j+lMna4wcHh4OMLDw09qW+o9oF6f8SJ88HgLNXnz3ul0OrS3tyMkJAQAoFAo3AxDz1ZNwr89j0H/e+GFF7o9HKlBODQ0xB7ctD9qfHw8Gw/1wtBzoQLDer0eKSkpqKysxNDQEKKiokbk3flq82QwGGA0GhEREcE6aNCWazKZzC1cSquEq6urkZaWxoyqiIgIJshL87eoMZWdnY2tW7ciOTkZYrEYFosFTqcTW7ZsgVqtxs6dO6FSqVgHBmo85OXlQa/Xw2q1or6+HsHBwazpfGpqKurr6xEYGAiRSMQ8bnSceXl5qKqqwpo1a1BRUYGjR4+iubkZ6enpiIuLY3qERqOR6bPR0HdXVxcGBgZw4MABxMbGMuNZq9WitbUVnZ2dCA4OxsDAABITE1FfX4+GhgaYTCbW8UKhUMDPzw8pKSloaGhgc0qrh7u7u9m9S42mgIAAHD9+HCEhIejr62Nh8cDAQBw4cAA6nQ5VVVVYtWoVFi1aBLPZjJSUFHZdgBPOGpoLKHToqFQqJkVDrz9tQabRaFgqgdFoRHh4OHspod8Vei1oBexEuknQl5q+vr5xbzMRZlQodiJhiPEgEolGLKOxe1/4CldwOJy5TUJCAi677DI8/PDD+L//+z+0tLRg165dmDdvHt54443pHp4be/bswbPPPouysjI0NTXhww8/xC9+8QtceumlLGH/ZPAUFAaAkpISNDY2shw6wF1EWKjpBYzdE9PzGLSQgYZaKcKqXJ1O5/N4Op0O8fHxyM/PZ90c6PhkMhnbT3t7u1uSOw0h22w2Fs6l61ZVVWFgYADd3d0Qi8UwmUxwOBwsXE33ZTQaoVarIZfLWZcFPz8/xMfHs/CssL0ZRSqVYu3atQgKCoJGo4FGo0FcXBxuuukmEEKgUChgt9tZ71W5XA69Xg+DwcDagKWkpCAwMBCpqakAgPr6esTHxyMgIIDlo5lMJuY9DQkJwa9+9SuEhoYiIiICzc3N6O3txTvvvIOmpiZWHEI9kMJrmZqaCn9/f8TGxkIqlbIQOK1mXbVqFebNm4ef/OQnUCqVUKlUCAoKQkREBBYuXMhCvrSLSGpqKmJiYti59/T0ICwsjOnAZWdnIy8vDxqNhvXATUpKYtqHR44cgU6nQ3l5Oex2O0wmk1vRQkdHB0JCQtDe3g6JRIK4uDjk5OSwXFFh1SyVtqGGZnh4ONuHy+Vi0jjevLzeKmC9FUt4QivHT/YlbixmlMfuVMIQnmi1Wuzbt89tWXd3NwYHB0etRPEVruBwOGceBQUFeP755/HAAw/g8ssvn+7hMGQyGT744AM88sgjcDgciI+Px4YNG3Dfffed0n49PW3CPLOYmBj2UBRqenki1LGjBRPChHdhMQQ9pq9etDScSz1H3qDj8PycjpHmxkVERLgVcJjNZtZyiraIolpzMTEx2L59O3JycgCANX13uVzYtGkTlEolK9AwmUysyAMA8yxu3boVSUlJqKys9Jo8T8dSUlLCrmFISAiuueYaVogBnIg0NTQ0MM+QWCxmHTmioqKYZAYtoMjLy2N5hdQwFuYmSqVS5ObmYv369Xj77bcRFxeHXbt2YdWqVSgsLMS3337LjCJacEKPQYs8uru7IRKJUFFRwcKVNNctPz8fKpUKhw4dQlZWFsLDw7F79252PrSDRWdnJ6vapYYOFSiOiIiAv78/goKCUFxczAwgKvCckpKCjo4OBAYGws/Pb4SXWnhPtbe3AwDLvVOpVOylQti+jt6TdN6oYLOvjizCe8/b/T+aF49Wjk+V3MmMMuxOJQzhSUFBAR577DGYTCZ20bds2QKZTIb8/PxJOQaHw5k7DA4OMrkEISkpKaiurp6GEflm4cKF2Lt376TvV2iIAWCh0/j4eLhcLjQ3N7NwohBheJUaEwCYJ06Y8+ct9CtsTWWz2bB//352fE8jkz4wPStxKyoqRoTF6INaJpONkG6hVZUqlYrlw/X09EAqlWL79u1YtWoVGhsbkZmZySRMDhw4gNbWVgwMDOBHP/qR2wNfKLpMhYIbGxuRlpYGk8nkVtVL54om4ff09LgZzomJicxbR3PuaGP748ePQywWw+FwYNeuXQgLC2NyI4WFhSw0TIWf8/LysHXrVphMJuzfvx8JCQnw9/fHokWLcN999+G1117Deeed5+bpkslkyM3NhcFgQG1tLVJSUmAymdj1Dw0NhUQiYaLBlZWVCAsLg9PphFQqhcViQWBgIDo6OnD48GFIpVKo1WomLF1RUYHg4GDU1taytl/p6emora1l+Y1RUVHo6upCcHAwhoaG0N/fz7qkJCUlQSKRYHBwEIGBgSPuR+pNo0YbACYgTA03obSN0MNM7y2z2YykpCQAYLp2vgSKhXhLO/D0XtN1wsLCxvW9nCgzyrCbCAaDARaLhU14WVkZACA5ORlKpRJr1qxBeno6rrvuOvz973+HxWLBPffcgw0bNnDZEg6HM4LAwECkp6cjLy8Pubm5yMvLQ3R0NF544QWsWbNmuoc3ZXh6umg+GPBDtwYAbrlsngirBWm4TeiNAsDy4oRQTx41CKiBRhvH+/v7IzExEYB3byIdJ/WS0ZAdhT6IaXiRiirTql6q9TY4OAipVIrzzjsPxcXFWL16NZqbmxEaGgqTycTGRj14QUFBTPJD6AWkY6QGFjWIRSKRm8Cxw+FAWVkZ7HY7ent7kZ2dDZfLhYMHDyIjIwNyuRwqlQrl5eVISkpiLb6cTifTKpRIJFAoFGhvb4dIJEJaWhrzDnZ3dwMA0/MrLCxESUkJwsPD4efnh6CgIDQ0NKCmpgarV69mVaMVFRUYHh5Gfn4+K/JYsGABJBIJrFYrIiIi0NjYiHPPPZcVJDQ1NSE2NhYWi4W1OAsLC0NraysCAgKYUPG5556LJUuWMGPKYDCgvr4eAwMD6OrqgkQiYYYXACZGTY132qaN5v45nU6IxWJ2DTyNKJozR687rYCmRjF9AfBVFCSU+aHV3vTFpb29HREREV69ecL9eSsaEu6fah9ONrPWsHvwwQfx1ltvsb+pVlFxcTFWrlwJsViML7/8ErfddhuWLl0KuVyOq6++Gk899dR0DZnD4cxgvvvuO5SXl6O8vBzvvvsu/vCHP8ButwMA1qxZgz/+8Y/Izs5GdnY20+qaCxw7dszNc6DVauF0OpmHiEIfgt5kG4TVgsICBZpcPxY0t4l2WqAGibC7hdCbYjQa2UOWFhjU1dUxz5O3/QtDcABYH1oqWxIREcFy32gSvtFoZNuazWbW9YJ6goT7E44ROBG+bW5uZtWwtIconauQkBDs3LkTubm5kEqlMBgMMJlMEIlEyMzMRHV1NVJSUpixSvcjxGAwIDAwEENDQ6ivr0dYWBgGBwfR1dXFqlW12hM9dxMTE+Hn54eOjg7U1taivb0dg4ODEIlEyMjIQHFxMWw2G+RyOcRiMRtjZ2cnExsuKyuDTqfD8ePHERERge7ubsTFxcFmszGjrKOjAxaLBcnJyejt7UV0dDRUKtUI7UOpVIrk5GRYLBZWmUpfJOg1djqd6OrqYlXFISEhqKioQEREBIaGhuDn5zdqJbe36+75guCJ536o502tVqO+vh7Dw8OshR/VuwN8SwR5Hku4/6CgoDG/GyfDrBUoPl3MBIFUDudMZTq/f8PDw6irq2OVstToa29vH3e7oZkMnVuLxTIiJDSaqOpY+BIrFsqfCNf1JfgqXCY01ujYaCiQ5kk5nU4kJiay0Jqw6tZgMKCmpgZFRUWsnZa3MC7N5xN6a2w2G2praxEaGsqKIoQPcTpelUrFPEpU045W19LjCA2Br7/+mvUVXbNmDQ4ePMiMY9qujJ4/9RrRPDYaFj927BgL/w4NDcHpdGL79u1QKpU4fvw4brzxRgQEBLDj05w5YQ5eXFwcNBoNi3rpdDqWrlRRUYH+/n6W90bnJT09HTt27MCCBQvQ1dWFoaEhtzZt9Np2dXWx86H3AA3T0++Qy+VCTU0NUlJSWIs8vV7P8h2Dg4PZdT148CCcTidiYmLQ1dXlJqrtrdpa6P3zZvB7M8Y8l1Fv7+DgIPtO0KpnocduvN8ZT4/dVPy+ccNuDLhhx+FMHzPx+3fs2LEpawV0OhltbseqbB0NGuYEwKpUx7M/ug4VGpZIJAgPD/dpDAoNBVrRSHXqaMGHSqVium7U8Fu0aNGI8Xjukx6TGo39/f3o7u7GwoULR+Rz0Qd6bW0tZDIZHA4H1q5dCwDMQKEeKjrfERERsNlsqK+vR1paGvOeBQQEYNGiRSPmyGAwuBl2KpUKlZWV0Gg0rBjF5XKhuroa3d3d2LdvH1JTU7F48WLWdaKnpwd5eXkwGo04ePAgXC4XAgICkJKSgvr6eoSGhjIjUSKRoL29HXK5HJs3b2Z9eTMzMyGTyVBeXs4qWM8991y360Xnvbq6GgMDA6xiWVhVTb24tMsFHZ9QH66npwdqtZoZh1QSRlis4mlcU+OVXn8631RnztP4E95DQoNeyMGDB2G1WiGTyeDv7+8W1hXek/T8xsrBE8I7T3A4HM4MYC4YdUK8eR99JYmPR8pBq9UiJibGrePEeJLOPbtDeMpMeD48dTodM+rEYjHy8/NZqFMmk7HK0YyMDGRnZyM+Pp6FdoXhMKGRR8OWNMxLPWiJiYlMtsNgMLDcbqfTCaPRCJFIhMLCQthsNigUChgMBtZ1QiaTISoqCmq1Gt3d3awbhkKhQFpaGrZv346Wlham4yacI+r1c7lcrC2bw+FAdXU1k+Wgorq0WjY5ORm/+tWv2PlqNBrU19czyRQavu7p6UFaWhozKiQSCSIiIphHLSQkBAcPHkRERASCgoKwatUqdHR0wOl0Yvny5SCEMM+eVCpFVlYWK1CQyWQoKipCYmIisrKyoNfr2RipUUWrirVaLWtZRsOtPT09TI+QhoXp9kINQeG9Qwt1qDFPZVKE3UmMRiP6+vrw/vvvMw05qoIhlMIR3m8ZGRlQKpXIz8/32SOZVnDTcPJ0ww07DofDOYM5duzYuNcVPkA9NeeowefNiHM6nSyM5ss4pAZZbm4u8/QJEbYxA8D2X1paioMHD7ot1+l0zHNERXCp4UcNMmG4jp4TDal2dHS4GZo0t462+aL9SWlVa1dXF+RyOXJyciCVSpmB0tvby7xAhBBotVpYrVaEhYWxKlSHwwGpVIqFCxd6PWe9Xo/W1lZ2XtR4kkgkMJlMUCqVzCvZ2toKnU6H4OBgpKSkoLi4GAaDAUFBQThy5AjsdrubBAoAlitHBXlpBa9MJsO8efMgk8mQkpICi8XCKlZ7enpwzTXXIDQ0lF1fmsdGjWuLxYLs7GxUVlbCarWiu7sbGo0GW7duZaFxKt9C7xeqaRcREQGHw4H//ve/6OnpQUdHB/OiisViJl1CZXWcTidqampgtVpZv1eLxcJ05lwuFxobG9Ha2oqGhgZotVo0NjayFwQ6r75aylGjUxg+psel+Z6nu23YaHDDjsPhcM5gJuKB1Gq1zAsi9G4IPWDe/qZCymVlZSM+o9AHvLA61mazjdopyOVywWKxYHh42OtYvXljzGYzq7qlOWw9PT2Qy+UoKyvDsWPHWNcHiUQCjUbDDFFPb2R2djaUSiUyMjKYVEl8fDxyc3OZcO3Q0BAAMMNEKGpLW5NlZWV59Y7SAgaZTMbGQY0Jo9GI3t5e7Nu3D2FhYUyMmIYaGxsbIZPJUFtbC+BE8QYAlhPX3d2N9vZ2iMVipvFHO0xQgeLIyEgEBgYyDyZwIveUVuZ6ClPTeaLG8qZNm6DX69nLAy0YsNvtrN2a0MinxQ5isRg9PT3Iz8+H3W5nnj0aLhUatwaDAd9++y3sdjszPoV9fOkYu7q64HK5kJGRAZVKhaKiIjZ2by8j9DjC8K7n/U2NS2Fxxlge7dPBrK2K5XA4HM6pM5HQkafuF2W0FmLAibAqFSgWdmKgHj5PqEEjlC8RVuVS4wEAUlNTvSase2qSCccmrPql57R582bY7Xa0t7ejurqaybZQr5pQm4wahFKpFIsWLWJ5dsIHvKfMijCER8dFjw3ArRKT5vYFBwfDz8+P5Z5R4wU4YUg1NDRAoVDg+++/R3x8PKuSraioQGFhIaqrq3HWWWdhx44dSE5OZpIltBpWJBIxA4heF5PJ5Kb9lpaW5ma8HT58GIQQFnYU5ikK54nmF3Z2dqKvr48ZpvHx8awK1vO8aRGHSqViPYGzs7MxNDTExKtppTY9fnt7O6te12g0zBsqHDMA1nlCp9MxCZ2x7nVflbTeqsA9xY4nWnQ0mfDiiTGYicnbHM6ZAv/+TR2TMbeeeW/AD0ns3sR4aRUjgFErCMcqtvCsjB1PkYfQyKLGmvD4TqeT9Qmlrc68JebTkDItxKDb6vV6VilJx0i7PfT19SE7O9trFSXNaRPOIc3Ps1qtbgUFvb29bhI0BoMB+/btQ25uLhwOB4KCgtDb24uwsDDExMSw0DNth6ZWq2EymRAREYHDhw8jKSkJQUFBPnXcaHiXeig3b96MwMBA+Pv7o7u7GyEhIUhMTBxRKUyv/f79+1FVVYXg4GD09/cjJSWFtfISHosWW9Dx0TA51T4UFrbQEDv1phkMBlRVVSEoKAhisRhyuZwVSwjneSLVquN52fGmdycsUvFVZStkqn7fuGE3BvzBwuFMH/z7N3UI5U5sNtuEK2Cph4JWfVIxXmoIUHFZ+lClxl1GRgYrkKBeuPE+VKlxRgsjJjJmWt2oVCpZdahwDN7Oz3NMTqcTJSUlAMBEfI1Go1tyP630pPmA5eXl0Gq1iI2NZQ986uGpqKiAWq3G0NAQMwhoGFNYxUrFlOkxKQaDAY2Njejt7YVKpQIhBBKJhHnUaIUr/X8qCyORSFg1qLD3rmfVqLAKVSwWs3ENDw+jqakJ/f39KCwsZOFzb+Fk2h5No9G4yb0I51ZYeUq3owLFwrmnXUzofjzDwN6up697y5thNhGJH8/1fR1ntP3yqlgOh8PhTDrHjh3zmvMmxFvBAw2XSqVStwpY4IdiCaFnheZPVVdXj6gg9JV355mkrtfrYbVaUV1d7ebJGQ80H452LqAVpp6FIPS4er2e5fjRcZjNZkRGRiIuLg5SqRRm84nuF3a7nVVy0tw5KsmxatUq6HQ6REREwOU60TKtpKQEZWVlCAkJYflktHrT6XSywgNhDpgwhE3n2Gw+0S4tLCwMhBA21zExMcjLy4NIJHIz1FQqFeRyuZvx0drayowio9GIxsZGbNmyBTabjRmqVKhXoVAgOzub7Wfp0qXo6OhAX1+f13mk80w9bZ5VrvR602uj1WpBCAEhBF1dXW73EjUQTSbTiOpTKmwsNATHkiDxHAPtVyv0iHpDKJAtLJigBrvnPSnM1TtdcMOOw+FwzmAiIyPHfPB4M7zog37RokXsgarT6RAfHw+LxcIMMGHFI5Wh8DyeVqtllZqexqMwST0iIoIZZ/QzGvL0rFj0NDKkUimrbqStuWpra5n8iOf5Uk+KMHkegNvYqREll8uxYMECZrQAQFxcHBYtWoTg4GDk5uYiMjKSGXEOh4NVXAInDBsaojaZTMwzST1XNCdNeA1ocYmfnx/LW6PFGrQooqurCzabDWVlZW4GY1xcHOLj49303CgWiwVKpZK1JaNGIL2+RqMRO3bsQHBwMPr6+hAcHIz9+/dDKpVi8+bNrLCCQvPy7HY7G7unsUNzFePi4hATEwOJRAK73Q6j0ch631ZVVbkVRoyFt3tWeG94jkHYpWI8+6X5lEKD0dsxxyP1M9lww47D4XDOYLw9eDyNI/oQFFaIetuOLsvNzWUGGIVKgFBvm+d21LPjaTwKtdF0Oh3TeqOGotPpdJNB8Xy4Cs+FhjXLyspgMpkQHByMxsbGEV4aobaasBJTGLak446Li0N+fr5b7iD12tC8QrFY7FYVSw2xqKgoDA0NMSOBGrgSiYSJA1NDydOjRI1BtVrNxgyAaeXp9XpkZGQwuQ/ak5dWvNIKZFpAQpfl5eUhKSkJWq3Wq0ezo6MDCoUCVqsVqamp2L9/P3Jzc1FaWore3l7WwUJIWFgYC9f6useE94IwtzE1NRU2mw1paWluYx0Lb/esp2SOt/XHMhpHW286vHPe4Dl2Y8BzfDic6YN//6aO0ebWV/6QZ2eGiSCsGqRtoDw/HyvPzmAwsHwz6p2iHifalcGzFZnwXFyuE624RCIRO0Z4ePhJjUeYjyb0RNFjm81m9PX1obGxEUVFRV6FbX3leUkkElRVVbFOFqmpqejs7GStu2iBBhVCpqFRYW/XlJQUKBQKtLe3s8ILev28tUajOXbeWq0J50dYZNLe3g6r1QqHw4F58+bh+++/x/Lly5GYmOjWWsxkMo0QXxZ2n/AskBCJRKipqUFSUhKsVitCQkLQ3d0NQghUKhWTi/HWecLzBUV4zwlzQKkH9GTu5bEYb84oz7HjcDgczmnB09tBDQ7gh1DkeLpQeBIREQGZTAaVSsWqSynjDVlZLBYW1pNIJMjLy0NMTAzMZjMaGxuZ1ATdj9CLotPpIJfLWR6XTqdjRoInvvL+PD+vqKhwEy0GwELKvb29SElJ8Rne8zxnoVcuLS0NSqUSy5cvZ5WgQgOb/j8VKA4NDUVnZyfa2toQHBwMq9UK4EQHCavVitzc3BFz63l8mjPY3NzMKojp/NDrTbcZGhrC8PAw66AhlUqRmpoKqVQKo9GI0tJSNDY2or29nRlSdN+tra0QiUQsJ9Ez1C0Wi5GUlISGhgYEBQWhtrYWwcHBiIqKcjPqqLA0rUilxSFCPT1hSJ2Gtal3dKq8a2PdOyfz3ZkI3LDjcDicMxjPDhK0cT31PgkfuDQUCcCtuGA8CNsuVVdXw2q1srCg5/GbmppYKy0htDBBKpUyvTKpVOqWoO+JMKkdAAvr0pZVwopQ+rAVtgrzfPALk+clEgnUajWioqJYqytq7A0NDbGQri/jwZtAb0hICL799lu0trYiIiICtbW1rEhFLpcjODiYGTNhYWFwOBwIDQ1FVVUVgBPGc0BAAPLy8pjhSnMLw8LCWPGEsDUaHYvT6cTw8DDrpFFRUcG8TkJjRavVorOzEyaTCQBYFa6wY4harUZfXx9UKhU736ioKEgkErd7gXo9hfeXTqdjnrqqqioMDg6ip6eHGWRUIqW+vh5KpRIAWAEKzcek4xSG1IWG7GTmvvlKXfB13elcTqTry0TgAsUcDodzBnPs2DGEhYUB+MFjA7gbRN703DwFhMeCbqfRaJgBkZ2dPUI3rbS0FMPDw8ygEIbJqL6ZUL+O7tvlco1oRSasZg0ODmYabuHh4cwgpFDNNpfLhfb2dthsNrS3t4+Q8hAmz1OD0jNknZGRgYqKCkRERPg0HpxOJ7Zu3crmj55DZ2cn7HY7nE4npFIpa48VFRWF7OxslJWVweFwwOVyQaFQoKioCHq9HmFhYXC5XKwtmzBvTjj/SUlJI66zTqdjFaft7e0AgMbGRqSkpECv1yMvL8/tXqCGETVkqBEjPCbNg6ShcuE80f8HMELYmY4pLy8PBoOB6eXRUC71HldXVyMlJWXEPSgUDfa8h73lkQrHO1EtO4rQ6KX7Gi28S8dEv3eTDTfsOBwO5wyGthSj4T36APU0rOgDVWjcxcfHj/tBKKyqpGFQqVQKg8HADCoArONAVFTUiO4Uvh7StIiBIjToqMeRGioARnhTaB4YHQMVBVar1W4PbM8xAHD7fwo1Zkwmk5t2m9BwqKiogEwmQ2NjI9auXevmxaIen9zcXNYnlRaW0LR4Op/0mtFzFRZj+IIakfT/hctEIhHL5evq6mIyLMJ7AgByc3NZVwzP/EHhfUMNdpFIxKpRPQskvHm2qDc2LS2NeeuE+6P3CdX+o8biaLImwjnxZdx6W3csPO8Jii9DkR6vt7d33MeYCLx4Ygx48jaHM33w79/U4Tm3Ywm0entITVTU1dt+qGFHdd+EhuPJJrfT6kfqwaIhXKEnx3N9m82G7u5ulos1UQ+OMFFfIpEw76Kwi4XwnISCzTSvjm4jHCfVcaNhYaGYsWfBhct1ot0Z9dgJPVJjzedoxSBCoWLhNRqtqMSzIETYMcLX9fQUSPacC+H18izuEVa6evOiTqbHbrzrjfX94J0npgn+YOFwpg/+/Zs6hJ0naBjP88E+Vg6St6rKiYayxtsZYCLbjyVO67kONWB8Vf16Ghyex6IFDbR1V2hoKKqrq5GRkYHjx4+zqkxv3r7Rjkk7V9hsNshkMixcuNDN2+UpPSNsASYWi9Hc3AzAvfLU29hpzp2wr63QIBEa396qSYX78TQgx9stRGgY9/T0uBmB47nPTqbN3ETuKSGT1aaMV8VyOBwOZ9KhCdzUOOjo6BhR5ekLb1WVE+1iQXOxaEWjr3372ocvUVjPTgSe0E4WjY2NrEhAp9N5TXoXVsB6Hot+5nK50NPTg+zsbKavV1VVBbvd7mbQeHZfcDqdOHToEOx2u1uxiNlsRnNzMxwOBwICApCTk+NW7EE/Ly8vdzMuKVrtCfFkz64g3s7LbDYzzxw1XIXzMFY1qWdhhbCimhY6eFYGe94HtMK3vr5+hIg13T+t0KZjEl5belxPrcGTYaz72HMORtPkO93ixAA37DgcDueMhubYUXwZBPThRStGhbISwm1PpotFWVkZmpqavIrbjrWPk5GtEEph0OpLaoR4865otVpWAUtzxej504pOsVjMDJjc3FwkJiYiMzOT5Qt626dMJmPyLRUVFSgpKWGVqvTzyMhI5OXlITEx0W0fGo0Gx48fR3BwMKqqqka0AAPcC2CEOZLCfdAwcG5uLmJiYlheI92OegSFlcWefVppbh69F+gLgs1mg8lkgkRyIp2fSpLQ+RdKlFB5mKSkJDcRazrXnZ2dzCtqNptZiJq+DEymEeVpnI5lsI3nhYbOla/vzmTCDTsOh8M5g/EW/vRswA6M9Fp58155PvC8eTK8GWK0QfxYfTq97WM8D3Rv3qGwsDAolUqsWbNmRNcIb3MkFotZD9OhoSFUVFSgr68PW7duZbl0wjFFRUWx1l3ewnV03Lm5uawLhcPhYJ5SsViM/Px8JCUled2+o6MDqampGBgYQEpKCrq7u90MTmrIlZWVjcg3FO6DSoSIxWL4+/uza+vZpcGX8UILF+i80GNrNBoWUqXnSiVJqAEtlCih8jDU0KbHodW6tLCEngNtNeYpmTPWtfe1zNu1oXI/Yxls43258PwOTZXcCTfsOBwOhwNgdM8DfXhRHThh0v/J7E8I7avqrbLV28NXaMz5Ws9buFZodMhkMkRERLB9eYZhPffr2es2Ozsb9fX16Ovrg16v9+odE/YT9eWtkUqlWLJkCZYsWYL4+Hg3T6mwurSpqQn79+9nPVQ1Gg0UCgUKCwthtVqh0WhgMplQXl7OqoxpwYLnnAmvqdDYys7OHtEKzvP6Uy+W0GNJvZnUM0fPPS8vj3X8AIC8vDwoFAqWx0kFkIUt4+g6wmpdbx7k1NRUGAwGpKamjnpvCT2DQsNeeD8IvdBCfb/xGGwTySv1/A55essnC148MQY8eZvDmT7492/q8Da3E3lIjSeB/FQqace7f71eD6VSCavVyipFPbcXhhU9NdR87V9YMBAXF8cqZ4UVqU1NTSgvL0dOTg5ro+VwOCASidDV1eUmBTJadehYxRl6vZ4ZG4GBgUhNTWVFAvScaFWscL7p8tGKCSZavOLtPACwufHUkfOcx9GurdPphF6vR0REhNf8SOF2JpMJVqsVMpkMfn5+PrcRFmXQ1mjCnEQqbE31Amlo15en1VfV78lUb/PiCQ6Hw+FMKRPJUxqPN8OXl2g8XhCaVzWWRzAkJASNjY1u4Tua9yWRSNzCtUKv3HgS4IX6dtS7pVQqmfcnLi4OixcvZgYL3acw387zvKm3xlvxga/iDCrQGx8fj8LCQjfDFPihK4hUKkVkZCQTVaZFG6NdU1/X3FPbj+LpudRoNMw7GBIS4ual9IWve6CiogIGgwHl5eWjeo21Wi3zLhJCcPToUXz33XdukifC8/P0AnreD/SaZGdnT6jgxPM+mylwj90YcI8BhzN98O/f1DET51boSRE2ifcmPSKsmPT0dJ2MF8WbNhr1Bvb09LC+phUVFW7en9HOY7ySG6Ppt/k6R18yL56yIzQ8Cvwg6+JLH044nq+//hpWqxVJSUlYsmSJz3nyJjNC1xMeczxzYbfbsXXrVqSlpY0oFvGF0+nE5s2bERwcjMTERLdwvq95niwplFPRWgS4x47D4XDOGB577DGcc845UCgUCA0N9bqOwWDAJZdcgsDAQISHh+OOO+5wkwuZTVBvGTUSAPj0nAg9JtTzQrs70If1WF7B8RR1UE+P1WqF0+lEa2sryxsbrf8r3XYiFZqe5yFM2veWyO/LQBEel54PNVCbm5tHLXzxnGO5XA6j0QiVSuU2X57z5CkzAoAdz5tkjmc1qxDqCZTL5T7nzvPaSaVSrF27FoGBgeMuXhhLjsezj64vTqYi+3TADTsOh8OZYTidTlxxxRX45S9/6fVzl8uFiy66CP39/di1axfef/99fPTRR/jtb397mkd6angz6KiR4EuHjkqP0DCYt316itl6GnG+tO88K3ppgr9nUcNknPNoxR7eDAbheQulS8ajoUZz4YQhx9EMEq1Wi6CgICxZsgRSqdSrMU3nyZv0R0hICGQyGWJiYgC4VxuPVs06Xrkcz2KIjo4Or1p5492/Z6HNaDqOwuPTfXpqCE43PBQ7BlRFvKWlZcaEKzicM4Xe3l7ExsYy9f4zjTfffBN33nknjh8/7rb866+/xsUXX4yWlhZER0cDAN5//33ceOONaG9v9/pb5XA4mPEEnPhti4uLm5TfNpfLhWPHjiEyMnJCIa62tja3MN54t6fbyWQydv6+PvO2rrfxei7zdYzRjj3Rc6bHpWNwOp3o6elBZmYmOjs7R8yHt/k6duyY1/HQ8wkPD/e6r9FwuVxoa2sDALZPX9eXCjFnZmZCKpWOmEfPfblcLra+WCye8H3jcrlQXl6OkJAQyOVytk/PY472t69rQitV29ra2HWJjo4eUVRCtfdiY2MhFotP+n6Yqt83ydirnNn09fUBAGJjY6d5JBzOmUtfX98Zadj5Ys+ePcjMzHR7kKxduxYOhwMlJSUoLCwcsc3jjz+ORx55ZMRy/tvG4Uwvk/37xg27MYiOjkZLSwuCgoIgEommezinBH074N7Hk4fP4eQw3nkkhKCvr++kPCNzGbPZPEIDKywsjIXNvHH//ffj7rvvZn8PDw/DYrGwbgqTyVz/nvDzm93MlPObqt83btiNgZ+fH8sTmCsEBwfPyS/r6YTP4eQwnnmcK566hx9+2KvHTMiBAwewaNGice3PmzFGCPFppMlkMiaTQfFVmDFZzPXvCT+/2c1MOL+p+H3jhh2Hw+GcBm6//XZcddVVo66TkJAwrn1ptVrs27fPbVl3dzcGBwenTM2ew+HMDrhhx+FwOKeB8PBwhIeHT8q+CgoK8Nhjj8FkMiEqKgoAsGXLFshkMuTn50/KMTgczuyEG3ZnEDKZDA899NCIcAxn/PA5nBz4PI6OwWCAxWJhWlplZWUAgOTkZNa4Pj09Hddddx3+/ve/w2Kx4J577sGGDRumPbQEzP3ry89vdjPXz4/LnXA4HM4M48Ybb8Rbb701YnlxcTFWrlwJ4ITxd9ttt+G7776DXC7H1VdfjaeeemrOPqw4HM744IYdh8PhcDgczhyBd57gcDgcDofDmSNww47D4XA4HA5njsANOw6Hw+FwOJw5AjfsOBwOh8PhcOYI3LA7g/jyyy9x1llnQS6XIzw8HOvXr3f73GAw4JJLLkFgYCDCw8Nxxx13wOl0TtNoZy4OhwO5ubkQiURMhoLC53B0jh49ip/97GdITEyEXC7HvHnz8NBDD42YIz6Ps5fHHnsM55xzDhQKhc/OFnPp+iYkJEAkErn9+/3vfz/dwzolXnrpJSQmJiIgIAD5+fnYuXPndA9pUnj44YdHXCutVjvdw5p0uI7dGcJHH32EDRs24K9//StWrVoFQggqKyvZ5y6XCxdddBE0Gg127dqFrq4u3HDDDSCE4IUXXpjGkc887rvvPkRHR6O8vNxtOZ/DsamtrcXw8DBefvllJCcno6qqChs2bEB/fz+eeuopAHweZztOpxNXXHEFCgoK8Prrr4/4fC5e30cffRQbNmxgfyuVymkczanxwQcf4M4778RLL72EpUuX4uWXX8YFF1yAQ4cOIS4ubrqHd8pkZGRg69at7G+xWDyNo5kiCGfOMzg4SHQ6HXnttdd8rvPVV18RPz8/YjQa2bL//Oc/RCaTkZ6entMxzFnBV199RVJTU0l1dTUBQPR6vdtnfA4nzpNPPkkSExPZ33we5wYbN24kISEhI5bPtesbHx9Pnn322ekexqSxZMkScuutt7otS01NJb///e+naUSTx0MPPURycnKmexhTDg/FngGUlpbCaDTCz88PeXl5iIqKwgUXXIDq6mq2zp49e5CZmYno6Gi2bO3atXA4HCgpKZmOYc84jh07hg0bNuCdd96BQqEY8Tmfw5Ojp6cHKpWK/c3ncW4zF6/v3/72N6jVauTm5uKxxx6btWFlp9OJkpISrFmzxm35mjVrsHv37mka1eRSX1+P6OhoJCYm4qqrrkJjY+N0D2nS4YbdGQC9cR9++GE88MAD+OKLLxAWFoYVK1bAYrEAAMxm84jm4WFhYZBKpTCbzad9zDMNQghuvPFG3HrrrVi0aJHXdfgcTpwjR47ghRdewK233sqW8Xmc28y16/ub3/wG77//PoqLi3H77bfjueeew2233TbdwzopOjs74XK5RlyfyMjIWXltPDnrrLPw9ttvY/PmzXj11VdhNptxzjnnoKura7qHNqlww24W4y0R1PPfwYMHMTw8DAD44x//iB/96EfIz8/Hxo0bIRKJ8N///pftTyQSjTgGIcTr8rnCeOfwhRdeQG9vL+6///5R93cmziEw/nkU0tbWhvPPPx9XXHEFbrnlFrfPztR5nKmczPUdjZl+fSdyvnfddRdWrFiB7Oxs3HLLLfjXv/6F119/fVYbC57XYSZdm1PhggsuwI9+9CNkZWWhqKgIX375JQB4bd83m+HFE7OY22+/HVddddWo6yQkJKCvrw8AkJ6ezpbLZDIkJSXBYDAAALRaLfbt2+e2bXd3NwYHB0e8vc0lxjuHf/nLX7B3794RfTgXLVqEa665Bm+99dYZO4fA+OeR0tbWhsLCQhQUFOCVV15xW+9MnseZykSv72jMhut7Kud79tlnAwAaGhqgVqsne2hTSnh4OMRi8QjvXHt7+4y5NpNJYGAgsrKyUF9fP91DmVymM8GPc3ro6ekhMpnMrXjC6XSSiIgI8vLLLxNCfkhobmtrY+u8//77szahebJpbm4mlZWV7N/mzZsJAPK///2PtLS0EEL4HI6X1tZWkpKSQq666ioyNDQ04nM+j3ODsYon5ur1/fzzzwkA0tzcPN1DOSmWLFlCfvnLX7otS0tLmxPFE54MDAwQnU5HHnnkkekeyqTCDbszhN/85jdEp9ORzZs3k9raWvKzn/2MREREEIvFQgghZGhoiGRmZpLzzjuPlJaWkq1bt5KYmBhy++23T/PIZyZNTU0jqmL5HI6N0WgkycnJZNWqVaS1tZWYTCb2j8LncXbT3NxM9Ho9eeSRR4hSqSR6vZ7o9XrS19dHCJlb13f37t3kmWeeIXq9njQ2NpIPPviAREdHk0svvXS6h3bSvP/++8Tf35+8/vrr5NChQ+TOO+8kgYGB5OjRo9M9tFPmt7/9Ldm2bRtpbGwke/fuJRdffDEJCgqaE+cmhBt2ZwhOp5P89re/JRERESQoKIgUFRWRqqoqt3Wam5vJRRddRORyOVGpVOT2228nAwMD0zTimY03w44QPodjsXHjRgLA6z8hfB5nLzfccIPX61tcXMzWmSvXt6SkhJx11lkkJCSEBAQEkAULFpCHHnqI9Pf3T/fQTokXX3yRxMfHE6lUShYuXEi2b98+3UOaFK688koSFRVF/P39SXR0NFm/fj2prq6e7mFNOiJCCJmGCDCHw+FwOBwOZ5LhVbEcDofD4XA4cwRu2HE4HA6Hw+HMEbhhx+FwOBwOhzNH4IYdh8PhcDgczhyBG3YcDofD4XA4cwRu2HE4HA6Hw+HMEbhhx+FwOBwOhzNH4IYdh8PhcDgczhyBG3YcDofD4XA4cwRu2HE4HA6HwzllLr/8coSFheHHP/7xdA/ljIYbdpwZQWpqKl577bWT3n7lypUQiUQQiUQoKysbdb0777zzpI/jjRtvvJEd+9NPP53UfXM4HM5s4Y477sDbb7893cM44+GGHWfasdvtaGhoQE5OzintZ8OGDTCZTMjMzJykkY2P559/HiaT6bQek8PhzGzG+7I5lygsLERQUJDXz/gL8OmDG3acaaeqqgqEkFM2yBQKBbRaLSQSySSNbHyEhIRAq9We1mNyOJyZz3S9bM5E+Avw6YMbdpxpo6ysDKtWrcKyZcswPDyMuLg4PPvss5O2//7+flx//fVQKpWIiorC008/PWIdQgiefPJJJCUlQS6XIycnB//73//Y5319fbjmmmsQGBiIqKgoPPvss1MSzuVwOHOP6XrZnGycTicAID8/H5mZmSP+tbW1jbkP/gJ8+uCGHWdaOHLkCFasWIFVq1bh0ksvxfr16/Hb3/4Wd999Nw4ePDgpx7j33ntRXFyMTz75BFu2bMG2bdtQUlLits4DDzyAjRs34p///Ceqq6tx11134dprr8X27dsBAHfffTe+//57fPbZZ/jmm2+wc+dOlJaWTsr4OBzOzGHXrl3w9/eHw+Fgy5qamiASidDc3Dwpx1i5ciV+/etf484770RYWBgiIyPxyiuvoL+/HzfddBOCgoIwb948fP31127bbdq0CcuWLUNoaCjUajUuvvhiHDlyhH3+v//9D1lZWZDL5VCr1SgqKkJ/f7/XMbz99ttQq9Vu5wkAP/rRj3D99dezcd5+++24++67ER4ejtWrVwMASkpKUFVVNeJfdHT0pMwPZ3Lghh1nWrj11luxfv16PPDAAzAYDCgoKMB9992H0NBQ7Ny5E8CpVVhZrVa8/vrreOqpp7B69WpkZWXhrbfegsvlYuv09/fjmWeewRtvvIG1a9ciKSkJN954I6699lq8/PLL6Ovrw1tvvYWnnnoK5513HjIzM7Fx40a3fXA4nLlBWVkZ0tLSIJPJ3JaFhoYiPj5+0o7z1ltvITw8HPv378evf/1r/PKXv8QVV1yBc845B6WlpVi7di2uu+462Gw2tk1/fz/uvvtuHDhwAN9++y38/Pxw+eWXY3h4GCaTCT/96U9x8803o6amBtu2bcP69etBCPF6/CuuuAIulwufffYZW9bZ2YkvvvgCN910k9s4JRIJvv/+e7z88suTdv6cqWd2+4c5sxKz2YzvvvsOu3fvhsvlQmVlJf7617/Cz88PEokEUqkUwIkKq5tvvhlvvfXWhI9x5MgROJ1OFBQUsGUqlQoLFixgfx86dAgDAwPsbZTidDqRl5eHxsZGDA4OYsmSJeyzkJAQt31wOJy5QXl5OfLy8tyWlZWVnXJRlyc5OTl44IEHAAD3338/nnjiCYSHh2PDhg0AgAcffBD//Oc/UVFRgbPPPhvACW+akNdffx0RERE4dOgQnE4nhoaGsH79emaAZmVl+Ty+XC7H1VdfjY0bN+KKK64AALz77ruIiYnBypUr2XrJycl48sknJ3Rua9euRWlpKfr7+xETE4NPPvkEixcvntA+OKcON+w4p529e/dieHgYubm5qK2thd1uR25uLlpaWtDZ2YmlS5cCOFFhtW3btpM6hq+3VSHDw8MAgC+//BI6nc7tM5lMhq6uLgCASCSa8L45HM7soqysDFdffbXbMr1e79Wwe+GFFzA4OIi77757wsfJzs5m/y8Wi6FWq90MscjISABAe3s7W3bkyBH86U9/wt69e9HZ2cl+uwwGA9auXYvzzjsPWVlZWLt2LdasWYMf//jHCAsL8zmGDRs2YPHixTAajdDpdNi4cSOrWqUsWrRowue2efPmCW/DmXx4KJZz2qGJuAMDAygrK0NMTAzUajVefvllpKenIzc395SPkZycDH9/f+zdu5ct6+7uxuHDh9nf6enpkMlkMBgMSE5OdvsXGxuLefPmwd/fH/v372fb9Pb2or6+/pTHx+FwZg4ulwvV1dUjPHalpaVef4/Ky8uxcOHCkzqWv7+/298ikchtGTWuqPEGAJdccgm6urrw6quvYt++fdi3bx+AE7+lYrEY33zzDb7++mukp6fjhRdewIIFC9DU1ORzDHl5ecjJycHbb7+N0tJSVFZW4sYbb3RbJzAw8KTOjzP9cI8d57Rz9tlnQyKR4NFHH4XVasW8efPw0ksv4dlnn0VxcfGkHEOpVOJnP/sZ7r33XqjVakRGRuKPf/wj/Px+eJcJCgrCPffcg7vuugvDw8NYtmwZent7sXv3biiVStxwww244YYbcO+990KlUiEiIgIPPfQQ/Pz8RnjxOBzO7KWurg52u92tCGDPnj0wGo1uHruqqir8+te/xt69e7F9+3Y89dRTWLdu3ZSOraurCzU1NXj55Zdx7rnnAjhR6CFEJBJh6dKlWLp0KR588EHEx8fjk08+GdWjeMstt+DZZ5+F0WhEUVERYmNjp/Q8OKcPbthxTjtxcXF444038Lvf/Q4mkwkSiQQ2mw1fffWVWz7bqfL3v/8dVqsVl156KYKCgvDb3/4WPT09buv8+c9/RkREBB5//HE0NjYiNDQUCxcuxB/+8AcAwDPPPINbb70VF198MYKDg3HfffehpaUFAQEBkzZODoczvVAB4RdeeAF33HEHGhoacMcddwAAqx612+249tpr8eGHH+LSSy/FBx98gBtuuGHKDbuwsDCo1Wq88soriIqKgsFgwO9//3v2+b59+/Dtt99izZo1iIiIwL59+9DR0YG0tLRR93vNNdfgnnvuwauvvsq7RcwxeCiWMy1cd911aGtrQ1hYGP773/9i//79WLFixaQeQ6lU4p133kF/fz/MZjPuvfdebNu2Dc899xxbRyQS4Y477kBtbS2cTifa29uxadMmLF++HMAJr967776L/v5+mEwm/PznP0ddXR2Sk5MndawcDmf6KCsrw+rVq9HU1ITMzEz84Q9/wBNPPIHg4GC8+OKLAE5IjhQUFGBoaAgpKSlISUlBb28v9Ho9rrzySlYQMdn4+fnh/fffR0lJCTIzM3HXXXfh73//O/s8ODgYO3bswIUXXoj58+fjgQcewNNPP40LLrhg1P0GBwfjRz/6EZRKJS677LIpGTtneuAeO8600draiu7ubp8VXBOtsHrppZfw2muvYc+ePaNWhU0EvV6P2tpaLFmyBD09PXj00UcBwO0t/dZbb8W///3vSTkeh8M5/ZSXlyM/Px+PP/6423JhNWp5eTmysrJQWVmJzMxMlJeXIzs7G3l5efjb3/42rl7X3orBjh49OmKZZ4FWUVERDh065HOdTZs2jXlsb5hMJlxzzTVuEi++xsmZPXDDjjNtVFZWIjAwEElJSV4/n0iF1bvvvgu73Q7gRKh3MnnqqadQV1cHqVSK/Px87Ny5E+Hh4ezzRx99FPfccw8AICoqalKPzeFwpp7y8vIRxQOeBAcH4/DhwwgMDERaWhr++te/4le/+tWo20zFy+ZkYLFYsGXLFnz33Xf4xz/+cVqOyV+ATx8iwrUbOBwOh3OGYjabERUVhaqqKmRkZPhcr7OzE+vWrUNVVRW0Wi3uuOMOZtgdPXoUr732Gv7yl7+w9Y1Go9vLJtXnnAkkJCSgu7sbf/rTn9hL6VTT3t6O3t5eACdegHnV7dTBDTsOh8PhcMbJggULUF1dzfq/NjU14YEHHkBtbS1rScjhTCfcsONwOBwOZxwcP34c55133oie0xzOTIIbdhwOh8PhcDhzBC53wuFwOBwOhzNH4IYdh8PhcDgczhyBG3YcDofD4XA4cwRu2HE4HA6Hw+HMEbhhx+FwOBwOhzNH4IYdh8PhcDgczhyBG3YcDofD4XA4cwRu2HE4HA6Hw+HMEbhhx+FwOBwOhzNH4IYdh8PhcDgczhyBG3YcDofD4XA4cwRu2HE4HA6Hw+HMEbhhx8HDDz+M3Nzc6R7GpCASifDpp59O9zDOGLZt2waRSITjx49P6XFWrlyJO++8c0qPweFwOHOBOWfY3XjjjRCJRBCJRPD390dSUhLuuece9Pf3T/fQZgTeDJ977rkH33777fQMaAYy04yImTaeqcSXofjxxx/jz3/+8/QMisPhcGYRc86wA4Dzzz8fJpMJjY2N+Mtf/oKXXnoJ99xzj9d1BwcHT/PoZtbxAUCpVEKtVp/244pEIhw9evS0H3cuQgjB0NDQdA9jylCpVAgKCpruYXA4HM6MZ04adjKZDFqtFrGxsbj66qtxzTXXMC8VDTu+8cYbSEpKgkwmAyEEBoMB69atg1KpRHBwMH7yk5/g2LFjbJ90u5dffhmxsbFQKBS44oorRngWNm7ciLS0NAQEBCA1NRUvvfQS++zo0aMQiUT48MMPsXLlSgQEBODf//6313MQiUR4+eWXcfHFF0OhUCAtLQ179uxBQ0MDVq5cicDAQBQUFODIkSNu2/3zn//EvHnzIJVKsWDBArzzzjvss4SEBADA5ZdfDpFIxP72DMUODw/j0UcfRUxMDGQyGXJzc7Fp06YR5/Hxxx+jsLAQCoUCOTk52LNnz3gv0UmRkJCAP//5z7j66quhVCoRHR2NF154YcR6nZ2duPzyy6FQKJCSkoLPPvvM7fPt27djyZIlkMlkiIqKwu9//3tmFN14443Yvn07nn/+eeb5pcbnaNsBJzxrv/71r3HnnXciLCwMkZGReOWVV9Df34+bbroJQUFBmDdvHr7++mu38Rw6dAgXXnghlEolIiMjcd1116Gzs3PU8VDP1ubNm7Fo0SLIZDK888478PPzw8GDB932/8ILLyA+Ph6EEK/z+tJLLyElJQUBAQGIjIzEj3/8Y/YZIQRPPvkkkpKSIJfLkZOTg//973+jXqfdu3dj+fLlkMvliI2NxR133OHmMXc4HLjvvvsQGxsLmUyGlJQUvP766zh69CgKCwsBAGFhYRCJRLjxxhvZ3Aq9lt3d3bj++usRFhYGhUKBCy64APX19ezzN998E6Ghodi8eTPS0tKgVCrZCx+Hw+HMacgc44YbbiDr1q1zW/brX/+aqNVqQgghDz30EAkMDCRr164lpaWlpLy8nAwPD5O8vDyybNkycvDgQbJ3716ycOFCsmLFCrYPut2qVauIXq8n27dvJ8nJyeTqq69m67zyyiskKiqKfPTRR6SxsZF89NFHRKVSkTfffJMQQkhTUxMBQBISEtg6RqPR63kAIDqdjnzwwQekrq6OXHbZZSQhIYGsWrWKbNq0iRw6dIicffbZ5Pzzz2fbfPzxx8Tf35+8+OKLpK6ujjz99NNELBaT7777jhBCSHt7OwFANm7cSEwmE2lvb2fnlpOTw/bzzDPPkODgYPKf//yH1NbWkvvuu4/4+/uTw4cPu51Hamoq+eKLL0hdXR358Y9/TOLj48ng4OC4rxUA0tTUNO714+PjSVBQEHn88cdJXV0d+X//7/8RsVhMtmzZ4rbPmJgY8t5775H6+npyxx13EKVSSbq6ugghhLS2thKFQkFuu+02UlNTQz755BMSHh5OHnroIUIIIcePHycFBQVkw4YNxGQyEZPJRIaGhsbcjhBCVqxYQYKCgsif//xncvjwYfLnP/+Z+Pn5kQsuuIC88sor5PDhw+SXv/wlUavVpL+/nxBCSFtbGwkPDyf3338/qampIaWlpWT16tWksLBw1PEUFxcTACQ7O5ts2bKFNDQ0kM7OTrJ69Wpy2223uc1bXl4eefDBB73O6YEDB4hYLCbvvfceOXr0KCktLSXPP/88+/wPf/gDSU1NJZs2bSJHjhwhGzduJDKZjGzbto0QQtg4uru7CSGEVFRUEKVSSZ599lly+PBh8v3335O8vDxy4403sn3+5Cc/IbGxseTjjz8mR44cIVu3biXvv/8+GRoaIh999BEBQOrq6ojJZCLHjx9nc/ub3/yG7ePSSy8laWlpZMeOHaSsrIysXbuWJCcnE6fTSQghZOPGjcTf358UFRWRAwcOkJKSEpKWlub2feVwOJy5yJw37Pbt20fUajX5yU9+Qgg5YcT4+/szo4YQQrZs2ULEYjExGAxsWXV1NQFA9u/fz7YTi8WkpaWFrfP1118TPz8/YjKZCCGExMbGkvfee89tPH/+859JQUEBIeQHg+i5554b8zwAkAceeID9vWfPHgKAvP7662zZf/7zHxIQEMD+Puecc8iGDRvc9nPFFVeQCy+80G2/n3zyids6noZddHQ0eeyxx9zWWbx4MTMY6Hm89tpr7HM6XzU1NWOem3AsEzXshIYsIYRceeWV5IILLnDbp3DerFYrEYlE5OuvvyaEnDBUFixYQIaHh9k6L774IlEqlcTlchFCRhoRE9lu2bJl7POhoSESGBhIrrvuOrbMZDIRAGTPnj2EEEL+9Kc/kTVr1rgdq6WlhRk3vsZDDapPP/3UbfkHH3xAwsLCyMDAACGEkLKyMiISiXzO80cffUSCg4NJb2/viM+sVisJCAggu3fvdlv+s5/9jPz0pz91Gwc17K677jry85//3G39nTt3Ej8/P2K320ldXR0BQL755huv4/HcH0U4B4cPHyYAyPfff88+7+zsJHK5nHz44YeEkBOGHQDS0NDA1nnxxRdJZGSk1+NyOBzOXGFOhmK/+OILKJVKBAQEoKCgAMuXL3cL2cXHx0Oj0bC/a2pqEBsbi9jYWLYsPT0doaGhqKmpYcvi4uIQExPD/i4oKMDw8DDq6urQ0dGBlpYW/OxnP4NSqWT//vKXv4wIly5atGhc55Gdnc3+PzIyEgCQlZXltmxgYAC9vb3sPJYuXeq2j6VLl7qdw1j09vaira1tXPsRji8qKgoA0N7e7nPfF1xwgdvcAEBGRsaIZaNRUFAw4u/RxhUYGIigoCA2rpqaGhQUFEAkErmdm9VqRWtrq8/jjnc74bHFYjHUavWIawb8ME8lJSUoLi52m4PU1FQAGHHfeMPzXrrssssgkUjwySefAADeeOMNFBYWsrC7J6tXr0Z8fDySkpJw3XXX4d1334XNZgNwIkQ8MDCA1atXu43v7bff9jm2kpISvPnmm27rr127FsPDw2hqakJZWRnEYjFWrFgx5rn5oqamBhKJBGeddRZbplarsWDBArd7QaFQYN68eezvqKioUe9PDofDmQtIpnsAU0FhYSH++c9/wt/fH9HR0fD393f7PDAw0O1vQojbA3us5RT6mUgkwvDwMADg1VdfdXvgACce8KMd3xfCcdNjeVtGjy1cNt5z8MV49jPWWDx57bXXYLfb2d8pKSn46quvoNPpJjy+0cbqeb2F18fbeZD/P/dstHka73bejj3aPA0PD+OSSy7B3/72txHHpMbyaHjeS1KpFNdddx02btyI9evX47333sNzzz3nc/ugoCCUlpZi27Zt2LJlCx588EE8/PDDOHDgABvjl19+OeIayWQyr/sbHh7GL37xC9xxxx0jPouLi0NDQ8OY5zQWxEeuoOc18nYtfG3L4XA4c4U5adgFBgYiOTl53Ounp6fDYDCgpaWFee0OHTqEnp4epKWlsfUMBgPa2toQHR0NANizZw/8/Pwwf/58REZGQqfTobGxEddcc83kntA4SUtLw65du3D99dezZbt373Y7B39/f7hcLp/7CA4ORnR0NHbt2oXly5e77WfJkiWnND5vBlx8fLxPb5I39u7dO+Jv6uEaD+np6fjoo4/cjIDdu3cjKCiIjU8qlY6Yo/FsdzIsXLgQH330ERISEiCReP86ehvPaNxyyy3IzMzESy+9hMHBQaxfv37U9SUSCYqKilBUVISHHnoIoaGh+O6777B69WrIZDIYDIZxe9gWLlyI6upqn9+/rKwsDA8PY/v27SgqKhrxuVQqBYBRzzc9PR1DQ0PYt28fzjnnHABAV1cXDh8+7HavczgczpnInAzFTpSioiJkZ2fjmmuuQWlpKfbv34/rr78eK1ascAt1BQQE4IYbbkB5eTl27tyJO+64Az/5yU+g1WoBnKguffzxx/H888/j8OHDqKysxMaNG/HMM8+clvO499578eabb+Jf//oX6uvr8cwzz+Djjz92k3pJSEjAt99+C7PZjO7ubp/7+dvf/oYPPvgAdXV1+P3vf4+ysjL85je/OS3nMRrff/89nnzySRw+fBgvvvgi/vvf/05oXLfddhtaWlrw61//GrW1tfi///s/PPTQQ7j77rvh53fi65CQkIB9+/bh6NGj6OzsxPDw8Li2Oxl+9atfwWKx4Kc//Sn279+PxsZGbNmyBTfffDMzbryNZzTS0tJw9tln43e/+x1++tOfQi6X+1z3iy++wP/7f/8PZWVlaG5uxttvv43h4WEsWLAAQUFBuOeee3DXXXfhrbfewpEjR6DX6/Hiiy/irbfe8rq/3/3ud9izZw9+9atfoaysDPX19fjss8/w61//mp3LDTfcgJtvvhmffvopmpqasG3bNnz44YcAThj6IpEIX3zxBTo6OmC1WkccIyUlBevWrcOGDRuwa9culJeX49prr4VOp8O6devGNe8cDoczZ5mWzL4pxFtVrBDPQgFKc3MzufTSS0lgYCAJCgoiV1xxBTGbzSO2e+mll0h0dDQJCAgg69evJxaLxW0/7777LsnNzSVSqZSEhYWR5cuXk48//pgQ8kPRgV6vH/M84FHk4G1bb4nmL730EklKSiL+/v5k/vz55O2333bb72effUaSk5OJRCIh8fHxXufE5XKRRx55hOh0OuLv709ycnJY8YGvsXR3dxMApLi4eMxzE57jRIsnHnnkEfKTn/yEKBQKEhkZOaIQxXPeCCEkJCSEbNy4kf29bds2snjxYiKVSolWqyW/+93v3Kp56+rqyNlnn03kcrnbGMfazluRQ3x8PHn22WdHHePhw4fJ5ZdfTkJDQ4lcLiepqankzjvvZIUa3sbjq8iA8vrrr7sV//hi586dZMWKFSQsLIzI5XKSnZ1NPvjgA/b58PAwef7558mCBQuIv78/0Wg0ZO3atWT79u2EEO/34P79+8nq1auJUqkkgYGBJDs7260Yx263k7vuuotERUURqVRKkpOTyRtvvME+f/TRR4lWqyUikYjccMMNXufWYrGQ6667joSEhBC5XE7Wrl3LqrYJOVE8ERIS4naun3zyCZmDP3kcDofjhogQnnQyHh5++GF8+umnKCsrm+6hnLEkJCTgzjvvPGO6MJwKjz32GN5//31UVlZO91A4HA6HcxrhoVgOZw5htVpx4MABvPDCC14LGDgcDoczt+GGHYczh7j99tuxbNkyrFixAjfffPN0D4fD4XA4pxkeiuVwOBwOh8OZI3CPHYfD4cwwduzYgUsuuQTR0dEQiUSs17U3fvGLX0AkEo2qV8jhcM4cuGHH4XA4M4z+/n7k5OTgH//4x6jrffrpp9i3bx/T1uRwOJw5KVDM4XA4s5kLLrgAF1xwwajrGI1G3H777di8eTMuuuii0zQyDocz0+GG3RgMDw+jra0NQUFBJ9Wai8PhnDyEEPT19SE6OvqUhKDnGsPDw7juuutw7733IiMjY1zbOBwOOBwOt31YLBao1Wr+28bhTANT9fvGDbsxaGtrY23GOBzO9NDS0oKYmJjpHsaM4W9/+xskEsmEJG0ef/xxPPLII1M4Kg6HczJM9u8bN+zGICgoCMCJiQ8ODp7m0XA4Zxa9vb2IjY1l30MOUFJSgueffx6lpaUT8rTdf//9uPvuu9nfPT09iIuLm9bftra2NjgcDkgkEojFYkRGRkIsFk/LWHxBxyiTyaY0l9HlcuHYsWNTMgfj2ffpOk/OD0zV7xs37MaA/nAGBwdzw47DmSZ4qPAHdu7cifb2dsTFxbFlLpcLv/3tb/Hcc8/h6NGjXreTyWSQyWQjlk/nb1tgYCDMZjO0Wu1pNehcLheMRiMAQKfTjXrsscbocrlgNpuh0WjQ0dFx0udiNBohlUphs9mg0+kmvP1YhIWFjfr5dF0LzuT/vnHDjsPhcGYR1113HYqKityWrV27Ftdddx1uuummaRrVySEWi6fEiBkLs9mM1tbWcY1hrM/NZjMcDgcqKiqgUqlgNptP6py0Wi0zrKaDU70W1MDlhuH0ww07DofDmWFYrVY0NDSwv5uamlBWVgaVSoW4uDio1Wq39f39/aHVarFgwYLTPdRZiVarhcvlcvv/kzVKqEGWnZ3NPHYnw8kYVp7jnk7jihq4J2vYciYPXmbG4XA4M4yDBw8iLy8PeXl5AIC7774beXl5ePDBB6d5ZHMHakiJxWI3o8QXNHxLDULP/Uil0jHDupON57jHcx5ThVarhUwmmzaPI+cHuMeOw+FwZhgrV67ERLo9+sqr43jH07s0njAo3cZoNEIsFk97yNHlcsHlckEikbBxT2c4d7rC6pyRcI8dh8PhcM4oPL1LQu/dWNsAmDavmBCz2YyhoSGIxWI2bm/n4cvTyJm7cMOOw+FwOGcUngbQeIwfuo1Wq4XFYoFGozldw/XKeEOf3sKz3Nib23DDjsPhcDiziokaJi6XCwaDAQaDgW0j3MdEctM6OjoQEhKCiooKr/s6mfGdDOPxMgLeDcDpzMXjTD3csONwOBzOrGKihgmVN2ltbfVaaODN+PFlnGm1WvT09CAkJMRn0YIwH8/ToJxq6LidTqdPrT5e6DC34YYdh8PhcGYUY3m8JmqYaLVaxMTEICYmxq3QgO7Dm/fLl/EoFouRl5cHhULBpFLsdjsOHToElUrltm8AIwzKqUaoq+fL+B2vt2+q4KHgqYUbdhwOh8OZUYzlkZuoYSIWixEXF4e4uLhRCw2EaDQan7l0nlIp1dXV6O/vR3FxMVwuF/tcp9ONMCinGmpUZmdnM8N1phlSPBQ8tXDDjsPhcDgziukMFVIjyGw2Q6VSoaOjY9T1NRoNIiIiIJfLkZSU5GaseDMopxpvunqjGVLTYfTxUPDUwg07DofD4cwopjJUOJYhYzabYbPZYDabIZFIoNFoRl2/o6MDkZGRyM3NRVBQkJuHjOa5TbenzNOQOtnCkcliukPBcx1u2HE4HA7njMGXIUONHY1Gg+7ubjgcDgAnDLfRDB9qNNHQq9BDNlqe2+nE05Aaq3CEM7vhhh2Hw+Fwzhh8VcDq9XrYbDZ0dHSw/DqXy+Uz144agoDvqlNhnttMYqzCEc7shht2HA6Hwzlj8FUBq1QqUV9fD41GA7FYzP7b0dHBcu08Q5g2mw16vX7G9I8db74cN+bmNtyw43A4HM4ZC+252tvbi5SUFHR0dECn0yE+Pp51mpBIJEzkuLm5GUajEVqtFt3d3bDb7cxzN97jTVXeHa825QDcsONwOBzOGQztuUrDk9Tgoh4t+m9oaIh57ajhREOsZrPZq6HmzYgTihdPtoHH8+U4ADfsOBwOhzOLOBWPl3BbYbGERCJh6wwNDTFDja5LDabc3FzI5XKEhYXBbDZDp9O5/e2JNw+aULz4ZLxro50/D7FyAG7YcTgcDmcWITSWJmrkCbel/9/R0cE8cgBY2NVoNLJ1hTlz2dnZ6OnpgUqlgtlsRnZ2NutC4Yk3D5pQvPhkvGtTFW6daSLGnJOHG3YcDofDmTUIjaWJGjnCben/azQauFwuSCQS5u3yNPKExg4tpqiurmaGoS8v2WgetJPxrtGxSCSSSQ+38vy8uQM37DgcDoczaxAaRBPNKRNuS/+/o6MDQ0NDbBktlqA4HA7o9XomNqxSqWCxWJCRkeFVNmUqvV40H5COdTLh+XlzB27YcTgcDmdWMhk5ZZ4GjbBYAgB6enoQEhLCxIarq6uZcUePTQ06Yfh2svCW6zcVxhfPz5s7cMOOw+FwOGcUY3nWhF47mkOXnZ0NiUQCtVo9IhRKw5gAJt3wEoZIufHFGQ/csONwOBzOGYW3Igqz2Qy73Y6vvvoKTqfTTeKEFk7QZe3t7W7789ZWbLLw1fmCw/EFN+w4HA6HM6s41Vw2zyIKWiSxdetWdHd3o7i42G0dKk7sdDphsVgQEhLipkMn9KRNdp6dsPMFhzMeuGHH4XA4nFnFqVRwUoFh2icVANrb2+FwOJCWloawsDAsX77cbR2z2YzW1laYTCao1WrU19fD6XR6lV051epST8NQWL3L5Ug444EbdhwOh8OZVZxKEYGn4WU2mxESEoKenh4kJibiwgsvRE9Pj9s6tG9sVFQUurq6oFAoYLFY2BiMRiNrNXaqoVPPzhQAWPUulyPhjIdZbdjt2LEDl1xyCaKjoyESifDpp5+6fU4IwcMPP4zo6GjI5XKsXLkS1dXV0zNYDofD4UwKp1JE4GkUarVaKBQK5OXlsf15rkO9cmKxGHl5eVAoFNBoNG5eP+ppKysrQ0hIyEmHTn11puByJJzxMqsNu/7+fuTk5OAf//iH18+ffPJJPPPMM/jHP/6BAwcOQKvVYvXq1ejr6zvNI+VwOHOZwcFBtLS0oK6uDhaLZbqHwxkFahQCgMFggMFgGBHeHM1wlEql0Gg0qKiocNtWKpViaGgINpsN9fX1E/LYCcOvvjpT8IpYzniRjL3KzOWCCy7ABRdc4PUzQgiee+45/PGPf8T69esBAG+99RYiIyPx3nvv4Re/+IXX7RwOBytbB4De3t7JHziHw5n1WK1WvPvuu/jPf/6D/fv3u/1uxMTEYM2aNfj5z3+OxYsXT+MoOZ7QPDiXy4Xm5mYcPnwY8+fPBwAmUOxpPAkFkYETBQ1OpxMdHR2QSqVwOBwQiUSIiYlhVbT0v+MdC+1RO9Y2HM5YzGqP3Wg0NTXBbDZjzZo1bJlMJsOKFSuwe/dun9s9/vjjCAkJYf9iY2NPx3A5HM4s4tlnn0VCQgJeffVVrFq1Ch9//DHKyspQV1eHPXv24KGHHsLQ0BBWr16N888/H/X19dM9ZM7/j1BzTiKRIDg4mGnW+cpho0YdNcJyc3MRHx8PjUYDjUaDnp4ehIWFQSqVIj8/32fv2NHG4lkgwVt8cU6WOWvY0S9DZGSk2/LIyMhRvyj3338/enp62L+WlpYpHSeHw5l97N69G8XFxTh48CAefPBBnH/++cjKykJycjKWLFmCm2++GRs3bsSxY8dw6aWXYvv27RPa/1j5wwBQU1ODSy+9FCEhIQgKCsLZZ58Ng8EwSWc4d/HUnNPpdNBoNDCZTBCJRMwg86xOFRpaUqkUOp0OhBB0dHSwvDvq7RstZOp0OrF//340NTVBo9Ewo1Kr1bICCXrcqegJOxVMdSs1zsSYs4YdRSQSuf1NCBmxTIhMJkNwcLDbPw6HwxHy3//+F1lZWWOuJ5PJcNttt+GWW26Z0P7Hyh8+cuQIli1bhtTUVGzbtg3l5eX405/+hICAgAkd50xEaHjpdDrEx8fDYrHAbrejq6uLGWRCQ87lco0wtITFDJ4evdGoqKhAc3MzKioq0NHRwUSPqbwKLZw42Z6w3oys09HD1pd3kRt9p59ZnWM3GsJqpqioKLa8vb19hBePw+FwTpbKykqkpaW5NY4/VUbLHwaAP/7xj7jwwgvx5JNPsmVJSUmTdnxveNN/m+1Q444WQ2RnZ7PPhMvMZjOGhoaY0WU0GqHVat3y4YTGjbc8OTp/GRkZGBwcBCGEyagI51Wn07nNtbd9jHYNvI1jrLGdKtSo9eZdnOpjc0YyZz12iYmJ0Gq1+Oabb9gyp9OJ7du345xzzpnGkXE4nLlETk4OlEolFi5ciJtuugnPP/88tm3bhuPHj0/J8YaHh/Hll19i/vz5WLt2LSIiInDWWWd5DdcKcTgc6O3tdfs3EWZzztdoXiOXy8XCqVKplC0XdnwQeufoPBgMBhw8eBBOpxOAdzkS4XGp1l1HRwfi4uJY6FVYpeutk4UQo9GIxsZG7Nu3j3XC8Dwvb+OYaqmU0cLPXKbl9DOrDTur1YqysjKUlZUBOFEwUVZWBoPBAJFIhDvvvBN//etf8cknn6Cqqgo33ngjFAoFrr766ukdOIfDmTPs2rULKpUKiYmJcDgcePPNN7Fq1Sqo1WosWLAAf/rTnybVyGtvb4fVasUTTzyB888/H1u2bMHll1+O9evXj5rLd6qFYbP1Ae1yuaDX62Gz2ZhRSg0tp9Pp8zOVSoXOzk5muAkrY2UyGTo6OmC1WlFRUTHCk0b3YTQavRrD3uZyvOHMrq4umM1mNDc3Y+vWrW5jB7wbWdMplcJlWk4/IkIIme5BnCzbtm1DYWHhiOU33HAD3nzzTRBC8Mgjj+Dll19Gd3c3zjrrLLz44ovIzMwc9zF6e3uZKjnPt+NwTi+z4fu3cOFCPPjgg7jsssvYsu3bt+OWW27BTTfdhC1btqC5uRn79+8/qW4EIpEIn3zyCdt/W1sbdDodfvrTn+K9995j61166aUIDAzEf/7zH6/78SblFBsbO6PndjIwGo2w2Wzo6elhIsTU4KJ9X4WfGQwGtLa2QiKRsHXy8vIQFxfnZsC5XC4WqqVFDzQcbzabERYWBplM5iaTIgxXeoZURwuz0nPo7u5m91BHRweCg4NhtVrdxJU5Mx96rRUKBVQq1aR/B2e1x27lypUghIz49+abbwI48YP48MMPw2QyYWBgANu3b5+QUcfhcDhjUVtbi/T0dLdlK1aswLPPPovS0lIUFxdj0aJF+MMf/jApxwsPD4dEIhlxzLS0tFGrYs/UwrDROktkZ2eP+Iyi0Wggk8mgUqnYMs/K2EWLFkEqlboVPbS2tjKRYpqHR4sgaMjV00sIjB3O7O7uhsPhgFgsRmJiIvLz8xEUFMRyAHlxwuyB3kfHjh2bkv3PasOOw+FwppvFixfj3//+94jlGRkZ2LJlC0QiEe69915s3bp1Uo4nlUqxePFi1NXVuS0/fPgw4uPjJ+UYc4nRQpNUtkT4Ga2UjYuLQ25uLuRyuVslrEQigcvlcstvo/ujn8tkMqSkpHhtKybsTTvesLY34WR6TKFECq8+nR3QF4GpKuScs1WxHA6Hczp46aWXUFBQgIaGBjz44INITU2F0+nEs88+y7w9Go1mQm/nVqsVDQ0N7G+aP6xSqRAXF4d7770XV155JZYvX47CwkJs2rQJn3/+ObZt2zbZp3fGIfSsmc1mVkAh9LzZbDZs3boVKSkpMBqNzPDq6OhgHlVhCJbmyAFgmnnZ2dlew7D0uJ6GnGf3C4pQZoVXn84O6D02VZ2tuMeOw+FwToGMjAzs2bMHJpMJ6enpkMvlCAwMxKuvvoonnngCwInQW3R09Lj3efDgQeTl5SEvLw8AcPfddyMvLw8PPvggAODyyy/Hv/71Lzz55JPIysrCa6+9ho8++gjLli2b/BM8g9FoNLBYLCyvjerZdXd3IykpCT09PQB+6FhBPXYA3Awzs9mM1tZWtLa2orKyEk6n0y0MS6tdS0pKvBZcjJZ/56u3LNePO3OZ1cUTp4PZkLzN4cxVZtv3r7m5GeXl5RCLxcjPz2cP2Z07d+LYsWP48Y9/PM0j/IHZNrfTATWyaKcK+renR05odHluA4BV30ZERAAATCYTYmJiEBcXBwAwGAzQ6/VQqVSIiYlBV1cXsrOzmfwKLegQbjPRsXNmHlP1HeQeOw6Hw5kgvooU4uPjcemll+Kiiy5yC5klJSXNKKNuNnM6PVGesiSe7cio98zpdDJNO29SJh0dHUyMGMCIkKpOp0NeXh7i4+MhFouhVCqxdetWJrXijbHmwdPbeLJwz9/sgxt2HA6HM0EWL16MDRs2YP/+/T7X6enpwauvvorMzEx8/PHHp3F0c5uJCiWfjGEizIkTGnDeCjHMZjP0ej3Kysqg1+u9riOsmjWZTEwUWXicuLg4xMXFQafTobGxETKZDBUVFWwM8fHx0Gq17FzMZjNsNhv0ej0LEQvPUyiwfCp4m29fc8qNwJkBL57gcDicCVJTU4O//vWvOP/88+Hv749FixYhOjoaAQEB6O7uxqFDh1BdXY1Fixbh73//+6jtwTgTY7T2VRRhTtrJtLSiXSKMRiPy8/NH1YjTarWIioqCy+XC8PAwq5IVImwVJtzOaDSitbUVTqcTUqkUGo0GHR0dKCwsRHV1NWtxRrcX5t9ptVro9XqEhISw4onW1la4XC52LGFv25PF23x7m1MqBE3Hw8O/0wf32HE4HM4EUalUeOqpp9DW1oZ//vOfmD9/Pjo7O1FfXw8AuOaaa1BSUoLvv/+eG3WTzHg6GQgNj7E6ZrhcLhgMBhgMBjfDy2KxePUMCsOudDxLlixBYmIiwsLCmAfN19ipZ044fipZUlFRwUSRqUYeHaPRaGTaejSfLy8vDwqFYsS50d62tIr3ZPDltQR8d86YqIwLZ2qYUPHEZ599NuEDrF69GnK5fMLbzRR4gjGHM33w79/UMZfndrQqUk+odw44kSNJvV2+jJqDBw/CarVCoVAw7TraRqykpAQOh4Pp4I13nCqVCtXV1cjIyIDFYhkxbmEhhNCDJlxnPJIpE8Fb8cVo8zqROeecYKq+gxMy7Pz8JubgE4lEqK+vR1JS0oQHNlOYyz9+HM5MZzZ8/3p6enDvvffiu+++g7+/P7777jtERUVN97DG5GTmdiof3qfLMPDV1xWAm36dr3E4nU5UVFRArVaDEOJWIUtDqxOpXgV8V7DSsdIQrTC0LDzuVMyXN0PR5XJhaGiIV9pOEjOmKtZsNmN4eHhc/xQKxaQNlMPhcGYit912GyorK/Hkk0+iubkZdrsdAHDnnXfi+eefn+bRTS6eifSTmSw/0aKIsfA1NmH+HF2vvb2dGUhjjUMsFiMqKgparRYWi2WEMDD1+o13PMCJ0KZIJILRaHSrhKVjEQokCwsxvI1zPNdkPOsIQ950HABGDWtzZgYTMuxuuOGGCYVVr7322hn7ls3hnAoVFRW4/fbbWdUa58zl66+/xksvvYT169e7eU7OP/98vPPOO9M4ssnHM7dqMo2xsXLhRsOboTLW2Og2er0eVquVfZfHGgfdb3V1NVQqFcRisVvem7f8P1pY4NkfliIWi9HV1QWbzeb2m+JtLL4Eicc6b+EcTfS6+ZJ5OVV4Fe3UMCHDbuPGjQgKChr3+v/85z8RHh4+4UFxODOdV155BW+//TZeeeWVCW3HDcK5iVKpHLEsJSXFrS3YXMDTcDkVY2ysfY8HahjQUKawX6q3sVEDIiYmBmKxGA6HA2q1GjabDRkZGSPGITQ8hAUMEokEarUaEomE5dnRUKXwWAaDAU1NTTh48CDkcjnq6+uhUqm8GjPZ2dlQKpXIyMgY0YNW2HrM12cUX9dkIgUlnow2jlNhsr20nBPwqlgO5yT4+c9/juuvvx4///nPx1xXaMydrEHImblceOGFeO+990Yst1qtEIlE0zCi08fJGGOTCdVyM5lMEIlE7G+z2ezVQKMdHAAwj5dUKkVKSgoqKytZZazQYKRacQaDAc3NzWzfND3dbDaPaANGPXRNTU347rvvMDAwgKamJgQFBaGsrAzNzc0wGAxuRmNHRwfy8vJgsVjc9Ono/gwGA0pKSnx6/SijGXwSiYTt81Sum2c4+2SZzBcDzg+ctI7d3Xff7XW5SCRCQEAAkpOTsW7dOtYEm3NmQY2Yn//850yLaS6RnZ2Nf/zjH27LfJ0zNeYAMENwPAbhZOFtXHP9+pxOHn/8cSxatAgAQAiBSCSC3W7Ho48+ioULF07z6OY2VMtNpVKhq6sLYWFh6OnpGVGwRz1DnZ2dbJlQW06v18PhcKC1tZUZO7RAoaenByEhIUzolxpGtCcsXc8zRB0SEgKj0Yjg4GBIpVKkpqaiuroaarUafn5+6OjoQHh4uFcNOiqnYjQaERcXx3rNulyuEec33qITKn0yUU0/WiwibHE2WdBrwJlcTtqw0+v1KC0thcvlwoIFC0AIQX19PcRiMVJTU/HSSy/ht7/9LXbt2oX09PTJHDNnFiA0ZjwNoLmKr3MWGnPeDMLpGNdf//pXfPzxx+js7MT7779/Wscz14iNjcX333+PX/7yl7DZbFiyZAn6+voQHByMr776arqHN6ehWm5msxnx8fHo6OhAUlLSCANHo9GgoqICWVlZTE7Ecx/U++QpF6LVat22FVaG+pIeocuzs7NhMpmY8aLRaBAVFeUmRkyraYXjiYqKYp5Fuj/q2fM8t7EEmIWVteMVLRYaixUVFSwHkb7ACAs5ODOPkzbsqDdu48aNrECit7cXP/vZz7Bs2TJs2LABV199Ne666y5s3rx50gbMmR1Mh2dqsjhZb5avc54OY07IbL4Ws4Xk5GR88803MBgMKC8vh7+/P8466yyEhYVN99DmBKN5pYReH88uCfT/aXsti8XiVU5Eq9WOkCcRSp/Q1lzUmKEGGd0H7R0sDINqNBqUlZWxClqj0ci2t1gsbuP2NJSE+zAajWx8wpCv8JyFIV1vhp/NZsPWrVuRkpICiUQCvV6PjIwM5oX01iaNHic7O5t57LzN+emC6+SNnwnp2AnR6XT45ptvRnjjqqursWbNGhiNRpSWlmLNmjVu7u/ZxmzQ0ZpNzIYQ4O233463334b119//Zz1Nnpeh5l6XWbq9++cc85Bbm4ucnNzkZOTg+zs7FknxD5T59Yb1KCh2m1Cb5cwh85oNGJoaAjx8fEs7CiRSOB0OlFbW4vzzjvP7Tr50o+jCDXuALhpuNEQrt1uh8ViASEEarUacrkc2dnZ2Lp1K2QyGUJCQhAVFcVEkKVSKZv3vLw8Nn5vRgvNCfTm5fMlYOx5HnScSqUSVqsVw8PDsNlssFqtGBoaglqtRlJSkk+DdzQj6mSNrZPZbqxrNRuZMTp2lJ6eHrS3t49Y3tHRgd7eXgBAaGiomyYPhzMbigcmUhjhjcmufJ2KSlrqRaRG3GRdl9HGOpcqgtetW4fjx4/j+eefx7JlyxAcHIy0tDRcddVVeOKJJ7Bp0yaYTKbpHuacwVO7jbbeokUEVLaktbUVFosFwImwJw2dVlRUwGg0orKy0ut+R5M2oa25qKdNo9EAAGtDJhKJkJ2djczMTFgsFvT396OsrAxJSUlwOBzIyMiAy+VCVFQUYmJikJ2dzfL2aH4dlUIRVvUKoS3HhHp2Qui50rEJoaHmoKAg5OXlITc3F0qlEqmpqVCr1ZBKpSMqh8drdI2nqtWzBRtwcsUXvNBi/JxSKPbmm2/G008/jcWLF0MkEmH//v245557cNlllwEA9u/fj/nz50/WWDlzgNkQFjzV0Olk56+djnzFybounmMVegLnUt7l7373O/b/JSUlWLduHfLy8uDv7493330Xf/jDHyASiRAeHo5jx45N40jnBsJCBxoepJ4ruiw0NBRSqZRprdECBrPZzLxpnobPaCFFGtqkOWnCkKxOp0NHRwdcLhekUikSExNhNBpZuDcuLg5SqRRr165lxqHQ00TzAmkY1W63Y3h4GFqt1i3UqtFoUFVVheXLl4/owSo0wGiomY7N1/zR/1+0aBFcLhfkcvkIA85Xzp43g88z9O0Nbzl6JwMvtJgA5CTp6+sjt9xyC5FKpcTPz4/4+fkRqVRKNmzYQPr6+gghhOj1eqLX60/2EDOCnp4eAoD09PRM91AIIYSUl5eTX/3qV6S8vHy6h8Lxwdq1a4mfnx9Zu3btpOxvNl1zz7FeeeWVxN/fn1x55ZUndR4z7fvnjYULF5JPP/3UbdmXX35JdDod+eMf/zhNoxqb2TC3hBAyNDREWltbydDQkNfPDhw4QGpqasiBAwfc1qGfFRcXk48++ojs3bvX6z580draSo4cOUJaW1vdxuFwOEhrayux2WzkwIEDxOFwsM+bm5tJc3PziHH4Gj8hhDQ3N5Pvv/+ebSdc98CBA2Tr1q3kyy+/HLG9cHye2411zNHwta3nfIwXh8PhNk++lk0Gp3Le08FUfQdPOhSrVCrx6quvoquri1XIdnV14ZVXXmFinTQHhTN5zIZQ5mxjskOEoaGhEIvFCA0NnZT9eYZNp5vR5mu0sc6085gsampqRpzThRdeiJdeegn79u2bplGdHP9fe+ce13Z97/9XLiQkJAQSEpImhUKppVAoFNraTmur2Do9zsup07PL0W3epu6izh31bK7zzLrp1G3uOKdOd3Gb/trqjtvcbFXaqrWlQCAtlLZcU9KkhARCAiEhyff3B/t8/OYGgUJp8fN8PHi0/V4+38/38/2GvPq+niudABJ1SeC7KYl7z2q1QqVSwefz0Xg1gkgkQnl5OXw+HzQaDQwGw5TiwGJdf8RiRNyibrcb1dXVUSVAEtWQm6zWH78NGd8qZbPZUFpaikAggMLCwjh3ZyL3a6L6e1N9lqkWPk71XZFIJHHrxLcwziSs4PE4Z1Sg+IMPPsCdd96JO++8Ezk5OVAoFPjDH/6ADz/8cKbmx4jhTOO/GPHMtFh++OGHcfvtt+Phhx+O2zcf4sxeeOEFvPLKK/jSl7406X1MtBbzhTVr1uD555+P215WVgaz2TwHM5o+s/3FmKoYSNQlAfikN2pTUxO6urrgcDgglUqh0+kSXsPpdGLp0qXIyMiY1I0XO7dEAoe4ZwUCAf17su4XpA7dZPea6Dokk7WlpQU1NTVQKpVxbliLxQKFQkHjB/mxhwDi4vhi5zJVER87zzN5V6YTL5fKfFkc3jjTFnY7d+7E5s2bIZPJ0NjYSF8mr9eLbdu2zdgEGdFiYL5aPeaSmRbLEz2jMxGRyUTh2RaLt99+OxYvXozOzs4J7yNZYeTzXdjG8txzz+H555/HLbfcAovFgkgkgtHRUfz0pz9FRkbGXE9vSszEF+NEX8CpigH+PBL1RtVqtVHtrXp7e+k1+T1Z9Xo95HI5ysvL41p+TWduJF7O5XIhFArB4XDQ8wDEJXhM12qm1+ujCiPHdtCw2WxQqVTo7OyESqWi1y4vL6eFk8vLyyGXy2kcXOy9TVWYxT7XZC3b+Mckexem06KMiN2J1nOuO6FMldmyjE9b2P3oRz/C888/jxdffBFpaWl0+7p169DY2Dgjk2OMw9yvs8tkYnkmxcjtt9+OK6+8Ev39/VMeL9l7cDbfDyLWHnnkEdxyyy0TiuFE85qP7/KyZctw8OBB9Pb2oqKiAjKZDEqlEi+//DIef/zxuZ7elJiJL8aJBEOqwnEyl2ZeXh6MRiNCoRBsNhvsdjusVmtUT1Yi/vjuU37LL2JV6+rqQl1dHdRq9YRz4ydTlJeX02PJPZGesQDoMXyr2VQgmaxSqZRel6wtEa1SqRQ1NTWQy+VU+EokEohEIoRCoShBmGjdJ8qkTUTsc01maeQfk6p4TOU4vtidynqeK+EFiZitxKppZ8UeO3YM69evj9uemZmJwcHBM5kTI4bzIZN0rpjJ+muptAQ702zO8vJy5OTk4Pe//z1ycnKmNF6y9+Bsvh9kLfr7+5GTkzPhsfx5kbXdsGFD1L75QnFxMd5991309PSgubkZQqEQVVVVMBgMcz21s85EmZJTzWxMlIlJtul0OvT29sLpdNI6crm5uejo6EAgEEBdXR0VgIkKFxOrGhF4QqEwKmsz9trknIGBAQCIsqIR+BmwEokkKvt1OvT19VEhQ+7DbDYjOzubtgiLJdH6J1p3fpxbsg4ahGAwiN7eXuh0urh74a9T7LUTzWW62bX8LiNTWc/YLF/+9cn+uSp6nJubOyvjTlvYGQwGtLe3Y9GiRVHbP/zww7g+fYwzY647FyTiXCloO5OiK5WWYDPBdMdL9B7s2LEDjz76KB555JGz8hzInPv7+yddd/58SdHniY4/X3G73bQndn5+PvLz8+d4RnPLTJalSFR6w2az0aK9MpkM2dnZ4DgOBoMBRqMRYrEYFosFg4ODEAqFUa5cAikzotFokJWVBbfbHfX5CYfDtPZaOBxGXl4eFVX8nrKkrMrIyAjq6+uh0+kgFoujOkakshaJxEY4HKbFa8l3aqy44SeWEMtcsvXntxZzOp1RxY4na0tmsVjg9/vR19dH697xY+2Ii7SysjLq/ERzSXStVN+Z6bxbyUQ9sfpNtXfuTDJbYnLartg77rgD3/rWt3Dw4EEIBAKcOnUKf/zjH/Gd73wHd91110zOkXEOcq641GYqPs5isaC/vx9XXnll0pZgMyWcYgVPKi7ZZO7ghx56CIcPH8ZDDz00I3Ob7PrAuDB7+OGHk657ormeiQv6XCcnJwd5eXm4+uqr8b3vfQ/bt2/H8ePHwU2vqQ+Dx0SuWyJyCgsLqaAgVqOSkhIsW7aMtvNKdK5IJALHcZDJZFi9ejVEIlFUJm4wGITT6YyKzdPpdDCZTDCZTFFWKY/Hg2AwCLvdDpFIFOf6nQy+2ODH7Mnl8qjuFLEuxUSJJZNdg8T+WSwWKtCSrTO5ZmlpKRQKBXQ6XVyc21RcpImST1JhJt2p/Hudr8kW0xZ23/3ud3Httddi48aN8Pl8WL9+PW699Vbccccd9AuAMX85V7JzZyo+7oUXXsDbb7+NnJycGXHppnLNbdu24YUXXsC2bdviztmxYwfKy8uxY8cOOr/f/va3+Ld/+zcsWbKEbl+8eDGEQiEWL158RnOejKkI+UTHkjV944038N3vfndeJVC0trbiiSeeQElJCQ4dOoS77roLy5Ytg1KpxJo1a+Z6euc1ieK4SHkQYokhsWWhUAgWi4WKtQULFkAkEsFqtaKurg5+vz+qpyq/+DCAKOtXOBymAi47O5sKrlAoBIlEgry8vKg5xQq+qQoGvV4PsViMcDgMrVZLEyCI8AoGg3jnnXfg9XqjkjLIevATS5JBYupKS0vjhFiy2EqyJqS0S15eXkIRRyyVk4m1RMknqXAmGbj8c2PdwOdbskWqnFG5k8ceewz9/f2oq6vDgQMH4HQ68T//8z8zNTfGOUyqVqxEImc2MiOTjZmqIEnFopTsXm666SbcdNNNdDu55rZt21K+99hziCXu0UcfpfMrLCxEb28v2tvb6fYnnngCN9xwA7KysmZVKMUK+YnWdcOGDVi0aBGNpyMMDg4iHA6jtbX1nLD2zhTFxcW46aab8JOf/ATvvPMO+vr68Le//Q16vR6XXXbZXE/vvCIVyww/IYIIHCKGsrKy0N/fj+Li4qh2Yu3t7fj1r3+NwcFBmM1m2lOWZNEGg8Eo6xcRcFVVVTSzVKvVor+/n7pnCYkEX2w9ulRKnvCTHsjfiZCxWCyQSqXo7OxMmJSRikAhMXVutxuVlZWQy+XUZRwMBmmLtEQWQX4tP3IuXxBPJtbIcyXPSaPRRInqZMdPlIGbjInOTSYQz+UEi+kw7Rg7glwuP6M2IYz5TaK4tVTj4qYSx5dozIncq7HwkxqAcfcaua7FYsG2bdvQ0NBA+3/y7+WNN96g4+Tk5KCgoACLFi3C4OAg3n77bfT390dd6+233wYwXuONXIfQ3t6OnTt3QqPRoKioCI888gid36uvvorvfve76OjoiNo+3WSMiYhd+9j4voniBPfs2YPu7m7s2bMHW7ZsodtJ4eaSkhIUFRXNubV3thAIBPjsZz+LV199NWF9O0ZyJor1irW26PV6GgfncDggEolo//K2tjao1Wrq9hsaGgLHcfj73/+OqqoqjI2NRcXHWSwWVFZWAvgkJot8yZN5EAFjt9tp6zJg3BJmNpuh0+kQDoejkjzMZnNU8gOfYDBIzyMxfImC+oHxz7nZbEZhYSEVV3zrYyoWp9gECaPRCKvVip6eHjQ2NtLPZ2z7sWRtxQBQseZ0OqPavCV7rnzRmiz5I9F7MJXYuonOTZakMVmMYapM1md3Kn14z4QpCbv77rsv5WOffvrpKU9mtnjuuefw5JNPwm63o7S0FD/72c9w8cUXz/W0PhXECoBYsUVEEwBs2bKFuhgffvjhKLG2YcMGmiTAFwv86/T391OLW3l5OV544QW89dZbkMlk2LJlC44fPz7pGEB8YgARbyRA+6233kJ7eztuvfVW9Pf349JLL4XX68U///lPjI6OIiMjAyMjI/D7/bjyyisxODiIXbt2geM4rFu3LqELmwinK664AqFQCH19fdiwYUPUPMvLy/HPf/4zbt4bNmzAvn374ixkZ8Jk4nuihJ5koo8vZOdTHcZIJAKhMN75ceGFF+Kmm26a1pj79u3Dk08+Sf8z8eabb9Ie3ADg8/nw4IMP4i9/+QtcLhcWLVqEb37zm/j6178+3ds4J0j2xZtIJIlEIhgMBvT29gIYF1hWqxVjY2OIRCKIRCJobW3FyMgIxGIxAoEAFAoFmpqaUFlZib6+PpSVlaGlpYXWueOLD+KW5c+NbwUikJ6xsYLP4XDEJT/waWpqQlNTE7RabVSPWwL/7xKJBCaTKU6wTEWM8PvtksQOYDz5R6VSQSwWQygUTlj+JFHiAb8/bbJ5kGSVcDhMe9tOZH1LJUs21XNjxVSiOU73eskyp5M9k5kSkJMylf5jGzZsiPpRKpWcXC7nKisrucrKSi4jI4PLzMzkNm7cOKN9z86E1157jUtLS+NefPFFrrW1lfvWt77FZWRkcD09PSmdP9f9FM+1PqFTmU/ssdu3b+fUajUnkUi4oqIi7sYbb6S9RNPS0riysjIuLS2NE4vFXFFREbd582Zu3bp13MKFCzmFQsEB4MrKyuhY5Jjt27dzN954I1dUVMRJJBJOrVZz27dv55qbm7nMzEwOAJeRkcGpVCoOAKdSqWjv0kTzbG5u5jZv3swVFRXRcdatW8epVCpOrVZzADgAXFFREZeRkcGVlZVxCxcu5ABwEomEk8lknFqt5mQyGVdWVsZt3ryZnqNSqaL6qJJ7JfeQm5tLj928eXNKa3333XdzSqWSu/HGG7m7776b2759e9x5/Hv66U9/Oum4zc3N9PnEjjMT72Oq48z15y8VZDIZt2rVKu62227jfvnLX3Iffvgh53Q6ub///e+cRqOZ1phvv/0299///d/czp07OQDcm2++GbX/1ltv5RYvXszV1tZyXV1d3K9//WtOJBLF9aydiPNhbQm9vb3c8ePHE/aD5fdK3bdvH/fTn/6U++Mf/8i98sor3GuvvcY9//zz3J49e7j9+/dz+/bt415//XXujTfe4Pbt2xf1PcAfi/yd9HH96KOPkvZITaVHbKK/nzhxgtu5cye3f//+uGNix+f3qJ1OP1j+HHt6eqJ6zCbbPtFcks13op61E/WaTeV6U71nAr8X70yTrJ9wsvnF7p+tz+CUhB2fp556irv66qs5t9tNt7ndbu6aa67hfvrTn87I5GaC1atXc3feeWfUtuLiYu7BBx9MePzo6Cjn8Xjoz8mTJ+f0lx/50r777runfO50voQnO4ff1J1/Dl8Ixc79xhtv5DZv3sxJJBIOACcUCjmRSMSJRCJOpVJx69at42688UZu+/bt3ObNm6mIA8CJRKKov+fn53MymYwTi8V0O/8nLS0tSgDyRVXsDxFO69at44RCIbd582Y697KyMire7r77bq6oqIgDwMlkMnr+ihUrOLVazUmlUk6hUHACgYBbsWIFV1RURAWpUCjkZDIZp1KpqGhVKBRcbm4uFZoAOKVSSf8uEAioaBWLxdzChQvp+pC15P+sW7eOHi+TyTiJRMKJRCKuqKgoSkSS8RUKRdwzTPTsE717/G1nIvJSfa/PB/Hxj3/8g/vxj3/M/cd//Ae3bNkyTiwW03d827ZtZzx+ImFXWlrKPfroo1HbVq5cyX3ve99LOs659rstEcmaw6cqIvbv38/98Y9/5J588klu165d3M6dO7m//vWv3PHjx6OE2v79+1P6sk8m2pLNe2RkJOE8Dx06xB09epQ7dOgQFVCdnZ1R98oXCckE0VTFHP8cIlB7enqSiqienh6us7OTO3jwIF2zqVwzVkTxBTlfmMaOmUi4k3Uj84hdo1TvPXZO0xGHqVxnOvtn6/fbtGPsnnrqKezatQvZ2dl0W3Z2Nn70ox9h06ZNuP/++6c79IwRDAbR0NCABx98MGr7pk2bsH///oTnPP744/jhD394NqYHAFGuyIcffjjORZXMrcWPgQIwaWHd22+/nRaI3bNnT9yf5NwXXngBL774Il566SU89thjEz5HMvc9e/bQCtoPPfQQduzYgcHBQXi9XmRkZOCtt96C3++n50UiEQDjsUgejwfNzc1QKpXYsWMHsrKyoo6N7W3Y09Mz4XrKZDIA47EfO3bswBNPPIGOjg50dHTElZ94//33sW/fPkgkEkQiEXR0dND7UiqVUKlU0Ol0+P3vf49169YBGHeBjY6OguM4uN1uBAIBZGRkwO/3Y/HixRgeHkZ3dze6urogFAoRiUTg9/vh9/shFoshEong8/ng8/mi5uL1eunf165di4ULF+LkyZMIhUI4efIkdu7cid27d8Pj8dC4IXI/AoEAwLhbRCKRwOPxAAC6urrwwgsvxLlMx8bGEAqF4gqJxxYf3rBhQ5x7m/8+TuaunShGcj4V3b7iiitwxRVX0H+Pjo6io6MDGo1m1sooXHTRRXjrrbfw1a9+FQsWLMCePXtw/Phx/PznP096ztn+3TYdLBYLfD4fLOYGVBfnASMugItABEAfCcPWaBmPKROKEI6EYe9zIazXIc9kAMJhCF0dkPhOIV8pgMJ/CksX6qDXauB0dUGblgWrzY7+410oyjfC4xtBWOhGWOyBKFOPsFQFR58zKv6JdLlIBnHF2Ww2jIyMoLa2FsXFxVGuNuKSPXHiBJYsWQIAtKMEKRBMSrUQdyVJ7uDXq0ul3hwf/rGxbmSn0xl3PIl56+3tRTgcpi7kRAV+iYs6UcIGWRN+QWV+azQAtLdtouPINrJuAwMDdL1SdZkmW6dgMAiLxZI07jFV+C5YMkai+Lmz5nqNYdrCbmhoCKdPn0ZpaWnU9r6+vqgvqbmkv78f4XA4rrpzbm5u0rTphx56KCqWcGhoCAsXLpy1OfLjt1pbW/Hqq6/SL0F+8VlgvOYZX4CRL+GGhgZ0d3ejv78fr732Gh2bH3tFjt+3bx+6u7vj/gTGv5xvv/12vPjiiwgEAnj44Ydx+eWX03nefvvt2LJlC1pbWyGRSLB69Woaz0Lw+XzYsWNHnPhIBNk3PDyM3bt3QyQS4frrr0dBQQHa29vjjhcIBMjOzsbg4GDUNQlisRhyuRxDQ0Nwu9149NFH8eqrr6Kqqgo6nQ4nT57E8PAw3G43gHGBIxAIsGjRIgwPD9P2Ty+88AIOHjyIcDiM4eFhLFq0CLfeeiv27NmDV155BZmZmRgeHqZJAEQc9/f3469//SsWLVoEp9NJBZZCoUB5eTkWLlyIVatWYevWrfD5fJBKpQgEAkhLS0MkEkE4HIZQKERfXx8OHz6M3NxciMVi2r3g1KlTSE9Px+joKBYsWICBgQH4fD5a48put+Oyyy7DgQMH4PV6UVBQQIXTww8/DABoaGhAV1cXBAIBsrKyotYvUYxhbGIGP7ZuMnE2k8Wjz2XWrl2Ld955B5mZmQCA9PT0uN+LM80vfvEL3HbbbTCZTDQ26qWXXsJFF12U9Jyz/bttIuK+BDkO8PWhXD0GS2cjyhdmAifaos6x2V1oPNaDSCQCbbYSHp8fKoUMEDgR5k6h4Wg3/IEARJ4RhCJhcGmDMOaGIOp3wAjA1noELa1dcLiG0H+qGxrjIoTSc+CyjaIyVz1hh4LJgvy1Wi1cLhfWrFkDt9sdJTyIGKmpqaGxZaSECfkPE/CJsAoEAhCLxXG9cvljJRI2iZJL+P8mAjVWVPHhC0Ai2rRabdQ8HQ4HjWuMjVkzGo1x3TISJXqQufELOcd2lSDHkN+TiQogJ1sDfvFl/roSUZcs7nGyNY197vzC0IlE3JnECp4J0xZ21113Hb7yla/gqaeewoUXXggAOHDgAB544AFcf/31MzbBmYBYNAgcx8VtI0ilUpryPhWSWScmy+wkQf8NDQ20qfovf/lLWCwW3HHHHXC73bjjjjuwatUqvP/++1S88b+Eu7q6EA6HqQWGXLO9vR1tbW3YsWMH/WInIqSgoADPP/88hEIhcnNzaeB9eXk5li1bhubmZoRCIVqSgojI1tZWdHR04NixY7QND/mgAOMvvEKhgN/vp9vJh5n8wpDJZPD7/ZBKpRgbG4NMJsOKFSugVCoBjFsW+Fa/lpYW+P1+LF26FK+++iq2bduGnTt3YtGiRbjzzjvx8MMP0xIEK1asADAuMG+++WZan45kqa5btw4dHR3IyMhAd3c3fD4fWltbqWglz+QPf/gDhoaG0NXVBY7jqFWTv4b8Z7plyxZYLBaaHHD8+HE89NBDWLx4MZ544omoZ3/55Zdj27ZtGBwcRFZWFrZs2YI9e/agvb0d77//PhYvXozNmzdHXWfbtm144403cNFFF9GMUpIMcvPNN+PQoUMAxgUcfzv/3XvttdfiLMR8iEVu27ZtcZnEicTbZB1REgk/8m729/fT7ODzXfQdPHgQo6OjVNgRhoaG8D//8z948sknZ/yav/jFL3DgwAG89dZbyM/Px759+3DXXXfBYDCgpqYm4TnT/d02G9Avwa6jMEqGgYEuYMwPCYDqwuy448PhCKwOF2yn3RCnCZGTqYBSlg7xv75sbX0DGAkE0dnrxAV5evR7fBgbC8F8zIrKpXkQiYTQLyxAqXoZBDYfli4vh0QigcPhgH90FFarFSKRKGFdu1gBxBcPpBae0WhEXl5enAhIFLjPL63Bt9gB8ZmrsUyUHZpqJulECSr8c8k2Iob4lkXyu5wvzIiAIpUESAcWvrDiCyGj0RgnMhN1rSCJMwqFAg0NDfTcROvDT4CJ7TTicDho5i7JLk70jCZaU3I8ee4Aoqyises6k11YpsR0fbjDw8Pc17/+dU4qlXJCoZATCoWcRCLhvv71r3M+n28m3MRnTCAQ4EQiEffGG29Ebf/mN7/JrV+/PqUxUvWBJ4sZSjUmKVF8U3p6OieVSjmZTMYVFRXRQHv++du3b+dUKhUnEom4zZs30ySCjIyMpOeQ8dPS0jiBQEDjy8j1EwX1kx+SLLBixQoaL1dUVMQJBAIaH0bGInFpJJmBHx9GYsbKysq49PR0rqysjLvxxhsTrmGi5IbYpAwSY0b2xa45SSjgXyNZggAZs6ysLKVEg+mQ6H2ZyvuRythlZWVRSRVTOXei2LeZiK1LdU7ncozdddddxz3++OOcUCjkDh8+HLf/1KlTnFAoPOPrICbGbmRkhEtLS+P+9re/RR33ta99LSpOdDLmcm1D7pNc794/cKEDL3HcoZcn/AkdeIk79LtHuO2Pf5178OYruee++wXurae+yX300kPcgVe+x3W8+WOu560nuYOvfI/b98KDXOdffsL1vPUkd+CV73FH/99j3KGdv+BCA+MxWbHxVoli7mKTFcifIyMj3KFDh7jOzk6uo6ODO3ToENfR0UFj1vjJB4RE8XE9PT3c8ePHuQMHDkwauxe1ZhPEGQYCgZQSOEgMXWdnZ9yxieLXkiWtTLSfjMOP5ePfe7Jkg4ni0Ui83b59+6ISWWYiuWKiGMZE400l5vG8i7GTy+W0jAiJXyoqKkJGRsZM6M0ZgRSY3L17N6677jq6fffu3bjmmmtm9FqpNGifyDWVrE4YPxbu0UcfjbLqAeM1w8bGxlBSUgIA2L59OwQCAUpKSvDII4/g0UcfRUdHR1ysFbEU7t+/H3a7HR0dHTTukF+Wgli8SIkOft212DIlxAJFYgX5ruQtW7Zgy5YttGfof/7nf2LLli244IIL8KUvfQmdnZ0oKSmZsBRIsn+TsROtOf/YWKsasWIlInbMmSbR+zKRBWwq/YKJC/7mm29GV1dXSn1dJ5pXLGfiYo19Nucz+fn5+Nvf/gaO47BixQpoNBqsWLECK1asoFYL4kafScbGxjA2NhZXYkUkEiUMUTinCPgA6wGIPCdhlAMT1cgPhyNwuDwIhyNQZaTDqM2GNluJAe8INq4shmfED22WEs5BL/QaFYy6bDhcHug1qvEBpBnohQFhmQa2oTDysmLH/6RLAvk7qV9nt9tpj1gSP/fee+/BaDQiEonAaDSitLQULS0t0Gg0CIVCUe5TQqL4OLFYDI/HQ/sLTxSvxieR9YjU4Xv33XexZMkSyOVy6h0h9xIKhWCz2dDX1wefz4fOzk5kZWXFuWz57svY+fMtXHwSxcbx6wDGWuNi6+DFFnJO5iLm1+4j1020JhNZyJJZ5iaKYUw0Hj8Wkjy3qTwz/lzkcnnSc88EAcel3tDQYrFg+fLlCWs2JaKlpQVLly6lJsu54PXXX8eXv/xlPP/881i7di1NDmhpaUmpWffQ0BB1Kca6WqbKVArupno+2bZhwwY89NBD6OrqQkFBAXbu3Em/XCa6Jv/8WPfiTMx5snuYLHlkvjDT6zgRfPFM3Pqz+Qxnk5n8/M0WUqkUH374IWw2G61NdvjwYUQiETz22GP4whe+MOUxfT4fjTOtrKzE008/jY0bN0KtViMvL48mtvzyl79Efn4+9u7di69//et4+umnU65ld9bX1ucE2t8FQqMpHW7rG0AgOAaxSDTuStWo4HB5EAiOQQABXEPDKC8yQSQSUkEnEo1/N9mGRfBqKvDxoQYolUpUVVWhoKAg6svd4XCgp6eHxlunpaWhuLgYAwMDCIVCMJlMyMvLo65AmUyGrq4ulJaWUrcrEWpEIE0kzPguXH6MN4lXM5lME46TKGkhHA6jvr4eo6OjSEtLg8lkookH/LkRkdXa2orR0VFIJBJUVFRE3YdUKp2S2zBZPFvs/lSL8SY7fqJxpnINIhwnel6pjkfG4q9ZonOTjWe1WtHb2wuVSoXly5fP+GdwSsKOFOCbqIAhn8zMTDQ1NaUUpDibPPfcc3jiiSdgt9uxfPlyPPPMM1i/fn1K554PXyzA+Jf5b3/7WxQWFkYlYJzrxIqQ+crZvM9YS+lcMFPi71z9/H3pS1/Ciy++CJlMhpMnT854EsKePXuwcePGuO0333wzfvvb38LhcOChhx7Crl274Ha7kZ+fj9tvvx333ntv0vjhWM7q2o4OAUf/CoSDdFMwGIKlvRflRSZIJJ/85z8cjsDWN4DgWAjuoWGULTbBOTiekEfEnaX9JGSSNKiUGTDkqBAIjkEqSYNRl41wmgJd6cvx17f/Sa1pNTU1VKTxLUY2m4221BKJREhLS0N5eTncbnecBYtvAeO3qJqqoOGLAmL9IZCxkwmsRIKCiASxWIycnJyEcyNzCgaDaG5uhkajQWFhYdT1+VbAVERPKkIpEZMJtVjxmuieU1nnWEiyikajAcdxCdc5VRGZaJ3460HgF2PmJ8xkZWXBbrcjEAjg8ssvn/HP4JRMaRzH4fvf/37K5sNgMDj5QWeBu+66C3fddddcT2NSzuTL8Hx1cZ3PZS+m8rzO5n3uSdLSazpM952c7xmxCoUCgUAAMpkM+fn5yM7Opm7YiooKVFRUoKSkBGlpadMaf8OGDRNmlOv1erzyyivTnf7Zx/pxlKgDAEt7L3wjfljae1Fdsohud7g86O1zw+EaglAoQDgSwWn3EDSZGRCJhBCJhCgy6dBp60d5kYmORf7ukF0Ay5GjEIvFCIVC2LhxY5Ro4QfxE9fhu+++C7lcDqFQSEXdO++8A6VSSV2yRARN1OOUf43YgHtiFAkGg3A6naisrKTZqkTQiMXiuIQEPokC9PnZq3wRwb92rHjr6+ujlkMiJvkiKpE7NPa+ErlcE7l1EyUkjIyMRCVCkO3hcDgu4zY2K5fc00Tt2hJBeuWSZI6JWp+lcv+JXLSx99DX1we1Wk3PIeV8xsbG4PV6J/yMnwlTstht2LAh5f8NEv70pz/NSpzJ2eJs/q/202K9Ol+JFTnn6vOaSVfpVO+RXLugoAC/+93vzthqeK5a7Pj09PSgqakJzc3N9M/u7m6IxWIUFxejubl5rqeYkLO2tiNuoPX/4jbHWuzC4QisdhccLs947JzHi1AoDJF43OIkSUtD9bJFAMbdtABoXJ13eBSdNidqNl4M0fJrUFdXB7vdjsrKShQUFNBr8mPPAoEABgYGwHEcrZcGfGJl6ezsxPDwMC6//PKoWLuBgQEqChJZ2BJZfYhgcrvd1OCRn58fF19Gspb5Fr1U3Xt8Ermcw+EwZDIZdDpdUqvjdNyesdci96lWq5NaxcxmM/x+P0QiEQ2JirV2TWSxi30WfNd0qvOfyHWaSJimaiHkC+lkFjtiST558iQuu+yyuXXFfho5m18sZzN2iTF1ZjJ27Ww865m4xlTHIGu0aNEidHd3n/FanQ/CLhFerxdNTU2wWCy4++6753o6CTlra3u6BThZN+lhtr4BHDzSCYdrEHl6DTatWQ7noBdqZQZauk6htGAB3N5haLOUMB+3IhgcQ74hB0ZdNt75+AikEhFU+StQfdWXJ/0S54sLALRI+alTp6DT6WAymaiFh9//lS9ISEycWq1GS0sLiouL0dbWhvLy8VIqfMgXemlpKS0OHFtWJJGbL1H8WzLXZNRaJnD32u12qNVqiMViuFwuOs+ZbEw/Wdwdfz1In1xSX28qgjI2OYSsRSprk2iNYo9N5FadLLllKvCTJ9RqNRN2Z5vz9YuFMfPMpSVsqlgsFpptfMstt8zaNRIl8/Br9JGEmOneL/v8zR5nbW17GwCHZdLDgsEQ/vGxBY7+QSxdtABLFuZCr1Gh/mg3gsExSCRp0GYp4B4agT8QgMszjJVL85Fn0Hxi/dt4HSQLK+LGJhYej8dDXaB8ywowbnkl9c+qq6shEolgtVrR09NDa9URt6BOp4NWq8W+ffugVCpp7JrRaMSiRYtQXV0dlSjhcDiQmZkJn89Hr5+MRCIvUbxfsliv2DH49xoOh+F0OpGdnQ25XE7FUOzaJBpjJiDzICKTzOFMxkvV4hh7PJB8HfnCkbhV+RbWM4E/h+Hh4Vn5DKaW3sqYUywWC+655x5YLBP/ckz1OMb0ICVHZsLCdvvttycs7TJTvPDCC+jo6IDBYKAtwc6U2PeLxNGRItbA+Brl5ORg//79yMnJoWs12/c7lxw6dAiXXXYZysvLcf311+PRRx/FW2+9BavVOtdTmzZ8IXDGCCcWBSRZwuHyoKRgAcqL8iCXSqDNUsLWNwBbnxt9g17ospWQStJQXmSCSavGgpwsWtpEIhGjumQRJGJh3PzJz8DAAI3JAj5pF6bX62G1WnH69GloNBrodDqEw2FYrVZ0dXXhwIEDNEGhpaUFWq0WEokE+/btg9PpxKFDh+D1elFWVgafzwedTgebzUZd9L29vRgZGUFdXR0UCkVURmyidTebzRgZGYHD4aBxZk6nk8Z3kW0kmZFs598z/xgANJbO5XIhOzsbHo8nqsODx+OJWhtyDomFs1qtCAaDE74Tyd4Z/naHY7xrRTAYjJpDqpDnYrVao+4TQNS1k82F3JPZbAaAhOsIfBLfZzQaYTKZYDKZ6FzP9LMR+8xmAybszgMSfYGeyXGMmWeqonomRWIibr/9dnzlK19BVVUV3n777Rl5J2Lfr2RiLdH22b7fueTLX/4yRCIR7rzzThQWFmLv3r34yle+gkWLFkGj0cz19KZF7BfdGZGumvha/yphAgDydCmMumzkZCloJqw2OxMLdWrk6TXQa1RwDnohEgmjjqGMDsbNn4gavV4PuVxOkxPIl6rFYkFLSwuOHz+OQ4cOobe3FxaLBT09PTh48CDkcjlkMhkMBgM0Gg1NcFi8eDE6Ozuh0WiQm5uLpUuX0ng8glarhcFgoJa6zs5OWlWCL1KIaLLZbNSCE1tPLrZGXuz2iZ4ZOa68vBxisRjhcJheExgvqSOXy+Ou6fF4EAgE6JoQUZRIkCS7Pn+7Xq+HyWRCfn5+nHUwFbFEhGFvb2+cCCUtw/h/xs4lmYhNtr5E/Ofl5UWJ5GTrnMp9aLVamqBDeqzPNMwVOwnngisoVRcgi9GbO2bLtZqo7t9UnvFMvhMTjTVb79658PmbjIyMDFgsFixevDhqO7HYzHQx9JliorWdUTfc2ChgeW28H2wCSCFiUocuGAyh6bgV2iwljLpsOAe9tBBxOBxBKByOqm1HatcBANLkQPnnEY5EkrrZYmOrgsEgGhoa4HB80g6xpKQEp06doha6iooKuFwumhBgt9ths9kwNjaGgYEB5ObmoqKiglrX1Go1ddmSdlonTpygRYSNRiOsVivMZjPUajVkMhnUajUEAkFU/NtUSPWZ1dfXw+fzYWRkBMXFxUnj0WItgHq9nrYXS+RCTVSnjxQlJlmtye4p1di4ZIkJQLTLeqIYv6m4a6e6P5USMPx7ZTF2c8T58MXCmHtmS9jECsZzNRN3snnN5+SJmpoafP/738cll1wy11OZEmd1bdvfAwaTu6b54s7WNwDzsR6oVRkoNOpg1GUnLFYsEgnjRCEAYMkmQDW5OOALFiIGLBYLTY5wOp30C5yUrEhPT8eyZctgsVgQiUSg1+vR0dFBxVtZWRmys7Nx4sQJZGRkYGBgAMuXL8fg4CBKS0upBZEIj5GREQwPD2Pp0qXweDzQarVJa6ydCXwxQoRWaWkp3G53SvX2JirCm+i8np4eAIjKeJ2oblysEEul2G+y2MCprsdEwmuqzyBZUkeyaw8NDc2KsJsRV6zf748KQiW0tLTMxPAMxpQ52/GGs+VqjHVrnquxapPNaz6HCdx33334n//5H7jd7rmeyrlL7vIJdxN3rMPlAQDIpVLUt3ZDIZXCanfBPxqErX8QVocLwWAIwLgYNB+zYmQ0QM8DMJ6FmwR+8H5XVxd2796NhoYG2ji+srIS+fn5MJlMKC0thV6vR2lpKcRiMQYHB5GZmUndaHq9HgMDA6isrEQoFMLixYuh1Wrh8XhQWFiIoaEhaDQaaulzu91wOp2wWCyora1FKBRCIBBAdnY22traEAqFIBKJEroEg8Eg6uvrp10blu8+lEgkqK6uhkwmi8v05IveRO7J2Ni9RBB3K4lLSzQOuQ5JTiF13vjuzli3b6wLNJlbNRmxsX6Tua2nGv8HRMfm8ccg1w4Gg1GC8px1xe7YsQP33nsv1Go1OI7Diy++iDVr1gAAVq5cicbGxhmZ6FxxPlgMGPGcq5at2WQmXPazZXmczxY7oVAIgUCArKwsXH311Vi7di0qKyuxYsUKWpfsXOSsr+2J3YCnN+EukkABjHeXeG1XHQSCCCIRQJkhg8vjQyQSgdszjKI8HQoW6KDLVsI7MopDLV1YW7YYEokYIqEQRl02RMuuRDBdE2eZstlsaGxsRHZ2Nrq6uqi4SU9Pj3IVxhb1JVYoUpyYBNx7vV4EAgHU1NQkdAvyA+T5dcxIh4jy8nI4nc64hIdYi1J9fT2Nd9u8efOELccSJU+k2u4q1lo1G5mxAKigc7lc0Gg0yM/Pj4pN5BcgJm5fsnaxzynV+cWWgJnpEi+TWTET1fcbGBg4Ny12P/rRj9DY2Ijm5ma8/PLL+OpXv4o//elPADBrVZUZjMmYzII0HzOIZyLJZrYsa/M5eeLEiRPYvn077rnnHgwODuLHP/4xLrzwQiiVynl5v9PGtAoQxH/lEHcqAITCYTgHvbjhsmpoVJlYuTQfHSdPI0MuQbYqA2pVBkQiEVSKdIQjETQc7YFEIsKHlhNoPnHyXx0rPAh378e7u3fD4/GgtrY2yjqj0WggkUhw0UUXoaCgAEajEWq1mtaXAz7JIiVdCoxGIwoLC2E0GsFxHEQiESoqKqBSqVBTU5MwCYCcGwqFcOTIEfT09EAkEmHNmjVYtGgRDaLX6/VwuVxxAqunpwdWqxU2mw2lpaUIBAIoLCyMsjIlyji1WCxxyQWJSGS1irVWTSWJZqrZoiRDl4jr2DF0Ol3UXEjsIv85JbIgJpsH/95SsTymSiprxE9e4d/TTIplPlNqKZaIsbExmuVTXV2Nffv24frrr0d7e/uUu1Qw5hdzmcxBhEQy5mPLKyJiN2zYgHvuuSfput9+++3o7++nZVD4x8xm67P5mtyzePFiLF68GNdffz3dNjQ0RAsUM/6FLAswrABOmaM2EzesAAK4h0ZoJ4rNa5fj7x82Q5aeBoU0HWVLTLD3D8KgyYJIJITNOQCTLgte/yhWlxSOtxsTCscLGDdZkL+wHD1+ATZu3EgFFABqEQsEAhAKhTAajdSyRgRZojZWwCcB+/zMWhKzplAoYDabEQwGo/qpnz59mlpsSC00vvhoamrCyMgILBYLqquro67ndDqRk5MDt9uNzZs3RyWEAPEZp+FwGAaDgcYOkus4HA5kZ2dTlye5l9jx+OVDkh2TDP5cJotN0+v1WLBgAS1QHOuCfffdd2miCdlHnklpaWnClmux8W2kbRw/fu9Mes3y4Z9LLMH89ycW/rrOZOxkMs7YYqfT6aJ+eWk0GuzevRtHjx5lv9Q+5cyG9WcmLG0WiwX9/f248sorZy1WLXaeZ8NCSMTsnj17Jlx3UmsuURmU2bSszdc4u8OHDyMUCkVty8zMxPr163HPPffM0azOUfTlQIY2epNGBakkDSKREOpMOS1h4nB5oEiXIhAMoaRgAfL0GuQbcpBn0EAkEiIUjsA7MorKC/JRlJeLAqMWeQYNnINeqBTp8PcexuaLV0VZhMiXsdFohMfjgUKhgMVioYVoifs11jpEBIfFYqF1737zm9+gra0N27dvh0QiwT/+8Q94vV6Ew2FIJBIEg0GYzWbY7XZwHIe0tLSoL3W73Y6enh6o1WooFAr6mSOWJpPJhIqKiigrk1arRX19Pbq6uhAMBhEOh2n5FSKoCgoKqFgiVrxAIBBVQiVVUTMVy9ZUYtOIYJVIJFHWznA4jNOnT2NkZCTKtc1/Ji0tLQktZMTKGQ6Ho1qzJSt9kqo1MpEFkH8u3zKbbKwZrQuZAmcs7P7whz8gNzc3aptEIsGf//xn7N2790yHZ5zHzEag/0yIgxdeeAFvv/12VAHdmSZ2nmdT1KSy7nORhEGuSSyK8+U/fitWrIBCocDKlSvxla98BT//+c+xZ88eDA4OzvXUzjnCHAebpAhhnrNIJBqPizPqsiGVpNGiw3qNCoqMdKxeXgiJZPx4EounzVIiX69B5dJ8GHXZdHs4HIFeo4I8XYrKCxZC1PMBEB6vkRf7ZVxZWQmfzweVShXl3gM+ESnEMkeSIlQqFWw2G/bt2wehUIjjx49DKpWivr4eer0ePp8PJpMJOp0Ora2t8Pv9EIvFMBgMKC8vj2pnNjo6CqfTCbfbjcrKSho3ZrPZaLcDiURCLUJWqxVNTU20TMquXbto9im/gPH4OoXpvBPVjbNarTh06FBcEe2JBEhs0efY485UBBL39+DgIDiOoyVDYs+JdWfGQuah1+vhdrtp8guZ90RzSEQqLuuJEkQSJWvMttA7o+SJxsZGfPDBB5BIJPjMZz4zr9wrhPMhePvTxFz0P52Ja5yLbsi5mtNUElvOh8/f/v37sWXLFqxduxZSqRRHjx5Fc3MzBAIBioqK8PnPfx73338/srKy5nqqUczF2tIA9tF+GEcmr5rAL2ficHnQaeuD2zOMyqX50GtU423EikxwuDzo7XNDl52JQZ+funMBANmLgMUbE1qpSM9Sfk9YvpiwWq3o7OyEz+fDZZddBqfTCbvdjqGhITQ2NiIcDtNYyvT0dFq3jnRX8Hq9WLp0Kc2elUgktEyH2+2GQCCIazVGulyYTCbk5eVFlQ8xGAzo6+tDJBKhVrjKykrqTk61FMjBgwdhtVqRl5dHkx2jns8E/VP51rBU6s6l6u4kxxKr3FRr+fn9ftTW1mLjxo2QyWTTmm+ieQPJ+9hOxETJGmRfMBjEsmXLzp06dj/72c9w3333ISsrC2KxGP39/SgtLcVvf/tbVFVVzdgE55rz4YuFcW5yLoo5PnOVOTyVdTkfPn8rV67EI488gmuvvZZu27t3L2699VZ85StfoZaVurq6qNiruWYu1jbqi/704bh4u8TnRNDV60Rr1ylkKWSICAC5VAIOgH80AHm6FByA4NgYBr1+KOVSKOQyVJcs+mQQYxVgiH/Xurq6UFtbi8LCQixZsiTuS7+rqws7d+6EwWDA0qVLYTAYMDg4iLq6OgSDQfh8PgwMDOCWW25BUVERvUer1UqtM8RNT77gYwvr1tXVwW63o7KyEgUFBXHZn7EZusTq19XVhaNHj6KmpgYymSxunUlWqVQqjSuWmyjDNO75TFDYF0hN7JxJTbipQgovKxQKVFdXx803dg0Jie45VlxPh1TWcrYKFE/JFfvyyy+jsbERgUAA27Ztw49//GO4XC709fWhp6cH11xzDTZs2IAPP/xwxibIYJyvnOsxZXNVE2++Zci2tbWhpKQkatsll1yCZ555Bo2NjaitrUV1dTUefvjhOZrhuUOUu25BBaBZPOk5DpcH+5qOocfRD+eQD1a7GxkyKbIz5Og61Q+rwwWFbFy8ZCvlkPyrnyyfsPUQbEc+jnN9OZ1OyOVy+Hy+pC65/Px8apXT6/Xo6emBTCZDJBLBwMAAysrK4ixLLpcLoVCIFqkVi8U4efIkOjs7aZweMC6OOI5DOBxGX18fnRM/vi9RWyuRSITBwUEolcqE9WKJq1kulwNAnBuQ1OyLnfdE7lT+vlTcrsT1SUrEzAQTuTDLy8ujYhVj50uKSMe2RJutzN9U13I2mJLFbtmyZWhvbwcARCIRXH/99Vi7di1WrlyJiooKZGVl4Ve/+hV+97vf4cCBA7My4bPN+WAxYJybnOsWu/OB8+Hzd8kll+CSSy7Bo48+GrW9q6sLK1aswNDQEOrq6nDjjTeiq6trjmYZzzmxtpEI0L4bGDqV9JBgMIS6I51weX3QZCoQCI4hMBaGJkuBpmM9CASDCIeBhQY1AsExqBRyfHZdeVSrMVvfAAKhCKRLa6AvKovrwpDM7UfqrUmlUuqJItY4IlzS09NRXV0dVarE6/Xi6NGjEAgENJu1vr4eXq8X69atg1KpBACMjIygv78fwHicFrEOpWIZ47seJRLJpNYhkh06UVeEROclyz6dC2td7PNIdv1kdftia+NNdGyiZ0BE4GQdJVIVbLP1GZySxe7o0aPwer3Yv38/0tLSIBQK8f/+3//DVVddRYsMbt++HWazGX/961/PqV9iDMbZZr5ZphiJee655/Czn/0MX/jCF9DW1gZg3NX1zDPPQK1WA8CsNvw+rxEKgcWXxmXK8nEOerFAl4XqZQVYXVoIRYYMF+TlIitDBl12JiTSNAjFQhzvOQ2bcxDydAnMx6wIBkNRCRVSsRB672E4uo7SrgYikQjV1dVJY7mMRiNkMhktFUIsbHl5eVi7di0KCgpgMBgARCcs+Hw+cByHQCCA2tpaAOOJEIWFhfD5fNBqtQiHw3C73cjOzsbAwAC1JpHrkqzWWGtSMBjExx9/jN27d6OwsBBut3vC4HxiHSIJFgBSThrgd38gYxLBNpmFKzahINXEDD6JOm643e5Jr59o3fhWzMmyg/kWNf46aLVamogRDAaj5pzM8ne2M2KBaWTFpqenY9WqVfjMZz6DFStW4MCBA/B6vbBYLHj88cdxwQUXYGxsDLfccgsWL158zv4vm8FgMGaC0tJSfPzxx7Db7SgpKYFMJkNGRgZefPFF/PjHPwYAmM1mLFiwYI5neo4iSgOWXA7I1XG7wuEIwuEIxCIR9BoVJBIxTLps9A0MoaXLBqFQgAvy9Dh1egBjwRAW6TXw+Pzw+UdR19qJ+tYuWO0umnkrQghatxknjjRCoVCk5H7T6XQQi8UIBoMIBoNR3Sf4ZS7IF7vT6URpaSlEIhEkEgny8/PhdDpRXl6O/Px8aDQaWrtOIBBgaGgIhYWF6OzspO2xiKAhXQr4QuTdd9+F2WyG1WrFgQMHaN28ZIWF+YKTWJqSuQFjW4rxW3aRMYHUhGGsu3Eil2eyfRaLBT6fj2bQG41GmhWrVqsTCqZYF3CssAqHw+jo6KDGp1SKC5N1cDqd9JnHllFJJmSJECZ/PxsCb9oFip966ils2LABnZ2duPPOO7FixQrk5eWhsbERCxYsQG9vL3p7e3HkyJGZnC+DwWCcc5SWlqK2thbd3d2wWCwQiUSoqqqiv+S1Wi0VeYwEiKXAks3A8X8C/gGaDRsORxAYG4N7aAThSAQioRB6jQrhcAQCCBCKRDDgGYZMJkHzMSu8I37kL1CjtaMXw6NjKCk0wDnoRZ5BQ7NrnS4nlogE8PRrsWTJJUmnxHfdeTweBINBjI2NYXh4mAq72AK+xOX57rvvQqFQQKlUwu/3IzMzEy6XCzqdDj09PXA6nUhLS0NxcTHEYjFcLldUIWWz2Qyfz4eWlpaoosUOhwOFhYUYGxujGbV2u51m9JJ5B4NBnD59mpZKCYVCcDqdCV2ifKtVbJHhysrKlN3Wk8Ffq1hLWWxBaLK/tLSUZsgCoGI5JycHLS0tUKvVcQWRSdkUkjQSa2Hs7e3F/v37abbsypUrJxSpxNIX+5xJOzh+4evYeYyMjGBgYIDWGYwtEj1bnFG5k46ODtx5552ora2l7cPEYjFefvllfPGLX5yxSc4l50QcCoPxKYV9/maPc3Jtx0aBE7tg625HIDgGsUiEvgEv/KMBuIaGoctWIt+QA71GRXvLarOU+Pnru/FR8zHI06XQqDIxFgohEomgtGAB7rnxcjgHvQgEx2idPFvfACCWwnjRTYBcnTDr1Gw2Q6FQwOfzoby8HA6HAxaLBTKZDCqVKq5LBL/zwcjICDo7O2m7MX6Gqs1mg91upz1snU4nLrjgAiiVSvqFz89aJe5AvqhQq9U4fPgwLdNCRBOht7cXfX190Ol0MJlMcVmxfIjwEYs/sfMksuhNNVN0opizRCVdyBz4nUFiy7XwM4T59zxRX9xE2bGjo6M4duxYwozi6TBZTB+x+MXez2x9Bs+opdjixYuxe/dunD59mpqEL7zwQixcuHCm5sdgMBjnNOFwGC+99BLa2tpot4CKigpoNJq5ntr5R1o6cMEV0HPvwNFzAnqNCkZdNmx9AzDlqqnFzuHyIBQOQyAQoKXrFNaUFsLl8SESCUGtVEAAASIAVi9fDIlETM/RZik/6UsbGIHj49eBRevR2+8D8InVxeFwRH0Rk30bNmzAvn37UFpaSqdMvtSDwSDsdjt0Oh18Ph9qamoAjLvhiYgj1qrTp0/D7Xajr68Pw8PDqKurww033EBbZUkkEiocSTJGc3MzampqYDQaaSJGf38/Nm/eDJvNBrPZDLVajfz8fJhMJtpabLLsSyKQ+EkVyVp1xW5LlOAR29or1RZj5Bwi8PhuYH7nEDJHYjUkxZyTic1YSxo57oILLphwTqnCF3D8ufItfSaTCS0tLSgtLZ12G7OpcEYWu08D5+T/ahmMTwnnw+fvrrvuwo4dO3D55Zdj+/btEAqFGBsbg9FoREVFBd566625nmJCzum1DYeAzj2A52Ti3f9y1fb2DcA34ofPH4AuKxO9/QNwuoewZGEubM5BrC4pgEKePu6CHfQiHI4gFA5DLBJBJPqXW5cTomlEB21BCS0pEmuBIRYlt9tN497IFzjZd/r0adjtdgiFQpSWlkIul8Nut8Pn89EsTK1Wi6amJgQCAZhM4yVZjhw5giVLlmBoaAihUCjKIkYsVM3NzZBKpQgGgygvL4dWq8U///lP9PX14bLLLoNEIkFnZye8Xi9qamqoiJxKNmuyenmJ6uERN6PH44FOp4uyrhF3LrG+TVYTL9EcieuSP5dE5yWyIk4nG3c6Ga0EUgx6YGCAtquLvSdi/e3s7KQ9cI1G47mRFctgMBiMaN544w384Q9/wB//+EfaXuoXv/gFRkdHkZ+fP9fTOz8RicezZTVFEx5WvtiEQDCMpXkG5Bk0qF66CHqNCif73JCkCfHXj5pRf7QL5uNWjPgDcLg8EItEtIWZSCSE0z2AHG8rREO91GoUa+maqJ0VP2heJBIhKysLHo8HWq0WWVlZGBgYQG9vL7xeLxV1RHRIJBJs3rwZSqWS1q4jwf9dXV20/2x2djZ6e3sxPDyMnp4euN1upKWlIRgMoq2tDXq9HiMjI1iyZAntpUrakFmt1pTaWpF77enpQUNDAz2HCA9+0gU/oQAA7btLMkcnS9JIZknkZ/CGQiGaoJLsPKPRiPz8/CgBN5WetaSYdENDA0ZGRqLc2alm8er1epppGwqFaJIEyZq12WxQqVTo7OxEYWFhVM/e2YIJOwaDwTgDfD4fLVCclpYGkUiEu+++Gw899BDS09PneHbnMUIhUHAxYFgRt8vh8mDEH0BL1ynUrC6BMmPcKqfXqDA4NAKxSISTp93IkEoQiXDQZSsx4B1BYCyE4FgI5mNW+P1B2ndWmiYCrAcR6LUkzJAkgiJR2zGyLy8vD5WVlSgsLERlZSVtP3bixAnY7Xa0t7dDq9VGWb16enqo+04ikdD9VqsVb7zxBlwuF3bv3o1Tp04hMzMTIpEILpcLwWAQGzZsQEFBAZYsWYKmpibk5+ejvb0dWVlZEAgEsNvt6OzshNlspi7eZJmzfNxud1R5D7lcHteWjF86hCRZ+Hw+SCQSvPbaa1Cr1WfkatRqtXC73VGdWhJlt05WqiTReXwcDgd6e3upxTG2d20qWbzkeqQ3LXEnNzU1oaenB+FwGHK5HDU1NVAqlQlbvM00TNgxGAzGGVBYWIhTp8YL7BqNRurOuvrqq/Hqq6/O5dTmB8aVwKKLAcEnX1d6jQqe4VGoFOlwDnppDN3hjl4ExsbQ2mFDaIyDd3gEIqEQWpUSp91DiEQiONpth2/Ej9qGNoz4A7C099JYPqnrKLQj7bCdPBkXU8a3fiUSC7EdIoiQys/Ph1gshkajiYpD8/v9OHr0KK3RptVqMTg4SHularVatLe3Izc3FwKBAHq9Hunp6cjOzobdbqeuT5fLhUAgQEt32O12uFwuqNVq+Hw+WkuRL3hI5mx/f3+UeCIiTSqVYnh4GE1NTdBqtdT6x793cjyxqlVWVqKpqQkCgYDW7psusd03gHihlWrHiImO0+v1MJlMyM/PjxNcicQl/7xYqyCZs0gkouVYyPz5beRmW9QBTNgxGAzGGXHDDTfgn//8JwBgw4YNePnllwEAra2t8Pv90xrz8ccfx6pVq6BUKqHT6XDttdfi2LFjUcdwHIetW7diwYIFkMlk2LBhQ8L2UvOCnCLggs2AeNwCKhIJUbk0D/J0Kc1y7bH3Q5UhQ26OCgUmLeTpIhztOY3RQBC15jaMjI7CNTQMlTwdnmE/1ldcQMWhrW+AFjN2tB3CSOtumOsPRhWfJSW8bDYb6uvr0dnZSQVOIkQiESoqKpCXlweDwYDs7Gy0tLTA5/Nh586dOHz4MBQKBRV3tbW1kEqleO+99+D3+zE8PExbguXn5yMvLw9Lly5Feno6TCYT7TtrMBggEAgwMjJC3ZelpaXweDy47LLLUFhYGBdrRu7n1KlTcUV88/LyYDQaMTg4CK/Xi9deew1tbW149913adeNREJJJBLhhhtugEajwcaNG8/ocScSTmQbEZpqtTqp8OIzkUBL1K6NkEhc8s+LtdyS+REXNN8CS9YstpbdbNW0Y8KOwWAwzoDvf//7+MEPfgAAeOCBB/D+++9Dq9XihhtuwBe+8IVpjbl3717cfffdOHDgAHbv3o1QKIRNmzZheHiYHvPEE0/g6aefxi9/+UscOnQIer0el19+Obxe74zc1zmHUg8s+zdAPp5tTIsO81qHDQ77oVerUFKwAGMhDmKRAJ2nnAgExgAAnqERnHIPAhzgGfFTcQgAvX1u9Pa5x4873QNVXz0cXUcBfGLZMZlM1GKV6As/FqfTCY7jkJ2djaGhISiVSuzZswcCgQAikQhyuRyZmZloampCYWEhAoEAzab2+XwYHR2F3W5HRUUFjEYjpFIpdDodHZ/Udevv74fL5YLP54PJZKJJHiSJgmTt8uPCxGIxIpEItcLxLZLEcuf3+6HX69HS0oL09HRqSSSii2+5JJ00Nm/enFIJkal2ZIjtoEHq2E30HEjtPYVCAYvFMum1YmPnUo3V488PAHV9k/g/MhYQ3bd3trrRsKzYSTinM8cYjHnOufz527p1K1auXImqqqooi4jL5cLbb78NtVqNq666akau5XQ6odPpsHfvXqxfvx4cx2HBggX49re/jf/6r/8CMP6FkZubi5/85Ce44447Jh3zXF7bCYmEgZMHAecnFkySJavNUsLWNwDnoBfDI6PYdbAF8vQ0iERC6NQq5BnUsJ0exJrSQgwO+2HQqKBXq3C4oxfqzAyIhEKIREKolRmobWzDssKFyFt9JZycirrRurq6UF9fD6lUiiuuuAISiWTCLE+r1Qqn00mL8A4NDcHlcuGOO+6A0+lEb28vDAYDrUdHxIhcLsc//vEPVFRUoLi4GHq9HnV1dTSLdsmSJTAajfQadrsdBoOBZoeSbWNjY3C5XDAYDMjJyaEuXJvNRq9NRCHZR8Yg9fSKi4uxb98+5Ofnw+/30+K8pMQLqZU3lWzUibJXJ9oX2/s2WY9Xks3s9XpRV1eHiooK9Pb2RhWCBhB3fCr3MFEWbbIxErmwiSt8pj+DTNhNwnn7y4/BmAecy58/oVAIgUAAAMjJyUFVVRUVeitXrpzRjNj29nYsWbIEhw8fxvLly9HZ2YnFixejsbGR1lkDgGuuuQZZWVn43e9+FzdGIBCgLaGA8bVduHDhObm2KeHuBHr2A+ExKuxIrF0gOAYBBLD1D+Cj5hOQScVYmJsDjgPGQmOwOz3QZmVgJBCGWCSERCqCKkOO8qKFCIXDaOt2YHh0FGliMUw6NdT5yyAtuBB640LU19dTV6BCoYgq8TGRSBEIBNRSU1VVNaEgBKKtR8FgEAcOHIBEIsHAwAAWLlyIK6+8MqmgCQaDeO211yASiXDkyBFkZmbi4osvRnp6Oi1dEgwGcfToUSxbtgwcx+HYsWNQqVQwmUxUZMaK1IaGBnqfOTk5cDgctF1aXl7ehCVMYuvcJRJmyc5JdV+sqOKXGqmrq4PRaEQgEEBxcXGUBY0cHwwGaVxhIvcs/zqk3EtsbF6y+SUSfG1tbVi2bBkrd8JgMBjnAqtWrYLRaMT3vvc9bN26FUajEW+//TZuuukmFBYWIicnB5s2bTrj63Ach/vuuw8XXXQRli9fDgBUIOTm5kYdm5ubmzSY/PHHH4dKpaI/530heXUhsOxzQIaWijki7qSSNOQZNEiXSFB5wSKoMjJQsmgBRCIh+gd9GPCO4Ei3HaFICOkSMRxODxTy8fg9AQTIkEkgFomwLN8ATWYGxEO90A/UwdF5FGq1Gnq9Hj6fj/abTea2Iy5KgUAAp9OJnJwc5OXl0eK6iWK1Yi07LpcLe/bsQXd3N9xuN4aHhyGTyWC1WhEMBmG1WlFfX0/LdZB+sqQWnMlkglqtpn1WPR4PwuEwjhw5gtHRUbhcLsjlcmzatAmFhYXU8hZbtgMYd0lHIhHY7XYIBAIYDAYauxbrVo3tlRqb9EBanCW7d37RYj6TJUPwnwNJ6lAqlbjhhhugUqmwceNGekzs8aTMit1uTzg+sY4Gg0EMDAxApVLFrVMyd2+idyT28ztTnLfC7rHHHsO6desgl8uRlZWV8Bir1Yqrr74aGRkZyMnJwTe/+U2agcRgMBhnwsGDB/Hoo4/ixRdfxN/+9jc88MADaGxshM/nQ11dHR5//HEUFU1chy0V7rnnHlgsFvz5z3+O20cshgSO4+K2ER566CF4PB76c/Jk4uK/5xXpmcDSK6FffjGkUgn0GlVU7F15kQlqVQY+U74ELV02BMfGIBIK0DfgQUaaFFkKGUaDIfzbZypQuEALoy4brqFh9A0MgeM4dNicCEXCEImEEI0NQz9wCHJvN0xGI4qKitDZ2Tlh8D7plOByuZCdnT1pDTNiFWtvb0dDQwOtgZaTkwO9Xg+/34+RkRG89957MJvNePfdd9HT04NgMEjHJv1kOY7DlVdeCYlEgtLSUhiNRjQ1NWF4eBg2mw05OTlU7AGfiEwSywcAIyMjePfdd6lo1Ov16OnpgUQiwdGjR2kdOWC8wwYp30LunViISdIDEUVisTjhOvBFWzIBN1HsWyKhTLbJZDJUV1dDJpNFZfPG1isksZRqtRr19fVRmoGUqGlubqalYIBxq5/FYon6M1FySaK5zQbnrbALBoO44YYb8PWvfz3h/nA4jKuuugrDw8P48MMP8dprr2Hnzp24//77z/JMGQzGfOWWW27B8ePHUVpaiurqajzwwAMIBAKoqqrCbbfdhueee+6Mxv/GN76Bt956C7W1tbRTAYCo+CA+fX19Sa0AUqkUmZmZUT/zAqEQorxVMF78RYjkKro5GAzB0t6L8iITJJLx7pkigRDZKgUEAgFUynQMekfR2m1DY3s3rA4X6lo6UZynh1GnhoATQCoV4bRrCLa+AQSDIYCLAI7D0HvM8LlOo7CwEBaLJc4qReAXNk5UDy42gYCImY6OjihRtHLlSlRWVqKmpgYKhQI1NTUQCoXIz8+nJVWISz4YDGJoaAg1NTUYGhpCZmYmBgYGYLPZ0NPTg4MHD9IOGfn5+XC73XTufDeiXq/HsWPHIJVKaeFkh8OB1atXw+l0orCwMMrqRjpykHczNkvU4XDAbDbDarWir68v4aPki7ZYAZcoRi3ZOk41MYPAF1+HDx+Gz+eDxWKJmp9EIoFGo4kTwqR4daIi1meb81bY/fCHP8S9996LsrKyhPt37dqF1tZWvPrqq/QD8dRTT+HFF1/E0NBQ0nEDgQCGhoaifhgMBiMZCoUCTzzxBBoaGtDW1oaioiJa8mS6cByHe+65B2+88Qbef/99FBQURO0vKCiAXq/H7t276bZgMIi9e/di3bp1Z3Tt8xaFDii5Fsgd7+Nqae+Fb8QPS3svjLpsVC8rQHVJAQxqFUy6bJhyNRCKBLD1ufFBYzs+aDoO87Ee7Gs6DpM2GzlqJTxePzp6++Ad9qOhrRtv7TPjbx+YYT3RhkpJN3zWw1D9SyDzS3Ekc8slE3JEEJJMyo0bN9KMSuIaPX36NHw+H6qrqzEyMoLi4mL4/X5UVVXReDB+WRaz2Yzy8nIolUosWbIETqeTijmRSASBQACtVhsloPjzcTqdUKlU8Pl8EIvFCIVCAAClUombbroJSqWSihdiueOLmUQWKrVaDa/XG+XCTFQbj6wNP06NP7fYLF7S4sxsNifssjEZ/OdCztVqtVAoFNSiSe6puro6YQmZZEWspysyz4TzVthNxscff4zly5djwYIFdNvmzZsRCATQ0NCQ9Lx5F4fCYDBmnbGxMfj9ftx0003Iy8vDbbfdBrfbPe3x7r77brz66qv405/+BKVSSV1TpC6eQCDAt7/9bWzbtg1vvvkmjhw5gltuuQVyuXzaJVbmBSIxsHA1UPxvKC8rhUIuQ3mRCSKREHkGDfIMGizM1aC00ISyxSYU5xuwvCgPnykrQGZGOgaGRjDg9aLntAsmXTYMOVlYmKvGsD8IR78H+y3tOG49jTarHSJBBJWqIcjtB2BUZ0SV4iDuONJ9oKmpKc6tCURbqIioIF0sSKJBOBxGe3s7pFIp2tvb4XK5kJmZCZ/PF2cB5JfVCAaDcLvd2LhxIzo7O1FSUoKVK1dCLpdDrVaD4zg4nc4oARZrMSP18srKyiAWj1s9Y5MegsEgFVShUCipmDIajSgsLMSmTZsgl8sRDofR09MDm82WUvFh/txsNhsaGxup65ff4myimEfCRAKbnEs6iRBrJX3FYgTrRCKSJG+MjIzE1bCbTeatsHM4HHEuiezsbEgkkglV/LyMQ2EwGDPOY489hptuuok2fF+/fj1+/etfY82aNXjhhRdoH83p8Ktf/QoejwcbNmyAwWCgP6+//jo95rvf/S6+/e1v46677kJ1dTVsNht27doFpVI5E7d3fqPQQrJiC6ovvx6Sf9WpI+QZNKguKYBIJIRQKEB5kQnpsnR4h0cx6BvB/uZOOJyDEAmF4AAMekeQnZWBUCSMvNxsLMjJwobKYgDjtfT06WOw7fkdrHVvQ6tR0y4TYrGY1llTKBT4+OOPYTKZouLs+CKBLxCI29RsNiMUCqG0tBShUAirVq2CwWBAeno6SktLozpCkPFKSkrg8XgwNjaGYDCIw4cPQy6Xo6WlBU6nE5mZmRCLxRCLxXHxgfx2ZwAgkUigUqnw7rvv0kzQXbt2obOzE1arFTabDU1NTfD5fNTKFwwG4ff7sX//fnz88cc0Rm2itmyxQiyRMIsVVBqNJip7l3TMIGJ4IhJZSvn9fvnPhG8JjIVcix8zyBeNNpsNfr8fAwMDAEDHmizR4kwRz8qo02Tr1q344Q9/OOExhw4dQnV1dUrjJQoinii4GBg3p5P/8TAYDEYyvv/972PRokW45ZZb8B//8R9YsmTJjI2dShUqgUCArVu3YuvWrTN23XmFUDjeZza7ALAeAIbGXX0kucJqd0EkFKK0wAgIgFx1Jk73exAIhSCVpCEciWBsLATnoBfuoWEUGrWQSSVYmq+HZ8QPhWI8i9bh8qDH7oS7rQuVgychyluFkCSLFg/WarU0yeL999/HHXfckbCERzAYhNPppDXm+vr6sHz5curiJecolUoEAgHU1tZCqVRGJQEAwJ49e2C1WtHe3o7LL78cUqkUMpkMGo2GxouZTCbk5OTQGDk+sdYrYhkjiQ/Lly/HqVOncOjQIZSVlUEmk0Eul0Or1cJut8Nut+Po0aM4efIkQqEQBgYGsHnz5rh71uv16OvrixJTZC1i3bCx25LVtgOAUCgEi8UCtVpNLaAEUs5ErVZTUTj+TsSPSeZoNpupJTDRWoVCIUil0kkteHq9nhZLfuedd5CVlUXbvc0055TF7p577sHRo0cn/CHp/pPB/18HYWBgAGNjY7OWYsxgMD49XHTRRXC5XNi6dSsqKiqwdu1a3HPPPXj55ZfR3Nx8VmNqGIkJh8OwubwIL74MKNwApMnpPqMuG/mGHOQZNCgwanFRxQW4dmMVLsgz4IKFuXAOeJGWJkZoLIK2bjs6e524rLqEtjEj6DUqCAD0uYcQ9A1A7zFDfKoeYb+PujOXLFmCY8eOYenSpQnbvjkcDtjtdoTDYdpJgXSnIC5e0i7MaDTC4/EgPz8fHo8HBoMhyrK1ZMkSjI6OQqfTYWBgAKFQCAaDAcB4p4OBgQGUlJTEdY8gViStVguBQICOjg789a9/RUFBAUZGRmipFZ/PB7/fD4FAgA8++AAcx1HBZTAYYDKZsHHjRpSVlWHhwoUoLCxM6CVL1LIrGAzinXfegdfrpWVc/H4/dWfyx+nr64vLoAUwYQKDxWJBT08PfQaJyqnwIZZAuVweNRZZM34XDvo+8FqfkflkZ2dT0e7z+aBUKuFyuZJe90w5pyx2OTk5yMnJmZGx1q5di8cee4xW4wbGEyqkUimqqqpm5BoMBuPTy759+wAAJ06cQENDAxobG9HQ0IA//elPGBwchFQqRVlZGerq6uZ4pp9e+NYTo7EAUJmAU01AXytEonFxx4f0oK0/2o3g2BgMmiwExoIIR8IIcxE4B8fbtdn6BmgxZAAQioTIypTDNTSMAqMWfZ0tUPWfhMOzAo4xBU7abCgrK0MgEIgKxicQgcV3I/KtdMRQwXc7ms1mLF26FBKJJMoaJpFIUFhYiOzsbOj1emr9dbvdcLlc8Hq9aGhoQEZGBtRqNVpaWqBQKNDc3IzCwkLareLtt9+GVCpFV1cXVq9ejRMnTmBsbAx6vR5XXHEF3nvvPSxZsoS2DyOWKzLXNWvW0GeQKNaNf08Ei8UCqVSKzs5O5OTk0LjErKwsRCIRFBYW0jEVCgVOnDiBmpoa6jblW/kSWeDKy8sRiUSg1WoRDofR29uLcDhMO22kCunakehcIr5tNhtCoRCdE//ZkUSR2QqbOKeE3VSwWq1wu900vqCpqQkAUFRUBIVCgU2bNqGkpARf/vKX8eSTT8LtduM73/kObrvttvmT5s9gMOYc0t7ppptuottI2ymz2TyHM2PEiQdRGrBwFZCzBDhZR92z/M4VIpEQBo0KvX1uOAe8qFiaD1VmBi4uvwA25wDs/R5oVBk40mGDUi4dPz4nCxKxGOVFJtj6BuAfDSAcGYRB1ISAOwiBKBcKkwkXX3xx0m4L5N+hUAhisTgqyzTWVUgEAolz02q1UUWPi4uLIZFIaPA/SYawWCzgOA4nTpxAUVERamtrUVhYiLq6OlRVVaGzsxOFhYU4fvw4li9fjuPHj2Pjxo0IhUL40pe+hJaWFpSXl0MikeCzn/1s1NqSbhKxrstYFys/+YK/z2azUQG3bt06GrNnMpmiXLbkudrtdprtm2ppEYlEgtWrVwMY1xCpEP2fg8RtxkjrNbI2ZI6JOlCIRCLk5eUhHA7jxIkTKc1hqpy3LcVuueWWhG1zamtrsWHDBgDjD+6uu+7C+++/D5lMhi984Qv46U9/OqUYunO5pRGDMd9hn7/Zg60tgEEr0HsINmsPAsExSCVpMOqyqdDz+4No6bKhvGghJBIxTpx04Hi3HeK0NKwpLUC/x4cuWz+2bKymMXdWuwu9fW6YdGroNSo0HO0GBEDFqrVoGVJCpVsAuVweJWqIGOJ/N8UmGCSivr6edsAgsecTtdzq6upCc3Mzli5diq6uLqxfvx5tbW1QKBQYGhqCVqtFX18fbcEll8uxYMECKhKJaImdMz/pIrbVFpkPyZp1u9205h1ZA5vNhs7OTrjdbnoeab+VSCDxExT4gniyHq98AZbIypdo/VKJ+Uv0HGJJ1Me2v78fFRUVrFfs2Yb98mMw5g72+Zs92Nr+i0gEYccROA7vhT5LDpFoPPQ8HI6g4Wg3/KNByNIlKFm0ADtq6yFLT4NerUKGLB121yDcg14MeEdxx3WXwO0dhjZLSV20ANDbN172RpKWBpVCDo/UgMqaGyCSjrswY/uOTtR3NpZEliI+yUQKEVl84RQMBmnoktPpRH19PXp6erBkyRIUFBQgEAjQJAj+nHU6HR1Lq9XCYrGgtLQUbreb/psvWokY4wvXYDCIXbt2QaFQ0BpxycQpWbNAIEBFolgspqGjgFoAACmuSURBVEWS+VbFWOrr6+HxeOD3+1FeXg69Xh9nQU3U0zXZeiZ6DmR9gGhxbrPZ4PV60dnZSd3HJ06cYL1iGQwGg8GYUYRCiBaUw3jpbRAZlgOC8a9Fh8uDbKUcnmE/evvceLehFQtyVPCNjAfp+0ZHoUxPh3PAh6KFOmx/rx4j/gCcg16IREIEgmOw9Q2M91TVZKG0YAE8vhGUZwcgOvoXoO8oEIlAr9dHdaWYrAYb8InFihTM5VvS+IkQsR0xYrslkILKJLaPJDKQ2Dyv14u8vDzYbDbk5+fHlQfR6XTQ6/UQi8UIBoNoaGjA8PAw3nvvPYyMjFBR5/F4qMjhOI5m8pL5OhwOLF26FAqFgh5H/uRb52KTFkiSBLmnlpaWqG4RsfXqysvLEQgEIJfLYTab0dTUlLBenlgsTlg2JVnGq0Qioc+BtB0zm81U4JFxOzs7IZVKYbFYIBKJoursziRM2DEYDAaDkZYO5K0BSq8FsvOhzVLCMzwKtTID4XAEOZkKBENhqOQyHLc68HHTCXx8uB1rSgvRP+jFAo0KA94R6DUqqJUZ+PhwJ3wjAdj7PbA5B/BefSsU6ZLxBIzQKGA9gPDhnXAca0hqmSJM1rGCQLY3NDTQjFKn0wm/34+uri4ak06Ek8PhQH19PQ4dOgSbzQaXy0Xrzi1YsAAlJSWw2WxYvXo1/H5/lNi02+20wHBfXx96e3tht9vR0dEBhUIBj8cT10pNq9VSSx5/vgDocQCS3mvsffNdwOFwGOXl5VAoFLTGH4l1JfF0EokEmzdvhkKhgFqtTpjVSkRnomLLyUQ3//mQY2JLmYhEItTU1ECpVEKj0cxq1jxzxU4Cc1cwGHMH+/zNHmxtkxMOh2H+6D2ofF0QBz1wDQ2jvMj0r5p1/RAIBTjtHgIX4bBAlz3uonMNQZomRsmiBWjtPoWh4RGc6vdAlTEee6eUyxAKc7jhsmo43B70DXihy1KCAwepegGMVZ8FMnISugJj3bVAfMstMm+HwwGr1Yre3l7IZDKo1Wr09fXRFmKkVRkwHod+8OBBDA4OIicnB8FgEKOjo1i3bh3EYjFaWlogEAhw7NgxXHXVVSgoKKClWUZHRzEwMIAFCxYgOzsbAwMD0Gq1CAaDOHHiBC677DJqwSIJE3wXsNFoTOgqNpvNkMlk6OnpQU1NDcLhMGpra7Fx40Y6Hn8cAFHrxY//a21thcPhQHl5OdauXRu3TvzEj0QxdLFdNpIR+8wmGp88G5PJhKysrFn5DJ63WbEMBoPBYMwGDocDKkMBPB41Khdlo8DRBIwO0fIo4UgEerUKfYPj4gwc0NnrxGgwiDf2NkApT4d3ZBQLc7PhGwnigoW58PpHUWDIQW1DG0aDQYyFQnAODKG8aCH00iBw9K+AugD63BVwDCKqk0E4HEZ/fz+CwSDq6upgNBrjMn7J341GI7RaLdLS0lBaWgqHwwGBQAC1Wg2PxxPVbcJoNMJgMMDlctG+sGq1GseOHcOmTZsAAK+88gqEQiE++ugjeL1eagU0GAxYsWIFdeHq9Xrk5eVRYVZbW4sLLrgALS0t0Ol0yM3NhUAgQH9/Py03QixufJelQqHAP//5T5SUlFCXKumcUV1dTYUTcTkDoJ0fwuEwGhoaMDIygkgkgtLSUlpnjw+xWAaDQbz77ru0jAp/TUnJkkQZsbGClJxHXNv8jF8iys1mMxXlZIxTp06d8buaCOaKZTAYDAaDR1TcW85ioOQ6hI2rYRvww+HyoLdvAJb2XrR1nYLd5cHgsB/VywrgdHshSxMBHLCuvAimXA00qgzk6TX47Lpy+IMhFBpzYNBkQSqRQClPpxm44XAEcHdB1PYW9MEe2Lo70dXVhYaGBgQCAYhEIgwODqK3txf19fX45z//ic7OzoS9VkkWq9vthkgkQm5uLrxeL+02QSDdMSKRCE6cOAGO4zA4OAi/309LiG3YsAH5+flYv349SktLMTg4CLVaTduD9fX1oa+vD3a7HQ6Hg7pB8/Pz0dbWRsUXyZ4NhUL0WGBckPb29qK3txcA4PP5cPnllyMQCECj0aC0tBQKhSKu/h/f/UvGsdls8Pl8qKurQyAQQF5eHlatWpW0Tp3FYoFYLEZdXR0VZcS9TN6DRK7X2OP4haQTxezx+9gajUZawoX0fp5pmLBjMBgMBoNHbNYmhEI4IlnozShDQFUIqVQKQ44KhSYtpGnj9ev8wTGsLM6HNF2KXE0mjNpsSMViaDIVcLg9sPUNoDhPj05bPyouyENJ/gIcaulGt70fnbY+NBztRjAYgvWUE3W1f0fdzmfx3o5XMOIbgsfjQVlZGe0ZDIz3HW1tbUVjYyPNDOUH/Md2Y+BnqvKpqKiAyWQCMG4ZGxkZAQAqJouKinDZZZehoKAAbrcbxcXFUCgU1EJmMBhQXl4Ok8lELVekfAo5r6qqiiY4mEwmeiwwXohZLBZDp9MBGE9wyMrKwvLly2G32+F0OlFdXU2zTfk9WDmOo3GB5F5HRkaQkZEBp9OZtC88GYP04F29enWU4CX7gfiyM/zM4liS9bgtLy+n1tJwOIwjR47QOMTZgLliGQwGg8GYBCJkkF8Ao04D2JvhaKuDXq2kHSusdhekkrTxQsdCIbKVcvQP+iAUCdDb58aRDhvk6Wlo6TqFXqcbwwE/Dh3tQpFJB212JhrautHadQoKuQRDvgCylGOQ2w6gctm1sJ46hVOnTmH58uU0U/XIkSMIBALU3UmsXnl5eXH136xWK7XEVVVVUbEikUhQUVGB7OxseDwerFmzhrYqIwkW/N6xDoeDtgmLjZez2WywWCwYHR1Ff38/zRYFPhFEsULJ6XQiJycHbrcbKpUKZrOZilc+/G4PwLhgcrlcUCqVcLvd1D2t1+tpP1iHw4HMzEzY7faounokBg8ANm/eTN2oDoeDitxkRYkdDgddq9h9JEHEbDZHlVwh5WQcDgf6+voglUrR09MTFfc3kzCLHYPBYDAYk0A6BuTl5UGUngFRwTroL7kFjkg2gsEQHC4PRCIhctWZkKSJYdRlQypJwwV5uRCLRDBosrCxqhgKuQzlRSYsLzAiIz0dlRfkwahTI1+vATggI10CqUSCmtUlWFO6GFUXGCCyHULfwdcR6OvGkcOHAQBVVVXYuHEj5HI5SktLE845NpvW6XSit7c3KqYNALWkaTQaSKXSqOxUtVpN4/vIsSSujG8lJC5VlUqFUCiEJUuW0JIrwWAwYb9Xcq5YLKZWrdHRUTQ2NgJAVKIH/xwAtCftyMgIysrKaKyew+FARUUFBgcHkZmZic7OTuoGJffk9/vhdrup6OX34yXw4/b4axhbniaWpqYmdHV1UVc2f952ux2lpaVQqVS0lt1swCx2DAaDwWBMA8fAMAK5FbCc6oI6/RTEw6c/sdiJhBCJhOjrGwIw3ofW7R1G5dI8iERCFBi1+HzNeHsroy4bIpEQeo0Kaf9y7Uok0V/PlYu0cNW1ImPIi95WQCRaDZlMRl2sfMFFrFIkhquvrw/l5eUwGo0YHR2F3W6PspwR69fIyAiOHj0KkUhErX99fX00Lk4ikURZ54j1ighFYmnLz88HACrqGhsbsWTJEng8HhQWFtKCvhqNBhzHQSqV0rjA+vp6aDQaKrjItdRqNSwWCyKRCHJzcyGXy+HxeFBcXAy3e7wINH/OJNt048aNaGlpoXMi92swGKKEFb9sCmnrxi/cTEqZ8AsRJ0Kr1cJut8clqZA5ud1uasUcHR2d2guXIqzcySSwkgAMxtzBPn+zB1vbMyeuLIZCBJGjCfDaEQ5HYOsbQDgSgUg47hwLhcO0bVn8WOPHA58IPZJYoc1SwjnojepqYSxcChhXwjGMuHIcJBPT7XZDIBAgOzsbcrkcer0e9fX1CAaDMBgMGBwcpC5Dv9+P119/HXl5eSgoKIjqy0oED7/+XWdnJ+3lqtfro8qPjIyM4MSJE8jIyEB7ezvy8vJgt9txww03QCaT0RZcpLUaf/7EuqfRaKgrMxQKoa2tDcPDwwCAjIwM1NTUAEDCjg+kowS/8wW5f6vVCqfTiYqKiri2YvzYOnLd/v5+WsqE4zj4fD7ahSMcDkd12khWPoX/rvC3z9ZnkLliGQwGg8GYBkToEEuWSKUHll4BXHAFHH4xQuEwREIhtcYRax6fYDCE+tZu2mO2t89NxZvD5UEgOAZLey8CwTE4B73IM2iQZ9BA5O+HqH0XjMMtEI0ORI1J3IXV1dWoqqqCVCqlrkRiqWptbY1yGbrdbixevBhDQ0PU7UxclOQeSdFekiSg1WppaQ+SNECyQAsLC5Geno5LL70Uw8PDtOMCAFpIuKKiImHMHUkwIBY4qVSK9evXQyaTwWAwYMmSJXA6nXA6nVCr1XA6nXEJL6T0ic/nozX2zGYzent7EQqFaHIFKUVChFcoFKKWz/7+/ijhpdPpEAgEkJ+fD7PZDLPZDJ/Ph9raWhqTl6xrRrLtswETdgwGg8FgzCSZBugv/hKkF1wKyLKoKCOWOD6W9l74RvxwDnph0qlh0qmp+CNisLzIlFAUAgCGbAgf+T/YPnwdYe94ZidfRPA7KRBrlMlkQklJCSQSCXUZ6vV65OfnY+XKlTSujZ84we8aIRKJUFFRAZlMFhWnRs4pLS2Fz+dDZWUlCgoKsGLFCggEApw+fZrWwSMxarECR6/Xw2QyYcWKFdS1q9Vq0dbWhqVLl8JoNMLj8UCtViMcDkMgEES1G+vp6UFTUxN6enpw5MgRaklzOp1QqVQQCARwuVxQq9VxpUj4gtVisSAQCKCtrQ0qlQpDQ+Mu9WXLlmF4eBgqlQo6nQ4KhQIbN26My4Yl7nASV8gXc2RdT58+fcavWiKYK3YSmLuCwZg72Odv9mBre3YIh0JwHKuHPtwLUdAbtz8YDMHS3pswri6l8cMRmI9ZoVKkQ54uhbF4JWCoAGRZvGPCUfFjRIQkchlGj/2J+5CIEbFYTK1OsVmxJNuUCC/+vnfeeQdSqRSBQADFxcVxXSNi5xM7nkqlwsDAuGWSZKWqVCqcOHEChYWF8Pl80Gg0sNvtMBgMcDqd8Pl8GBkZocWWLRYLgsEg/H4/dacCiMqKDYfDNB5uaGgIarWaClpSM89kMlGrXqK1I3NXKBRU4JL1I8KxqakJaWlpWLly5Yx/BpmwmwT2y4/BmDvY52/2YGt7luE4wN0JnDIDgXiBN11sfQMY8QfgGR6liRkQCAD1YsCwAkj/5NkmivNKlVhxSAQeGYvf9qy8vDyuFRdJmODX0+PH7gHjsXmdnZ2oqamB0+mMGy8cDiMQCMDj8aC0tBS1tbXIz89HT08PlixZQosg8xMtcnJyIJfL6fj9/f3o7+/HkiVLoFQqozpEdHZ24vjx4ygoKMDw8DCWL18OAFQsknnyrZOJ1jK2BRwRqkRAWiwW+P1+nDx5El/84heZsDvbsF9+DMbcwT5/swdb2zkiEgHcHYA3cfHcqRIOh+FwuqHXquPFmkAI5CwBFLoZuRa5XqLivan2V40ViG63mxZYPnLkCKRSKVQqFSorK+Pi0wBEJTcQkRcrJBMlZwCgFkAiAGP7w9bX12N0dBRDQ0PIysqCSCSCWCxGKBSCyWRCXl4enT/Jlo3dTq6VrMCxzWaD1+vFsWPHkJ6ejiuuuIL1imUwGAwG47xF+C+xlbNkRoYTATAWzchQqV3vXzF7sQV8ifhK1l+VwHfpSqVSFBcXY9++fdi4cSNqamqislz5ZVfINQBQi6FUKqUdK4jgNBqNKC8vj7IOEtHFL6MSKzpFIhGqq6ujer46nU6UlZXFZbwGAgHaqSIYDKK+vh5ZWVmw2+2w2Wy0AHSiddDr9bTQMqkNONOw5AkGg8FgMBgpk6yH6mT7+PtJi7G2tjbI5XK0tLTQThWkzIler4fBYIBYLEYwGKS9ccViMRVnoVAIFouF9pu1Wq1oamqCRqOhvVv5+/v6+uhcYrNT+aKPuIIPHz4c5TYm8ydlYpxOJzweDz788EOcPn0aPT09qKurQzAYhFgspiKRn+ARiUSgVqvjCkXPFEzYMRgMBoPBSJlkVq/J9iWK8SOlT8rLyxOOJZFIkJOTA5fLBbfbTcuRkPFI1wrSg9bpdKKnpwdmsxl2uz1qv0QiiepCQaxvpEMGv8/uyMgIGhoaMDIyQjNk+V0zSKkVvV6PQCCAVatWURfvqVOnYLfbowSi2WymWbu9vb3w+Xy46qqrzvxhJIC5YhkMBoPBYMw6/PIpxD3J7yebCJItSzJL+dtIVq5EIkFeXh7dB4y7a1UqFfr6+mA0GmldPn4cHElk0Gg0tEYficmz2Wyorq6GTCaLiuHju5LF4nEJRZI9SN9ZEhcYG9sXDocxODgIgUAAhUKBgwcPzso6M4sdg8FgMBiMWWcyN20i+EWgaa/ef4mmRGNJJBKsXr0aa9asgc/ni7LQxVoTSW07h8NBO1WQ40idPpVKhYaGBvj9fthsNmi1WupKJq5gIvrIn6RgNQBYrVb4/X709/cDAIqLi7Fw4ULI5XIsWrToTJc0Icxix2AwGAwGY9bhZ7fO9lgikYha+SaK9zObzdS9y7fKkazdDz/8EKFQCGlpaSguLo66Lr/2HrHkWSwWGj/X19dHW5jl5ORQQUoslCdOnJiRtYiFCTsGg8FgMBjzjlTFH7/HrM1mQ29vLwwGA0wmE3Q6HbXmSSSSKJGYSOTxa+6pVCoYDAbo9XoIBAJkZmZS17BIJEJubu6s3DdzxTIYDMY5xuOPP45Vq1ZBqVRCp9Ph2muvxbFjx+j+sbEx/Nd//RfKysqQkZGBBQsW4D//8z9x6tSpOZw1g3H+QfriEhdv7PaioiKsXbsWRUVFccfEjsPvG2w0GiGXy7F69WqsW7cOq1evjnMNz1ZLMSbsGAwG4xxj7969uPvuu3HgwAHs3r0boVAImzZtwvDwMIDxCvqNjY34/ve/j8bGRrzxxhs4fvw4Pve5z83xzBmM8xuj0Yj8/PwzdhnHxvMR66BcLqdWv9my2LHOE5PAqrMzGHMH+/yN43Q6odPpsHfvXqxfvz7hMYcOHcLq1avR09NDMwQngq0tgzG3zNZnkMXYTQLRvUNDQ3M8Ewbj0wf53H3a///p8XgAAGq1esJjBAIBsrKyEu4PBAIIBAJxY7LfbQzG3DBbv9+YxW4Sent7sXDhwrmeBoPxqebkyZMwmUxzPY05geM4XHPNNRgYGMAHH3yQ8JjR0VFcdNFFKC4uxquvvprwmK1bt+KHP/zhbE6VwWBMg46ODhQWFs7YeEzYTUIkEsGpU6egVCohEAjmejopMzQ0hIULF+LkyZPMzTIDsPWceVJZU47j4PV6sWDBAgiFn86Q4Lvvvht///vf8eGHHyYUt2NjY7jhhhtgtVqxZ8+epGsZa7EbHBxEfn4+rFYrVCrVrM1/PsA+/6nD1ip1PB4P8vLyMDAwkNTSPh2YK3YShELheW0pyMzMZB+uGYSt58wz2Zp+mkXHN77xDbz11lvYt29fUlH3+c9/Hl1dXXj//fcnXEepVAqpVBq3XaVSsXc6RdjnP3XYWqXOTP+nlQk7BoPBOMfgOA7f+MY38Oabb2LPnj0oKCiIO4aIuhMnTqC2thYajWYOZspgMM41mLBjMBiMc4y7774bf/rTn/B///d/UCqVtO6VSqWCTCZDKBTCli1b0NjYiL/97W+0uTownmAhkUjmcvoMBmMOYcJuniKVSvGDH/wgoeuFMXXYes48bE2T86tf/QoAsGHDhqjtr7zyCm655Rb09vbirbfeAgBUVFREHVNbWxt3XiLY+qcOW6vUYWuVOrO1Vix5gsFgMBgMBmOe8OlMM2MwGAwGg8GYhzBhx2AwGAwGgzFPYMKOwWAwGAwGY57AhB2DwWAwGAzGPIEJu3nK3//+d6xZswYymQw5OTm4/vrro/ZbrVZcffXVyMjIQE5ODr75zW8iGAzO0WzPDwKBACoqKiAQCNDU1BS1j61nanR3d+NrX/saCgoKIJPJsHjxYvzgBz+IWyu2njPDc889h4KCAqSnp6OqqippSzLC3r17UVVVhfT0dBQWFuL5558/SzOde6ayVnv27IFAIIj7aWtrO4sznhv27duHq6++GgsWLIBAIMBf/vKXSc/5NL5XU12nmXynWLmTecjOnTtx2223Ydu2bbj00kvBcRwOHz5M94fDYVx11VXQarX48MMP4XK5cPPNN4PjODz77LNzOPNzm+9+97tYsGABmpubo7az9UydtrY2RCIR/PrXv0ZRURGOHDmC2267DcPDw/jpT38KgK3nTPH666/j29/+Np577jl85jOfwa9//Wt89rOfRWtrK/Ly8uKO7+rqwpVXXonbbrsNr776Kj766CPcdddd0Gq1+Pd///c5uIOzx1TXinDs2LGo7gparfZsTHdOGR4exooVK/CVr3wlpffi0/peTXWdCDPyTnGMecXY2BhnNBq5l156Kekxb7/9NicUCjmbzUa3/fnPf+akUinn8XjOxjTPO95++22uuLiYa2lp4QBwZrM5ah9bz+nzxBNPcAUFBfTfbD1nhtWrV3N33nln1Lbi4mLuwQcfTHj8d7/7Xa64uDhq2x133MFdeOGFszbHc4WprlVtbS0HgBsYGDgLszt3AcC9+eabEx7zaX6vCKms00y+U8wVO89obGyEzWaDUChEZWUlDAYDPvvZz6KlpYUe8/HHH2P58uVYsGAB3bZ582YEAgE0NDTMxbTPaU6fPo3bbrsNf/jDHyCXy+P2s/U8MzweD9RqNf03W88zJxgMoqGhAZs2bYravmnTJuzfvz/hOR9//HHc8Zs3b0Z9fT3GxsZmba5zzXTWikB+x1522WWora2dzWmet3xa36vpMhPvFBN284zOzk4AwNatW/G9730Pf/vb35CdnY1LLrkEbrcbAOBwOJCbmxt1XnZ2NiQSCW1LxBiH4zjccsstuPPOO1FdXZ3wGLae06ejowPPPvss7rzzTrqNreeZ09/fj3A4HLeOubm5Sdcw0brn5uYiFAqhv79/1uY610xnrQwGA1544QXs3LkTb7zxBpYuXYrLLrsM+/btOxtTPq/4tL5XU2Um3ykm7M4Ttm7dmjCwkv9TX1+PSCQCAPjv//5v/Pu//zuqqqrwyiuvQCAQYPv27XQ8gUAQdw2O4xJun4+kup7PPvsshoaG8NBDD004HlvP1NaTz6lTp3DFFVfghhtuwK233hq179O+njNF7HpNtoaJjk+0fT4ylbVaunQpbrvtNqxcuRJr167Fc889h6uuuorGiTKi+TS/V6kyk+8US544T7jnnntw0003TXjMokWL4PV6AQAlJSV0u1QqRWFhIaxWKwBAr9fj4MGDUecODAxgbGws7n9W85VU1/NHP/oRDhw4ENfLr7q6Gl/84hfxu9/9jq0nUl9PwqlTp7Bx40asXbsWL7zwQtRxbD3PnJycHIhEojiLU19fX9I11Ov1CY8Xi8XQaDSzNte5ZjprlYgLL7wQr7766kxP77zn0/pezQTTfaeYsDtPyMnJQU5OzqTHVVVVQSqV4tixY7jooosAAGNjY+ju7kZ+fj4AYO3atXjsscdgt9thMBgAALt27YJUKkVVVdXs3cQ5RKrr+Ytf/AI/+tGP6L9PnTqFzZs34/XXX8eaNWsAsPUEUl9PALDZbNi4cSO1JguF0Y4Dtp5njkQiQVVVFXbv3o3rrruObt+9ezeuueaahOesXbsWf/3rX6O27dq1C9XV1UhLS5vV+c4l01mrRJjNZvq+Mj7h0/pezQTTfqfOOP2Ccc7xrW99izMajdw777zDtbW1cV/72tc4nU7Hud1ujuM4LhQKccuXL+cuu+wyrrGxkXv33Xc5k8nE3XPPPXM883Ofrq6uuKxYtp6pY7PZuKKiIu7SSy/lent7ObvdTn8IbD1nhtdee41LS0vjfvOb33Ctra3ct7/9bS4jI4Pr7u7mOI7jHnzwQe7LX/4yPb6zs5OTy+Xcvffey7W2tnK/+c1vuLS0NG7Hjh1zdQtnjamu1TPPPMO9+eab3PHjx7kjR45wDz74IAeA27lz51zdwlnD6/VyZrOZM5vNHADu6aef5sxmM9fT08NxHHuvCFNdp5l8p5iwm4cEg0Hu/vvv53Q6HadUKrmamhruyJEjUcf09PRwV111FSeTyTi1Ws3dc8893Ojo6BzN+PwhkbDjOLaeqfLKK69wABL+8GHrOTP87//+L5efn89JJBJu5cqV3N69e+m+m2++mbvkkkuijt+zZw9XWVnJSSQSbtGiRdyvfvWrszzjuWMqa/WTn/yEW7x4MZeens5lZ2dzF110Eff3v/99DmZ99iFlOWJ/br75Zo7j2HtFmOo6zeQ7JeC4f0UxMhgMBoPBYDDOa1hWLIPBYDAYDMY8gQk7BoPBYDAYjHkCE3YMBoPBYDAY8wQm7BgMBoPBYDDmCUzYMRgMBoPBYMwTmLBjMBgMBoPBmCcwYcdgMBgMBoMxT2DCjsFgMBgMBmOewIQdg8FgMBgMxjyBCTsGg8FgMBiMeQITdoxzguLiYrz00kvTPn/Dhg0QCAQQCARoamqa8Lhvf/vb075OIm655RZ67b/85S8zOjaDwZif3H///bj66qvPeByXywWdTofu7u4zn9QUueOOO/CFL3wBALBlyxY8/fTTZ30OjHiYsGPMOX6/H+3t7VixYsUZjXPbbbfBbrdj+fLlMzSz1Pj5z38Ou91+Vq/JYDDmjoaGBtx0001YsGAB0tPTsXjxYnz1q1/F8ePHUx6jqakJFRUVZzyXxx9/HFdffTUWLVp0xmNN59ovvvgiAOCRRx7BY489hqGhobM+D0Y0TNgx5pwjR46A47gzFmRyuRx6vR5isXiGZpYaKpUKer3+rF6TwWDMDS+99BLWrFkDlUqFN954A8eOHcOLL74It9uN3/zmNymP09zcfEbCLhQKwe/34ze/+Q1uvfXWaY9zJqjVamRkZAAAysvLsWjRIvzxj3+ck7kwPoEJO8ac0dTUhEsvvRQXXXQRIpEI8vLy8Mwzz8zY+MPDw/jP//xPKBQKGAwGPPXUU3HHcByHJ554AoWFhZDJZFixYgV27NhB93u9Xnzxi19ERkYGDAYDnnnmmVlx5zIYjHOfDz/8EHfccQeeffZZ/PrXv8aFF16I/Px8XHrppfjLX/6C//qv/wIw/p/VK6+8EpmZmdDr9bj//vsRDAbpOCdPnoTL5YoSdhOd093dDYFAgB07dmD9+vWQSqV488038Y9//ANisRhr166NmmdLSwvWr18PmUyGiooKfPTRRxAIBGhubp6xtSBz6unpods+97nP4c9//vOMXYMxPZiwY8wJHR0duOSSS3DppZfic5/7HK6//nrcf//9uO+++1BfXz8j13jggQdQW1uLN998E7t27cKePXvQ0NAQdcz3vvc9vPLKK/jVr36FlpYW3HvvvfjSl76EvXv3AgDuu+8+fPTRR3jrrbewe/dufPDBB2hsbJyR+TEYjPOL++67D5dccgm+/vWvJ9yvVqthNpuxbt06rFy5Eo2NjXj99dfx5z//GT/5yU/ocU1NTVAqlSgsLASASc8hccM/+clP8P3vfx8tLS3YtGkT9u3bh+rq6qg5tLS04MILL8TFF18Ms9mMRx55BFu2bEFaWhqWLVs2Y2vR1NSErKws5Ofn022rV69GXV0dAoHAjF2HMQ04BmMOqKmp4W655RaO4zhu9erV3JNPPsmFw2EuKyuLe/rppzmO47hrr72Wy8rK4v793/990vEuueQS7lvf+hb9t9fr5SQSCffaa6/RbS6Xi5PJZPQ4n8/Hpaenc/v3748a62tf+xr3H//xH9zQ0BCXlpbGbd++ne4bHBzk5HJ51LUIALg333wzxRVgMBjnE62trRwAbseOHRMeV1VVxd11111R2x555BFu9erV9N+PPvood9FFF6V8ztatW7mMjAyuq6sr6phrrrmG++pXvxq1bcOGDdznP//5qG3XXXcdt2LFignnPVW2bt3KXXLJJVHbmpubOQBcd3f3jF6LMTWYxY5x1nE4HHj//fdx5513IhwO4/Dhw6isrIRQKIRYLIZEIgEAfPOb38Tvf//7aV2jo6MDwWAwykWhVquxdOlS+u/W1laMjo7i8ssvh0KhoD+///3v0dHRgc7OToyNjWH16tX0HJVKFTUGg8H4dEAs9VVVVUmPaWtrQ0NDA77xjW9EbZdIJFFWLH7iRCrnNDU14XOf+1xcgoTf70d6ejr9d3d3N/bs2YNHHnkk6jipVJo0OW3r1q00qz/ZTyIvSlNTU9yYMpkMADAyMpLwWoyzw9mNMmcwABw4cACRSAQVFRVoa2uD3+9HRUUFTp48if7+fnzmM58BAGzcuBF79uyZ1jU4jpv0mEgkAgD4+9//DqPRGLVPKpXC5XIBAAQCwZTHZjAY8wsiVhQKRdJjWlpakJaWhgsuuCBqe2trK8rKyui/m5qacOWVV6Z8TnNzMx588MG46+Xk5GBgYID+u7m5GRKJBKWlpVHHHT16FDfffHPCOd9zzz246aabkt4TgIQZt83Nzfjc5z4Xtc3tdgMAtFrthOMxZhcm7BhnHRIQPDo6iqamJphMJmg0GjzzzDMoKSmZkRIARUVFSEtLw4EDB5CXlwcAGBgYwPHjx3HJJZcAAEpKSiCVSmG1Wuk2PllZWUhLS0NdXR0WLlwIABgaGsKJEycSHs9gMOYvJGv/gw8+wHXXXRe33+/3Q6lUIhwOY2xsDFKpFABgtVqxY8cOWuPS6/Wiq6uL/p6b7JyhoSF0d3ejsrIy7pqVlZV49dVX6b9FIhFCoRBGR0epJW/v3r1obm5OarHLyclBTk7OlNaCzCl2zCNHjsBkMk15PMbMwoQd46xz4YUXQiwW49FHH4XP58PixYvx3HPP4ZlnnkFtbe2MXEOhUOBrX/saHnjgAWg0GuTm5uK///u/IRR+En2gVCrxne98B/feey8ikQguuugiDA0NYf/+/VAoFLj55ptx880344EHHoBarYZOp8MPfvADCIXCOCseg8GY36xduxabNm3CXXfdBZ/Ph7Vr1yISieDQoUN4/vnn8atf/Qpr1qyBWq3Ggw8+iG984xvo7u7GN77xDdxwww347Gc/C2DcWicSiahQnOycDz74AEKhMMriR9i8eTMeeughDAwMIDs7G1VVVUhLS8MDDzyAe++9F62trTSDfyb+w0xobm6GSCSKswx+8MEH2LRp04xdhzFN5jrIj/Hp5Pe//z1nMBg4AJxYLOZWrVrF7dmzJ+642traaSVPcNx4AsWXvvQlTi6Xc7m5udwTTzwRd1wkEuF+/vOfc0uXLuXS0tI4rVbLbd68mdu7dy/HcRw3NDTEfeELX+Dkcjmn1+u5p59+mlu9ejX34IMPxs0BLHmCwZjXjI6Oco8//ji3fPlyTi6Xc9nZ2dyqVau4Rx99lAuHwxzHcdxHH33EVVdXczKZjCssLOQef/xxLhQK0TGeffZZbvny5VHjTnTOs88+y5WWliad04UXXsg9//zz9N9//OMfuYULF3IZGRncddddx/3oRz/iioqKZnIZEt6D3+/nMjMzuY8//nhGr8WYOgKOYwFDjLlDrVbj5ZdfxrXXXptw/549e/DLX/4yqrZcIjZs2ICKigr87Gc/m/lJ8hgeHobRaMRTTz2Fr33ta1H7BAIB3nzzzaT3wmAwGDPN22+/je985zs4cuRIlEcCGI8j3rhxIz7zmc9g27ZtszqP//3f/8X//d//YdeuXbN6HcbkMFcsY87o7e3FwMBAQhcDMO5maGxsxPDwMEwmE958802sWrUq6XjPPfccXnrpJXz88cdJx5wqZrMZbW1tWL16NTweDx599FEAwDXXXEOPufPOO6PiXBgMBuNsceWVV+LEiROw2Wzo6uqC0+lEZWUl+vv78eSTT6K7uxtvvvnmrM8jLS0Nzz777KxfhzE5zGLHmDP+8Y9/4IYbboDX6z3jmDWbzQa/3w8AyMvLoyVTzhSz2Yxbb70Vx44dg0QiQVVVFZ5++uko4djX10f7IxoMBtpih8FgMM4m27dvx4MPPgibzYbc3FzU1NRg27ZtyM3NneupMc4iTNgxGAwGg8FgzBNYgWIGg8FgMBiMeQITdgwGg8FgMBjzBCbsGAwGg8FgMOYJTNgxGAwGg8FgzBOYsGMwGAwGg8GYJzBhx2AwGAwGgzFPYMKOwWAwGAwGY57AhB2DwWAwGAzGPIEJOwaDwWAwGIx5AhN2DAaDwWAwGPOE/w9f9mZbqzAycwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "shape = (2, 2)\n", "plt.subplot2grid(shape, (0, 0))\n", @@ -869,7 +1140,18 @@ "cell_type": "code", "execution_count": 56, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAG3CAYAAAAJjZw4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3Rc13Uu/k3vBTOYwQCD3jsJgiJVWSRSlPRsS3YiW7ZjO07s2HESxbEdZ/nlPUeJHac6dl7ynp6X/SLF3XGTZctWIUWRoiQWgGgE0dsAgxnMYAaY3jG/P/A7RxcXU+4MAFLlfmthSZx772n3nHPP3vvbewvS6XQaPHjw4MGDBw8ePHjw4MHjLQHhzW4ADx48ePDgwYMHDx48ePDYPfBCHg8ePHjw4MGDBw8ePHi8hcALeTx48ODBgwcPHjx48ODxFgIv5PHgwYMHDx48ePDgwYPHWwi8kMeDBw8ePHjw4MGDBw8ebyHwQh4PHjx48ODBgwcPHjx4vIXAC3k8ePDgwYMHDx48ePDg8RYCL+Tx4MGDBw8ePHjw4MGDx1sIvJDHgwcPHjx48ODBgwcPHm8h8EIeDx48eNwEPPbYY9i/f//NbkZOPPnkk9Dr9XteT21tLb7+9a/veT08ePDgwYPH2wW8kMeDB48d43d/93chEAggEAggkUhQX1+Pz33ucwiFQje7aW8ICAQCPPXUU1t++9znPoczZ87cnAbdJGQTGq9cuYI/+IM/uPEN4sGDBw8ePN6iEN/sBvDgweOtgfvuuw9PPPEEEokEXn75ZXzsYx9DKBTC448/vu3eRCIBiURyE1r5xqgfANRqNdRq9U1twxsFJpPpZjeBBw8ePHjweEuBt+Tx4MFjVyCTyWCxWFBVVYUPfOAD+OAHP0itV4Sa+B//8R+or6+HTCZDOp2GzWbDgw8+CLVaDa1Wi/e+971YWVmhZZLnvvGNb6CqqgpKpRIPP/ww1tfXt9T9xBNPoK2tDXK5HK2trfg//+f/0Gvz8/MQCAT4r//6Lxw7dgxyuRzf/e53M/ZBIBDgG9/4Bt7xjndAqVSira0Nr732Gqanp3Hs2DGoVCrcdtttmJmZ2fLc448/joaGBkilUrS0tOA73/kOvVZbWwsAePe73w2BQED/zaZrbmxs4G/+5m9QWVkJmUyG/fv349lnn93Wj5/97Gc4fvw4lEol9u3bh9deey3ne3nsscdQXV0NmUyGiooKPProo/RaPB7H5z//eVitVqhUKhw+fBgvvfRSzvJ++ctfore3F3K5HPX19fjrv/5rJJNJen19fR1/8Ad/gLKyMsjlcnR2duJXv/oVXnrpJXz0ox+Fz+ejVt/HHnuMjhGTrsl1XnznO99BbW0tdDodHnnkEQQCgZxt58GDBw8ePN4u4IU8Hjx47AkUCgUSiQT99/T0NP7rv/4LP/3pTzE4OAgAeOihh+D1enHu3Dm88MILmJmZwfve974t5ZDnfvnLX+LZZ5/F4OAg/uiP/ohe/+Y3v4m//Mu/xN/+7d9ibGwMX/nKV/A//+f/xH/+539uKecv/uIv8Oijj2JsbAynTp3K2u4vfelL+PCHP4zBwUG0trbiAx/4AD7xiU/gC1/4Avr6+gAAf/zHf0zv//nPf44//dM/xWc/+1lcu3YNn/jEJ/DRj34UZ8+eBbBJRQQ2BVGHw0H/zca//uu/4qtf/Sr++Z//GcPDwzh16hTe9a53YWpqast9f/mXf4nPfe5zGBwcRHNzM97//vdvEbKY+MlPfoKvfe1r+MY3voGpqSk89dRT6Orqotc/+tGP4pVXXsEPf/hDDA8P4+GHH8Z99923rU6C5557Dr/zO7+DRx99FNevX8c3vvENPPnkk/jbv/1bAJuC6v33349XX30V3/3ud3H9+nX8/d//PUQiEW6//XZ8/etfh1arhcPhgMPhwOc+97ltdaTTaU7zYmZmBk899RR+9atf4Ve/+hXOnTuHv//7v8/Ybh48ePDgweNthzQPHjx47BAf+chH0g8++CD996VLl9JGozH93ve+N51Op9N/9Vd/lZZIJGmXy0Xvef7559MikShts9nob6Ojo2kA6cuXL9PnRCJRenFxkd7zm9/8Ji0UCtMOhyOdTqfTVVVV6e9///tb2vOlL30pfdttt6XT6XR6bm4uDSD99a9/PW8/AKT/x//4H/Tfr732WhpA+v/9v/9Hf/vBD36Qlsvl9N+33357+uMf//iWch5++OH0Aw88sKXcn//851vu+au/+qv0vn376L8rKirSf/u3f7vlnltuuSX9qU99aks/vvWtb9HrZLzGxsYy9uerX/1qurm5OR2Px7ddm56eTgsEgrTdbt/y+z333JP+whe+kE6n0+knnngirdPp6LW77ror/ZWvfGXL/d/5znfS5eXl6XQ6nX7uuefSQqEwPTExkbE97PIIampq0l/72tfS6TT3eaFUKtN+v5/e8+d//ufpw4cPZ6yXBw8ePHjweLuBt+Tx4MFjV/CrX/0KarUacrkct912G44cOYJ/+7d/o9dramq2+F6NjY2hqqoKVVVV9Lf29nbo9XqMjY3R36qrq1FZWUn/fdttt2FjYwMTExNwu91YXFzE7//+71MfN7VajS9/+cvbKJUHDx7k1I/u7m76/2VlZQCwxfpVVlaGaDQKv99P+3HHHXdsKeOOO+7Y0od88Pv9WF5e5lQOs33l5eUAAJfLlbHchx9+GJFIBPX19fj4xz+On//859Tqd/XqVaTTaTQ3N28Zu3Pnzm0bO4L+/n78zd/8zZb7P/7xj8PhcCAcDmNwcBCVlZVobm7m3Hc2uM6L2tpaaDSaLWORbRx48ODBgwePtxv4wCs8ePDYFRw/fhyPP/44JBIJKioqtgU2UalUW/6dTqchEAi2lZPtdwJyTSAQYGNjA8AmZfPw4cNb7hOJRDnrzwZmu0ldmX4jdTN/49qHbOBSTr62MFFVVYWJiQm88MILOH36ND71qU/hn/7pn3Du3DlsbGxAJBKhv79/21hlCwizsbGBv/7rv8Z73vOebdfkcjkUCkX+TuYB13nBnl/M+cCDBw8ePHi83cELeTx48NgVqFQqNDY2cr6/vb0dNpsNi4uL1Gpz/fp1+Hw+tLW10ftsNhuWl5dRUVEBAHjttdcgFArR3NyMsrIyWK1WzM7O4oMf/ODudogj2tracOHCBXz4wx+mv7366qtb+iCRSJBKpbKWodVqUVFRgQsXLuDIkSNbyjl06NCO2qdQKPCud70L73rXu/BHf/RHaG1txcjICHp6epBKpeByuXDXXXdxKuvAgQOYmJjI+p67u7uxtLSEycnJjNY8qVSacxwA7vOCBw8ePHjw4JEdvJDHgwePm4ITJ06gu7sbH/zgB/H1r38dyWQSn/rUp3D06NEt1Eq5XI6PfOQj+Od//mf4/X48+uijeO973wuLxQJgM9Lio48+Cq1Wi/vvvx+xWAx9fX1YW1vDZz7zmT3vx5//+Z/jve99Lw4cOIB77rkHv/zlL/Gzn/0Mp0+fpvfU1tbizJkzuOOOOyCTyVBSUpKxnL/6q79CQ0MD9u/fjyeeeAKDg4P43ve+V3TbnnzySaRSKRw+fBhKpRLf+c53oFAoUFNTA6PRiA9+8IP48Ic/jK9+9avo6enB6uoqXnzxRXR1deGBBx7YVt4Xv/hFvOMd70BVVRUefvhhCIVCDA8PY2RkBF/+8pdx9OhRHDlyBL/1W7+Ff/mXf0FjYyPGx8chEAhw3333oba2FsFgEGfOnMG+ffugVCqhVCq31MF1XvDgwYMHDx48soP3yePBg8dNAUkQXlJSgiNHjuDEiROor6/Hj370oy33NTY24j3veQ8eeOAB3Hvvvejs7NySIuFjH/sYvvWtb+HJJ59EV1cXjh49iieffBJ1dXU3pB8PPfQQ/vVf/xX/9E//hI6ODnzjG9/AE088gWPHjtF7vvrVr+KFF15AVVUVenp6Mpbz6KOP4rOf/Sw++9nPoqurC88++yyefvppNDU1Fd02vV6Pb37zm7jjjjvQ3d2NM2fO4Je//CWMRiOAzYifH/7wh/HZz34WLS0teNe73oVLly5t8Ydj4tSpU/jVr36FF154AbfccgtuvfVW/Mu//AtqamroPT/96U9xyy234P3vfz/a29vx+c9/nlrvbr/9dnzyk5/E+973PphMJvzjP/7jtjq4zgsePHjw4MGDR3YI0ul0+mY3ggcPHjwy4bHHHsNTTz1FUy7w4MGDBw8ePHjwyA/ekseDBw8ePHjw4MGDBw8ebyHwQh4PHjx48ODBgwcPHjx4vIXA0zV58ODBgwcPHjx48ODB4y0E3pLHgwcPHjx48ODB422F8+fP453vfCcqKipowCcm0uk0HnvsMVRUVEChUODYsWMYHR29OY3lwaMI8EIeDx48ePDgwYMHj7cVQqEQ9u3bh3//93/PeP0f//Ef8S//8i/493//d1y5cgUWiwUnT55EIBC4wS3lwaM4vK3pmhsbG1heXoZGo4FAILjZzeHBgwcPHjx48LipSKfTCAQCqKiogFD49rAFCAQC/PznP8dDDz0EYHMMKioq8OlPfxp/8Rd/AQCIxWIoKyvDP/zDP+ATn/hExnJisRhisRj998bGBrxeL4xGI3/O5JETe7Hu3tbJ0JeXl7Pmg+LBgwcPHjx48Hi7YnFxEZWVlTe7GTcFc3NzcDqduPfee+lvMpkMR48exauvvppVyPu7v/s7/PVf//WNaiaPtyB2c929rYU8jUYDYHNAtVrtTW4NDx48ePDgwYPHzYXf70dVVRU9I70d4XQ6AQBlZWVbfi8rK8PCwkLW577whS/gM5/5DP23z+dDdXU1pqamsLS0BJ1OB6lUCpFIhLKyMohEIqRSKQwNDUGtViMYDGLfvn0QiUS0jFQqhZWVFZSWlmJ1dRWpVArxeBxra2v0t5KSEigUCgCb1kSZTIaKioqMbUylUhgYGEA8HqeGjqGhIWg0GkQiETQ0NMDn86GkpAQOhwOBQACHDx/Gb37zGxw6dAhCoRD9/f1wOBw4deoUgsEgSkpKaL9SqRSSySTEYjHC4TBOnz6NI0eOoL+/H3q9Hr29vRCJRIjFYhAIBDh37hwmJydRVVWF6upqqFQqzM/PI5VKoaGhARqNBm1tbXj55ZdRVVWF+fl5hMNh2Gw2qFQqLC8vw2KxoKamBgaDAdeuXcPCwgKtKxgMAgDq6+sRCASwuroKjUaD2tpaVFRUYGVlBWVlZZifn8e5c+cQCATQ3t4Ot9sNmUyG+fl56HQ6lJWVwWg0oqKiAqurq3T8yBiS90Te6/LyMhYXF5FKpRAMBlFbW7vl/bLv34t197YW8ojpXKvV8kIeDx48ePDgwYPH/w+eXrh9DNLpdM5xkclkkMlk236PxWK466674HQ6YbFYqBBHBC6LxYLZ2Vk0NTUhHA7DarXSZ1OpFAKBAMLhMJqamgBsCqF6vR4OhwN1dXWQSqWwWCxIpVIYHh5GW1sbpFJp1nY2NjZiaWmJChRWqxVXrlxBNBqFx+NBWVkZpFIpUqkUOjs7cebMGczNzQEA9u/fD5PJRIVAvV4Pm80Go9EIq9UKq9UKt9sNk8mE06dPo7e3FxMTEygvL4fZbEYoFEJLSwvOnz+PcDiMWCyGUCiEiooKWCwW2Gw2tLS0IB6Po6OjAwAwPz+Pzs5OBINBvOtd78JvfvMbmM1mGAwGyGQyLC0t4ZZbbkFtbS0UCgWUSiW0Wi3cbjcaGhpgtVrh8Xiwvr6O6elpmEwmdHV1IRwOQyqVIhAIIJFIoKenh9ZXX1+PhYUFWCwWCAQCKJVKqFQqRKNRVFVVwefzobW1dYtArtVq4XQ6YTKZIBaLEQgEYDabcfToUXi93i3v3m63QyqVbnvfu7nu3tZCHg8ePHjw4MGDBw8eTFgsFgCbwlR5eTn93eVybbPucYVIJKKH+VQqBafTiXg8jkgkglQqhRMnTsDtdlNhjQiETqcTS0tL9DmPx4Pu7m5qbWSW63Q6YTAY4Ha7YbVat5TDFEasVitEIhFMJhOcTicUCgWsVisGBwdRWloKj8eDVCpFhc/l5WWMj48DAI4ePYrV1VV0dnZCKpXC5XIhlUphZGQEExMTOHnyJKqrq2Gz2SCTydDf3w+VSgWtVguv1wun04mzZ89CoVBgbGwMfr8fRqMRdrsdSqUSBw4cwOzsLFpaWuByuRCPxxGPxzExMYGHH34Ybreb/oVCIahUKuh0Ong8Hmg0GvT29iKVSuHKlSvo7u6G2+3G1NQUtTAKhUJan16vx/T0NNra2lBSUkLrq62thVQqRWdn55Z35fP5cM8998Dr9aK+vh7AprBG5svAwAB0Oh2Gh4dht9vhdrshEong9Xq3CHJkjpF3s1fghTwePHjw4MGDBw8ePP5/1NXVwWKx4IUXXqDWnXg8jnPnzuEf/uEfCi6PTZ202+1YWlrCxsYGPB4P9u3bB6lUSgUBu92OWCxGrUJLS0swm81wuVyIRCIYHh5GT08PRCLRFiGBKTjE43GcPn2aCiPkmslkosKk0+lEMpmk9weDQbS0tEAgEEAsFsNqtaKyshJLS0uoqKhAXV0dZmdnodFoEAgEcPDgQVgsFiwvL2NjY4MKrXa7HZFIBP39/YjH41AqlRCLxUin01hbW4NWq4XD4aAWu42NDWi1WqysrGB6eholJSVIJpPQ6/WYnZ2Fx+NBeXk5XnjhBZhMJqjVaoyMjKC+vh5CoRDNzc0ANqnGp0+fhtPpRCqVwn/9139h//79WF1dRSgUwuHDh3HgwAE4HA4MDg7C5/NBq9UinU6jvb0diUQCiUSC0ildLhe6u7shFAoxOjqKsrIyKrgBgM1mw9DQEDo7O7G+vg61Wg2fz4fu7m4YjUaYzWZYLBb6jthCN1vw223wQh4PHjx48ODBgwePtxWCwSCmp6fpv+fm5jA4OAiDwYDq6mp8+tOfxle+8hU0NTWhqakJX/nKV6BUKvGBD3xg19ogEolgNpu3WNmATYHMbrdTocBkMkEqlaKnpwfDw8Po7u6mAh5TaGAKDn19fQgEApiamsIDDzwAp9OJcDiM559/HjqdDqlUClarlT5PrIQkLyARTOx2O06ePInW1laMj48jEAhAo9HAaDQiHo/j7NmzCIfDcDgcqKiowMTEBPUVVKlUUKlUUCgU0Ov1WFlZQVtbG7q6ugCA0joBUIslEZbKy8up71ssFkNfXx+am5sRDAaxsrKC2267DbOzs5icnIRGo8GBAwcwMzMDtVqNZDKJK1euQCaTYWRkBBqNBkKhEAaDASKRCBqNBtPT06irq8PMzAzS6TRWV1chl8sRCoWgVCoRjUbh9Xrh8XhQWVmJRCIBr9eLwcFBNDc3I5VK4dq1a4jFYhgbG0Nrayt8Ph8Vvuvq6lBXV7flvTqdTiq877WAB/B58njw4MGDBw8ePHi8zdDX14eenh5qqfvMZz6Dnp4efPGLXwQAfP7zn8enP/1pfOpTn8LBgwdht9vx/PPPFxUYY2Vlhf5/KpUCAFRWVqK3txc1NTVbhDoAVGAjAoFYLKbUSqZQSIQGu92+5XkAMJvNkMlk6OzspAKhz+eDWq2G2+2Gw+EAACpsuN1uGAwG6t9nt9vR39+PWCwGhUKBSCSCqakp/PrXv8bs7CzS6TT6+/sRCoUQiURw5MgRlJeXIx6PY3FxETqdDi0tLbDb7QiFQhgZGcHc3BwsFgsaGxvR2NgIq9WKpaUlvPTSS3A4HBAIBEin05BIJDCZTHSsjUYjmpqa4PV6ceHCBQCbQvrq6ircbjcmJydht9vR0tKCubk5DA0NwWKxYG1tDWKxGAsLC5DL5ZiZmUEkEsHS0hLq6upgtVpRUlKCkZERBAIByGQyiEQi1NTUwGq1oqenB62trRgaGoJIJEI0GsX58+fxi1/8AjabDfX19dBoNDh+/Di14AGbgnE8Ht/2TiwWC2Qy2RbLHvue3QQv5PHgwYMHDx48ePB4W+HYsWNIp9Pb/p588kkAmwEwHnvsMTgcDkSjUZw7dw6dnZ1F1cX04yMUSZFIRCmabrcb4XAYAwMDSKVS9G91dZXm3bPb7Th9+jTm5uZgs9nQ19dHA48AoAIhQXV1NW655RZYrVbY7XYAQE9PD2pqaiCVSqHT6SitcWBgAFqtlpZF6KSRSAQTExMIBoNQq9XQ6/WQy+WQSqVYWVnB0tISVlZWoNPpoNfrYTKZsLy8jJdffhlOpxMjIyMIhUIYHR1FKBSCQqHASy+9hHPnziEejwMAZmdn4XQ6MTMzg/X1dQCbKc6+8pWv4PTp01hcXIRYLIZUKkUoFEI8HqfCGgDI5XKUlpZCKpUinU4jlUrB7/ejrKwM9913H+x2OxKJBA2mIhKJIJFIqP+cXC5HWVkZwuEwfD4fKisrsbCwQIXwV155hQZsCQaDcDqdcDgcuHDhAqanp3HixAn4fL4tvngkqmg4HN7yToillS2kM+/ZTfBCHg8ePHjw4MGDBw8eewQmHZNYc0wmE7XiEKsT8WcjgiAAeL1epFIpuN1uqFQqBAIBuFwuBINBjI6O0oiWTAtRPB7HwMAA9b8j1j6n0wmRSISWlhYEg0GYTCYMDAxArVbD7/cjlUphenoag4ODMJvNNPrjz3/+cwwNDUEmk6GkpAQejwevvvoqotEoxsfH4XK5sL6+jtdeew02mw1isRjz8/O4++67UVVVhaNHj6KmpgZDQ0OYmprCr371K3z/+99HPB7HHXfcgY6ODtx+++1oamqCWCzG9evXEY/HMTk5icrKSrS2tqKjowNyuRyrq6swmUyIRCKIRCLQaDQwGAwIBoNwu91wOp2Qy+UwGAxIJBJobm7G0tISVCoVrly5QoVTuVyO/v5+HDp0CCUlJaiurkYkEoHNZoNWq8Xs7CwuX76MqqoqTExMQCwWo66uDl1dXTCZTEgmk4hGoxgeHobJZKKCHrCZOqO+vh4+n29bYBWm9c5kMsHr9VLK6m6DF/J48ODxtsBe0yJuNJj9KaRvb7Vx4MGDB483E4g1x26348qVK7DZbJROSYRBpiCYTqcBbKYuaGhowL333ouenh6o1WpKD2T658XjcTz//POYmJig/nfj4+OIx+MIBAIYHh6GQCCA0WhEf38//H4/pqamqODS19cHm82G8fFxWCwWiMViqFQqOJ1OVFZWoqGhAeFwGEKhEOPj4zCbzUin03jllVfg9/shFAohl8uh1Wppjj25XI719XUqqBEfuJ/85Ce4du0a1Go1+vr6sLCwALfbjaamJohEItxyyy0ANi1eo6Oj8Pv9UCgUVOASi8VoaWnBwYMH0dnZCaPRiNLSUiSTSXg8HohEIqyuruLQoUNUALTZbFhfX4fJZMK73/1u+P1+WK1WhEIh+Hw+KlBfvnwZV69exW9+8xvIZDIsLi4iHA7jrrvuwp133gmj0YjFxUUoFAo4nU4YjUasra3BYrGgp6cHGo2GUoGZ31ym9c7tdkOn02FwcBCLi4u7Ptf4wCs8ePDgDHZkqGzhmXdS5m63EwDVYJaUlGR0eN6LNnBtX776st3LpnlwdeYmNJxUKoXq6uqdd6ZIMAMKkEhvuzWn8tVLqEtM2gwPHjx47BWWl5ehUqnoHme32zE8PIxYLAaXy0X9w9jRMpmBWaRSKQ4ePEivkf9nhvhfWlrC1atXIZfLMTExgaNHj+L8+fNQKpXweDzweDxQKBS4fv06VlZWkEqlIBKJ0NTUBJfLhcrKStx+++0YGxuDTCbD6Ogouru7YTabaV63+vp6RCIRXL58mVIo29ra0NLSgv7+flitVqTTaZhMJmxsbODy5cuwWq0QCoVwuVxIJpOIxWJ46aWX0NDQgHg8jtnZWQBAIBCASCTCzMwMTCYTVlZWEA6HsbS0hHQ6Ta2LjY2NSKVSCIVCkMlkNIDM5OQkLBYLdDod+vr6IBQK8dBDD+H8+fNob2+nQVLW19chEAhoYJVUKkXTMKTTaRiNRrjdbqyvr6O2thYSiYRaQBUKBeLxOK5cuQKLxYKFhQV0dnZSH0fyPSNgfquZkVKZaRdisRh8Pt+uzzvekseDxy6Ai3WkGAvKjbC6FFIHW7DgyifPVcdecNKZZdrtdgwMDFC+faacNHvNi89XX6HjQ6x3YrGYhmdmUnXY2Mt5xCw7Ho+jr68P8Xg8b52kX+Sgw55T7EACxfaBbfEcGBjAwsICFhYWqP/LjcTNtKRmqpv5zgp5bqf18uDxdgJ7j1taWoJer99i7WFa40gKBWYQECDzWmJ+I8bHxxEOhxEOh3H33XdDqVSioaEBwWAQ3d3dOHHiBHQ6HQwGA+LxOLxeL0pLSyEWixGNRuF2u3Ho0CGcOnUK0WgUUqkUk5OTMJlMNJiKxWKBQqFASUkJfD4fwuEwrl69CqFQiDvvvBOlpaWQy+V4+eWXMT4+jsnJSXg8HnR0dKCiogKBQACTk5NIpVIYGhrC/Pw8NjY24HA4YLFYqMBjMBigUChgMpng9/sxPT2NhYUFlJSUQCqVIhaL0UTwXq8Xk5OTiMVikEgk1M/P6XRSYW94eBjRaBQ6nQ46nQ4ymQxnzpyBWCymwWVeeeUVeDwevPTSS5QGWlFRAblcDp1Oh5GREQwNDQEA9u3bB7fbjTvuuAMAUF5ejsrKShq0ZnZ2Fv39/TCZTPT7PDw8jEgkQq2MwGaAnMrKym1pNnYDb1oh77HHHoNAINjyt5cJBXnkx258yDOVkUqlYLPZYLPZ9uyQsNO2cxESsh3WM/WNtIeZK4cL2Ac2Lv0qRMBhCxP5hAsCu92OhYUFakFhto25AbKvFfs+2O0yGAxQKpU0tHG++3cL2frBri/XO8jUNnK/y+XiVCc7bDPz0LBTMMseHh5GMBjE4OAgFayzzSvSr+7u7oxzCth+MCpGECdhwwcGBmC32+nHnRl4gCDb+9pNISVfP/Zyv8tUN3lnw8PDRbeZa72ZIgDyAiCPtwOYPngmkwmVlZWoq6ujCdCJEqqvrw+zs7NIpVLUQpUrUAdT4Uf8ukQiEbq7u9HU1ASr1QqPxwOdTofR0VGIRCL09PTQchsaGigddHJyEnNzc7h8+TKcTieOHz+OcDiMtbU1fOc736HCltvtRjKZpNRIh8OBmZkZXL58GWtrazAYDHjllVcQDofxb//2bxgZGcHg4CAmJiZQVlYGnU4HrVYLm82GcDiM6elp+Hw+tLW1QaFQIBaLQaPRYGRkBCUlJTCbzSgpKYFCoYBcLodMJoNer0d1dTVUKhWqq6sRCoWoUKhUKiGVSiEUCmkqhrm5OSwsLODq1as0eiixFA4PD6OmpgZnz56FRqPBc889h8rKSrjdbrS2tmJychIzMzO4dOkSLl++jCtXruCFF17A+fPn0dTUhFdeeQWxWAwej2fLu/J6vdv2ze7u7i00W/I+PR7PluA8u4U3rZAHAB0dHXA4HPRvZGTkZjfpbQ3m5lPshzvTYYJovZaWlvbM0rLTQwwXIYF5DxHGbDZbxr6R9gAoSPhgH9iYB9xs76IQAYcdGYr970JA+uh2u7eVkUkozAa2pcZms8Fut29JNlpfX4/e3t6M7cxHD9zJITTbvGKPWy7n60xjTEJhEyGFWU+mA/VeCLGZhHTyATOZTNDpdFktp8x+kehy7DnFDiTA7EMh74Q5VsDr66mnpwdKpXJL+0jEOpvNtqUMLpZX8lumsNns9uR6F8TyvLCwsG3eZLOaZruHS93sQ0cxbc6HbII7UJhVmyt2y/KY713uZp083tqoqKigETSHh4fpHjc8PEyVYYRy6Xa7t1D+iOAVDAaxtLS0xajBpN97vV40NTWhuroa1dXVtI7y8nKaOoHsL7FYDGVlZZDL5TAajRCJRDAajfD7/RgbG8PCwgLGx8dRUVGBa9euQSQSYW1tDZ2dnVTw6+rqQltbGzo7O6HX62E0GlFfXw+bzYb/9t/+G+bn51FdXY1AIICVlRWMjY0hGAzixIkTOHDgAI4fP04FMZPJhM7OThw8eBAtLS1IJBLQaDR46aWXYLPZ0NbWBo1Gg/3796O1tRUejwcXL17E3NwcTp8+jUuXLuG1116DUCjE2NgYOjs70dzcjI6ODoyNjSGZTCKZTCIcDmNqaor2Va1WQ6PRYGVlBfv374dKpcIf/uEfYnFxEffddx9EIhFteyKRgN/vx8DAAL797W8jGo3iypUrUCqVWF1dpd/jSCSCoaEhNDc3QywWw2azYXZ2Fna7HSKRCOXl5fTdMQO2XLt2bdfn3ZtayGNSlYhUnguxWAx+v3/LH4+tYH+o8v2bCeZBoFihiTj5kgM7+a2yspKawfcCOz3EMA/i2caIScUYGBhAMBikHHh238g4kP/nKkSxD2zsiF352r5XyGQ9yjTmxRyU2AIOU2hmRhgj/WPXkW+u7kQBkGteMdtB8hO53W7OZZMcSGy6ZqYDNfMdF9OfXNZBppBOfEaqq6tzWk65lJ9NoQAgp5WQXRbRXCuVSlpeMpncplxIpVIYHR1FJBKh7yGbtTmbMioT/ZSNbOuN2W4SFp09bzJZTdkWuFzvN5VKweFwbBln8s6kUmnOccx2jcuazSa4A4VZtfOhWAYEG1zfZaZndksRyQuNbz2YTCZMTU1BrVbT7xVTGWaxWFBTU4PKykrqP26323H27FnMzc3hZz/72RaqH1FQkv9GIhGsrq7Cbrdjbm4OqVSK5tvT6XQ0emYwGMTFixcRDoeRSqUglUphMBggFotx5MgRHD9+HDU1Neju7kZ7ezsaGhrQ0tKC3t5eOJ1OmtZhZGQEk5OTaGpqwjvf+U586EMfQiQSgdVqxdWrV/Hoo4/iwIED+L3f+z3cdtttaGhowF133YXe3l7ccccdKC8vR3t7O7RaLbq6umA0GpFKpeByuaBSqbCxsYFoNIq5uTmMjY3BYrEgmUxCp9Ph6aefxtzcHEpKSgAAHo8Hq6ur+NnPfgYAGBkZQVdXF86fPw8AlLlRUlKCkpISmhZjcHAQNpsNP/nJT+ByuXDo0CEEAgE0Njbiu9/9Lux2O7Uu1tTUQK/X01QbY2NjaGpqwsTEBJLJJNbW1hCPx3HmzBmsrKzga1/7GoLBIBwOB8bHx7fsTWRvcbvd6OnpgUwmg8Fg2PU596YW8qamplBRUYG6ujo88sgj1HEzG/7u7/6OcnF1Oh2qqqpuUEvfPGBbUArxwWIeXrId4PPRkMiGlEwmaR0ikYhqpgoVRLh8KPNZcgopn/j8ZDuAkvEzm81Qq9Xo6enZ1jfSHgBbxoEL2Ac2dsSuYrHTA0emg22m38j4sP0QcoEt4DCF5kwHYfYczifgF6sAyDevmO3gKgwynyV5lsgfGctcB2ogt9UwWz8yzelcbS5EcZBvzWQSysnBiBmCPFdZ+fYmUm5jYyO0Wi32799Pf8tkbWaXwaRMsemn2fqRbQxEIlFWyzOz3mwWOPJ+DQbDtvq4UDOZ48GkuTIZAZksx1z2qUzKMAA5x5YrmGMIFMaAYCMblZjLM8w5sdcuADzeXCBRI4PB4BaFnNlsBvD6Wae3t3cLy6ChoQEqlQrvec97oFar0dHRQQUGQmO0WCxYX1/H7OwsRkdHce7cuS1sDpFIRINceb1eVFdXU79Aj8eD0dFRxGIxBAIB1NXVUYX09evXUVdXB5fLBbvdDofDAY/Hg76+Ply8eBF2ux3j4+Noa2uDVCpFd3c3lpaWYDAY4HK58N//+3+nKQosFgusVitefvll2O12BINBAIBWq8XU1BQWFhYwODiIpaUlBINBKpQRwTGZTEKhUOAHP/gBZmZmsLKyApfLhaNHj6K1tRVarRYGgwGjo6OorKzEtWvXUFlZidXVVRw9ehQHDhxAfX097rjjDtTW1tKooa+88gocDgeeffZZ+Hw+eDwenDlzBna7HTMzM7DZbGhubkZ/fz/Ky8vR2tqK8vJynDx5ElqtFiUlJVhdXaUK5qamJly8eBEikQhDQ0PUcheLxajFtbW1lX6Hyd63srKy63PuTSvkHT58GN/+9rfx3HPP4Zvf/CacTiduv/12eDyerM984QtfgM/no397Ea60ULzRtXXF+mBlO8CTRZDJNwPYHlCiWBSi0d3Jx5RNh2Rr5tgg41ddXZ1Re85sD/D6QaVQzTkTuXywuJZVCH1yJyDjw/ZDYIPZbraAwxSaMx2E2XM4n0BSrKUzlx8Sux256sg0P7msw2xlFmo1zDanc7W5kDmab81kEsqJlZDkf2IqofLRRLPBYrFAo9Hg1KlTdF1mU1axhXe20J2tn9loicx255v75FmiAWbvIeT9kkMb2x9EoVBQjXm+8SAsgHg8jqmpKSgUCmoZJz5G+fbrbHMhF5WZHDAL2e8KHcNcyEYl5vJMNt+pQrEXFGseNw/PP/881Go1fD4furu7tyjo2Mpc5lyyWq2oq6uja/fgwYPU1yuVStHyqqur0d3djVtvvRUdHR04evQoACAcDsPhcFBmkFarBQAsLCxQgayuro4GDTEajZQCurS0RPPRtbe3Q6lUorKyEgDofrexsQGJRILBwUFcvnwZzzzzDAKBAJxOJ5RKJYaHh+H1erG6ugqn04lvfvObSCaTuH79Ot797ndDp9NBJBJhcnISi4uLKCkpQX19PYLBIE2XoNVqoVarsW/fPpjNZrzrXe+C2WymgWHm5+eh1+uhVqvhcDjgcrmwsLAAlUqF1dVVSCQSrK+vY2lpCdFoFE8//TQWFxcxNjaG8fFxJBIJ+Hw+JBIJ/PrXv4bL5UJ7eztWV1cRjUZx4MABuFwuVFdXw+l04p577sEdd9yBkydP4u6770Y0GoVarUYikcDU1BRWVlawb98+CIVC7N+/H2tra6irq4PP54PT6YRarcbZs2cRiUT2XInzphXy7r//fvzWb/0Wurq6cOLECTzzzDMAgP/8z//M+oxMJoNWq93yd7Nxo7R1XCKoAdsFgt30wWJaWYDtvhnA6/xyUlcxyKfRZVsUd/IxZftGMQ+gmdrPZfwyCTr5fK6yjUMmTTkTmebfzVQ8ZNL0Z/KLybduyLMikWibMM2k/WUqf7f6T95jKpXKKCBzXUuZKMxc6MH52sXVaphvTmcCe46SMc70LjOVz2xHLqE8kxKKlAVgyzqPx+O4fPkyLl++nNFqmMvaDGCLQMaee0zrKPN6rn6wLblcxpgLjTCXFUoqlaKyshLpdDrvmmeyAIivz8LCAnQ6HbVskgAMbOGWLcBmamuueViMpZD4tpADdC4UojQrdj/YTRcAHm9+rK2t4Re/+MU2BRtznmRbh2xBkDwjEoloeYQuX1lZiUOHDqGxsRFWq5XmfSOMhNXVVUxPT0MsFmNoaAhWqxWzs7Po6urC2toaFR43NjZoioWOjg6IxWKa/uDWW29FaWkpqqur8dBDD6GtrQ0CgQBnz57Fs88+i/n5eQCbguTa2hrsdjuEQiFWV1exvr6O/v5+GAwGfO9730NrayumpqagVCoRi8Vw//33Q6vVUp85v9+P+vp6SKVSSCQSNDU1IRaLobS0FD6fD0NDQ5iYmEAikaBCGcnPJ5PJIBQK4ff7MTg4CJFIRPes5557Dj6fDxsbGzAYDKivr8fGxgbds0ZHR2EwGKjbx8c//nHodDrU1tZiaWkJVVVVmJmZwYsvvgiRSIRIJAKVSgWVSoXx8XGIxWL09vZCIpEgGAxiZGQEOp0O8XicUmWZgdOsVuuesAsFaRJW5y2AkydPorGxEY8//jin+/1+P9X83SyBbydUwULQ19eHYDAItVq9Jc/KzUK2fpNAJOXl5TQCUjZLAfN55r+Jdc3n82U8NBGrFAAq0Bb6Hpj3A8jalmLon5nKYuYSI/WlUikkk0kqELJBrJjZrmeqL9tzXPtU7Diyc6Ux20GoZ4W0h0vfs5XP5dlCQOZ0ZWVl0XnpcrVpN9rL9O1gzqlc74f5XLbfSXlkjMl/xWJxTirxbvSJvc4dDgfm5uaotbcQoZXQFYkQkW2uMn2SyX+z9aOYtcL2NWQK+uyy8r2bfGueeS95/1xzGmYbD67jnWt/zYZC5gzzXgA5n8tVLnN87HY7bWcxrgVvJLwRzkZvFZCx/MEPfoB3vOMdlGWQa79kz7V4PI7h4WF0d3dvUViyFbmpVArDw8Po6OiA1+ul64fJaiJ7oNfrxf3334+xsTEYjUasr68jEAggHo/j6NGjGB4epnPbarXSYCzEur20tASv14uWlhY0Nzfjtddeg91uRzQaRV1dHdLpNGprazE+Po5AIACPx4NkMgmNRgOz2YyXXnoJFosFDocDTU1NmJqawqOPPkrz4Z05cwahUAjRaBT19fVIp9OIxWJQqVRoaGiAy+WigWw+/OEP46mnnoJMJoNEIoHZbEZzczP6+voglUqpsErctAgrIRgMUkWPTqeDUqmkls1kMonJyUlUVFTg0KFDuOeee+j3CwDGxsag1WrhcrkQCARw/PhxWK1WDAwMIJFIwOVywWQyQSwWU8qrWq0GAOpXWVlZia6uLpqLkKR32M1195YR8mKxGBoaGvAHf/AH+OIXv8jpmTfCRpbrQ8/FEsMVmTaJQg4ZhRwYdoJ8mx0B89DV09Oz5TCV71DBHFeLxULDF+eqL1P9Oz105ztsWSwWDAwM0M0n1yERwLb/z3Ywz4edzItCD+dEACL+AszDf75+5Fs7+fqQTYDJ92yh1/d6nWU7AHABe72xha9cgjaQ/zCfTUjIt97yCS1A/oN/pgPQ4OAgTCZTQYdwUo7T6URJSUnetbhX+6PNZsPCwgJ8Ph9aWlqoJp8pTDLfXz5lF5f27+Q+Lt+uYsZnN8Y60zegkPXOXjerq6sYGRlBOByGSqXCiRMnilbovBHwRjgbvVVAxvLMmTO4++67M+5j7P2XrdRlnwOY++rw8DBNC+NyuaDT6bC2toZkMrlFsWiz2XDp0iVKXyRROMmcjsfjOHfuHOrq6miyb6/Xi5KSEqRSKayvryMejyMUCuHBBx/EL37xC+pXJxQKEYvFEIvFsH//fhgMBprE3GQy4ezZszCZTEin0xCLxZidncX8/Dy8Xi+am5sBvE6Xb2howKVLlxAKhbCysgKJRAK1Wk0ZBCSmQXNzMy5cuIDOzk5EIhFsbGwgHA7j1KlTqKurwxNPPAGlUoljx45hdHQU4XAYCoWCCn9WqxV6vR6Tk5O4ePEizGYz2tvbsX//fkilUtjtdvT19aG+vh5msxkKhQK33347ZDIZPB4Pmpqa8PLLL6OmpgZzc3Nob2+ndE4iOHq9XrS3t9PI/8TPmqmsu3btGpRKJXQ6HZqbm3khj+Bzn/sc3vnOd6K6uhoulwtf/vKXce7cOYyMjKCmpoZTGW+EjSyfsDA7OwuPx4MDBw7s+KOR7UCeT6ueq525NMA7EVC5HKSZGx9XbTF7gyVlMA9MQPYDZD7LBpe2E+SzmBFLhEwmyxr+P1NZQG7N9G4ePNl9KFTwYltumR87gmzzZycWx52MQ74+78QKlc9ixKU9hdbH3AOyCbxcBO1cVis2itkfCpnjuwHSt3g8DofDkZddsNew2Wx0v1Kr1TCbzVRQJuPPFJ6zKYl2oqQo5B1z+b7ks5JlmiO7ZbnOpUDL9gx7HEjf4vE4FhYWMDs7i/r6etTX1/NCHg8Ar4/l0NAQuru7M+5jbOUmc24C2KKsYV4naRGmp6dhMBhgMBgQDAZhNBqxtLREA7EBr6dmiUQiUCqVKC0t3SIERiIRnDlzhqaaIZRSkUhEo126XC50dXUhFouhqqoK//Zv/4bS0lIkk0mUlJSgtrYWEokEqVQKs7OzUCgUNJqoy+XCI488AoVCgUuXLuGnP/0p1Go1jEYjKioqsLKyQgPMrKysYGpqCnq9HuPj49i/fz+EQiGcTicSiQRtUzgcRjqdxrFjx2jy9IqKCsTjcVy6dAnBYBC33HILbDYbFVhtNht0Oh3MZjMOHz6M1157DXNzcygtLcWtt94Ki8WCo0eP0jx4zc3NWFtbw759+yAWi6FWqxGNRjE6OgqlUkmtoPX19VCpVIhGo0in05DJZDSiqUajod908g1xOp1YWFhAIpFAIBBAR0cH9Ho9DAYDL+QBwCOPPILz589jdXUVJpMJt956K770pS+hvb2dcxlvhI0sl5bQZDJhYGAA8XgcNTU1O/5oZDuccrFiFao9zUSJ3G0Uc0hnb7CZNN25DifkmkAggMfjKcp6wrX9hdD8CrFy7CYdsZB3wEUoY85J4pvJnD/M+wk1hfkOiqFscVFy5Ooz26oMcKOXZSub+QHPZD3L155C69stAZWLAoSJQusqhsK3E5D2kXDhXJQtewm20ANsH4N8VmQuwg173+FKvcxWNxGSM+1jueZutm9IsRZ8tpDGxcqZTcBljwOxpjNpcsXsJcXes9t4I5yN3iogY8m0iuVi3TidTgQCAczOzuLEiRMAsOU7x1YEDg8PIxKJIJFIYGlpCQ8//DCkUild52KxGNeuXYNWq4XVasX6+vq2eRqPx/HDH/6QWtOIZW5iYgINDQ2Qy+Xwer2orKzE4OAgbrvtNrz22muIRCLo7+/Hn/zJn2B+fh7Ly8s08EhFRQWi0SgmJyeRTqepQPQXf/EXOHfuHKVxSqVStLS0YHR0FKFQCPfeey9Nnk788CKRCCorK6FQKDA4OIhIJAKBQID19XVUVFSgvLwcJSUlCAQCMBgMsFgsmJ+fh9/vx8bGBubm5rC8vAyj0YiNjQ3odDqUlZVhfn6e+sG1tLSgrq4OMpmMRup/6aWXqK/c4OAg7r//fkilUkxMTCAYDMLn82Hfvn0IhUJIp9Ooqamhwaq6u7sRDodRV1eHiYkJ2Gw27N+/H/v27UMwGKQCv8vlgtFopCkd7r33Xl7I2y3cyI2sEO1pto8JsLODzW7RXHaTrlNo/TtFPopjJgpFJqFkaWkJkUhk13wc89HTih2XvSp3t9qS6958WnwA29ZJIRTVQpQc+cop1CrApV3F0FR3it0oeyd05b1ubzF7HZMSVYhF7Eb0p1CwFRJclEuFCE6Z3vvc3Bw9pNbV1XFuazwez0ivzScYcqHRc2V+sJ/J9k0r1gexEN/hvbRas8ELebsHLmPJXJcdHR04e/YsampqqPBgMBi2UDUJ3Y8oJ+32zVx6UqmUpoAhNGS7fTMNgN1ux2/91m+hrq6OriEShZdYk5aXl9HS0oLS0lK43W4sLy9DKBTSYEZutxuBQADz8/M4fPgwfvKTn2D//v2Ym5tDRUUFVldX8dprr9Golx6PBwqFAiKRCOFwGF1dXTCZTDCbzXj55ZchFArxwAMPIJFIoK+vDxKJBIlEAhMTEwgEAlCr1RCLxRCLxdRCt7q6isXFRRiNRjQ3N0MgECCV2gwU43A4IBAI0NbWhnQ6jYGBAUgkEkxOTsLr9UKlUsFqtcJiseD69etbznAkINXly5eRTqdp4vNbbrkFExMT1CfQYDDAaDQiFApBp9Nh3759WFpaQiKRgEAgQCgUQnl5Odra2uj7euaZZ+ByudDQ0EAD42g0GgCgisTl5WUEg0F86EMf4oW83cKN3MjybdRcPhI3Y7Mn2K0DcSYUa1HZTRRK/duJH1S++jO9/92iFr7ZkU1IL4RGlqvMGyVsZHsWyK/IudHvtFBFAZdrmQIJFUN9zrd37JalMlM79uI97FaZ2axqXJQghcxlpkBotVozPlds4KFCXQTytb0YqxnX+ZOLysl1HfCWvLcm8o0lEdocDgel6ikUCjz33HOoqKiASLSZM3b//v10rhDqpcFgQE1NDVwuF/x+P65evYra2lqUlZVtSXEyMjKCVCqF3t5eVFdXU6XkxMQEQqEQFZDuv/9+iMVi+Hw+6PV6nDlzBh6PB2q1GuFwGAcPHsTAwAAEAgH8fj8efPBB/PKXv0RNTQ2cTifEYjFKS0vx61//GmVlZQgEArDb7fjEJz5B88iZTCZcuHABc3NzUCgUOH78OMrKyjAwMIC1tTXo9XokEgloNBo89NBDmJ2dhcPhgN1uh1gsxszMDFpaWtDW1ob29naaGuHs2bMQi8WIx+OQyWTUp3BlZQWRSAQ+nw+tra00DcNrr72GkZERHDx4EEKhEGq1Gs3NzfB4PBgeHkZnZyc8Hg9UKhVtXzQahcfjgU6nQ0VFBUwmE975znfC5/PB6/XSIGMSiQRHjhyhgq/H48GFCxfQ3t4OoVAIlUqFkydPUkqsyWTC4OAgvF4vDc7DC3m7gDeqJS/fZr9bGv5iqHaZPlw7/QjtBm10pyjUyrnb7cinEc9Gtc0XNORmWe1uNHZj7t/osco074H8vmY3qp251mWxwkimQC5A9j7n83/Mt3dwfb6YQ3YhZXER5AthP+RrH7vfxfh6cgEXAS5XZMBcY1/sc+wyBgYGYDabOQXbyTevC5kvzDnJVtwVYu3ereBrhWA3z0ZPP/10wc+cPHkSCoViR/W+UcCka4bD4azKe6Zf9OnTp6nw0tjYSNlCxEffYDBgaGgIFRUVsFqtdE8lSdVJgBJmsu1UKoXKykpqVfP5fNBoNPjFL34Bj8eDiooK1NbWwmq1oru7G06nE88++yymp6cRDAYhEm36wR08eBB9fX1obm6GwWDAsWPH8OMf/xirq6swm81IpVIwGAwYGBiA3W6H2WxGOBxGc3MzqquroVQqIZVK8aMf/QhmsxlNTU1YXl6GzWZDLBaDXC5HSUkJHnjgAZhMJrzwwgtYWVnB4uIiTRVRU1ODlpYWaDQa1NTU4MqVKygvL8fCwgIikQhsNhvS6TTcbjfS6TRcLheCwSBKS0vxkY98BMFgEE8//TTNwadUKuHz+dDZ2UlzCpIUMYlEAkKhEBqNhgZZUiqVEIlEqK+vR2NjI5aXlyGTyRCJRCCXy6FQKPDggw8iEAigvr4e3/72t9HR0YH5+Xl4PB46Fsxv4MLCAhYWFvCBD3yAF/J2C29UbRVX7TX7A1GoxrSQg1qxFJlCwOUDeiPrylRfrkPlbh2+83H2mYcEr9dL53ChUUb3EjdDiCpGabEbgkuxyKQ4AQqjZBczpoXO/UyKnWIt2YVY8jIdcLlYUgoRxHaTLseVKghkFmqLtVBx9XXN5etZqDWZ2a58QkgxFjku17koPZ977jmaL+uWW24p+ju303XG3pe5Cm43wrc9E3bzbCQUFpaOWSAQYGpqCvX19Tuq940CMpZjY2OQSqWc9i6inDAajTRlAdN6J5PJkEwmUV5eTp8h84z5/0xKJ7lmMployH6n04lXX30VU1NTkEqlOHToEMRiMWpqamCxWPDMM89geXkZOp0Oly5dgkqlQjgcRm9vLyYnJ/HBD34Q8/PzuHr1Kq5du4ZIJAKz2YxIJEJpiCSqskgkQmlpKUpLS3HXXXchGo3i3LlzUKlUCIVC6OvrQ3t7O9RqNQKBAMRiMRVGiXUuHA4jmUyipqYGgUAAKysraGpqglwuh9PpRGlpKaRSKcbGxhCLbeb7a2trw+rqKqXct7S0UAtjNBrFRz7yEVy5cgU2mw3JZBIKhQJKpRJNTU0wm82Yn59HKrWZZ7W1tRXRaBTz8/Mwm81QqVQQi8XQarWw2+04efIkIpEI0uk0mpqaaOoIkUiE1dVVHDx4EAKBABKJBPv374fT6YTb7UZXVxfcbjfW19exb9++XZVJ3rTJ0N/KIB8EsijZsFh2lmS1mHJEouyJWXfanlwHBSb/PFNd7OtckW+MCdj1keeA15OskzaQQ0m+MvO1mYw1AJrUnSQfZm7oMtlmwmN2MnamgMelPYW2j8u9merO155i3yXX8pnINGfzzeOdti9bG6zW15PeZ1pnueot5h1zfYYk+LZYLNva5Ha7tyX1LQTsg0emvcXpdG5LtE0O9PF4fMt4ZNuf2L+z+85l72ImOgeyv49cZTGvZbsv1/PsdjPbkOk5dr9FIhHdKzo6Orbdzyy/0DnlcrmK+l7lG/ts15n7bTgcxunTpzMmt3c6naivr4dSqcS+fft29J0rZp0xy2Lvy5kSyGfqo8lkQmVlJSorK3f8vb+ZcDqd2NjY4PRHIkq+1UAolMz3SN5zPB6n6zmVSsHtduPgwYNobGykFmir1Yqenh5UVlbCYDBQ5Q0JUOZ0OnH16lUsLCzA7XajuroadXV19HmyTkdGRhCPx+F0OmG1WqlVSqvVYnp6mqa46e/vh9PppEqS22+/nVI2SWAVp9MJrVaL2267Dd3d3SgrK4Pf74dUKqVRJI8cOQKz2QyLxYJ0Oo1oNIrvf//7+PGPf4za2lpqMUwkEnA4HCgpKUE0GsXa2hp8Ph8EAgFKS0shEolQUVGBhoYGVFRUYGlpCfF4HLOzs+jr68PU1BQuXboEu92O9vZ2aDQaKBQK+P1+NDc3w2w2o6SkBHK5nFozjUYjxsbGoNfrEY1GEYvFqG+dWCyGVCrFPffcg4qKCojF4i30Sq/Xi2AwSM9etbW1WF5eBgAolUpcunQJr776KqxWKwQCAY0Q6vV6sbS0hMHBQTidTkxNTeGHP/whUqkUnwx9t/FGs+QVwtPP9fybjZrHVQPORdvLdQz2ghrF1aewEMtAoRHgdoNSmmtMga1a/kIsK1wt1PnSJ9woCm229u00dDsXSh8XKmK+8oppAxPFWpZygYtFK1cdO7VsFEqbj8fjOH36NOrr66HRaKhGneu4MIWxXIqyQtu90yAiudoNcLfkcd2jCu0nCQiRKa9rKpVCLBbD2toaAECr1SIYDG6pfzf3992iTHL5vnNZ8zcCu3k2+uhHP4r/9b/+Fw00kQ9/+Id/iC996UsoLS3dUb1vFOQaS7KfEWsXSf+V78xD9kBgU+FGAqOQZOWE3knm2/DwMKRSKQYHB3H48GGaiLu6uhpzc3MYGBgAABgMBigUCpSXl+PSpUvo6+uDxWLBxsYGDhw4AJfLRcuKRqPQ6/WorKyE2+1GWVkZJicn4XQ6UVZWBpFIBIPBgPX1dUxMTECr1UImk2F4eJimPygrK4PRaMTKygrm5uZw6tQppNNpDA8PQ6VSQa/XQygUYm1tDeFwGCKRCO3t7UilUvD5fLh27RoaGxtpTj0AKC8vR0VFBcLhMKampqDVauHz+aBSqRCPx2E2m+HxeBAKheD3+6HX6wEAPp8PUqkUJSUlkMk2U2rdeuutNGdgf38/SktLoVKpYDab4fP5YDQaEQwG0dLSArvdToPMJJNJCIVC2O12HDhwAKdOnQKwqRCz2WyYmJiAWCxGXV0dhoeHYTKZoNFocOutt6Kzs5O35L1VQbSFbKtNNrA1ylwPEVwsEpnu2W1LBgFXDTiXZ7lqXFOpFK5du5ZRA5wLzDFOpVKw2WyIx+OUw81l/HP1ia2hVyqVeQ9P+awYAAp6b7nGlKslJFPd+eanxWKBWCyG07mZP2ZpaSnju8n2jpnWod2Yo/msyMUg1/xkX8tkNWajUMGBq08RsSLstN5cY5hvPDPVYbFYdmTZyNVuor2enZ2lh/rh4WHIZJshtU0mU95xIQcw8rzTuRmJd2hoaNt8LmQ/Ze87qVQKYrG4IIs9c7xzfTtyjVE8HkdfXx/i8Tgtk8sexQXxeJzSK8+ePYtgMIjh4WF6nfQzlUrRw5vFshnyndTPtPLls5ZlQjYGQjFlZSs71/eduebFYjF9129mPPHEE5wFPAB4/PHH3zICHhPsNUfebXl5OTo6OiAWi2EymXKylZjPVFZWorS0FKurq/S8oFAoKA3TZrNhdnYWzz//PNRqNQYHB2G1WuHz+bYoyCwWC+RyOe699140NTXh4MGDsFqtqKysxIEDB+DxeCAUCrG+vk6tcyaTCfv370dvby9VyhB/uPLycshkMpq+wO/3QyQSUaUMSS1A5jcRqg4ePIiRkRFcu3aNBjJZX1+H0+nE+vo6XC4XfD4fxsbGEAqFsLi4CIlEAofDAaFQiP3796O+vh5qtZrm2YvFYrT9TqcTfr8fsVgMVqsVyWQSqVQKLpcL6+vrEIlEMJvNMJvN8Hq9SCQSmJ+fh81mg9/vR1lZGRVOA4EAAFAq6zPPPENTZIRCIRgMBojFYhiNRpSUlGBpaYmm3CorK6O+h16vF9XV1VCr1WhoaNiTeccLeTcAXD/m7MXN/KASgcJms9FyMn2QuNTldG7mCBoYGMh6Hxe6XTFCX6Znch0qsl3Lpl3lSudkHt6KPbSTA5zD4ch6AMj03nKBeUjcLaGlEME325iSDZl9wM132M9Wd7Z5IBKJ6KZfXl6e8ZBTCK1tJ2CXtRNLDEEhCo29oI9yGZ9ClU252samMHMVJjKVRRQF1dXV20Lq74byidlvh8OBVCqFjo4OxGIxHD9+nAYzyDUuhGrFFGorKyuxb9++bYIpl/07U9/YQgeZJ0QIzTQObOGe1E3eEReFH7Fq+nw+DA4O7pp1i9TP3JOPHz8OtVqN7u5uei/pp0gkQlNTE4LB4BbFWiqVovR2ILtiJBeKoXGz+5Gr7EyCG3N8ifBODuBLS0t0nHm8ubGysrJNiZdMJiGVSqFQKFBSUkKVGmyKOTmvkf3U4/HAarXC4/EgmUzC7XZTCv3o6CitZ2pqCgqFAsFgEA8//DA0Gg0VJEn5IyMj8Pv9eOmll7Yodnt7e1FbW4uWlha43W5sbGwgmUwiFApBIBBgcXGRWgQTiQSqqqqohS0SiWBlZQVra2vY2NiAQCCgZ5vLly/DZDIhEokgFAphZmYGd955Jw28srq6CpFIhLKyMpr4nKzpUCgEr9eLubk5SrH0+Xxwu91wuVyIRqMIhULw+XxYX1/H2toaZWRIJBKEQiHq31dSUgIAkEgkUCgUsFqt0Ov1UKvVEAgEEAqFEAqFkMvlCAQCWFhYQDQaxfj4OGKxGCQSCU6ePInBwUEsLCzg4sWLWF5epond6+vrcejQIVgsFqyursLv9+OFF17AxMQEmpubodfr0dXVhfb2dtxzzz175oPKC3k3AFwPnuxDz/DwMNVmEoGCqQ3O9PHhUpfFYqEJG7N9QLh87Nha60xgf/x26xCey5rDtCAROhFboO3u7oZOp8OJEyeyHta4fLSJVSHbASvTeytkDJj35mtTtutcLVC5xpRQEAo9+GerO5uigVgGent7IZVKkUwms77jTG3YDWvbXpRFUIhCg/ybCBfscSjkoE7ApU/5fKGY9bAtO+Q3YpFJpVJb/NmKQT7lUrZxYB6euQgyqVSKpgIwGAyw2+0YHR1FU1MT9U3Mp0ASiUS0r2RfZPvGEOTbv4nQEggEtqwT9nP55kmmMSRlAMgpaDIFp+HhYdTX1yMWi8FkMnHew3K9B+a7MxqN0Gg0OHHiBBQKBXp6erYIzKSfxI+IbT202+2IRCJYW1vjzKpgI9P65KKM4PItJM+zBTcyBsPDw1uEd2JlyCXwv1nR399/s5tww8FMa2C322EwGOjeaLFYqG+9zWbbotwne6harYbTuRmogwQqIc+SVAkCgQBGo5Fa+Wtra7G0tISOjg4oFApYLBY4HA6qeLbZbNDpdFSp/Nxzz2Fubg4LCwuw2WxYWVlBMBhEVVUV0uk0ysvLceedd1Krl81mo6kDZmdnMT09DYFAgHA4DKlUSnPsraysUJ82q9WKxcVFqFQquN1uhMNhzM7OoqWlBUKhEI2NjSgpKYFOp8PBgwchk8lQVlYGvV4PgUCAdDoNoVCIYDAIpVIJmUwGn8+HWCyGdDqNkpIS3HbbbVAoFFAoFDSKKFFQy+Vyuleq1WpIpVKUlpZCLpejrq4Oa2trUCqVNIH76uoq1Go1lEolwuHwFvrntWvXoFAoEAgEsL6+jkAgAKVSiebmZrzyyitYWFjA+Pg4/U4uLi4imUxCo9Hgfe97H6xW6xbK/eLi4q7PO17IuwEo9rDY3d1NtZmZaErsjw+bxpMNRPubSxNe7Mcun1DH1dKWD/nGlEl7YQYmISC8deLfkkk4y3eIIVYFq9WK4eHhjNTPTO8tU9vJOFgslm1UCq6BVPIJvjuhkRY7h7PVzfyoMdvLvD+b5ruY+orBbpbFRiHznjh5E8GDfdgHth/UsyGfZZxYy9j7SiarHLBVEcX8jVhkRCLRjgK0MPuZjZKdbRyYh2cu1kuiVT948CAN/kB8ach+mSuIC7Cpga+pqYFIJOK0f2SiozLXu06nw+zsLF0nbItcrnHKdY2sLwDbvhdsejYZg+7ubmg0Gpw6dQrV1dWc9wNS3sDAwDZBiLQrlUrB4XDAYrFQH7xswns+RUmmscm03gplWRSLfGudjEF3d/cWOq3L5YLRaNxmpdwNlsLNxrvf/e6b3QROeOyxxyAQCLb8Fav0YypjwuEwzp49C7VajeHhYaRSKZjNZojFYoyMjGBychLPP/88pR2bzWbMzs5Cq9VCLBZjbW0N8XgcIpEI5eXlcDqdmJ2dpVY8l8sFq9WKaDQKs9mMH//4x1RodDgcGBkZwezsLA0OQiJzr6+v4+WXX0YqlcL169dht9shFApRVlYGoVBIqZ0HDhzA4OAg2traAGz6Bc7OztLgLiSP3tDQEH7wgx+goqICUqkUx48fh0qlgkKhQDqdhtlspr6nFRUVOHjwIGKxGLRaLaVr1tXVQa1WQy6XU8G1rKwMZrMZJpMJYrEYGo0G6XQapaWlaGhooH5y6XSa9lkikaC+vh42mw2BQIDu0YQa6nA4cPXqVaTTaQQCATidToyOjqK0tBQ+nw91dXU0+mcikaB5/6RSKRoaGmC1WrGysgKz2Yzvfe97cLlcOH/+PJxOJ65du4by8nIEAgEYDAZUVFTAbrfj+eefx+DgIAYHBxEIBPZE+cELeTcAxR4WyYFDKpVmpCmxwaTxAJn9sDIJE8Va18iBhukcnE+o43JQ4oJ8Y0rqJRGplEplQfS+QoQa5kGIfT+X98ZsB9tSxrRM5hPg98LyROrNdrAsFiLR69H+Mll5SJ0AMlrzuIIL/W2vkY1yx3XeM2k4TOsn07Kx276CzDYzFSbsepiKKPKc0WiEWq3GiRMndqVt7LWebZ5no7syD89MMPvIfJbUZ7FY4PV6YTQaM7YrUzsKeSf5lGvEqn3ixAm6f7EtRtmEcy7znE37zNQv0oaenh4ayp1JE3U6nYjH4zmFJVKe0WjcYpki/bVYLNt+Zz4HcFNiZPoeMfvKnt9E6Mzk+8tl/Jj3cKnbZrPB6XSivLycvsts+5LT6aRBMMg3Ots35o2K9773vRn/Hn74YXi93pvdPM7o6OiAw+GgfyMjI0WVQ96xyWSifnGXL1+mgl4ymYTH44FWq8XS0hKi0ShSqRRdA0qlEtPT0+jq6sKBAwdowJNwOIzR0VFcvHgRoVAI09PT0Ol0cLvdOH78OCYmJmA0GnH69GlKp1QoFFhYWIDL5cLS0hLW19dRU1ODkZERmgy9paUFBoMBQqGQ+pr9+7//O9LpNJ5++mnIZDJcvHgRer0eNpsN169fRzQaxczMDFV6OxwOGgHz6NGjWFxcxPj4OFQqFVVg+Hw+LC4uYnV1FS6XC4lEAna7HQKBgNJRS0tL0dTUBIVCAbPZjN/+7d9GTU0NysvLYTQaaYJxsViMK1euYHp6Gh6PBwqFApFIBPF4HCsrK3SPmpubQzweh1QqhUajgd/vRzKZxPLyMubm5rC+vo5QKIRIJILx8XGIxWJMTk7S/oXDYfT392NmZgYKhQKf/vSn0dDQAI1Ggx/96EeQy+VYXFxEVVUV/H4/gsEglpeXcejQIYTDYYTDYSpou1wupNNp6s+42+Cja76BomvuFMzDuN1u35Yzj3zYdDodlErlFuFhtw7xXMoimx2w+SHPFUmUXd5uCxyZyiukDmZfcgmdzDLJR58ZPStfnbki4+0WstWxk7pz9Stbucx5Snxwin3f7DpuxDjmawPAfZ2Qw97o6Cg6OjowOjq6bf3uBtjtYbaZzFkua+Rmji/X6Lbs5/JFsUulUpQ+WMgetBdrmp0LNVvfucz7ne59pEyv10vpukxBh11WtjyuhFKfLVF7Ie3k+jupk/j/7N+/f0u+x3zzv5D3R+om/SdjxIwySw7cZrMZlZWV9Fmm0L7birZc2I2zkcFgwHe+8x2o1eotv6fTabzvfe+j0RDfyHjsscfw1FNPYXBwkPMzsViMKsWAzbGsqqrakifPZDLh17/+NQ0CYrFYaGAOt9tNLXg1NTWorq6mFE4AOHjwIP2NzBsigMTjcZw8eRJ1dXUQiUQ0KqTdbsepU6cQCoUo8+Lo0aM4ffo0IpEIKioqoNfrMTk5CaFQiObmZvT09ODatWtYWlqCUCjExYsXkUqlUFpaip6eHvzoRz/CgQMHUFNTg4sXL2J2dhYSiQQSiQRutxulpaUoLy+n/nRjY2Pw+XzQ6/VQKBQ4cuQIXnnlFVy7dg2lpaWQSCTY2NigueII7bqiogKpVAqXLl3CxsYG1tbW0NvbC5VKheHhYcTjcXg8Hmg0GoRCISSTScTjcUrVlMlkSKfTEAgEMJvNsNvtSCQSkMvlkMlkEAgEKCsrg8PhoAFRFAoFYrEYTbng9/up8CuXyxGNRiEUCuH3+2E0GnHnnXdCo9FQN6hAIACTyYSOjg4kEglIJBKUlZXBYrEgGo1ifX0dyWQSi4uL6O3tpZbtCxcu4J577uGja76VUIxlIdsz+axb2bSBN5LilkptRrDr6+ujoYO5BO4glJ1MlLHdbm82f7Fs7Usmk/T/s93P1CQzNeVchUTyTK7gCtnAdY5lo5FmsiDm8rPJ1u9c9THbSHxrvF4v/QBmG1uuVKhcVNm9Ri6LTy6rCxm70dFR6r+RyyqdDVzefy5rWaa2ZluHuajIe2E9Zc5PYKvFJxsdj6lRzxe5t7y8HD6fj/rDANytsPnuK2Yusi1G2axd7P2C9JW5f7Dfq81mw6VLl7ZEF80FpqU0U8RTdv+zWbuY1sJMfoWF7NFsn0ayR7EFpHxWQmZuxJ2wPZjCGaGisiMoWixbg/MA2GZhZVpObyQLYSc4duwY1Go1jh49uuXv2LFj6OnpudnN44ypqSlUVFSgrq4OjzzyCGZnZ3Pe/3d/93fQ6XT0j+Q+Kykpwfj4OKWvE4FmbW0NLpcL8Xgco6OjsFg2fezW19cpRZ/MEeJ7Z7PZMDMzg1dffRVutxsajQZutxsejwdTU1PUAjYyMoKrV69CJBKhr68PLS0tWFpaQmNjI1588UVIpVJEIhHqdnLkyBG0tLRAr9dTYWhjYwPt7e34wAc+gKqqKnz4wx9GPB5Hc3MzJBIJtFotqqqqUF9fjzvvvBPHjx+HxbIZ6VMoFOLQoUNwuVxYW1uDSqWCRqNBXV0dJiYmYLPZIJVK4XA4qLJILpdjbm4OXq+XGiuGhoaQTCaple38+fM4e/YsbDYbVldXqdUwlUrRQC8kAmY6nYZEIgEARKNRavmLRqMIBoMIBoOw2WyQyWRQKpUQCATUKkiie0ajUQQCASgUCkSjUdx6663UHzAej2NoaIj6BLa2tkIul8NkMsFms+Ghhx6CTqdDMpmEy+VCMBikgVzS6TRN5O50bqae2G3wQt5NRiECBfOZfFHZyAeF+QFifkwLEeh285DGpH6x25cJ7I8xUFzUtEJgsWT2F+PSvnwHOoPBgIGBAZhMJohEIs4HRiafv1AhN9d8YQpp2Q5TmShdXP2dch36gdcFW3Ybia9BvjHKN37sPu2ln1025PODyycwMemGxbSfy37Btc2ZqJvZKIO56ueCQimHbIqk07k96BGzPcRilO3gLBKJIJVK0dLSgmAwyCmFAhP5hIBi3mW2+Wy1Wrf4r7L3C6JMI/Qu5veGSV10Op3weDzb6s1FLWXSOHP1P5VK0YNYtj5lU/yw25JKpbC2tga1Wp01KA2xxA4ODmYUHEWizWBSmaiDhCJN5ki+uZ5NocCc+9XV1dQKw3yWUPpJcJ5sVN9i19HNws9+9jMcPXo047Vnn332BremOBw+fBjf/va38dxzz+Gb3/wmnE4nbr/99oxrhOALX/gCfD4f/SPBNEZHRxEKhWhetPLycnR3d+PEiRMwm82YmZmBVCrF6dOnMTw8jGg0ivPnz9OgR11dXRCLxRgcHMSlS5dw6dIleDwepFIpqFQq3HXXXdi3bx9KSkpokJJ4PI719XUMDw9jdHQUL774Ig4dOkQDSY2NjUGtVlPGjNVqRWdnJ6LRKFwuF5aXl6lfn06nw8c+9jEYDAbU1dXRCJmLi4uw2+1wu91IJBJQKpU4fPgwVCoVlpeXsbS0BKVSCYPBgGg0CqvVitXVVQwPD0OpVCIej0OtVkMkEtGgKisrK3C5XPB6vVAqldQ6Vl1djVgsRi16ZB8IBoMIh8NIJpM0gFM6naaRalUqFaRSKa1HqVRCpVLRvSQcDlOKZjwep/2ORqMQiTYjffb09FAr5NTUFCwWC2XVAKDBZK5duwapVIpLly7BYDDg/PnzaG9vx/z8PFZWVqDVavHOd74T73znO3HnnXeio6MDCwsLuHr16p4ocHi65k2ma2ajUOZ7hq2ZZFJeiBPtbtGmdpOCxdVyxbzf6cyeQHa3aCz5aKH5aEBcE9j39fUhGAxCrVbj4MGDBbe/GKoYsD25MZNqZTAYsr7bnfY7Ho9jeHh4S1Jj9lxljy+7vbn6XOh84jJeN4KyDBRPM9yN9rDr5jp/uZS1W2uUy75TzNzIR53OVj7zXiaFD+CePHw3kYtim40ymel7Q9bj2toaVT6x1xIXaivzeqb3wt778iEffVwsFsPlcmX9dhJ6ZHl5+RaFIvO9Zds7yL7V0dFBD8TZxpiUQxJUZ6KskvXFJRH6Xu5zXLEXZyPmuL9ZEQqF0NDQgM9//vP4zGc+w+kZMpbPPvssbDYbjh8/TumAZB719fVRgZBQLaVSKbq6uihF3+fz0Xm2srKCu+66Cw6HA5WVlZifn0dDQwPW1tYwNTWFuro6VFRU4JVXXoHH40EwGIRKpcIdd9yB3t5eug+MjY1RWmUkEoFCoUBXVxe1KiaTSRqIhFitmpqa4HRupmdYWVmBw+GASqWC0+mEXq9HbW0tampqaLTN2tpaqFQq/OIXv4BUKoVcLkcwGEQ6nYbf74dKpUI0GsXGxgbKysowOzuLQCAAgUAAtVoNs9kMiUSCeDwOt9uNQCAAoVAItVqNQCCAdDpN6ZNqtRpisRgbGxuIRCI0BYJMJoNYLEYikYDf70cqlaLRuwFAIBDQMsRiMU2cTq6RpO8rKyvw+/1Qq9UoKSmBQCCARCJBOByG0WhEPB5HPB6Hy+WCyWSC0WhEe3s73G43fD4fRCIRDh48iH379mHfvn10n7h8+TIcDgcaGxuxb9++XV13vJD3BvDJ240DJvvjnc2P4Ga1r9g6U6kUjb7E5XBRLPL5YOyWv1omoWcvxjdfuwoVTrM9n++5y5cvY2FhATU1NTh06BB9tlDFRq46d2MO7KYio1BfnRstHDDrJuurWGE/U1m75Y93I8ankDqyCXwAbrgfIsBNsMoErgqsXM/ku55pDWTa+3KVn0/BlE/AzvR8JsEvU3+yKcFytSmXEMZFqcbFR3m3fXGzYS/ORt3d3Vui8L5ZcfLkSTQ2NuLxxx/ndD8Zy9/85jeIxWLo6emhwXTIPCJrQ6/Xw+Fw0KB7qVQKly9fxurqKk6cOAG3242XXnoJYrEYyWQS1dXVGBgYoIIJyV+nUqnQ2tqK9fV1TExM4K677kI8Hsfdd9+N8fFx6HQ6iMVi2Gw2jI+PQ6vVYn5+HvX19airq6MBU4gw6nK5qJVar9fDaDRifn6eUpqJ5W3fvn0oKytDZ2cnBAIBzp49SwXRsbExvPbaa5BIJKisrITNZqP+drFYDCKRCKurq5RCmUgkaOoCsVgMmUwGr9cLr9cLoVBIU0WsrKxAJpMhEolALBZDoVBQGiqhm8pkMkrjDIfDdN8j1wg7RSgUQiaTQSaTQSKR0OA3IpGIlhEOh2EymRCNRmnid5/Ph5KSEgQCAZpIXavV0qiiAoEABoMBUqkUra2taG5uRkVFBSorK+HxeKDX6+FyuaBWq3ddyOPpmm8AZPJ5KdRsKxKJtvjr7CYtbS8pbtn6m4kWlgnF+LXkKycTLSZbPfnqZ/ePGTGV3VdC3dsNkz1Xqlg2qlU+sKP8ZYPJZKJ+KEyYzea8tCw2CvWNKWQt7XQeMeviWlamdVXs+i/0OWJxAzZD6GeLQEmQiyrGpAwyy8iUQ68QcN13dkInz7T3ZvMzZd7L9NnarT2oULDrzUcLJv3JR2HORc3M9o1il5FpTDLtfQSZ5le2/pDfyXNMYTVXP5kgod6zUZgzUaW5tCnbXM1WXqZ72NeIj/La2tqb2hL2VrAnxGIxjI2NFRUFsaqqigp4zPnCVH5UV1cjEAhArVajv78fzzzzDH75y19iaWkJ4+PjqK6uxrFjx6DX61FdXY3BwUFIpVLq40dovw8++CDa29uxsbGB1tZWLC0twWQyYXR0dAvdcG5uDpOTk+jr64Pf76d+ca2trVAoFDh27BiqqqrQ2NgInU4Hs9mM5eVlyOVyWK1WtLe308iUwWAQMzMz8Pv9WF1dRUVFBSQSCdbX17G0tEQFLpFIhJmZGej1ekgkEnR1dcFisVAmiEy2mcuOWPhCoRDW19dpHzUaDQwGA0QiEXWricfjEAqF9B1ptVrqBxePxxEIBKgPnkKhQCqV2nI/gUAgQCwWQyAQgN/vBwAoFAoYDAaao08ul9Pk5pOTk5iZmcHq6ip8Ph+ljZK2qdVqhMNhGAwGqFQq1NXVIRAIYG5uDrFYDE899RTcbje8Xi9NvbPb4IW8NxiK8dEDtms39yrQwW5jJ07twO4JoMxyMtWd6+Oey6+Hix8FqQ/Argl7eymYFwKmHwoB28+Pq69JtjmR7QBaqA9LLh8g9u/s3+x2O2ZnZ2mem2xzIpdAQjT2xeTC4ip0M8F8D/mE/Uz+VbnmaCqVwunTp+Hz+fZce8/1PedrM1c/U2Crz9aNWGuZBNBce0+h6yCVet2nLF9wKy7l5RsTZn2FKEZytYNLu0jwl56enm31MZ/PpATjMn+yfbuJYoD4Y2Ual1xjtpd07hsFgUBws5tQMD73uc/h3LlzmJubw6VLl/Dbv/3b8Pv9+MhHPlJwWWVlZRnfHzPXqNvtRlNTE+bm5qgvsUajgVQqRSKRgM1mQzKZRFlZGerr6/Hggw/illtuwf33308Dprzvfe/DzMwMkskkjh49ipKSEmg0GgwPD2N+fh5XrlxBfX09RkZGIJfLaYoElUpFg51MTk6isbER4+PjaG9vx+joKMxmM86ePQuXy4ULFy7Q5N56vR5CoRASiYQKnJOTk7DZbAiHw1AoFEgmk9BqtaipqUE4HEZZWRldL6dPn8bY2BgcDgcikQjW19epnyChi0ajUcRiMSrgpdNpJBIJCAQC6i8tFArpOpNIJDTdglKphFQqpUqGUCgEkWjT/4/5PgQCAZRKJYRCIVKpTV89iUSCdDpNhcNEIkGpnoTiGQgEKA3U4/FgY2MDXq8XIpEIY2NjVNjt7OxEOp3GxsYGQqEQnnnmGajVaoyNjSGVSsFkMqGioqL4yZoFvJD3BoPFwj3oBxPMD9ReOWgXqjHncn+ug7vFYsmaZHwn2vt8KPTQlmu8uRxe2FYVgHty65uFbJHy2Mg0luwx2U3LF/NdFHJwdDozB+lgl5nrN6/Xm3ENcj1wO52vR78tJopqPrDHqpDxYY99vjFxOp2or69HLBajOfQKbR9XcO1Hvn2Ri7WFa527vT8RIX5gYGDLvBoYGEAgEMgYZZIIHNkCxbDnJZn/AHIK9LthuWSvt2IE5WL2kVwMBmJNSKVSiEQi26zQZEz7+/sz5gTM9+1mHua5zA9yj8Vi4bTX8th9LC0t4f3vfz9aWlrwnve8B1KpFBcvXkRNTU3BZWVTHnV0dCAcDqOjowMWy2ZwvNbWVgBAe3s7Tp48ifb2drpW1tbWEA6HacJzcn6or69Hb28vRkZG4Pf7MT09DavViu7ublgsFqytrWF1dRUqlYoGLUmn05BKpSgpKaFCktfrxfLyMsbGxhAKhfDjH/8YWq0W58+fp/6CZN0EAgHEYjFUV1dDp9MhHA5DJpOhsrISP/vZzxCPx7GxsQGVSkV94aqqqhAMBlFVVYW5uTkEAgEqeAWDQcTjcQSDQZr+ANjMEajVapFOp6HX61FVVYVkMgm/349oNErrNRqN8Pv91LoIABqNhloRCRKJBE2UTpBOp2naCiIUEspnOp2G2+1GMplEJBLBxsYGzWMpEokgFAqpEBmLxaBUKhEMBqHX6zE4OEipqJWVldQPuqurC6FQCIcOHUIgEMAPf/jDPTnP8kLeGwxs2iVXMD9whX6Ed0qXywamdSNb2bk+7sxDL7sveyXIFoNc48318MK0qjBpbzs9LO6VMLwTqmE+ulghYGvPme+ikHItFkvGMPDkGvt9sA/OZN2R58kzJpNpi3Uu11whH/hsoeQJmONcyEGQTQsGCgvikI+Syjwkm0wmaDQanDp1ivpo7fb+ks8PikubmeBCYWbXCWRmTWTry07XI5PmTPbH2dnZbYIFU+DIlqaGrRAh859Qb7MJ9DtZr8z1U1lZifLycqRSqbypWDJhN/cR8rxItBlx8+zZs1QgIyAH5aWlJRqJlP18pm836XNrays9zGeaH2xrLbGo5osCy2Pv8MMf/hDLy8v0nfz0pz9Fe3t7UWWVlJRk3H+8Xi9aW1up9YfsQRaLBXV1dTh8+DD9jbg9rK6uwm6348yZM5idncX58+cBvB7Blli6+vv7EQ6HMT4+ToN/bGxswO12Q6vVYmVlBa2traioqMCRI0dw5513oqysDLFYDCsrK7h06RIkEglmZ2fR3d0NlUqFrq4uqNVqxONxqFQq1NfXo7W1FQaDAWq1mkbVDAQCuHbtGqqqquBwOCCTySjl8cCBAygpKUFHRwf1rauqqoLRaASwSfWvr6+HSLQZCbOsrAxSqRT19fXQ6XQ0wApBOBxGPB6H1+uFXq9HNBrF4uIi0uk0VldXqQBGKJoAtlnyiN8fST9Bvq8lJSU0YEwikUAymUQymYRcLodWq4VcLqcWUSKMbmxsoLS0FGtra5DL5XT83W43lEol7r77bgDAJz7xCfT29uL69eswmUy4du1aUXMrFwoKvPL0008XXMHJkyehUCgKfu5G4I0SeGWvwaRyZvoA5goUwTzUWCy5E5ezYbPZMDAwAIPBgPr6+oIDOmSLcMalT282ZOvPTgOC7CSCY6FjXEhbd+v9EWtGpqAE7Dp2o85CA/BkiiTKtV/Z2sqsC+Ae9IOUmUoVFyAlWzLrbG1jCkF7EYiGS7m7FVAn29jlCpaxm+s5U3nkN4PBgNHR0W0BTbK1gfxeaERVkjMOyK0cyLXuiHDDHr98gX8KHZtikWlMCaXcYnk9LYNUKqXKmHz1knVDqGT5gnuRsWDu2exx22vsxdno4MGDNKH32wlkLEmIfLJOs51vMimvmPtPOBzGa6+9BrVaje7ubkxNTUGpVEKhUNBceS+//DKqqqrQ3NwMt9sNv98Pm82G0tJS1NXVUUGos7MTL730EnWpSKfTcDqdGBkZwfT0NFKpFJqbm9HR0YHl5WVMT09jfn6eJhO3Wq1oa2tDV1cXXnzxRYyMjKClpQVSqRRDQ0NUMKqtrcXq6ipCoRDGx8dRXl6OaDSKtbU1rK+vw2g0YmZmBhKJBB6PB3K5nPrTkWTi+/btw8rKCoLBIORyOfR6PcbGxmgahmg0Cq1WS8sgSdgJiFsCScEAgFrsNjY2qCWTBFIBALlcjgMHDiAWi1FXDIFAAJFIhNLSUhrBkwSOITT6jY0NiMVilJWVIRwO48CBAwCApqYm3HHHHRAIBDAajaisrMS1a9do5NJbb70VJpPp5kXXZErBnAoXCDA1NYX6+vqCG3Yj8FYW8nJ9WNnXgewRyrKFhubahlya9lwHdFL3Tg8Ab3ZwsVbke77Yg322iKNA5vlSSFt3M5ol1wN1oXXmOlhnOzizf49EIjh79iwNm72T/mQqUyqVcm4j1/Kz3cNFyMs2ZlzmRaGHdS793K2w89mUJbkiRhbTZq7Itr9nEh7YdRa79rh+C7KtO6bmnX143csUHlzLydaWbPsgF8ErlUqhv78fsVgMlZWVOSN65hKmb7RS8618NrrRIGN55swZau2xWDZdURQKBXQ63ZZ0Stm+1WQ/I75rXq8XlZWV2L9/PwYHB7GwsACXy4X+/n4oFAqk02k0NDSgvLwcPp8PkUgEHR0dsNvt1LdtYGAAk5OTqKysxLFjx+Dz+dDY2IgLFy7g2rVrcLlcqK2txX333Qev14vf/OY3cDqdUKvVsFgsCIfD6OzshMWymXOPnNfq6+sRCoXg9/sRiUQgEAhw66234qc//SmlPYpEIoTDYZjNZkxNTcHv91Phl1jJiHW/qqoKer0eNpsN6+vrWyx8wWAQGxsb8Hg8UKvVSCQSCAQCRQX80ul0NL3DxsYGzGYzKisrMTk5iWAwSO8zGo1QKBRYW1ujqRmYQqVYLKZWPavVCovFgoaGBuh0OrS3t6O7uxurq6s0gMvy8jLuuusuNDU17bqQVzBd0+l0YmNjg9MfSRLIY++Qjf6TzzeJeT0XzSUXjS0fRKLNJK8k+Ssb+XyQCvGRIUilMiel3Wtkew/s3wulazEpRNlobLnKJO+WHfmQSznMecOcL+wgH8zDdL62EjCpfVzGgksf2XOMGQGR3R8uyESpylZXtt9HR0ehVCoxOjrKuY/5Al8wy8xUbz7aI/MZLvsHaRsASucrBGQOx2KxnAGl2NTbTGC2Nx89j0mBLvZgzKbnZqIyxuNxzhTTQiiFueY8e38naynT3GG/y0LWQSQSwa9//WtEIhHO34JMvnJisZi2g/k+slFkuc5LZn0AN19molwkFGr2umP7TmWjgLP3l0xwOp0oKSmBQqGgic6zvXvmWLD30Z1SUd8ISCQSOH78OCYnJ292U24Kuru7oVarYTKZsLS0BI1Gg0gkQoUXm82GhYUFpFKpjOuT7Gfl5eWor69HZWUltFotDeZDAoaQ3Gzvfe97qYXu5MmTePe73w2tVova2lpIpVIolUoolUpsbGxgZWUF4+PjWFhYwC9/+UuauqC6upomaieRLuvq6tDV1QWNRgOn04mZmRlcvnwZi4uLGB0dxfDwMJ599llcvHgRk5OTuHr1KpaXl/Hd734XbrcbEokEra2tNEF6MplEIpFALBZDJBJBY2Mj1Go1fD7flhQIwWCQCr/A5t5ks9kQCATgdrshFotp8JNiIzoTQW1jYwNqtRpCoRDz8/Pb7vN4PHA4HAiFQjRXHxtisRgmk4n6ESqVSuovefHiRaRSKeh0OqRSKdTX1yMej+Oll14qqt25UJCQ95GPfKQg6uXv/M7v8FqgLCjksM/1Y8+8P5VKQSwWZ/VN4vqhzyeo7QT5fJC4+Miw4XRmD6ABZI5StxvIdrBm/16o3xGQ/11xKZPLISGX702uNuRTKBCwD+hcDv7kuWKiTjIjILL7w2xLtvVVqFCYCeTDziX4CBlHIHfaEFIm0crupN3Z5g67DK4CU67y8gWUIj5P5OPNVo7YbDbqY8KMQJtNsbOT98c++Gfza0ulUnC73TnbUSxyCb3svpGUAMD2ucO+txCB4ezZs1hbW8OZM2fgdDphtVq3fAsyrR32OiPvu6SkZJt/dSHCXKa+5LqWq2ymrzd73XFNm8DeXzKB+Y1j7jvxeDznXGH2pVDF4BsVEokE165de1NG2dwNrKysoKenB9XV1SgvL4dCoUBHRwccDgf6+vowMjJCE34Tay7znROlgsViQXV1NXp7exEMBqmgIJPJqPBGAoKMj49DKBRCKpViaWkJKysrW4Sge+65B4cPH0ZraytWVlYwOzsLp9OJ6elpVFZW4sSJE9Dr9VAoFJibm0N9fT1UKhVqa2sRjUZRWlqKcDgMr9cL4HULv0qlglarhUqlQlVVFVZWVrC2tkbTBbjdbshkMpSUlNCALOl0mtI2xWIxjVoZj8exsLCAxcVFJBIJyGQyGvVSoVBQo1IqldqWDqEQCIVCGj0TAJLJJHw+H9bX1xEMBrcxGcl9GxsbSCaTlKkgEAhgNpuRTCaxsrICgUCApaUlXL16FSUlJXj++edhMpng8XhgtVpx5MgR7N+/H36/f0+ia/LJ0G8SJaEQykw+nzk2ja4Yal6h2Cm1iv1vrrSnfDTTfBStvaKAcqXxFUpP2knde3FPrj7le449j4nwptPpIJPJslKtiF+b1+tFeXk55wNqrjnF1a/tRtKk8s1tNjKNZ6HvOBdtrRAKaLbyC70Wj8fhcDiopYT0bW5uDi+++CLq6uqg1WrpR5S8v2Ip5dmQac4B298Jk8IqEol2tR3M9ZErCXYuv8+dzl9CDW5uboZQKNxGicz3HctHpSzUpzFb/wvxky12/yr2uUxtJfnIgPxzZTep7VyxV2ejz372s5BIJPj7v//7XSvzjQ4yls8//zza29u3UZgdDgfm5+exvr6O8vJytLW1UYWYz+dDd3c33G433RvLy8vp/AM2lRBOp5PmX3O73dBoNBCLxfB6vThy5AisVivdP71eL/r7+9Hd3Y077rgDqVQKP/7xjxEOhzE1NYXV1VVUVVWhvr4e5eXl0Gg0WFlZgVAoRDgcpm2uqqqCWCymidLT6TQqKyuxsLCA7u5ubGxsYGpqCqlUCgKBAENDQ/B6vQgGg9BoNLBYLHA4HNBqtVhbW4NMtpmUXKFQYHZ2FmKxmCYjFwgE1I/ObDZTqqdYLEY8HkcsFqP3kaiaWq0W8XgcqVQKiUSiqHdH6KOFgvjrqdVqdHZ2wmg0oqGhgUbVjMfjMJlM6OzsRFlZGbxeL/XbfOSRR/hk6G8FFKJlznUvU8uYyxKQSRtYjIaQK6WMjXwWLS5aUfZz2eh0uSyPxVBAuaBQGl8xFr1C6y60Pq4afvZ9XJ/LNI9JtEAgM9WKWEhkMhnKy8szUkGzzeNcc4prMutc48aVopvrXiYyrWUmXTIbnZkpFOZ7x7mstaSeTFbTbO+Y3a5ccyHXNSaVj5nHjNC4HQ4HFAoFbDYburu7t9CPd0Ipz9YXk8mEqakp6HQ6ar3MNL5W6+upRLi0oxAmgUi0NVpjPouz2WzeVkYx+wyzHoVCgQceeAB1dXUZ12k+ixO5zqa5sq+zx6sQa2M26vdulM1ErrWTb32T60Rx0d3dzXnO7gaj4I2CeDyOxx9/HL29vfjEJz6Bz3zmM1v+3sqoqKjYQmEm66K7uxvLy8tQq9XQ6XQYHx+HVqulB39CHybfMZfLhYWFBTz//PM4ffo0UqkUurq6YLfb0dvbC6lUSumEy8vL1DpVUlICuVwOqVQKhUKBxcVFOi81Gg3MZjNUKhU0Gg0aGhoopTKdTlM/sc7OTsjlcpjNZhqpU6VSQSKRoKamhio9VlZWMDo6StO7DA8P04TqarUadXV1CAaDEAgEWF5ehlKpRElJCcxm8zaBUiQSUQGPBD2RSqU0Wqder4dcLodard6SJiEWi6GkpISTRU8ikdD/Z1rsSARRJriUF4/HoVarUVVVBZVKhdLSUgwMDKC6uhoejwd6vR5+vx/PPPMMEokEuru7oVQq0dbWlrfsQlG0JS/bghQIBJDL5WhsbMSDDz4Ig8GwowbuJW62c/FuWwnYdDjmh4yt7QWwTUvMpT25nOgL6SvbolWI432x0T6ztWWvnsmEnUS73Al2Yp3ZSR25kC2gQTZNP5d7MmnsM80tLkFE8vWpkIAMhWrj2VbITPMGQMY1lcsSGI/HMTg4CJPJRBUhhGbocrlgNpsRi8UwOzuLEydOZLSqM+ux2+3bxnE31xd5T2azGZOTk6ivr4dGo9kTiwbbuhsIBLaMw26sl50wCXLtHbnWQKHBZ7gyR9hzLtO8LwQ7Gd9c6zlbuWSNGY1GpNPprHsyF/bF3NwcXa91dXXb2nczrHE7wV6djY4fP571mkAgwIsvvrhrdb1RkGssU6kUfvOb32B9fR2xWAwmkwmRSAQymQz79u2Dx+Oh0TcJhTMej+P69etYXFyEz+fDHXfcgUAgAIVCAZ/PR6mRXq+XBlK54447sLKygoqKCrS0tOBb3/oWampqsH//fkrJNhgMsNvtmJubwzve8Q50dXXhlVdeQVtbG9xuN1555RUYjUbo9XpcvnwZIpEIGo0GoVAI6XQaarUa1dXVcDgcsNlskEgkW9IGiMViqNVqLCwsoKysDAKBAJcuXUJjYyMNUjI/Pw+n00lz0QkEApraYGNjA4lEAkqlkqYyEAqFMBgMKCkpwfj4+DbKplAo3CL45YJEIqEuCQCoRbAYqNVq1NbWQiKR0CAyCoUCsVgMt9xyC5RKJZaWlqBWq1FWVoY/+ZM/gUgkou/hpkXXZOL48eM0JGxLSwvS6TSmpqYgEonQ2tqKiYkJCAQCXLhwoei8InuNmy3k7cXGT4JiEC0soe/E43GcPn0aNTU1iEQi9DDHpPhwaQ/7o841PHy2D20xY7DTcSvmQJCLEpUL7IM3FwGVK/WzkLoz3b/b84+LQFZI+3LdUwi1MdPhOJNwUiiyHXAz9X0nAjBTAcOkYgPZaaa5nicJr4kFym6348qVK0gkEqipqYFQKMyp/GGWTcpjjiMXRRDX8WCuVavVmvOZYoWETId4YLsSjEsZXCl/bIGB61ogVk2DwbClXbno78TfuZCoslwFw0LXfC7sZD/KtadnE477+voQDAa3zPNMbg7ZymaOeX9/PxYWFlBTU4NDhw5ta9+NpH3vBm722eithFxjabfbMT09jZmZGbS1tVFhpbS0FMBmLjeyTxPh5/z586iqqqLBW6RSKcLhMMLhMPWRk8lkSCaT6O/vx/79+1FdXQ232w29Xo+5uTlqxdvY2EBDQwPGx8fR1dWF4eFhrK2toaOjA5FIBKlUCnfddRfMZjNNbr60tITV1VV4PB7ceeedmJiYQCAQwPr6Ojo7O5FIJOD1eqFWq6HX67G6uoqlpSWUlZVhenoaIpEIJSUlmJycRCwWg8FgQHd3N4LBIAKBAFZWVhAKhSCXy7G+vg6VSgWFQgGpVIpIJIK1tTWIRCJEIhHEYjFoNBoAm9RytmBG8vJxBVHmEaRSqYIERWY5FosFAoEAKpUKZrOZ/qZQKNDW1gapVIpgMIju7m6UlJSgt7cXfr9/14W8oumaDz74IE6cOIHl5WX09/fj6tWrsNvtOHnyJN7//vfDbrfjyJEj+LM/+7NdaehbEXtBwyCUIalUuiXIgdvtRlNTExYWFqDT6QBgi0M41/YwLYQWS/5gCgTsiIzM9hY6BuQZg8GAvr6+oiMpZUI2ehOzr8ygD4WU53S+HrwiV7JrIjyzAy6QsrjWn23MmX3azfnHLG+36KFc6K75yiHtAl6nmjFpdkwUQmFm1sukf2ZqT6EUMfa7Ic+zaYrZIpRmo3KmUpsBmcrLy7dQh/bt24fq6mrs379/W0Jn9rtklp1pHJnjnS0IEhc6KrCVDplvDIulQJPnmMFV2FRJrmVwrZvsn0Tw5rpeRCIRPQQw28Uem+HhYZrMu9B1TurhGiWXHXkSyJwgPh9IWZkiLRNko0ID2SO/Zlr/ANDR0YFwOIyuri7OEYiZYO7TXV1dqKurQ3t7e8ZvUrEU0bcafvd3f5cm7uaxOTfr6upw/PhxWCybQXoOHDgAoVAIu92Oixcv0iBUsVgMo6OjCIfDGBoagtVqhVwux9133436+nocOXIEjY2NiEajaG9vh8lkQl1dHf1GdHR0IJlM4uLFi5ifn8fs7Cw0Gg1mZ2dhtVqxsLAAjUaD6upqSKVSRKNRzM/PY35+Hk8++SRWV1dhs9kwPj6O6elpOJ1OvPrqq6irq0MoFILRaMTk5CSmp6cRDoeRTCZhMpkwMzMDgUBAE5UT4dFgMEAgECAej2Nqaop+J9LpNNra2iAWiyEQCGjwlfn5eWxsbECv10MqlVI/u2AwSCNvZgKTipkPxIeP+U3NJuCRfTITfTOdTsPr9UIgECASicButyOZTEIikUCj0WB5eRkajQaNjY2w2Ww0mNjQ0BDntnJF0ULeP/3TP+FLX/rSFmlTq9Xisccewz/+4z9CqVTii1/8Ik0gyGM7dmvjJ3Qrm80GAKiursbBgwe3HFDIBnLixAmqudzpQbTQg1C2MjJp+XMdEsgzo6Oj9CBTCMjBkVh0uPpxkL4C3EJ1M8szmUz0gM38/0zjlk14znZYKRbsgyYTxfhrshUAhaZsKOQeZvlc5wvzEJdPeOQqSJO6nU4nJ59Srsjm78P8PddhnN0/Ml4i0WYSVxKmndxbV1eHgwcPwuncTJHBtDiwhcl8+wRzvLP5HWUTQvP1IxfYZXKdw7nWfL662b5W+eYjW+mTKyptNh83tnIuE7q7u6FQKGA0GgEUnieQq2CYSbArdg2R+3IJvJmuMZVnmfqYaf0DgNfrRWtrK9xud07LJVPRwGwrc5/2er04ePAgxsfHi/omkXJ3O+rzGw2BQAD33nsvmpqa8JWvfCWrAvKtDPZ8Z+7jLpeLKuoVCgVUKhVcLhdSqRS8Xi/a2togk8mgUqkwNzeHaDSK69evo7e3FwqFAlNTU5BIJHjllVewtrYGvV6P6elpDA0NYWxsDFevXsXS0hLsdjtuueUWGI1GPPTQQ3C5XKisrITJZEJjYyN8Ph9sNht8Ph9+8IMfYHBwENPT04jFYujp6YHVakVJSQlUKhUcDgf0ej3i8Tg2NjbgdrtpJMxnn30WAoEAoVAICoWC+gYCm9F20+k05HI50uk0PB4P1tfXkUqlsLq6ilhsM2m5VqvF6uoq0uk01tfXAWBLTrp0Or3FWscUuqRS6Y6juWbKD07SVRB2ABuJRAICgYCOEaFqisViqFQqpNNpLC8vIxwOY35+nraRGGB2E0ULeT6fDy6Xa9vvbrcbfr8fAOiL57GJYjZyLgcVp3N72gD2AYX8u5B0BFzA9RBGDnykT9mQSuUPl0/GpKOjg3N4+kxtJtY0u92+RUjOFziiEI0vsy6mFS/foSST8Fxo/dmsVUxkO1BxtUxkm5/5hHcu7zlXO5jlc20rl7maSZDmcmgHcqc9KAak3kxBjjIJF7nKAJB37mTaR4CthxD2wT3X2ItE2YMgZRNCdzJ+7DK5WgsLESTZZRBrObEO55uPzH4yFUCZqHzZLPpcIJVKUVlZiXQ6nbf/ma5lUzJkA5M1UKgyiowXCTABZF9LmeZJIQIpU6nFpZ1smiV5J319fbDb7TRgAhHujUYjlEpl1vQm2UDGb3BwkNO+82bFT3/6U9jtdvzxH/8xfvzjH6O2thb3338/fvKTnxQdAfHNhkyKHgBUYeB2u1FdXY377rsPBw8epAodg8EAuVyOffv2obm5maYRIHuEyWRCR0cHXC4XjQq5vLyMyspKBINBxGIx7Nu3D0ajEadOnUJlZSXa2tpw6dIlhEIhRCIRtLe3IxwOU0ueTCZDZ2cnFAoFGhsbcerUKXR3d+PRRx/FLbfcgltuuYVSImUyGQ4cOACdTofa2lq43W7U19dDIpHAbDbDYrFQeqlcLsfy8jIkEgk8Hg9UKhWld6ZSKUo/JT55FosFiUQCYrEYkUiEJisXCoWQSCSQSqWQSqXbKI7pdHrHMkgmuiex7sViMQgEgqyCJKHmJ5NJKJVKpFIplJWV4f7778f+/ftx+fJl6PV6mqz+0qVLO2prJuyIrvl7v/d7+PnPf041Az//+c/x+7//+3jooYcAAJcvX0Zzc/NutfVND/bHjIslhstBhWh+dhpdbi/BlQLkdG7mMFpbW8tIQyP3kOAFBw8ezJlyIRe40Mqy9WUnmnEuVqhcdXCtn8tBjdmWeDxOqUZcD06F0NTYHzdmrqps4NKOYgSEXONOyiEfFy6HdhJdkW0V3clBLZcAmYliyLToZxPCcs2dXPtItgMxl4TQXJBvTucbx2z7Yi5rYSFKt1wCNxu5aLTM8ojwkI26TSxFarWaCnqFrDeu/c9XbiF1MvuVTaHAfleknSTicbZInEDmecL+jVk+c09j9yXTWs83LuSdEN8k5vojVDOr1Qqv15tVMZNrnjGVNlyVFG82GI1G/Omf/ikGBgZw+fJlNDY24kMf+hAqKirwZ3/2Z5iamrrZTdxTZGL3WK1WGlGYyZggczIej2NlZQWpVAr79++HTqfD7bffjpqaGiiVSiocKhQK3H///TS3XUdHB3Q6He68804AQCgUwu/93u+hrq6OBuFaW1ujljSHw0H3pIqKChw7dgwlJSWUQeBwONDc3IxwOIxjx47hxIkT+PM//3N0dHSgrKwM8Xgc73vf+9DS0oL29nY4HA6aAN7n8wHYjDIql8tpTjhCGZVIJDQZOgBKhfT7/QgEApDJZIhEInRtSSQSyGQyCIVCpNNpei8RuIpNf0CgVCohEony0j1JO+RyOc1JKJfLEY/HIZPJ4HA4UF9fT3OM+/1+yOVy6ufrcDjQ0tKC8+fPU3/53UTRQt43vvEN3HPPPXjkkUdQU1OD6upqPPLII7jnnnvw+OOPAwBaW1vxrW99a9ca+2YH+2PG5VDKhdaUS2POxG58JHZSBpcDIdlMLBYLFQjZh1euh3p2W7Npq3PRynar70wtMoC8Wv/d/qBzsYgx/Xi4CpKFCFhsQTcT7SyXRYEL2NbCbGOYy1+RTf/K1cd8FsVC3y+bDpbt0JupTZkscYW8Hy6WN/bBPV/qk0yCJ7uvXIQs9vvKRvHLZZVnK1eIJXlgYICWne29ZBO4M1G/uVg+mYo+k8mE1dVVxOPxLWNBLPok4TG5l+yh+faIfNZSNl2UCKbs98FlDpFxEIlEeX1lmfUyhcJsLJN8+zgbzPKZe1q2MWCzKnLRaEUiEY14y/RrJWWTMTQYDNu+dbmEZTJ+1dXVWyjvTGVBIcL2mwEOhwPPP/88nn/+eYhEIjzwwAMYHR1Fe3s7vva1r93s5u05yNwDQPctu92O2dlZ9Pf3w27fDA42PDyMa9euweVyweFwwG63Y2Njg7p+GAwGrK6uIhKJ0MAkra2taGlpQTQaRVtbGywWC9bW1hCPx6nw5HK5MDAwALfbjWg0img0Cq/XSymj6XQa09PT8Hg8iEQimJubg0qlgsfjgcfjgdvtpvR/k8mExcVFLC8v0wAs3d3daGpqoonRZTIZfD4fwuEw3G431tbWYDQaabvm5+cBgP6XpEnY2NiAWq1GeXk5pYSSyJrAZhTMRCJB92diZWMKeGKxOCPtMhtICgdSF/N3JgQCAQwGAyoqKmhOvMrKSiiVSlRWVtLUEiaTCc3NzaiqqqIuP7feeiv8fj/27dsHt9uN5uZmGnBnN7HjZOjBYBCzs7NIp9NoaGiAWq3erbbtOW5kBCk27eNGlkOeSaV2niQ9WwQ0Lu0qJHoaszyn07ktyTCX5Ons+gqpf6ft5/p8tnHbaV1scHk/XBPS7yWK6TfzGQAZ/59dVjERVvMh03PkN3Y0xWz9LGSOZKqfpELo6ekp6h0W2nc2HZT9DBHOAGzxa2LuR1zSCbDfF3OcLBYLbDYbTcXicDi21Jepb4R25/P5YDQa4XA4aELzQvc3IjBmikjK3nMzzQeyv6VSKQQCATQ1NW0ph4yvxWLB4OAgIpEIFAoFVYQxy872/jO9J3afyJjmex/5xiLf/GG/h3zrvdB9nLmPAci5p3EZl3ztYZZF5oHP59syhvnWSbaxY8/z3ThDcMFenY0SiQSefvppPPHEE3j++efR3d2Nj33sY/jgBz9IoyT+8Ic/xB/+4R9ibW1t1+q9mWCPJXmnRIAfHR2FUqnE3Nwc1Go1FhcXcfDgQdTX1wN43b0lldr0y0ulNtMEhMNh6PV6qmAj1qxUKoX19XXodDokk0nYbDbU1tYimUxiYWEBJpMJVVVVuHbtGpaXl+lcraqqgtVqRUtLC1599VW43W4kEgn4/X6Ew2GYzWZEIhGYTCbMzc3h4MGDWFtbw6lTp7C8vIwnn3wS8XgcYrEYpaWlVLCbmJhAY2Mj9V0XiTZTL8zMzGBtbQ2xWIwyt4DX/ehSqRS0Wi1Nm7CysoJkMoloNApgU9kWj8fzRs8Ui8X0np0ozWUyGcRiMUKhEI0crdVq6b5CgqokEoktkT+1Wi1UKhVOnDhB96G77roLTz31FGZmZjA3N4dbb70V+/btw/LyMt73vve9MaJrAsDLL7+MT37yk/jkJz+J0tJSqNVqfOc738GFCxd2pXFvJXDRwnGx3hRDFcxF++KCTNYFdhlc+pdPI8ysh9lPQiMrLy+nWk22hpZLfcXQ+gppfzHPZ3ufO62LjXw+csDm5trT0wO3270rFsRM8zmfVr6YfmejwjJpMex25PJXLGaNZXuO6ZOZLUIlc2wIfScTNZNJ28pkHROJNpPEEgGiUDCtW1ytBflo2JkooETAcjqdEIvFW5gNmfpG/suMnsgcP6fTCYfDQS0y7PrIHGNSLcnzxFeEhLfORrXMNScyUY+zUQFJOcRqRdpXXl4OmUyG+vr6LeUQbT4AOocmJyextLSEVCq1ZX7b7ZvR2Ww227Z9kQiSJAp2pj5xZZrkohGSMknbM1lp2Xt7oXTsfM8wrctSqTQnpT+T1ZXUwaZeZ2sPc1zIPGCPYSaLIUGm+cmuK5vf5psN5eXl+PjHP46amhpcvnwZfX19+OQnP0kFPAA4deoU9Hr9zWvkHoPJ0PB4PFAoFJibm4NOp4NYLMbBgwehUChgtVops4L4nBGrWTgcxpEjR1BZWYnu7m60trYinU5Dr9fDaDRCo9GgrKwM4XCY5vsMhUJIJBIIBoMYHR3Fhz70IbS2tqKmpgZdXV1UIHn55ZeRSCRQX1+P5uZmtLS04Ld/+7dRXl6ORCKBX//610gmk3jqqaeQSqVw5coV1NXVYd++fdBoNLDZbJifn6eWNLVajVAoRBkiyWQSkUiEWrQSiQRMJhO0Wi02NjZgNBopHdPlckGhUMDj8SCZTCIej0MgENBUB2wBL9M6T6fT2/bzQkAsn4lEAqFQCMBmvJHGxkZUV1dTYTMej9P8fclkkvpLejweyGQyyGQyGI1G6HQ6nDt3Dl6vF6Ojo9TC6XK59sTYVLSQ99Of/hSnTp2CQqHA1atXqRARCATwla98Zdca+FZBLjoMwV7RMXLRvriA7cdQrFDCdnzPVQ/7ObLRkcNkd3d33qAr7LYWcnjPJKCwfdyy0dC4tidXvUDhEfEKRabxZtLiiqWMxuNxXL58GZcvX94mMLDrZFO3iqmPOa6Z/j+Tz1O2d8FFMM13f6Z72MIb+zBMtPjMgyApmx1cJRMtk4C9DgsZ00zCChdkomFnU9iQNvp8PpSUlFDBlIwFoU4y+5bpgMwWFMrLy+n4koMRGVtyeAaw5cAMbFJ9RkdHqVCQT2jNhGzU40ztZr8Pco9UKkVvby80Gk3WyJkmk4lqyQ0Gw7b5DQCdnZ2Qy+Xo6OjY1kapVAqj0Zh1TrAF0Gx7Ty7aJ7PvXPzPi1Go5HumEEURc20Cr/ub5voWZ1q7pF6lUklzEzIFslxtInsuEdozKQFzpdx5M+FrX/salpeX8b//9//G/v37M95TUlKCubm5G9uwG4BMe3B3dzc0Gg3q6+uxtraGrq4uNDU14eDBg1usubOzs7Db7RCLxZBKpWhtbYXP56N73czMDGKxGNbX12nkZJFIhIcffhg1NTWora2lufJI3rr/+I//oH5koVAIZWVlGBoaQiQSwcLCAtbX1xEKhaDX66FWq3HvvfeioaEBVqsVi4uL6O3txcjICKRSKQYHB1FVVYWysjJ0d3dDLBbD6/VCLpdjZWUFKysr8Pl8SCaTWFxchFKppMKXRCKB0WikKQbW19dRXV2NYDCIRCKBpaUlKBQKxONxSCQSKBQKSCSSjOs/kw/eThXWJIk702JHImaGw2FqaVepVFSAraysRFNTEzQaDerq6tDQ0AClUokLFy7glVdeoVFTq6qqUFdXh7a2NrS2ttLoobuJooW8L3/5y/i///f/4pvf/OYWx8Tbb78dV69e3ZXGvZXAPDxk+/AVYukqtO5CP6RcrHfF1JHr45mvHub1bBraYseokHaS64UEa9mtepn922lf8413sUqH4eFhLCwswOFwwOfzbbGk5dLKs8c0X/+4CtqFHPoK8avLd415T7bDfibrEvvwzAzuQPqTzYeUvQ4LYRCYTCZO4fnZYFpOmP0Kh8M4ffr0NkFfJMocPZYImSQyJHOO5FKQEUGxtLR0iwWTzWAgSi6mUJTJclWoNTnb3pfJf45trWHWlakcpsXZ7XYjnU5T1gzbqmm1WmmwBa/XS8sgCoSenh7U19dTSupOWSXkvkzWZ65WQS51Z5vD+YRVLnOYuTaZ/qZc5gC7XYUKZOz252r3bjM7bhY+9KEPQS6X3+xm3BQMDQ3RtUh8gck7X1tbw8bGBtbW1ui3kLnXraysYHBwEP39/ZQSybT2y+Vy+P1+aimanp6GzWaD0+mk/qEDAwOora3F4uIibDYbXn31VVy4cAFutxvT09M4e/Ys9dUzm81YX1+nZyyDwQCr1QqJRIJAIAC1Wo2pqSlq5Ll06RIWFhZw9913w2QyoaSkBH6/H8899xwWFhZw/vx5XLx4EWtraxAIBFhbW4NOp4NcLodCoYBSqURZWRn1vyOsBkKBJONDBD25XA65XE4plHsJkssP2KRn1tXVwWKxYHFxEUtLS1hfX0csFkM6nUYwGIRMtpmqiKRP0Ov16OjowMTEBIaHh+FyuTAzM0MD1RA3tx/+8IcIBAK73/5iffKUSiWuX7+O2tpaaDQaDA0Nob6+HrOzs2hvb6e82TcybqRPHpDdP4crcvkRFdqGfHXvxDdoN+ovtozd8mXLVgfzHZKP+G5a3PKNTzb/s93w22PXD6Cod0WidplMJlRXV3PyuyF1M62Y+Z5jasAVCkVBwkmu95uJerZbPkhsXxuSZ4d5LZcVLFO5ufYTLpZhIpD5fL6cY5ipH9nemVgshsPhoLSc3t7evO8m1zvJ5uuUr2351jCXfbiQsrONq9lsRjKZzPi+uYI91sD2eZlrrrH9AvO1Pdv83Os9iGt72d/DYr4tO/ke5Ztf+d4BmdPkUPhGomLe6LPRWxlkLK9evUrp4UwfXovldZ/irq4ujI6ObtnrxGIxhoaGMDw8DL/fj8OHD1NLn8ViwdzcHE1BUVpaColEgmg0SoUhn8+H69evw2QyYXp6Gu95z3vw/e9/H36/H/X19dDr9Uin0zAYDPD7/dQvt6amBiUlJThw4AA8Hg/EYjFmZ2fx3HPPoaKiArW1tdjY2IDT6URpaSlisRhqamogFAoRjUYxMjICvV6PX/ziF0gkErBaNyNQE0FoZmYGq6urEAgEqKmpQTgcpvRMlUqF9fV1hMNhGgSFCFo6nY5SKCORCE2rsBcpOCQSCY3eKZFIoNVqqdU1Ho8jGo0iHA6jpKQEMpmMBml56KGHMDY2BofDgcOHD9M0CyQ9RUdHB5aWliCVSqHT6RCLxRAKhZBMJvEP//APbwyfvPLyckxPT2/7/cKFC9RhlMdWcKXDcEGxVhyu1plMFKxCNaqZ2szlg5rPQpPLJ2S3NJ7ZDtdM6wqXiKbs9hVbLwGzf5n6SuoqNqluNupjIZBKpTh06BDq6uroh4jLOxGJtkZ3ZD6XyYJpMplQWVkJmUy2LXF8PuSiBotEIjgcDmpRZI8DVyGMWSb7nlwUarvdTpPWMq1/2fqQixLHhX5I6JP5xjCblZNYQsjYkJDg5eXl1Nct33rPJoiSw7Barcba2ho0Gg2uX78Og8GQtTxm3zPR6pjl5vM/zHQf12eZ45pKbQZNsFgsWyjfhVjli7HSknawI0Tmm7PkGWB7DrlMe1Amv1cmCqFBMy23XNdYIePBRLF7XK5nc613pvKMHOSLdaPg8eYCCZYEgEaVNJlMEIlEqKurw6FDh+B2u2maAEJ7BIATJ06gvb0dtbW1MBgMGBoagsfjwXPPPUf34OvXr+PVV1+FXC5HTU0NWltbIZfLaRlDQ0OQSCQ4f/48ysrKYDQaqW9Zb28v2trasH//fkQiEdTW1iKVSqGtrQ1TU1MYHR3Fiy++iNdeew1lZWWora2FXq/HzMwMDAYDVlZWMDExgfPnz2N5eRlerxfvfve7sba2hrq6Oko1TyQSWF9fx/LyMmKxGI2KubGxQVMe+P1++Hw+KkgBoMKTQCBAMpmEWq1GMpmEXC5HKpXaVQGP+PwRkJx8Wq0W4XAYk5OT8Pl80Ov1aGtrQ3V1NcRiMTQaDVQqFbq6umjuv8OHDyOdTkOtVsPn86G+vh5HjhyB2WzG/fffj7q6Opw4cQKtra3Q6XS44447dq0fBEULeZ/4xCfwp3/6p7h06RIEAgGWl5fxve99D5/73OfwqU99ajfb+JbCTih2TOoO1w8auz6uB+5ModGzPcu1LVzvI4dckmSYDfYhgFnuTj7a2VCMEMl8pljaYybkE8KYB/9iEynvNop9J8znmGPIFrR7e3u3UP/YubEyIdt7JJRAgUCwLUQ6uV5ocJJ8fcsEo9FIBaRcfRCLxdDr9VhdXd2WmoQpDGebs2R+MpM656pPJpPBYDBkzKfIDBJC+scObkP8Nefm5uj6JeNJ6IxMBQU5DPv9fqRSKbz88ssIhUIYHR3d0rZcih/2NUILjkajmJqaypnShXkYz3RAz0dhJ7mv3G431Go1hoeHM9IQmRSuXOuV+UymOZxpr8kl7OZqOxE+cgWLYlMUyTtk11EIDZqLYgLYHjzpjUxpZK93kjesu7s7p+V8N1wPeLwxQPLCDQwMYGlpic5vpkI7lUrB7XZjY2ODroNYLIbR0VF0dXWhoqICPp8PSqUSLz7xFaxdfQr289+FeGUAFQIP6mRriE+cwQn9Mtyv/ghXnv5/WLz4KzTLvCgTrgPuKRgMBrS2tqKpqQnV1dXY2NiASqVCZ2cnBAIBhEIhmpqacN9992FxcREOhwPj4+OYnJzE3Nwc/H4/xGIx5ufnqSCm1+spDfHy5csIBAKYmJjAsWPHYLVa6XdqYWGB5vOTSqXUx04gEECj0UAkEtF0BxKJBKnUZmJ0APSejf+PvT+Pbus878TxDwAS+0IABAgQJMFdpLiLlGTLlmwtthMnje00SdM0TdszaZqZ6Wm6TzvNOZNkJu200zZt2uM2adpzms60SeMkTZomlixbtixZlkyKFCWKlEiBIggQIDYSBAgQ++8Pft/XF5f3XlyAoCT75+ccHlu497778jzP51nyeayvryOXy9Hce7slZmoEYtyo1WqpiWg2m0UwGKQ58SwWC01fodPp0NzcjJqaGuzbtw/r6+u4dOkSbt++jXQ6jUceeQT5fB7Nzc00afzY2BiGhoZQKBQQCARgNptx6NAhmkuvmlSxkPe7v/u7ePbZZ3H8+HHE43EcO3YMn/70p/Erv/Ir+NVf/dVqtvFdReUw/EI2+2IvND6/gVIMN1f5fN+KbYsQ8sS+yMxmM9V2k2dMjT+TCahGQmahC5UZjKQSrbLQ+FT7Imf6wohBZx4UKjUOzDFkzzd7TsREXuVD57xeL3w+HwqFAnVgZ5JYBr/SfpLfnU4nxsbGAACLi4u4cuXKDqGVMAGBQIAK9sxymcKwUGTIUu8w67PZbDh37hyi0WjJfIpcY3zmzBmMj49jcnKSCjdkPAHsQCZttuK8mXV1ddBoNOjr6ysSCLmC07D3H0GbCAJM/D1KoXFMP0VyHtXU1MBqtfJ+x54jo9EIl8tVtB+Z61gITWWi86Rugo4S/51SSrxKlRNC88ul/ALAKWxzKRqEUEAxdwq7bbtR8JWDNFaDSuWXBPYuENt7dH+I+MIlk0nIZNtRgAFgaWkJ4+PjuHz5Mp3rVCqFyclJqgzQarW4efMmcrkcenp6tgM09ToR30zijieIbDaPNrsZUokUg13N+M7L4/AEIrju8sK/toF8voATB3vR29GInp4etLW14f3vfz9qamoQCoWwubmJ1157DQsLCzAYDDh37hyWlpawsLCA9fV1NDU1wel0oq+vDx0dHWhtbaXpFNrb26m1jV6vR2dnJ0Xp/u7v/g43b95EKBTCxMQEDebi8XhQU1OD2tpaanZpMBjQ3d0Nm82G7u5u1NXVQSaTIZ/PU6QvmUxCIpEgHo8jHo8jl8vRiJeVEhE06+rqaCL1dDpNyyckkUgQi8WgVqthtVrR2dlJz+6NjQ20tLSgsbERRqOR5h1cX1/H66+/DqVSCa/Xi62tLQSDQfj9fvz93/89Jicn8X//7//FtWvXiua/mrSrFApf/vKXEQqFcOXKFbz55psIBoP4n//zf1arbe9KKkfbKHTI70ZYEyIxPjxi2yIkpBLi6qPD4UB7ezuampqKtLl8glMwGITBYNjB5IolPgZoN5c8s31Cc8XV/93UyzQJ5gpu8aBSKYZGJpPBYrFgcnISXq9XcL4JKkUiCTKJb2xJ/cC2KTqpj01spp+QGPRQTD+Z5o8EwZyenobL5cKZM2d2mDDbbNtBWIhtP59ZHXsM3G43FhcXdzjxl1p7xMl/eXl5RwRHLuSO3TetVova2lqKkjLHk6BGJHAIc/xtNhucTicOHTqE97///YhEIkUCIVdwGvb+CwaDiMViOHv2LB030i6+/rL3LkErCRpIzkr22LEFILVajVOnThXtRyajT1A/rv3KROeFEndztZe0a3x8HJubm9RktBrEZUFBtPbMMSAWGex2ESGVWB1U4gZQ6VnJ/q4cpLGccvl+E3Mvs995NyB7yWSSIjPAtoDzF3/xFzhz5sx9bNW9oTt37lALBOJHSs48AFhZWYHX64VEIsHGxgbkcjnOnDkDtVqNy5cvQ6VSQSbbDjJVKBSAAmA1GWDUqWHWa6FRq3BkoAsXphZgMWoQisbRYjXBqNdgdH8bEskUtEp5UTRLs9kMhUIBl8uF8fFxpFIpzM3NwWg04tKlS9BoNNQv79Of/jSam5tx4MAB1NbWoru7GxqNhgZ6cTqdNIhILBbD97//fWxsbCASiSCTyVDTSoKGJZNJdHR0wGQyIZvNIhqNIpfLQSKRYHFxETKZjCJbtbW1yGaz0Gg0SKVSvInNlUolp3KWj2QyGeUTpFIpZ7kajQY6nY5G9QwEAshkMjCZTPB6vVhZWYFcLsfS0hIikQji8ThNii6RSLC8vIwbN26gv78fUqkUBoMBPp8P9fX1lJepqalBc3NzUcCsatGuhDxgOwDL2NgYDh069I5KhH6/SMi/h03VMD8pV7tZTe2hGAGGC4XjMxXiE5zE+hQJtZMLnSHtl8lkgswrF/ExW2Iu+2rMATFTI+XeSy212PL5EAo+IghdIBAQnG/i81ooFHY8J2Pr9XqLEDKmjxw71xxfX5i/i0EPgeL5ZgpbRHhjrweLxQKr1Qq1Wg2tVrsjmqtMtu3HODY2tkNA4Nv7RECZnp6Gz+cTFBrYlMvlsLi4iNbW1h0XEt/ZxkTb2tvb8dRTT2F0dJTWwWX6l06nOU1z2f6afNEb+fyiXC4XFAoFpqenqUDi8XjgdrsF542P+MxCiXBDItzZbLYdvthkjZH1X8pSgquvYu4Iv387Ut/a2hpVYFQDuWKvZS4ri1IkdPaKiV7MHGdm20v1hb3OuQQqcibx+Rty1cG0+uCri3k2l0LOmf6b1TATv9/0zDPP4Jvf/CYAYH19HYcPH8af/dmf4ZlnnsHf/M3f3OfW7S3dvHkTbW1tNAcesD3Ho6OjGBsbQ2NjIw3yodfr8corr2BtbQ3/8i//AplMhpWVFWreu7W1hYXlACxGHfo7HRjubsHY/lbMLHrxc08cxlYqC6tJh/7ORtjNehRQQCqTxUpoA+FwGLOzswiFQlAqlTh8+DA6OzvR3NwMpVKJY8eOIZFIoL6+Hm63GysrK8hkMvjud7+LlZUV3Lx5E5cvX4bP58PIyAguXLgAo9GIjo4OHDx4EHa7HdlsFi0tLairq8Pw8DDMZjMymQxNRyCVSqHX67G1tQWdTodsNov5+XmEQiHcvXsXHo8HPp8Pm5ub9DwxGAzY2tqiqbRkMhkUCgWkUikkEglkMhk0Gg0kEgn0ej1F5fhIIpFAq9UilUpR1I2ZKUCpVKK+vh5Wq5WmQqivr4dMJkMikcD09DQKhQJFZg8cOAC/349YLIauri585jOfwZEjR2A0GtHb24toNIqHH36YzvHW1hacTie2trZgs9nQ0dGB7u7uqq+7soS83/zN3xT9d6/o+eefR1tbG5RKJUZHR/H666/fs7p3Q0zzsHLRumow6Hxl7Ma0kP2c6+KcnJxELBajvidCZitizXHYWnA2c1kqCAkfOsNk/Kvh5yf2sq9UuBfDcJI/oXVXDSKH3enTp4vQLebcEKaFiVAA4GXWSG7EkZERTtSDy3yMzaAxzcoIQnb27FlBwZtrLL1eb5EfVV9fH83byIfosOebKWwtLS1hcnISQDGCHgwG0dDQgOHhYYpuczGdbNO9UsojkkTXbrfT97n6ziaZTIbu7m5RCLHb7cbly5fxk5/8BIlEoghtE6vIsFgsCIVCVBBitqNUECsuS4JTp07BYDBQZokw0Hxmc8z1SkytwuEwBgYG4HQ6IZPJOK0LCAmF0ycpJzweDyYmJoqEfSaRvgKAz+cr2htCihxCBAU9cOBAUVTOUsgVc/zS6TQuX75MfSnZ7ZqYmMDCwgImJiaoaabJZILf74fdbudVkAmdvXxpQtjzEwgEdrRdaH0xBThSNvtuYSLqfHPodrsxPj5eUkHAVmTyCaZCtFsz8QeFrl69iqNHjwIAXnjhBTQ0NGBpaQnf/OY38dWvfvU+t46fqsFnHjt2DEtLS/TsYSpGiKKOnMtqtRpPPPEEcrkcjh07hlwuh8OHD9Pzrra2FgatCgUATls9LHU6fPvMFazHN3FxZgHr8QQW3EG8dHkOuUwOL12+CQmAEwd7YLFY0Nraing8jtbWVqyvr9P8m0ajEYVCAZlMBnq9HpFIBMlkEnNzc4hGo5iYmMCbb76J2dlZzM7O4sUXX4Rer8fdu3exvr5OA70QSxiNRkMTnctkMkilUmSzWUilUiSTSZrgPJvN0nOYJBPPZDKQSqWQyWQ0797W1haSySSA7X1McusR4SwcDtN8gSQyJh8VCgXEYjGsra0BAPL5PM1ZqlKpKHpH0jp0dHTQ9BDZbBYOhwP5fB6JRAI6nQ65XI6icpubm9i3bx9sNhuOHDmC4eFhPPLII7hw4QICgQDm5uaQy+Wwb98+OJ1OmEwmDA8Po7m5uex1VYrKEvImJyeL/r7xjW/ga1/7Gl599VW8+uqr+PrXv46///u/x9TUVNUbykXf/va38eu//uv4gz/4A0xOTuLo0aN4//vfX7FW9l4S0zxMrJ8a+9vdMOh8ZbC1h0ImLaWec12cBoMBLpcLWq2W2pxXOxom07ypVPRBLkGLefiWG7BAiISEB76+lEN85qyEgsEg1Y4DO9cdF1WqUGCjJoQIgzM1NUWZFiZCwcesEaHKarUWoT58pr9MVIgIYul0GouLizR8tdVqhUKhgEKhwIsvvgiXy1WEvLBN/0hUMxLJi4kgRyIRGtaaqXFntn9iYoImtQXeTm5NEttqtdodgSuYigZi3kPM29iBStxuNzW7YQvxzHkk6F9bWxvVijL3LNvPi0nElJqZEoFPqA0GgwgGg8hkMpQ5FTr3SFkAKHNP9q7P5yv7vGOuB+aetlqt9Lfh4WG0tbXRxMxss1siyJ89exZLS0u4cOECYrEYvve978FisVBrA5JShWll4HQ6MTw8zLvPSGQ9iUQCj8dDAzLwBS+Znp5GNBqlSglm/5jrjK0kIaaSzEjAXEoQofNpenoabrcb165d22GZQdY7SchMhPmZmRnEYjHMzs7yzhGfxQNXm8kztuBOwtKLzXXINonmIub3XIglWd/pdLpIQcBlssynyCwnwTmfMPxOI8IQA8CZM2fw4Q9/GFKpFA899BCWlpbuc+u4qVp8ZjqdRldXF10H7PNpamoKqVQKcrmcBhPbt28f2tracOzYMajVaphMJkxOTsJqtUIilSAY3gAABKMxyGtl2Iin8Ma1Bcwv+XF9YRk6jRLjt9wIRKIIR+PIZPIYGBjA1tYW2traaAqi1dVVSKVSdHd3Y25uDq2trVhbW8Po6Ci6u7tx4sQJFAoFWK1WSKVSKJVKRCIRqshRqVSIxWL4zne+g6mpKayuruKNN95APB6H2+3GQw89hObmZjQ3N0OhUEClUtFzfWtrC0ajETKZjApsNpsNJpMJNpsNWq0WfJneyDmgUCiKULhCoYB0Ol3SfDOfzxf9W61Wo76+Hna7nUbZ1Ov1UKvVaGxshNPphMViof57mUwGarUas7OzNFhOLpdDPB7H3/zN3+CVV17BwsICRf+IiWZdXR0sFgsGBwfR19cHqVQKv98v6KNbKVWcJ+/P//zP8eqrr+If//EfYTQaAQBra2v4pV/6JRw9ehS/9Vu/VdWGctHhw4dx4MCBIpi/t7cXzz77LP7oj/5ox/upVIoyGMB2/pLm5ub7kgtGyGSDMGh8uYfS6TSmp6cxODi4Ixl4Nernawf5hpgZEU2K2PxLzO+np6dpnhhmH8Wasgi9z26nUD4sr3dnjjB2v0vNR6Ukdrx2MxbM39m5/YDSefB2k5uRa50uLCzg/PnzeOSRR6DVamnd7DkjDBXJtwdsM7kmkwnt7e2C+6Kvr4+uTwAIBAIwmUw0WMjm5iYMBgMeffRR6gSdTqdpNEsifBFtJGnP5OQkIpEI/H4/Pv7xj0Mul+8QcG7evAmNRkPXtclkwrlz56j2jwi15NtsNotIJAKVSoWJiQkcOXIEUqlUMDdgLBaDy+VCb28vCoUCvWxDoRBWVlZgNpvR1NSEcDhMtcZEcHE6nXQec7kczc80PDxM56jc9c58H3g7bxrxobRarbROdoJem81WxMizy0okEkWhxtnmoEwkS+gcIOdNNBqlaNzQ0NCOFA+XL1+G2+1GU1MTPdOCwSD0ej3W1taQy+UwNzcHtVqNtrY2tLS0wGbbznNFoso9/vjjNH2ImHELhUJIpVI09QSAonOVOVc3btxAV1cXdDod7RdzvZO1TnKvsc9oNpH9bbVaEQ6HYbVaqXLEZDJhZmYGg4ODAFA0l0wTQpLeAkDRfKbTaZw9exbt7e3Q6XSw2Wyi/L2F1t9e58YrtaaYbSPjX+oeZtdH/s0c30rv8b2ivcqTNzg4iE9/+tN47rnn0N/fjxdffBEPP/wwJiYm8IEPfOCBNEWtFp9JhHouvsTv98PlciEYDFLkm1jDeL1eHDp0CPF4HPl8HrFYbDvYyPxZGDQqWI16/Mcb12AxaPHa5G2ENzYx7/ajwaSHzaSHQqNEIBhFk82EL3/6OSzUHaIKd5VKRfkCYhY5Pj6OcDiMEydOIJ/Pw+Px4LnnnsPU1BRN2B2NRhGLxRCPx9Hb2wuFQoFoNAqLxYLbt29jfX2doluPPPIIJicnMT09TfPJra2tQSqVIhKJULQvEAjQyNZmsxnd3d24fft2UbqFfD4PlUpF0TySHkKtVmNra4vTJ57kqGMLdFxkNpuh1+thMBiQTqchlUqxubmJ/v5+6HQ6dHV10WA0xOR0cXER9fX12NjYQGtrKzY3NxEKhXDkyBH4/X4kk0kcOXIEjY2NmJ+fh91uR11dHYaGhugZYjabEYlEIJVKcfDgwaruu4qFPIfDgTNnzuxwvr9x4waefPJJrKysVKWBfJROp6FWq/Gd73wHzz33HP39c5/7HKampvDaa6/t+OYLX/gCvvjFL+74/UFL+Fnq4uK7BCu58Eq1g+tSJvVLJBLKSJJLSmwb+C6+UkwJm0qNRamEx4RRYQqcXGZQ7DHg60c1qNKxKJfEMPNutxtLS0uQy+UUqSqXmGN05coVXLt2Df39/Whra6PjRpg3Zm61yclJxONxaLVaWK1WGr75qaee4lxvRDMaiUSoT5dUKqXMvMViweLiIt588008++yziMfj9IIjCJfNZqMaep/PR81YCFNHHOG1Wi2Gh4eLTO5mZmbo5T00NIT6+nrMzc1hc3MTUqkUzc3NdE2RxNikDzdu3KDlEhSr1HoljDxZ4yaTCdevX6cCEVk7AOByuRAOh3HgwAEqcBFUFUAR+sDF6JZKuC5G2CLjFAwGEQqFkM1mYbPZMDY2VrJutlKIvW8BUEGJEJnLXC6HVCpFBeyJiQn4fD7Y7XY0NDQUrf/FxUVcu3YNDQ0NyGazRcIgWROZTAZ37txBV1cX9eu7du0aLl68iGw2i/379+Opp57i7BOf8oU5tlzvk71KgpoEAgHU1dVhbm4OJpOJolJEmcGXfJ1dNtl34XCYJlBuamqiQjg78Tx7vxEFmdlshs/n26EMYr9P1ltTU1NRu5jvk/OWzB/zHT6lU7UUZswzMZ1O49q1axgaGkJLS4vo+4TrXuPbD3zn+17cK+XQXgl5L7zwAj7xiU8gl8vhxIkTeOmllwAAf/RHf4Tz58/jJz/5SdXqqgZVk888d+4cjh49Su8pZuoZpkKSCCoymQyhUAgajQbJZBL79u2DRCLBG2+8sR006tZPsOQLw7UcgFJegxsuL5qtRpy+MovaWsCgUEOnVyGdzmIltIYupx19bY3oe/Lnt336Fhbw6KOPora2FktLSxgbG8ONGzfw+uuv4+jRozhw4ADeeOMNSCQSzM/Po6enh7oWxONxhEIhqNVqFAoFOJ1OqFQqNDY2Ynl5GdFoFJubm1CpVIjH45ifn0c4HKZoGwmgQkwcAVAlqEKhQH19PUKhEDKZDDY2NpBOp1FfX4+amhrU1NRgdXUVAGggr5qamiKZQ6FQIJPJoFAoUBSQnOGEmMgfsc4hfnikbGIm6/P50NfXh/HxcXrGJpNJHD58GF1dXYjH41AqlUin07h79y4kEgnq6urQ1taGTCaD2tpadHV1IRqNolAoYHBwEG1tbTSQV01NDYxGI5aXl3Hy5MkHQ8jT6XT4wQ9+gBMnThT9/sorr+CZZ55BLBarSgP5aGVlBQ6HAxcvXsSRI0fo73/4h3+If/zHf8StW7d2fPMgIXmEqqmJ3AvEiclcEGIyT+xLqtI2MOvhu/yFGCX274QZYDLpfO3hE2bF9Kec/pbLaDCFgEpNOMW2B3iboWYLPVwMdjlzQdDStbU1JJNJ3L59G52dnYhGoxgaGkJbWxsVJtfX19HT00NNU86dO4fjx49DLpdjYmICqVSqCI3iW59+v58+U6vV1LyQC7nlajuX0El+n5ychMlkgkqlgslkonUTlMrhcGB4eBgzMzPo6enBzMzMDgSELZjm83ncvn0bx48fF8yVI2atco0FW4gVo8BglhmJRCjTJ2QyVkpAIe8QhIyN5HERe84AUAQpHo/T35iCJAAacTQSiVDtuNDcMttPUEiCfjocDrr+ampqUCgUaBATv98PjUaDmZkZrK+vY9++fXj44YdLIqPlnP3MdycnJxGNRnHt2jUolUoqrDKDqgDcppBcSBgx+SXzQVAErnOH2ReytgijWgphY65dYCdayS4fQNG47dU5TVDSQCCAwcFBijATf7uWlhY0NTUJls8nuHHVW+qu42rvvRb69krIA7b3qc/nw9DQEPWZunLlCvR6PXp6eqpa126pmnzm1atXYTab6e9knzEVbWQv+Xw+auLr9/thNptpugGCHmXnTsOzGoYvtIEbd7w43NOCMxNz2Epswbe2AWmhAFOdHnazHiqVEvFEEoNdTrQ/8gw1HySCFjGjzefz2NzcREtLC5588kkkk0k8//zzdP099NBDcLvdReaVNpsNZ86cQSwWw759+zA0NIS5uTkkEgka1VetVsPtdqO5uRmZTIYKr1arFYlEAisrK4jH45BKpVCr1VTBWlNTg0QiAaVSiXw+D6PRSO8CmUwGvV4Pq9UKn89XNO4kzx4x2wS2k9FvbW1RoU+pVEIm2/apViqVSCaTqKmpoX6Pm5ubUCgUaGtrQ3NzM958800qcGo0GnR0dKCurg4HDhyAyWSCVCpFPp/H1tYWpqamcOLECcjlchqIRS6XI5VKweVyob29HVqtFmazmfKpDocDsVgM/f39Vd13FUfXfO655/BLv/RLeOGFF6ifzwsvvID/9J/+Ez784Q9XpXFiiB1Bp1Ao8EbVUSgU0Ov1RX/3m5h22Wxim4IxfWqEorCV8rMqh4jTOGGeiCaeK/rlbtpgs9koE8h1kbHHievCZ44Rs/1i8i0R5IPPJ4p8z66Dr79cbRGaa/ZYMJmCyclJ6mclhrjqZj8nTv9krEnbpqenaTAQMtfsICds/x8SlGJiYoIG1SF+YslkEl6vl5qkhcNhmM1m3L17F6lUCoFAAMD2HKpUKrS3t2N2dhaLi4uYmppCe3s7DTvNtS7IWAHbTCNpHwCMjo5Cq9XCaDTS32y24kisZKwIU0X+32azUWGSudccDgdGRkbQ1NQEs9lMD+eWlhY8/PDDePjhhzE6OoqZmRlotVrMzc1hbGyMIgHM/UvmQiKRIBAIQKfT7bDJZ8+lkD8R11gQnza5XI6WlpYiPyCZTFYUsZKLSJml8i6yx5H5DnNvk7EiF2kpAY98z/RHIqZGRMAjY0HOJBKwg7SZiXSR8kj97HOUlEOQa2Ia7Pf7YTQaoVKpMDo6SpEoADAajUgmk3jooYfQ29uLcDhclNSc74xg++Qw/SvZZz6TBgcHkUqlMDAwAKVSSYPAEOHqlVdeof5CpGz2XUICuJBxkUqldC2QNVgoFHasM2ZfmPcQ2xeNGaCIObZkPwHgjKbLLJ89bmLWPt85L/Tc7/fj2rVrcLvdmJmZoX0aGRlBW1sbRkZGir4XOtuBYl9TrnqZ5zufcoWr73sZKOteEunbmTNn8MMf/hA//OEP4ff7cfv27fvdNF6qBp9JlD7Me89m2w4wRAJgAW8HYVGr1bDb7QCA27dv0/W/tLS0LUx1NcNmrsN6LIFHBzuwsh6D025EIptBOpNHNJFCPLmFZCqLvo5GdDU3YCUUQTabRT6fR21tLQ4fPozh4WF4PB7IZDIolUoUCgW0t7cjmUziwoUL1K9Yr9cjGAzi6aefxv79+2Gz2dDe3g6DwQCHw4GtrS2sra1hYmIC+/btg0qlKnJTUKvVUCgUaGpqgk6nQyKRQCgUgkQioakYGhoaYDKZYLVakcttB0ey2+2oqalBZ2cnkskkNenM5XLIZDIIBALI5/M0UItUKkVNTQ3S6XQRckfSBZFk68QUk1h6GAwGmjKCmGIqFAqEw2GEw2EaPKalpQXd3d2w2+147rnn0NjYiLt370KtViOdTmNlZQWnTp1COp2Gy+WC3+9HIBCATLYdQEaj0WBxcZFmI4jFYtDr9QgEAmhoaKjiqt2mioW8v/3bv8UHPvABfPKTn4TT6YTT6cTP/dzP4f3vfz+ef/75araRk0goU/aht1cDtVdEGKBcLrcjCiTzYOe6NNkkBu0pJQCwiZiByWSyHdHOuOor1Qau+omWCHg7CSh7LMjFQAIFcDGTxHxocnKSHp58mlI2kXkgZZBy2f1hX7Z8/eW6lMUKwFxlMjXFfMTHaHMJCh6Ph0Z0zOXeDrowODiIpqYm9PX1oaamhuaCYdbLFCaYgiHRUpEcdqlUCufOnUMikYBUKoXT6cTIyAgsFgvUajWUSiUGBwfpmh4ZGUEymUQmk8H169cxMzNDk7OSd4ivFHusiMIBQJEygi2gEuZNrVZTtCaRSCCdTuPmzZtwu907IkFyzU0gEKCIEdfcGwwGzM/PUyGXaz2QS5toa7mcrtnfCZ0X7LHI5XJIJpNYW1uj/eeLVslHTPSPRH0zmUw7cgLyMbmkDKJE8fv91P/k7NmzooIXsPcDW+hjv0uEFb5ckWISUbOJJCUmpumkPwB25PkDQM2FudpPiHkeMAMSMYOpkPOMuaflcjmeeuop7Nu3D6dOnUJbWxst3+v1YnV1la4pdgAgmUxGEWjmmmIHPiLzSM5bstYAbtS3HEsDIWGNWQ7XvDNz8JVTP9+Z6vV6qXm1w+Eoyq1JBH0y3+R7LiUXUdaQdrIRez4lJB+x28uVauidSC6XC0NDQ+jv78cHPvABPPvss3j22Wfx3HPPFZlDPihUbT7T4XDQIFskmjJRdJFULsx9RhROHR0dMJvNiEajNAiLzWRAbHMLZr0GS6trGN3XhOhmCsraWihqgBoZkExnoFTIMO8OoslqwtNHBhGLxbC1tQWFQoHm5masrq5iYGAAuVwOzc3NeOqpp6BUKnHu3DmcO3cOs7OzNGm62+3G9evXIZFIMDU1hTfffBOrq6tobm5GXV0ddDod9Ho95ufn0d/fj0ceeQQf/vCH0dDQUHT2SKVS6kPu8/kgkUjQ3NyMoaEh/O7v/i5GR0fR2tqKhoYGSKVS2Gw2+Hw+6ldH9lo8HodcLodGo0FNTQ2USiWkUik11STvkvx0er2eKutIZM5CoUBzB2o0GshkMiSTSZriob29HXNzc5DL5di/fz+6urrw0EMP4UMf+hCGhoYwNTWFeDyO69evY2VlBWq1GvF4nEYNJXvY4/EUIaXxeBwymQxdXV1YWlqCwWBAKBSqbKEKUMVCnlqtxvPPP0+1llevXkUkEsHzzz8PjUZTzTZyEolARGy6Cb300ktFsPqDSGxUjjAM7CiQpYQCgshwhd3mI/YFVeo7ptaRT+tfzuXFx+wSxoKY9DGZHeDtS48gEcBOZpKN0vh8PioYl2ojmQej0SgYplrMnBDGgYvZLdfk0uFwUCSIiUhxER+jzUYMcrkcrFYrIpEINjc34fV6ixCMlpYWqFQq1NfXY2ZmBktLS7h69SodP8K4EKaWhOKXy+U4fvw41Go1jZh5/PhxmvaAaPFdLhdyuRzsdjuCwSCdIyKAHThwAI2Njejq6kJfXx/1uRKKiMeF5LDRBva7wWCQmiSFw2Ekk0mag09IEPf7twO1hMNh3vFXq9Xo7+8HAMoIEuSCvUYsFgssFkuRAMu3joTOC3b/yLtMJnNqaooKwXxnAJdSgERNtNlsOHfuHCKRCE6fPr0jvx8fOsFGaOLxONRqdUXRxMpRJHG9K1bZwtw3ZK1MTU3B7XbTeWH2VyZ7O+dVU1MTpzBC2sdG0gkx55ucZ1qtFn6/f0fIf67zWCqVUoSZeZYx54dL8UH6wJ5Hct4KRShmjjkRBgkSzjZPdbvdRZp4MUor8h6pm52Dr1zFJSHmum5ra4PT6eTMrckmtpKLREUNBAJFbWPfdUxrCTaCy7UHmXd7JYqJB5E+97nPoa2tDaurq1Cr1ZiZmcH58+cxNjaGV1999X43bwdVm88kdxzxNWci/gCKokGTNU8QJqVSCZVKhfPnz8NiseDs+E1sJBLI5HN4ZKgDt5fDiERjuLMchC+0gfXYFjKpNFz+MKSSAhLpFDyra1RZ19HRQfdqoVDAz//8zyMej2NgYABNTU1YW1ujwUcOHz5MU5V4vV6sr6+ju7sbSqUSGxsbWF1dRSwWo5GUjx07BqVSicbGRqytraGxsRFqtRqhUAiLi4tYXl6mQWSi0SgCgQAWFhaQSCTwyiuv0PQLsVgMdrsdOp0OOp0OMtl28nKm2evm5ia2tragVquRyWSoUCeRSGA0GlFTUwO1Wo1sNktjSeTzeaTTaeTzeao4isViqKmpwdraGjY3N3H37l10dHRgbW0NIyMjWF9fRyqVQm1tLeUv79y5g1OnTkEikWBoaAjDw8Ow2WzI5/NwuVyQSqXYt28famtrqS93c3MzFhcXsbW1RRXex48fRzQapf6A1aSyfPKmp6dp1nYxNDMzg3379hX5iFSTvv3tb+Pnf/7n8bd/+7d4+OGH8fWvfx1/93d/h5mZGTidzpLf76XduRDx2duLCW7AjsjEFTiBi9jfs30Hqtkfdp1cmkwmY8F8j/h2cPnLMMvki0xG6iBa7PX1dRw4cAAymaxkxNLJyUmYzWbB3FvljAXTZwUA5/9zaXyZJGZt8I031++E0SD5b9jBOLjqZfomAeAMfCDWN3F8fByRSAQrKyt47LHHaHkKhYIGMhEao0oihPKNFVNjSgQgEhafrx1c3zJ/Z7d5cnKSJksle5T4HyoUCoyOjtLxA4T9XbnmhgR6YZuCcq0rt9uNt956C9lslgqhhUJB0C+K7Q/k929HfLty5QqcTiekUilUKlXZod2rESGYTUy0m4wdcw9Wuj5IGUw0rNR5K7QfvF4vXC4XIpEIVX4I7V3if7ixsUGVK3x9YUaYJb5llZxjzPrZ5w/AH3WSK1gLs9/kvpLL5fQ9vjni8s/j8mOr1A+ca79y7fVSZzMJyMO+s/jKZ9/hXG1njhXx1apkHVdKe8Ub1dfX45VXXsHg4CAMBgOuXLmCffv24ZVXXsFv/dZvUXTrQaJq8ZmRSIRGomfuaxKZlqC0s7OzNIJuLpej/BAAGl03Ho8jPvGvmHevorvZhlhyC8H1DfzJP/4EntUIElsZ5AEoZBL0ttlRX1eHmlpgsKMZGct+fOADH0A8Hkcul8Pa2ho6OzsxOTkJo9GIfD6P+vp6ZLNZfOtb38JTTz2FCxcuwOVyYXNzE11dXTh06BAikQi6u7tRKBTwwx/+EMFgEAqFAna7HVqtFh/+8Ifx8ssvY319Hbdv36YRMT0eD/Vt0+l0NCAKMe987LHHcP36dSwuLiIej0OlUkEmk9FALmq1GrlcDsvLy9tRRrEdFZMIacTCRKvVQqlUbo/V/+fvV1tbC41Gg2w2i1gsRs1uFQoF9u/fT4PDZLNZWK1W6PV6fPCDH4TH48HVq1cBACaTCRsbG+jp6cG+ffsQi8XQ0tKCAwcOUEHw/PnzCIVCsNvt+Omf/mk4HA6cO3cOTqcTExMTiMfjAIDW1lY89dRT9BxIp9M0cfp9CbxCYGuxJgN6vZ761ewVPf/88/iTP/kT+Hw+9Pf34ytf+QqOHTsm6tv7JeQJXRyl3mMLEaUCJ5BL32w2FzF0Ytsgps18z9iXrxhGQCzzNz4+TrVhY2NjRc+YgT4IUwRwCwOk7V7vdmj65eVldHR0FAX3KGdcuAQqNpMSCASKApmUYgjFOPyLnRemkDw9PV0UEERMH9kBFggx542cE1xtYq9H5ngQ/ykhZo0wyEQ4lclk1BG7r69PdEjyUoIMX/CHcoho40m5ZJyZwVuIzxc7UJBQUAa+Mbl9+za6u7uLUkyw544Z3IZE5xRSCggpHYjgYzQad6RCEVOWmPEr51t2gBdC5aR5YZZF1hUzUiUhMWbxQmPIFURIqCwuZYEYEns+APzKEnYZXGeSkDKKS0FDlBlCgk6l7asmiREgd7vG+RRGbMXPvRLwgL3jjYxGIyYmJtDe3o6Ojg584xvfwPHjx3Hnzh0MDAwgkUhUra5qUjX5TOZ+IPknc7kcNBoN6urqkMvloFKpMDg4SPdLLpcrUiRYLBb4T38Vya00Xp2cRTaTg1Qqw6Xrd3B1zoVAZAOZXB7I59Bks+CR4W6kszlo5HI89Qu/AQA0Mn4utx3dWalU4ubNm9TUPxAIQC6XI5lMwmg04s0334TJZILBYMD6+jpyuRwaGhpQX18PjUaDF154gaY92LdvH1paWpBKpTA1NUX9+RYWFiCXy+H1eqFWq2kAExJtuaurC7Ozs5DJZDRlAlHcAdsRMRUKBZRKJQ22AmxH69RoNNjY2IBcLqfIHtPcnGnZYjAYcPPmTcjlcpqWob6+HkqlEtFoFA6HA52dnQiHw2hra0M2m0U8Hkc2m0VTUxM2NzexuroKk8kEuVyOeDyOD3zgAzTozOLiIt566y00NDTg2WefxaOPPlrEe01MTGB+fh6jo6NIp9OUd2ltbaWuAfdFyJNKpfjMZz5DzadK0fPPP4+bN2/uqZC3G7pfQp5YErpMxR74RBgiTFilF4VYbSnfxUzKAIovLeY7fAwEFwkJg1wXp5AgShyAw+EwFAoF3G43Tpw4gba2tl2NC9dY5HJvh3Mn6IeQFr+UEC9Uv1COOyYTOzg4yMlEcLWfD0Fla925IlhyjQ0f4yeEVjJzvjkcDhpKf35+nqYhYAv+fPVzrTs+BLbcfcPWxjP3MDs/nVDER2ab+fbQ+Pg4tra2oFQqi1JdcPVLiBEvVxgohYaUi7LwCduVfsuONMqXn5OrLHaqit0qxMQKLXxl8p0FQtYNfOuaPTfAzkiWfPNQLgpbytJDKIVEueNUbSrnvq1U2BNSOFWyh6pBe8UbkRzKzz77LD7xiU9gbW0Nn//85/H1r38dExMTuHHjRtXqelCIjKXf78fExARFvyKRCA0wEolEMDAwQM1xieKPqTh1uVyIxWJ46qmntpWFP/ozfP/cVbj9ISS20hjubsGyPwJfeAPheByzdzzIZ3OwGHVodljR39oIi0kH68FnYbfbMTo6Cq/Xi1dffRWJRAK1tbVoaGjA5uYmLl++jI6ODiiVSpjNZqRSKfzgBz9AV1cXDXJy9+5dGAwGKJVKqNVqrKysoLGxETqdDmtrazCbzbh58yZCoRA10Y1Go0gkEpBIJAiFQjhw4AASiQRNwRIOhxGJRGjOuMbGRgSDQRpNM51OF/nREaWASqWi0Ufz+TwKhQJyuRx1KXG73TAYDJBIJNjY2EA2m6VKZqvVCoVCQVMzkBQygUAALS0tWFlZoSaXjzzyCEUB9Xo9TfPkdDrpnfLcc8/h9ddfx8TEBNxuN3p6evC5z32OIpZEyZ3NZjE/P09TK5hMJiSTyapH1yxLyHv88cd5Iwrx0T//8z9TqPlBo3sp5FVyAVRDQyn2Qi5Vl5i2MBkjNhPFd1GVuuDKISHEianll8lkRaZuhPFTKBTw+XxFSaNLjZ8Yho6tnWWb1bG/YZvUCqE6Qu1jCw5skysyV3wIGhcTyIfCshkzvnXAJi70hU+gLcUU7ia5cDXWP9c3fIy5GJNtYKcChMvcTYjxLge5EoMmA8LI5m73M1P5wERmAVBzWiHkWcgkTmwaCHZZlTDtXEqOvUKFSLkkSTtTycFcF36/nzfNAcCvbGMLh0LKo3L6JOZOAHaut71E7nZD1TAbBXaenfejv3vFG50+fRqbm5v48Ic/DJfLhQ9+8IOYm5uD2WzGt7/97R0pud4NRMbyO9/5DlKpFPR6Pex2OzY3N7G2tkbdJdjr4D/+4z/g8XgwMjKC4eFhfO1rX0NXVxckEgn6+/sx/q0/xt2VAO56I9jfbke2UMAdTwB3V0LwrEYglUpQI5NCq1bicE87kpk0ooktmPYdoYFW4vE43njjDajVarS3t8PpdGJqagrhcBgDAwMwGAwYGhrCn/7pnyKbzWJzcxM//dM/DZfLBaPRiPHxceRy2/71fr8fer0e/f39MJlMWFxcxN27d6kwJZfLMTMzA6PRiMXFRdTV1SEcDuNjH/sYZmdnEYlEaNRRl8tFBTq5XA6JRIL19XVqiqlWqyGRSGAymbC6ugq9Xo9YLIZ8Pk8jL6fTaWi1WtTX16O2tpYGm1leXqb+e0ajEYVCASaTCR6PB3q9HvX19QiHw0VROBUKBQYGBmhOwN7eXszMzMDn88HhcEAikVDfepL/d3FxEWfOnEF3dzcsFgtOnTqFs2fPQqFQ0Hy4zBy3MzMzkMvlGBoaejDy5L0b6F4KeZVcAHt1uHMxhLvVFqbTaZw9exZOpxObm5vUTJK0uxImtFJzLWJuwCXgEMGJKawIITdCZqFC7eMaT/IbMU1gM1vsthHhjvwuxIBzCYJ85Yr1BeViAsX4BpYzd8w2kmiVfOZo90OjXc26xSAUpdAVPhMusX6xYtomhCbztVuonFJoH/t7LuWDz+fD4uIijXgoZM5bjilhKSr3DCIoLfGd0el0ZQknXEJyKTRfLJJH9pgY4UyoreUKeeXWIWQNwjzPxOzFeykgiZmrUu3iUxDca0HvXvJGxFetXADhnUJkLN1uN6amptDb24uWlhaMj4/D7/fTVB3svXr58mXq19XQ0IBYLIabN2/ife9733beuRf/Bv/xxjRsZh1Ge9rgDa3h1fE5JJMpLKwEUKdRwqDXwV6nh06vwtZWBqvhKGoa+9DW1obW1lasra3hzp07qK+vx+HDh2mqpqWlJTQ2NuLhhx/GW2+9BaPRiDfeeAMf//jHsba2BqlUStG6W7duoaGhAa+99hrsdjtF/+LxOHQ6HUXXwuEwlpeXaVTiYDCImpoaNDQ0oKurC2fOnAGwbXoplUoxMzMDvV6PTCaD/fv30yTrSqUSuVwOTqcTa2trUKlU1D0nk8lAr9dDIpEgGo2ipqYGPT09uHPnTlHk3Lq6OthsNqyuriKXy0GtVmNzcxNSqRSdnZ3Y3NzErVu3KKpG5pDpN6hSqfDiiy/CZrPh5MmTWFlZQXd3N2w2GwKBAE2LceHCBRw4cABut5tG3hwYGChSVpK5v+9I3ruNHnQkr5IALWJofHwc0WgUqVSKQv+7vUSYZfb391clSXq5qADzeS6XE/RFFDuGQkiZWFNN9kVNHPVLoYxizJfYgpyYQB33UwO+G9NUMQLEvW53OVQukgOAJmkeGRmpCIknTCM7IbjYfu1WuCVCGwkcYjKZMDc3h87OTioAsfcYV/CQXC5XFpJXrfVQrk8sYZByuVxZAWn4UH4+k1+xVEqxUI5gwtdnvt9K9bWcOgFxScTZJCSQ7sXZIXa/lKuUudcKrgfdleWdREwk79ChQ/SeZitd2Kj70tIS5ufnodFoYLPZsLm5iUceeQTz8/Pb75z+Kq7MuLAW20R/RxN8oXVMzblxee4u6g1abKXS2N9qg1JeC4tRB4NOg2u3lyFvPYhUKoXm5mZYrVa4XC44nU40NjZidXUV8/PzWFpagkajoREg7969C6PRiM7OTshkMqytraG1tRUKhQILCwtIpVI09+3IyAhSqRQVnPR6PVZXV3HhwgWkUilIpVIYjUb4fD74fD7YbDYqsHm9XjQ0NGBjYwOpVAoejwf19fUU+fL7/TSJO6lDLpdj3759mJycRCaTgVKpBAAaaT2bzWJtbQ1yuRzt7e0oFAoYGRmhkXSTySTUajWkUimWl5fR29uLWCyG1dVVmu8vGo2iUChAo9FAoVDgox/9KADg+9//PpxOJ7xeL5544gmYzWYEg0Gk02kMDw9jfX0dWq0WLpcLCoUCS0tL6Onpgc1m2+FKEAwGaYqi94S8KtGDfpDx2eYLBS4RQwR1a29vL9I076adTGZUJpMVCRXsiIhihcrd+CYImSpW60KvlEkoB9lgf8dnBvkg+bEIUbmC8W7KuxdUjqloJf0TQpLFtk8oaMduAvuUqpcoH1KpFObn56HT6ajfpF6vpwomdh+rOae7RVdK9Z8tRJQyyeYjIf9NMZFcxfRFqN5cLge5XM6pCBBD5cxZpYJrJWuxlF9ytc+O3SLn1Xp/t7SXvNHW1hamp6dpEmsmfehDH6pqXQ8CkbF86623YLVaqYICKG0inUwmMTMzA7PZTNMCFAoF2O12yG58F7l8HjKpFDazAW5fGF/917NYi8axFt9Eu8MCrUqF9z3cj0g8AY1CgchGHMvyTvT29tIcqlqtlpomhkIhdHZ2IhQKIRQKoa6uDkqlEul0Gnfu3IFCocDQ0BCWl5cpYpbL5aiP4fr6OvXJI0FWTCYTfD4fjc7Z3t6OSCSCQqGAGzduoK6uDocPH0ahUKCRMEncAuK7R/ZubW0tbt26hc3NTRo0ZWhoCGazmeaujUajyGaz0Ol0kEqlkMvl1NSTKNGTySRUKhW2trZQKBRoDkKSdqGxsZGagzY1NdFUMiR3MMnfR/wInU4nTCYTHnroIbjdbhoJmfjbWa1W+P1+asFFAtqcP38eHR0d6OzshMPh2JN9956Q94AheWLMF6shsFTz0ijlW8EllO7GfFVM/9mXe7WFi2pSOQxZqYAm5L1q+bFUe2zKNXG9F+3bzb4S8oeqBu0m1QCzX2wly27KFzNeXOi017udl08m284nR+pjt6FcVEioLWyBQsg0u5L1xydEVILyi4mmSL5NJpOYnp6G3W7HoUOHOE20xQR4IvUSX2QuRYCYsd4tkrdXZ7CY+/Ren/t8Sr4HwdKC0F7xRi+++CI+9alPcSZ9JgLDu43IWJLUCKX4Oi6/bCLsET82qVSKvtws1CoFbGYDvIE1eINrcHlWccPlw/62Brh9a6jTq9FoMUKrVmBi9i7WNjZhP/A+1NXVwWg0YmNjA7lcDvv378fS0hJu3bqFZDJJz7Kamhr09vZCIpEgEAigubkZP/zhD/GhD30IU1NTkEgkuHDhAo4fP46VlRXEYjGsrKygpaUFi4uLWFlZQX9/P5qamnD69GnU19fD5XJBo9FgZWUFoVAIUqkUGo0Gdrsd/f39WFlZQTgcRnt7O4xGI27evIlUajufZSaTgcfjodZZJLJnY2Mj5ufnEQ6HqeBWV1cHlUpFhcdMJoN0Oo1MJgOVSgWpVEoFWIVCAavVilQqBavVis7OTuqrl0gkaI7e/fv3I5PJQKvVIpPJwO/3w263I5FI4MiRIxgeHsa//du/weFwYH19ne7lZDJJzTQdju0UTSQPpkajwfvf/37IZLI92XcVJ0N/j8ojv39nEvBy3mNeDLvJ40ZIrJY5nU7TaIZMLTWTbLa3kwsz3yG/Dw4O0oST5FvmN+W2mWhVCNPIbA+pn5gAEHMwr9dLnWOZ3xCkI5FIlJybvSKhOWe21WazQa1WlzQBs1gsiEQiRalOxKw/rvkVu27FktC6q3RNEMa9UgaB9LFUwmcuIm0mSd9JkJBqEfFBqySXHOlXMBjkTJxNTJoNBkNZSZbFjBdZgzbbtm+uXC6HXC5HY2MjWlpaivrD7mM5CBi7LewzwWKxQCaTwW6303VC2uz3b+f8O336NNLpNO85JkQOh4NTKBJay+w9Rc52h8OBlpYWer5xjSv5dnZ2FsFgED6fr+g98hx421yJPOfay2SszWYzjfbHt//YY+12uykKOzk5Sce6FMlkbydyB0DnrNy9x7ybhOriW0vlrLNqEhlHr9cLt9uNiYkJJBIJTE9PFyXCfjfSr/7qr+KjH/0ofD4f8vl80d+7tc+EGhsbOdca85xm8zdut5sqRCwWCz0jU6kUbrn9sNTp4A9H4QlE4AtFoVIq8OzjB/DocA+sZgPc/gi8gTUs+yIo5PNIZ97OI9zc3EwjSO7fv5+aGra3t0Or1WJpaQkqlQpWqxXDw8OwWq34/ve/D41Gg/Pnz6O5uRlnzpyhwU8OHz6MUCiEdDoNl8sFh8NBg5ZMT09Dp9NhdnaWuqt0dHTAZDJBqVSipqaGJkoHtvd2MpmEz+eDTCbD8vIyMpkMNjY2aFJ4k8kEqVQKq9WKcDiMTCZD/2pra6HX65HNZrG1tQWVSkWfAUChUMCRI0dgtVpRV1cHs9kMrVaL0dFR7Nu3DyaTCY2NjVheXkY4HMbq6iry+TxWV1dx4MABbG5uQiaTwWQywWazUd/E1157DU6nkwqia2tryGaz1JomHA7T+bVYLNDpdHj88cd3xb+UoveEvHtEYhlYvveqzWyLpenpacTjcUxPT/O2gXlZMt8hv8vlcshkMmSzWfrtbi5YMkYAdrSHfWDKZDJ6eTI3GJPxIZoTMcKFWOavkv6UmnMyZrlcTpC5IdGamIy7mPXHNb9831VzHPg0+3wCPBHayTMuprmctjGVEZUKmSSxNbmE92KdlCJiNk3yLpWa80rXvsViKTlela7BcomtSCI+G2QtEM04OYOYbbDZbNRXYnp6mvccEyI+JUM5ygx2XULjRJ6dOnUKIyMjGBkZKXqPPHc4HBgZGYFaraZCay6XQ01NDec5MzMzg3Q6jfX1dd4zmb1PAoEA4vE4vve97yEajeLs2bM71nupfcAUSstZG+l0Gt/61rcQiUQwPT0t6pvd0G73M5fyE9hODJ1IJDA/P4++vj5Eo1Fotdp3raAXCATwm7/5m2hoaLjfTbnnxHV/MfclUUCT8xXY5r+WlpYQDodpNEbiy7WVymDqthuWOh2arCaMdLdgpNsJu9kAh8WIXqcdrXYTLCYdjAYNnA4LelptsFqtUKlUeO2116DRaHDr1i1897vfxcTEBJqbmxGLxRCPx3H37l2Mj4/jwoULmJqawsrKClpbWzE/P4+PfvSjuHDhApqampBMJnHw4EGMjo6iubmZ+uZdvnwZTqcT8/PzWF9fx8LCAmpraxGJRJDP57G5uQm73Y6BgQH09PTgwIEDyGazyOVy9MwOh8MYHx9HKpVCPp9HS0sL6uvrIZPJaORLqVSKlpYWagap0WgAbOdkbGhogEqlQjgcpib0CoUCnZ2dqK2txdDQECwWC/R6PZqamqgAmsttJ1snZpkGgwELCwvY2trC0tISWlpaoNFoMDY2BoVCAaPRiFwuB4PBAK1Wi4985CNoa2vDqVOn0NTUhMOHD6OlpQWDg4NUASqTydDe3o7vfe97iMVieyboVUXISyaTlElj0szMTDWKf1eQWKGG7729YJD4iHkhDQ4OUoRCjKabvMNGzPh+r4TIGJEcKMwx4UKx+vr6kEgk0NfXt6MPuVwOCoVCdICEvRC2y51zpuDNRVzfiVl/5XxHzOC49n25xDWmQr+xEaRSTHMpYiojKlE8iG3/XpPfvx0i3+PxFClZhJh2Mcgws3ymAkVovMpdg5Uy0WxFktFoLBJa2e1gtkEmk+HUqVMwGAw7EFgSIMZkMokel3LXGxkH9plVCn0iSoXR0VG0tbUVvcfuH0EYJycnkUql6O/A20oBkozX6XQKItHsfTI4OIhEIoFnnnmGBi9gnwelxsZmezsAQTlmitPT01S4rjZ6zkXMfrDXKlu5Uup75v3V1NQEtVqNrq4uqigi/qnvRkHvIx/5CF599dX73Yz7Qqurq0ilUhgfH8fly5dx6dIlKsDIZDIEg0HEYjGcPXsWFouF7rGmpiZYrVYAgM/nQyaTgUwmg0vailjz4/DaTyFgfxyOp38d8oM/h1TPM5iWj8DxxGew/+nPwCPvwqb9IWgHPoj3/+cv4zOf+QyMRiM++clPoqGhgVpY2O12xONxfOpTn4LZbKbI4+LiIl555RVqTtvT04M//dM/hVarxerqKhobG3Ht2jV8+9vfRnNzM+rr6+H3+2E2m3Hnzh3YbDaEQiGoVCpotVo4HA5YrVYUCgUamOXxxx/HxsYGVlZWMD8/j3w+D6vViunpaWQyGeRy2xEw6+rqKBq3tbWFRx55BABw7NgxyOVytLS0QCKRUISuvb0ddrsdOp0OarUabW1t6O3tpUnpg8EgjEYjrFYrFUTz+TyuXr2KZDKJQCAAp9OJeDxO/ZaPHDkCvV6Pj33sY9BoNDCbzXQc7XY7jQNB/kvGl6C0fv+2D38ul8OLL74Ig8GAK1euwGKxYGVlperrbtdCHsly//TTT2NwcBCXL1+mz37+539+t8W/R/8fVcu0RAwzxbyQ5HI5RkZGipJ0Cmm62SaVbBRKyBSJq41C7eXSonMhCJFIBF1dXVTpwOwDsbXmspMvZZpaLeJDqJhzzid4c1Gla+V+mS9xjSn7N6bGk40gEZ+vycnJis3uSB3lvEsYO6J55WpruW0ASpuhCa3NpqYmNDU1iVqfpeaby1xYLKpbrkAnxESLJS6htVQfucxhc7kczp07h5qaGpw7d64kOlWJAotZBteZJfSdkHk539hyIbZEKeDz+aBSqTA6OkrTzIihSCSCnp4exONxXp/OUmND5sXj8ewQEIXWweDgIEwmEz7+8Y9XZMpcLlksFmqK5na7ixRcbOUKV7u5xoGYrY6OjlLEVSaTUUGPaWr7bqG//uu/xve+9z384i/+Iv7sz/4MX/3qV4v+3s1E7gSJRIJgMEhNF8m+ZFoWTE1Nwe/3o6WlBQ6Hg6JL5Htyri0vL8Pv9yMej2NqagrJZBIXL16ESqUCACwsLGBjYwMulwuhUAgWiwXRaBSdnZ1YWFiAVCpFR0cHDAYDDAYDjhw5gh/+8IcwGAzYv38/RkdH4fF4MDExga2tLdTX12NqagqZTAbRaBSPPPIIDAYDvF4vtra24Pf7MTAwgM7OTkgkEpjNZiSTSRiNRpqz7sCBA9BoNKivr0dNTQ0CgQDm5+epQk2tVqOmpgZTU1OwWq3Q6/Voa2vD8PAwzW+XyWSwb98+mmbhn//5n1FbWwuv10uja/b09KCnpwcKhQINDQ1obW3FwYMHYTAY0NDQgGw2S9tksVig0WjQ2dkJAOjo6IBarUZ/fz8kEgm0Wi2am5vR2dlJI0AHg8HtADgyGWpra9Hb24u1tbUd7gPpdBp+vx9utxtzc3OYmJjA6uoqgsEg9u/fj8XFRRw6dKiss7cc2nXgleHhYbz00kuwWCwYHx/HL/zCL+AP/uAP8IlPfAIjIyOYnJysVlurTg9i4JW9LrfcMO4yGXdAglL1sp+Tfws5l5N3crm30wEAu0++TBgjdlRKoT5UEq67UiIBVebn59HV1cWZQPxetoeL0uk0JicnYbVaqS8N1zjvVUCFUuuWLwplOeudue7KjRBIlA1Mvy9STrkBPUpF1LxXUQF3Gw6+nPeZaweA6HnYC/J6vYjFYrh8+TJaW1vR1tYmKqhKuREm2ZH0xOwRImAoFAqMjo7ynltizmr2fmWv21LELBcQjujLNza5XA4TExNIpVJwOp2ig9eIoWreucz9XlNTsyPPKTNoDvFz5YqALDbROd89thc8BBftFW/0jW98A5/97GehUqlgNpuLcuNJJBK4XK6q1fWgEBnLqakp1NfXw2Qy4ezZs+ju7oZKpSpSQpEgVGazGdlsFtFoFHV1dTRyM7B9PxQKBcRiMRw8eBAbGxtYW1tDb28vbty4gVQqBZ1Oh/7+fly6dAkTExNIJpM4cOAAZDIZjh49Cp/PB4lEglQqhbW1NdhsNuzfvx/f/e53kUwmaW67mZkZiqL19/ejo6MDP/7xjyGRSPCJT3wCHo8H7e3tuHXrFvx+P1QqFV5//XV0dnbi6tWrsFgsiMViFIkkPEE+ny8KaGKxWHD9+nVkMhkEg0HKZ1y7dg0OhwM2mw2ZTAaTk5O4c+cOUqkUWlpa0N3djUuXLuGJJ57A+Pg4Njc3EYvF0N3dDZPJBJlMhkKhALfbDYVCAYlEAqVSiZGREfj9fhw4cACRSAQAsL6+Tv20zWYz1Go1Ojs7EY/H0dTUBJVKhRMnTsDv9+P8+fPo6enB+9//fszMzNB0PyTIGVHiAKCpMPR6PfVzJChtOBwuShU0NzdX9Tx5u0byMpkMNTMZGxvD+fPn8bWvfQ1f+tKX3rXJLSuhvTLfKrdcMUgUGyGrxPyP/ZzLV46vL8Db/hml2itkjsVsC9M/BSh9YQr5/RHarZ8Gs65oNIr29nZe/6i9aE85709PT8PtduPatWu8poBsjTb5jRkQg41Wim2f0DrI5XIwm81QqVQ70M1yfBEBlERkSJssFksRasbch+w6S7WBPQ+lkFo2KpBMJksGoChF5fhjcrWHHViJ3S8mWs1EOQkxER1iQn0vTNO5iCCC3d3dkEp3XpF841IOys98t1wEnankYa8dLnN1oXKYAXnKtVLgMg0VMg3mWiN+vx9Go5EyPkwqx2SWub4Iwi4mmIuQqSX7/CH7fXh4uCjYDnMcg8Egr58rF6Iqxs+d+f398MuvJn3+85/Hl770JUSjUdy9exeLi4v0790o4DGJ7K1IJIK+vj5otVq698g69Hq9MJvNAEDTG8zNzaGurg5+vx9erxeLi4sIBAJUcEyn08jn85DJZBgaGkJLSwt6e3ths20HvTKZTBgbG8Pa2hqampoAAHa7HQBowBO3243z588jk8lgfX0dcrmc+gI6nU6cOHECXV1dmJubQyaTQTwex6VLl7C4uIhbt27BYrFAKpVidnYW+XweFy9eRGtrK9xuN9ra2nDw4EEcPXoUx44dw927d6lQ6nA48Nhjj1GhyOVyIZvNIhaL0TQJiUSCWjno9Xoa9bKjowMLCwswGAy4desWjh07htbWVjz66KMAgFAohDt37mB1dRXZbBbpdBqFQgFKpRKJRAJSqRR37tyBx+OhgV3y+TwOHToErVYLhUKBGzduYGpqCh6PB/v27UMgEIDP58P6+joymQxmZmaKrDDIWVgoFOiZGo1Gqb/gBz/4QYyMjGBwcBAtLS0YGRmhAt5e0a6FPGI3S8hsNuOll17C7OzsPXGIfqdQNX3SuMplLpJSJo5iGAouHwKhb0oJDFz95zN7Iv4KYpgHsf3hEzr5Lkym34TYKHmVEhFCdTodr3/UXrSHBKkQ4/tBDqWhoSFBgZttLkjmNJfLYWlpifoGiWmj2DXo9/tRKBToQcokMeuDve7ERDdkR6zkY9rFaN/Z88YXUZMLeVlaWsLLL79MfTT5TH9LUSWKHOZ7MtnbgZVIGwiT7fV6MTExAZfLhampKV4TadLHQCBwz5FqJpG21dfXcwoffONSjrBWqWk0O5one+1wmX6KPRf20lybvUYIcZnYEpqZmYFarRbl28/01/V4PFhaWoLP5+MMNMP+jq2YYpdJzh+y30v5ovL1h+tZOable+EqcK8pnU7jZ37mZziVJ+92amxsBIAiJRfzrPR4PJicnMTLL7+MiYkJZLNZbGxsoK2tDUtLS0ilUtRHjCRIHx4exuTkJLa2tgAALS0tkEql1PxZLpdT00On04n19XUAQDgcpihed3c31Go1ent7YTabYTKZYDabMTIyApPJhM7OTgwMDCAQCGB9fR2pVArpdBrXrl2j5t4zMzPI5/PQarXUP3djYwOdnZ3UAkkikeDy5ctQKLYTqK+vr8NkMtE0AvF4HHK5HFtbW2hvb4fH40E8HofX68Xa2hqSySSi0Sjq6+tpABadTodoNAqNRoNUajvROvH9i8ViyGQyiEQiyGQyFP1zOp0UXbt79y5isRgSiQRNtWC32/Hkk09ic3OTBolZX1+Hy+XC8vIyFhYWaPRN4joCAIlEAleuXMHi4iJWV1ep1dq+ffuQzWbR29sLrVaLhx9+GG1tbQBQZHpP3IeqTbveaf/0T/+0I1KSXC7Hv/zLv+C1117bbfHvGiIXKGHMqhGwglkuU6vL1mBWgjiVe6GIFZqYDDT7m2owGaX6ykRixPRPqE3VvHTF+jBVsz1EyyTG90Mul+Pw4cM7Aj2w+8AO1c9ur9VqFd1GgkqYTKZ7yvwwFRJsLT9fXXzzIobBFtt+vrJ6enoo8sdkdsUw9lwmtpUQsw9sZBQAFYyz2Sx14GfPp8PhgEqlgsFgEKV4YO91Meec0Dts5IbNkAuhPrshseczl8JADGosdn1VyzKBr5xy9+ng4CDUajXMZjMvQswumwSqIEmY+ZQJzO/4/FgrOVeEzudS95vYO/R+KT+qQb/wC7+Ab3/72/e7GfeNmIw88dNyuVxwu900YIjBYMDa2ho9h5LJJEZHRxGLxTA4OAiHwwGDwQCbzQaPx4PGxkbE43EAwMTEBNxuN4LBIA0q4nQ64XQ6UV9fj1wuh5mZGeqrptfrIZPJ0N/fX7Te9Xo9VCoVOjs7qbBCUl309vairq4O9fX1MBqNcDgceO2113D+/Hmah85qtaK+vh4dHR1ob2+nZ2d3dzdyuRwOHTqEu3fvYn19HdevX8fFixexvLwMiUSC+vp6KBQKdHV10bRXm5ubWFtbg9PpxP79+/HLv/zLAEARTLVajVAoVJQOiAh8qVQKyWQSCoUCSqUSKysrCAaD2NjYoKkWRkdH4fP54PP58PLLL+PMmTPIZrMwm82w2+0YHh7G2NgYPB4P1Go1jEYj7HY7dT1yOByIRqPweDx4/fXX4fP56DOFQoHe3t4dZwkb2Wdaa1WTduWTd/XqVbz++uuQy+V45JFH7kmUq2rSvfTJA7YvJ2JWxfY/qAax/bbI5izH16hSEusvIOTHweXHJ4YBZX5Xyq9kN34ee+UTUarcavlg3U8/j3LrYfqvRKNRmEymPVu/QgmtiR9OU1NTkZmcWKrm+HLtD/Ze4kqoK1Sv2LVVTj/49rHP54PJZBKcTy6/JbFtF/L7ImNDgvNwnb/EN5aZQJz9nOmHWY21uJv+liq33HVXyTnDVY9QOez3S80Z191ViV/5XpPQ3hS7/ywWC6anp3mD2NxL2ive6Nd+7dfwzW9+E0NDQxgcHERtbW3R8z//8z+vWl0PCjHHUqPRFK3rUChEg6oQhQOwjXiGw2GquLt27Ro0Gg22trag1+sxNzeHnp4eyOVy5HI5yh8tLS0hGAxSs2KiMLDZbPB6vXj11Vchl8vR3t6OcDgMl8sFr9eL9vZ2NDQ0QKfTYXNzEw0NDairq8P09DQkEgn9/urVq2hsbITf70ckEoHD4aBJ1AuFAtrb29HR0YFwOIz3ve998Hg8WF9fh1qtht/vR29vL1wuF9588004HA7cvn0b2WwW4XAYNTU1WFtbo/6ERqMRsVgMarUagUAAarWaKps1Gg0ikQjOnDlDBbWjR4/iJz/5CaxWKyYmJmiUz62tLZhMJvT09MBisWB1dRW3bt2CXC6H2WxGV1cXTCYTLl26hJs3b1JT0FAohEcffRTd3d0wGAyoq6vD5OQkPB4PWltbYbfb0dfXB4VCQfnty5cv4+bNm9i/fz+OHDkCmUzGy18Q/0vmfn+gkqH/xV/8BcbGxvDFL34R/+N//A8MDw9jYGAAExMTVWnYu5H8/u3QqVwmQNUgPrMzQDgHUTU0uGwtI1+ZQn4cbE2mkCkNk4T8odh9FIvglaqnGsSHvLKpUqSKPQdc7S9HO7wbJIMLceYyKWSOCTnsSA40LvRnr4jUZbfb6cVbydxXS/vOxTQyyxbj88pFfL5SbCpn7XPNNQDqFyuUX4+YLjP9Z0n/2agd27ePb58w0U3CPPGNhRCybbPZaDQ1YmYktBfEWBVMTk5CpVLh1q1b1F9RLBImhGTyzZdQmyo5Z8r15WS/z2WuSII8JRIJADvvrlLtZAr1hKHeayIKAGbETTH7hdmXcqKsvlPp+vXrGBkZgVQqxY0bNzA5OUn/pqam7nfz9pyIohDY9ocbHh7G4OAgDb1PngWDQaTTaUxNTeHatWvIZrO4du0aVUI1NDQgGo0ikUjQ3JZESLTZbDCZTHTtezweLC4u4vXXX4fdbqc8oVqtxsLCAk1eXldXB6/XS611SPj/cDiMmZkZKoCQVAVNTU3Y3NxEY2Mjuru70d7ejmPHjiEQCMBkMmF5eRkbGxt0rjc3N/H6668jFApBo9Hg6tWrWF1dpfno6uvrYbfbsbm5CZ/Ph/n5efj9furnarPZoFQqcevWLZoA/QMf+AD6+/tpwBeJRIKlpSUYjUZEIhEkk0mEQiF4PB5Eo1EAoJE+Gxsb0d7ejvr6ehpllOTrC4fDGBsbo3u4qakJc3Nz2NjYgFarxcbGBvR6PaLRKHVF8Xq9kEgkNEE7++xh8z1EHtjr/V4WkvcP//APGB4eRl9fH5qbm/Hbv/3b+J3f+R1IJBIsLy/ja1/7Gv7yL/8SP/nJT6jz44NM9wPJE4t2VcOEqhJt4m6FT6YGNpVK8WrFxbSXPQ4AdwQ3Mf2sRh+rrR3e64iZYiKPliI2SloNJIO0i5hicmnp2WOyFxElCYlBI+41MsCmUv1no3oEHSJaxt3ujd0gFWLXjFCZzHUBvB2woxT6xSyXMP0A/7laqp9EK0siLAr1SwwySKLqqtXqovf45oOp/SVKPC4kk+xX5lim02mcPXsW7e3t0Ol0oqJvlprjShB6PksO5rlA7mW2uWw59xmxYmFr0MW0rdw9ztbWV8Oy5X7SveaN3s3EHkshC4R0Oo1z585Bo9FAqVTCarVSH2Yi2AwODtK789y5c1Cr1ZDJZFCpVLBarfB4PAgEArBarfScun37NmQyGfL5PI4dO4ZcLoebN29CLpdjenoaOp0O+/fvh1QqRTQaxb59+1BTU4NgMIhEIoFbt26hrq4OGxsb2LdvHwqFAubm5jA/P49MJgONRkNTGszNzVFk+uDBg7h06RLUajUWFxehUCggl8upcuP111+nfoF1dXW0Prlcjo2NDRp1V6FQoLGxEaurq3A6nairq4NWq0U2m8X169dp1GESgK21tRVmsxlnzpzBnTt3UFdXB4fDgYMHD8LtdmNjYwOFQgGdnZ3o7+9HfX09TU0RDoehVCpx+/ZtpFIp2Gw2uN1umEwm1NbWQiaTwel0Qq1Wo6+vjwrk0WiUorItLS3Yt28fVVKTsygWi+Gll17CE088AZ1Ot+Nuvu9I3v/5P/8Hhw8fhlarRTgcxltvvYWvfOUrePXVV6HT6fC//tf/wp/8yZ/gt3/7t6vSuHcbidXqi0WwqlUfl4a4UsSGMHW5XK6kvxdbq8xuL9PHC4BgfqhSVCkaxiTSPgBVi6rJDjTDRVzadzHoK7vPlaBKbJS0nDxsfH1g+s/waenZY0LMD5PJ5I51uZv1CnCPSzXGrppUav2yUT1yUQClEUgxe6MU6i6EPjU1NcFut4tCC/kCATH9FTweD1UgiVmH5CIlKCfTZ7TcfhJiR1flGgM+ZJBpVaBWq3Hq1Cmo1WoaRVJoPqanp2mQHfZ7zH9zrdfp6Wka9IA5F1x9JChjLBajfj5sxJDkfypHKOFCn5moXk1NDcxmMxQKxQ7BWGh9MImMAwnbLpYqQT8JsQPilHPXiw1wVg2Lm/tB09PTyOfzot+fmZnZkwAUDwqR9UmC0BHrIovFghs3btCIkoODgxgdHUV7ezsOHz4Mh8NBrRBIyoHu7m44nU7I5XIYDAYA264FQ0NDsNvtMJlMqKmpwYc+9CHkcjkcPHgQwWAQPp8PBoMBgUAAg4OD2NzcpL7SmUwGoVCIKurX1tZooJy6ujpEIhHI5XJotVosLi4iFotBpVLRJOZKpRK5XA5WqxUulwtHjhxBY2MjnnrqKfT396O3txejo6Noa2vDqVOncPjwYRQKBeTzeXR0dNBUD2azGT09PXA4HKitrcXKygpaWlpoOod8Po94PI62tjZEo1GKApL7DwB6e3vR1taGuro65PN5rKyswGazIZVKYXNzEzdu3MD58+dpEBa9Xg+LxYK2tjY0NTUhl8vh2rVriMfj8Pv9qKurQ11dHY0k+tJLL9Gy9Ho9DAYDNBoNjh49irm5Odoecka/+eabKBQKeOutt0ryfdWisn3ytra2cP36dRw9ehTPPPMMlpaWcP36dWxtbaGpqQkdHR24ePEiXnjhBfT399MoMg8iPQjaKi6NXzWRvErKqdT3JJcrznlEAs1Uw9dMSCu+lygPk4T8RKpdRykfl3KQnXKQFzHtEfOMTbudI7Imib8Zc13uZr3y7Y/7jdzthphoD2Gmq+0TCBT7AJbaE3x+CeUikJWeaXz1l+or27dRCPVi+tYRJI0LPeTKdSd2vXH5cfCNJReSR3JwFQoFOlfkd2a+JiJQzc/PU40z2VtCSHw5JPas4xtjLh8+9j1aDprG58e6V/cL31rma/e9uueA6vJG5AwSk9YD2A6TPzU1hfb29l3V+6AQGcvZ2Vm0t7fTNUYEfCaiF4vFcOXKFYyOjiKZTFIUyGKx4F/+5V+wvr6Ojo4O2Gw2LC4u0kjMTH9OYFuwJvn1DAYDEokE1Go1XC4XnE4nYrEYCoUCtFotVRipVCpsbGxALpdDqVSitrYWmUwGuVyOIonz8/OQy+Vobm7G2bNnsbW1hXA4jMcffxzxeBx1dXVIJBJoaWmBy+WCVqvF5cuX8dRTT8FgMFABvqGhAblcDpFIBBKJBJubmwgEAmhpaUEkEsH169eRTqfR0dEBmUxGAQ+Hw4EPfvCDWFxcpIFWYrEYlpeXcffuXUgkEqyursJoNOLnfu7nMDMzgxs3blCEUqlU0sBMi4uL1GwznU7DZrPR3IMkhcL09DS1sjCZTGhoaIBKpcLc3BykUimUSiVOnDiB4eFhuN1uXLx4EWNjY0gmk0gmk4hEIpRfTSQSuHHjBkKhEI4fP04Tr3OtlWrKJBUHXjl58iROnjyJ//7f/zvy+TxmZ2dx7do1nD9/Hl//+tdhNBppno+NjY2qNLba9CAIeeUe3OUy1tVmfkvVJ2SexFWP2L4ICS0ABC/pUlSuGdBeJiTnWg+VMDBig1JUu618tFthkanFZmu8q6XMsNlsRVFv70VC7kraXu7cV4uElA3EjJKvH0LBbbjMYqupSMnlcrh8+TL8fj9GRkZEKR7LHUMiuBGmi8nAASgqy+12Y3JyEiaTCe3t7aL3OSA+4Ti7TmZZ7HOSLbQx55Iwo8Db81pKKCqHSimj+P7NrBsAp/An1gy1lJlrNRU+bPN3rjkqR5DdK6ombySVSvGZz3wGarVa1PvPP/88bt68+a4T8q5evYpcLkcVI+y1RuaXmGGSUP/t7e1wuVyora3F5OQkHn74YYyMjODVV19FT08PWlpaMD09TdeMz+ejkR6dTifi8Tg6OzuxsLAAlUqFpaUlGrgkHo9jaGgI09PTUKlUMJlM0Gg0sFgslIcvFAo0r96VK1ewtLSErq4uKJVKvPTSSzh+/Dju3LkDh8MBq9UKlUqFeDyOl19+GXK5HBKJBGq1mgaMSSQSGB0dhUajgdvthtlsht/vh8/nQ29vLzweDzKZDKRSKSKRCAqFAk2B4HBsJ0avra3FG2+8gebmZshkMly4cAEqlQr19fW4c+cOxsbGUF9fj2g0ivPnz1PBVaVS0TyE4XAYw8PD0Ov1uHHjBmQyGdrb27GysoL//J//M4LBIHQ6HSQSCcLhMHK5HAwGA1ZWVjA0NISpqSk8/PDDNMbG5OQk/H4/xsfH8Wu/9mu4desWcrkcReymp6eh1WoRj8d5+eMHSsibmprC448/jo985CP47Gc/i6GhIWxtbeGLX/wivvWtb1Fzwxs3buB973tfVRpbbXoQhDw+zSzf5VYO81MuA7nbS2QvfDj4iIs5FBuljt0WsWO6l+NTTcYJ2LmudtN2scxSOb8xqVxhsRKBTgxi7vf7d0TTFDMfuxnbchUxYtb5XjGDpeaWi2nl+hYA5/+Xg6SWq+yan5/HnTt3cOLECVFCXrn7UcgnK5fL7diLi4uLNAobSaLNdQ6VEtz4xoR8C7y9T8REH92raMyVolN8z9njwqVc5BPe2OuUvYZjsRhcLhdOnTpVdpTLcs46LoGyXEXpXlE1eaPHH38cEomkrG/++Z//mQoW73QiY/n888/j5MmTUCqVgpYjTBTd6XRifHwcdrudRolMpVLweDwYGxtDPB6HRCKBRqOBy+WiqRCIkMhGA6enp7G5uYnbt28jn8/DZDJBqVRia2sLCwsLsFgsOHnyZBHPmc1m4XQ6AQCXL19GNBrF0aNHEYvF4HQ68dd//dc4fPgwjEYjRaxOnz6Nra0tdHd3o6mpCW1tbfjRj36EYDCIWCyG/v5+ZLNZ1NbWwmq1YnFxEX6/n6Y6CAQCNAeez+fD4OAgJBIJdDod3njjDTQ0NECpVCKbzUKj0WBhYQEymQw9PT1YWlqCx+NBX18fTXZeKBTQ3d0NqVSKgYEBSKVS+P1+PProo7h79y4mJiZgt9shkUig1+thNpvxMz/zM1hYWIDRaAQAGiDFZns7ABfwtjLYZDLhj//4j+F0Oqnlw/j4OEZGRqDX6+k8CN11m5ubD46QBwB37tzBZz/7WZw7dw6kmJqaGvzDP/wDfu7nfq4qDdxLul9CnhjGiA+J2S2KJHQJlWICqsE0si8xoDJncy5tbLmXo9gxLdfspxJhptoooVhEUExfhJh3MfWWa1paqvxyhSKxgjyXAClGAK0UOWOik4A4P55y1nk1BSUxdQDi9nI5ppOl0CexioGJiQkkk0moVCpqIsnVBzZaxNSQE4GgHBM7gHt9jI+PU3Mrh8NBETT23t+N6W2lwYPKVdTwPeMKEsPuYykFEl+wHKF1x7VmvF4vXXPkPuWzCjh9+jRqamqQSqUwNDRUtnXAbs66e4nWCdGDoAB/txAZy7/7u79DfX09Dh48SM2kJycnYbVaIZPJ6P3ENPUmPrgulwvt7e3Y2NjArVu3YLfbkc/n0dbWhnw+j6WlJTidTtTW1lKrFC5LJ693O3J1Pp9HoVCAXC6nqRaY6y6bzVKkjyjHHA4Hzpw5A61WS/0A33rrLVy7dg21tbUYGBjAqVOnMDU1hStXrsDr9eLQoUN43/veh3/913+lvnu53Ha8hv7+fszMzFBU8fbt29SsVaVSQSaT0bZIJBL09PRgamoKLpcLBoMBer0eJpMJ6+vrkEqlaG9vh1arxcWLF5HL5aDRaNDT04NXX30VGo0GMpkMra2t6O7uxuOPP47x8XG0tbXB7/fj6tWrOHbsGDKZDM1HeOPGDahUKlgsFqhUKvT09CASicBoNFJf67W1NZhMJgQCAeTzeSSTSXi9XnzkIx/Bq6++ilgshq2tLXR2dsJut9OgUsQsvqWlpYi/0ul0D5aQR2h1dRVvvvkm0uk0HnroITQ3N1ejbXtO9+sgK6XNA3YyN9VCeNiXkBgmotrRN5lIRC63HeKXqRmpxA+xksuxEjNNQlxtFKspF2KUqqVFJ+GXLRYLHA5H2Rp6MWuUi8QwiLtFFctB8ioRnsUKLrtFX5nCjkzGH1GRr21i+l4quqPYfGZ8z8Sid8wyxAp5zGiQ8Xi8yP+rEisFkq5gaWmpCKXhU6hxRXmsxASeaxzI/mQm7BY6UypRRFWKenOR0JzxraPx8XHE43FotVqMjIyUdb6Vg2AKfUveX1xcpPdcW1ub4Dwmk0l85zvfQVNTE5RKZdmuDg+CkLZbek/Iqx6RsfzWt76FQ4cO0cBPRNFTW1uLAwcO0PeZe5V5ThCha35+HhaLhfJswWCwCMkj+5PcTVeuXMHNmzfR09ODUChUlCy8p6cH7e3tsNlsNIn6wMAAIpEILBYLpqamkEql0NTURCNfymQyRKNRdHZ2IhgM4uLFi5BKpRgeHobJZILZbMbp06fhdruxb98+mp4hm83iueeeQyQSQSwWw9TUFHw+H+7cuUPP4mAwiAMHDkAqlcLpdFLkLpfLobe3F9PT07h48SLq6+vR1NSEeDwOnU6Huro6nDp1Cj6fD2+88QakUimOHDkCqVSKZDKJmZkZ/NRP/RQmJyfx9NNP48KFC8hkMjAYDKipqUFdXR1Nh9DT04NoNAq1Wo3NzU0AgMlkgsPhoONCzC8NBgPm5+exubmJ9fV1WCwWHDhwgJrlBwIBmM1mBAIBhMNhbG1twe12Q6vVoqGhAQcPHiwS6l0uF3p7ex88Ie+dSg8CkieWSa2W6Qy7buZFPDY2tuv2inmfyXwQIY9oRgjMvZu+VpvhYQpgHo8HADeDV8okSYygUU1zVhLlNBaLoaurq2Q4fabQ4vV6EQgEMDIyUvXEvNXw5asWuirUPq75EiPgiK2TyTgTc9Fq+gIRIYmY7bAFvUpQffYzIQWAkNJDzF4cHx9HNBpFKpXCqVOndgjSlfgznz59mmpMHQ4HJ1IkJLxXguQJkVjkJ5cTTkkjxqxxN2eqkJDHp8QxmUyYmZkpckWoZN8C5Vl7cNWxuLiIa9euYWhoCG1tbcjlcpQJY59xJADG/Pw8ZZrFopdinu+1IqwadD94o3PnzuG73/0uPv3pT2N4eBjf+MY38OlPf/qe1L2XRMaSoECEmEgeG9HhsoKx2Wy4cuUKfD4f7HY7Ghoa6O/j4+NIp9NUYej1ehGPx3Hjxg3U1NQgGo3CarVifX0dGo0GNTU10Ov1SKfT+NjHPoZIJELLaGtrw8jISJGVidfrxczMDMxmM2QyGVZWVtDQ0AC5XI5UKgWTyYRkMomenh4Eg0F4PB7k83l4vV6YTCYsLCzgiSeeoGfHwsICvvvd70KhUNBgLS6XCzU1NZBKpfhv/+2/YXp6GkajEd/85jdx+PBhmM1m3L17F6+//jpqa2uxsbGBp59+GtFoFGazGR/84Afx0ksvIZ/PIxqN4uDBg3jzzTeRzWYxMDBAU+7827/9G+LxOKRSKcxmM1paWlBbWwu/308DYh09ehQajQYmkwlerxfr6+sUJTUYDBgbG6N3QTqdpikriGUGmUsmMGCxWDAxMQGfz0fnnCjgyT3q8/lw8ODBByMZ+ntUOYkxyyJksxWH2+VKIL2bugcHB6HVamlUJjYJMdl87SALnDBPXG0gyEUgEIBCoUBbWxvW19eLEoJWSlz1+/2Vp6UgY+ZwOIrCpos1tyNzCHCHs0+n0/SALWdtCJHNth26XqFQoL29HdFolPYB4E4BQcaNJGBNp9N7kqiTjIeYeeZbS0SIJf3gW4uVjCfffBE0iKTx4OtHqfVPyOF4O+w6VzvFlsMmMh5+vx9dXV1YWlriTGUiNDZCc8R8VkkZTDMcob4NDg7CYDBQ1I1chLncdvj/dDqNUCgkOmofsB1SW6fTwWKxIJXaTpBO8lCRPpA+seskz0hal93OFekHM6E7m5hnT6lE7VxjXc5eE2onAKqM4GsjGQ8yFpFIBGNjY0UCFHkXEE5Dwyyz3D3M9b5MJqNmceTfcrmcCvLMvuZyOWxsbKCnpwdyuXyHgE/uRKH5FnrOdz8xf6t077+T6a/+6q/w5S9/Gd/61rdw9uxZXL169X43Ca2trZBIJEV/v/d7v1dRWWz+KRgMYmxsjAbtYAZkIWuNIHgWi4UqHKVSaVHaBb/fT9OF3LhxA0tLS/D5fHjttdcAAAqFAg0NDchkMlAotvPNPfnkkzQX39TUFHK5HPr6+tDU1ASz2Qy3243x8XEaTGR2dpZ+bzKZsLGxgYWFBSosEURtcnKSKoOIqWY4HMajjz6KUCiEF198ET/+8Y/xT//0T3C73dja2kJLSwtaW1vx0EMPoVAo4OTJk/j+97+PdDqNr3/965BKpXjttdfQ0NCAra0t6HQ6rK+v0+iXxALta1/7Gg2M0tbWhu9973tYWFjA8vIylpeX4fF4cPnyZYreyeVyRCIRuFwu3LlzB4VCARsbG5DJZLh48SI2Nzdx8+ZNLC4uIp/PQ6PR0NQWhAKBAAqFApxOJzo7O+m9wOQhyP2iUqmgVCphMpmwublJfbGZKaru3r1b4Urlp/eEvAecyIVFFsP09HRVD38SDY4PreG7bIQuoVKMBblIiT2zzWajWiDmpVopcdVPhB6hvFaliM3g+f078zZxlclk1LjGhZn7SoiYwqDYto6OjkKn0xVp//nmjqlQMJvNlMmtNnExYXxzIYZJrSZDxFRqsOfL7387/xxTwAGKGVaxjHUp5pVZDtf4EDSC5DAj7xDtL4CiPGxsRRH7v1xrlqtt5BJjCj/sMSyF1IkZI+bZxBawidYzm82KVkT4/dtBBKRSKZ1brlyN7G/ErC12f9hzwxwX8m/SHqaAyUcymQwjIyM0PQOThFCf3SiNmOuJ5C3jm3MmCc0tOcMWFxepkqZU/ZUqNJnEVKiw20n2BRnHbDZLn5F9BRQrlkqtX5ttO+cf83t2vez7ifkb1zvVHI8HkcxmMwwGA/73//7fuHjxIi5dunS/mwQA+NKXvgSfz0f/Pv/5z++6TOZaIvf/zMwM3auEtzh37hwMBgM944iygiBGhC8kQkRXVxfkcjlGRkbwqU99Cp2dnThx4gRVhGUyGQwPD6OtrQ0DAwM0eInH46Fl+nw+eL1erK6u4tatW/B4PGhtbYVWq8WxY8ewvr4OvV6PbDaLWCwGmUyGdDqN27dvY319HRKJhObVu3jxImpqajA7O4tsNguXy4VLly4hkUggHo/T9AVra2uIRqN49NFHqRnkzZs38clPfhLhcBhSqRR/9Vd/hdraWhw6dAg/+7M/i4MHD+Kxxx6DzWbDwsICstkszpw5g8HBQQQCAWi1WqysrCAQJM/d8AABAABJREFUCGBxcRG3bt1CPp9Hc3MzDh06hCNHjsDpdFITS6vViqamJqysrFAXgVAoBLVajdraWjQ0NGBoaAhyuRzpdBqnT5+GSqVCNBotOkPIPHHxfIODg0ilUmhvb+dUFHd3d+96bbHpPSHvHUJkMZRiSvaqXnZ9FouFapjYxGQsuC4m5kVKAhrwMTCE+JhcrkuPT5PLFNDYTGOlY8PWrjMPb6FxYVIpNJWQWGGwVJ1CCIvDsZ0sur29HWNjY5ymRnvBaPAx03xjxmTauBhssWuF/YzZDnbdZL1y5Wlkznm10FhmOezxIeuXRBLzer00ebXH40EoFKKCKpshIIoi8t+pqSksLS3B7XaLnttykQqhvokhtoDNpbQpRcz9SkxkhHxk3W430um0INJG3iOMP1ORsrS0hKtXr9J1wR4XvjNU6FzjEq6Fzhyh8ko9I+0FIGiJwCahuSVn2NzcnGAZzPorRbLZSgsuVJa5L5hMF2k/QZuZZrOl+kie86HVfPcT87dqIvvvFPrEJz5B//9//I//gd/5nd+5j615m3Q6HT1zbDYbtFqt4PupVAobGxtFf0LEdf9bLBYaXTMSiSCXy9GgHhKJZIcygPBQOp0OY2NjaGtrQ3d3N37qp34KLS0taGhowODgIH76p3+aRv8FAKvVColEgnQ6XWQlEQgEsLy8jHQ6DYlEglQqhdbWVrzwwguIxWLw+/1obW2FzWbD/v37UVtbi0cffRS9vb2QyWRIJpPw+/3Q6/UIBALYv38/FAoFDh8+jM7OTmQyGdTV1dGAjX19ffjEJz4BjUaDw4cPQ6fT4Vd+5VfQ0tKCxx57DOFwGBKJhAIDDocD+/fvR11dHYLBIEZGRpBMJtHZ2Ym5uTmkUinMz8/TYFtSqRRGoxESiQShUAgqlQoajQYnT57E5z73OTz88MNUMbN//35IJBK0t7cjl8vh9u3bcDqd0Gq11B/87NmzqKmpwdLSEkZGRmjU0NOnTxcp4dm8cDAYxKlTp+iaYt/xe+E9956Q9w4hpglRNRjIcutl1xcMBmEymUpq0bkuJubBJNYkh6ucUsxNqXZptVrqxFwJCWnXy6FSaCphWvr6+kQJg6VIDIPC93yvGI1yzcqEzLm4BKKJiQm4XC5O807m+0LtqJbwVgmxUb3JyUlotVrI5XI0NTUBAAwGA1wuF3K5HCfCxVYUkf9aLBbkcjnMzMwgkUjA6/XuQKGE2lPOs0rJYrEgGo3SYAN8ZpNCxN6vpQRVj8cDn88niLTxmYHbbDbI5XKak4n8xhwX5hlayhSQPHe73XC5XJiYmBCtaKlUIGef03yWCFzEtDpg9o0wtCdPnuT1vSbvE5O0ctdRudYnfObHTKRvcnISer0eNTU18Pl8oqwpxAjxfEI21+97sa8eBPr3f/93jIyM4NOf/jQ+/OEP48yZMwCKhb77SX/8x38Ms9mM4eFhfPnLXy4593/0R38Eg8FA/0ggwpWVFTqfRElJziGmKTGwfTaQ/Hj5fB6pVArnzp2Dx+NBIBCA3++nfA8pg5QLoOj8DgaDqK+vpz755P7weDxYXV1FoVBAIpGgKRBUKhWy2SwaGxupErWurg7hcBhqtRqzs7Po7u5GNptFX18fVldXaS652dlZrKysYHZ2Fn7/dvLykydPwufzoaurC42NjWhqaqIJ3UlaCMLbkoB8jzzyCBXS8vk8mpqa0NzcjEcffRRqtRr/8R//gbW1Nbjdbhqx88SJE4jFYnA4HEgmk6irq0NHRweMRiOOHDkCuVyOpaUluFwu3Lx5E0ajEbW1tUin0/je975Hyz9w4ACGhoYQiUSwurqK9vZ2JJNJWK1WpNNp/OQnP6HRd48fP06tYebn56kJKZPYFjbBYJATBGGaeFaT3gu88v+HEaSEzHvEEl9+P6G6gMrSJZBy2CZg5YRi5ypPTF69cseqGmPLJnbwBDF17EU7hMrdq/oqIfZa8fv9cLlciEQiFIUTGs97Peflfs+Omkl+A7YvfK/Xi2AwiOHhYVFBc5hCYzweh9lsxrVr12A2m4uSdXO1WUzE2N2uiVJ7VageoWdCZ5gYk9NS75XqP/M5EUAIE88uk8kg+P3+okTqpc7YSseHj8R8QwJ6kVDo5eQvFRuMRsy4VuOMYu63fD6PRCIhGKisVD+YgZ0CgQDn2FQ74Fq5dC94o7/4i7/AgQMH8Mu//Mt44YUX0NnZiWvXruEP//AP8fTTT+Ozn/3sntRbDn3lK1/BgQMHYDQaceXKFfz+7/8+nnnmGXzjG9/g/SaVSlEEHNgey+bmZly9ehVWq3XHPDOjvJK9n06nMTc3B51OB6lUCpVKhb6+PkxNTQEADWpktVpRW1tL54rkFlxaWkIwGERTUxMGBgZw7tw5KBQKxONx2Gw2GhWyt7eXumWQczydTuPFF19ENpuF1WpFOByG2WymwtTdu3dx/fp1nDx5Eu3t7bhx4wZ0Oh3W1tYwOzsLYDuVWktLC5xOJ9bW1mhid6VSiYWFBZp+QKFQYHFxER/60Idw/vx5Gojltddew+HDhxEMBqmfWl9fHwYHB/G9730PkUgEer0eQ0NDCAQCMBqNSKVSMBqNCIVCGBkZQSQSoWlqAoEANBoNMpkMdDodnnrqKUxMTGB0dBTf/e53aYqFhx9+mCKZq6urNGZEe3s7GhoaEIlEMDs7C7PZjCeffBLhcBjJZJL2WSqVFgVyYt5dXIHv2Pt8L/bde0jeA0BizcuqZSpXDTRGLJInZHJWDnGZv3D5WZRTHlOrzze25bZ5L9AetgZXTJv2CnHj69+DZEpE1koqlcLk5CQsFgucTidGRkY4zTvZdK/nXGx9TISDaTbK9O2Sy+WQy+UwGo2Ynp4WdVaQvcD03Szlk0nazPQRFkJId0NsU02+tvAhVWy/WUJCZ5hYpJDvPTEChUwmg8ViweXLl7G4uEjNsLjOOrJmR0ZGMDIyQhlCEqGPBGbgGguh9Vlq7fKZ2wvNay6Xg9lshlqthtVqFZw7rrrYCB4b+RIysxca90r3KdNMe3h4WLQ1Bd85w9TY81mTvFtROybV1NTgn/7pn7C8vIyf+Zmfwcc//nH8+7//Oz760Y/iL//yL/fEdA0AvvCFL+wIpsL+Gx8fBwD8xm/8Bh577DEMDg7i05/+NP72b/8Wf//3f49wOMxbvkKhgF6vL/oDQPcAG70hglk6nYbb7cbVq1epX5pSqURTUxP1wyOml/Pz8wgGg5idnUU6naYBRgh6TtIBEHP8ra0thEIhBAIB6PV6uFwudHV1QaVSoaWlpchC7Pr16wgEAlhfX0cgEEAkEoFcLsfo6CgOHToEnU6Hffv2YWJiAlNTU3A6nUgkEujp6YHFYsGjjz6K97///XC73ZiamoLdbsfS0hKOHz+Ozc1NqFQqLC8vw2g04vbt2wCAb37zmwCARCIBj8cDo9GIS5cuYWRkBHV1deju7kYul4NEIqEpFqxWKzKZDMxmM+rr6+FwOLC6uorV1VXMz8/TnHvBYBD5fB4qlQp6vR6//Mu/jOXlZTQ0NOCll16C0+mkAvLk5CRVsJE6jEYjwuEwFhYWAIAGbiHzJZFI6JwHAoEiP3ev1wuDwYBQKESVoszz517s8/eQvAcAyePS2on9rRIqR6NZqVaUS0vO9U012lIN4kPLqpWfkEl7jfyIRSGEyrofCGY1xwWAKKQWqDxp9G6oEoSbL+UC+3su5KscNKccpJi5P5hoVLl1ih0r9rnBlyyb+S3fWJSbg7ScNos9q8fHxzExMYFCoUDzK5XqE/t7ZgocsRYWYvvDDuEu5kzk+kbMGmAiZiSBOntdAag492O5fa82ca07wsyXsiYRe55Xi+4lb3TixAl8/etfRyaTwfXr1zE9PY2//uu/ht1uh1arxVtvvVXV+kKhEEKhkOA7ra2tUCqVO373er1oamrCm2++icOHD4uqj51CgYnkkvOWpGaSyWQ0yjbznGfvJ5PJhOnpaaqMI+ccsL1GTCYTQqEQLc/n82FjYwN6vR5KpZLmguNKq0MSmRMTeb1eD6fTCWA7mmRXVxe++tWvUnNHtVqNjo4O2heCnJ0/fx65XA5arRZ9fX1oaWnBwMAAvvGNb0Cn08HlcmFgYICaXHq9XmqZcuHCBTz55JNFCkydTge5XI7GxkasrKxgZmYGKysrGBgYwNbWFux2O7xeL1ZWViCVSnH79m2oVCqk02kcP34cfr8fLS0taGxsRF1dHe7cuYNEIoHl5WW0trYCANbW1lBfX49MJoO1tTXs378fg4OD8Pl8kEgksFgsuH37Nrq6umh0UWJ+/p3vfAe1tbWQy+U0CA5B7zweD5LJZMlUZQRdfS9PXpXoQRHyxAo/e2VaI0SVCpZC+ff4zJT4zLD2QtBiE7uuXK46Scm56mEyneUwQWKJa874yvJ6t3NCuVwuwQTR94J2UycXM1+JSfFemRyyia+vQmu+nOTpXAy0mLx3uxFy90IIKvV9JBIpSpIu1C4iPPn9fpozyeFwiG5LOW0Wa1JoMpkwOTlJUbxCoSCqT4SSySTOnTuH48ePU0ZJSAgqtz9iz+py+s5XP3MPR6PRopDyYhUildZ9L4i9Zpk5tIRMfUlQJaaJ7l7TveSNZmZm8MlPfhJHjhzBwMAAbt26hbfeegsXLlyggZIeFPrRj36En/qpn8LS0pJoFxHmWGo0Giqw53I5mvOOzD0xm2Se/7lcDtPT0+jr60MkEin6jfgoE2SQmAMyeRjiL9fT04Pr168jnU5TZI79LQDEYjG89dZb6OzsRH19PQ0cs7y8jHw+j2QyCZttO3m61WqlSdbtdjvC4TC0Wi1CoRB8Ph/C4TBCoRBFLRsaGqDVanH+/Hl0dHRAr9fDZrPBZDLB7/fj1q1b0Ol0qK2tRTweRy6Xw4ULF3Dq1CnE43HU1dXB4XAgn8/jwoULCIfDMJlM0Gg0yOfz+MVf/EX8+7//O5aXl7G+vo6pqSk899xziMfjNHl6b28vampqIJFIaBTRZDJJzSXz+Tzu3LmDzc1NfPzjH8djjz0Gr9cLl8uFYDBIUdX9+/fj/Pnz1BTV6XTizp07AICOjo6i3LRMXoRYXHDxYqFQCMPDw+8JedWiB0XI46Jqae92e5lVyvCRRc08mLjskIWEnHIYuWoRW8tWCXMvNGZsJoyYk3ExZZXOHVf9QkIFSRBNknyW6sNekdg6+frHHsfd+vaQcsWUUa4igq9uIsjV1NRQZ3kuQR3Yid4JCarMs6TUt+Uy/3uBRov9vpxxJ/4v6XQaiUQCx48fp4ExxCJ57DO5UgWBkCKm3D4xz6tS6FAlCLKY/pTzDl9biJlTOBzG4OBg0b1R7fPoXp1vzDXDZuCFFIlMhQ4AmqSZMOZ7TfeaN9ra2sKLL76Ia9euQa/X41Of+lRR0KL7QZcuXcKbb76J48ePw2Aw4K233sJv/MZvYGxsDD/4wQ9El8Mcy1gsRvcrufvVavWOeWXeZ2azGT6fr+hO8Pl8nD6vpRQi4+PjVIA5deoUZDIZDV4XiURgNpsRjUaRTCZhsVig0WhQV1eHXC6HQqGAu3fv4gMf+AAuXryIQqGAjo4OLC0tob+/n0btPHPmDLRaLU0TcPv2bczPz6OnpwcbGxuQSCTQ6XTwer3QaDTo7u6GVqtFMBjExsYGIpEItra2MDw8jNdeew1ra2vQ6/U4ePAgQqEQ8vk8ACAcDlMlQKFQQH19PZ588knIZDLcuXMHL7/8MkXebDYbrFYrpFIp2tra4PF48KEPfQi3bt3CzMwMFAoFtra2IJFIoFKpMD09jXw+j2eeeQaPPvoocrkcLl++jJmZGSpoEpN5pj+71WpFKpUSVLLx3a/pdBpvvPEGjh8//p6QVy16kIU8tkNupcLNbi5mMUhIqfLLQZX4yr4XSB67zt0wF0JMMlf5fI65YtGAShgq5rgSJ+5SprWV1l1tErumyl2buymjWooIwtzZ7XbqEydmfJl9IYw+mU92P8WiiMx9BxQzDHxBj+4FClgpEYbb5/PBZDJhbW0N2WxWMHBTKQG4HIR0L/pLysnlcpS5YJo6CimZhN6rlCoNhkV8kfL5PGw22447T6xicDe0F2uQ6x4Xc6/xmWbfq7N2r3ij5eVlGm3yQaerV6/iv/yX/0JD8judTnz84x/H7/7u70KtVosuhzmWzOTjRqORBiFxOp1USCLIWjAYhF6vx/z8POrq6tDU1AS5XE5zsgUCAZq4fHl5GR/72McQiUSoEAls83CRSIQG4Uqn0zhz5gx0Oh31I06n03j11Vdx69YtaLVa1NTUIB6PY3R0FPX19bh16xa1NNDr9UgkEshkMjRNwsDAAAwGA0ZGRjA+Po7l5WUUCgW0tLRgcHAQ586do4FniEmlWq3G4uIi1Go1stks3etKpRKhUAg3b95EfX09HnroIbz22mt46KGHoNVqaZCVWCwGlUqFyclJDAwMYHZ2Fna7HUqlEkajEWtra0gmk5ifn4fP58PRo0fR0tICj8eD06dPo6WlBR0dHejq6sLKygru3r0LnU4Hg8GAVCoFpVKJjY0NnDp1Cm1tbQC29+TS0hJNqSOTyXYoTcn/E3Naq9XK66/N3v97heS9F3jlASWbrXQeKOaBwEdkIQpdDsQMh/iBEBKTl43vW2Y/2I6lpdrE1pjvZdoI9hgyNy4z7C1f/7iI2We+8klfZLK3A8AAxXmouMaJWV6psWe+D7yNPhAN4tmzZ5FIJBCJRHakcChVtpi694rI+LITkLKp1Dpjr02uPokto5L8lVz7l2gIW1paylrzzL6w9y27nzYbd6Jm0n8S4pmZP0zsfJO1xRXopNR3e72eZLLtICljY2M0OXy57eIay0pSSQjtba7k9Ox32OeJw+HYkQPQ6/XSXH/MQA+RSATJZBJTU1Oi5krMPVMucZVpNptht9s57zzmWBLBiZxr1aJK12AutzPxPSGue5y9z7j2ODOomJg7/J1CTqcTZrMZJ06cwG/8xm/gH//xHzE1NYXLly/jU5/61P1uXhEdOHAAb775JtbX15FMJjE3N4cvfOELZQl4bAoGg8hms8hms4jH4+jr6yuaV7//7dQtNpsNGxsbUKvViEajdJ+TdyQSCWQyGe7evQulUomZmRm6TwDA4/Hg/PnzWFpaoneBXC7Hk08+CY1GA2Dbv/XChQvQaDTUFNhkMqG5uRk2mw3xeBx6vR4SiQT79u2DVqvF8ePHMTg4CKfTiVOnTmFpaQl6vR5erxebm5tYWFhAKBSi+UN7e3uxtLSEsbExpFIptLW1QSqVQqPRYHV1FT09PVhcXMTa2hqsViuOHDlCc9pls1n09vYiHo/D5/Mhn8+jtrYWRqMR0WgUarUaN27cwL59+3Dz5k1sbW1RdO7ChQu4ffs2MpkMstksDh8+TIUxj8eDgwcPwm63w2az4aGHHsLRo0eh1Wrx7LPPoq2tDadOnaKKPHJ2qlQqjI6OQi6X08BYXMLezMwM3G43xsfH8eMf/xiLi4s7zmzm/UruYqYJd7XoPSTvHiN5laIv5cC+5bYD4DbbSafTmJqagsVioVpZIaSDr5xy2yRkxiKmP+XULSbMNZ/ZphiNbDX9eNjtIkTMgMoxC2OaGDDNCsSip/fS3ImvHiEftUraVw0UtxzaK78gMQh8KTSUvMP28ygVrISJTIsNmc+uWyyKulvajZWDkDl9pWuPyx+tEnSQILnJZBIy2XbEVWZ5ZN9YrVbcvn0b7e3t0Ol0vHNVDoomdg9xmZlyrSuu74lGneQXFWpHOVYgu7lDCFpHzqJKTVqZ7SbC5v0Q8PaKN7p79y6mpqYwNTWFyclJXL16FSsrKwAAvV6PtbW1qtX1oBDbJ8/tdiMQCBRFR2aud+a5wuWP6Xa76W9Op5OmWzh58iRNc0CURUtLS3C73fjwhz9MI276/X5qwTA7O4v19XWaX+7kyZNUqVcoFGAymSjaSJBEJvL01ltvwefzQS6X48SJE7h27RpmZ2eRzWaRSCRw6NAhNDQ0IJfLQaFQUIuDO3fu4Pbt27BarXR8mInCr1+/jmQyiZWVFepXqNPp0NDQgP7+fvh8Pty+fRvr6+uw2+2IRCJob29HPp+HTqfD5cuXkc1mYTKZoFQq8aEPfQhyuRyLi4uYmprCwMAAtFotZDIZ4vE47t69i97eXpoqY3R0lObGIxYSVquV8qXkHOQLPGaxWHDlyhVcuXIFFosFOp0OBw8e5DWnJd+m0+n3Aq9Uk+6HkFcOY1cNn6LdtoP5HgDBb6oVTKESf7hK/YiEmDixApeQqd5e+ZIwBWGAf164mB0ARRcNUxCotlC6WxJqj5BJUzUEqFJmjZX0W4xS5F6ZLlZihlrtfSZE1fJJvVdmeHztFmP6zFS6CJlRij2XCEJPNNVcghPTxJPPf4TNdDIZGTFzUmoPsRV6QuawTMaqVFRKobN5N8I937tMVDGbzRbdYcD2WSUmdyWz3STp9m7cNSqle8kbXbp0Cb/wC7+AP/7jP8Zzzz23p3XdD2KPpdgzlM8CiLneiOUGcy+Q/T8/P4+trS3kcjnqWxcIBJDJZBCLxXD8+HHYbDacPXsWRqMR9fX1VOlLAo3E43GcPHkSkUiEnhehUAhSqRSDg4NYXl7GD3/4QwwPD6Ojo4OijJFIBPl8Hv39/TQyJ0G8FxcX4XA4sLi4iHg8DpPJhLNnz0KtVuP48eNobW1FXV0dLl26BIVCgeXlZWg0GsTjcfT09OCJJ57ASy+9BI/Hg9raWphMJuRyOWxubqKtrQ3RaBRbW1uIx+PYv38/HA4Hstks5ubmUFdXB7vdjtu3b0OtVkMm2/bfq62thU6no+kQ/H4/Dh06hI2NDRQKBZrXTyaT0T3MVmgyBbhcLodvfetbNMrpY489BofDwXtukfNGrVbDZDK9J+RVi94JSF41gq/sph3lIHW7RSl3I3CVI5RVCzkRq3XdCyZT7LzwCYV8DGo5bS2Xmd1tP8sZVz5NfqVrFNipdatkHYlZg3zjyl5nzDaJ2Rdi3ifEDpxUbroBdv1k/YlR4FSCwjCJK7hRtcPqsxktpgKFfWaLEXRKCVtiqNxxE3O/7HaPixFwSwUFIgopq9WKQqFQZLbJ13ahseAK0iTUby70ktmvXC63I3Ie+7wl+cva2towNjZW8q57tyJ5fPSTn/wEn//85zExMbHndd1rYo+lWF6lVEyGXC6H8fFxJJPJouAtRPhQqVRYWFiA1WrF8PAwRehyue0gKk6nEzKZDIlEAmtraxS5I0KOx+OhOWYBUMRwc3MT6+vrGBgYwPr6OiQSCQKBALq7u6HRaDA5OYkDBw5gaWmJoovA2363er0em5ub6O7uRjAYxNzcHG7evEmFuKGhIXi92+kUrl69igMHDuDy5cvIZDLo7u5GIpGA2+3G9evXMTQ0hMbGRirU5fN5dHR0YGtrCzqdDsC2gLy6uop0Ok3dIIiwKpPJsG/fPvzgBz/A6Ogo1Go1wuEw+vr6MDMzA61WSwU9ktrCbrcjEAggn8/DaDRiY2MDNput6Pzyer1YX1+H3+/Hxz/+ceobX+rc2Yt9956Q94AGXiG0VyZdpaicfEuVUDURTSZVKhTslsQGYCjFMFRDs8xVN1uzXA3lAbtN92OtlmvSXCnTWo05BECTVxOHbEDYBJo5rkS7n8vloFKpisxHxAiMgDASz/UdM5dTJSlF+MoREvZ2u46ENKxi57jSPvr9fiSTSeq7UY7J4m7OpXLNZEmbSA4tEihFLApazbO01LhfuXIFS0tLtI2kzkqDvIgZK2b/uJQEzDaTSIfMdEFs5Qobybtf97pY2iveKJPJoLa2dsfvCwsL6O/vx9bWVtXqelBIaCz5FC1EuREMBjEwMMAZBZigbeFwGAcOHEBLS0uRcm5qago+nw8jIyNoa2vbgfBbLBZcv34duVyOBishCcCz2SzW1tZonUxUfG1tDVtbW1Aqlejo6MDExATdf5OTk6ipqYFSqURfXx+NQOl2u+Hz+WC1Wmm+wPn5edTU1MDj8aClpQV3797FyMgIXn/9dRw5cgQ/+tGPYDabodPpKKJntVrR3NyMs2fPYm1tDUNDQxgaGsLa2hqUSiXu3r2L/v5+jI6OUmHL5/NhdXUV4XAYjY2N+Nmf/dkiZHJubo7mDyRKQQAwmUz47ne/C7vdDp1OR/fy9evX4Xa7UVtbi5GREdhsth1WVRKJhCpFiQVELpcrQmS5aG1trepI3nuBVx4wYsP0Nhu/8/5eElfQFXbb2FTqOZP4+sVVhtgxIJd3IpGgG5VJpTbYbkiojcxnhGFgto/rNzaJeQfgXz/EaVsmk0Em2w5AwY76VC6xx9Nmezugh1DwiGoQ6Se5uPiCR7Dnhf1vseNaag2KLYeETvf5fFSzWirYC6l7cHAQTU1NNN0FgJIBaJjtLucsIe/mcjm4XC54vV7U1NTw1sW399nrz+FwFF2GXONVqp1izhmr1UrLELvvKz1ryXfAdp8WFhYEAyiR9lsslh17s1Ly+/2UkRTTfrLugsEg5++EKeET5Mo9j4TOg1LjbrFYqC9Qtc5v5vrgIuacMc819rlqsVhgNpuhVqsxODjI+T05b7n2NKm/nLvznUwajQbDw8P4pV/6JfzlX/4lzp8/j4WFBfzVX/0VnnzyyfvdvHtOBDHzeDx0zxGhTy6Xo76+HlNTUxgfH8fExMSOIFBOpxP9/f1UYUP4tpmZGeRyOdy+fbvI4oD4+8pkMszMzCCRSEAmk2FjYwM+nw9bW1sIBoNFESSNRiPkcjm9fwYGBtDa2krTJ3z0ox9Fe3s71Go1hoaGIJfLaRAlgri/8sorNHfd8PAwVldXkUgk4HK5EIvF4Ha70dnZiVdffRX19fX48Y9/DL1ej8nJSTQ1NSGbzaKtrQ2tra3wer0YHh7G6Ogo7HY7CoUC+vv7odfr0dPTs+OszWQykEqlkEqliMViePnll+l9eOvWLSQSCQSDQUgkEjofS0tLeOGFFxCLxXDt2jVks1nI5XLI5XIYDAYkEgmYTCZ6JrHvWLLfC4UCpqenaTAdMud8+3x1dbXqa+w9JO8BQ/J2i1rt1tSJEBeSV0rzXE6wEj5NMVvbJNYsjdTPB4c/KKaEXPMjpn+VIE73Q0Msxk+xmvXU1NQgEAiUHeiDUCXrolTQklIIiJB5WiVtLnfOy+nz4uIiXnnlFXR2dqKzsxMANxooxhSFqw2VnFOl+nuv9wDbxI5c4FzCZbmIW7ltKNeMkn0OifW/46pP6M4oxzdur9HEShBAPiSfPUalUNsHZc2Wor3ijS5cuIBr167h2rVrmJqawszMDJLJJADgySefxOjoKAYHBzE4OIje3t6q1Xs/qRwkj7meyPoikVvlcjkaGxt3+NGPj49TJHlwcJAGy/N6vTQ10sMPP0zrI+sznU7j3LlzOH78OILBIBYWFjA1NYWnnnoKyWQSJpMJ+Xwec3Nz6OnpQVtbG20fuXeZwduA7b1148YNtLe3I5lM0vbE43HEYjF0d3fj8uXLSCaT2NrawtLSEkwmE0W8VCoVZmZm8Oijj+KHP/whTCYTDAYDHn74YWo2qdVqsbi4iJ6eHqooZZpLkn23sLCAs2fPQqfT4fDhw4jFYggEAujq6kJXVxdNJ5HP5+FwONDd3U3zEs7OzkIul+Pq1auoq6vDwMAADh06BACYmpqCyWQqGfWdy/SaKHj5zp73kLx3ORFNIdGilCIhVGh6enpXIclJ5DLmYcLWWLPLLvUceNvWnGgt2cgb0TaRyFATExMYHx/nRefY9avVak4mU6zmWYjY2lahMvmeEcaPGT6Xjxnkc7wWonuF/HJpnpnrt5KUAuUQEyEiKSgqqYsoI4S0a0Bxf7nGmD0/7PlnXuZMFLUSdJn9jcVioeY8YoivbVz9l8lk6O7uhkql2oEGsseE5CZiBqHgK59rHwhRqfFnkpg9wCyvUhSFiSYTVIzMbTgc5uyXEOK2GzSn3HVE3mcyKn7/dtQ9si7ZCBazfVz1cVl/MFFo9pww7wL2GAkhoZX2mVAul6OIutA7fBY1zPaVsgxgo7bsfcMeJ7Fr9p1Kjz76KP7rf/2v+PrXv44rV64gFothZmYG/+///T8MDQ1hYmICv/7rv47+/v773dR7QkyrGmBbUUL8xwDQM1ej0dAAI2z0fXBwkAp4ZD8XCgU4HA6Mjo5idHS0qD6Crk1PT6OrqwuRSAQOhwNbW1vo7+/H0tIS3a8k3crMzEyRUiiXy6Gvrw9zc3O4c+cOrly5AmCbb+zq6sLExARUKhXOnj0LvV4PjUYDu92O119/HdFoFBKJBOvr6+jr60MqlUJdXR0MBgO2trbwxBNPwO/34+jRowCA0dFRmrdvbGwMm5ubNBpnIBDA6uoqXnzxRSwuLiIcDiObzQLYzslIAqS43W6cPHkSTz31FI1Iev36deo6MDAwQIPArK+vo6enB+l0GvX19QCAUCiEYDCIYDCI+vp6qFSqIksooTuO757n+6ba9B6S9wAhedXQyPNpyKuF8LHrBUr7FDGJHfaeS/tPFj+5MAFApVJVJSjBbvpdjj9XqfpKPX/QNLuESLtzuZ0+Wu8E30kuEhsMpRykio1q7OV8cqEMQvtcDBIo5rxgf8eXyF2o75Ui1NXYX2Q+xfg2CrWJbbnALJsdKVMIpRJCzu4FcY1ZOeOUTCYpMkCCLQjVRczP2KHZ93r/i0HyKl2zfPueuUYqned7eSfcb95odXUVDQ0N97zevSAylrOzs+jq6uI9ryYnJ5FMJhEMBiGTyeg9QyybzGYzwuEwZ+oFUobb7aa/87ljEOVKLpejdwY5U5nBtgja9/LLL1MzyHPnzkGtVkMul0MikeC1115DOBzG2NgYOjo60NfXh3PnzqGpqQlTU1M0FYHZbIbH40E+n8fGxgbNnffKK6+gsbGRpnkhZtTZbBZerxcSiYSas5O94/F4qDI5m83irbfeoikW+vr6aN/T6TReeuklBAIBtLS0oK6ujvbT4/Fgc3MTN27cwNNPP43Ozk6KbB47dgzRaJSioT6fD3a7ndOHXogfYo63GCsA5lp5D8kD0NraColEUvT3e7/3e/e7WbuiclEYLu0Al4YW4Eb4+NCYUtpCZr1cmkuhC9rheDvJKx/yRrRbo6OjcDqdcDqdFQl4pTTP5RJ7foTKLFVfqefVRuQqnWs2MQVvdvuYfiqlyi0XBa2WFrtSLTpBmA0GA0Vv2G1hlh0MBmEymajWtVQd5IImCZXF9JcLJRCD5LPXHlfbSDlCCZvZSA/Z2zKZbIfvCF/fK0WohdYPESCILyFfeWQ+gZ1rWQwx0WT2eJJzrRRSKYQK3WvimotyxikSiaCnpweRSIT+xreO/X4/9Ho9YrEYgGLLD2Y79gK9Yt5BTCqFFrNN67jWLN++B0B9h5n7lY/Y5wGzrPu1Pu4lvVsEPCYJ3WkE4ZfL5bDb7fSeSafT1NR5fX2dKt24+K7JyUlMTk7C4/HQd7j2jc1mQ1NTE5qampDL5SiaTqy3gsEgza83MzODffv2UTPKmpoaLC4uQiKRIJ1OI5PJoK6uDpubm5DL5fjOd74Dp9MJj8eD0dFRLC4uwmw207pVKhWefvppOBwOeDwe9PX1ob6+HhaLBUNDQ7Db7VhdXYXBYIBSqaTrwOPxUKuulZUVyOVyjI6Oor29Hb/4i78IiUSC1tZWLC0tYWZmhtY1MDAAg8GAZDIJi8VCeZempiakUin09fXhzp07SKfT+Nd//Vesr6/j5s2blIdua2vDkSNH0NLSQseai6/O5XKc1jRC1nn3aj+/Y4U8APjSl74En89H/z7/+c/f7yZVRGIuj90Sl9mMkLmnWLNGNqNX6ns2hC1kKsc0ZSgFc3P9vhsTTXLJLi4u0ou2GoKiWKp2XX6/f0eAkkrGh4+xZbZZjAke+4ArxWAx27obxo+rz0JjzdybxCw0nU7jrbfeouuCeVHzMeyl5pNoKIkDPimLT6Bk9oUpiAmZx7HHWaj/QhcQc0xkMhmy2WyR2bHNZiu68KqxlsUIpuxxYQobXOWR+aw08EkpM0IAOy549jpmPr+X54tYKmec+PYtV2Akm82GeDyOrq4uAOA1N66GmT1QWuFHmGTiFsB+h/2cq1yuMSDlOBwOKiwLKU5IeV6vt+g8YJb1IK2P90g8Cd1pRDE0NjaGQ4cOQavVIpvN0oiU0WgUfX19RQE+2HyXwWCA1WqFUqmEwWCAy+XCxMTEDqUhWUfhcBjJZBLz8/Oc90swGCwyLR8cHKQBUAqFAr1v9u/fjyNHjlBfwImJCRw/fhzJZBI6nQ6Tk5Pwer0UnfL7/ZiZmUFTUxP0ej1aW1vR09OD9fV1hMNh1NTU4MyZM+ju7obT6SwyEQWAQqEAiUQCmUwGi8WCH/3oR9i/fz9isRgWFxexvLwMt9sNYBtFW1hYgNlsRktLC+VdWlpa8OSTTyKVSkGtVuPs2bOQyWS4efMmjWDNJPY5lE6nceXKFSSTSYrSM5U7zO+YJvDMcu7Vfn5HC3kkrCn502q1gu+nUilsbGwU/T0IVK2LjI+Y6BoT4eO6lPmYJyHGOhAI8DK3pRjySvrO9w37991oSgjTTSIjCTHbhPZC67wbYrbHYrFgfn4eWq12V+Mj5mASUy67HKZ/TimhYzdIX7l9ZjKpAOjlmMlkEAgEeAW7cg9wpnaVnGds/9ZSDCXAj+Qz+8O1d9hlC7W/FPrERjP2goTaZ7PZKPovZNbGFMYq3bdCCqfJyUmkUil6wZO2MdcxkwFgf89Gckhdexm5VqwSgOvdUkggW7FChEc+Bol8X40olKWQX5KMnjC0XApDrVaL+fn5ImGUXa6Q4D84OEjNwPjGkGkpYbfbKSP7Hr3zqbGxsQidtlgsVFAD3lbwk73hdDqpW4vBYMDMzAy9W8gfUbARIbGlpQVdXV24dOkS/H4/4vE4Tp8+DbfbXaQ0dLvdSCaTRSg9IYJ0Dw8PF1layeVyPPXUU2hvb0dTUxMcDgd6enpo3R/96EdRKBRw6NAhRCIRDA4OYmNjA5lMBrOzs1Cr1VhYWEA6nUZfXx/UajUMBgPMZjPW1tawublJUxpYLBbMzs7Sei0WCzUrJcLh5OQkFSxv3LiBbDaLuro6FAoFKhSGQiHodDqEQiFOYZekcmhpaUEoFEJfXx89D7isfYiV0tTUFEUNyZ7n4ivY59f9QOPfsT55ra2tSKVSSKfTaG5uxkc/+lH8zu/8jmBOty984Qv44he/uOP3++2TV8rEcbdUDVt+vjJK+SqVqruSvvN9I1RWufWwDwMAZeUku99+dOSgIlH8AJTlU3avqZyId1xzWc2xZ5YPYEc0RKbvkVwu5/WxqsYYM1Ez4O01SIQEvnqE9giX1YCY8SNlCiVGvxdWCdWm3awdMeci2y+PkNBaIUoP4O1kyKTM+fl5dHV1VTU6Z6n+MIm0O5cTzp3IXi9MNJO9ZsTuGb72lTr7hdYk1x3G5QPKFRV1t20X8jXl8tm5V3S/ffLeTcQeS7Le2AnIieKda/2Stcd8D+DeS6dPn4ZEIsHq6ipMJhM0Gg10Oh1dX9lsFqFQCKnUdkLwQqFAc+mRMrjK5VKuBINBGI1GuifY6zeRSODWrVs0CqfBYIBMJkNTUxMmJycxMzOD1tZWpNNpaLVaSCQS1NfXY21tDQ0NDTTXqN+/nSLC4/FQ5Eyv1yMSiSASiSCRSKBQKKCmpgYKhQJHjx7FxYsX0dTUhKtXr6K1tRVqtZoGZWlqakIgEMCdO3fgcrlgsVig1WppADe9Xo+NjQ1YLJYiZSCZh5qaGnoHlpuKSuhunp+fR29v73vJ0AHgK1/5Cg4cOACj0YgrV67g93//9/HMM8/gG9/4Bu83qVSKasmA7c3X3Nz8rj/IqsF4ViJYMZ9XI+DLbqjcwA1sYr/PdxDupkw2sRNnlzNubMYFKD9Uv9h2VoN2W0c121hqrQgxwnshbJKLuaampuh5KpWqSLkiFGhFaPzY34lhWivp826FRDHCKNf7lawdrrQB7DIrYdaZ42Cz2Wg/pqeni8KW71aZxVUv+5xjzweTSSXada66uBQ3lSYwF+pfOp3G2bNn0d7eTplZJlWiaKzG+V5pPULv3yt6T8irHrHHkghtJHWESqUqGdSInDN1dXUIBAJ0/7DPH2IBcOPGDXR1daGmpqYoBQLwttVCMBhEMvn/Y+/M45sqs///SZMmXdKmTZs2bbrQ0gKldAMEQUdAwYqjgzo6uAIziuOCjgvOqOOo44a749cRBVHEFUVwBQWrLchWSps2pYVSCLQ0NDTd0pWE3j6/P/jdO0matGmb7uf9evUFubn3ec69z03yfO45zzntaGxsREZGBmJiYlw+zOAfOtl621UqleBpdDYv4jgOBw4cgMlkwuTJkyGVSmG1WnH06FEkJSUhPz8fBQUFUCqViI6Ohr+/v1BrkhePtqLWYDDg4MGDAM4vnairqxOEb3t7O/bu3Yv4+HhERkYKhdaNRiNmz54Ng8GAuro6hISECEmeOjo6UFJSgo6ODnR2dkIikQjXgR8fPoycF4Xdffe6S3cPBmtra5Genj56RZ4rT5steXl5mD59epftmzdvxvXXX4/a2lq7hZ7dQV9kg8dQe7n4L0M+c1RPT6F7ojcTZVfbe7omBw8exIkTJ+Dt7Y0LLrjALTsHQlQP9dgNNu4+uOhuYuaJ699dZj7b+oDOngJ391AC6Jvgd+dBh+PnrLs6bM76dubB6ut14xMWDGTNRlffA7ZRALxI6+l6u/M9wU92ANdeKVt7XIlQd6msrIRWq4VSqUR8fHy3Xi1HTpw4gaKiIqSlpQkTTNttfDKD/n5HHTx4EGazGRaLBZmZmcNKLI1UaG7kOfhrWV9fLyQa4r/L+e8IlUol1LRz9jnlH6wcOXIEQUFBgrgqKioSslFmZmba/T7w39FVVVUAzn+fqtVqITS5vr4eIpFIeFDDL1E5d+4cfHx8MH36dKENPmsn79niuPOJRtLT0+3stf3NqqmpEdaxMsZwxRVX4MCBA1Cr1bBYLAgODkZ1dbWQcXPevHlISEhw6em0Wq347bffBIE2f/58IQsoLxhDQ0Mxbtw4IctnfHw8ZDIZfvvtN3h7e6OtrQ1JSUnC9VOpVNBqtWhtbUVra6vQplKpRHFxsfAZUKlU6OjosHuo6vgADOj+d7WnucGY8OTV1taitra2233GjRsHHx+fLtsNBgOioqKwf/9+zJw5063+6Its8BjqH1rHiV93BdvdoTchg30JMQLOpyTPyspCUlIS4uLi3LJzIATZUI+dpzzR3SVe8LRdnhgHZ8JMqVQKkwE+jIXjuG69ep6yxx17+cm/2WwWBBb/OiwszG7C4cqr0p2IcccbYvtjajuR6u6HuK9h485+5PmJFe99c1esuvIgO04KuhtLx/OwLZTs7OFoT1RWVqKiogIymUwInXLWj6tju/PkicVij9yT/RWyRFdobuQ5+Gt56NAhHDt2zO6Bie28hL/erjz0vDhraWlBSEiI4NWvqqpCbGys0KYrT7xSqcSWLVuQnp6OqqoqBAQEQCwWIzY2FhzHoaCgAOfOnYO3tzfS0tIEj5fRaLR78GYrFG0LoRuN55O/7Nq1CxMmTEBHRwcOHz6MhoYGTJ8+Xfjc//rrr1iwYAH8/Pxw6NAhtLW1wdvbG9OnTxe8iY6/a2FhYYJ3zWg0YvLkyYKwFYvFOHHiBLRaLdRqNWbOnGl37gaDAe3t7WhpaRE8ira/LbYPsnx9fe0eDDrOF22/ix2vC4Buv8/ciSYbiM/dsBJ5/eGHH37A1VdfjYqKCrfDQOiLbOwwGGGjfQ1pdUVfJuZDLcgGAk+tKa2oqEBNTQ3CwsLcnnj3Vch5euLZ3WTAHc9KX8LPensvOVuHZhti6LjGoac23X2Q0pvQ1N4+iOnpfJ21zYfV9vaBgrthwb0Zl/7eh/35PunpngP6HkJODCw0N/IctiKvvr7e7oGJ7bxEp9O5/R3O/57xyUCqq6t7DIHetm0b6urqwBjDjTfeKCQL4r+7Tpw4gYaGBqSlpUEsFtut/7Z9mMX33djYiMTERLS0tAjhpkeOHIFMJkNbWxvCw8OFkEv+wVdDQwPGjx+P9vZ2hIWFoaKiAkajEb6+vpg7dy6OHDniNAqE4zgcPHgQnZ2dQhK5uLg4tLa2Qq1W20VLAP/7XjEajdDr9aivrxdCMW2vp2PiKGceVp1OJyyZsQ29d7wutv06m/+587CORN7/Z9++fdi/fz/mzZsHhUKBvLw8PPjgg5g+fTq+/fZbt9uhLzJiODMaBVtfGEpPXm+8Ju4e56wNd9eNuZoM9OUa9WRjb4VPdw853Anvc6f//q5r8uSDGHfb7iv0+SeGCpobeQ7+WppMJrS1tbn8DerNg2h3H5bY7scX+543bx58fX0B2IfXl5SUCN/RvIBxtJXjztcgbWlpQX19PZqamjBz5kzBK6hQKLBlyxZMmzZN2KZSqbB9+3ZUVVUhNDQUcXFxSE5ORnFxsZBVt6OjA42NjQgICEBbWxsmTZpkl2Csvb0dJSUlCAsLQ3h4uBAO2t7eLngjbQUaL1BVKpWQgdM2r4HtusjujgfQxYvZ2wejvXlYRyLv/1NQUIB77rkHR44cgcViQWxsLG688Ub8/e9/FzIJugN9kREE0R19nWi7e5xjGLE7gspTk39Pe/L605enjiEIov/Q3Mhz8Nfy8OHDCAgI6HHNsTuigOO4bj30tiGP3eUe2LdvHwoLC6HRaHDFFVd08TTxtvLh1RzHoa2tDT/99JMQsRAYGIgbb7wRUqkUBoMBjY2NOHjwIC666CLExcXBYDDgwIEDqKurQ2pqKmbMmIH8/Hzo9Xr4+fkJ690iIiLQ2NiISZMm4ciRI0I0iMViQWlpKdrb2wVvpbM13o7rER2jSGw9fvx5HDt2DMnJyYKXrq2tDbW1tfDy8rLLtMv30dPvUHcPJt0R7yTyPAx9kREEMZQMRhgxQRBEb6C5keewTbzCl1AAYBduDthn0XUVesgLCF6AxcbGYsaMGV36dJa0y9nvyr59+7Bz504kJCRgxowZdvtarVYUFhYKa9P4sgIA4O/vj2PHjkEkEmHChAl2JRq2b9+OxsZGtLa2IjU1VViLLZVKhWQuJ06cQFZWFjo7OzFx4kTI5XKkpqbCaDTCaDQKZRl4oTZp0iQUFxcDANLT07uEc9ray3vtbMNKg4KCIBaLIZFI7K5LYGAgWlpakJycDJ1Oh87OTqHMgq+vb6+zaHa3prwn8a5SqaDX60d34pXBhr7ICIIgCIIg/gfNjTyHrchra2vrEsrHe8ukUmmXaA7HzLq84KusrBQ8eXzmWlu6C2t3XOvGl2ni1+HZZubs6OgQ1oE7ZvYE/idMHTMs79ixA2fPnkV4eDhiY2PtxCMvhCorK2EwGCASiRAdHQ21Wi0krIqKisK0adME75rZbEZnZyfa2trQ3NyMkJAQwVvHXy8+gYpCoYBcLkdISAiqq6sRERFhF05/+vRpYV0+n6G6vLwcfn5+grAsKipCcHAw4uLi7Nbx2a5x5hOf2YpMnU6HkJAQMMa6iDlX66Nto3m8vb09XkJB0vMuBEEQBEEQBEH0hTNnzkAqlcJoNAqTf15oAbAro8BjK+xsiYmJEbJfOhN0vKhyFs7Ir+nWarVITU1FVFSUndeQLzoeEREBkUiEc+fOCUXKeS8XL45MJpPgwausrBT6WrhwYRePZWVlJaqrqyESiRAcHIzGxkZ4e3vDZDIJZa34rMz8ufCZPPkC5HV1dULNurCwMEilUqhUKkEwBgUFobm5WfCiRUREwGQyIT09HSaTCaGhoUK7ttd03rx5KCkpEdYmBgcHw2QyCWGevCjT6XRoaWmBTqdDREQE2tracPDgQURERAiCtLOzExqNpsvYmEwmYQ2irfjjxzg1NRV6vd4Tt5odXh5vkSAIgiAIgiAIAEB4eLjgkeMRi8WIiYlBTEyMsC7btuC4bdITXqQZjUa77bw3kBdVwP8Si1RUVKCqqkpIoiKRSJCamgqz2QyFQgGdTie0aQvHcaipqRGSxezduxfBwcHw9fWFWCyGXC5HeXk5VCoVAAg19qqqqrq0xb9fVFSE4uJiVFdXQ6/XIyEhAVFRUZg8eTLCwsLAGINCoYCvr68ggsRiMTIyMuDn54eYmBihzAJfBoEXr3w9vtbWVsydOxdmsxlqtRp1dXVoa2uDTqeDWq2Gn58fpk2bJqzB47N78qGkvNfSx8cHMpkMMpkMWVlZghBPTU0VQkvVajXMZrMgilUqFeRyOdLT052OmVqt7jL+tmMslUoRGRnZz7usKxSuSSEJBEEQBEEQAGhu5EncvZa9TYTFv25vb8ehQ4eQlpaGuLg4u5p6vCcKgF0CFmehm7aJS6qrq9He3g6JRIKGhgbEx8ejvb1dqInnmC3ZcS0aL6A4joOvry9SU1NhMBiE8EmNRtNl3SEvliQSiXCOzjKQHjhwANXV1cjIyEBcXJxQy9NsNmPixIkwm82Qy+XQ6/W45JJLhCQujglqbOvj8TUGHbORbtq0CdOmTUNQUFC/6rq6u+Z+ID535MkjCIIgCIIgxgzPP/88Zs+eDT8/PwQFBTndp7KyEldffTX8/f0RGhqK+++/H1ardUDs6am0j+P7vCirq6sT1tTx2xUKBVpaWgSvlUajsfMi8SGLtsKD9zRpNBpERETAbDaDMYa0tDQEBQUJSUhsvWu27fEeSb6tqKgoSKVSIawzLi5OKFRuK1b584qJiYFMJkN1dbXghdRqtYIXjT+3qqoqHD16VCh0rlarER8fj8svvxx+fn5ITk7GgQMHIJFIUFpaioiICKHOnu3Y8SGbtuGqtrXyjEajXS0+W2zFHX/ewPn7pbKy0s5m27Fy5uUcaEjkEQRBEARBEGMGq9WKG264AXfffbfT9zmOw+9//3u0trZi9+7d2LhxIzZv3oyHH354kC3taldlZSWsViskEgkyMjLsyjHwYi0sLMzpsXzopqPw4MUWT2pqqlAbzhFXXjbb2np8eKWtGDQYDIKA40WaYzFylUqFiIgIyGQyKBQKO2HEi7IJEyZALBbDYrEIa9z4EM76+nrMmDEDHR0dUKlUsFgsyM7OFtbS8fCZTKVSaZcsmHwYp6vMpI7XzjE8lt/Or9MzGo0QiUTgOK6LABxoxnTiFT5SlU8LSxAEQRAEMZbh50SjeTXPv//9bwDAhx9+6PT9HTt2oLS0FKdOnRLWSr322mtYtmwZnn/+eZfhdBaLBRaLRXhtNpsBuDfP5DgOZ86cQXh4uEuP3unTp3Hq1CkAQHR0NM6ePYuAgAC0trYK+7S1tcFisaCtrQ2RkZE4ffo0LBYLysvLhWySU6ZMQXNzM4KDg9HQ0CD0e+bMGSGjZ2RkJPR6PSwWC5qbm7tdM3b69Gm0t7fj8OHD8PLyEurd8UlWIiMj0dzcDJlMhnPnzqG5uRkdHR1CuxzHobm5GUqlUujnzJkz8PPzE64dx3EIDAxEYGAgwsPDUVtbi+DgYDQ1NcFqteLQoUNISkoCAMyaNUuwKyIiAg0NDYiOjsaRI0cQHh4OPz8/4fxtx6a5uRmtra0IDw+HVCpFQECA3fUBgMbGRgAQjj19+rQgOr28vCCTydDU1AQ/Pz+UlZXBarWipaUFISEhwpg4YyA+d2Na5DU3NwM4/0EhCIIgCIIgztPc3AyFQjHUZgwJ+/btw5QpU+wm5JmZmbBYLMjPz8e8efOcHrdq1SpBQNpC80zCXTz5uRvTIi8yMhKnTp1CQEAARCLRgPXT1NSE6OhonDp1ihYxD2NonEYGNE4jAxqnkQON1chgsMaJMdaj52a0YzQaBc8NT3BwsFAGwRWPPfYYHnroIeF1Z2cn6uvrERIS4vY8kz6Pzhnt12UgPndjWuR5eXkhKipq0Prj3czE8IbGaWRA4zQyoHEaOdBYjQwGY5xGogfv6aefdupFsyUvLw/Tp093qz1noowx1q1Y41Pv2+IqsUtP0OfROaP5unj6czemRR5BEARBEAQx8lmxYgVuvPHGbvcZN26cW22p1Wrk5ubabWtoaMC5c+e6ePgIYrhCIo8gCIIgCIIY0YSGhiI0NNQjbc2aNQvPP/+8UNsNOJ+MRSaTYdq0aR7pgyAGGhJ5g4BMJsNTTz3VxYVPDC9onEYGNE4jAxqnkQON1ciAxslzVFZWor6+XqhrVlhYCABISEiAXC7H5ZdfjsmTJ+O2227DK6+8gvr6eqxcuRLLly8f8FBBGmfn0HXpPSI2mnPkEgRBEARBEIQNy5Ytw4YNG7psz87Oxty5cwGcF4L33HMPfv31V/j6+uLmm2/Gq6++SiKDGDGQyCMIgiAIgiAIghhFeA21AQRBEARBEARBEITnIJFHEARBEARBEAQxiiCRRxAEQRAEQRAEMYogkUcQBEEQBEEQBDGKIJE3gOTk5EAkEjn9y8vLE/arrKzE1VdfDX9/f4SGhuL++++H1WodQsvHJlu3bsXMmTPh6+uL0NBQXHfddXbv0zgNPePGjevyWXr00Uft9qFxGj5YLBakp6dDJBIJKcp5aJyGnj/84Q+IiYmBj48PIiIicNttt+H06dN2+9A4DS0nT57E7bffjri4OPj6+mL8+PF46qmnuowBjdPo4Pnnn8fs2bPh5+eHoKAgp/uM1bFevXo14uLi4OPjg2nTpuG3334bapOGPVQnbwCZPXs2qqur7bb961//QlZWFqZPnw4A4DgOv//976FSqbB7927U1dVh6dKlYIzhrbfeGgqzxySbN2/G8uXL8cILL+DSSy8FYwzFxcXC+zROw4dnnnkGy5cvF17L5XLh/zROw4u///3viIyMRFFRkd12Gqfhwbx58/D4448jIiICBoMBK1euxPXXX4+9e/cCoHEaDhw5cgSdnZ1Ys2YNEhIScOjQISxfvhytra149dVXAdA4jSasVituuOEGzJo1C++//36X98fqWH/xxRd44IEHsHr1alx00UVYs2YNFi5ciNLSUsTExAy1ecMXRgwaVquVhYWFsWeeeUbYtm3bNubl5cUMBoOw7fPPP2cymYyZzeahMHPMce7cOabRaNi6detc7kPjNDyIjY1lb7zxhsv3aZyGD9u2bWOTJk1iJSUlDADTarV279E4DT++/fZbJhKJmNVqZYzROA1XXn75ZRYXFye8pnEafaxfv54pFIou28fqWM+YMYPddddddtsmTZrEHn300SGyaGRA4ZqDyHfffYfa2losW7ZM2LZv3z5MmTIFkZGRwrbMzExYLBbk5+cPgZVjj4KCAhgMBnh5eSEjIwMRERFYuHAhSkpKhH1onIYPL730EkJCQpCeno7nn3/eLkyFxml4cObMGSxfvhwff/wx/Pz8urxP4zT8qK+vx6efforZs2fD29sbAI3TcMVsNkOpVAqvaZzGDmNxrK1WK/Lz83H55Zfbbb/88suFqAPCOSTyBpH3338fmZmZiI6OFrYZjUaEh4fb7RccHAypVAqj0TjYJo5J9Ho9AODpp5/GE088gR9++AHBwcGYM2cO6uvrAdA4DRf+9re/YePGjcjOzsaKFSvwn//8B/fcc4/wPo3T0MMYw7Jly3DXXXcJYemO0DgNH/7xj3/A398fISEhqKysxLfffiu8R+M0/Dh+/Djeeust3HXXXcI2Gqexw1gc69raWnAc1+W8w8PDR+05ewoSeX3g6aefdplQhf87ePCg3TFVVVXYvn07br/99i7tiUSiLtsYY063E+7j7jh1dnYCAP75z3/ij3/8I6ZNm4b169dDJBJh06ZNQns0TgNDbz5PDz74IObMmYPU1FTccccdePfdd/H++++jrq5OaI/GaWBwd5zeeustNDU14bHHHuu2PRqngaG3v0+PPPIItFotduzYAbFYjCVLloAxJrxP4zQw9GUecfr0aVxxxRW44YYbcMcdd9i9R+M0fOnLWHfHWB1rx/MbC+fcXyjxSh9YsWIFbrzxxm73GTdunN3r9evXIyQkBH/4wx/stqvVauTm5tpta2howLlz57o8tSB6h7vj1NzcDACYPHmysF0mkyE+Ph6VlZUAaJwGkr58nnguvPBCAMCxY8cQEhJC4zSAuDtOzz33HPbv3w+ZTGb33vTp03HLLbdgw4YNNE4DSG8/T6GhoQgNDcWECROQlJSE6Oho7N+/H7NmzaJxGkB6O06nT5/GvHnzMGvWLKxdu9ZuPxqn4U1/fuMcGYtjHRoaCrFY3MVrV1NTM2rP2WMM1WLAsURnZyeLi4tjDz/8cJf3+EW0p0+fFrZt3Lhx1C+iHU6YzWYmk8nsEq/wSXLWrFnDGKNxGq58//33DACrqKhgjNE4DQcqKipYcXGx8Ld9+3YGgH311Vfs1KlTjDEap+FKZWUlA8Cys7MZYzROw4WqqiqWmJjIbrzxRtbR0dHlfRqn0UdPiVfG2ljPmDGD3X333XbbkpKSKPFKD5DIGwSysrIYAFZaWtrlvY6ODjZlyhR22WWXsYKCApaVlcWioqLYihUrhsDSscvf/vY3ptFo2Pbt29mRI0fY7bffzsLCwlh9fT1jjMZpOLB37172+uuvM61Wy/R6Pfviiy9YZGQk+8Mf/iDsQ+M0/Dhx4kSX7Jo0TkNPbm4ue+utt5hWq2UnT55kv/76K7v44ovZ+PHj2dmzZxljNE7DAYPBwBISEtill17KqqqqWHV1tfDHQ+M0eqioqGBarZb9+9//ZnK5nGm1WqbVallzczNjbOyO9caNG5m3tzd7//33WWlpKXvggQeYv78/O3ny5FCbNqwhkTcI3HTTTWz27Nku36+oqGC///3vma+vL1MqlWzFihXCjywxOFitVvbwww+zsLAwFhAQwObPn88OHTpktw+N09CSn5/PZs6cyRQKBfPx8WETJ05kTz31FGttbbXbj8ZpeOFM5DFG4zTU6HQ6Nm/ePKZUKplMJmPjxo1jd911F6uqqrLbj8ZpaFm/fj0D4PTPFhqn0cHSpUudjjXvXWds7I7122+/zWJjY5lUKmVTp05lO3fuHGqThj0ixmxWWBMEQRAEQRAEQRAjGsquSRAEQRAEQRAEMYogkUcQBEEQBEEQBDGKIJFHEARBEARBEAQxiiCRRxAEQRAEQRAEMYogkUcQBEEQBEEQBDGKIJFHEARBEARBEAQxiiCRRxAEQRAEQRAEMYogkUcQBEEQBEEQBDGKIJFHEARBEARBEAQxiiCRRxAE4SaTJk3CunXr+nz83LlzIRKJIBKJUFhY2O1+DzzwQJ/7ccayZcuEvr/55huPtk0QBEEQI5Vrr70WwcHBuP7664faFI9CIo8gCMIN2tvbcezYMaSlpfWrneXLl6O6uhpTpkzxkGXu8eabb6K6unpQ+yQIgiCI4c7999+Pjz76aKjN8Dgk8giCINzg0KFDYIz1W5z5+flBrVZDIpF4yDL3UCgUUKvVg9onQRAEMbJwN+JkNDFv3jwEBAQ4fW8kR8GQyCMIguiGwsJCXHrppbj44ovR2dmJmJgYvPHGGx5rv7W1FUuWLIFcLkdERARee+21LvswxvDyyy8jPj4evr6+SEtLw1dffSW839zcjFtuuQX+/v6IiIjAG2+8MSAhnwRBEMToZ6giToYjIzkKZnAfJRMEQYwgjh8/jjlz5uCRRx5BSEgIOjs7ccEFF+Chhx7C7373O0yfPr3ffTzyyCPIzs7G119/DbVajccffxz5+flIT08X9nniiSewZcsWvPPOO0hMTMSuXbtw6623QqVSYc6cOXjooYewZ88efPfddwgPD8eTTz6JgoICuzYIgiAIwh34iJORjtVqhVQqxbRp02CxWLq8v2PHDkRGRnbbhkKhgEKhGCgTBxTy5BEEQbjgrrvuwnXXXYcnnngClZWVmDVrFv7+978jKCgIv/32G4D+LdhuaWnB+++/j1dffRULFixASkoKNmzYAI7jhH1aW1vx+uuv44MPPkBmZibi4+OxbNky3HrrrVizZg2am5uxYcMGvPrqq7jsssswZcoUrF+/3q4NgiAIYnSye/dueHt724mYEydOQCQSoaKiwiN9zJ07F/fddx8eeOABBAcHIzw8HGvXrkVrayv+/Oc/IyAgAOPHj8ePP/5od9xPP/2Eiy++GEFBQQgJCcFVV12F48ePC+9/9dVXSElJga+vL0JCQjB//ny0trY6teGjjz5CSEhIF7H2xz/+EUuWLBHsXLFiBR566CGEhoZiwYIFAID8/HwcOnSoy19PAm+kQyKPIAjCCUajEb/++ivuuusucByH4uJiZGRkwMvLCxKJBFKpFED/FmwfP34cVqsVs2bNErYplUpMnDhReF1aWoqzZ89iwYIFkMvlwt9HH32E48ePQ6/X49y5c5gxY4ZwjEKhsGuDIAiCGJ0UFhYiKSkJMpnMbltQUBBiY2M91s+GDRsQGhqKAwcO4L777sPdd9+NG264AbNnz0ZBQQEyMzNx2223oa2tTTimtbUVDz30EPLy8vDLL7/Ay8sL1157LTo7O1FdXY2bbroJf/nLX3D48GHk5OTguuuuA2PMaf833HADOI7Dd999J2yrra3FDz/8gD//+c92dkokEuzZswdr1qzx2PmPRChckyAIwgn79+9HZ2cn0tPTceTIEbS3tyM9PR2nTp1CbW0tLrroIgDnF2zn5OT0qQ9XP2a2dHZ2AgC2bt0KjUZj955MJkNdXR0AQCQS9bptgiAIYmRTVFSEjIwMu22FhYX9zgTtSFpaGp544gkAwGOPPYYXX3wRoaGhWL58OQDgySefxDvvvAOdTocLL7wQwHkvmy3vv/8+wsLCUFpaCqvVio6ODlx33XWCGE1JSXHZv6+vL26++WasX78eN9xwAwDg008/RVRUFObOnSvsl5CQgJdffrlX55aZmYmCggK0trYiKioKX3/9NS644IJetTEcIU8eQRCEE6xWKwDg7NmzKCwsRFRUFEJCQrBmzRpMnjzZI+vdEhIS4O3tjf379wvbGhoacPToUeH15MmTIZPJUFlZiYSEBLu/6OhojB8/Ht7e3jhw4IBwTFNTE8rLy/ttH0EQBDG8KSws7PJ7pNVqnYq8t956C6+//nqf+klNTRX+LxaLERISYifKwsPDAQA1NTXCtuPHj+Pmm29GfHw8AgMDERcXBwCorKxEWloaLrvsMqSkpOCGG27Ae++9h4aGhm5tWL58OXbs2AGDwQAAWL9+vZD9kqcva+W3b98Ok8mEtrY2VFVVjQqBB5AnjyAIwikXXnghJBIJnnnmGbS0tGD8+PFYvXo13njjDWRnZ3ukD7lcjttvv11I7BIeHo5//vOf8PL63/O3gIAArFy5Eg8++CA6Oztx8cUXo6mpCXv37oVcLsfSpUuxdOlSPPLII1AqlQgLC8NTTz0FLy+vLt49giAIYvTAcRxKSkq6ePIKCgpw7bXXdtm/qKgIt956a5/68vb2tnstEonstvG/N3z0CQBcffXViI6OxnvvvYfIyEh0dnZiypQpsFqtEIvF+Pnnn7F3717s2LEDb731Fv75z38iNzdXEIOOZGRkIC0tDR999BEyMzNRXFyM77//3m4ff3//Pp3faIREHkEQhBNiYmLwwQcf4B//+Aeqq6shkUjQ1taGbdu22a1/6y+vvPIKWlpa8Ic//AEBAQF4+OGHYTab7fZ59tlnERYWhlWrVkGv1yMoKAhTp07F448/DgB4/fXXcdddd+Gqq65CYGAg/v73v+PUqVPw8fHxmJ0EQRDE8KKsrAzt7e12CUT27dsHg8Fg58k7dOgQ7rvvPuzfvx87d+7Eq6++ikWLFg2obXV1dTh8+DDWrFmD3/3udwDOJ4mxRSQS4aKLLsJFF12EJ598ErGxsfj666/x0EMPuWz3jjvuwBtvvAGDwYD58+cjOjp6QM9jJEMijyAIwgW33XYbbrvtNiiVSnzwwQe45pprPN6HXC7Hxx9/jI8//ljY9sgjj9jtIxKJcP/99+P+++932kZAQAA+/fRT4XVrayv+/e9/48477/S4vQRBEMTwgC9W/tZbb+H+++/HsWPHhN8JPgtle3s7br31Vnz55Zf4wx/+gC+++AJLly4dcJEXHByMkJAQrF27FhEREaisrMSjjz4qvJ+bm4tffvkFl19+OcLCwpCbmwuTyYSkpKRu273llluwcuVKvPfee31OejZWoDV5BEEQ3VBVVYWGhgaXC8IzMzNxww03YNu2bYiKikJeXl637a1evRpyuRzFxcUes1Gr1eLzzz/H8ePHUVBQgFtuuQUA7H7E77rrLsjlco/1SRAEQQwthYWFWLBgAU6cOIEpU6bg8ccfx4svvojAwEC8/fbbAM6XMZg1axY6OjqQmJiIxMRENDU1QavVYvHixUIyFU/j5eWFjRs3Ij8/H1OmTMGDDz6IV155RXg/MDAQu3btwpVXXokJEybgiSeewGuvvYaFCxd2225gYCD++Mc/Qi6XD8iD19EEefIIgiC6obi4GP7+/oiPj3f6/vbt291u69NPP0V7ezuA8+GgnuTVV19FWVmZUPj1t99+Q2hoqPD+M888g5UrVwIAIiIiPNo3QRAEMfgUFRVh2rRpWLVqld1226yWRUVFSElJQXFxMaZMmYKioiKkpqYiIyMDL730EtatW9djP84ySJ88ebLLNseszvPnz0dpaanLfX766ace+3ZGdXU1brnlFruyEa7sHMuQyCMIguiGhQsXoqWlxSNtOZZA8BQZGRnIz8/vdp+wsDCEhYUNSP8EQRDE4FNUVIRly5Z1u09gYCCOHj0Kf39/JCUl4YUXXsC9997b7TGrV6/GunXrsG/fvm7LGgw29fX12LFjB3799Vf897//HZQ+77rrLnzyySeD0penIZFHEARBEARBECMIo9GIM2fO2JU2cMaSJUuwaNEiHDp0CGq1Gvfffz+uuOIKl/sPZMRJf5k6dSoaGhrw0ksvYeLEiYPS50iOghExqphLEARBEARBEKOWiRMnoqSkBBLJef/OiRMn8MQTT+DIkSN48MEH+1xagRi+kMgjCIIgCIIgiFFKY2MjLrvssh7D+onRBYk8giAIgiAIgiCIUQSVUCAIgiAIgiAIghhFkMgjCIIgCIIgCIIYRZDIIwiCIAiCIAiCGEWQyCMIgiAIgiAIghhFkMgjCIIgCIIgCIIYRZDIIwiCIAiCIAiCGEWQyCMIgiAIgiAIghhFkMgjCIIgCIIgCIIYRZDIIwiCIAiCIAiCGEWQyCMIgiAIgiAIghhFkMgjCIIgCIIgCIIYRZDIIwiCIAiCIAiCGEWQyCMIYsTw9NNPIz09fajN8AgikQjffPPNUJsxZsjJyYFIJEJjY+OA9jN37lw88MADA9oHQRAEQfQEiTyCGCKWLVsGkUgEkUgEb29vxMfHY+XKlWhtbR1q04YFzkTQypUr8csvvwyNQcOQ4SYohps9A4kr0bhlyxY8++yzQ2MUQRAEQfx/SOQRxBByxRVXoLq6Gnq9Hs899xxWr16NlStXOt333Llzg2zd8OofAORyOUJCQga9X5FIhJMnTw56v6MRxhg6OjqG2owBQ6lUIiAgYKjNIAiCIMY4JPIIYgiRyWRQq9WIjo7GzTffjFtuuUXwXvGhiR988AHi4+Mhk8nAGENlZSUWLVoEuVyOwMBA/OlPf8KZM2eENvnj1qxZg+joaPj5+eGGG27o4nFYv349kpKS4OPjg0mTJmH16tXCeydPnoRIJMKXX36JuXPnwsfHB5988onTcxCJRFizZg2uuuoq+Pn5ISkpCfv27cOxY8cwd+5c+Pv7Y9asWTh+/Ljdce+88w7Gjx8PqVSKiRMn4uOPPxbeGzduHADg2muvhUgkEl47hmt2dnbimWeeQVRUFGQyGdLT0/HTTz91OY8tW7Zg3rx58PPzQ1paGvbt2+fuEPWJcePG4dlnn8XNN98MuVyOyMhIvPXWW132q62txbXXXgs/Pz8kJibiu+++s3t/586dmDFjBmQyGSIiIvDoo48KAmnZsmXYuXMn3nzzTcEjzAvR7o4Dznvc7rvvPjzwwAMIDg5GeHg41q5di9bWVvz5z39GQEAAxo8fjx9//NHOntLSUlx55ZWQy+UIDw/Hbbfdhtra2m7t4T1e27dvx/Tp0yGTyfDxxx/Dy8sLBw8etGv/rbfeQmxsLBhjTq/r6tWrkZiYCB8fH4SHh+P6668X3mOM4eWXX0Z8fDx8fX2RlpaGr776qttx2rt3Ly655BL4+voiOjoa999/v50n3WKx4O9//zuio6Mhk8mQmJiI999/HydPnsS8efMAAMHBwRCJRFi2bJlwbW29mQ0NDViyZAmCg4Ph5+eHhQsXory8XHj/ww8/RFBQELZv346kpCTI5XLh4Q9BEARB9BlGEMSQsHTpUrZo0SK7bffddx8LCQlhjDH21FNPMX9/f5aZmckKCgpYUVER6+zsZBkZGeziiy9mBw8eZPv372dTp05lc+bMEdrgj7v00kuZVqtlO3fuZAkJCezmm28W9lm7di2LiIhgmzdvZnq9nm3evJkplUr24YcfMsYYO3HiBAPAxo0bJ+xjMBicngcAptFo2BdffMHKysrYNddcw8aNG8cuvfRS9tNPP7HS0lJ24YUXsiuuuEI4ZsuWLczb25u9/fbbrKysjL322mtMLBazX3/9lTHGWE1NDQPA1q9fz6qrq1lNTY1wbmlpaUI7r7/+OgsMDGSff/45O3LkCPv73//OvL292dGjR+3OY9KkSeyHH35gZWVl7Prrr2exsbHs3Llzbo8VAHbixAm394+NjWUBAQFs1apVrKysjP3f//0fE4vFbMeOHXZtRkVFsc8++4yVl5ez+++/n8nlclZXV8cYY6yqqor5+fmxe+65hx0+fJh9/fXXLDQ0lD311FOMMcYaGxvZrFmz2PLly1l1dTWrrq5mHR0dPR7HGGNz5sxhAQEB7Nlnn2VHjx5lzz77LPPy8mILFy5ka9euZUePHmV33303CwkJYa2trYwxxk6fPs1CQ0PZY489xg4fPswKCgrYggUL2Lx587q1Jzs7mwFgqampbMeOHezYsWOstraWLViwgN1zzz121y0jI4M9+eSTTq9pXl4eE4vF7LPPPmMnT55kBQUF7M033xTef/zxx9mkSZPYTz/9xI4fP87Wr1/PZDIZy8nJYYwxwY6GhgbGGGM6nY7J5XL2xhtvsKNHj7I9e/awjIwMtmzZMqHNP/3pTyw6Oppt2bKFHT9+nGVlZbGNGzeyjo4OtnnzZgaAlZWVserqatbY2Chc27/97W9CG3/4wx9YUlIS27VrFyssLGSZmZksISGBWa1Wxhhj69evZ97e3mz+/PksLy+P5efns6SkJLvPK0EQBEH0FhJ5BDFEOIq83NxcFhISwv70pz8xxs4LGm9vb0HgMMbYjh07mFgsZpWVlcK2kpISBoAdOHBAOE4sFrNTp04J+/z444/My8uLVVdXM8YYi46OZp999pmdPc8++yybNWsWY+x/4ug///lPj+cBgD3xxBPC63379jEA7P333xe2ff7558zHx0d4PXv2bLZ8+XK7dm644QZ25ZVX2rX79ddf2+3jKPIiIyPZ888/b7fPBRdcIIgH/jzWrVsnvM9fr8OHD/d4bra29Fbk2YpaxhhbvHgxW7hwoV2bttetpaWFiUQi9uOPPzLGzouWiRMnss7OTmGft99+m8nlcsZxHGOsq6DozXEXX3yx8H5HRwfz9/dnt912m7CturqaAWD79u1jjDH2r3/9i11++eV2fZ06dUoQOq7s4cXVN998Y7f9iy++YMHBwezs2bOMMcYKCwuZSCRyeZ03b97MAgMDWVNTU5f3WlpamI+PD9u7d6/d9ttvv53ddNNNdnbwIu+2225jd955p93+v/32G/Py8mLt7e2srKyMAWA///yzU3sc2+OxvQZHjx5lANiePXuE92tra5mvry/78ssvGWPnRR4AduzYMWGft99+m4WHhzvtlyAIgiDcgcI1CWII+eGHHyCXy+Hj44NZs2bhkksusQvri42NhUqlEl4fPnwY0dHRiI6OFrZNnjwZQUFBOHz4sLAtJiYGUVFRwutZs2ahs7MTZWVlMJlMOHXqFG6//XbI5XLh77nnnusSUjl9+nS3ziM1NVX4f3h4OAAgJSXFbtvZs2fR1NQknMdFF11k18ZFF11kdw490dTUhNOnT7vVjq19ERERAICamhqXbS9cuNDu2gBAcnJyl23dMWvWrC6vu7PL398fAQEBgl2HDx/GrFmzIBKJ7M6tpaUFVVVVLvt19zjbvsViMUJCQrqMGfC/65Sfn4/s7Gy7azBp0iQA6HLfOMPxXrrmmmsgkUjw9ddfAwA++OADzJs3TwjNdWTBggWIjY1FfHw8brvtNnz66adoa2sDcD6M9OzZs1iwYIGdfR999JFL2/Lz8/Hhhx/a7Z+ZmYnOzk6cOHEChYWFEIvFmDNnTo/n5orDhw9DIpFg5syZwraQkBBMnDjR7l7w8/PD+PHjhdcRERHd3p8EQRAE0ROSoTaAIMYy8+bNwzvvvANvb29ERkbC29vb7n1/f3+714wxu8l7T9t5+PdEIhE6OzsBAO+9957d5BM4P9nvrn9X2NrN9+VsG9+37TZ3z8EV7rTTky2OrFu3Du3t7cLrxMREbNu2DRqNptf2dWer43jbjo+z82D/f61ad9fJ3eOc9d3dders7MTVV1+Nl156qUufvHDuDsd7SSqV4rbbbsP69etx3XXX4bPPPsN//vMfl8cHBASgoKAAOTk52LFjB5588kk8/fTTyMvLE2zcunVrlzGSyWRO2+vs7MRf//pX3H///V3ei4mJwbFjx3o8p55gLtYWOo6Rs7FwdSxBEARBuAOJPIIYQvz9/ZGQkOD2/pMnT0ZlZSVOnTolePNKS0thNpuRlJQk7FdZWYnTp08jMjISALBv3z54eXlhwoQJCA8Ph0ajgV6vxy233OLZE3KTpKQk7N69G0uWLBG27d271+4cvL29wXGcyzYCAwMRGRmJ3bt345JLLrFrZ8aMGf2yz5mYi42Ndellcsb+/fu7vOY9X+4wefJkbN682U4Q7N27FwEBAYJ9Uqm0yzVy57i+MHXqVGzevBnjxo2DROL8p8OZPd1xxx13YMqUKVi9ejXOnTuH6667rtv9JRIJ5s+fj/nz5+Opp55CUFAQfv31VyxYsAAymQyVlZVue96mTp2KkpISl5+/lJQUdHZ2YufOnZg/f36X96VSKQB0e76TJ09GR0cHcnNzMXv2bABAXV0djh49anevEwRBEISnoXBNghhBzJ8/H6mpqbjllltQUFCAAwcOYMmSJZgzZ45dOJyPjw+WLl2KoqIi/Pbbb7j//vvxpz/9CWq1GsD5LJWrVq3Cm2++iaNHj6K4uBjr16/H66+/Pijn8cgjj+DDDz/Eu+++i/Lycrz++uvYsmWLXfmIcePG4ZdffoHRaERDQ4PLdl566SV88cUXKCsrw6OPPorCwkL87W9/G5Tz6I49e/bg5ZdfxtGjR/H2229j06ZNvbLrnnvuwalTp3DffffhyJEj+Pbbb/HUU0/hoYcegpfX+a/ucePGITc3FydPnkRtbS06OzvdOq4v3Hvvvaivr8dNN92EAwcOQK/XY8eOHfjLX/4iCB1n9nRHUlISLrzwQvzjH//ATTfdBF9fX5f7/vDDD/i///s/FBYWoqKiAh999BE6OzsxceJEBAQEYOXKlXjwwQexYcMGHD9+HFqtFm+//TY2bNjgtL1//OMf2LdvH+69914UFhaivLwc3333He677z7hXJYuXYq//OUv+Oabb3DixAnk5OTgyy+/BHBe9ItEIvzwww8wmUxoaWnp0kdiYiIWLVqE5cuXY/fu3SgqKsKtt94KjUaDRYsWuXXdCYIgCKIvkMgjiBEEXyA8ODgYl1xyCebPn4/4+Hh88cUXdvslJCTguuuuw5VXXonLL79c8Jbw3HHHHVi3bh0+/PBDpKSkYM6cOfjwww8RFxc3KOdxzTXX4M0338Qrr7yC5ORkrFmzBuvXr8fcuXOFfV577TX8/PPPiI6ORkZGhtN27r//fjz88MN4+OGHkZKSgp9++gnfffcdEhMTB+U8uuPhhx9Gfn4+MjIy8Oyzz+K1115DZmam28drNBps27YNBw4cQFpaGu666y7cfvvteOKJJ4R9Vq5cCbFYjMmTJ0OlUqGystKt4/pCZGQk9uzZA47jkJmZiSlTpuBvf/sbFAqFIB6d2dMTt99+O6xWK/7yl790u19QUBC2bNmCSy+9FElJSXj33Xfx+eefIzk5GQDw7LPP4sknn8SqVauQlJSEzMxMfP/99y7v6dTUVOzcuRPl5eX43e9+h4yMDPzrX/+yCz195513cP311+Oee+7BpEmTsHz5cqHEgkajwb///W88+uijCA8Px4oVK5z2s379ekybNg1XXXUVZs2aBcYYtm3b1iVEkyAIgiA8iYhR4D9BjCqefvppfPPNNygsLBxqU8Ys48aNwwMPPGBXL41wzvPPP4+NGzeiuLh4qE0hCIIgiFEDefIIgiCIQaelpQV5eXl46623nCY/IQiCIAii75DIIwiCIAadFStW4OKLL8acOXN6DNUkCIIgCKJ3ULgmQRAEQRAEQRDEKII8eQRBEARBEMSYYteuXbj66qsRGRkpJDVzxV//+leIRKJua3kSxHCDRB5BEARBEAQxpmhtbUVaWhr++9//drvfN998g9zcXKHuLEGMFKgYOkEQBEEQBDGmWLhwIRYuXNjtPgaDAStWrMD27dvx+9//fpAsIwjPMKZFXmdnJ06fPo2AgACIRKKhNocgCIIgCGJIYYyhubkZkZGRQg3MsUhnZyduu+02PPLII0I9zp6wWCywWCx2bdTX1yMkJITmmUS3DMTnbkyLvNOnTyM6OnqozSAIgiAIghhWnDp1ClFRUUNtxpDx0ksvQSKR9KrEy6pVq/Dvf/97AK0iRjue/NyNaZEXEBAA4PwFDQwMHGJrCIIgCIIghpampiZER0cLc6SxSH5+Pt58800UFBT0ygP32GOP4aGHHhJem81mxMTEeGyeefr0abS3t8NsNiMtLQ1isbhP7XAchzNnziA8PLxLG6dPn4bFYoFMJrNbh9jdMb1pv7fHubJntDEQn7sxLfL4D25gYCCJPIIgCIIgiP/PWA4v/O2331BTU4OYmBhhG8dxePjhh/Gf//wHJ0+edHqcTCaDTCbrst1T80x/f38YjUakpqb2WeAB59caisViHD9+HBkZGXZt8X2o1WphO8dx0Gq1UCgUaGtrg0aj6bF9qVTq1r6OBAcH2712Zs9oxpOfu7EbbE0QBEEQBEEQDtx2223Q6XQoLCwU/iIjI/HII49g+/btQ2aXWCyGRqPpt9hRq9Uwm81QKBQwGAwwGAzgOM5lH0ajEQqFAmazGWq12q32ZTJZj/tyHGfXtzPcPWd32hprjGlPHkEQBEEQBDH2aGlpwbFjx4TXJ06cQGFhIZRKJWJiYhASEmK3v7e3N9RqNSZOnDjYpg4IYWFhwv8tFguMRqOd143jOMGDplarYTQaER8f75bA5IWZM2zbNRqNTvvuC55sa7RAnjyCIAiCIAhiTHHw4EFkZGQgIyMDAPDQQw8hIyMDTz755BBbNvAYjUZ0dHQIYsyZ181oNKKtrQ1arRYAPOJBBM6HclZUVMBgMLjt8XMHT7Y1WiBPHkEQBEEQBDGmmDt3Lhhjbu/vah3eSIT3ovHr3Jx5vtRqtbAOb6C8Y7Z923r4+iImu/MejlXIk0cQBEEQBEEQYwTbdW6u1rKJxWKkpqbCbDZDpVJ5rG+NRoPY2Ngugsw23JLW13kGEnkEQRDEoKDT6bBixQrodLqhNoUgCGLU0ZM4slqtOHjwIKxWq7CvwWAQxJUjRqMRVqu1i/DiOA6VlZWorKzstRBzlkiFb1MikXRZq0f0HRJ5BEEQxKCwdu1afPTRR1i7du1Qm0IQBDHq6Ekc6XQ6tLS0QKfTCfsCENaydScSbds2GAzQarWoqKjotxDjyzNYLBaIxWKIxWJaX+chRqzIe/rppyESiez+6GYgCIIYvtx5551YsmQJ7rzzzqE2hSAIYsTjKMp6EkepqamQy+VITU0V9tVoNIJnzVEk8qGVarUa7e3tKC0thVKpBAAolUqPCDFn5Rk8VSqCZ6yGf45YkQcAycnJqK6uFv6Ki4uH2iSCIAjCBampqfjvf/+L1NTUoTZFgEJICYIYqTiKsp7EkVQqxfTp0yGVSp3uq1KpUF9fL6zB4/cxGo3IycnBqVOnoNPpoNFoEB8fj2nTpnmkZp+fn5+Q5XQgxNhYDf8c0SKPj93l/3paGGqxWNDU1GT3RxAEQYxdKISUIIiRiifDGjmOg06ng0KhgMlk6vJ+UFAQJBIJQkJCYDQaoVKphLV6/cFWbPJijF8raLVaPSL6xmr454gWeeXl5YiMjERcXBxuvPFG6PX6bvdftWoVFAqF8BcdHT1IlhIEQRDDEQohJQhipNLXsEZn4Yt8IpUzZ84IiVB4NBoNZsyYgczMTEilUlgsFuh0Oo97x3gxBsCjfXg6/HOkIGK9KRIyjPjxxx/R1taGCRMm4MyZM3juuedw5MgRlJSUICQkxOkxFotFWGQKAE1NTYiOjobZbEZgYOBgmU4QBEEQBDEsaWpqEtZI0dyofwzXa8ln1JTJZFCpVNDpdGhvb4fRaIS3tzfCwsIQFRWFmJiYLvXr+NcqlQomk6nPde26YzD6GG4MxL0yYj15CxcuxB//+EekpKRg/vz52Lp1KwBgw4YNLo+RyWQIDAy0+yMIgiBGH7TWjiAIwjm24YtarRYnTpxAZ2cn/P39kZSUBAB2JRba2tqg1WrBcZzgFZNKpf32jnVXo89TfYxlRqzIc8Tf3x8pKSkoLy8falMIYlRCk2ZiJEFr7QiCIJzDiygA6OzshFgshlQqxaRJk+Dr64uoqCgYjUbo9XpwHIeGhga0t7fDYDA4ba+v2SvHakKUwWLUiDyLxYLDhw8jIiJiqE0hiFEJTZqJoaCvDxdorZ1noYc8BDE6sBVkRqMRoaGhiIqKglqthkQiETxnHR0dMJlMMJlMQmJD20Qrju3YevvcZawmRBksRqzIW7lyJXbu3IkTJ04gNzcX119/PZqamrB06dKhNo0gRiU0aSaGgr4+XBiO5RpGMn0ZBxKGBDG4uONRs81gyXEcJBIJAKCjo0N4X6VSITY2FhqNBsHBwRCLxfD19UVwcLDgdbP1wqnVapjNZigUCpdeOWe2jdWEKIOFZKgN6CtVVVW46aabUFtbC5VKhQsvvBD79+9HbGzsUJtGEKMSftJMEIMJ/1CBHi4MLX0ZB14YAqDvDoIYBGwFnFgsdpqwRK1WCx45i8WC8vJyxMfHo6GhAQAQGBiI6upqZGRkCGv2wsLCkJqaKiRBsW2H7yMjI0N47QyDwYCqqipwHIeYmBi3z8kx8QvhPiNW5G3cuHGoTSAIgiAGGHq4MDzoyzjMnTsXu3btwty5cwfGKIIg7HAUcEajUVh7x8N7zziOg1arRXx8PFpaWqBWq2GxWFBWVga5XI78/Hyo1WpwHIfq6mpIpdIuws62bcfXnsLWYzgQ7Y9mRmy4JkEQBOE5KLSO8DQ5OTk4efIkcnJyhtoUghgT8EJLo9H0uNaN974FBAQIXjuz2YxJkybBbDbDYrEI4ZwRERFQqVTQarVoa2vrVaIUPkxTrVYLIaC9gdbt9Z0R68kjCIIgPAeF1hGehkJtCWJocMerZluLjvf+KRQK1NfXC2uZa2pqoFQqIZVKYTKZhDpu8fHxbtvCe+JMJlOfPHED5SEcC5DIIwiCIGhCTngcCrUliOELL750Op0g7kQiEYKDgyGVSgEASqXSTtQZjUbEx8f3am0cX2ydkmANPhSuSRDEoEDhgMMbykZJEMRw5ty5czh16hTKyspQX18/1OYMW9ytWceHQSYnJ6O0tBSVlZVQKpXw8/ODUqmEwWCASCRCSEiIUB+P96j1piaeyWSCUqmEyWTq34kRvYZEHkEQgwLV2SMIwhX0EIhwRktLC9asWYO5c+dCoVBg3LhxmDx5spDif/ny5cjLyxtqM4cV7hQYtw3VLCkpgdVqRX19vSDEiouL0dbWhtLSUvz666/Q6/UwGAzCnzsFzHmxqVKpIJFIwHFcr4ulE/2DRB5BEIMC1dkjCMIV9BCIcOSNN97AuHHj8N577+HSSy/Fli1bUFhYiLKyMuzbtw9PPfUUOjo6sGDBAlxxxRUoLy8fapOHBe4kKnEM1YyKihKSr1gsFigUClRWViIgIAD+/v5obm4Gx3GoqKgQBCFfIL27Ptra2oQHNx0dHb1K2EL0HxFjjA21EUNFU1OTsIg0MDBwqM0hCIIgiDGJTqfD2rVrceedd1LI8BAzXOZGN9xwA5588kmkpKR0u5/FYsH7778PqVSKO+64Y5Csc4/hci0dsfXk8bXvxGKxsN1gMKCtrQ0SiQSNjY2YNGkSxGIxKioqUFFRgZkzZyIgIMBpQhTbtnkRKZPJXNbtI84zEPcKefIIgiCIEcdoCe8bLefRX0b6mlBPjCPdC/Zs2rSpR4EHADKZDPfcc8+wE3jDHT6c0mq1Cmvs+EyW6enpkMvlUKvV6OjogMFggNFoxMmTJxESEoIDBw649OTZZtPMyMiAn5+fUNaBBN7gQiKPIAiCGHGMlvC+0XIeYx1PjCPdC64pLi5GR0fHUJsxajAajaiqqoJWq0VWVhYOHjwoJFcBzpctiIiIgFgsRnBwME6cOAGr1Yq4uDjU19djxowZXRKp0Bq84QeVUCAIgiBGHKOl5MNoOY+xjjvj2FNIKt0LrklLS4NUKsXkyZORlpaG9PR04d+goKA+tblr1y688soryM/PR3V1Nb7++mtcc801dvscPnwY//jHP7Bz5050dnYiOTkZX375JWJiYvp/UkOIWq0Gx3Ho7OzEmTNnYDKZBFHG18zr6OiARCKBv78/LrzwQpjNZkRERGDWrFlCiCeP1WpFVlYWYmNjUV1djbCwMFgsFmRlZSExMRFGo5Fq3Q0B5MkjCIIgRgx8SBuAER3exzPSwxSJ87gzjj156uhecM3u3buhVCoRFxcHi8WCDz/8EJdeeilCQkIwceJE/Otf/0JjY2Ov2mxtbUVaWprLWo7Hjx/HxRdfjEmTJiEnJwdFRUX417/+BR8fHw+c0dAiFosRExODmJgYhIaGwsvrvBzgQy05jkN9fT3UajUyMjIQEBCAjIwMiMViIaTTNvSysLAQTU1NOHjwIBQKBQAI9fXMZnO3SWBsSz64W/6huza62zbWIE8eQRAEMWLgJ8q1tbUIDQ2lRB3EiECn06G2thZXXnkleer6wIoVK7B69Wo7T9vOnTtxxx13YOnSpdixYwc++eSTbteKObJw4UIsXLjQ5fv//Oc/ceWVV+Lll18WtvFFwT0B7zUbymQkGo0GsbGxgg18spSQkBAolUoYjUYhYYptaQZbrxzv9ZNKpZg+fTp8fX2hVquh0WhgNBqRmJjY7fk5lnxw1kdPOLPNlb1jCfLkEUMCLTAnCKIv8KU4AND6JWLEsHbtWmzbtg2hoaH0UKIPHDlyBJMnT7bbNmfOHLzxxhsoKChAdnY2pk+fjscff9wj/XV2dmLr1q2YMGECMjMzERYWhpkzZ+Kbb77p9jiLxYKmpia7P1e4U8/O0zh6t8RiMdLT0wVhxhcuF4vFkMlkAIDm5mZs374dSqXSrjQD31ZlZSXOnTsHqVSKmJgYQRACsPP4Wa1W7Nu3D/v27UN7e7tgh23JB3fKPzjD2XF9bWs0QSKPGBJogTlBDB6j6aEKH9L2+OOPU91FYsRAdUL7xwUXXIBPPvmky/bk5GTs2LEDIpEIjzzyCLKysjzSX01NDVpaWvDiiy/iiiuuwI4dO3Dttdfiuuuuw86dO10et2rVKigUCuEvOjra5b6DLUI4joNWq0VbW5tQ1NxqtQplDoxGI9rb21FaWgqVSiVkxNTr9ZDJZCguLhbasS2KXlNTg8bGRigUCphMJqfileM4ZGVlobCwEFqtFps2bUJbW5vgKeTFoLNQUHdwdlxf2xpNkMgjhgT6wSOIwWM0PlSh9UtEXxmKhx50v/aP1atX4z//+Q9uvvlmHDlyBMB5z9Abb7wBpVIJAFCpVDhz5oxH+uvs7AQALFq0CA8++CDS09Px6KOP4qqrrsK7777r8rjHHnsMZrNZ+Dt16pTLfQdbhBiNRqEOGwC7Yuhmsxkcx2HXrl1oampCdnY2rFYrjEYj5s2bB4VCAZVKhba2Nmzfvh16vR4cx0EmkyEjIwOpqamQSqVQqVROxavRaERsbCxkMhkiIiIwbdq0HtfqjSU4jsPp06c93i6tySOGBP4HjyCIgYey9hHE/+AfegAQfoeoGPvwJjk5Gfv27cOKFSswefJkyGQyIfvj+vXrAQBarRaRkZEe6S80NBQSiaRLiGhSUhJ2797t8jiZTCaEOQ43+DBKfl2h0WhEamoqTCYT4uPjYTAYEB8fj4qKCsTHx0On00GpVMJkMiEiIkJYr+fn54fy8nJERUVBo9GA4zjU1dUJ+/IeQFtUKhWKioowe/Zs+Pn5AQACAgIG/RoMV3jvp6chkUcQBDHKoYcqXaFJ/djF2UMPZ8KPGF4kJycjOzsbFRUVKCoqglgsxrRp0wRvkEqlwosvvuiRvqRSKS644AKUlZXZbT969ChiY2M90sdgw3sOefj/2/4rFosxc+ZMlJSUIDk5WQi/DA4OhslkQmpqKnbs2IHx48cLHkhbD6GrxDQmkwmJiYkwm81CSQWLxQKDwSAkdhnLYZVqtRrNzc0eb5dEHkEQBDHmoEn92MXZQw/ydg8/Kisrndaji42NdSq04uPj8bvf/c7t9ltaWnDs2DHh9YkTJ1BYWAilUomYmBg88sgjWLx4MS655BLMmzcPP/30E77//nvk5OT06XyGO7wINBgMgleupqYG/v7+KCsrQ3JyMoxGIyZOnAiz2Sx48axWK2pra+0SshiNRqhUKqGenq0X0TZbJ8dxYz4DJnD+2nvKC20LrckjCIIgxhwjYV3waEqYM9wZqDVzNIZ954ILLsDy5ctx4MABl/uYzWa89957mDJlCrZs2dKr9g8ePIiMjAxkZGQAAB566CFkZGTgySefBABce+21ePfdd/Hyyy8jJSUF69atw+bNm3HxxRf3/aRGACqVCvX19eA4DgqFAhUVFVAoFKiurgZwPiQ1LCwMAGAwGKDT6ez+raysRF5eHvLz8wUBx3Ecqqur7bJ68mGdMpkMKpVqzNe0GwhEjDE21EYMFU1NTYKLOTAwcKjNIQiCIAiBFStW4KOPPsKSJUvI2zhC6csYDnUo8XCZG9XX1+OFF17ABx98AG9vb0yfPh2RkZHw8fFBQ0MDSktLUVJSgunTp+OJJ57otubdUDFcrmVv4LNmSiQSoXaebUkEPtRSJpOB4zjo9XocO3YMCoUC06dPR01NDSorKxESEoKqqipcd911OHLkCFpaWiCXyzF9+vQufVZWVqKqqgpRUVFOvbe2DIf6ggPBQNwr5MkjPAo9tSQIgvAM/fE20nfx8KAvYzgas+H2BaVSiVdffRWnT5/GO++8gwkTJqC2thbl5eUAgFtuuQX5+fnYs2fPsBR4Q4FjHby+wGfH5D1tUqkUGo0GVqsV27Ztg0KhELJnajQayOVyJCYmQiqVAgDCwsIQGxuLlpYWiMVi7Nq1C6mpqfD19UVISAja29tx8OBBu1p5vcG2RIPj+Xri/EcTvfLkfffdd73uYMGCBfD19e31cYPBSHzCMtyhJ88EQRBDD30Xj1zIkzd6GOxryXvheJHGw4sfAC7LNlitVmi1WoSFhSEmJsZuH4PBgG3btsFoNCIjIwNXXXWV07Y5jkNVVRUkEgmUSiXKy8tx2WWXwdfXV7DtyJEj8PPzQ0tLC5RKJaKioqBWq6HT6YRSDN1h68mz9Sqq1WpotVooFAr4+fmNuDV+A3Gv9CrxyjXXXNOrxkUiEcrLy11m2yFGH7R4nSDGBkM9ESW6h76LuzJS7lnKhtsVs9mMRx55BL/++iu8vb3x66+/IiIiYqjNGnbwwsex/pzRaERVVRWArlk2+YLoVqsVBoMB1dXVdt47nU6H5ORkJCUlobOzEwqFAhzHCSJQLBYLIZaVlZWoq6tDZ2cnGGPIyMiAr68vOI4Dx3GQSCSYN28eSkpKEBUVhZqaGgDns2/almBwhWOopu35upPlc6zR63BNo9GIzs5Ot/74WhjE2IEKvhLE2GA0hZSNxtBG+i7uynC7Z0fjfTdQ3HPPPSguLsbLL7+MiooKtLe3AwAeeOABvPnmm0Ns3fDBVYF1tVqNqKgowWtmi06nQ0tLC0QiEWJiYpCWlibso9PpYDabkZ2djRkzZghJanjPnSMajUY4PiIiQmiH97jV1NRAKpVi+vTpiIuLQ2xsLDQajdMC6s5wDNV0FHx+fn7IyMgYVWv1+kOvRN7SpUt7FXp56623kqufIIhRB03ORkZ2SncZbpN/YmAYbvcs3Xfu8+OPP2L16tW47rrr7CbwV1xxBT7++OMhtKx/9HUNWW+P471tfBim7fGpqamQy+VIT08XEp/w1zg1NRUWiwWxsbHQ6XRQqVTdCiixWAypVAq1Wg2pVCr0xXEcGhoaoFAoYDAYuoSOuhKnjvBiUKVSQavVoq2tTUgK424bY4leibz169f3qkL9O++8g9DQ0F4bRRAEMZwZDZOz/grV0eQpGm6Tf2JgcHbPDuUDG7rveodcLu+yLTEx0a7W3UjDtih4b0SbrUfLHRxFocFgQEVFBSorK2E0GhEWFgaTyWTXJsdxMJlMmDdvHioqKiCXyyEWiwXvm6u2lUoljhw5AqVSKdja0dEheNoAuEyc4qpNHl7ImUwmITSzJ+/fWIayaxLEKIO8TAPPaJicjQah6ilGi2Clz37vGcrPwWi57waDK6+8Ep999lmX7XyY4UiF90wB6JVocye8keM4VFZWorKyUkh6YhvmaLVaUVJSAr1eD61WC47j7GrW8ceUlJQgMTERLS0tQsZN4LxQbG9vx/bt29Hc3CzYXlJSAj8/P5SUlNjZyh/L18azTZxiKyxt+3Z1PfoSmjkWM2/2KvGKLQ899JDT7SKRCD4+PkhISMCiRYsEJU8QxODAT1oA0OL9AWI0JEagxByjjxdeeAFbtmxBbW0tNm7cONTmjAjoczAyWLVqlVBfjTEGkUiE9vZ2PPPMM5g6deoQW9d3eM+U7fqy3hznCo7joNVq0dLSArPZjNTUVEFY8QKqpaUFCQkJOHr0KKxWK4xGI2bMmAGj0Yi2tjbU19cjLCwMISEhAICQkBAYDAYhE6avry++/PJLqFQqWCwWREZGQqVSITk5GdnZ2Zg+fToqKysBwE4Y8qUXgK6JYnjRJ5FIuhWx/PnzGUHdycppKyhHWubNvtLnYujz5s1DQUEBOI7DxIkTwRhDeXk5xGIxJk2ahLKyMohEIuzevRuTJ0/2tN0egdIEE6ORkZJBjiAIz3LFFVfg559/xoIFC/DTTz8NtTljktHw/Ttc50bHjh3D3XffjV9++QUhISFobm5GYGAgtm3b5rTA9nBgqK5lZWUlKioq0NDQgODgYMTGxiImJgYcxyE/Px8WiwVRUVGQSqVCBk2lUonY2FhwHIeSkhLExcXhxIkTQl28jo4OAIBUKoVCocDu3btx6tQpSKVSTJo0CQEBAbBYLJgyZQo6OjpgMplgNBqFMgmHDx9GfHw8AgICXIosd0o92ApiXsi6KrLu6rjhuG5vWBVDX7RoEebPn4/Tp08jPz8fBQUFMBgMWLBgAW666SYYDAZccsklePDBBz1iKEEQ7kEhQERPUFjf8KS/4xIUFASxWIygoCDPGka4DYVBDxwJCQn4+eefcfLkSXzwwQf45ptvUFZWNmwF3lAjFouRkpKC+Ph4O0+axWKBVCpFTEwMNBoNYmJikJGRgdjYWABAVVUVrFYr9Ho95HI56uvroVKphOycqamp8PPzQ0JCApRKJcLCwjB//nxYLBbEx8eD4zjU19cjJCQESqUSMpkMJpMJMpkMer0earXaaegkv626utppqCb/Pi9gDQaDkDTGnfnOWEzM0udwzVdeeQU///yzndoMDAzE008/jcsvvxx/+9vf8OSTT+Lyyy/3iKEEQRCEZ6CQXvcYbK9Mf8fl8ccfR2hoKIUeDiF9Df8cDR5ATzN79mykp6cjPT0daWlpSE1Nha+vr5Alkvgfjl4qXsyoVCqYTCa7fcViMSIiIoTMl3z4ou1rlUqFiIgI1NfXIzY2Fmq1GsXFxUJ2TZVKhcrKSkGwFRcXY/78+TCZTOA4DkqlEhKJBPHx8cIaP47jhPp1fEioVqsV1tUZjUZUVFQIbYSFheHAgQNIT0+HVCoVwi1tz4cvx+Dp6zda6LPIM5vNqKmp6RKKaTKZ0NTUBOD8U0Wr1do/CwmCIAiPQuuQ3MMTYpifvM+dOxc5OTndTuL7Oy6jYa2oJxkK4dTXMaAHL11ZtGgRioqK8Oabb+Lo0aMAznvz0tLS7MQfFUW3z9LJ14xTq9U4cOAAqqurhTVr7e3tqK+vF+rdOVunZrsOLjQ0FGKxGNnZ2WhsbERhYSFSUlJQW1sLPz8/tLS0wGKxwNvbG0ajURCAJSUlSE1NhVgshlarhVwuR0NDA0JDQ+1CLRUKhdA3v14wJCQE9fX1OH36NGprawEAM2bMENbvZWRkwGQyCXa6I9B62me0rtfrV7jmX/7yF3z99deoqqqCwWDA119/jdtvvx3XXHMNAODAgQOYMGGCp2wlCIIgPACF9PaMTqdDbW0trrzyyi6iqzdhlfzk/ZlnnukxjI/GxbOMpNBJVxl7x3Jo9T/+8Q989tlnKCkpwf79+xEeHo6MjAzIZDJ8+umnuPLKKxEVFYXw8PChNnXI4TNYchwnhDIaDAYcOnQIZ86cQWlpKQoKCpCTkwODwYDi4mK742wTn/Br7wBAIpHAarWitbUVLS0tCAgIwG+//QYfHx9YLBZce+21iIyMFL6z2trakJ2dDblcDp1OB4PBAIVCAb1ej/j4eJjNZqhUKhiNRiQnJwuvgfMexmnTpsHf3x8JCQmQSCQICwuDSqWyE2lSqdQu7NJVOQmr1YqDBw/CarUKJSNcFXF3txj7SKPPIm/NmjW47LLLcOONNwoLOm+88UZcdtlleOeddwAAkyZNwrp16zxmLEEQxGhlLE/mesNgXae1a9di27ZtCA0N7SK6eiMe+Mn7k08+6XbZDdtz1Ol0uPHGG3HjjTfSvdFL3Cl14qn7yRN1J++8806sXbvWro2RJFQHkjvvvBNvv/02PvvsM2zYsAHFxcX44YcfEBERgeXLlw+1eUOO43ozXhSNHz8eUVFRmDhxIiwWCxobGxEUFGQnrGyPU6lUqK+vB8dxgtg7cuQIOI5DSkoK5HI5oqKicPbsWWRmZqKlpQXJycnw9fWFRqNBQ0MD/Pz8cOzYMSgUClitVpSXl+OSSy5BQECA4IXjSzMolUq78EuxWIyMjAwEBATgyiuvxMyZMxETE+Oy1ALHcS4Fmk6nQ0tLi1ufyVG7Xo/1k+bmZlZUVMQKCwtZc3Nzf5sbVMxmMwPAzGbzUJtCEMQY595772UBAQHs3nvvHZT+ioqK2L333suKiooGpT937HDHJk9fJ1d9dmdLX47pDbbneO+99zJvb2/m7e09aPfGWMJT95Mn2nHWxlB8Tofj3MjX15fp9fou27/99ls2f/78IbDIPQbyWnZ0dLCqqipmsVhYVVUV6+joYBaLheXl5bHy8nK2a9culpubyzo6OlhFRQVbt24d+/TTT9nWrVtZR0eH0zarqqrY8ePHWUVFBauqqmIVFRXs8OHDbOvWraytrY3p9Xq2f/9+ZrFY7Gzg26uoqGB79uxher2eVVVVsf3797OsrCy7Pnkb29raWEVFBdPr9Uyv17OKigqXdjn2w9tZVVXl8vrw/VgsFrv/9+Uau7LLkwzEvdLnNXkA8Ntvv2HNmjXQ6/XYtGkT5HI5Pv74Y8TFxeHiiy/2hAYlCGKUMJoTC3ji3AZ7nZyn1wD19RrY2gGgR5tcXSdP9G/bZ3drq1y956lr6niO/LoUWkPpeTz1uetPO7brNh3boHWW55k5cybeffddvPTSS3bbU1JSoNVqh8gq9+E9T55M7MF7t/jyBwaDATU1NZDL5SgpKQHHcUJSE41Ggzlz5uDIkSOYN2+eSxsc69YZDAb4+fkhMzMTRqMRjDGh9ALQtV4f7w3jj7daraipqUFiYqKw3s1kMkGhUAghoxaLRcjgadues2Qyzux0td7ONimLwWAQvIbO1ty5amPEr9Xrqzr86quvmK+vL7vjjjuYTCZjx48fZ4wx9vbbb7OFCxd6SoQOKMPxaRVBjCR685R5sD1Vg8lIPDdPewj6eg1cefJ6a58n+u8vmzZtYikpKWzTpk1D7ikd6v4J9xlu3x/DcW5UWlrKAgMD2dKlS1lRURHjOI61t7eze+65h8XExAy1eS7hr+Xhw4d79DzxOHqPXHmTHD15vNftww8/ZBs3bmSbN28WvGP8+0ePHmV5eXku27LdXlVVZbe/Mw9cd943/vj9+/cL+/FexdzcXLZr1y62a9cutn//fqEtW69kd946W3vd8er15JFz1cZI9+T1eU3ec889h3fffRfvvfcevL29he2zZ89GQUFBv8UnQRDDn76sTRqN3oi+nttQrsNzleTDHZsc9+kuSUlv7LD9f2/XIvV1DDyZ7CQnJwcnT55ETk7OkK+lGur+B5LRtn51NH83eoqkpCTk5uaiqqoK6enp8PX1RUBAAD744AOsWrVqqM3rkfDwcLcTeziuP3OVWIT3bvGJSDQaDVpaWhAbGwsvLy+IRCJUVlZi37590Ov14DgOZrMZCoVCSMzS3t6OgwcPorKysksfKpUK5eXlkMvlMBqNggcuOzsbFRUV0Ol0qKqq6mIXj1qthtlshlKpFLxjWq0WFosFarUasbGxiI2NRUZGhnAO/Ho9vowD7+Hr7hrZrsnjPaZ8shW+Dp+tJ9CxPh9vq0QiAcdxdu8N5lo9R5s8QZ/DNcvKynDJJZd02R4YGIjGxsb+2EQQxAihNyFKgx12NJjhoaMpbbo7NjnuwycpWbJkiceudXf3lrOxdTUGOp0OL7zwAoDzdeQG8l5wZvNQTdxHc5mM4fi56Q8UkukekyZNQlZWFioqKlBUVAQvLy9MmzZtRJRQcAw37A7HkEnH147YhhqmpqYiPz8fEokENTU1MBgMaGlpQXBwMCQSCaZNmybUobNYLMjKysLZs2dx7tw5xMTE2PVhNBoREBCApqYmxMfHw2g0oqGhAfHx8WhqahJKJLiySywWIzk5GdnZ2Zg3b54gKvkwUr4MgqNgs/1XoVBAp9MJYac8SqVSaJe3wWg0Cglj+BBWZ206C78Ui8UQi8Xdhmba1hA0mUzCv54KwT1z5ky/23CkzyIvIiICx44dw7hx4+y27969Wyh2SBDE6GYoJifuirfuJoLDZX2gOxPxwbbVHZsc9/H0OrmejrMdWz4jYXf7btmyRXjNFwsfiGvp+HnoybaBZDQLh9EsYAnn1NfXQ6lUAoDgARqtOArCngSirXDhOA41NTVCjWqZTIaQkBChfIBGo0FMTIzg8QoODkZNTQ3UajU0Gg2sViu0Wq3d9xVjTChefubMGahUKqSnp7sUOLZiKDs7GzKZDCUlJQgLCxMKsdt67JyJWN6j1tDQgODg4C7Cq6SkBDKZDNnZ2cJ6QYvFAolEAplMhtTU1B5FpCM9iWnHNZC2QtIT6/UGohRIn0XeX//6V/ztb3/DBx98AJFIhNOnT2Pfvn1YuXIlnnzySU/aSBDECMbTIuWFF17Ali1bUFtbi40bN7rcr7uJ4EB7Atw9Zz5teneeJt7W2traARUotjb1dE0c93F8zXvP8vPzUV1dDQBd3nd1fXQ6HW699VYcP35cOM5xf9ux7Wks77zzTiFxCdBzYhdPwNtbW1uLbdu2DXh/Y43RLGAJ54SGhiIqKgppaWl2f4mJiRCJRENt3pBiK074BCMNDQ0IDw+HRCJBXV0dYmNj0dDQYBe+KBaLER4eDqlUCrFYDKvViqysLEgkEmRlZWHevHk4dOiQ4LjR6/Xw8/NDXV0dpFKpS6+XrRiKj4+HXq9HcnIyTCaT4HXla+Xx9tiGUlosFhQWFqKjowMRERGQSqVdCp8nJycjKysLgYGBgnjla+A5JmpRqVTQarUICwuz68sWdwqq89eZF5C2QtITDERIaJ9F3t///neYzWbMmzcPZ8+exSWXXAKZTIaVK1dixYoVnrSRIIgRjLuCyjbDXE5OTp/EjKMYcBW+15f1Y70Rq70RkbaeptDQ0C7722ZYHCkhavw5McaQlJTU5Tp3d33Wrl0LvV6P8ePHC8c57m87tu6EdT7++OMAzj8gGMhxdzy/K6+8ckjXWg0XjzVB9JfS0lIUFhZCq9UiLy8Pa9asQX19PXx9fZGcnIzc3NyhNnHIsBU0/L9RUVGCt4z3gHp7ewtCSCwWQ6VSobq6GiqVCh0dHdBqtfD398eJEydw4YUXoqSkBImJiTCbzYiPjwfHcYK4EYvF3XrEDAYDgoKCUF9fj/nz58NgMECn0yEkJAReXl6CDY5CUaVSCR6ympqaLl5MXkDW19cjLS0NVVVVXd4DgJiYGGE7H55aXV0trP1zpC9ZNHsTgjtU9KuEwvPPP49//vOfKC0tRWdnJyZPngy5XO4p2wiCGKHYCjZ3BRU/Md61axdOnjwJwLmYefzxxwWPlqs2XB3L7+Pu+jHbSXJvhJut8Ohpon3nnXfi2LFjOH78OOLi4rBixQqna810Op3L8x4I+rOWzdZ75uzY7q6P7Xv8cd0Jue68Oo7lGX744YdeLydYu3YtPvzwQ+zatQuffPKJ3bm4Gltn59DTMQPBcPFYDwQkYMcWkyZNwqRJk3DjjTcCOB9C+NNPP+G+++7DZZddNsTWDT6uPE+2a8sYYwgPD0dZWRkSExOxf/9+nDt3Dnv37kVcXBxiYmKgUChQUlKC5ORkhIWFobq6GnPmzIFUKkVUVBR27dqFefPmwWQygTEmJHrpLkkIb0NNTQ2A8yLLZDLBarWivr4eoaGhAJyHR5pMJiiVSkgkEkRFRYHjOBw7dgx1dXXIyMjocoztejxe/NmG8nIcB6vVCpFIBLVa3SUklG/LVaim7T6O4Zq8IHTHC9jdmA0oHsvTOUS8/fbbbNy4cUwmk7GpU6eyXbt2uX3scEwTPJKhlN1jg94UrE5JSbFLDe5OgelNmza5fR85tuf42jalfW/stz0Pf39/oY2+FM1OSUlhfn5+3aZHd3W9PElfShK4W4S7L4XDbftx9x7pLY4lGdwZC8fjFy9ezBISEpweZ2u7u/fvYKbL7+nz4Wqbu9h+PrrrYyAYDiUzBpPBtHskzY327dvHli5d2qdjd+7cya666ioWERHBALCvv/7a7v3m5mZ27733Mo1Gw3x8fNikSZPY6tWre9XHQF1LZyn/+XT/bW1tbOvWrUIR8+3bt7PXXnuNffbZZ+yFF15g999/P3vkkUdYTk4O++6771hWVhbLzc3tUpg8NzeXZWdnC0XE+VIHfBmEPXv2sIqKCqH/5uZmtmHDBtbc3Czsw5dO4G1qbm622+6IY2mEXbt2sVdeeYVt3LiR5eXlOd3XYrG4LOlQVVXF9uzZw/bs2dOlPII7pRds93FWfN7ddnoas46OjqEvhv7QQw+5ve/rr7/em6b7xBdffIEHHngAq1evxkUXXYQ1a9Zg4cKFKC0ttXPVEoPDaMt4NhLoj7fF08WjbdubO3cudu3ahaVLl+LEiRNOw+5sk1Lw7/G2XH/99f2y5ejRo1i7di22b9+OY8eO4ZlnngEAPPPMM3jyySdd3p9fffWVsM/111+PO++8E7t27cLx48eRk5MjeNRsvW3dJQFxFnroDP4921BVW2/oV199BeD8GB89ehSPPfYYxo8fjzvuuMPt0Nbefj5tvXG8fa7uGWfrJN1dl2Z77itWrOjzOrae7ufU1FR88skndvdcT5+ftWvX4vvvv0dkZCSuvvrqLmPobG1gd55oPlR49uzZqK2thU6nG9T1lc7Wd/b1e5s/l4iICBw/fhxr164VMq268nx6kr4mXxmpv1Mj1W5P0dnZKYT52XLhhRcK3r3e0trairS0NPz5z3/GH//4xy7vP/jgg8jOzsYnn3yCcePGYceOHbjnnnsQGRmJRYsW9alPT+HoeeI4DlqtFgqFAtXV1UKY5YUXXojnnnsOiYmJ2LdvH1QqFdrb24XQxJiYGCF0s6OjA/X19Whvb0ddXR2mTJkCLy8vYe2Zbcgjj22Rd/434KuvvsKCBQvsSg/U19dj0qRJMJvNbmWx5NusqqpCWloaDAYDkpOT7fZz9KzJZLIu7alUKhgMBqhUqi5eup4Srbjap7vC7M5wzMrpmMGUvxYBAQEu7egzvVGEc+fOtfsLCAhgfn5+LCMjg2VkZDB/f38WGBjI5s2b5zEV2h0zZsxgd911l922SZMmsUcffdSt40fS06qRwHB+QjpcbBuIAtTuelsc7UhJSWH+/v4eexK+ePFi5u3tzRYvXuzyKbvtsfw+ixcv7rWHhW9r8eLFLDMzky1evJht2rSJJSQkMIlEwhISElhAQADLzMwUvHApKSkMAFMqlS6LbfP7pKSkuOwnMzOTeXt7s8zMTHbvvfeyV199lSUkJLDMzEzhvcWLF3d7rdw5N/6apKSk2I0xb6OXlxdLSEhwuz9P3HuuxtV27B23zZ49u4s31Zk9tvdDbz2mjrbx+y5evLjLNtvjbT8/fL+2njjbz4mjXfz9lpmZaXc/defJ642Huzeebf4eXbx4cbeF5Pnttvcwf1xvPOi25+J4XfriMXW0byC/p4fLb0FvGeuePF9fX3bBBRew5cuXs//+979s9+7dzGQysa1bt7KQkJB+tw8nnrzk5GT2zDPP2G2bOnUqe+KJJ9xud7CupW3hcltP0/fff89effVVtmzZMvbUU0+xZ599lq1evZr997//ZevWrWOHDx/u4qXav38/27Vrl52XjvfM2RYt5719R48eZRUVFaysrIytX7+eHTlyxM775eghdPSE8e1XVVUxvV7PvvnmG7Zr1y5hn7y8PKEPW0+a4798sXXHAvHHjx+3O9bWk2jrSeup6Lxer2d79uxher2+VwXS3S3qPhD3Sp/DNV977TV29dVXs/r6emFbfX09W7RoEXv11Vc9Ylx3WCwWJhaL2ZYtW+y233///eySSy5xeszZs2eZ2WwW/k6dOjXsvsiIgWEwQ6QG0w7HyV1v7PDz82MJCQm9PtYVthN9xzA5Z5NV24m4v79/r21xnDCnpKQwiUTCvLy8BAFm29amTZuYUqlkPj4+7N577xWugW2o2aZNm1h0dDQLDw8XJu98X97e3kwikTCFQmEnJG1FmKPosj3P3o6PbZio7Ri/+uqrTKFQsNmzZ3cRlc7ur97eI30Ris7GmL8f+OvUXaijO9fJmYhzHN+UlBT26quvOhVm3V2bzMxMFh0dbTeutueRmZnZJWSTF9sikcjuHurtdXJ2LWy38ediGzLs7HjbBwE9fc84Gxt3v5tsz8HVfdVXQTLU39OeFlIjVVAOR5H3448/shdffJHddNNNLCkpSfiuF4vF7IUXXuh3+85E3l//+lc2ffp0VlVVxTo7O9mvv/7K5HI5++2331y2M1jzTIvFIgg61tnJOqxWVnHiBNMfO8bKy8pY7r59rK2lhf22cydbtWoV+78332QvvvAC2/TFF2zv7t3smy1bWNaOHWzrDz+wtpYWO9HiSuxYLBYhDLSqqkoQlrm5uSw3N5cdPny4i8i0DZfMy8tzKXZ4IcQLzL1799oJMb1ez77//nuhD8cQSt5WXiTu3btXsI0XdcePH2d5eXl24Zu2YaeuxBi/PTc3l+3atYt9++23XURwdzgL83R2jYeVyIuMjGSHDh3qsr24uJhFRET0yyh3MBgMDADbs2eP3fbnn3+eTZgwwekxTz31FAPQ5W84fZENFSP1x8hdenN+A7Wv7f7dTZAGA2eeDtvtvTkfW08APyHmPQR8e35+fkypVDr1HDp6F9wVSM48efxk3JXXyHaSzK+1crTJ1lNm691ZvHgxi46OZmKxmCUkJAhi4tVXX+3WG9KXiWt3523rQXG8h3ryVrljgzPx6y7OhFhf1jI628fRC+wofPh72dYD6o7w4u129oDAmdDibeGFoVqtZhKJxO6+7e2Y9+TJsz0nZ55AV15FV/eFs7Fx97Nve26uhHNff0v6cqwnf7s8LTKHWrT2leEo8hxpb29nhw4dYtXV1R5pz5nIs1gsbMmSJQwAk0gkTCqVso8++qjbdgZrnpl3IJdlf/Mpy9vyNmP5GxjL+4Dpv3mJrX1sCVt1z3Vs43N3sm9eXcE2v3QP27TqbvblqrvYb2seZRXfvcKas1ezLS/fy1Y//me28a3n2N6srez4sWPdrinr6OgQ1vdt3brVTqhUVFSwo0ePsu+++04QP47r5Vx58Gzbd+aB423Ky8tjWVlZbOvWraytrY3l5eUJ/x49elTYLzc3l3355Zds7969gijj7XH0KPLbcnJy2Pfff8/a2tqcil1bj2FeXh7Lzs5m33zzjVsiz3GNIX9OzgTlsBJ5crmc/fLLL122//LLL0wul/fLKHfgRd7evXvttj/33HNs4sSJTo8hT955XE0Eh/OP0WCK0N5ci75eN9tJpe3kcCBwFJa2AszxuvZ20uYoIBYvXsxEIpHwo8gfl5KSwmQyGVMqlYIAc2zXWcifraBxZoOjva4EirP9XLXLT5hnz57dRQTyNvJhoO6EpPUkdnqLo0B3JvYc9++tJ8/Tobx9xdXni7fRVvjw52h7f/fGbmeC2ZV4t7XL2X3bF29od+85e0jR02fHnevojk3d7etMPPY1VNPdPh3x5G8XefLOMxxF3oUXXjig9jgTea+88gqbMGEC++6771hRURF76623mFwuZz///LPLdgZyntnR0cGqKk6yjiotsxz4mOVteJJZ9qxlLO8D1rF/Hdu06m7212vnsDce/hP79tX72OaX72WfPnsH++CJP7Nf3l7Jvn/9fmbZs5blfvwce+HxB9nKhx9izz//PNu8eTPLzc1lFouli4eJF0K5ubns0KFDbOvWree9hw52VVRUsL179wqiyt1kJD2FSPLbeYFlK+z4f3lvXUdHh52Hk/fS8eGVjsKR72fr1q1s27ZtbMOGDXbn5ipRiruJY/hQU2cezmHvybvttttYTEwM27RpEzt16hQ7deoU27RpExs3bhxbsmSJxwx0RV/CNR0Zjl9kg4Enn7566kesp3b680PeU9s9PfXu67492ZSQkCB4hdz1ZvSmfWfeCG9vbyYSiVyGNLozabOdcPLeDN6DwIs8kUhkd1627fACKTMzs0tYnOPk3FHQuPICOvZjK1BcTeB7uidSUlKYj4+P08yBfIipO94uvn9nXkNX5+EOtrb0ZV2mOzb3NxSvv98P7nwWbQWPJyf83bXVndDpT7uuHlL0RE9CcyC/Xx3bcfdz0dt23RkLwjMMx7mRSCRiZ86c6bLdbDazlStX9rt9R5HX1tbGvL292Q8//GC33+23384yMzPdbteT17LqcD47vvUtVrX1NcbyPrD7q9r6Gnv7H7ew5df8jr372K1s//on2KHPn2EbnrqDHfr8WbbhqTvY9v97kG398HVWfuQw27RpE/vyyy/ZN998w7Kystg333zD9Hq9IEpyc3OZXq8XvGHZ2dnsu+++E7JrOnq59Ho927VrF8vNzXUqYroTj47r7RwzZTp6wxzXHvKexLy8PGF/2zacrctzFJAbNmxg27dvF9pwtp8zHEWfo7fu6NGjbOvWrXbeRmfXw9P3Ck+fRV5rayu7++67mUwmY15eXszLy4tJpVJ29913s5aWFo8Z2B0zZsxgd999t922pKQkSrzSA8MxvKWnH/G+PqF3x8bB8Nw5w12PSW8nOI7CzNGT52ztUXd9O07aHEWjrbiwDRtztQYvISGBAWAJCQluT877Iyxs23a3nZ4mq73xzvHeTolE4rK97jxWPbXfFxHrDq68Q0P1eXEHT363DZR46Em49sWL6qzN3lz7wXpYN9zaHUkM5jUYTnOja6+9lq1atYp5eXmx4uLiLu+fPn2aeXl59bsfR5HHX4Nt27bZ7XfnnXeyBQsWuN2ux66l8RDr2L+OVW19jXXsXyeIu47961jFd68w/dcvsezVf2cv3Xs92/XuP9jRzS8Inr6qra+x5px32fr/vsJ++eUXVl5eLnjFysvL2bp169iOHTvYt99+y7Kzs9n333/PcnJy2Pvvv89ycnLY3r17hW38WjZezPDr43Jzc9mePXuEth29fY5esYqKCvb111+z7Oxslpuby/bv3y+UfMjOzmZr165lmzdvFoQnL5KciSPb5Cy8bbbr7hyPceahs/UAupsohW/LVV+OYtOxtINtHx0dHezw4cPDR+TxtLS0sKKiIlZYWDho4o5n48aNzNvbm73//vustLSUPfDAA8zf35+dPHnSreOH0xfZcKG3k+mewsDcba+7/WxFxUDURRpMz4RjG+5O4nsTqrR48WJBxPVGoLgSjK4EhLN1hbb2uJpk9rd2XW9x5tXs6R7qjRjkPS/drT3r6+ekryKpp/C9/rQx2J+XkcJwE0pj6dqPBQbzgclwmhs98MAD7KKLLhIiUFQqFZs/fz57+OGH2YYNG9jDDz/MNBpNn9pubm5mWq2WabVaBoC9/vrrTKvVCmut5syZw5KTk1l2djbT6/Vs/fr1zMfHp1e18jxyLWuPCYLOUeRVbX2N7Vn3GNuz7jG2f/0TbM+6x9iRL55nW994gDVnrxb21x/8la1Zs4a9++67bO/evYJA++qrr9jq1avZ+vXrhbVmvAcvKytL8N45hkU6erv4MMo9e/aw7Oxstn//fqeeO/54vV7PNm3axL7++muhfT6pyzfffMNWr14t2GrrpXOGY9u9Cal057Uttp5Ed/pyVmfPmaezoqKC7dixY2hFXlFREeM4zu39Dx06xM6dO9dro3rD22+/zWJjY5lUKmVTp05lO3fudPvY4fRFNlzw9FN6T/ww9cZrYrv/QAuGvvbjaW+gow19neB7wnPjievjTttD2YZje7ZJOTzljXR1jLtteELkjVWRMBw+14PFWB3jkchY9eTxSKVSduDAAfb111+zp556ii1atIjFx8ezcePGsU8//bRPbWZnZztNksIXV6+urmbLli1jkZGRzMfHh02cOJG99tprrLOz0+0++n0tz1kY037KWN4HrOK7V9iedY+xiu9eEURf+Ver2Lev3MdKNj7L9q57nJV/tYp9//r9bPv/Pcg2PHUHO/rVC0z/8wfsvffeYw8//DBbvXq1nSdv7969bOPGjWzLli2svLzcrswB7x3jvWm8d86ZCOLFDL+vXq/v4g2zFTy8J892DZ9t6OfmzZuFBCrOkra4CuHsTgg6W+Pn6LnrTuDxx9lmGHXVvrOQT9tspPx15sVxeXk5++GHH4a2GHpGRoZQ0M8dZs2ahcLCQsTHx/emm15xzz334J577hmw9j1BX4tOe7oNd3C3wCxfCPfKK6/stlAyXxR77ty5fbbJtqCvO0WyHYvGevLa2bYNwGUR7O7oaxFfW2zPybEw7vXXX4/S0lK3C4r3hKO93V1Px+LLfSna66p9TxQDdrSvv9gW2LYtZO6Mvtjvqph1T208/vjjQrHrvuLpazVS6Ot95onP9WDT3bkO1m8O4R5j8fN466234r333oOvry+OHTuG6OhoXHDBBbjmmms80v7cuXPBGHP5vlqtxvr16z3SV5+p1wMdFqdvGevM0B0/heo6M/SGGqQkROHoqTYkRIXhQMlJZCRGo/xUDYL8E2GxnBGKeEulUigUCpSUlCA9PR3l5eUIDg6GyWRCbW0tAgICwHEcwsLChL6USiVMJhM0Go1dAW+1Wg2DwQCr1Yq6ujpkZGQgJiYGlZWVqK2tRXp6erfFwAEIRdM5jgPHcQDO3++HDx9GcHAwxGIxTCaTXQF1Rxv4QvAGg6FLuwBgMBhQUVEBg8GA9PR0ZGVlQSaTQafTITU1VfjXYDCgqqoKHMchJiamyzU3mUxCofn4+HihaLvRaERbWxu0Wq2glSwWi3DNAAh28gXcVSoVDh06BD8/P5w7dw5VVVX9u1ec0CuRxxjDv/71L/j5+bm1v9Vq7ZNRow1PTE490YY7uPtDsnbtWmzbtg1LliwRJgDObMzJycHJkyeRk5PTL9HRmwmH42TLk6LP2URu7ty5uPXWW6HX64U+Bpru7gf+mn/11VeC6LA9T8fz519ff/31ToWB4z3xwgsvYMuWLaitrcXGjRsH7dyG6yTa3YcQnrDf3TbG4oTQU/R1nEbiNe/uXAfrN8cVY1lkjuVzt0Uul8NiscDX1xexsbEIDg5GWloa0tLSkJ6ejvT0dEyePBne3t5DberA0Xxa+K8mLBhisRdUQQE4YTDBYGpAJ2OQiESYMF6DNus5TIgKR31TK2anjIfJ3IwAfxnC4pKRERiJqVOnIj09HSaTCQ0NDQgMDMQvv/wCtVqNiooKNDY2IiwsDDU1NfDz80NwcDAaGhqgUqkgkUgEccaLGl7gabVacBwHtVoNk8kEAKiurgYA4TUveGyP5UUUx3EwGAzgOE4QWM3NzUhMTERTUxP8/PyEtp3ZIBaLBWHFtwFAELU89fX1UCqV0Ol0iI+Ph16vR2pqKkwmkyBieXuqq6uFY2374fuNj493KjTlcjm0Wq3Qrq2g5e00GAyIiooSXpeUlCAkJGRA7uNeibxLLrkEZWVlbu8/a9Ys+Pr69tqo0cZgTu4GC2f2uLvNXWx/6Hp64vzCCy8AOO/BcJxs9ST6eoMzT9WKFStw/PhxjB8/3i1vl7v9d9dGd9eV31ZbW+u0H8f+B2sy5+7ExdW5jcRJtC2esH+kX4ORwFi6xt2dq7PP4WCKj6EWmUPJWD53W959913h/ydOnEBhYSGKiopQWFiI7777DidPnoREIsGkSZNQVFQ0hJYOIJZm4b9isRc0YcEw1DSgoKwCR09WQ6mQY9K4SJhb26EM9Ed1vRn6qhp0xIRD6u0NsdgbUl9/zJ6dBOC8R6ujowNqtRo1NTWQy+XQ6/VoaGiAt7c36uvrcfXVVwMADh06hHPnzqGtrQ0ymQyVlZXgOE4QT7yHTi6Xo7W1FREREYKo4T1y/GtexBkMBlgsFsHjJRaLBbEkkUgQFRWFiooKtLW1ob6+HhEREYJos/WsOQo4W5t4bAWWWq1GREQEVCoVNBoNTCYTMjMz7YQbv39NTQ0UCgWMRuP5IbDxINruz3smVSoVjEaj8NBcLpdDp9MJ52eLWCzu4iHkhd9A6KVeibycnByPGzAWGMjJ3VA98XNmT0/bemur7Q9dT0+ct2zZAgAIDQ3t0S5PC2bb9rrzava2/+7a6O6e4t/T6XROPXOO/ff2evQ1FNDdiUt/7hmCIDyDs++YwRQfA/1gczh/twy3h7rDgdjYWMTGxmLRokXCtubmZhQWFkKn0w2hZb2DF0a8Z6hHnISTqoIC4C0WI0juhxCFHE3tZ2GxnkNNQxMkYjEC/Xwh8RIjY0IMTC3noLYRQyqVClqtFmFhYUJ4olgsRmxsLCoqKvDHP/4RZWVlgkfNy8sLDQ0NKC0tRVVVFQICAhAcHIyJEyeipKQEfn5+qKqqwsyZMyGVSoVz0mg0MBgMMBgMgjjihZzZbBZElFqtBsdxkEgkgmjT6XTCNsdrZOv144Udvw9/bW23AeejCrOyshAfHw+pVAqpVOpUIPJthIWFCaGjKpUKxcXFUKlUQp+OIZ28cDWZTMjIyLALHeVFYXdjbTQa0dHR0fO90AdErLuA5FFOU1MTFAoFzGYzAgMDh9qcPrFixQp89NFHWLJkybB/4tdbW7v7EbZ9D0AXT95QM5LWYQ4WfTmfkXR/E8RoZzR9J9F3i2tGw9xouOB4LXlBIJPJ7ISGS8p+Apqr7TYZahrQdtaC2sYWeHl5YVK0Gr/pjiJRE476llZ0cBxi1aGIiQgBRF7g0m6B8cwZwQNVUVEBjuPg6+uLsLAw6PV67N+/H8HBwZgwYQJyc3MREBCAKVOmwNfXF62trfj888/BGMPUqVORkpICLy8vtLe3o6CgADExMYiLi0N6errg/QIgeOBiY2O7eMv4//NePP56GAwGNDY2Ij8/HzfccAOkUqmdKK6srERBQQE6OzuhUqng6+sreMwcry0v+gwGA5qbm2GxWJCZmWnXv6344jhOEGhmsxlKpRL19fXC0rPY2FhoNBpUVlaiqqoKUVFRiImJ6SLc+dccx6Gjo6PHsbZardDpdJBKpUhLS/Po545E3gj/IhtJP7qetJV+oMcGI+n+JoiRyFj9jI3V83aH4Tg3ysvLw6OPPgqTyYSEhARhTV56errTBBnDBcdr2WtPXmUuUFNqt4njOmGsM8Nq7UBVTT0aW9uRGBUOvcGEeE0oWtqtyJgYA7HYCwBgCJoJi5cPZDKZsI7OaDQiODgYMpkMRUVF0Gq1aGlpgUgkQkVFBTQaDS655BIkJCTgp59+QlNTE9ra2jBz5kykp6cDAEpLS9He3g5vb29Mnz4dAKDVahEUFAQfHx+EhYV18bY54kwgabVa+Pr6oqKiAvPnz4dUKv3f5aisREVFBcRiMSQSCYKDg+Hn5yeIOlsvH7+2LiwsDI2NjUhNTYVUKnUptHkxqNfrMW/ePNTX1wuhmIB9ghjHMXRnm7MENLbitL29HVOmTCGR5ymG4xcZ4R70A00QBNF/6IEZ4chwnBtNmjQJMTExuOaaa6DX66HValFYWIiGhgYEBwejrq5uqE10Sr+vZf0JQJ9jt4kXee3tVuwsLMO4yBBYLBziI0PRcva8wAPOZ99UhyiA2Fkwcgo7AdLe3o6srCxMnDgRXl5eKC4uRk1NDYxGIwoLCzFu3DhMmjQJEokEMpkMBoMBnZ2d6OzsRGhoKLy8vBAcHCyEW5rNZiQkJKC4uBiVlZVIS0tDUFAQpk2b5p6YFc7tvFArKiqCn58fFAqFICCB/3m9UlNThfV8tufFZ9EEAIlEgo6Oji4eN9u1dLbJUQwGA6qrq6FQKNDS0uJ0TZ2tnbZ9u+Oh5ffhE8A4ehxlMhlUKpVHP3e9WpNHEARBECMVejjUFVr/RYwETp06ha1bt2L8+PF22ysqKlBYWDg0Rg0GgRrASwx0/i+hiLHODIv1HEzmZsj9ZNAbajEjKQ57dOWIj1ThhMGE+qZWBAf6wVhnhkZpgCZxsnA8x3HIzs6G2WzGRx99hAULFmDatGkAzie4UavV6OzsBMdxCA0NRWdnJ5RKJeRyOZqamoRtXl5e8Pb2xuHDh2E0GlFXVwfGGHx8fFBcXIwZM2YIa+RsxZmtZ84Rfn3alClTUFdXJ3xP24ZA2pZzcBRUvOjk/8+LON5DKJfLUV1dLWTj5MsehIWFoaOjAxEREXaJVxzbdwzF5PdxDEd1Br8Pn3lTpVLBYDAIZenOnDnjzh3RK0jkESMSyj42eqGJODFQ0PdGV8ZSNlFi5DJr1ixUVVV1EXl8QpZRi0QKBMWc9+j9f9QhChhqGgAAzS3taLdY8ebGLATIZdCWVSJtQgzGR6lw6FgVEqPDYT1XCHXYVOiOHBNq3/n7+6O0tBShoaE4fvw4Zs2aJXit4uLiBFHGhzoqFAq0t7dj/PjxmDx5spD2HwCCgoLQ0dGB+Ph4qNVqlJWVYeLEiZBKpUICk8LCQlRUVKCzsxMzZswAcF4wVVZWoqamBhkZGZBKpV1KLDiu3ZNIJJBIJEK7PWWv5EVaZWUlWlpacOjQIVx44YVd6utxHIf6+nqkpqYKdficCTZbO/jwV77f7tbdOXr++PWHfM08pVLZu/vCTTwi8trb21FfX9/lBEtKSpCcnOyJLgjCDnr6PHqhiTgxUND3BkGMTB566CE8++yzSElJGbAJ8bBFNUkQeXyoJgCEBsmRHB8F3fFKRIYGoqG5HbPS4qEJUUJbVgmxWITdReWYaG5Gy8l3IFMnorq6GhEREfD29sYFF1yAvLw8REdHC4KOTxQSFxcniDu1Wo2jR48iKSkJZ86cQU5ODhISElBaWorq6moEBQUhKioKkZGRaGhoQGhoqFAOoKKiAtXV1QgJCUF1dbWQpZL3hhUVFeHcuXMQiUTQaDSCVwv4n6CyFXq2gs/R09bTesfGxkbExcWhpaVFKGQeEhIi7OvMQ+jYpmN9vp5w5fkDunr2goOD+3J3dItXfxv46quvMGHCBFx55ZVITU1Fbm6u8N5tt93W3+YJwin802fy9Iw+7rzzTixZsoQm4oTHoe+Nruh0OqxYsWJEpaEf7tA19TxXXXUVsrOzkZiYiGXLlmHNmjU4cOAALBbLUJs28ASoAf9QAP8L1eS4TphbziJ9QgxCAwNQ19SG2SkJmBSrgY+PN9QhgfCXSfG7jAkIUwYiyvcsZFJvpKWlCSGTGo0GM2fORFtbG9rb22G1WoVkIwAQFhYGiUQCg8GAU6dOoaCgAHv27EFTUxOOHTuG9vZ26PV6NDY2YsqUKZDJZIKHjaeurg5WqxVSqRQZGRkAgPz8fLS1tYHjOISHhwvirq2tDVlZWWhraxOEFO8ts03gYrvdFlvx54harUZkZCRiYmKEunQ///yzkMRFrVajtrYWVqtVsN9qtWL79u1obGyEVquF1WrtkkiFT/TiCt4mAHYeSOB/3j9+LHqzdtFd+i3ynnvuORQUFKCoqAgffPAB/vKXv+Czzz4DAIzhnC4EQfQRmogTxODBe87Xrl071KaMGuiaep7y8nJs2rQJK1asQGNjI1588UVceOGFCAgIGBO/FZwqGYaaBqiCAiCTekMs9oIy0A8lJ06DAdCEBcHScQ6pCVFQhyjg5yvD3OlJiNOooFEFw0fciamxCsTFxQmJP6RSKWJjY4UQTn670WiEVqtFW1sb8vPz8eGHH6KoqAg//vgjamtrYTabERAQgMbGRsTExCA5OVlIbGIwGFBXVyd47MLDwxEVFWVXA6+pqQn79u0T3o+NjUVMTAzMZjPi4+NhNpuFrJbOPGa2gs9WaLkSfwBgMpkQGhoqrAfU6XRob2+H2WwW1u51dHSgurpaEIk6nQ4ymQz5+fmQy+XIyspCc3MztFqt4KFzJiqd2cTby3vz+H2sVqvw7+nTpz192/Q/XPPcuXOC6p8+fTp27dqF6667DseOHYNIJOq3gQRBEMTogtZdDh9GQwjrcLufRsM1HW6MHz8e48ePx3XXXSdsa2pqGnHF0PuK0SKDRRwAU2MzNGHBQthmakIUQhT+kEm9EatWIutAKS5Jn4CosPMhrXqDCSIAUm8J1JwR4DrsQg4NBoMQopmeng6TyYT29nZUVlZCLBbj2LFj8PPzQ2VlJVJTUxEQEIDw8HAcPXoUbW1tqK+vx/z582E0GmE0GnHmzBlIpVKhoDkAuwLiAQEBKCoqQnJyMurq6hAVFSUkIOFDJxMTE1FZWYmioiKkpaUhLi6ux1p0fBikO2GWRqMRCoUCtbW1QpZOx4QtwPmMrlu2bMGiRYtQXl6O+Ph46PV6JCYmdgkhtRsrh3BSx/BM25BTfj2eTqeDt7e3x++bfnvywsLC7D5gISEh+Pnnn3H48OEx8cEbjVCoCUEQAwl5OoYPo8FzPtzup9FwTYcbxcXF6OjosNsWGBiISy65BCtWrBgiqwYPtVoN2bjp50siABCLvaAJC4ZUKkGMOgQTosOxOTsfXAeHzdkH0dJ+FiUnDDA1NKOmoQkdHAeT6Qxw5pCdJ8xqtaK8vFzw7KnVapSUlAh19KZPnw6xWIw5c+YgKioKc+bMQWpqKgIDA1FbW4uEhATs3bsXer0eKpUKkZGR6OzsRHBwMCIiIgRBVlVVBY7jcPbsWUEU8klOTCYTqqqqUFVVhZqaGgBATU0Nzp07J7x29JrZhkG6E7rpGO4ZHx+PBQsWCEla+IQtMTExgufwyJEjiImJQXl5OTIyMhAQEIB58+YJnkZb8chxHKxWKw4ePCiUR3C0yVnIaWpqqt2/nqbfIu/jjz9GeHi43TapVIrPP/8cO3fu7G/zxBAw3H4wCYIYXdC6S8KT0P00+klLS4NcLsfUqVPx5z//GW+++SZycnLQ2Ng41KYNCmKxGJqJGRCHxnd5z1hnxh5dOeQyKb7fUwRloD+27ytGxWkTOjs7ERYUiIiQIKhDFOAMRTCcKBe8ViaTCefOnYPJZDrfltGIgIAAtLW1wcvLC01NTfDx8YHRaIRUKhXq3rW0tGDu3LkAAB8fHxw5cgTA+XVnQUFBaGhogFQqFcRQVFQUYmNjMX/+fLS3tyMuLk7oU61WIyoqCjKZDAqFAgaDAWFhYYiNjRXW8TmGYtqGQTpbz6ZSqezWFzpeS0dBB6DLGrvU1FTI5XLB26fRaFBfXw+FQiF4Km3FpE6nQ0tLC0pKSgTvnas1e47r8aRSKSIjI928G9ynXyKvoKAAmzdvxpYtW5x6fS666KL+NE8MEfSDSRDEQEKeDsKTDPX95Cz6hSJiPMvu3buhVCoRFxcHi8WCDz/8EJdeeilCQkIwceJE/Otf/xobgi96BuBlv9JKHaLARSmJaLVYcdXFaTheVQOZRIK8wxU4rK/C4YpqQHTe+2c01cFyMhcGg0Go0aZWq+3Ek4+PD+Lj4wWBFhsbi9DQUIwfP14QZnK5HKdOncLUqVNx6tQpBAQEwGQyITAwED4+PggLC4NKpYJEct5WjUaDmJgYQfiZTCZBAPGia9q0aZDJZKiurkZHR4cgfgB08Zo5vnbEZDIJ2TLdpbKyEgcPHkRlZSWA8w4r3pNpu8bObDYLdfRsxScvCpOTk4Xra+tNdCdRi6fps8j7z3/+g+nTp+Pf//43nnrqKaSnpyMlJQX5+fmetI8YAob6B5MgCIIgRgrOol8oIsazrFixAqtXr8bmzZvx2WefQavVIjs7G/Hx8Vi6dCl+++03ZGRk9GpSPyKR+gOaaXabxGIvyOU+uPHyCwEAaRNiIJV5IzTAH1W1Zpw2NaDwaCUqq+vOJ25prwHMBrS1taGurg4ZGRl2YYtRUVGCmJk8eTKmT5+O66+/HjKZDFarFcD59ZBnz57FwYMHERsbK5RMYIzBy8tLWG8GwC7ZyLFjx5CTkwOr1dolCQnHcUIhcj4hii22xcutVquQHMZVNk2ZTCas9+OFlaPQ4mv1VVZWwmg0wmq1drmHbL11YrEYGRkZ8PPz65IchheFJpMJFRUVQlt8xk6+HV4A8klXBlL09UrkffDBBygoKIDFYsELL7yAF198EXV1daipqUFFRQUWLVqEuXPnYvfu3QNlL0EQBDEMGQ2ei9FwDsTg4yz6xd2IGLrn3OPIkSOYPHmy3bY5c+bgjTfeQEFBAbKzszF9+nQ8/vjjQ2ThIBKWBMj/t0yK4zrBcZ2QSSUQiUSormuAlwjw9/fBydMmlBw3oOhwJX7cWwRDTQM0YcFQn9Wj/EgpFAoFxGKxXdgiL67Onj2L2tpaZGRkwNfXF4wxVFdXw2q1oqmpCQqFAuPHj4dGo4FIJIJcLkdlZaWQoMTX1xdFRUUQiURCkpdvv/0WtbW1OHLkCCIiIrokIVEoFGhpaUFGRkaXUEqO49DQ0CCES7oSg8D/wiFNJpPTtXy2r/n1gCqVCr6+vlAqlXYikOM4SCQSQTBarVacOHECn3zyCRobG52KTOB8tlKO44SMnbzwBCCcLy9aB0ro9UrkvfLKK5g5cybkcjnq6uqQl5eHN954Azk5OQgICMBzzz2Hl19+GStXrhwQYwmCIIjhyWjwXIyGcyAGH2fRL+5GxNA95x4XXHABPvnkky7bk5OTsWPHDohEIjzyyCPIysoaAusGGZEIGHcxIPYGx3Ui//BJ6E/XoERvQHxkKNqtHYiLVOF0TSPMze04XFGNHXmHYDhjhrHeDENNAwwGAwLaKtDU1GQnkjiOg06ng9FoxKFDh1BaWioIlIiICEgkEhw5cgRhYWEwmUwICwvD8ePH0drairy8PERFRUGv12PevHmoqKiAn58f6urqBMGWmpqK06dPY/r06aipqYFWq4VcLkdpaSkCAgIgk8nsBB7veeOzgKrVavj5+SE5ORlms1lYL2eLsxIGvEDjQ0j5RCkcxyEiIgIRERHCervq6mq7MgkdHR0Qi8WCYMzOzsbu3btx6tQp5OfndxGZGo0GsbGxSE9PR1RUlOAZ5YWnRqMR1i6WlZVBLpe7FIr9pVci7/Dhw2hubsbevXvh7e0NLy8vfPnll/j973+PkJAQxMbGYtOmTdBqtfj+++9x4sSJATGaIAiCGF6MhrW8o+EcPAF5lwYPuufcY/Xq1fjPf/6Dm2++WUjyYbVa8cYbb0CpPF8uQKVS4cyZM0Np5uDhEwhEX3i+OPq5DuirTAjw9UG7tQOXTk1CpCoIc6cmIkDuC5lYDLmfFB2dHNQhCrSdteDQCQPQdBpq2VlwHIeDBw8K4YPt7e0ICwtDREQEAgMDBS9TXV0dgoODkZycjJCQEPz5z3+GXq9HZGQkmpqawBjDmTNnhHIK8+fPh0KhENaoqdVqKBQKXHnllaitrUVnZydaWlrw7bffor29HUeOHOniVeRDNI1GIyQSCTQaDdRqNYqLi9He3t5lvZtjGCcvrIxGIyoqKoRtFotFKLzOi9Dg4GDIZDJIJBK0t7cLopBP4MILxnnz5uHiiy9Geno6brjhBpd1/KRSqZDgBYDdGkSxWCx4RV15Iz1Br+vk+fj44IILLsBFF12EtLQ0fPHFF+js7MThw4dRVFSEXbt2IScnB8uWLUNDQwPkcjmampoGwnaCIAhimMB7LkYyo+EcPAHvXQIwpq7HUNTbo3vOPZKTk7Fv3z6sWLECkydPhkwmQ0dHByQSCdavXw8A0Gq1A5KhcNgSmgB1Yjo4rgBRqmChrAIAmBqb0Wo5h/DgQHiLz/tz5s+YDI0qGFkHSs97/Cwd0Jw7CW0eQ8s5Bp1Oh7CwMIjFYkRERMDb2xtWqxVisdiuthwAJCUlob6+HgEBARCJRJDJZAgPD0dpaSmkUim0Wi3EYjFSU1Oh0+kglUqRlZWFcePGwWw2IzAwECqVCsePH8eiRYtQVlYmCClb1Go1tFotgoODBXHEJzSpr69HVFSUIJ544cYXVI+P75qJ1LZN27p3AODn54f4+Hihph9gn8DFtubdxRdf3KuhMhgMqKiogMFgwLRp06BSqVBQUCAkrBmocM0+F0N/7bXXMHfuXOj1etx1111IS0tDTEwMCgoKEBkZKcS4Hjp0yJP2EgRBEAThYWwFzlgt5t1fcTvcirKPNpKTk5GdnY2TJ09Cp9NBLBZj2rRpgjBQqVR48cUXh9jKwUUc/zvEWBqBs2a77eoQBUKDA5EYG45qkwwRSgVMjc34fk8hgv390NJuxfSkcQB3DiGtR8AFpgqhj3xtO6VSCbPZLAgb3mtWVFQkiKDjx49j/PjxiImJQVtbG6666irs3r0b586dw8GDByGRSCCXy7Fz504wxnD27FmoVCrU1dWhuroaQUFBqK+vh0ajEUIqAdj1mZqaKiRF4SME+ZIMANDW1oaGhgZwHAc/Pz80NTUJpR54bOvT8clTDAYDkpKS7OrXOe7L2+DK08Z7EG2Pc3yfTy7Dh4Pm5+eDMYbExEQcOHAAGo0GOp0OEyZM6P0N0AN9Fnnp6enIz8/HXXfdhQsvvBCMsfMNSiT44IMPAECIRSUIgiAIYvjiKHBGi3epN8Krv+J2rHpAB5tx48Zh3LhxXbb/7ne/G3xjhhqxNzB+HnD4B6CzAxzXCWOdGeoQBWYmxyNCqYC2TI/cw6dQZWpElDoYkSHBSJsQDY7rhO5YFRRyH0T4n4bJFAO1Wg2NRiOIk/j4eDvxY7VaUV1dDcYYysrKcPLkSTDGIJVKkZycjPr6esyZM0cokWAwGNDY2AiRSIS2tjYAQGhoKKxWK44ePQrGGE6fPg2lUomff/4ZcXFx8Pb2Fvq0WCxCtkutVou6ujpMmjQJ8fHxgp28p48XeqWlpUhJSREyfgL/C6G0fS0Wi4X1dgCEkFK7y2tzHH9NeKHI993e3i60YSskgf8lepFIJEhNTUVJSQk6OzuFa3LDDTegpKQEqampOHv2rMdvj37VyRs/fjx+/vlnGAwGbNmyBRs3bsSxY8dwyy23eMo+YgRC6zkIgiBGFs7Who2G7/LeJDbpb/kgWl83cHAchzVr1uDBBx/Ea6+9hl9++QV1dXVDbdbwwDf4fCIWnC+M3tZuge5YFdQhCojFXjDUNMNqsaClrR3eIhHgBUjFYny2fT/MLa1oaGoD6k+grarYLtOjbXkBfltMTAxmzpyJqVOnIj4+HuPGjcP48eOhUqlQXV2NgoICGI1GaDQahIeHo7GxEfX19WhpaYGXlxc4joOXlxfkcjk4jkNdXR3q6upQUFAAqVSKpqYmIVGJY0Hzc+fOob6+HiKRyK40QlhYGGQyGdLT02EwGCAWi5Gdnd3jZbNt3zbrpmMGTp7/196dx0dZ3Ysf/0wmmck+ySSTTBYmJBB2spjIZmRRCi5X1CqtbW/VFrnwU6lbVaxVkVu16K301lar1dLFaq1WqlexopVNBYGQBRICgSSEhJlkkplMtmEmmTy/P3jN0wwEZAkhCd/365WXzjNnnufkOQmZ75xzvt++MnMaDAZ0Op06oXV8tszeRdt1Oh1jx46ls7NT3UfqL7vgrwfY384pyPNLTEzk+uuvZ+HChYwYMaI/TimGsIHIFjYc3nwIIcRg0VeAMxwyPw5k4CU1Zs+fZcuW8dhjj9HY2MgjjzzCtddeS0JCAhaLhQULFpzx+Z555hkuvfRSoqKiSEhI4IYbbmDfvn0BbRRFYcWKFSQnJxMWFsbs2bMpKyvrr2+pfxnTISkbc5wBV8dRDJGhFO+vpc7uJCJcT1RYKB5fD/rQEI66j/KHDz/H2drGwXo7xqgIrM0uGkq34G46NvvmLy2wa9cudu7cSWFhoZo0xF/YPD8/n+TkZOLj4+no6OCdd95Rg6QDBw7w8ccfo9VqaWhowGKxcOmll6ozhePGjaOnpweNRkNmZibXXHMNUVFRzJ07V01UUlxcrCZXSUlJITw8HIvFgs1m4/XXX2ffvn0UFxers3E6nY6FCxcSFxfHnDlzvvaW9d5v5w/GjEYj9fX1atkHv96lFHoXjg8PDyc/Px+LxUJKSkpAoXQgYCmov/28efOIjIwkOjqawsJCNYg+H/vy+iXIE6K3gfijOhzefAgh+iYf4gwOw2FmSgKv4eHdd9/lz3/+M3/5y1/Q6/Xs3LmTX/3qVxw9elTdm3UmNm3axF133cW2bdv45JNP6O7uZt68eXR0dKhtnn32WZ5//nl+/etfs2PHDsxmM9/4xjdoa2vrz2+t/yTnojWNIneshfBQPaaYKLRBGhKMkYSEBOM92sXBw3bq7K1ER4Th8fYweVQqjrYO3Ec9tLS3o20owtfhVEsLmEwmDhw4QHt7e8DMllarpaWlhREjRuBwOHjrrbcICQnB4XCg1WrZuXMnRqORiooKjEYj4eHhXHXVVeh0Onw+H3a7nba2NhRFobW1lc7OTsaNG0dpaSm1tbXU1x8r1l5RUaE+9mfrbGpq4vDhw2zfvh2r1UpPT4+6X89utzN//vyApZp+xxdC7z2T5w/GysrKAjJu+vkTp1it1oB74A/g/Es5s7KyCA8PP2ntPrPZjN1uJysri/b2djweD3V1ddhstvOSGfas9+QJcTIDkS3sYk0MIMTFQPY2DQ6S+VEMFu3t7WoxdP+erbvuuguv18uRI0fO+Hz//Oc/Ax6vWbOGhIQECgsLmTlzJoqi8Mtf/pJHH32Ub37zmwD88Y9/JDExkTfeeIMlS5ac+zfV3zQaGHk52q6jpGiD8Pl60GqD8Hq7cbg6cbZ14vX1EB4agiZIgzE6jJiIcBpcrThbOxmdmkCV1U7P9vdJzF+APioWh8NBeHg47e3t6hJJ/54zfyIcrVbLtGnTKC8v56abbiIxMRGTyYTT6WTy5Mns2LGDmJgYPv30U44cOYLX6yU3N5eCggIaGxuZNGkSZrOZN954g6qqKmbPno3RaESn0xETE0NZWRmNjY3k5+czf/58qqur2bNnD4qiEBYWxpdffkl6evoJAdvxei+39BdK7505E1CzgWZlZQXswYNjM39dXV1YrVays7PVc/Qu6N77XHDiPr7e7XJzc6mtraWxsRGTyaQWSu9PMpMnhiT5dFaI4Ws4zCAJIfpPRkaGGsylpKSoGQ2vu+66PouknymX61h2Sv9eqerqamw2G/PmzVPb6PV6Zs2axZdffnnS83g8HlpbWwO+BlSQFkZdARHxAGi1Qeh0wVx7eTaJcTEkGaNp7/TicLrZtGsfq99cz+adFVQebuDzkv1sKz1IfX0drj2fQLeHmJgYtZj48XvSHA4HmZmZGI1GQkJCWLlyJQUFBURFRTF9+nSuueYaRo8ezaRJk3C73XzxxRdUV1cTHx+P2WymtbWVCRMmoNVqeeedd9T9fFu3bqWzs5Ouri5aW1uJjo4G/h0wpaenc8MNN/CNb3yD8vJyJkyYgMvlYty4cQQHB6tLLv11//z/9QdSvZdb9n587H4dKx/ROyDzB4Wpqam0trZitVopKSmhtLRUfb73rGVvvUsnwImzhzqdDpPJhN1uV8tT9OuPQ7+fUQghhDgHF8OHOGe6JFWWsF54MgYXzsKFC9XZt9mzZ6tZ3MvLy3G73ed0bkVRuP/++ykoKGDSpEnAv8sFJCYmBrRNTEw8ISFHb8888wwGg0H9uiB5KoJ1MPob2DrA4+0CwNvl44ZZOUSEhxIVqeOQrZGq+iZsTS10dHaRlhSHVhNERJiOkKBgEsLB3FZKhiWVSZMm0d3djdfrVQMU/x4yh8NBUFAQmZmZuFyugFm0oqIiuru7MZlMVFRU0NjYSH19Pdu2bWPdunUEBwdTVVWFzWajtbWViIgIxo8fz+WXX05lZSUVFRWEh4fj8XjIzc1Fq9XS1tbGRx99RHV1Nbt37yYhIYEtW7aQnp7O/v378Xg8avB1/H/9s2z+5ZW9l2769Q7segeB/nIdc+fOJTs7m+zsbLKystTny8rKCA8PV/ds+nw+qqurKS4upqurS01iU1xcjMFgUDOG9r7G8T9r/UGCPCGEEGKAnem+YtmHfOHJGFw4jz32GE888QQADz74IJ999hkmk4mFCxfy3e9+95zO7Q/c33zzzROe02g0AY8VRTnhWG+PPPIILpdL/Tp8+PA59e2shYRinvFt9NFxpCTEkjU6lcjwUApyMkmMNWA2xaDRaBiXloTJGMHE9BRiYiKIi4lCCQJPVxf2+kNYvPswm+JwOBwByxttNhvd3d0kJSWRlpZGampqQMZLm81GZGQkFRUV+Hw+Zs2aRUpKCkFBQdTX19PU1ER3dzczZ87EbrcTFBRERkaGen6Px6MWWZ82bZq6P27fvn1UV1ezfv16tWj5pEmTOHToENHR0TQ3N6vZNrOysggODiYmJoampiY1SyegJpbx74fz62t2r3ctvPT0dGbMmEF6ejo6nU4NGrOysoiMjGTcuHHs3LmT2tpaSktLcbvddHR0oNVqqaurw+Px4HK51PP33td3fI29/iB78oQQQogBdqb7imUf8oXX32MgxdO/3ooVK7jkkkvIy8tTZ4gsFgtlZWWsW7cOo9HItddee9bnX7ZsGe+//z6bN28OqOvcuxB2UlKSeryxsfGUMy56vf687K06G9rQSFIu/x7s/5j6qgN0+3ykxMeSYoqlpb0TXXAQLW1uau3N1BxpZtrkDNo6jmKIDGPD9r0YYsJJqbdjSqmFbhMmk4ng4GB8Ph8mk4mysjK1Nl7vfWn+WTB/sXOfz4fH42H+/PnU1dVhtVqZPXs2o0ePpqioiNDQULxeLxEREXg8HrXeXU9PDxMmTCAqKgqfz0d3dzcJCQk0NjbS09MDwOjRozEYDGr5hLCwMLVcgZ9/5t2/RBKOja/X61X3w/kDU///+4NVq9VKXV2duly1r71+/tcmJCRQXl5OZ2cnPT09ZGVlYbfbycnJAf79s2SxWAKStfSuq9ffJMgTQgghBtiZJjWRJCgXXn+PgSQY+norV65UZ87i4+PJy8tTg76ZM2eeVWZNODYjt2zZMtauXcvGjRtJT08PeD49PR2z2cwnn3xCbm4uAF6vl02bNrFq1apz+6YGUkgYjL0abH8BHGi1QViS4rhpdj4bdlVQuK+GxnoXrnY3bo+Xb8+bQvWRJor31+Joa0Ov07OgIIfkEWnoNFlotVo6OzvZsGEDGRkZbNiwgbS0NEpKSpgzZ44a8AHExcVhs9nw+XwcPXqUzs5OPB4P+fn5hIWFqTNg69evJycnh+DgYJxOJ2PGjOHzzz/H6/USFBQUUJw9JycHrVar7n1rbm5Wg6i9e/eSkZFxQvITP6vVqs5GHr8fDo7tpywuLubIkSPExcWpwXpCQgI6ne6E2T1/gOafFfS3bWpqYurUqYSFhak/V/X19cTHx6PT6QIKqUdGRmK1WtWfsf4mQZ4QQgghxACT2dmvd+mll2K1WvnBD36A2Wxm165drFu3jueee47u7m5iY2O55JJLWL9+/Rmd96677uKNN97gvffeIyoqSl2yZzAYCAsLQ6PRcO+99/L000+TmZlJZmYmTz/9NOHh4ee8PHTABetJufy7aHV/x6w7CkB6qglHWweJcVE4nO10eDx4FR8l+w8zMjWehPhojjhaCddrUIIUUg1afJX/wjfycpytnWRkZFBZWYler+ftt99m6tSplJWVkZ+fDxwLaqxWKz6fD5fLRU9PD4cOHcJisVBZWUlw8LHww2w2ExMTw+7duwkODlbPO3LkSI4cOaIGP/7yA0VFRURERLB3716io6PVjJctLS1otVq2bdvGjBkz2LJlC8HBweTk5Kh98u8j7L0cs3f2TP9MnsfjQafTMXnyZMrKyjCbzTgcjoBbevysZe+9fZmZmZSVlan7CHvX2PMvafV6vbjdbqxWKxkZGXz88cdMmTKl34deoyiK0u9nHSJaW1sxGAy4XC41e48QQgghxMVqsL03+sMf/sBPfvITcnNzWb16NWPGjKGrq4vS0lJ27dpFUVERL7744hmd82T76tasWcPtt98OHJvte/LJJ3n55ZdxOp1MnTqV3/zmN2pyltMxqO5lTw/UbAFHFQC11maK9h3iaFcXB2pt1De6mDgqmZiIML4qq2FkUhy+nh5unJNHWKiOqno7jo4uJl75bVo8GmJiYtiwYQMdHR0oisLSpUsJCwtTk4zU19fT3NzM6NGjqayspKvrWBKYlpYWYmJi1GWVBw8e5MMPPyQuLk4N+oKCghg3bhwZGRnqrJy/dt4XX3xBS0sLu3btwmKx4HA4GDduHJGRkWRkZHDw4EEaGxsBuPLKK9Xgyev1quUR/Nkz+wr2/Es1GxsbMRqNuFwujEajGhzW1tZitVoDll76+WfoDAYD4eHhaiZYj8ejzgx6PB6amprweDwEBwfT2NhIe3s7ISEhfPvb3+7XnxWZyRNCiAEme3GEEOL03H777dx8882sXLmS/Px8lixZwhNPPEFeXh55eXlndc7Tmd/QaDSsWLGCFStWnNU1BhufomDTjcIcr0fbtJeUhNhjx3t6mDI+g8MNzeytOUJVfSOdR4/i9Xbx7aumYTHHAVBdb6ex0U7cjg9IzJ2P3W4nNjaW5uZmpkyZgsPhICUlBZvNhtVqVQOtjo4OsrOzsVqtaDQaTCYTra2tJCUlkZKSQk1NDaGhocTExGAwGPB4PISFhZGUlITRaGT79u2YTMf2BG7fvp2Ojg727NmjJnExGAzU1dVRUFBAamoqwcHBREdHq9fy8y/V9Pfv6NGj1NbWAtDd3Y3P5yMlJYXGxkY1Y6vL5VL31vmXZpaUlNDV1aUu+ey9p06r1ZKbmxsww+efxesdRPqXicbGHhuD5uZmYmJi+n3MJcgTQogBJntxxECTDxbEUBYZGcmzzz7L4sWLuf/++xk9ejRPP/00P/zhDy9014YMm82Gx+vFph9BisWA9vBXWJLi1OftLW0YoyNpbu3E09VNeIQOW5MLW5MLU0wUza3tREeGQo+Xys3vEJKSTVVVA+np6URGRgbUn/N6vdjtdgwGA2azWZ21M5lMlJaWqo+1Wi0hISFMnjyZyMhIIiMj2b59O4qiEBwcTGZmJnv27CE+Pp729nbKy8txOp2EhIQQHx/P3Llz6ezsxOfzMWbMGFpaWkhOTlZn2HoXcPcHaf66ec3NzcTFxeHz+WhtbSU1NZX6+nrcbjfBwcGkpKSomS/9s4lms5ns7GwaGxuJi4vj0KFD+Hw+LBZLn/fcnwHUn9THvyxYUZSA0gwpKSm0tbX1+5hLkCeEEANM9uKIgSYfLIihrqurC7fbzS233EJDQwOLFy/mhhtuOKEAteibP8gxm82gTQFdJFRvwuf1YGt2MXlUKkFBQYyxmGlvdxOs0VJ6oBZvdw9ebxe5Y9II0QZjjjWg9LSwv3QjqQmZhIaGBiQlgWMzU2PHjqW9vf2EQCk3N1ddzun1ehk7diwhISHMmTMHm82Gw+Fg165d1NbWEhUVhVarRaPRkJSUxFdffUVERASZmZlkZ2czZcoUtFottbW12O12JkyYQEVFBVlZWeh0OnWpZH19vbqvr7a2FkVR1OLpPp/vhAyX/rZ9Zb/U6XTk5+erZRWOd3zReAhcxunPwNr7vBaLBafT2W9j7Sd18oQQYoBdDMW+xeDyX//1X9x6660D8sFCfxQNl8LjAuCpp57illtuYeLEiYSHhzNz5kxefvllpk6dyiuvvILBYLjQXRwyetdkAyBmBIy9BltbNx5vF462DvInjMTT1U1acjyaIA09PQrtHW50wRpc7W7mTpmAThcMGg2jUxOI9NiIO1qLp7NDzaTpzxrZ2tpKQkJCn/1obm6ms7MTu91OVFQUc+fOxeFwYLFYmDdvHnl5eers27hx40hOTsbtdjN27FhaWlowGAyEhoai1WopKiqirq6O7u5uKioqMBgMFBcXU11djdfrVZO89A68goOD0Wq1JCYmYrFY1L1/ZrOZtrY2oqOjKS0tpbOzk6KiIjWxis1mU4+ZzWbS0tLU7J/+vXz+Wnv+paKpqalotVp1b2ZfNfh8Ph8NDQ39PuYS5AkhxBAnb4jF1xnIDxb6o2i4FB4XcKwI+vbt2/n2t79NeXk5LS0tbN68mRdeeIFFixadt/piF41wI+aC/0RvTMEcZ8Dn68EQEQYa8CnHatFFhOnZe6iBusZm1n+1B2NUBC1tndiaXVibnFiry3EWf4jZeCxLqcFgoL29HbPZTHd3d8CMlp+/eHhOTg4pKSlqAXSbzYbFYuGqq67i6quvJi8vD6fTSV1dHWPHjsXtdqPVajl06BAxMTHU1tbidrvRaDRqds4PP/yQlpYWSktLsVqt6jU1Go26Rw5Qi6b7l2XCsb+lGRkZtLe3k5WVhdPpxO12qzOPJpMJp9NJR0cHhYWFAcGfv//+YNput9Pd3a0+Dg8PJysrSw0ebTYb9fX1VFVVUVhYSHx8fL8PryzXFEKIIU6W4onBpD+WI8uSZgFQUFBASUkJK1asYNWqVWRlZQXUyps0aZIEeudIGxpBSsF3oW47tSWf83lJJc0tHXR3d+P2dBGh1+PzKdTanGiDtXxaWE53l4+DhxtQfBpAQ35oD+z9AF/oWPSRJrKysrDZbAEJRyCwvlx+fj4+n4/q6mqsVitxcXE0NDTg9XqxWCz4fD7Wr1/P4cOHaWlpobW1FafTSVNTk1oU3T9L509c8sc//hGj0YjVamXmzJnqz0Z3dzcOhwOj0RjwX3/iHv9sWmRkJFVVVcyZMwe73Y7JZKKuro7i4mIURSE3Nxez2czOnTtxOBxqEGc2m9Vz+Hy+E5Z7+tlsNiIjI6msrGTu3Lnq8lSj0UhTU1O/j62UUBgsqW2FEOIsSVINIUR/GYzvjSorKyksLGTXrl0UFhZSVFRES0sLer2eyZMns3379gvdxT4Nxnt5Mj6fj8J/vUv7wR20tHfQ7OrA4/Hi6nDT0ubGEBlGXHQkRkME1mYnuyrqyBqdTI8Prrs8h2prExkpCUSNvQziRqllA3oXM/f5fHR3d6vH6+vr+eqrr7Db7ej1ekJDQ+ns7GTu3Lk0Njayb98+9uzZQ1RUFLGxsXi9Xvbu3cukSZOYNGkSSUlJVFZWEh4eTnV1NWazmR07dnDfffdhMBjUcg52u53JkyfjcDgwmUwUFxfT3t5OR0cHY8aMoaKigokTJ6pLQf1lE/wlDg4ePEh1dTWzZs1iypQpFBYW0tnZGTAT6F/K6XK51Bp5fv69gf7z+ffmAbjdbvbv38+UKVMwm839+rMiQd4Q+eUTYrCQgEIIcTrk34rTN5ju1VB5b1RdXc3OnTspKiri6aefvtDd6dNQuZfw7zp0LlsNuZHN+NxtbC+vYveBOpqdHRii9HR0evH1+Nh/uJGoCD3BQVqmTMjA2tRCkimGqMgwrpmRBfGZ2HQjMScfWwZZWFhIe3s7TqeTxMTEgMCotraWhoYGJkyYwPbt20lKSiImJobJkyfzz3/+E5vNRlxcHIqi0NbWRldXlzr71dHRQW5uLjqdDqfTSVdXFzExMURGRpKQkMCePXuIiIigpaWF1NRUcnJy1Gtu3bqVlJQUurq6CA8PJy0tjZycHIqLizEajWohc3/B9aamJnJzc0lPT1f30tlsNmJjY9WAzf/YXyPPH9yaTCZ12arZbMZut+P1erFarTQ3NxMVFUVPTw9XXnml1MkTQlw4sjRQiOHjfAYX8m/F6ZN7debS09NJT09n4cKFF7orw4J/eWHGjCvQ9njxVXxCVd12wnV66rqcGIMj8PmOcrjJxaT0ZOqbW1n+vavZdaAWU1w0B+saCAvVUWttxgKYIxzUezqot7eoe8/0ej1FRUXk5ORgt9uJj4/HYrFgsViwWq1MnTqVqqoqYmNjcTgcmM1mjhw5QnV1NdHR0cTExNDe3s7o0aNxOp2EhobS2tpKSEgIERERhIeHoygKDQ0N1NbW0tPTQ3NzM9HR0Xg8HkpLS/F6vTQ2NmKxWHC73dx4441UVlaqS0yPHDmC2+2mo6ODjo4OGhoaCA8PZ86cOWqpBP8sXWdnJw0NDYwfP57GxkaSkpLU2nnw7xIK/iWcHo8Hu91OSkqKWqNv/PjxOBwOWltb+31MJcgTQpyR4bpXZjB9ki76l4ztyZ3P4GK4/ltxPsi9Ehda7zIHaMMoPZqEeUwO5Tu2cMWl4wjX6znS6ETRKPiASyemsX1fNWNHmKk4bCU2IoIvSyo50uTkkrEj8fUcoKzm/+gxjsKYMorMzEyam5vp6emhsLCQ2NjYgPIFRqMRp9PJ+PHj1T1tXq+Xzs5O3G43LS0tBAUFkZmZydGjR8nJyaGsrIygoCDS09Oprq4mNTWVbdu2qVk9ExMT1WLmgLpU0/+8oijq8kp/DT2Px0NhYSFz586lpqaGzs5ODAYDe/fuVYM8/wxdc3MzCQkJNDc34/P5aGxsJD8/X50F9C9RBU7Yt2c2m2lsbMRsNrN//37i4uLobxLkCSHOiD9L33AzFD9Jl+Dl9AzFsR0o5zO4GK7/VpwPcq/EYJOVnU2pRsOS2Vfi2L0eU1QYPl8PjrYORo1IoKa+CV1wF1/sriQqPJTahmZcbZ2UHbRijIxgT9UR9CFaEnu6CIsNx5CYg9FoZOfOnSQlJVFVVYXJZEJRFFJTUwkPDyc4OJi6ujp1r5vFYqGgoIDS0lKio6MJDw8nLCyMESNGoNfrsVgsarkGf6F1l8uF0+lkyZIl6HQ6bDabWjqivr4eRVFQFAWHw4HP51OLoNfV1aHRaOjo6CAxMZG6ujquuuoqJkyYwObNmwkJCWHnzp3k5uaq/RkxYoRaKqGxsRGj0ahez7900+Vyqdf3+XyUlJTg8/nQ6XQYDAbeffddzGYzhw8f7vcxHLJB3siRIzl06FDAsYcffpif//znF6hHQoihbCh+ki7By+kFukNxbAeKBBdCiL74i34DmA0JFH3we3w9PSTERmMxxREWosOn9JCVEYWr083EjBQ++AJGJMTi9nYxfqSZLl8Psy8ZB3gpKttAc7CZ3Nxc2tvbMRqNmM1mdDodJpOJ3bt34/V61TIEZrMZi8WiZsBsaGhg9OjRuFwumpqaMJvNTJw4UX2dz+dDo9Gos3y7d+8GIDY2Vs1y6fP5SEpKUuvzVVdXq/vuvF4ver2eyy67jMrKSmbOnKnO1o0aNUqdbdNoNERHR1NVVcXcuXOx2+10dnaqZRy8Xi+1tbWYTCasVitZWVnq8s7Gxka6urrUGb/CwkJSUlJwu93Mnj2738dwyCZeGTlyJIsWLWLx4sXqscjISCIjI0/7HENpQ6wQQhxPZvLg7rvv5k9/+hO33nqrBCtC9AN5b9R/hsu9rK+vp7OtFefezZiD2/D19FBSeZg4QwRp5ni02iBMMVHYml0AmGKiKKs+wsT0ZBxtHRijIvjXznLCogxEZRZgTh+nZtk0m818/PHHtLa2otPpCAkJITo6Gq1WqwaAdXV12O12QkJCiImJUcsn+AM3f2CYkJCAx+Ph4MGDHD16lKCgIHJycsjJyWHDhg1kZGQQFRWFyWTio48+wuv1kpqaSnR0NB9//LGaECYoKIjg4GC6u7vV/XRNTU1ERkYSFhaGVqtVE6yYzWYKCwtPyJ7Z2dlJZmYmer1eDVp9Ph+lpaVkZWWh0+mora2lrq6O1NRUYmJi+v1nZcjO5AFERUUF1J/4Oh6PB4/Hoz4+H5schRBioMgsjMzSieFLPsQRg4XZbMYGZCy4A63jILXbPyA2KpyWNjepph66fT7sLW2kJMSqgR6AzeFCURTKqo8wNs2Mq/0ouWH1EJKCTRvz72QvGRlUVlYyadIkzGYzGzZsoKOjAzi2/82/tHLixIm4XC4SExNRFIW4uDgcDocaNJnNZkpLSzEYDFRUVACQlJTE7t270ev1VFVVMX/+fLVou3/JaEVFBZ2dnWpymISEhIBlmDExMVitVtrb20lOTsblchEcHByw366urg4Ag8HAoUOHyM3NpbKykjFjxmC1WqmrqyM/P1+dHQXUZZwmk4mqqqp+H7egfj/jAFq1ahVxcXHk5OTw1FNP4fV6T9n+mWeewWAwqF8jRowYoJ4KIYQ4H/yBrrwJHtxKS0u5++67KS0tvdBdGTL8y7FfeeWVC90VcZHzJ2XRarVgGkPKzO8TEWNkXJoZrTYIvS4Ec5yB+kYnh6xNfLqznPZON43ONvS6ELJGpxIeqid3rAVtEFC7DQ59Cb4uzGYzUVFRzJ8/H51Oh91uJzMzk6SkJMLCwjCZTBiNRkJCQnC5XMTHx5OSkhIwo9bS0qL2Ly4uDrPZzNSpU8nIyKC7u1udWRszZgxwLCgLDw9n1KhROBwOMjMziYuLIyEhgTlz5qDT6dTzeb1evvjiC7q7u4mNjeXAgQO43W7sdjsej4eioiLMZjOpqakYjUaqqqowm83s2rWLtLQ0KioqaGxsVJeiAmoJBn+QaLPZAiah+suQXa65evVqLrnkEmJjY9m+fTuPPPII119/Pa+++upJX9PXTN6IESOG/DS6EEIIMZjJstozd6Fm8obLEsPBYDjfS5/3KLadH2DWutBqj80Z1VqbqWt0kBAbTUu7m6zRqeh0Jy4a9LdLHWHBUvAtCDeqBcM1Gg3Nzc1qbbzg4H+/3l9jzl9U/fji4o2NjbjdbrRarZpQxWq1kpSUhD/cSU1NVbN5+pdwOp1OysvLGT16NBEREURGRlJVVcWYMWMoLS1V44eCggLq6uo4cOAA48aNIyQkRC2avnfvXrXkQkNDAzNnzsRqtZKXl0dHRwdms1kNHP3LNP2zeMHBwbS0tJCdnT18l2uuWLGCJ5988pRtduzYQX5+Pvfdd596LCsri9jYWG6++WZ1dq8ver1eLVgohBBCiIEhy2rPnCzHFoOZVhdKyoybwb4fDm+DHh8pCbFotUGY4wxq4HdKnnao+ABSp2A2Z6olB/zFyP172fyJSwC1yHh9fT2AWiLB5/NhMBjo6elRAyo4VibBv7XLZrNRX19PdHQ0//rXv8jLy6O9vR2z2Ux3dzc6nY6JEyfy9ttvYzab1RIJX375pVoaob29HYPBgKIoJCUlAVBcXIzL5aKjo4OQkBAmTJiA2+0mLy+PQ4cOMXfuXHQ63QkzeP5SDjab7bxsIRtUM3lNTU00NTWdss3IkSMJDQ094Xh9fb1aH2Pq1Kmndb3h/AmLEEIIIcSZkvdG/eeiuZedDqjfBYrvtJr7fD5sTU7M8bH/DuBi08E0Rk2kcnxwd7z6+no6OzvVOnf+Y0BAyQL/MUAtTF5dXa3W4Zs4caL6vP81tbW1tLW1MW/ePIqKiqipqSE8PJzs7Gw6OzvV/YMWiwWbzUZlZSU7d+4kLS1NDU4nTpzI/v37SUtLw+12k5WVRWlpKZGRkbhcLpKSkkhJSaGoqAiHw8GBAwe46667hu9MXnx8PPHx8Wf12qKiIgA1qhZCCHFxkUQVQghxAYQbIXPuaTfXAikne653UfZTMJvNFBUVYTAYAmrheTyegMf+Y8HBwSQkJFBRUcH1119PZWUlcXFxWK1WfD4fbW1tZGZmYrfbaW5uxmQyYbPZmDhxIo2NjYwdOxav10tlZSWZmZnodLqArJlJSUlUVFQwfvx4dTIqMzOTyspK0tLSePPNN0lOTqasrIypU6eqfcvKyuKNN944ZUB7toZk4pWtW7eyevVqiouLqa6u5m9/+xtLlixhwYIFajV6IYQQFxdJVCGEEBcHrVZLbm6uWsYAjgV+/rIMfv5jKSkptLS0EBkZSWVlJfn5+VgsFpKSknA6neh0OioqKoiPj8fpdNLQ0EBVVRXvvvsu0dHRlJeXU1ZWptbIMxqN1NbWUl9fT0pKCm1tbYSFhbF161Z8Pp963fHjx3PgwAFcLhefffYZOp2OyspK9fW1tbUYDAasVmu/36NBNZN3uvR6PW+99RZPPvkkHo+HtLQ0Fi9ezEMPPXShuyaEEOICkX1fQghx8Th+1u/rZgH9Syb9Kz38tfhiY2PZv38/Y8aMwel0MmbMGLRaLQ6HA7PZjMPhQKvVMnbsWFpaWkhOTqa0tBSbzabuH5w4cSIvv/wy8fHxlJaWotVq1aQwCQkJNDY2MmLECNrb20lNTWX37t0cOXIEq9VKU1MTMTEx/X5/BtWevIF20ayVFkIIIYQ4DfLeqP/Ivbzw/Fk7/bN5x+udDMW//NJutwcUL/d6vXi9XiIjI8nNzcVms+H1ejl06BDt7e3MmzcPu91OS0sLW7duJSbmWA3A+Ph4Wltb1Zp7vdlsNtxuN4WFhXi9XsLDw7n//vuH7548IYQQQgghhOgP/oLrvZdw9qbVak/Y6uUPBrVaLfn5+Xi9XnUG0D9b6PP5sNvtaLVaNblLVVUVBoOBxsZGnE4n2dnZaubO3qUgfD4fbreb4uJiNZlLWlpav3/vEuQJIYQQQgghhp3TTeRyKjqdjvz8/BPOazabqaurw2az0dDQQGxsLPHx8YSEhBAbG6uWcvCXhqirqwMgODiYmpoa9Ho9hw4dIjs7mxEjRpxTH/siQZ4QQgghhLhoPPPMM7z77rtUVFQQFhbGjBkzWLVqFWPHjgWgq6uLn/70p6xbt06dnZk7dy4///nPSU5OvsC9F4OFP4On1+tV6+z5g8HeZSD8M39+ZrNZzd4JEBsby549e/q9f7InT9ZKCyGEEEIAF8d7o6uuuopbbrmFSy+9lO7ubh599FF2795NeXk5ERERuFwubr75ZhYvXkx2djZOp5N7772X7u5udu7cedrXuRjupeC0a/ud6rV6vR6TydSvPysS5MkvnxBCCCEEcHG+N7Lb7SQkJLBp0yZmzpzZZ5sdO3YwZcoUDh06dNrlui7GeynOzvn4Wbmol2v649vW1tYL3BMhhBBCiAvP/57oYpoDcLlcABiNxlO20Wg0p0x17/F48Hg8J5xX3meKr3M+fu8u6pm8urq687LRUQghhBBiKDt8+DCpqakXuhvnnaIoXH/99TidTrZs2dJnm6NHj1JQUMC4ceN4/fXXT3quFStW8OSTT56vroqLwMGDB8nIyOiXc13UQV5PTw9HjhwhKioKjUbzte1bW1sZMWIEhw8flmn3IULGbOiRMRt6ZMyGJhm3oWcgxkxRFNra2khOTiYoKOi8XGMwueuuu/jwww/5/PPP+wxqu7q6WLhwIbW1tWzcuPGU9/34mbyWlhbS0tKora3FYDCcl/6fD0P134ah2m84NutrsVhwOp39Vhj9ol6uGRQUdFafUkVHRw+5H56LnYzZ0CNjNvTImA1NMm5Dz/kes6EUkJyLZcuW8f7777N58+aTBnjf+ta3qK6u5rPPPvvae67X69Hr9SccNxgMQ/J3bKj+2zBU+w306wcrF3WQJ4QQQgghLi6KorBs2TLWrl3Lxo0bSU9PP6GNP8CrrKxkw4YNxMXFXYCeCnH2JMgTQgghhBAXjbvuuos33niD9957j6ioKLVemcFgICwsjO7ubm6++WZ27drFBx98oKa5h2PJWXQ63YXsvhCnRYK8M6DX63niiSf6nIoXg5OM2dAjYzb0yJgNTTJuQ4+MWf946aWXAJg9e3bA8TVr1nD77bdTV1fH+++/D0BOTk5Amw0bNpzwupMZquMl/R5456PvF3XiFSGEEEIIIYQYboZ/2iQhhBBCCCGEuIhIkCeEEEIIIYQQw4gEeUIIIYQQQggxjEiQJ4QQQgghhBDDiAR5p2Hjxo1oNJo+v3bs2KG2q62t5brrriMiIoL4+Hh+9KMf4fV6L2DPxYcffsjUqVMJCwsjPj6eb37zmwHPy5gNLiNHjjzhd2z58uUBbWTMBiePx0NOTg4ajYbi4uKA52TMBpcFCxZgsVgIDQ0lKSmJ73//+xw5ciSgjYzZ4FJTU8OiRYtIT08nLCyMUaNG8cQTT5wwJjJuA+vFF18kPT2d0NBQ8vLy2LJlyynbb9q0iby8PEJDQ8nIyOC3v/3tAPX0RGfS95O9D66oqBjAHsPmzZu57rrrSE5ORqPR8I9//ONrXzMY7vmZ9ru/7reUUDgNM2bMwGq1Bhx77LHH+PTTT8nPzwfA5/Nx7bXXYjKZ+Pzzz2lubua2225DURReeOGFC9Hti97f//53Fi9ezNNPP80VV1yBoijs3r1bfV7GbHBauXIlixcvVh9HRkaq/y9jNng99NBDJCcnU1JSEnBcxmzwmTNnDj/5yU9ISkqivr6eH//4x9x88818+eWXgIzZYFRRUUFPTw8vv/wyo0ePZs+ePSxevJiOjg7+53/+B5BxG2hvvfUW9957Ly+++CKXXXYZL7/8MldffTXl5eVYLJYT2ldXV3PNNdewePFiXn/9db744gvuvPNOTCYTN91006Duu9++ffuIjo5WH5tMpoHorqqjo4Ps7Gx+8IMfnNY9Gyz3/Ez77XfO91sRZ8zr9SoJCQnKypUr1WPr1q1TgoKClPr6evXYm2++qej1esXlcl2Ibl7Uurq6lJSUFOXVV189aRsZs8EnLS1NWb169UmflzEbnNatW6eMGzdOKSsrUwClqKgo4DkZs8HtvffeUzQajeL1ehVFkTEbKp599lklPT1dfSzjNrCmTJmiLF26NODYuHHjlOXLl/fZ/qGHHlLGjRsXcGzJkiXKtGnTzlsfT+ZM+75hwwYFUJxO5wD07vQAytq1a0/ZZjDdc7/T6Xd/3W9ZrnkW3n//fZqamrj99tvVY1u3bmXSpEkkJyerx+bPn4/H46GwsPAC9PLitmvXLurr6wkKCiI3N5ekpCSuvvpqysrK1DYyZoPTqlWriIuLIycnh6eeeipgqZGM2eDT0NDA4sWL+fOf/0x4ePgJz8uYDW4Oh4O//OUvzJgxg5CQEEDGbKhwuVwYjUb1sYzbwPF6vRQWFjJv3ryA4/PmzVNnxI+3devWE9rPnz+fnTt30tXVdd76eryz6buf//3UlVdeyYYNG85nN/vFYLnnZ+tc77cEeWfhtddeY/78+YwYMUI9ZrPZSExMDGgXGxuLTqfDZrMNdBcvelVVVQCsWLGCn/70p3zwwQfExsYya9YsHA4HIGM2GN1zzz389a9/ZcOGDdx999388pe/5M4771SflzEbXBRF4fbbb2fp0qXq0vXjyZgNTg8//DARERHExcVRW1vLe++9pz4nYzb4HTx4kBdeeIGlS5eqx2TcBk5TUxM+n++E+52YmHjSe93X+CQmJtLd3U1TU9N56+vxzqbvSUlJvPLKK/z973/n3XffZezYsVx55ZVs3rx5ILp81gbLPT9T/XW/L+ogb8WKFSdNqOL/2rlzZ8Br6urq+Pjjj1m0aNEJ59NoNCccUxSlz+Pi7JzumPX09ADw6KOPctNNN5GXl8eaNWvQaDS8/fbb6vlkzM6/M/k9u++++5g1axZZWVnccccd/Pa3v+W1116jublZPZ+M2fl3umP2wgsv0NrayiOPPHLK88mYnX9n+vfswQcfpKioiPXr16PVarn11ls5tpLoGBmzgXE270OOHDnCVVddxcKFC7njjjsCnpNxG1jH39evu9d9te/r+EA4k76PHTuWxYsXc8kllzB9+nRefPFFrr32WnU/6GA2mO756eqv+31RJ165++67ueWWW07ZZuTIkQGP16xZQ1xcHAsWLAg4bjab+eqrrwKOOZ1Ourq6TvgUQZy90x2ztrY2ACZMmKAe1+v1ZGRkUFtbC8iYDZSz+T3zmzZtGgAHDhwgLi5OxmyAnO6Y/exnP2Pbtm3o9fqA5/Lz8/ne977HH//4RxmzAXKmv2fx8fHEx8czZswYxo8fz4gRI9i2bRvTp0+XMRtAZzpuR44cYc6cOUyfPp1XXnkloJ2M28CJj49Hq9WeMPPV2Nh40nttNpv7bB8cHExcXNx56+vxzqbvfZk2bRqvv/56f3evXw2We94fzuZ+X9RBnv+P3OlSFIU1a9Zw6623qnsX/KZPn85TTz2F1WolKSkJgPXr16PX68nLy+vXfl/MTnfM8vLy0Ov17Nu3j4KCAgC6urqoqakhLS0NkDEbKGf6e9ZbUVERgDo+MmYD43TH7Fe/+hU/+9nP1MdHjhxh/vz5vPXWW0ydOhWQMRso5/J75v9k2+PxADJmA+lMxq2+vp45c+aoK1OCggIXY8m4DRydTkdeXh6ffPIJN954o3r8k08+4frrr+/zNdOnT+f//u//Ao6tX7+e/Pz8E95Tnk9n0/e+FBUVqT9ng9Vguef94azu9zmlbbnIfPrppwqglJeXn/Bcd3e3MmnSJOXKK69Udu3apXz66adKamqqcvfdd1+AngpFUZR77rlHSUlJUT7++GOloqJCWbRokZKQkKA4HA5FUWTMBpsvv/xSef7555WioiKlqqpKeeutt5Tk5GRlwYIFahsZs8Gturr6hOyaMmaDy1dffaW88MILSlFRkVJTU6N89tlnSkFBgTJq1Cjl6NGjiqLImA1G9fX1yujRo5UrrrhCqaurU6xWq/rlJ+M2sP76178qISEhymuvvaaUl5cr9957rxIREaHU1NQoiqIoy5cvV77//e+r7auqqpTw8HDlvvvuU8rLy5XXXntNCQkJUd55551B3/fVq1cra9euVfbv36/s2bNHWb58uQIof//73we0321tbUpRUZFSVFSkAOp7hkOHDvXZ78Fyz8+03/11vyXIOwPf+c53lBkzZpz0+UOHDinXXnutEhYWphiNRuXuu+9W/2iKgef1epUHHnhASUhIUKKiopS5c+cqe/bsCWgjYzZ4FBYWKlOnTlUMBoMSGhqqjB07VnniiSeUjo6OgHYyZoNXX0GeosiYDSalpaXKnDlzFKPRqOj1emXkyJHK0qVLlbq6uoB2MmaDy5o1axSgz6/eZNwG1m9+8xslLS1N0el0yiWXXKJs2rRJfe62225TZs2aFdB+48aNSm5urqLT6ZSRI0cqL7300gD3+N/OpO+rVq1SRo0apYSGhiqxsbFKQUGB8uGHHw54n/2lBY7/uu222/rst6IMjnt+pv3ur/utUZReO62FEEIIIYQQQgxpF3V2TSGEEEIIIYQYbiTIE0IIIYQQQohhRII8IYQQQgghhBhGJMgTQgghhBBCiGFEgjwhhBBCCCGEGEYkyBNCCCGEEEKIYUSCPCGEEEIIIYQYRiTIE0IIIYQQQohhRII8IYQQQgghhBhGJMgTQgghhBBCiGFEgjwhhDhN48aN49VXXz3r18+ePRuNRoNGo6G4uPiU7e69996zvk5fbr/9dvXa//jHP/r13EIIIYa/Bx54gOuuu+6cz9Pc3ExCQgI1NTXn3qkztGTJEr773e8CcPPNN/P8888PeB8GigR5QghxGtxuNwcOHCA7O/uczrN48WKsViuTJk3qp56dnv/93//FarUO6DWFEEIMDoWFhdxyyy0kJycTGhrKqFGj+OEPf8j+/ftP+xzFxcXk5OScc1+eeeYZrrvuOkaOHHnO5zqba//ud78D4PHHH+epp56itbV1wPsxECTIE0KI07Bnzx4URTnn4Cw8PByz2UxwcHA/9ez0GAwGzGbzgF5TCCHEhffqq68ydepUDAYD7777Lvv27eN3v/sdDoeD11577bTPU1JSck5BXnd3N263m9dee4077rjjrM9zLoxGIxEREQBkZWUxcuRI/vKXv1yQvpxvEuQJIcQpFBcXc8UVV1BQUEBPTw8Wi4XVq1f32/k7Ojq49dZbiYyMJCkpiV/84hcntFEUhWeffZaMjAzCwsLIzs7mnXfeUZ9va2vje9/7HhERESQlJbF69erzsuRTCCHE0PL555+zZMkSXnjhBV5++WWmTZtGWloaV1xxBf/4xz94+OGHgWMfZF5zzTVER0djNpt54IEH8Hq96nkOHz5Mc3NzQJB3qtfU1NSg0Wh45513mDlzJnq9nrVr1/LRRx8RHBzM9OnTA/pZVlbGzJkzCQsLIycnhy+++AKNRkNJSUm/3Qt/nw4dOqQeW7BgAW+++Wa/XWMwkSBPCCFO4uDBg8yaNYsrrriCBQsW8M1vfpMHHniA+++/n507d/bLNR588EE2bNjA2rVrWb9+PRs3bqSwsDCgzU9/+lPWrFnDSy+9RFlZGffddx//+Z//yaZNmwC4//77+eKLL3j//ff55JNP2LJlC7t27eqX/gkhhBi67r//fmbNmsX/+3//r8/njUYjRUVFzJgxg0suuYRdu3bx1ltv8eabb7Jq1Sq1XXFxMVFRUWRkZAB87Wv8+85XrVrFY489RllZGfPmzWPz5s3k5+cH9KGsrIxp06Zx+eWXU1RUxOOPP87NN99MSEgI48eP77d7UVxcTExMDGlpaeqxKVOmsH37djweT79dZ9BQhBBC9Gnu3LnK7bffriiKokyZMkV57rnnFJ/Pp8TExCjPP/+8oiiKcsMNNygxMTHKTTfd9LXnmzVrlnLPPfeoj9va2hSdTqf89a9/VY81NzcrYWFharv29nYlNDRU+fLLLwPOtWjRIuU73/mO0traqoSEhChvv/22+lxLS4sSHh4ecC0/QFm7du1p3gEhhBBDVXl5uQIo77zzzinb5eXlKXfeeWfAsccff1yZMmWK+njlypVKQUHBab9mxYoVSkREhFJdXR3Q5vrrr1d++MMfBhybPXu28q1vfSvg2I033qhkZ2efst9nasWKFcqsWbMCjpWUlCiAUlNT06/XGgxkJk8IIfpgs9n47LPPWLp0KT6fj927d5Obm0tQUBDBwcHodDoAfvSjH/GnP/3prK5x8OBBvF5vwLIVo9HI2LFj1cfl5eUcPXqUb3zjG0RGRqpff/rTnzh48CBVVVV0dXUxZcoU9TUGgyHgHEIIIS4+/hUdeXl5J21TUVFBYWEhy5YtCziu0+kCZrd6J105ndcUFxezYMGCE5KruN1uQkND1cc1NTVs3LiRxx9/PKCdXq8/aaKzFStWqNmiT/bV12qb4uLiE84ZFhYGQGdnZ5/XGsoGdue/EEIMEdu2baOnp4ecnBwqKipwu93k5ORw+PBhmpqauOyyywCYM2cOGzduPKtrKIrytW16enoA+PDDD0lJSQl4Tq/X09zcDIBGoznjcwshhBi+/IFLZGTkSduUlZUREhLCmDFjAo6Xl5czefJk9XFxcTHXXHPNab+mpKSE5cuXn3C9+Ph4nE6n+rikpASdTsfEiRMD2u3du5fbbrutzz7ffffd3HLLLSf9noA+M3eWlJSwYMGCgGMOhwMAk8l0yvMNRRLkCSFEH/ybx48ePUpxcTGpqanExcWxevVqJkyY0C9ppEePHk1ISAjbtm3DYrEA4HQ62b9/P7NmzQJgwoQJ6PV6amtr1WO9xcTEEBISwvbt2xkxYgQAra2tVFZW9tleCCHExcGfDXrLli3ceOONJzzvdruJiorC5/PR1dWFXq8HoLa2lnfeeUetqdrW1kZ1dbX6d+/rXtPa2kpNTQ25ubknXDM3N5fXX39dfazVaunu7ubo0aPqDN+mTZsoKSk56UxefHw88fHxZ3Qv/H06/px79uwhNTX1jM83FEiQJ4QQfZg2bRrBwcGsXLmS9vZ2Ro0axYsvvsjq1avZsGFDv1wjMjKSRYsW8eCDDxIXF0diYiKPPvooQUH/XkkfFRXFj3/8Y+677z56enooKCigtbWVL7/8ksjISG677TZuu+02HnzwQYxGIwkJCTzxxBMEBQWdMLsnhBDi4jF9+nTmzZvHnXfeSXt7O9OnT6enp4cdO3bw29/+lpdeeompU6diNBpZvnw5y5Yto6amhmXLlrFw4UKuvvpq4NgsnlarVYPGr3vNli1bCAoKCpgJ9Js/fz6PPPIITqeT2NhY8vLyCAkJ4cEHH+S+++6jvLxczQzdHx+m+pWUlKDVak+YMdyyZQvz5s3rt+sMJhLkCSFEHywWC7///e95+OGHsVqtBAcH09nZybp16wL2v52r5557jvb2dhYsWEBUVBQPPPAALpcroM1///d/k5CQwDPPPENVVRUxMTFccskl/OQnPwHg+eefZ+nSpfzHf/wH0dHRPPTQQxw+fDhg34MQQoiLz/vvv8/q1at59tlnqaqqQq/XM3r0aK677jomTJhAUFAQ7733Hvfccw8vv/wySUlJLF68mAcffFA9R0lJCePGjVNn7QwGwylf42/f19+gyZMnk5+fz9/+9jeWLFlCUlISv//971m+fDlr1qxh3rx5/OAHP+APf/gDRqOx3+7D8d8DHFups3btWj7++ON+u85golFk44YQQpyS0Wjk97//PTfccEOfz2/cuJFf//rXAbXr+jJ79mxycnL45S9/2f+d7KWjo4OUlBR+8YtfsGjRooDnNBoNa7M4AK8AAAG7SURBVNeuPen3IoQQQpxP69at48c//jF79uwJWLkCx/ahz5kzh8suu4ynn376vPbjN7/5De+99x7r168/r9e5UGQmTwghTqGurg6n09nnshM4tvRk165ddHR0kJqaytq1a7n00ktPer4XX3yRV199la1bt570nGeqqKiIiooKpkyZgsvlYuXKlQBcf/31apulS5cG7IMQQgghLoRrrrmGyspK6uvrqa6uxm63k5ubS1NTE8899xw1NTWsXbv2vPcjJCSEF1544bxf50KRmTwhhDiFjz76iIULF9LW1nbOe9zq6+txu93AseWg/jIM56qoqIg77riDffv2odPpyMvL4/nnnw8IIhsbG2ltbQUgKSmJiIiIfrm2EEIIcbbefvttli9fTn19PYmJicydO5enn36axMTEC921IU+CPCGEEEIIIYQYRqQYuhBCCCGEEEIMIxLkCSGEEEIIIcQwIkGeEEIIIYQQQgwjEuQJIYQQQgghxDAiQZ4QQgghhBBCDCMS5AkhhBBCCCHEMCJBnhBCCCGEEEIMIxLkCSGEEEIIIcQwIkGeEEIIIYQQQgwjEuQJIYQQQgghxDDy/wGw7APIUrie8QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(9, 4.5))\n", "\n", @@ -918,7 +1200,27 @@ }, "outputs": [], "source": [ - "# Solution goes here" + "# Solution\n", + "\n", + "# plt.figure(figsize=(9, 4.5))\n", + "\n", + "# shape = (2, 5) # CHANGED\n", + "# plt.subplot2grid(shape, (0, 0), colspan=3)\n", + "# plot_first_selection(candidate_df)\n", + "\n", + "# plt.subplot2grid(shape, (0, 3), colspan=2) # CHANGED\n", + "# plot_proper_motion(centerline_df)\n", + "\n", + "# plt.subplot2grid(shape, (1, 0), colspan=3)\n", + "# plot_second_selection(winner_df)\n", + "\n", + "# plt.subplot2grid(shape, (1, 3), colspan=2) # CHANGED\n", + "# plot_cmd(candidate_df)\n", + "# poly = Polygon(coords, closed=True, \n", + "# facecolor='C1', alpha=0.4)\n", + "# plt.gca().add_patch(poly)\n", + "\n", + "# plt.tight_layout()" ] }, { diff --git a/searchindex.js b/searchindex.js index 64147d1..205bc3d 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["01_query","02_coords","03_motion","04_select","05_join","06_photo","07_plot","README"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,sphinx:56},filenames:["01_query.ipynb","02_coords.ipynb","03_motion.ipynb","04_select.ipynb","05_join.ipynb","06_photo.ipynb","07_plot.ipynb","README.md"],objects:{},objnames:{},objtypes:{},terms:{"000":[1,2,3],"000000":[],"000831":[],"001768":[],"002126813991455":[],"00212681399145510":[],"0021268139914551017":[],"0022333299353825":[],"00347705":[],"0090408325195312":[],"0092427896695131561015612256418500423168":[],"009471":[],"00947118796605":[],"011312663154804":[],"014609":[],"016078":[],"016078400820631":[],"017":[],"020103160014030861015612386332668697600":[],"0203041897099641431015635614168640132864":[],"0211787423933783961015635850945892748672":[],"022652498590129771015612332147361443072":[],"024192":[],"0252932373534968981015612282738058264960":[],"02878111976456593":[],"029159":[],"0317837403475309051015612250375480101760":[],"031798":[],"031798198627634":[],"032476530099618431015612426744016802432":[],"0343230288289910761015635535454774983040":[],"03521988":[],"0360642408180257351015612331739340341760":[],"0365246268534030541015635598607974369792":[],"0366268278207166061015635737661835496576":[],"038789":[],"0388102681415775161015635674126383965568":[],"04016696":[],"040191748305466981015612394926899159168":[],"041947005434917":[],"042357158300018151015612241781249124608":[],"0436496516182":[],"044516":[],"044516021375919":[],"044576818923518":[],"0450000762939":[],"045188209150430151015635600532119713664":[],"0466558603819219":[],"047202554132500061015635497276810313600":[],"0493172163332998":[],"05037121":[],"0512642120258362051015612296172717818624":[],"051761":[],"05240":[],"05242":[],"05243":[],"05244":[],"05245":[],"052592":[],"0536670358954670841015635860218726658176":[],"0537342990941316":[],"054549":[],"05456487172972":[],"05560":[],"058216493648542":[],"058585":[],"05981295":[],"06138786534987":[],"061676353845487":[],"0616763538454871015":[],"062762":[],"064399719238316":[],"065163":[],"06566578919313":[],"067600250244116":[],"07420888099884":[],"07684899854408":[],"0772755505138008":[],"077275550513800810":[],"07727555051380081021":[],"078133430952086":[],"07813343095208610":[],"0781334309520861020":[],"0797073348935818":[],"08186533343457":[],"08333":1,"08333333":[1,4],"083333333":[],"08433715252883":[],"09054471":[],"091158":[],"092339":[],"09233926905897":[],"093507178109964871":[],"093721":[],"09631023":[],"0x7f277785fa30":[],"0x7f50edd2adc0":[],"0x7f50edd2aeb0":[],"0x7f50edd40f40":[],"0x7f712e3b6dc0":[],"0x7fb34c626a60":[],"0x7fd8a96084f0":[],"0x7fd95de628b0":[],"0x7fe98cd29400":[],"100":[1,2,3],"1000":3,"1001":[],"1006":[],"100777":[],"1018":[],"1019":[],"1024":[1,2,4,5],"104":[],"1048576":[],"1049":[],"10547884":[],"106":[],"1065462654445488":[],"107128":[],"109836304219565":[],"110029347835697041":[],"110783":[],"1107831666774180":[],"1113319053861441":[],"111331905386144110":[],"112792578821885":[],"115":7,"117":[],"1180000305176":[],"11915820167003":[],"119403303682826":[],"121021366548921":[],"1214008331299":[],"1217619690225418":[],"122419425065015":[],"124445176881091":[],"126":[],"127":[],"12871598211902":[],"129179169751275":[],"129312":[],"12e9":5,"13177563215973":[],"13339098769217":[],"133391":[],"134":1,"1343002319336":[],"135":[],"1361":[],"13611254":[],"1363354614104264":[],"137":[],"1375007629395":[],"138":[],"139":[],"140":[1,2],"140339":[],"141":[],"142":[],"143":1,"144":[],"144427":[],"145212331165776":[],"1452123311657761020":[],"1458472136365318":[],"146":[],"147362":[],"150":1,"150142":[],"151599884033214":[],"1516":[],"152":[],"15424015818678":[],"1559833902071379":[],"15693467895110133":[],"157":[],"1582047014091":[],"160514":[],"16083338":[],"161":[],"1610562623566o":[],"1612":[],"1615815873808o":[],"1615815886707o":[],"1615824245107o":[],"1615933496807o":[],"16203641364393007":[],"162471664228455":[],"163":[],"165984":[],"165984395577347":[],"166076":[],"166932":[],"1669322495307818":[],"167962454651423":[],"17082359534547":[],"172":[],"1729306406216615":[],"172931":[],"1749117455479":[],"175":[],"1787386257562046":[],"182":[],"18339801317677":[],"1833980131767722":[],"1863002777116":[],"18655636353898095":[],"189718":[],"19017525742552605":[],"190700531005917":[],"195021":[],"196544":[],"1965441084838":[],"199":[],"19923146":[],"1997":1,"200":1,"2000":0,"2001":[],"2010":2,"2016":[],"202047":[],"207000732421915":[],"2092002308950818":[],"211999893188518":[],"214900e":[],"21521027193236":[],"216485":[],"2164852515042963":[],"218492":[],"2203998565674":[],"224246333795001":[],"224595114220405":[],"227919514013650":[],"227920":[],"2286994961681618":[],"2299266281737415":[],"233380":[],"23379683441525864":[],"234":[],"234287981021865":[],"234399795532218":[],"237422920783718":[],"238297462463379":[],"23831627636855":[],"242106718924749":[],"2424":[],"24443878227817095":[],"244439":[],"24559977":[],"247329893833296":[],"247330":[],"247379430659198":[],"24797471":[],"248909662830798":[],"249255322558584":[],"24925532255858410":[],"2492553225585841017":[],"25084":[],"25124658123697":[],"254529":[],"25452941346344":[],"2545294134634422":[],"257085979310591":[],"26015640396173":[],"2606587905109":[],"2619":[],"26190982":[],"263":[],"264":[],"2640148344763111":[],"26769745823267":[],"2676974582326722":[],"26847919":[],"26868565443743":[],"275":[],"275199":[],"27533314":[],"275637":[],"2780935768316":[],"280596648172743":[],"282":[],"2831001281738":[],"284156007182061016":[],"285481":[],"286617":[],"287202255231853":[],"2873":[],"2873001098633":[],"287300109863317":[],"291499":[],"291499169815987":[],"2914991698159871019":[],"29455652682279093":[],"29471722363529257":[],"294743":[],"294900894165":[],"2980633722108194":[],"2986918215101751":[],"2mass":[],"3000":0,"303":[],"304":[],"3048":[],"3048303":[],"306":[],"30641519":[],"306747":[],"30674739454163":[],"306900745179831":[],"306901":[],"30745551377348623":[],"307456":[],"3076000213623":[],"30929960610283":[],"309602916796381":[],"309603":[],"309965857307247":[],"3110526931576576":[],"311052693157657610":[],"31105269315765761022":[],"314514":[],"3186800714801046":[],"319923":[],"32230197723248551":[],"322466":[],"32280834041364":[],"3244248889980894":[],"3248857449205951":[],"325577341429926":[],"327":[],"327864052479726":[],"33215109206796":[],"3322773724537890944":[],"332277372453789094488":[],"3322773724537891328":[],"332277372453789132888":[],"3322773724537891456":[],"332277372453789145688":[],"3322773758899157120":[],"332277375889915712088":[],"3322773930696320512":[],"332277393069632051288":[],"3322773930696321792":[],"332277393069632179288":[],"3322773930696322176":[],"332277393069632217688":[],"3322773965056065536":[],"332277396505606553688":[],"3322774068134271104":[],"332277406813427110488":[],"3322774377374425728":[],"332277437737442572888":[],"332295583115125491288":[],"332296177538596902488":[],"332296201590414387288":[],"332296208462531251288":[],"332296211898335603288":[],"332296235950148108888":[],"332296239386122854488":[],"332296293932269260888":[],"332296328721614988888":[],"332296335593562636888":[],"332296345901311180888":[],"332296352773258598488":[],"332296376825076057688":[],"3323714722065832":[],"3325818206439385":[],"333000183105514":[],"3339996337891":[],"334000":[],"334292036448643":[],"334407":[],"3348531622999282":[],"3349365305831410":[],"335040664412791":[],"335041":[],"33554432":[],"34082546":[],"341561":[],"3424266233842451020":[],"3427286191458550":[],"346409":[],"346409129876392":[],"3464091298763921017":[],"3495903680571226":[],"349590368057122610":[],"34959036805712261016":[],"34995462741039":[],"3516006469727":[],"3528003692627":[],"353158142762173":[],"354":[],"357536":[],"3597565529065352":[],"36003627434304625":[],"361362712597496":[],"361363":[],"36407470703125":[],"3645992279053":[],"3712877312759393":[],"3724":[],"3725":4,"373625663608316":[],"3743092647634034":[],"375583506519418":[],"375696125322275":[],"3780655466364626":[],"378065546636462610":[],"379299163818417":[],"3804":[],"380564308268047":[],"384598632215225":[],"38479712976664":[],"384899139404320":[],"387057037713974":[],"3892993927002":[],"38944388983017151":[],"390215490234287":[],"391145547787154":[],"393939291541333":[],"39393929154133310":[],"3939392915413331020":[],"396k":[],"39862":[],"4021627170535842":[],"403390e":[],"403499603271515":[],"4044425496203":[],"4065443904433108992273":[],"407688975612043":[],"409208":[],"41030970779603076":[],"41164172204947":[],"411746":[],"4131745896607961":[],"4143614130253524096269":[],"41554585481808":[],"4157263708865572":[],"41587389088238":[],"4166017695258":[],"41981085":[],"42163944":[],"421651815402857":[],"422":[],"4221992492676":[],"42394023":[],"42442296":[],"425404":[],"42547805195946":[],"425699":[],"42768872157865":[],"427795463027667":[],"4281005859375":[],"436641304786672":[],"4366413047866721019":[],"4386999012048710":[],"441400527954115":[],"443":[],"443517e":[],"44357135":[],"444398":[],"4449":[],"4457":[],"4504341":[],"450599670410219":[],"452893":[],"454":[],"454724911639794":[],"4566968897595241":[],"45685585044513":[],"4570104832309318":[],"4604730134524":[],"46244080823965":[],"46251296961979":[],"4625129696197910":[],"462512969619791017":[],"469624531882018":[],"470699310302716":[],"4726":[],"474003156859284":[],"47611926":[],"476168":[],"4761681711413782":[],"478099822998":[],"478100":[],"483019":[],"48301935991023":[],"4830193599102321":[],"484404":[],"4853":[],"486419770278376":[],"48882284470035":[],"490":4,"490481778113859":[],"490482":[],"492308604905652":[],"4923086049056521016":[],"492309":[],"494400024414116":[],"496099472045917":[],"5004641956950721021":[],"503299713134813":[],"5046963243400879":[],"5057036964736907":[],"505703696473690710":[],"50570369647369071019":[],"50750861370402":[],"507508613704021017":[],"512819290161133":[],"515199661254919":[],"51570859067397":[],"516838":[],"51683846838757662":[],"5174007415771":[],"517401":[],"517499923706116":[],"5177001953125":[],"518615":[],"5187065217173":[],"518706521717319":[],"518707":[],"519325315774155":[],"5199706001384418":[],"5223007202148":[],"522399902343816":[],"524288":[],"5260889445858044":[],"526088944585804410":[],"52608894458580441018":[],"526821099431533":[],"5268210994315331016":[],"527126":[],"527126084640531":[],"534151399721172":[],"538080792097856":[],"544201177153814":[],"545461":[],"550444015357150":[],"5508930114549":[],"5565841272341593":[],"556584127234159310":[],"55658412723415931018":[],"5566420086447643":[],"557744":[],"55978220563274":[],"560607655557415":[],"560608":[],"56328249482688":[],"566924":[],"574869155883789":[],"575897216796875":[],"577394":[],"57739430926034":[],"5773943092603422":[],"5789179941669236":[],"5813813":[],"583382":[],"584105":[],"584105480335548":[],"585037":[],"58671691646745":[],"5867169164674519":[],"586717":[],"588449":[],"5887968673232040832228":[],"5887971250213117952228":[],"5887978298278520704228":[],"5887978607515442688228":[],"5887979844465854720228":[],"5887982043490374016227":[],"5887982971205433856227":[],"5887983246081387776227":[],"5887991866047288704228":[],"5887995581231772928228":[],"58913564478618":[],"5891356447861822":[],"589136":[],"5895247410183786368213":[],"5895247444506644992213":[],"5895249226912448000213":[],"5895253457497979136213":[],"5895258302187834624213":[],"5895259470417635968213":[],"5895260913525974528213":[],"5895261875598904576213":[],"5895264212062283008213":[],"5895264899260932352213":[],"5895265925746051584213":[],"5895270396817359872213":[],"5895272561481374080213":[],"5902":[],"592197":[],"5921974814583618":[],"592490":[],"592632882064492":[],"592633":[],"593279":[],"594":[],"5942653":[],"594569":[],"5972485319419127":[],"600":[],"6004009246826":[],"6007995605469":[],"60264825":[],"602952":[],"603":[],"60304667889559540481069742509325691172":[],"605044105074411021":[],"605461":[],"605711792572964":[],"60571179257296410":[],"6057117925729641018":[],"607284412896476":[],"607350":[],"6074384482375215":[],"6092":[],"610238":[],"61037780154348":[],"610377801543480":[],"61172203":[],"6122417812491246081297513437559955610":[],"612241781249124608134":[],"61224178124912460820":[],"612250375480101760":[],"6122503754801017601297413464758974640":[],"612250375480101760134":[],"61225037548010176015":[],"612256418500423168":[],"6122564185004231681299313490752973100":[],"612256418500423168134":[],"61225641850042316820":[],"612282738058264960":[],"6122827380582649601297413404459335190":[],"612282738058264960134":[],"61228273805826496022":[],"612288854091187712":[],"612288854091187712134":[],"612296172717818624":[],"6122961727178186241296913380061687800":[],"612296172717818624133":[],"61229617271781862417":[],"6123317393403417601301113412177938390":[],"612331739340341760134":[],"61233173934034176021":[],"6123321473614430721301413414585387770":[],"612332147361443072134":[],"61233214736144307221":[],"612386332668697600":[],"6123863326686976001303513545702197740":[],"612386332668697600135":[],"61238633266869760019":[],"612394926899159168":[],"6123949268991591681305813551997517950":[],"612394926899159168135":[],"61239492689915916816":[],"6124267440168024321305213468524656560":[],"612426744016802432134":[],"61242674401680243217":[],"612428870024913152":[],"612428870024913152134":[],"612429144902815104":[],"612429144902815104134":[],"612485911486166656":[],"612485911486166656134":[],"612824100339875":[],"61642745108048261":[],"621200561523416":[],"62185456718988":[],"622":[],"624132868942702":[],"626924":[],"6280002593994":[],"628965":[],"629":[],"630489":[],"63048941944402":[],"630800247192419":[],"632171":[],"63266345155342":[],"635497276810313600":[],"6354972768103136001308113804456319300":[],"635497276810313600138":[],"63549727681031360019":[],"635518889086133376":[],"635518889086133376137":[],"635535454774983040":[],"6355354547749830401306313783776573690":[],"635535454774983040137":[],"63553545477498304016":[],"635551706931167104":[],"635551706931167104138":[],"635559124339440000":[],"635559124339440000137":[],"635580294233854464":[],"6355986079743697921303413920912795130":[],"635598607974369792139":[],"63559860797436979216":[],"6356005321197136641304213922858936230":[],"635600532119713664139":[],"63560053211971366420":[],"635614168640132864":[],"6356141686401328641305713959221401350":[],"635614168640132864139":[],"63561416864013286416":[],"635674126383965568":[],"6356741263839655681308313884284887200":[],"635674126383965568138":[],"63567412638396556819":[],"6357376618354965761310013993335021360":[],"635737661835496576139":[],"63573766183549657614":[],"635821843194387840":[],"635821843194387840139":[],"6358509458927486721320113986549341470":[],"635850945892748672139":[],"63585094589274867216":[],"635860218726658176":[],"6358602187266581761309113851876713490":[],"635860218726658176138":[],"63586021872665817617":[],"637973067758974208142":[],"637987125186749568":[],"637987125186749568142":[],"638028902333511168143":[],"638049655615392384":[],"638049655615392384142":[],"638073505568978688":[],"638073505568978688142":[],"638085767700610432142":[],"638086386175786752":[],"638086386175786752142":[],"638267565075964032141":[],"638285195917112960":[],"638285195917112960142":[],"638299863230178304142":[],"640183776884836":[],"641047010056942":[],"64484588686904":[],"645166256559063":[],"64528557468074":[],"6452855746807422":[],"645286":[],"64585047451594":[],"645850474515940":[],"6468437015289753":[],"6475471246677418":[],"648449":[],"649969624501031":[],"6514745376067683":[],"651740929272187":[],"6517409292721871022":[],"6518001556396":[],"657690998559842":[],"657714":[],"6585960944321476":[],"662702":[],"6627020143457996":[],"662707262037260":[],"663096652191022":[],"6662998199463":[],"666300":[],"66655190442016":[],"66936020541976":[],"67001549947150460161069743055581721207":[],"670238":[],"67130655389101425":[],"67132026238911331":[],"671502":[],"672602679543312":[],"67430215342567":[],"67459389724334807041069742925668851205":[],"67489413":[],"67551423248967849":[],"67553305590067819":[],"67553513677687787":[],"67564880993081696001069742879438541228":[],"67570619413032527361069742856540241198":[],"6781005859375":[],"678101":[],"6785372590399060":[],"682147":[],"6834444990555750":[],"6852280506107618":[],"685939084485494":[],"6879474976337931014":[],"689596":[],"6908739159247":[],"692":[],"692171":[],"697850":[],"702779525389634":[],"7027795253896341019":[],"702780":[],"708904908478631":[],"7089049084786311016":[],"708905":[],"710314902969365":[],"7140236":[],"72011785332501120":[],"723":[],"72365546":[],"7306003570557":[],"732893578186797":[],"734409":[],"7345":[],"7346":[],"73471401":[],"73628415871413":[],"7395000457764":[],"7417999555980248":[],"741800":[],"7428630711791":[],"74540885107754":[],"745408851077540":[],"746203477995087":[],"746261":[],"74641176":[],"747408222716437":[],"748779":[],"7487794924176672":[],"750":[],"750426":[],"750598455959734":[],"75059845595973410":[],"7505984559597341018":[],"755260":[],"755285075860587":[],"75623261":[],"757716":[],"75771616932985":[],"758253070693225":[],"75912098":[],"75924440359617":[],"7606849670410156":[],"761096377229497":[],"7616494482071872":[],"76581649321957":[],"7691372464459554":[],"7702681295401":[],"770521900009566":[],"770522":[],"77090626983678":[],"7729397950954318":[],"7755742121852":[],"77696341662764":[],"777393":[],"779463":[],"779899597168":[],"780024":[],"780285":[],"781780201833757":[],"7820929042428215":[],"782867563138687":[],"78420864489118":[],"785300":[],"786655365804428":[],"788137017048237":[],"78815034206346":[],"78849448744587":[],"791393":[],"7913934419894347":[],"792177e":[],"792399e":[],"79693102":[],"797232158623697":[],"797899246215815":[],"8006028696066818":[],"800833828337078":[],"801286825748247":[],"802471":[],"803301":[],"803489318428457":[],"803499221801816":[],"8038005828857":[],"80507367703317":[],"80646128959610":[],"807955539071433":[],"807956":[],"808433392903487":[],"809400558471718":[],"812416515405337":[],"813086028134347":[],"815703292087437":[],"8163762113468646":[],"81671045":[],"81683708922182971":[],"817":[],"81762228999614":[],"8176222899961422":[],"817675531233004":[],"82060921880337":[],"821082349761557":[],"8212003707886":[],"823122":[],"828100204467817":[],"831807894848964":[],"832270571445857":[],"8338240271006111016":[],"834943":[],"837751825543618":[],"837752":[],"838424285329718":[],"842874":[],"8428741026386":[],"842874102638619":[],"848511762712128":[],"849596577635786":[],"850377229082717":[],"8585444120179595":[],"864006786112604":[],"864007":[],"8654288847211520":[],"865699768066419":[],"8676624830902435":[],"867662483090243510":[],"86766248309024351018":[],"868061081822657":[],"868963":[],"869082":[],"8700008392334":[],"871599197387719":[],"873":[],"87631129557286":[],"87738723":[],"8774":[],"880749306158471":[],"8809403481508619":[],"8838892877285924":[],"88580702":[],"888060e":[],"8888":7,"8889007568359":[],"8891674931188621017":[],"892344":[],"89551292869012":[],"8955129286901221":[],"8969262278467127":[],"897001":[],"8970011609340207":[],"8978":[],"8978004455566":[],"897800445556617":[],"89884570686218":[],"9021185736135971020":[],"9040002822876":[],"9062995910645":[],"9075297273992418":[],"913939":[],"916194":[],"916760881643629":[],"923799514770516":[],"9238":[],"9242":[],"924200057983418":[],"9252161956789068":[],"926700592041":[],"9292104395445717":[],"929210439544571710":[],"933":[],"9332755247393419":[],"9347319464589":[],"934731946458922":[],"937809":[],"938113":[],"93899884989518450":[],"940":[],"941079":[],"941079187010136":[],"941679":[],"941679495793577":[],"941813":[],"941813096629439":[],"943199157714817":[],"945956347594":[],"948723":[],"950659620550862":[],"950660":[],"95159272":[],"95187806":[],"953377710788918":[],"9555477866915383":[],"95591653":[],"9612007141113":[],"962312685889454":[],"9658276904706319":[],"967":[],"967966":[],"969":[],"96977151283562":[],"96k":[],"97008551185148":[],"971":[],"97222038":[],"97282480557786":[],"9742788217925122":[],"9743995666504":[],"974418e":[],"975347759380995":[],"9753477593809950":[],"9762001037598":[],"976579e":[],"978818386372":[],"981070":[],"9849004745483":[],"985260087594":[],"987149":[],"9877856720147953":[],"987786":[],"9894012386388735":[],"990500":[],"9923000335693":[],"9947996139526":[],"9968965218753763":[],"998725329569156":[],"999":[],"999985":[],"999989":[],"boolean":[2,5],"break":0,"byte":[],"case":[0,2,4,5,6],"class":[0,4],"default":[4,6,7],"final":[0,1,2,4,5,6,7],"float":0,"function":[0,1,2,3,4,5,6,7],"import":[0,1,2,3,4,5,6,7],"int":[],"long":5,"new":[0,2,3,4,5,6,7],"public":[6,7],"return":[0,1,2,3,4,5,7],"short":0,"super":6,"switch":[1,6],"true":[0,1,2,5,6],"try":[0,1,3,7],"while":[0,1,3],AND:[0,1,2,3,4],And:[0,1,2,3,4,5,6],But:[0,1,2,3,4,5],For:[0,1,2,3,4,6,7],IDs:[],NOT:0,Not:6,One:[0,1,2],That:[0,1,2,3,4,7],The:[0,1,2,3,5,6,7],Then:[1,2,3,4,6,7],There:[0,1,2,3,4,6],These:[1,2],USING:4,Use:[0,1,2,3,4,5,6,7],Using:[3,4,5,7],With:[0,2,4],__builtins__:[],__cached__:[],__doc__:[],__file__:[],__loader__:[],__name__:[],__package__:[],__path__:[],__spec__:[],_classic_test_patch:[],_init:[],a_g_percentile_low:[],a_g_percentile_upp:[],a_g_val:[],aadu:[],aarcmin:[],aarcsec:[],aau:[],aba:[],abamper:[],abarn:[],abbrevi:4,abc:[],abcoulomb:[],abeam:[],abflux:[],abil:2,abin:[],abit:[],abl:[1,2,3,4,5,6,7],abmag:[],about:[0,1,2,3,4,5,6,7],abov:[1,6],abyt:[],access:[0,4,7],accord:[],accumul:[],accur:5,acd:[],achan:[],acount:[],act:[],activ:7,actual:0,add:[0,1,2,3,4,6,7],add_enabled_equival:[],add_enabled_unit:[],add_patch:6,added:0,adding:[0,3,4,6],addit:[0,2,4,6,7],adeg:[],adjust:2,adopt:1,adql:[0,1,3,4,7],adrian:[0,4,5,6,7],adu:[],adyn:[],aerg:[],aev:[],affect:[0,6],affili:1,after:[1,2,3,4,5,6],again:[0,1,2,3,4,6],against:[],agal:[],age:[4,5],ages:5,agn_cross_id:[],ahz:[],aji:[],alf:1,align:[1,2],all:[0,1,2,3,4,5,6,7],allclos:[],allendownei:[2,3,5,6,7],allow:[0,2],allwise_best_neighbour:[],allwise_neighbourhood:[],allwise_original_valid:[],alm:[],almost:[0,1,2,3,5],along:[0,1,2,3,5,6],alpha:[2,3,4,5,6],alreadi:[1,2,3,4,7],also:[0,1,2,3,4,6,7],altern:[1,6],although:[2,3,6],altogeth:1,alwai:[0,1,4],alx:[],alyr:[],amag:[],american:7,amin:[],amol:[],amount:3,amp:[],amper:[],ana:[0,4,5,6,7],anaconda:7,analysi:[0,1,2,4,5,6,7],angl:1,angle_arcmin:1,angstrom:[],angular_dist:[],ani:[0,2,4,6,7],annot:[3,7],annum:[],anonym:[0,1],anoth:[1,2,3,4,6,7],answer:[],anyon:5,anyth:[4,7],anywai:0,aohm:[],apa:[],apassdr9:[],apassdr9_best_neighbour:[],apassdr9_join:[],apassdr9_neighbourhood:[],apc:[],aph:[],aphoton:[],apix:[],apixel:[],apo:[],appar:[4,5],appeal:[6,7],appear:[0,1,2,4,6,7],append:5,appli:[2,6],applic:4,approxim:[1,4],arad:[],arbitrari:2,archiv:1,arcmin:1,arcminut:1,arcsec:[],arcsecond:[],area:[2,4,5,6],argument:[0,1,2,5,6],ari:[],around:[2,3],arrai:[0,3,5,6],arrang:6,array2str:3,arrow:[4,6],arrowprop:[],articl:0,arxiv:[],ascens:[1,2],asi:[],ask:[0,1,5],aspect:[5,6],aspx:[],asr:[],assembl:[0,4,5],assign:[0,1,3],associ:[1,2],assum:7,ast:[],astro:[1,2,3],astrometr:0,astrometri:[],astrometric_chi2_:[],astrometric_excess_nois:[],astrometric_excess_noise_sig:[],astrometric_gof_:[],astrometric_matched_observ:[],astrometric_n_bad_obs_:[],astrometric_n_good_obs_:[],astrometric_n_obs_:[],astrometric_n_obs_ac:[],astrometric_params_solv:[],astrometric_primary_flag:[],astrometric_pseudo_colour:[],astrometric_pseudo_colour_error:[],astrometric_sigma5d_max:[],astrometric_weight_:[],astronom:[0,1],astronomi:[4,5,6,7],astronomical_unit:[],astronomicaldata:[2,3,5,6,7],astrophi:[],astropi:[0,1,2,3,4,5,7],astroqueri:[0,1,2,3,4,7],async_20210113133023:[],async_20210315094433:[],async_20210315094446:[],async_20210315120405:[],async_20210316182456:[],attent:6,attoamp:[],attoamper:[],attoannum:[],attoarcminut:[],attoarcsecond:[],attoastronomical_unit:[],attobarn:[],attobary:[],attobit:[],attobyt:[],attocandela:[],attocoulomb:[],attocount:[],attoda:[],attodai:[],attodalton:[],attodeby:[],attodegre:[],attodyn:[],attoelectronvolt:[],attofarad:[],attog:[],attogauss:[],attogram:[],attohenri:[],attohertz:[],attohour:[],attohr:[],attojanski:[],attojoul:[],attokays:[],attokelvin:[],attolightyear:[],attolit:[],attolumen:[],attolux:[],attomet:[],attominut:[],attomol:[],attonewton:[],attoohm:[],attoparsec:[],attopasc:[],attophoton:[],attopixel:[],attopois:[],attoradian:[],attorayleigh:[],attorydberg:[],attosecond:[],attosiemen:[],attosteradian:[],attostok:[],attotesla:[],attovolt:[],attovoxel:[],attowatt:[],attoweb:[],attoyear:[],attribut:[2,4],attributeerror:[],audienc:[],author:6,automat:[2,5],aux_allwise_agn_gdr2_cross_id:[],aux_iers_gdr2_cross_id:[],aux_qso_icrf2_match:[],aux_sso_orbit:[],aux_sso_orbit_residu:[],avail:[4,5,6,7],avoid:[2,4],avox:[],avoxel:[],awai:[0,2],awar:7,awb:[],awkward:2,axes:[0,1,2,5,6],axi:[1,2,5,6],axvlin:6,ayr:[],azale:[6,7],back:[0,1,3,4,5,6,7],background:[4,5],bad:[],badli:2,band:[4,5],bar:[],barn:[],bary:[],barycentr:[],base:[0,1,3,4,7],basenam:[2,3,5,6],basi:[],basic:7,beam:[],beam_angular_area:[],beaten:[0,4,5,6,7],becaus:[0,1,2,3,4,5,7],becker:7,becom:4,becquerel:[],been:[0,4,5,6],befor:[0,1,2,3,4,6,7],begin:[0,2],behavior:[0,6],being:2,belong:[1,5],below:[0,2,6,7],benefit:2,best_neighbour_multipl:4,bestneighbour:[],betelgeus:1,better:[0,4,6],between:[0,1,2,3,4,5],big:[0,1,2,4,6,7],bigger:[0,1,2,3,7],bin:[],binari:[2,4],binary_prefix:[],biot:[],bit:[0,1],bitwis:2,black:2,blue:[2,4],bluer:5,bmh:[],bol:[],bonaca:[0,1,2,4,5,6,7],bonu:[],bool:[],bostroem:[6,7],both:[0,2,4,5],bottom:[0,5,6],bound:[0,1,2,3],boundari:[1,5],bp_g:[],bp_rp:[0,1,3,4],brace:0,bracket:[0,2,3,5],brett:7,briefli:4,bright:5,brighter:5,brightness_temperatur:[],bring:4,broadband:[],broken:0,browser:7,build:4,built:1,cadu:[],calcul:2,calibr:[],call:[0,1,2,3,4,5,6],camera:[],can:[0,1,2,3,4,5,6,7],candela:[],candid:[2,3,4,5,6,7],candidate_df:[3,4,5,6],candidate_t:3,capabl:2,capit:0,caption:6,carcmin:[],carcsec:[],care:0,carpentri:7,catalog:[0,4],catalogu:[],catastroph:1,cau:[],caus:[0,1,2],caveat:4,cba:[],cbarn:[],cbeam:[],cbin:[],cbit:[],cbyte:[],ccd:[],cchan:[],ccount:[],cct:[],cdeg:[],cdyn:[],celesti:1,cell:[0,1,2,3,4,5,6,7],celsiu:[],center:[1,2,3],centerlin:[3,7],centerline_df:[2,3,6],centiamp:[],centiamper:[],centiannum:[],centiarcminut:[],centiarcsecond:[],centiastronomical_unit:[],centibarn:[],centibary:[],centibit:[],centibyt:[],centicandela:[],centicoulomb:[],centicount:[],centida:[],centidai:[],centidalton:[],centideby:[],centidegre:[],centidyn:[],centielectronvolt:[],centifarad:[],centig:[],centigauss:[],centigram:[],centihenri:[],centihertz:[],centihour:[],centihr:[],centijanski:[],centijoul:[],centikays:[],centikelvin:[],centilightyear:[],centilit:[],centilumen:[],centilux:[],centimet:[],centiminut:[],centimol:[],centinewton:[],centiohm:[],centiparsec:[],centipasc:[],centiphoton:[],centipixel:[],centipois:[],centiradian:[],centirayleigh:[],centirydberg:[],centisecond:[],centisiemen:[],centisteradian:[],centistok:[],centitesla:[],centivolt:[],centivoxel:[],centiwatt:[],centiweb:[],centiyear:[],cepheid:[],cerg:[],cev:[],cgal:[],cgs:[],challeng:[],chamber:[],chan:[],chanc:4,chang:[0,2,3,6],character:[],check:[1,2,5,6],choic:[2,6,7],choos:[0,2,4,6,7],chose:[2,5],chosen:6,chz:[],circ:1,circl:[1,4],circular:[1,7],cjy:[],classic:[0,7],claus:[0,1,3,4],clean:[2,5],clear:[0,4],clearer:5,clearli:[2,3,6,7],click:[0,7],clm:[],close:[2,6],cluster:[2,4,5],clx:[],clyr:[],cmag:[],cmd:5,cmin:[],cmol:[],code:[0,1,2,3,4,5,6,7],cohm:[],colab:[0,1,2,3,4,7],collabor:7,collect:0,colnam:2,colon:5,color:[0,2,4,5,6,7],color_g_i:5,color_loop:5,colorblind10:[],colorblind:[],colspan:6,column:[1,3,4,5,6],column_list:4,com:[2,3,5,6,7],combin:[0,1,4,6,7],come:[0,1],comma:[1,4],command:[0,2,5,6,7],commanded_scan_law:[],committe:7,common:[0,1,4],commonli:0,commun:6,compar:[2,3,4,5],comparison:[0,2],compat:1,compel:6,compellingli:[3,6],complet:[0,1,2,3,4,5,6],complex:[1,3],complic:7,compon:2,compos:[0,1,3,7],composit:5,compositeunit:[],comprehens:[],compress:6,comput:[0,1,2,3,4,5,6],con:2,conda:7,condit:2,cone:[1,4,7],configur:6,confirm:[0,1,2,4,7],conflict:7,confusingli:6,connect:[5,7],consid:6,consider:[],consist:[4,5,6],constant:2,construct:[2,5],contain:[0,1,2,3,4,5,6,7],contains_point:5,content:[0,2],context:2,continu:[0,4,5,6],contribut:7,control:[2,5,6,7],conveni:[2,4,5,6],convent:[2,5],convert:[1,2,3,4,7],convexhul:3,cookbook:0,coord:[5,6],coord_galact:1,coord_gd1:1,coord_icr:1,coord_si:[],coordin:[2,3,5,6,7],coordind:6,coords_icr:1,copi:[],copyright:0,core:[],corner:[1,2,3],corners_icr:[1,3],correct:7,correctli:0,correspond:[2,3,4,5],could:[2,3,4,6],coulomb:[],count:[0,1],cover:[2,3,4,7],cpa:[],cpc:[],cph:[],cphoton:[],cpix:[],cpixel:[],crad:[],creat:[0,1,2,4,5,6,7],criteria:4,criterion:3,cross:[0,2,4],cry:[],csr:[],cst:[],csv:[3,7],curat:[],curi:[],curiou:[4,6],curli:0,current:[2,5,6],curriculum:7,custom:[3,7],cvox:[],cvoxel:[],cwb:[],cycl:[],cyr:[],dai:0,dalton:[],dark:[],dark_background:[],darkgrid:[],dash:6,data:[0,6],databas:[2,3,4,5,7],datafram:[3,5,6,7],datalink_url:[],dataquest:0,dataset:[0,1,2,4,7],datatyp:[],dau:[],dba:[],deal:[],debug:[0,1],deby:[],dec:[0,1,2,3,4,5],dec_error:[],dec_parallax_corr:[],dec_pmdec_corr:[],dec_pmra_corr:[],decibel:[],decibelunit:[],declin:[1,2],decmean:[],decstack:[],deep:[],def:[1,2,3,4,5,6],defin:[0,3,5,6],definit:[],deg:[1,6],degdegma:[],degdegmaskm:[],degre:[0,1,2,3,4,5],demonstr:[0,6,7],denomin:4,dens:2,densiti:2,deriv:5,describ:[2,4],descript:[],design:[0,1,6],detail:[0,2,4,6],detect:[0,1],determin:[5,6],detrend:[],develop:[0,1,2,7],dex:[],dexunit:[],dgal:[],dhz:[],diagnost:0,diagram:[0,4,5,6,7],dialect:0,dict:3,dictionari:[3,7],did:[1,2,3,4],didn:[2,5],differ:[0,2,4,5,6,7],difficult:[1,3],digit:[],dimens:[],dir:1,direct:[2,6],directori:[6,7],dirti:6,disappear:0,disast:1,discuss:[],disk:[0,1],displai:[0,1,2,6],distanc:[0,2,3,4,5],distinguish:[2,4,5,6],distmod:5,distribut:7,diverg:7,divid:0,divis:2,djy:[],document:[0,1,2,4,5,6],doe:[0,1,2,5,7],doesn:5,dohm:[],domain:2,don:[0,1,2,3,4,5,6,7],done:[1,4,6],doubl:[],down:[0,1,7],downei:[],download:[0,1,2,3,4,5,6,7],dpa:[],dpac:0,dr1:[],dr1_neighbourhood:[],dr2_neighbourhood:[],draw:[2,5,6],drawback:[0,2],drew:[],drive:0,dry:[],dst:[],dtype:5,dual:[],due:2,duplicated_sourc:[],dure:2,dwarf:[0,4],dynam:1,e_bp_min_rp_percentile_low:[],e_bp_min_rp_percentile_upp:[],e_bp_min_rp_v:[],each:[0,2,4,5,6],eadu:[],earcmin:[],earcsec:[],earli:[],easi:[2,4,6,7],easier:[0,1,5,6],eau:[],eba:[],ebarn:[],ebeam:[],ebin:[],ebit:[],ebyt:[],ecd:[],echan:[],ecl_lat:[],ecl_lon:[],ecount:[],ect:[],edeg:[],edu:[],edyn:[],eep:[],eerg:[],eev:[],effect:[0,2,6,7],effici:[3,4],egal:[],ehz:[],eib:[],eibit:[],eibyt:[],either:[0,2,3],eji:[],element:[2,5,6],elementwis:2,elm:[],els:[0,4],elx:[],elyr:[],emag:[],emin:[],emol:[],enclos:3,encod:[],end:[1,5,6],engin:6,enough:7,ensur:5,enter:0,entir:0,entiti:5,entri:[],env:7,environ:[0,5,7],eohm:[],epa:[],epc:[],eph:[],ephoton:[],epix:[],epixel:[],epoch:[],epoch_mean:[],epoch_photometry_url:[],epochmean:[],equal:[0,4,5,6],erad:[],eri:[],erin:7,error:[0,1,2,3,6,7],esa:0,esac:[],especi:2,esr:[],est:[],estim:[2,5],etc:5,even:[0,4],everi:[0,2,4,5],everyth:[0,3,7],everywher:4,evid:2,evox:[],evoxel:[],ewb:[],exactli:[1,4,5,6],exampl:[0,1,2,4,5,6,7],except:[0,2,4],exclud:[0,4],exist:[0,1,2,3,4,5,6,7],expect:[0,2,3,4,5,7],expertis:2,explain:[0,2,5],explan:2,explanatori:0,explicitli:[1,5],explor:[0,4,6,7],express:[2,6],ext_phot_zero_point:[],extend:[0,1],extens:2,extern:[],extinct:5,extra:6,extract:2,extrem:2,eye:2,eyr:[],facecolor:6,fact:[4,5],fail:0,fall:[1,2,3,4,5,7],fals:[2,6],familiar:[2,6,7],faq:0,far:[0,2,4,6],farad:[],farther:0,fast:2,faster:[0,1,2],featur:[0,4,6],few:[0,2,4,6],fewer:[0,4],field:[],fifth:4,figsiz:[5,6],figur:[1,2,3,4,5,7],file:[0,1,2,3,4,5,6,7],filenam:[1,2,3,4,5,6],filepath:[],fill:[1,3,6],filter:[3,4,5],find:[0,1,2,4,5,6,7],finish:[],first:[0,1,2,4,5,6],fit:[1,2,4,7],five:[],fivethirtyeight:6,fix:2,flame_flag:[],flatten:3,flewel:[],float64:0,flux:4,focu:6,folder:7,follow:[0,1,2,3,4,5,6,7],fontsiz:6,foreground:0,forg:7,forget:2,form:[2,7],formal:[],format:[1,2,3,4,7],formula:5,forthcom:0,fortun:4,forward:5,found:[4,6],four:[2,6],fraction:[0,2,3],frame:[1,2,3,4,7],frame_rotator_object_typ:[],frame_rotator_sourc:[],franklin:[],from:[0,1,2,3,4,5,6,7],from_panda:2,front:5,front_to_back:5,full:5,functionquant:[],functionunitbas:[],fund:7,further:[4,5],futur:[2,7],g_flag:[],g_mask:5,g_mean_psf_mag:[4,5,6],g_mean_psf_mag_error:[],g_rp:[],gadu:[],gaia:[1,2,3,4,5,6,7],gaia_astrometric_param:[],gaia_sourc:[0,1,3,4],gaia_source_simul:[],gaia_universe_model:[],gaiadr1:[],gaiadr2:[0,1,3,4],gaiadr2_geometric_dist:[],gaiaedr3:[],gaiaedr3_dist:[],gal:[],gala:[1,2,3,4,7],galact:[1,2],galex_ai:[],gap:[],garcmin:[],garcsec:[],gau:[],gauss:[],gba:[],gbarn:[],gbeam:[],gbin:[],gbit:[],gbyte:[],gca:[5,6],gcd:[],gchan:[],gcount:[],gct:[],gd1:[2,3,4,5],gd1_candid:[],gd1_data:[2,3,4,5,6],gd1_datafram:[],gd1_frame:[1,2,3,4],gd1_isochron:5,gd1_merg:[],gd1_photo:[],gd1_polygon:[],gd1_result:[1,2],gd1koposov10:[1,2,3,4],gdeg:[],gdyn:[],gea:[],geadata:[],gener:[0,2,4,6],geometr:5,gerg:[],get:[0,2,3,5,6,7],get_configdir:6,get_result:[0,1,3,4],getsiz:[1,2,4,5],gev:[],ggal:[],ggplot:[],ghz:[],giant:5,gib:[],gibit:[],gibyt:[],gigapixel:[],github:[2,3,5,6],githubusercont:7,give:[2,4],given:5,gjy:[],glm:[],globular:[4,5],glx:[],glyr:[],gmag:[],gmin:[],gmol:[],goal:4,goe:[0,1,2,3,4,6],gohm:[],going:2,good:[0,1,2,3,4,6,7],googl:[0,1,2,3,4],gorilla:0,got:[3,5],gotcha:[],gpa:[],gpc:[],gph:[],gphoton:[],gpix:[],gpixel:[],grad:[],grai:[],grate:7,grayscal:[],greater:0,green:[3,5],grid:6,group:2,gry:[],gsc23_best_neighbour:[],gsc23_join:[],gsc23_neighbourhood:[],gsc23_original_valid:[],gsr:[],gst:[],guarante:4,guess:[0,2],guid:6,gvox:[],gvoxel:[],gwb:[],gyr:[],half:5,hand:[2,4],handbook:2,handl:3,happen:6,hard:[0,4],has:[0,1,2,3,4,5,6],have:[0,1,2,3,4,5,6,7],hawaii:[],hdf5:[2,4,5],hdf:[2,3,4,5,6],hdfstore:2,head:[2,4,5,6],headlength:[],headwidth:[],heliocentr:1,help:[0,6],henc:2,henri:[],here:[0,1,2,3,4,5,6,7],hertz:[],hertzsprung:0,hierarch:2,hierarchi:2,high:2,higher:[2,5],highest:2,highlight:[3,5],hint:[1,2,4,6],hipparco:[],hipparcos2_best_neighbour:[],hipparcos2_neighbourhood:[],hipparcos_newreduct:[],hogg:2,home:7,hope:[2,4],host:[],how:[0,1,2,3,4,5,6,7],howev:[0,2,3,4],http:[2,3,5,6,7],hubble_sc:[],i_flag:[],i_mean_psf_mag:[4,5,6],i_mean_psf_mag_error:[],icr:[1,2,3,4,7],icrs_fram:[],idea:5,ideal:[1,4],ident:3,identifi:[1,2,3,4,6,7],idiom:3,ifa:[],igo:0,igsl_sourc:[],igsl_source_catalog_id:[],imag:[],immedi:0,impati:0,implement:[2,4],improv:[3,6],in_colab:[0,1,2,3,4],inaccur:2,includ:[0,1,2,4,5,6,7],inconsist:5,incorrect:2,increas:5,increment:[0,1],index:[3,4,5],indic:[0,2,3,4,5,6],individu:[2,6],infer:0,info:2,inform:[0,2,4,6,7],initi:[3,5],initial_mass:[],inlin:2,inner:4,input:[0,5],insid:[3,5,6],inspect:4,instal:[6,7],instanc:[],instanti:[],instead:[0,3],institut:7,instruct:[1,2,3,4,7],int16:[],int32:[],int64:[],int64float64float64:[],int64float64float64float64:[],int64float64float64float64float64:[],int64float64float64float64float64int16int16:[],int64float64float64float64float64int16int16float64float64:[],int64int32int16int64:[],int64int64float64int32int16int16int16int64:[],integ:2,intend:6,intent:5,interest:[0,4],interfac:[2,5,6],interfer:7,intern:1,interpret:5,intersect:4,introduct:7,introductori:7,invert:[0,5],invert_yaxi:[5,6],invok:0,involv:4,ipynb:7,irreducibleunit:[],iso:5,iso_arrai:5,iso_df:5,iso_mask:5,isochron:4,isochrone_age_yr:[],isocmd:5,issu:2,its:[0,1,2,3,6],itself:0,ivoa:[],jake:2,jan:[],janski:[],jieunchoi:5,job1:[],job2:[],job3:[],job:[0,1,3,4],jobid:[],join:[1,3,5,7],joul:[],journal:6,jupyt:[1,2,5,7],just:[3,5,7],kayser:[],keep:[0,2],keeper:2,kei:[2,4],kelvin:[],kept:0,kernel:[0,7],key_column:[],keyword:[0,1,2,7],kib:[],kibit:[],kibyt:[],kind:[0,4],know:[0,1,2,7],knowledg:7,known:6,koposov:2,kpc:[2,3,4,5],l_bol:[],l_sun:[],lab:0,label:[2,5,6],labor:2,languag:2,larg:[2,3],larger:[2,3],largest:3,last:[0,4],later:[0,1,2,3,5],launch:[0,1,7],launch_job:[0,1],launch_job_async:[0,1,3,4],learn:[0,3,4,6],least:[0,4],leav:6,left:[1,2,4,5],left_color:5,legend:5,legibl:6,len:[1,2,3,5],length:[],less:[0,1,2,3,5],lesser:5,lesson:[0,1,2,3,4,5,6,7],let:[0,1,2,3,4,5,6,7],letter:2,level:[2,5,7],libopenbla:7,librari:7,lies:5,like:[0,1,2,3,4,5,6,7],limit:[0,1,2,4],line:[0,2,3,4,6,7],linear:5,link:7,linnean:0,linux:7,list:[0,1,2,4,5,6,7],liter:0,littl:[0,1,4,5],load:[0,2],load_tabl:[0,4],loc:6,local:[1,2,3,5,6,7],localhost:7,locat:[1,6],log_g:[],log_l:[],log_teff:[],logic:[0,2],logquant:[],logunit:[],longer:[0,1],look:[0,2,3,4,5,6],loop:[0,5],loop_df:[5,6],lose:4,lost:4,lot:0,low:[0,2],lower:[1,2,5],lowercas:0,lsun:[],luck:7,lum_percentile_low:[],lum_percentile_upp:[],lum_val:[],luminos:0,m_bol:[],m_e:[],m_earth:[],m_jup:[],m_jupit:[],m_p:[],m_sun:[],mac:7,machin:7,made:[0,2,3,5,6],madu:[],mag:5,mag_g:5,mag_loop:5,magic:2,magnier:[],magnitud:[4,5,6,7],magunit:[],main:[0,2,3,4,5,6,7],main_sequ:5,make:[0,1,2,3,4,7],make_datafram:[3,4],make_rectangl:[1,2,3],manag:[1,2,3],mani:[0,1,2,3,4,5,6,7],manual:0,map:1,marcmin:[],marcsec:[],markdown:0,marker:[2,5],markers:[2,3,4,5,6],mas:[2,6],mask:[2,3,5],maskedcolumn:[],master:5,mastweb:[],match:0,matched_observ:[],mate:4,materi:7,math:6,mathemat:6,mathrm:6,mathtext:6,matlab:[2,6],matplotlib:[2,3,4,5,6,7],matplotlibrc:6,matrix:3,mau:[],max:[],max_line_width:3,max_parallax:0,mba:[],mbarn:[],mbeam:[],mbin:[],mbit:[],mbyte:[],mcd:[],mchan:[],mcount:[],mct:[],mdeg:[],mdyn:[],mean:[0,1,2,4,5,6],mean_varpi_factor_:[],meanobject:[],mearth:[],measur:[0,1,2,7],median:[],medium:6,member:7,memori:[0,2],menu:[0,7],merg:[5,7],mesa:5,messag:[6,7],meta2:[],meta:[0,4],metadata:[0,1,2,4],metal:[4,5],meter:[],method:[0,1,7],methodolog:[],mev:[],mgal:[],mhz:[],mib:[],mibit:[],mibyt:[],might:[0,1,2,3,4,6,7],million:1,min:[],minim:[],minut:1,mislead:0,misrepres:2,miss:[2,7],mist:5,mist_cod:5,mist_iso_5fd2532653c27:5,mitig:0,mjup:[],mjupit:[],mjy:[],mlm:[],mlx:[],mlyr:[],mmag:[],mmin:[],mmol:[],mode:2,model:5,modern:6,modifi:0,modul:[0,1,2,3,4,5],modulu:5,mohm:[],montez:7,month:2,more:[0,1,2,4,5,6,7],morri:7,most:[0,1,2,4,5,6,7],mostli:[5,6],motion:[0,1,5,6,7],motiv:2,move:[3,4],mpa:[],mpc:[],mph:[],mphoton:[],mpix:[],mpixel:[],mpl:6,mplstyle:6,mrad:[],mry:[],msr:[],mst:[],msun:[],mu_:6,much:[0,3,4,5],multi:2,multipl:[0,2,4,5,7],multipli:1,mute:[],mvox:[],mvoxel:[],mwb:[],myr:[],n_bad:[],n_detect:[],name:[0,1,2,4,5],namedunit:[],nan:[],natur:2,nbviewer:7,ndarrai:[],ndetect:[],nearbi:0,necessari:[3,5,6],necessarili:[1,6,7],need:[0,1,2,3,4,5,6,7],neg:0,neighbor:[],neighbour:[],neither:[],net:[],network:0,newer:0,newton:[],next:[0,1,2,3,4,5,7],nfrom:[],nice:[],non:[1,2],nonamespaceschemaloc:[],none:0,nor:[],normal:0,notabl:4,note:[0,2,3,6],notebook:[0,1,2,3,4,5,6,7],notebookapp:7,notic:[0,1,2,3,4,6],now:[0,1,2,3,4,5,6,7],nsource_id:[],ntop:[],num:[],number:[0,1,2,3,4,6],number_of_m:4,number_of_neighbor:4,number_of_neighbour:4,numpi:[2,3,5,6,7],nundetect:[],nwhere:[],obj_id:4,obj_idg_mean_psf_magi_mean_psf_mag:[],obj_info_flag:[],obj_nam:[],object:[0,1,2,3,5,6,7],objectthin:[],objinfoflag:[],observ:[0,2,4],off:[0,1,2,4,5,6,7],often:[0,1],ohm:[],older:[2,3,5],omit:5,onc:[1,2],one:[0,1,2,4,5,6,7],ones:[0,3,4,6],onli:[0,1,2,3,4,5,6,7],onlin:0,only_nam:0,open:[0,2,4,7],oper:[2,3,4,5,7],oppos:0,option:[0,2,4,5,6,7],orang:4,orbit:[1,2],order:[0,1,2,3,4,5,6],org:0,organ:2,ori:1,orient:6,origin:[0,1,2,3,4,5,6,7],origin_gd1:[],original_ext_source_id:4,other:[0,1,2,4,5,6,7],otherwis:[1,2],our:[0,1,2,3,5,7],out:[0,1,2,3,5,6],outerspac:[],output:0,outsid:[0,4,5,6,7],over:[],overdens:[2,3,5],overlap:[2,6],overplot:2,overrid:6,overwrit:[1,2],overwritten:1,own:[0,1,2,3,4,6,7],owner:[],packag:[6,7],padu:[],page:7,pair:[1,4],palett:[],pan:[3,5,6],panda:[3,4,5,6,7],panel:[2,3,7],panoram:[],panstarr:[0,5],panstarrs1_best_neighbour:[0,4],panstarrs1_join:[],panstarrs1_neighbourhood:[],panstarrs1_original_valid:[0,4],panstarrs1originalvalid:[],paper:[0,1,2,3,4,5,6,7],parallax:[0,1,2,3,4],parallax_error:[],parallax_over_error:[],parallax_pmdec_corr:[],parallax_pmra_corr:[],paramet:[1,5,6,7],parcmin:[],parcsec:[],parenthes:2,pars:[],part:[0,1,2,3,4,5,6,7],particular:[0,1],particularli:6,partli:2,pascal:[],pass:[3,5,6],past:[0,7],pastel:[],patch:[5,6],path:[0,1,2,3,4,5,6,7],pau:[],pba:[],pbarn:[],pbeam:[],pbin:[],pbit:[],pbyte:[],pcd:[],pchan:[],pcount:[],pct:[],pdeg:[],pdyn:[],peopl:[4,6,7],per:0,perform:[0,4,7],perg:[],perimet:3,perpendicular:1,persist:0,pev:[],pgal:[],phase:[0,5],phase_mask:5,phi1:[1,2,3,4,5,6],phi1_max:[1,3],phi1_min:[1,3],phi1_rect:[1,3],phi2:[1,2,3,4,5,6],phi2_max:[1,2,3],phi2_min:[1,2,3],phi2_rect:[1,3],phi_1:[1,2,6],phi_2:[1,2,6],phil:7,phot_bp_mean_flux:[],phot_bp_mean_flux_error:[],phot_bp_mean_flux_over_error:[],phot_bp_mean_mag:0,phot_bp_n_ob:[],phot_bp_rp_excess_factor:[],phot_g_mean_flux:[],phot_g_mean_flux_error:[],phot_g_mean_flux_over_error:[],phot_g_mean_mag:[],phot_g_n_ob:[],phot_proc_mod:[],phot_rp_mean_flux:[],phot_rp_mean_flux_error:[],phot_rp_mean_flux_over_error:[],phot_rp_mean_mag:0,phot_rp_n_ob:[],phot_variable_flag:[],phot_variable_time_series_gfov:[],phot_variable_time_series_gfov_statistical_paramet:[],photo_df:[],photo_t:[],photometr:[],photometri:[0,3,6,7],physic:[0,1,7],phz:[],pib:[],pibit:[],pibyt:[],pick:[1,2,4],pictur:[5,6],piec:4,pip:[0,1,2,3,4,7],pipelin:5,pixel:[],pjy:[],place:[0,2,4],placehold:0,placement:6,plain:4,plan:7,plm:[],plot:[4,7],plot_cmd:[5,6],plot_first_select:6,plot_proper_mot:[2,3,6],plot_second_select:6,plt:[2,3,4,5,6],plu:[],plx:[],plyr:[],pm1:[2,6],pm1_max:[2,3,6],pm1_min:[2,3,6],pm1_rect:[2,3,6],pm2:[2,6],pm2_max:[2,3,6],pm2_min:[2,3,6],pm2_rect:[2,3,6],pm_dec:[2,3,4],pm_mask:2,pm_phi1:[2,3,4,6],pm_phi1_cosphi2:[2,3,4],pm_phi2:[2,3,4,6],pm_point_list:[3,4],pm_ra_cosdec:[2,3,4],pm_vertic:3,pmag:[],pmdec:[0,1,2,3,4],pmdec_error:[],pmdec_poli:3,pmin:[],pmol:[],pmra:[0,1,2,3,4],pmra_error:[],pmra_pmdec_corr:[],pmra_poli:3,pohm:[],point:[0,1,2,3,4,7],point_list:[1,3,4],point_seri:[3,4],points2:[],poli:6,polygon:[2,3,4,6,7],port:[],posit:[4,6],possibl:[0,1,3,4,7],poster:6,ppa:[],ppc:[],pph:[],pphoton:[],ppix:[],ppixel:[],ppmxl_best_neighbour:[],ppmxl_neighbourhood:[],ppmxl_original_valid:[],practic:7,prad:[],precis:2,predefin:6,predict:5,prefac:[1,2,3,4],prefer:[3,6],prefix:6,prefixunit:[],prepar:[2,6,7],prerequisit:7,present:[3,4,6,7],preserv:1,press:0,pretti:4,previou:[0,1,2,3,4,5,6,7],previous:[5,6],priam_flag:[],price:[0,1,2,4,5,6,7],primari:6,prime:[],print:[0,1,2,3,4,5,6,7],prior:2,pro:2,probabl:[0,2],problem:[0,2,4,6,7],problemat:2,process:[0,2,3,4],produc:[1,5],product:[],profession:6,program:[0,1],project:[2,6,7],prompt:7,prone:[0,1,7],proof:1,proper:[0,1,5,6,7],proper_mot:2,properti:6,proport:2,protocol:0,provid:[0,1,2,3,4,5,6],pry:[],ps1:[],ps1casjob:[],ps_g:5,ps_i:5,ps_open:[],ps_r:[],ps_w:[],ps_y:[],ps_z:[],psr:[],pst:[],pswww:[],pull:3,purpos:2,put:[1,2,5,6,7],pvox:[],pvoxel:[],pwb:[],pyplot:[2,3,4,5,6],pyr:[],pytabl:7,python:[0,1,2,5],qhull:[],quadrant:5,qualifi:4,qualiti:[0,6,7],quality_flag:[],quantiti:[1,7],quantityinfo:[],quantityinfobas:[],queri:[2,4,5,7],query1:0,query2:0,query3:0,query3_bas:[0,1],query4:1,query4_bas:1,query5:[1,3],query5_bas:[1,3],query6:[3,4],query6_bas:[3,4],query7:4,query7_bas:4,query_bas:4,query_con:[1,4],question:6,quick:6,quot:0,r_earth:[],r_flag:[],r_jup:[],r_jupit:[],r_mean_psf_mag:[],r_mean_psf_mag_error:[],r_sun:[],ra_dec_corr:[],ra_error:[],ra_parallax_corr:[],ra_pmdec_corr:[],ra_pmra_corr:[],radial:2,radial_veloc:[2,3,4],radial_velocity_error:[],radiu:1,radius_percentile_low:[],radius_percentile_upp:[],radius_v:[],ramean:[],ran:2,random_index:[],rang:4,rapid:[],rastack:[],rather:2,ratio:[5,6],ravedr5_best_neighbour:[],ravedr5_com:[],ravedr5_dr5:[],ravedr5_gra:[],ravedr5_join:[],ravedr5_neighbourhood:[],ravedr5_on:[],raw:[2,3,5,6,7],rayleigh:[],read:[0,1,2,4,5,6,7],read_back_csv:4,read_csv:4,read_hdf:[3,4,5,6],read_mist_model:5,readabl:0,reader:6,readi:[1,2,3,4,5,6],realli:0,rearth:[],reason:[0,2,5],recent:[0,1,2,4,5,6,7],recogn:[],recommend:7,record:[4,5],rectangl:[2,3,6],rectanglar:2,rectangular:[1,2],red:[4,5],reduc:0,ref_epoch:[],refer:[0,1,4],reflect:5,reflex_correct:[2,3,4],refresh:2,regioin:5,region:[0,2,3,5,6,7],rel:[0,1,2,3,6],relat:[4,5,6],relationship:[4,5],releas:[0,2],reload:[1,4,6,7],rememb:2,remind:3,remov:[1,3],repeat:[0,5],repetit:0,replac:[0,1,2,3,4],replic:[0,1,2,3,4,5,6,7],repositori:[5,6,7],repres:[0,1,2,3,4,5,7],represent:1,reproduc:[1,5],reproducibil:5,request:[2,3,5,6],requir:[0,3,4,6],research:5,resist:0,resourc:[],respons:[0,7],rest:2,restart:0,restrict:1,result:[0,2,3,4,5,6,7],results1:[],results2:[],results3:[],results_df:2,retriev:[],reveal:[0,4,5,6,7],revers:[5,6],review:[2,3,6],rewrit:[],rich:4,right:[0,1,2,4,5],right_color:5,rix:2,rjup:[],rjupit:[],rodolfo:7,rosenfield:7,rotat:5,roughli:2,round:[2,3,4],row:[0,1,3,4,5,6],rrlyra:[],rsun:[],run:[0,1,2,3,4,5,6,7],runtim:0,russel:0,ruw:[],rv_nb_transit:[],rv_template_fe_h:[],rv_template_logg:[],rv_template_teff:[],same:[0,2,3,4,5,6,7],sampl:2,save:[3,7],saw:[1,3,4],scale:5,scan:2,scatterplot:2,schema:[],scienc:2,scientif:[1,6],scipi:[3,7],script:5,sdss_dr9_best_neighbour:[],sdss_dr9_neighbourhood:[],sdssdr13_best_neighbour:[],sdssdr13_join:[],sdssdr13_neighbourhood:[],sdssdr13_photoprimari:[],sdssdr9_best_neighbour:[],sdssdr9_neighbourhood:[],sdssdr9_original_valid:[],seaborn:[6,7],search:[1,3,4,7],second:[0,1,2,3,4,5,6],section:[0,2,5,7],see:[0,1,2,3,4,5,6,7],seem:[0,2,6],seen:[3,6],select:[0,6,7],selected2:[],selected_df:[2,3],selected_t:2,self:0,send:[0,7],sens:[2,4],sensit:0,sensor:5,separ:[1,3,4,5],sequenc:[4,5],seri:[0,2,3,4,5,6,7],serial:[],serv:7,server:[0,1,2,3,4,5,7],set:[1,2,3,5,6,7],setup:7,seventh:6,sever:[2,3,6,7],shade:[2,4,5,6],shape:[1,2,3,5,6],shift:0,shorten:2,should:[0,1,2,3,4,5,6,7],show:[0,2,3,4,5,6],shown:[1,2],shrink:[],shut:[0,1,7],side:6,siemen:[],similar:[0,2,4,5,6],similarli:4,simpl:[0,1,2,4,6],simpler:[4,5,7],simplest:[],simul:5,sinc:[1,2,3,5],singl:[0,1,3,4,5,6,7],sixth:5,size:[1,2,4,5,6],skip:7,sky:[0,1,2,3,4,5,7],sky_coordin:[],skycoord:[1,2,3,4],skycoord_gd1:[2,3,4],skycoord_to_str:[1,3],skymapperdr1_mast:[],skymapperdr2_best_neighbour:[],skymapperdr2_join:[],skymapperdr2_mast:[],skymapperdr2_neighbourhood:[],slice:5,slightli:[],slow:[0,4],small:[0,2,3],smaller:[1,2,4,5],smallest:3,smart:4,snippet:[],societi:7,softwar:2,solar:2,solarize_light2:[],solut:[0,1,2,3,4,6],solution_id:[],solv:[],some:[0,2,4,5,6,7],someon:4,someth:[0,1,2],sometim:2,sourc:[0,4,5],source_id:[0,1,3,4],source_id_2:[],source_idg_mean_psf_magi_mean_psf_mag:[],source_idnumber_of_neighboursnumber_of_matesoriginal_ext_source_id:[],source_idoriginal_ext_source_idangular_distancenumber_of_neighboursnumber_of_matesbest_neighbour_multiplicitygaia_astrometric_paramssource_id_2:[],source_idradecparallax:[],source_idradecparallaxradial_veloc:[],source_idradecpmrapmdec:[],source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_m:[],source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_mag:[],space:[1,5],span:6,spatial:3,special:7,specif:1,specifi:[0,1,2,4,5,7],specifictypequant:[],spectra:[],spectroscop:[],spheric:1,spirit:[],spot:2,spread:3,spur:[],sql:[0,1,2,4],ssdc:[],ssl:[],sso_observ:[],sso_sourc:[],stack:[],stage:[],stand:[0,4,5,6],standard:2,star:[0,1,2,3,4,5,6,7],star_mass:[],starr:[3,5,6],starrs1:[],start:[0,1,2,3,4,5,6,7],statement:[0,2,7],statist:2,std:[],stellar:[4,5],step:[0,1,2,3,4,5,6,7],stflux:[],still:[1,3],stmag:[],stop:[5,7],store:[0,1,2,3,4,7],strang:[0,2],stream:[0,1,2,4,5,6,7],stretch:6,string:[0,1,2,3],strip:3,stripe:2,structur:[0,2],stsci:[],sty:6,style:[0,2,3],submit:[0,1,7],submodul:0,subplot2grid:6,subplot:7,subsampl:[],subset:[2,6],substanti:[1,2],success:2,successfulli:2,suffix:[],suggest:[0,4],suitabl:[],sum:[2,5],sun:[],superimpos:5,superset:2,support:7,suppos:0,sure:[0,4,5,6,7],survei:4,surviv:0,symbol:0,sync_20210315090602:[],sync_20210315091929:[],synchron:0,syntax:[0,6],synthet:5,sys:[0,1,2,3,4],system:[1,2,6],systemat:[],tab:7,tabl:[1,2,3,5,6,7],table_ext:[],table_id:[],tableau:[],tabledata:[],tadu:[],tag:[],take:[0,1,4,5,6,7],talk:[0,6],tap:0,tap_config:[],tap_schema:[],tap_upload:[],taptabl:[],taptablemeta:0,tarcmin:[],tarcsec:[],task:[],tau:[],tba:[],tbarn:[],tbeam:[],tbin:[],tbit:[],tbyte:[],tcd:[],tchan:[],tcount:[],tct:[],tdeg:[],tdyn:[],technic:[],teff_percentile_low:[],teff_percentile_upp:[],teff_val:[],telescop:[],temperatur:0,temptat:0,tend:4,terg:[],term:4,termin:7,tesla:[],test:[0,1,5,7],test_setup:7,tev:[],texliv:6,text:[0,4,6],tgal:[],tgas_sourc:[],than:[0,1,2,3,4,5,6],thei:[0,1,2,4,5,6,7],them:[0,1,2,3,4,5,6,7],theoret:5,thi:[0,1,2,3,4,5,6,7],thing:[0,2,3,4,6],think:[2,5,6],third:[0,1],those:[2,4,7],three:[0,1,5,6],through:[5,7],thz:[],tib:[],tibit:[],tibyt:[],tick:6,tick_param:6,tidal:2,tight_layout:6,time:[0,1,2,5,6],titl:6,tjy:[],tlm:[],tlx:[],tlyr:[],tmag:[],tmass_best_neighbour:[],tmass_neighbourhood:[],tmass_original_valid:[],tmass_psc_xsc_best_neighbour:[],tmass_psc_xsc_join:[],tmass_psc_xsc_neighbourhood:[],tmass_xsc:[],tmin:[],tmol:[],to_:2,to_csv:4,to_hdf:[2,3,4,5],to_numpi:3,to_panda:[2,3,4],to_str:[1,3],todo:1,togeth:6,tohm:[],too:[0,3],tool:[0,1,2,4,7],toolbar:0,top:[0,1,2,4,5,6],topic:7,torr:[],total:2,tpa:[],tpc:[],tph:[],tphoton:[],tpix:[],tpixel:[],track:5,trad:[],transform:7,transform_to:[1,2,3,4],translat:4,transmit:[],transpar:2,transpos:[3,6],trial:3,trick:[],tricki:4,trip:[],tripl:0,tsr:[],tst:[],tupl:[1,6],turn:0,tutori:[0,7],tvox:[],tvoxel:[],twb:[],tweak:[],twice:[2,7],two:[0,1,2,3,4,5,6,7],twocol:6,tycho2:[],tycho2_best_neighbour:[],tycho2_neighbourhood:[],tycho2tdsc_merg:[],tycho2tdsc_merge_best_neighbour:[],tycho2tdsc_merge_neighbourhood:[],type1cm:6,type:[0,1,2,4,5],typefac:6,typeset:6,tyr:[],ucac4_best_neighbour:[],ucac4_neighbourhood:[],ucac4_original_valid:[],ucd:[],uncertainti:5,under:7,undergradu:7,understand:0,undetect:6,union:1,uniqu:[],unit:[0,2,3,4,5,7],unitbas:[],unitconversionerror:1,unitserror:[],unitswarn:[],unittypeerror:[],univers:[],unless:6,unlik:[0,2],unnam:4,unnus:[],unpreced:[],unrecognizedunit:[],until:[1,2,3],unusu:5,upload:[4,7],upload_resourc:[],upload_table_nam:[],upper:[0,1],uppercas:0,urat1_best_neighbour:[],urat1_neighbourhood:[],urat1_original_valid:[],url:[2,3,5,6,7],urllib:[2,3,5,6],urlretriev:[2,3,5,6],use:[0,1,2,3,4,5,6,7],used:[0,1,2,3,4,5,6],useful:[0,2,3],user:[0,1,7],usernam:7,uses:[0,1,2,3,4,5,6,7],usetex:6,using:[0,1,2,3,4,5,6,7],usual:[3,4],utf:[],util:[],v_crit:5,valu:[0,1,2,3,4,5,6,7],vanderpla:2,vari_cepheid:[],vari_classifier_class_definit:[],vari_classifier_definit:[],vari_classifier_result:[],vari_long_period_vari:[],vari_rotation_modul:[],vari_rrlyra:[],vari_short_timescal:[],vari_time_series_statist:[],variabl:[0,1,3,4],variable_summari:[],varieti:4,variou:7,veloc:2,veri:2,versatil:2,version:[2,3,5,6,7],vertic:[3,6],vicin:[1,3,7],view:6,visibility_periods_us:[],visibl:[],visual:7,vline:6,vocabulari:2,volt:[],vot:[],votabl:[],wai:[1,2,3,4,6,7],want:[0,2,3,4,6,7],warn:[],warp:[],water:[],watt:[],web:5,weber:[],well:[2,5,6],were:[1,2],wget:7,what:[0,1,2,3,4,5,6],whatev:7,whelan:[0,1,2,4,5,6,7],when:[0,1,2,3,4,5,6,7],whenev:0,where:[0,1,2,3,4,5,6,7],whether:[2,4],which:[0,1,2,3,4,6,7],white:[],whitegrid:[],whole:6,whose:[2,3,5,7],why:[0,2,3],wide:2,wider:[3,5,6],width:6,window:[2,7],winner_df:[5,6],within:[1,3,7],without:[0,1,2,4,5],won:4,wonder:[0,2],word:[0,4],work:[0,2,3,4,5,6,7],workshop:7,worri:0,would:[0,1,2,3,5,6],wrap:3,write:[1,2,3,4,7],writeto:[],written:[0,1,4],wrong:[0,4],wrote:[1,2],www:[],xlabel:[2,3,4,5,6],xlim:[2,3,5,6],xml:2,xmln:[],xmlschema:[],xsi:[],xytext:[],y_flag:[],y_mean_psf_mag:[],y_mean_psf_mag_error:[],yadu:[],yarcmin:[],yarcsec:[],yau:[],yba:[],ybarn:[],ybeam:[],ybin:[],ybit:[],ybyte:[],ycd:[],ychan:[],ycount:[],yct:[],ydeg:[],ydyn:[],yerg:[],yev:[],ygal:[],yhz:[],yjy:[],ylabel:[2,3,4,5,6],ylim:[2,3,5,6],ylm:[],ylx:[],ylyr:[],ymag:[],ymin:[],yml:7,ymol:[],yohm:[],you:[0,1,2,3,4,5,6,7],younger:[4,5],your:[0,1,2,3,4,6,7],yourself:[0,1,2,3,4,6],ypa:[],ypc:[],yph:[],yphoton:[],ypix:[],ypixel:[],yrad:[],yrma:[],yrmag:[],yry:[],ysr:[],yst:[],yvox:[],yvoxel:[],ywb:[],yyr:[],z_flag:[],z_mean_psf_mag:[],z_mean_psf_mag_error:[],zadu:[],zarcmin:[],zarcsec:[],zau:[],zba:[],zbarn:[],zbeam:[],zbin:[],zbit:[],zbyte:[],zcd:[],zchan:[],zcount:[],zct:[],zdeg:[],zdyn:[],zerg:[],zero:2,zev:[],zgal:[],zhz:[],zjy:[],zlm:[],zlx:[],zlyr:[],zmag:[],zmin:[],zmol:[],zohm:[],zone_id:[],zoom:2,zpa:[],zpc:[],zph:[],zphoton:[],zpix:[],zpixel:[],zrad:[],zry:[],zsr:[],zst:[],zvox:[],zvoxel:[],zwb:[],zyr:[]},titles:["1. Queries","2. Coordinates and Units","3. Proper Motion","4. Transformation and Selection","5. Joining Tables","6. Photometry","7. Visualization","Astronomical Data in Python"],titleterms:{Adding:4,That:6,The:4,Using:0,adjust:6,annot:6,assembl:[1,3],astronom:7,asynchron:0,back:2,base:[2,5],best:[0,1,2,3,4,5,6],centerlin:2,check:4,column:[0,2],connect:0,convex:3,coordin:[1,4],correct:2,csv:4,custom:6,data:[1,2,3,4,5,7],databas:0,datafram:[2,4],defin:1,exercis:[0,1,2,3,4,6],explor:2,figur:6,filter:2,font:6,format:0,gaia:0,get:[1,4],hull:3,instal:[0,1,2,3,4],isochron:5,join:4,jupyt:0,languag:0,latex:6,left:6,librari:[0,1,2,3,4],lower:6,make:[5,6],match:4,merg:[],more:3,motion:[2,3,4],multipl:6,neighbor:4,one:3,oper:0,outlin:[0,1,2,3,4,5,6],pan:4,panda:2,panel:6,photometri:[4,5],plot:[2,3,5,6],point:5,polygon:[1,5],practic:[0,1,2,3,4,5,6],prepar:[],proper:[2,3,4],proport:6,python:7,queri:[0,1,3],rcparam:6,rectangl:1,reflex:2,region:1,reload:[2,3,5],result:1,right:6,row:2,save:[1,2,4,5],scatter:2,select:[1,2,3,4,5],sheet:6,starr:4,stori:6,style:6,subplot:6,summari:[0,1,2,3,4,5,6],tabl:[0,4],tell:6,time:3,transform:[1,2,3,4],unit:1,upload:[],upper:6,visual:6,which:5,work:1,write:[0,5]}}) \ No newline at end of file +Search.setIndex({docnames:["01_query","02_coords","03_motion","04_select","05_join","06_photo","07_plot","README"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,sphinx:56},filenames:["01_query.ipynb","02_coords.ipynb","03_motion.ipynb","04_select.ipynb","05_join.ipynb","06_photo.ipynb","07_plot.ipynb","README.md"],objects:{},objnames:{},objtypes:{},terms:{"000":[1,2,3],"000000":2,"000831":[],"001768":2,"002126813991455":4,"00212681399145510":4,"0021268139914551017":4,"0022333299353825":4,"00347705":[3,4],"0090408325195312":[],"0092427896695131561015612256418500423168":[],"009471":[],"00947118796605":4,"011312663154804":4,"014609":2,"016078":4,"016078400820631":4,"017":[3,4],"020103160014030861015612386332668697600":[],"0203041897099641431015635614168640132864":[],"0211787423933783961015635850945892748672":[],"022652498590129771015612332147361443072":[],"024192":[],"0252932373534968981015612282738058264960":[],"02878111976456593":0,"029159":2,"0317837403475309051015612250375480101760":[],"031798":4,"031798198627634":4,"032476530099618431015612426744016802432":[],"0343230288289910761015635535454774983040":[],"03521988":[3,4],"035981":2,"0360642408180257351015612331739340341760":[],"0365246268534030541015635598607974369792":[],"0366268278207166061015635737661835496576":[],"038789":2,"0388102681415775161015635674126383965568":[],"04016696":[3,4],"040191748305466981015612394926899159168":[],"041947005434917":0,"042357158300018151015612241781249124608":[],"0436496516182":2,"044516":[],"044516021375919":4,"044576818923518":4,"0450000762939":4,"045188209150430151015635600532119713664":[],"0466558603819219":4,"047202554132500061015635497276810313600":[],"0493172163332998":0,"05037121":[3,4],"0512642120258362051015612296172717818624":[],"051761":5,"05240":[0,4],"05242":[0,4],"05243":[0,4],"05244":[0,4],"05245":[0,4],"052592":2,"0536670358954670841015635860218726658176":[],"0537342990941316":1,"054549":[5,6],"05456487172972":2,"05560":[0,4],"058216493648542":4,"058585":5,"05981295":[3,4],"06138786534987":2,"061676353845487":4,"0616763538454871015":4,"062762":[],"064399719238316":4,"065163":2,"06566578919313":2,"067600250244116":4,"07420888099884":0,"07684899854408":4,"0772755505138008":4,"077275550513800810":4,"07727555051380081021":4,"078133430952086":4,"07813343095208610":4,"0781334309520861020":4,"0797073348935818":4,"08186533343457":4,"08333":1,"08333333":[1,4],"083333333":1,"08433715252883":0,"09054471":[3,4],"091158":2,"092339":4,"09233926905897":4,"093507178109964871":4,"093721":5,"09631023":[3,4],"099625":2,"0x7f277785fa30":1,"0x7f439d33fdf0":5,"0x7f50edd2adc0":0,"0x7f50edd2aeb0":0,"0x7f50edd40f40":0,"0x7f712e3b6dc0":[],"0x7fb34c626a60":[],"0x7fd8a96084f0":[],"0x7fd95de628b0":[],"0x7fe98cd29400":[],"0x7ff6207866a0":3,"100":[1,2,3],"1000":3,"1001":3,"1006":3,"100777":2,"1018":4,"1019":4,"1024":[1,2,4,5],"103640":2,"104":2,"1048576":[0,4],"1049":[2,3],"10547884":[3,4],"106":2,"1065462654445488":4,"107128":2,"109836304219565":4,"110029347835697041":4,"110783":2,"1107831666774180":1,"1113319053861441":[],"111331905386144110":4,"112792578821885":4,"115":[2,7],"117":5,"1180000305176":4,"11915820167003":4,"119403303682826":4,"121021366548921":4,"1214008331299":4,"1217619690225418":4,"122419425065015":4,"124445176881091":4,"126":[3,4],"127":3,"12871598211902":0,"129179169751275":4,"129312":5,"12e9":5,"13177563215973":2,"13339098769217":4,"133391":4,"134":1,"1343002319336":4,"135":[1,2,3,4],"1361":1,"13611254":1,"1363354614104264":4,"137":4,"1375007629395":4,"138":[2,4],"139":[],"140":[1,2],"140339":[1,2],"141":[1,2,3],"142":2,"143":[1,2],"144":2,"144427":[5,6],"145212331165776":4,"1452123311657761020":4,"1458472136365318":4,"146":[1,2],"147362":2,"150":1,"150142":2,"151599884033214":4,"1516":5,"152":[1,2],"15424015818678":4,"1559833902071379":4,"15693467895110133":0,"157":4,"1582047014091":0,"160514":2,"16083338":[3,4],"161":2,"1610562623566o":[],"1612":[0,4],"1615815873808o":1,"1615815886707o":1,"1615824245107o":[],"1615933496807o":[],"1616771462206o":3,"16203641364393007":0,"162471664228455":4,"163":[3,4],"165984":2,"165984395577347":1,"166076":5,"166932":2,"1669322495307818":1,"167962454651423":4,"17082359534547":0,"172":[3,4],"1729306406216615":4,"172931":[],"1749117455479":0,"175":[],"1787386257562046":2,"179492":2,"182":3,"18339801317677":2,"1833980131767722":1,"1863002777116":4,"18655636353898095":0,"189718":5,"19017525742552605":0,"190700531005917":4,"195021":5,"196544":[],"1965441084838":4,"199":1,"19923146":[3,4],"1997":1,"200":1,"2000":0,"2001":[],"2010":2,"2016":[0,4],"202047":2,"207000732421915":4,"2084197998046875":2,"2092002308950818":4,"211999893188518":4,"214900e":2,"21521027193236":0,"216485":[],"2164852515042963":[],"218492":4,"2203998565674":4,"224246333795001":4,"224595114220405":4,"227919514013650":1,"227920":2,"2286994961681618":4,"2299266281737415":0,"233380":[5,6],"23379683441525864":0,"234":5,"234287981021865":4,"234399795532218":4,"237422920783718":4,"238297462463379":[],"23831627636855":0,"242106718924749":0,"2424":[3,4],"24443878227817095":1,"244439":2,"24559977":[3,4],"247329893833296":4,"247330":4,"247379430659198":4,"24797471":[3,4],"248909662830798":4,"249255322558584":[],"24925532255858410":4,"2492553225585841017":4,"25084":2,"25124658123697":1,"254529":2,"25452941346344":2,"2545294134634422":1,"257085979310591":4,"2573448962333354":2,"257345":2,"26015640396173":0,"2606587905109":0,"2619":1,"26190982":1,"263":[0,4],"264":[0,4],"2640148344763111":4,"26769745823267":2,"2676974582326722":1,"26847919":[3,4],"26868565443743":0,"275":1,"275199":2,"27533314":1,"275637":2,"2780935768316":2,"280596648172743":4,"282":[0,4],"2831001281738":4,"284156007182061016":4,"285481":2,"286617":2,"287202255231853":0,"2873":[4,5],"2873001098633":4,"287300109863317":4,"287602":2,"291499":[],"291499169815987":4,"2914991698159871019":4,"29455652682279093":0,"29471722363529257":0,"294743":5,"294900894165":4,"2980633722108194":4,"2986918215101751":0,"2mass":[0,4],"3000":0,"303":3,"304":[0,4],"3048":1,"3048303":1,"306":[3,4],"30641519":[3,4],"306747":2,"30674739454163":1,"306900745179831":4,"306901":4,"30745551377348623":[],"307456":[],"3076000213623":4,"30929960610283":0,"309602916796381":4,"309603":[],"309965857307247":4,"3110526931576576":4,"311052693157657610":4,"31105269315765761022":4,"314514":[],"3186800714801046":4,"319923":2,"32230197723248551":4,"322466":[5,6],"32280834041364":0,"3244248889980894":0,"3248857449205951":4,"325577341429926":4,"327":4,"327864052479726":4,"33215109206796":0,"3322773724537890944":[1,4],"332277372453789094488":4,"3322773724537891328":[1,4],"332277372453789132888":4,"3322773724537891456":[1,4],"332277372453789145688":4,"3322773758899157120":[1,4],"332277375889915712088":4,"3322773930696320512":[1,4],"332277393069632051288":4,"3322773930696321792":[1,4],"332277393069632179288":4,"3322773930696322176":[1,4],"332277393069632217688":4,"3322773965056065536":[1,4],"332277396505606553688":4,"3322774068134271104":[1,4],"332277406813427110488":4,"3322774377374425728":[1,4],"332277437737442572888":4,"332295583115125491288":4,"332296177538596902488":4,"332296201590414387288":4,"332296208462531251288":4,"332296211898335603288":4,"332296235950148108888":4,"332296239386122854488":4,"332296293932269260888":4,"332296328721614988888":4,"332296335593562636888":4,"332296345901311180888":4,"332296352773258598488":4,"332296376825076057688":4,"3323714722065832":4,"3325818206439385":0,"333000183105514":4,"3339996337891":4,"334000":[],"334292036448643":4,"334407":[],"3348531622999282":4,"3349365305831410":4,"335040664412791":4,"335041":4,"33554432":[0,4],"34082546":[3,4],"341561":2,"3424266233842451020":4,"3427286191458550":4,"346409":4,"346409129876392":4,"3464091298763921017":4,"3495903680571226":4,"349590368057122610":4,"34959036805712261016":4,"34995462741039":4,"3516006469727":4,"3528003692627":4,"353158142762173":4,"354":5,"357536":4,"3597565529065352":4,"36003627434304625":4,"361362712597496":[],"361363":[],"362708":2,"36407470703125":1,"3645992279053":4,"3712877312759393":4,"3724":[],"3725":4,"373625663608316":0,"3743092647634034":4,"375583506519418":4,"375696125322275":1,"3780655466364626":4,"378065546636462610":4,"379299163818417":4,"3804":5,"380564308268047":4,"384598632215225":4,"38479712976664":0,"384899139404320":4,"387057037713974":4,"3892993927002":4,"38944388983017151":0,"390215490234287":0,"391145547787154":1,"393939291541333":4,"39393929154133310":4,"3939392915413331020":4,"396k":[],"39862":[3,4],"4021627170535842":4,"403390e":2,"403499603271515":4,"4044425496203":4,"4065443904433108992273":0,"407688975612043":4,"409208":2,"41030970779603076":0,"41164172204947":1,"411746":[5,6],"4131745896607961":1,"4143614130253524096269":0,"41554585481808":2,"4157263708865572":4,"41587389088238":0,"4166017695258":2,"41981085":[3,4],"42163944":1,"421651815402857":0,"422":1,"4221992492676":4,"422728":2,"42394023":[3,4],"42442296":[3,4],"425404":[],"42547805195946":0,"425699":2,"42768872157865":4,"427795463027667":4,"4281005859375":4,"436641304786672":4,"4366413047866721019":4,"4386999012048710":4,"441400527954115":4,"443":[0,1],"443517e":2,"44357135":[3,4],"444398":2,"4449":[3,4],"4457":5,"4504341":1,"450599670410219":4,"452893":2,"454":5,"454724911639794":0,"4566968897595241":4,"45685585044513":4,"4570104832309318":4,"4604730134524":5,"46244080823965":1,"46251296961979":4,"4625129696197910":4,"462512969619791017":4,"469624531882018":4,"470699310302716":4,"4726":[3,4],"474003156859284":0,"47611926":[3,4],"476168":2,"4761681711413782":1,"478099822998":4,"478100":4,"483019":2,"48301935991023":2,"4830193599102321":[1,2],"484404":2,"4853":5,"486419770278376":1,"48882284470035":0,"490":4,"490481778113859":4,"490482":[],"492308604905652":4,"4923086049056521016":4,"492309":4,"494400024414116":4,"496099472045917":4,"5004641956950721021":4,"503299713134813":4,"5046963243400879":4,"5057036964736907":4,"505703696473690710":4,"50570369647369071019":4,"50750861370402":4,"507508613704021017":4,"512819290161133":[],"515199661254919":4,"51570859067397":0,"516838":2,"51683846838757662":[1,2],"5174007415771":4,"517401":4,"517499923706116":4,"5177001953125":4,"518615":2,"5187065217173":4,"518706521717319":4,"518707":4,"519325315774155":4,"5199706001384418":4,"5223007202148":4,"522399902343816":4,"524288":[0,4],"5260889445858044":4,"526088944585804410":4,"52608894458580441018":4,"526821099431533":4,"5268210994315331016":4,"527126":4,"527126084640531":4,"534151399721172":0,"538080792097856":0,"544201177153814":4,"545461":[5,6],"550444015357150":0,"5508930114549":0,"5565841272341593":4,"556584127234159310":4,"55658412723415931018":4,"5566420086447643":0,"557744":[],"55978220563274":4,"560607655557415":4,"560608":4,"56328249482688":0,"566924":[5,6],"574869155883789":[],"575897216796875":[],"577394":2,"57739430926034":2,"5773943092603422":1,"5789179941669236":0,"5813813":1,"583382":[],"5835609436035156":4,"584105":2,"584105480335548":1,"585037":2,"58671691646745":[],"5867169164674519":4,"586717":[],"588449":[5,6],"5887968673232040832228":0,"5887971250213117952228":0,"5887978298278520704228":0,"5887978607515442688228":0,"5887979844465854720228":0,"5887982043490374016227":0,"5887982971205433856227":0,"5887983246081387776227":0,"5887991866047288704228":0,"5887995581231772928228":0,"58913564478618":2,"5891356447861822":1,"589136":2,"5895247410183786368213":0,"5895247444506644992213":0,"5895249226912448000213":0,"5895253457497979136213":0,"5895258302187834624213":0,"5895259470417635968213":0,"5895260913525974528213":0,"5895261875598904576213":0,"5895264212062283008213":0,"5895264899260932352213":0,"5895265925746051584213":0,"5895270396817359872213":0,"5895272561481374080213":0,"5902":5,"592197":[],"5921974814583618":4,"592490":2,"592632882064492":[],"592633":[],"593279":2,"594":[1,4],"5942653":[3,4],"594569":4,"5972485319419127":4,"600":1,"6004009246826":4,"6007995605469":4,"60264825":1,"602952":2,"603":1,"60304667889559540481069742509325691172":4,"605044105074411021":4,"605461":5,"605711792572964":4,"60571179257296410":4,"6057117925729641018":4,"607284412896476":0,"607350":2,"6074384482375215":4,"6092":5,"610238":[5,6],"61037780154348":0,"610377801543480":0,"61172203":[3,4],"6122417812491246081297513437559955610":[],"612241781249124608134":4,"61224178124912460820":[],"612250375480101760":[],"6122503754801017601297413464758974640":[],"612250375480101760134":4,"61225037548010176015":[],"612256418500423168":[],"6122564185004231681299313490752973100":[],"612256418500423168134":4,"61225641850042316820":[],"612282738058264960":[],"6122827380582649601297413404459335190":[],"612282738058264960134":4,"61228273805826496022":[],"612288854091187712":[],"612288854091187712134":4,"612296172717818624":[],"6122961727178186241296913380061687800":[],"612296172717818624133":4,"61229617271781862417":[],"6123317393403417601301113412177938390":[],"612331739340341760134":4,"61233173934034176021":[],"6123321473614430721301413414585387770":[],"612332147361443072134":4,"61233214736144307221":[],"612386332668697600":[],"6123863326686976001303513545702197740":[],"612386332668697600135":4,"61238633266869760019":[],"612394926899159168":[],"6123949268991591681305813551997517950":[],"612394926899159168135":4,"61239492689915916816":[],"6124267440168024321305213468524656560":[],"612426744016802432134":4,"61242674401680243217":[],"612428870024913152":[],"612428870024913152134":4,"612429144902815104":[],"612429144902815104134":4,"612485911486166656":[],"612485911486166656134":4,"612824100339875":1,"61642745108048261":0,"621200561523416":4,"62185456718988":4,"622":3,"624132868942702":4,"626924":5,"6280002593994":4,"628965":2,"629":[0,4],"630489":[],"63048941944402":[],"630800247192419":4,"632171":[5,6],"63266345155342":4,"635497276810313600":[],"6354972768103136001308113804456319300":[],"635497276810313600138":4,"63549727681031360019":[],"635518889086133376":[],"635518889086133376137":4,"635535454774983040":4,"6355354547749830401306313783776573690":[],"635535454774983040137":4,"63553545477498304016":[],"635551706931167104":[],"635551706931167104138":4,"635559124339440000":[],"635559124339440000137":4,"635580294233854464":[],"6355986079743697921303413920912795130":[],"635598607974369792139":4,"63559860797436979216":[],"6356005321197136641304213922858936230":[],"635600532119713664139":4,"63560053211971366420":[],"635614168640132864":[],"6356141686401328641305713959221401350":[],"635614168640132864139":4,"63561416864013286416":[],"635674126383965568":4,"6356741263839655681308313884284887200":[],"635674126383965568138":4,"63567412638396556819":[],"6357376618354965761310013993335021360":[],"635737661835496576139":4,"63573766183549657614":[],"635821843194387840":[],"635821843194387840139":4,"6358509458927486721320113986549341470":[],"635850945892748672139":4,"63585094589274867216":[],"635860218726658176":4,"6358602187266581761309113851876713490":[],"635860218726658176138":4,"63586021872665817617":[],"637973067758974208142":1,"637987125186749568":2,"637987125186749568142":[1,2],"638028902333511168143":1,"638049655615392384":2,"638049655615392384142":1,"638073505568978688":2,"638073505568978688142":1,"638085767700610432142":1,"638086386175786752":2,"638086386175786752142":1,"638267565075964032141":1,"638285195917112960":2,"638285195917112960142":1,"638299863230178304142":1,"640183776884836":1,"641047010056942":0,"6441001892089844":5,"64484588686904":2,"645166256559063":1,"64528557468074":2,"6452855746807422":1,"645286":2,"64585047451594":0,"645850474515940":0,"6468437015289753":0,"6475471246677418":4,"648449":5,"649969624501031":0,"6514745376067683":0,"651740929272187":4,"6517409292721871022":4,"6518001556396":4,"657637":2,"657690998559842":0,"657714":2,"6585960944321476":1,"662702":2,"6627020143457996":1,"662707262037260":0,"663096652191022":0,"6662998199463":4,"666300":[],"66655190442016":0,"66936020541976":0,"67001549947150460161069743055581721207":4,"670238":5,"67130655389101425":4,"67132026238911331":4,"671502":2,"672602679543312":0,"67430215342567":0,"67459389724334807041069742925668851205":4,"67489413":[3,4],"67551423248967849":4,"67553305590067819":4,"67553513677687787":4,"67564880993081696001069742879438541228":4,"67570619413032527361069742856540241198":4,"6781005859375":4,"678101":4,"6785372590399060":0,"682147":[],"6834444990555750":0,"6852280506107618":4,"685939084485494":4,"6879474976337931014":4,"689596":2,"6908739159247":2,"692":3,"692171":5,"697850":2,"702779525389634":4,"7027795253896341019":4,"702780":4,"708904908478631":4,"7089049084786311016":4,"708905":[],"710314902969365":4,"7140236":[3,4],"72011785332501120":4,"723":[0,3,4],"72365546":[3,4],"7306003570557":4,"732893578186797":4,"734409":2,"7345":[3,4],"7346":[],"73471401":[3,4],"73628415871413":4,"7395000457764":4,"7417999555980248":4,"741800":4,"7428630711791":4,"74540885107754":0,"745408851077540":0,"746203477995087":4,"746261":2,"74641176":[3,4],"747408222716437":4,"748779":4,"7487794924176672":4,"750":[],"750426":2,"750598455959734":[],"75059845595973410":4,"7505984559597341018":4,"755260":2,"755285075860587":4,"75623261":[3,4],"757716":2,"75771616932985":[1,2],"758253070693225":4,"75912098":[3,4],"75924440359617":4,"759590":2,"7606849670410156":4,"761096377229497":4,"7616494482071872":0,"76581649321957":4,"7691372464459554":4,"7702681295401":2,"770521900009566":4,"770522":[],"77090626983678":4,"7729397950954318":4,"7755742121852":0,"77696341662764":2,"777393":2,"779463":[],"779899597168":4,"780024":5,"780285":2,"781780201833757":4,"7820929042428215":0,"782867563138687":4,"78420864489118":0,"785300":4,"786655365804428":4,"788137017048237":4,"78815034206346":0,"78849448744587":0,"791393":[],"7913934419894347":[],"792177e":2,"792399e":2,"79693102":1,"797232158623697":4,"797899246215815":4,"8006028696066818":4,"800833828337078":4,"801286825748247":4,"802471":2,"803301":2,"803489318428457":4,"803499221801816":4,"8038005828857":4,"80507367703317":4,"80646128959610":0,"807955539071433":4,"807956":[],"808433392903487":4,"809400558471718":4,"812416515405337":4,"813086028134347":4,"815703292087437":4,"8163762113468646":0,"81671045":1,"81683708922182971":1,"817":1,"81762228999614":2,"8176222899961422":1,"817675531233004":4,"82060921880337":4,"821082349761557":4,"8212003707886":4,"823122":2,"828100204467817":4,"831807894848964":4,"832270571445857":4,"8338240271006111016":4,"834943":2,"837751825543618":4,"837752":4,"838424285329718":4,"842874":4,"8428741026386":4,"842874102638619":4,"848511762712128":1,"849596577635786":0,"850377229082717":4,"857327":2,"8585444120179595":0,"864006786112604":4,"864007":4,"8654288847211520":4,"865699768066419":4,"8676624830902435":4,"867662483090243510":4,"86766248309024351018":4,"868061081822657":4,"868963":2,"869082":[],"8700008392334":4,"871599197387719":4,"873":3,"87631129557286":0,"87738723":1,"8774":1,"880749306158471":0,"8809403481508619":4,"8838892877285924":1,"88580702":[3,4],"888060e":2,"8888":7,"8889007568359":4,"8891674931188621017":4,"892344":2,"89551292869012":2,"8955129286901221":1,"8969262278467127":4,"897001":4,"8970011609340207":4,"8978":[4,5],"8978004455566":4,"897800445556617":4,"89884570686218":0,"9021185736135971020":4,"9040002822876":4,"9062995910645":4,"9075297273992418":4,"913939":2,"916194":5,"916760881643629":4,"923799514770516":4,"9238":[4,5],"9242":5,"924200057983418":4,"9252161956789068":0,"926700592041":4,"9292104395445717":4,"929210439544571710":4,"933":[3,4],"9332755247393419":4,"9347319464589":2,"934731946458922":1,"937809":2,"938113":[],"93899884989518450":4,"940":3,"941079":2,"941079187010136":1,"941679":4,"941679495793577":4,"941813":2,"941813096629439":[1,2],"943199157714817":4,"945956347594":2,"948723":2,"950659620550862":1,"950660":2,"95159272":[3,4],"95187806":[3,4],"953377710788918":0,"9555477866915383":4,"95591653":1,"9612007141113":4,"962312685889454":4,"9658276904706319":4,"967":3,"967966":2,"969":3,"96977151283562":4,"96k":[],"97008551185148":0,"971":3,"97222038":1,"97282480557786":2,"9742788217925122":4,"9743995666504":4,"974418e":2,"975347759380995":0,"9753477593809950":0,"9762001037598":4,"976579e":2,"978818386372":0,"981070":2,"9849004745483":4,"985260087594":0,"987149":2,"9877856720147953":1,"987786":2,"9894012386388735":4,"990500":2,"9923000335693":4,"9947996139526":4,"9968965218753763":4,"998725329569156":4,"999":[0,4],"999957":2,"999985":2,"999989":2,"boolean":[2,5],"break":0,"byte":1,"case":[0,2,4,5,6],"class":[0,4],"default":[4,6,7],"final":[0,1,2,4,5,6,7],"float":0,"function":[0,1,2,3,4,5,6,7],"import":[0,1,2,3,4,5,6,7],"int":[0,1],"long":5,"new":[0,2,3,4,5,6,7],"public":[0,6,7],"return":[0,1,2,3,4,5,7],"short":0,"super":6,"switch":6,"true":[0,1,2,5,6],"try":[0,1,3,7],"while":[0,1,3,4],AND:[0,1,2,3,4],And:[0,1,2,3,4,5,6],But:[0,1,2,3,4,5],For:[0,1,2,3,4,6,7],IDs:[],NOT:0,Not:6,One:[0,1,2],That:[0,1,2,3,4,7],The:[0,1,2,3,5,6,7],Then:[1,2,3,4,6,7],There:[0,1,2,3,4,6],These:[1,2],USING:4,Use:[0,1,2,3,4,5,6,7],Using:[3,4,5,7],With:[0,2,4],__builtins__:1,__cached__:1,__doc__:1,__file__:1,__loader__:1,__name__:1,__package__:1,__path__:1,__spec__:1,_classic_test_patch:6,_init:5,a_g_percentile_low:0,a_g_percentile_upp:0,a_g_val:0,aadu:1,aarcmin:1,aarcsec:1,aau:1,aba:1,abamper:1,abarn:1,abbrevi:4,abc:1,abcoulomb:1,abeam:1,abflux:1,abil:2,abin:1,abit:1,abl:[1,2,3,4,5,6,7],abmag:1,about:[0,1,2,3,4,5,6,7],abov:[1,6],abyt:1,access:[0,4,7],accord:[],accumul:0,accur:[2,5],acd:1,achan:1,acount:1,act:1,activ:7,actual:0,add:[0,1,2,3,4,6,7],add_enabled_equival:1,add_enabled_unit:1,add_patch:6,added:0,adding:[0,3,4,6],addit:[0,2,4,6,7],adeg:1,adjust:2,adopt:1,adql:[0,1,3,4,7],adrian:[0,4,5,6,7],adu:1,adyn:1,aerg:1,aev:1,affect:[0,6],affili:1,after:[1,2,3,4,5,6],again:[0,1,2,3,4,6],against:[],agal:1,age:[4,5],ages:5,agn_cross_id:0,ahz:1,aji:1,alf:1,align:[1,2,6],all:[0,1,2,3,4,5,6,7],allclos:1,allendownei:[2,3,5,6,7],allow:[0,2],allwise_best_neighbour:0,allwise_neighbourhood:0,allwise_original_valid:0,alm:1,almost:[0,1,2,3,5],along:[0,1,2,3,5,6],alpha:[2,3,4,5,6],alreadi:[1,2,3,4,7],also:[0,1,2,3,4,6,7],altern:[1,6],although:[2,3,6],altogeth:1,alwai:[0,1,4],alx:1,alyr:1,amag:1,american:7,amin:1,amol:1,amount:3,amp:1,amper:1,ana:[0,4,5,6,7],anaconda:7,analysi:[0,1,2,4,5,6,7],angl:1,angle_arcmin:1,angstrom:1,angular_dist:4,ani:[0,2,4,6,7],annot:[3,7],annum:1,anonym:[0,1],anoth:[1,2,3,4,6,7],answer:[],anyon:5,anyth:[4,7],anywai:0,aohm:1,apa:1,apassdr9:0,apassdr9_best_neighbour:0,apassdr9_join:0,apassdr9_neighbourhood:0,apc:1,aph:1,aphoton:1,apix:1,apixel:1,apo:[2,4],appar:[4,5],appeal:[6,7],appear:[0,1,2,4,6,7],append:5,appli:[2,6],applic:4,approxim:[1,4],arad:1,arbitrari:2,archiv:1,arcmin:1,arcminut:1,arcsec:[0,1,4],arcsecond:1,area:[2,4,5,6],argument:[0,1,2,5,6],ari:1,around:[2,3],arrai:[0,3,5,6],arrang:6,array2str:3,arrow:[4,6],arrowprop:6,articl:0,arxiv:[0,4],ascens:[0,1,2,3],asi:[0,4],ask:[0,1,5],aspect:[5,6],aspx:[0,4],asr:1,assembl:[0,4,5],assign:[0,1,3],associ:[1,2],assum:7,ast:1,astro:[],astrometr:[0,4],astrometri:[0,4],astrometric_chi2_:0,astrometric_excess_nois:0,astrometric_excess_noise_sig:0,astrometric_gof_:0,astrometric_matched_observ:0,astrometric_n_bad_obs_:0,astrometric_n_good_obs_:0,astrometric_n_obs_:0,astrometric_n_obs_ac:0,astrometric_params_solv:0,astrometric_primary_flag:0,astrometric_pseudo_colour:0,astrometric_pseudo_colour_error:0,astrometric_sigma5d_max:0,astrometric_weight_:0,astronom:[0,1,4],astronomi:[0,4,5,6,7],astronomical_unit:1,astronomicaldata:[2,3,5,6,7],astrophi:1,astropi:[0,1,2,3,4,5,7],astroqueri:[0,1,3,4,7],async_20210113133023:[],async_20210315094433:1,async_20210315094446:1,async_20210315120405:[],async_20210316182456:[],async_20210326111102:3,attent:6,attoamp:1,attoamper:1,attoannum:1,attoarcminut:1,attoarcsecond:1,attoastronomical_unit:1,attobarn:1,attobary:1,attobit:1,attobyt:1,attocandela:1,attocoulomb:1,attocount:1,attoda:1,attodai:1,attodalton:1,attodeby:1,attodegre:1,attodyn:1,attoelectronvolt:1,attofarad:1,attog:1,attogauss:1,attogram:1,attohenri:1,attohertz:1,attohour:1,attohr:1,attojanski:1,attojoul:1,attokays:1,attokelvin:1,attolightyear:1,attolit:1,attolumen:1,attolux:1,attomet:1,attominut:1,attomol:1,attonewton:1,attoohm:1,attoparsec:1,attopasc:1,attophoton:1,attopixel:1,attopois:1,attoradian:1,attorayleigh:1,attorydberg:1,attosecond:1,attosiemen:1,attosteradian:1,attostok:1,attotesla:1,attovolt:1,attovoxel:1,attowatt:1,attoweb:1,attoyear:1,attribut:[2,4],attributeerror:[],audienc:6,author:6,automat:[2,5],aux_allwise_agn_gdr2_cross_id:0,aux_iers_gdr2_cross_id:0,aux_qso_icrf2_match:0,aux_sso_orbit:0,aux_sso_orbit_residu:0,avail:[0,4,5,6,7],avoid:[0,2,4],avox:1,avoxel:1,awai:[0,2],awar:7,awb:1,awkward:2,axes:[0,1,2,5,6],axi:[1,2,5,6],axvlin:6,ayr:1,azale:[6,7],back:[0,1,3,4,5,6,7],background:[4,5,6],bad:[],badli:2,band:[4,5],bar:1,barn:1,bary:1,barycentr:0,base:[0,1,3,4,6,7],basenam:[2,3,5,6],basi:[0,4],basic:[0,7],beam:1,beam_angular_area:1,beaten:[0,4,5,6,7],becaus:[0,1,2,3,4,5,7],becker:7,becom:4,becquerel:1,been:[0,4,5,6],befor:[0,1,2,3,4,6,7],begin:[0,2],behavior:[0,6],being:2,belong:[1,5],below:[0,2,6,7],benefit:2,best_neighbour_multipl:4,bestneighbour:4,betelgeus:1,better:[0,4,6],between:[0,1,2,3,4,5],big:[0,1,2,4,6,7],bigger:[0,1,2,3,6,7],bin:1,binari:[2,4],binary_prefix:1,biot:1,bit:[0,1],bitwis:2,black:[2,6],blue:[2,4],bluer:5,bmh:6,bol:1,bonaca:[0,1,2,4,5,6,7],bonu:[],bool:2,bostroem:[6,7],both:[0,2,4,5],bottom:[0,5,6],bound:[0,1,2,3],boundari:[1,5],bp_g:0,bp_rp:[0,1,3,4],brace:0,bracket:[0,2,3,5],brett:7,briefli:4,bright:[5,6],brighter:5,brightness_temperatur:1,bring:4,broadband:[0,4],broken:0,browser:7,build:4,built:1,cadu:1,calcul:2,calibr:[0,4],call:[0,1,2,3,4,5,6],camera:[0,4],can:[0,1,2,3,4,5,6,7],candela:1,candid:[2,3,4,5,6,7],candidate_df:[3,4,5,6],candidate_t:3,capabl:2,capit:0,caption:6,carcmin:1,carcsec:1,care:0,carpentri:7,catalog:[0,4],catalogu:[0,4],catastroph:1,cau:1,caus:[0,1,2],caveat:4,cba:1,cbarn:1,cbeam:1,cbin:1,cbit:1,cbyte:1,ccd:1,cchan:1,ccount:1,cct:1,cdeg:1,cdyn:1,celesti:1,cell:[0,2,3,5,6,7],celsiu:1,center:[0,1,2,3,4],centerlin:[3,7],centerline_df:[2,3,6],centiamp:1,centiamper:1,centiannum:1,centiarcminut:1,centiarcsecond:1,centiastronomical_unit:1,centibarn:1,centibary:1,centibit:1,centibyt:1,centicandela:1,centicoulomb:1,centicount:1,centida:1,centidai:1,centidalton:1,centideby:1,centidegre:1,centidyn:1,centielectronvolt:1,centifarad:1,centig:1,centigauss:1,centigram:1,centihenri:1,centihertz:1,centihour:1,centihr:1,centijanski:1,centijoul:1,centikays:1,centikelvin:1,centilightyear:1,centilit:1,centilumen:1,centilux:1,centimet:1,centiminut:1,centimol:1,centinewton:1,centiohm:1,centiparsec:1,centipasc:1,centiphoton:1,centipixel:1,centipois:1,centiradian:1,centirayleigh:1,centirydberg:1,centisecond:1,centisiemen:1,centisteradian:1,centistok:1,centitesla:1,centivolt:1,centivoxel:1,centiwatt:1,centiweb:1,centiyear:1,cepheid:0,cerg:1,cev:1,cgal:1,cgs:1,challeng:[],chamber:[0,4],chan:1,chanc:4,chang:[0,2,3,6],character:[0,4],check:[1,2,5,6],choic:[2,6,7],choos:[0,2,4,6,7],chose:[2,5],chosen:6,chz:1,circ:1,circl:[1,4],circular:[1,7],cjy:1,classic:[0,6,7],claus:[0,1,3,4],clean:[2,5],clear:[0,4],clearer:5,clearli:[2,3,6,7],click:[0,7],clm:1,close:[2,6],cluster:[2,4,5],clx:1,clyr:1,cmag:1,cmd:5,cmin:1,cmol:1,code:[0,1,2,3,4,5,6,7],cohm:1,colab:[0,7],collabor:7,collect:0,colnam:2,colon:5,color:[0,2,4,5,6,7],color_g_i:5,color_loop:[5,6],colorblind10:6,colorblind:6,colspan:6,column:[1,3,4,5,6],column_list:4,com:[2,3,5,6,7],combin:[0,1,4,6,7],come:[0,1,6],comma:[1,4],command:[0,2,5,6,7],commanded_scan_law:0,committe:7,common:[0,1,4],commonli:0,commun:6,compar:[2,3,4,5],comparison:[0,2],compat:1,compel:6,compellingli:[3,6],complet:[0,1,2,3,4,5,6],complex:[1,3],complic:7,compon:2,compos:[0,1,3,7],composit:5,compositeunit:1,comprehens:6,compress:6,comput:[0,1,2,3,4,5,6],con:2,conda:7,condit:2,cone:[1,4,7],configur:6,confirm:[0,1,2,4,7],conflict:7,confusingli:6,connect:[1,5,7],consid:6,consider:[0,4],consist:[4,5,6],constant:2,construct:[2,5],contain:[0,1,2,3,4,5,6,7],contains_point:5,content:[0,2],context:2,continu:[0,4,5,6],contribut:7,control:[2,5,6,7],conveni:[2,4,5,6],convent:[2,5],convert:[1,2,3,4,7],convexhul:3,cookbook:0,coord:[5,6],coord_galact:1,coord_gd1:1,coord_icr:1,coord_si:0,coordin:[2,3,5,6,7],coordind:6,coords_icr:1,copi:[],copyright:0,core:[0,1,2,3,4],corner:[1,2,3],corners_icr:[1,3],correct:7,correctli:0,correspond:[2,3,4,5],could:[0,1,2,3,4,6],coulomb:1,count:[0,1,2,4],cover:[2,3,4,7],cpa:1,cpc:1,cph:1,cphoton:1,cpix:1,cpixel:1,crad:1,creat:[0,1,2,4,5,6,7],criteria:4,criterion:3,cross:[0,2,4],cry:1,csr:1,cst:1,csv:[3,7],curat:[0,4],curi:1,curiou:[4,6],curli:0,current:[0,2,4,5,6],curriculum:7,custom:[3,7],cvox:1,cvoxel:1,cwb:1,cycl:1,cyr:1,dai:0,dalton:1,dark:6,dark_background:6,darkgrid:6,dash:6,data:[0,6],databas:[2,3,4,5,7],datafram:[3,5,6,7],datalink_url:0,dataquest:0,dataset:[0,1,2,4,7],datatyp:[],dau:1,dba:1,deal:[],debug:[0,1],deby:1,dec:[0,1,2,3,4,5],dec_error:[0,4],dec_parallax_corr:0,dec_pmdec_corr:0,dec_pmra_corr:0,decibel:1,decibelunit:1,declin:[0,1,2,3],decmean:[0,4],decstack:[0,4],deep:6,def:[1,2,3,4,5,6],defin:[0,3,5,6],definit:[],deg:[0,1,2,3,6],degdegma:[0,1,2,4],degdegmaskm:0,degre:[0,1,2,3,4,5],demonstr:[0,6,7],denomin:4,dens:2,densiti:2,deriv:5,describ:[2,4],descript:[0,1,2,3,4],design:[0,1,6],detail:[0,2,4,6],detect:[0,1,4],determin:[5,6],detrend:[0,4],develop:[0,1,2,4,7],dex:1,dexunit:1,dgal:1,dhz:1,diagnost:0,diagram:[0,4,5,6,7],dialect:0,dict:[3,6],dictionari:[3,7],did:[1,2,3,4],didn:[2,5],differ:[0,2,4,5,6,7],difficult:[1,3],digit:[],dimens:6,dir:1,direct:[0,1,2,3,6],directori:[6,7],dirti:6,disappear:0,disast:1,discuss:6,disk:[0,1],displai:[0,1,2,4,6],distanc:[0,2,3,4,5],distinguish:[2,4,5,6],distmod:5,distribut:7,diverg:7,divid:0,divis:2,djy:1,document:[0,1,2,4,5,6],doe:[0,1,2,5,7],doesn:5,dohm:1,domain:2,don:[0,1,2,3,4,5,6,7],done:[0,1,4,6],doubl:0,down:[0,1,7],downei:[],download:[0,1,2,3,4,5,6,7],dpa:1,dpac:0,dr1:[0,4],dr1_neighbourhood:0,dr2_neighbourhood:0,draw:[2,5,6],drawback:[0,2],drew:[],drive:0,dry:1,dst:1,dtype:[0,1,2,3,4,5],dual:0,due:2,duplicated_sourc:0,dure:2,dwarf:[0,4],dynam:1,e_bp_min_rp_percentile_low:0,e_bp_min_rp_percentile_upp:0,e_bp_min_rp_v:0,each:[0,2,4,5,6],eadu:1,earcmin:1,earcsec:1,earli:4,easi:[2,4,6,7],easier:[0,1,5,6],eau:1,eba:1,ebarn:1,ebeam:1,ebin:1,ebit:1,ebyt:1,ecd:1,echan:1,ecl_lat:0,ecl_lon:0,ecount:1,ect:1,edeg:1,edu:[0,4],edyn:1,eep:5,eerg:1,eev:1,effect:[0,2,6,7],effici:[3,4],egal:1,ehz:1,eib:1,eibit:1,eibyt:1,either:[0,2,3],eji:1,element:[2,5,6],elementwis:2,elm:1,els:[0,4],elx:1,elyr:1,emag:1,emin:1,emol:1,enclos:3,encod:[],end:[1,5,6],engin:6,enough:[6,7],ensur:5,enter:0,entir:[0,6],entiti:5,entri:[0,4],env:7,environ:[0,5,7],eohm:1,epa:1,epc:1,eph:1,ephoton:1,epix:1,epixel:1,epoch:[0,4],epoch_mean:[0,4],epoch_photometry_url:0,epochmean:4,equal:[0,4,5,6],erad:1,eri:1,erin:7,error:[0,1,2,3,4,6,7],esa:[0,1],esac:[0,1],especi:2,esr:1,est:1,estim:[2,5],etc:5,even:[0,4],everi:[0,2,4,5],everyth:[0,3,7],everywher:4,evid:2,evox:1,evoxel:1,ewb:1,exactli:[1,4,5,6],exampl:[0,1,2,4,5,6,7],except:[0,2,4],exclud:[0,4],exist:[0,1,2,3,4,5,6,7],expect:[0,2,3,4,5,7],expertis:2,explain:[0,2,5],explan:2,explanatori:0,explicitli:[1,5],explor:[0,4,6,7],express:[2,6],ext_phot_zero_point:0,extend:[0,1],extens:2,extern:[0,4],extinct:5,extra:6,extract:[0,2,4],extrem:2,eye:2,eyr:1,facecolor:6,fact:[4,5],fail:0,fall:[1,2,3,4,5,7],fals:[2,5,6],familiar:[2,6,7],faq:0,far:[0,2,4,6],farad:1,farther:0,fast:[2,6],faster:[0,1,2],featur:[0,4,6],few:[0,2,4,6],fewer:[0,4],field:[0,4],fifth:4,figsiz:[5,6],figur:[1,2,3,4,5,7],file:[0,1,2,3,4,5,6,7],filenam:[1,2,3,4,5,6],filepath:[],fill:[1,3,6],filter:[0,3,4,5],find:[0,1,2,4,5,6,7],finish:[0,1,3,4],first:[0,1,2,4,5,6],fit:[1,2,4,7],five:[0,4],fivethirtyeight:6,fix:2,flame_flag:0,flatten:3,flewel:[0,4],float64:[0,1,2,3,4],flux:4,focu:6,folder:7,follow:[0,1,2,3,4,5,6,7],fontsiz:6,foreground:0,forg:7,forget:2,form:[2,7],formal:1,format:[1,2,3,4,7],formula:5,forthcom:0,fortun:[2,4],forward:5,found:[0,4,6],four:[2,6],fraction:[0,2,3],frame:[0,1,2,3,4,7],frame_rotator_object_typ:0,frame_rotator_sourc:0,franklin:1,from:[0,1,2,3,4,5,6,7],from_panda:2,front:5,front_to_back:5,full:5,functionquant:1,functionunitbas:1,fund:7,further:[4,5],futur:[2,7],g_flag:[0,4],g_mask:5,g_mean_psf_mag:[0,4,5,6],g_mean_psf_mag_error:[0,4],g_rp:0,gadu:1,gaia:[1,2,3,4,5,6,7],gaia_astrometric_param:4,gaia_sourc:[0,1,3,4],gaia_source_simul:0,gaia_universe_model:0,gaiadr1:0,gaiadr2:[0,1,3,4],gaiadr2_geometric_dist:0,gaiaedr3:0,gaiaedr3_dist:0,gal:1,gala:[1,2,3,4,7],galact:[1,2],galex_ai:0,gap:6,garcmin:1,garcsec:1,gau:1,gauss:1,gba:1,gbarn:1,gbeam:1,gbin:1,gbit:1,gbyte:1,gca:[5,6],gcd:1,gchan:1,gcount:1,gct:1,gd1:[2,3,4,5],gd1_candid:[],gd1_data:[2,3,4,5,6],gd1_datafram:[],gd1_frame:[1,2,3,4],gd1_isochron:5,gd1_merg:[],gd1_photo:[],gd1_polygon:[],gd1_result:[1,2],gd1koposov10:[1,2,3,4],gdeg:1,gdyn:1,gea:[0,1],geadata:[0,1],gener:[0,2,4,6],geometr:5,gerg:1,get:[0,2,3,5,6,7],get_configdir:6,get_result:[0,1,3,4],getsiz:[1,2,4,5],gev:1,ggal:1,ggplot:6,ghz:1,giant:5,gib:1,gibit:1,gibyt:1,gigapixel:[0,4],github:[2,3,5,6],githubusercont:7,give:[2,4],given:5,gjy:1,glm:1,globular:[4,5],glx:1,glyr:1,gmag:1,gmin:1,gmol:1,goal:4,goe:[],gohm:1,going:2,good:[0,1,2,3,4,6,7],googl:[],gorilla:0,got:[3,5],gotcha:[],gpa:1,gpc:1,gph:1,gphoton:1,gpix:1,gpixel:1,grad:1,grai:6,grate:7,grayscal:6,greater:[0,4],green:[3,5],grid:6,group:2,gry:1,gsc23_best_neighbour:0,gsc23_join:0,gsc23_neighbourhood:0,gsc23_original_valid:0,gsr:1,gst:1,guarante:4,guess:[0,2],guid:6,gvox:1,gvoxel:1,gwb:1,gyr:1,half:5,hand:[2,4],handbook:2,handl:3,happen:6,hard:[0,4],has:[0,1,2,3,4,5,6],have:[0,1,2,3,4,5,6,7],hawaii:[0,4],hdf5:[2,4,5],hdf:[2,3,4,5,6],hdfstore:2,head:[2,4,5,6],headlength:6,headwidth:6,heliocentr:1,help:[0,6],henc:2,henri:1,here:[0,1,2,3,4,5,6,7],hertz:1,hertzsprung:0,hierarch:2,hierarchi:2,high:2,higher:[2,5],highest:2,highlight:[3,5],hint:[1,2,4,6],hipparco:0,hipparcos2_best_neighbour:0,hipparcos2_neighbourhood:0,hipparcos_newreduct:0,hogg:2,home:[0,4,7],hope:[2,4],host:[0,1],how:[0,1,2,3,4,5,6,7],howev:[0,2,3,4],http:[0,1,2,3,4,5,6,7],hubble_sc:0,i_flag:[0,4],i_mean_psf_mag:[0,4,5,6],i_mean_psf_mag_error:[0,4],icr:[1,2,3,4,7],icrs_fram:1,idea:5,ideal:[1,4],ident:3,identifi:[0,1,2,3,4,6,7],idiom:3,ifa:[0,4],igo:0,igsl_sourc:0,igsl_source_catalog_id:0,imag:[0,4],immedi:0,impati:0,implement:[2,4],improv:[3,6],in_colab:[],inaccur:2,includ:[0,1,2,4,5,6,7],inconsist:5,incorrect:2,increas:5,increment:[0,1],index:[2,3,4,5],indic:[0,2,3,4,5,6],individu:[2,6],infer:0,info:[0,1,2,3,4],inform:[0,2,4,6,7],initi:[3,5],initial_mass:5,inlin:2,inner:4,input:[0,5],insid:[3,5,6],inspect:4,instal:[6,7],instanc:[],instanti:1,instead:[0,3],institut:[0,4,7],instruct:7,int16:4,int32:3,int64:[0,1,2,3,4],int64float64float64:4,int64float64float64float64:0,int64float64float64float64float64:[0,1,4],int64float64float64float64float64float64:2,int64float64float64float64float64int16int16:4,int64float64float64float64float64int16int16float64float64:4,int64int32int16int64:4,int64int64float64int32int16int16int16int64:[],integ:2,intend:6,intent:5,interest:[0,4],interfac:[2,5,6],interfer:7,intern:1,interpret:5,intersect:4,introduct:7,introductori:7,invert:[0,5],invert_yaxi:[5,6],invok:0,involv:4,ipynb:7,irreducibleunit:1,iso:5,iso_arrai:5,iso_df:5,iso_mask:5,isochron:4,isochrone_age_yr:5,isocmd:5,issu:2,its:[0,1,2,3,4,6],itself:0,ivoa:[],jake:2,jan:[],janski:1,jieunchoi:5,job1:[],job2:[],job3:[],job:[0,1,3,4],jobid:[0,1,3],join:[1,3,5,7],joul:1,journal:6,jupyt:[1,2,5,7],just:[3,5,7],kayser:1,keep:[0,2],keeper:2,kei:[0,2,4],kelvin:1,kept:0,kernel:[0,7],key_column:0,keyword:[0,1,2,7],kib:1,kibit:1,kibyt:1,kind:[0,4],know:[0,1,2,7],knowledg:7,known:6,koposov:2,kpc:[2,3,4,5],l_bol:1,l_sun:1,lab:0,label:[2,5,6],labor:2,languag:2,larg:[2,3],larger:[0,2,3,4],largest:3,last:[0,4],later:[0,1,2,3,5],launch:[0,1,7],launch_job:[0,1],launch_job_async:[0,1,3,4],learn:[0,3,4,6],least:[0,4],leav:6,left:[1,2,4,5],left_color:5,legend:5,legibl:6,len:[1,2,3,5],length:[0,1,2,3,4],less:[0,1,2,3,5],lesser:5,lesson:[0,1,2,3,4,5,6,7],let:[0,1,2,3,4,5,6,7],letter:2,level:[2,5,7],libopenbla:7,librari:[0,1,2,7],lies:5,like:[0,1,2,3,4,5,6,7],limit:[0,1,2,4],line:[0,2,3,4,6,7],linear:5,link:7,linnean:0,linux:7,list:[0,1,2,4,5,6,7],liter:0,littl:[0,1,4,5,6],load:[0,2],load_tabl:[0,4],loc:6,local:[1,2,3,5,6,7],localhost:7,locat:[1,6],log_g:5,log_l:5,log_teff:5,logic:[0,2],logquant:1,logunit:1,longer:[0,1],look:[0,2,3,4,5,6],loop:[0,5],loop_df:[5,6],lose:4,lost:4,lot:0,low:[0,2],lower:[1,2,5],lowercas:0,lsun:1,luck:7,lum_percentile_low:0,lum_percentile_upp:0,lum_val:0,luminos:0,m_bol:1,m_e:1,m_earth:1,m_jup:1,m_jupit:1,m_p:1,m_sun:1,mac:7,machin:7,made:[0,2,3,5,6],madu:1,mag:[4,5],mag_g:5,mag_loop:[5,6],magic:2,magnier:[0,4],magnitud:[0,1,4,5,6,7],magunit:1,main:[0,2,3,4,5,6,7],main_sequ:5,make:[0,1,2,3,4,7],make_datafram:[3,4],make_rectangl:[1,2,3],manag:[1,2,3],mani:[0,1,2,3,4,5,6,7],manual:0,map:1,marcmin:1,marcsec:1,markdown:0,marker:[2,5],markers:[2,3,4,5,6],mas:[0,1,2,3,6],mask:[2,3,5],maskedcolumn:4,master:5,mastweb:[0,4],match:[0,6],matched_observ:0,mate:4,materi:7,math:6,mathemat:6,mathrm:[1,6],mathtext:6,matlab:[2,6],matplotlib:[2,3,4,5,6,7],matplotlibrc:6,matrix:3,mau:1,max:[2,4],max_line_width:3,max_parallax:0,mba:1,mbarn:1,mbeam:1,mbin:1,mbit:1,mbyte:1,mcd:1,mchan:1,mcount:1,mct:1,mdeg:1,mdyn:1,mean:[0,1,2,4,5,6],mean_varpi_factor_:0,meanobject:[0,4],mearth:1,measur:[0,1,2,4,7],median:0,medium:6,member:7,memori:[0,2],menu:[0,7],merg:[1,5,7],mesa:5,messag:[6,7],meta2:0,meta:[0,4],metadata:[0,1,2,4],metal:[4,5],meter:[0,4],method:[0,1,7],methodolog:6,mev:1,mgal:1,mhz:1,mib:1,mibit:1,mibyt:1,might:[0,2,3,4,6,7],million:1,min:[2,4],minim:6,minut:1,mislead:0,misrepres:2,miss:[2,7],mist:5,mist_cod:5,mist_iso_5fd2532653c27:5,mitig:0,mjup:1,mjupit:1,mjy:1,mlm:1,mlx:1,mlyr:1,mmag:1,mmin:1,mmol:1,mode:2,model:[0,1,5],modern:6,modifi:0,modul:[0,5],modulu:5,mohm:1,montez:7,month:2,more:[0,1,2,4,5,6,7],morri:7,most:[0,1,2,4,5,6,7],mostli:[5,6],motion:[0,1,5,6,7],motiv:2,move:[3,4],mpa:1,mpc:1,mph:1,mphoton:1,mpix:1,mpixel:1,mpl:6,mplstyle:6,mrad:1,mry:1,msr:1,mst:1,msun:1,mu_:6,much:[0,3,4,5],multi:2,multipl:[0,2,4,5,7],multipli:1,mute:6,mvox:1,mvoxel:1,mwb:1,myr:1,n_bad:0,n_detect:[0,4],name:[0,1,2,3,4,5],namedunit:1,nan:[],natur:2,nbviewer:7,ndarrai:5,ndetect:[0,4],nearbi:0,necessari:[3,5,6],necessarili:[1,6,7],need:[0,1,2,3,4,5,6,7],neg:[0,2],neighbor:[],neighbour:4,neither:0,net:[],network:0,newer:0,newton:1,next:[0,1,2,3,4,5,7],nfrom:0,nice:[],non:[1,2],nonamespaceschemaloc:[],none:[0,1,3],nor:0,normal:0,notabl:4,note:[0,1,2,3,6],notebook:[0,1,2,4,5,6,7],notebookapp:7,notic:[0,1,2,3,4,6],now:[0,1,2,3,4,5,6,7],nsource_id:0,ntop:0,num:[0,4],number:[0,1,2,3,4,6],number_of_m:4,number_of_neighbor:4,number_of_neighbour:4,numpi:[2,3,5,6,7],nundetect:6,nwhere:0,obj_id:[0,4],obj_idg_mean_psf_magi_mean_psf_mag:4,obj_info_flag:[0,4],obj_nam:[0,4],object:[0,1,2,3,4,5,6,7],objectthin:[0,4],objinfoflag:[0,4],observ:[0,2,4],off:[0,1,2,4,5,6,7],often:[0,1],ohm:1,older:[2,3,5],omit:5,onc:[1,2],one:[0,1,2,4,5,6,7],ones:[0,3,4,6],onli:[0,1,2,3,4,5,6,7],onlin:0,only_nam:0,open:[0,2,4,7],oper:[2,3,4,5,7],oppos:0,option:[0,2,4,5,6,7],orang:4,orbit:[1,2],order:[0,1,2,3,4,5,6],org:0,organ:2,ori:1,orient:6,origin:[0,1,2,3,4,5,6,7],origin_gd1:1,original_ext_source_id:4,other:[0,1,2,4,5,6,7],otherwis:[1,2],our:[0,1,2,3,5,7],out:[0,1,2,3,4,5,6],outerspac:[0,4],output:[0,1,3],outsid:[0,4,5,6,7],over:[],overdens:[2,3,5],overlap:[2,6],overplot:2,overrid:6,overwrit:[1,2],overwritten:1,own:[6,7],owner:[0,1,3],packag:[6,7],padu:1,page:7,pair:[1,4],palett:6,pan:[0,3,5,6],panda:[3,4,5,6,7],panel:[2,3,7],panoram:[0,4],panstarr:[0,4,5],panstarrs1_best_neighbour:[0,4],panstarrs1_join:0,panstarrs1_neighbourhood:0,panstarrs1_original_valid:[0,4],panstarrs1originalvalid:[0,4],paper:[0,1,2,3,4,5,6,7],parallax:[0,1,2,3,4],parallax_error:0,parallax_over_error:0,parallax_pmdec_corr:0,parallax_pmra_corr:0,paramet:[0,1,5,6,7],parcmin:1,parcsec:1,parenthes:2,pars:[0,4],part:[0,1,2,3,4,5,6,7],particular:[0,1,2,3],particularli:6,partli:2,pascal:1,pass:[3,5,6],past:[0,7],pastel:6,patch:[5,6],path:[0,1,2,3,4,5,6,7],pau:1,pba:1,pbarn:1,pbeam:1,pbin:1,pbit:1,pbyte:1,pcd:1,pchan:1,pcount:1,pct:1,pdeg:1,pdyn:1,peopl:[4,6,7],per:0,perform:[0,4,7],perg:1,perimet:3,perpendicular:1,persist:0,pev:1,pgal:1,phase:[0,1,3,5],phase_mask:5,phi1:[1,2,3,4,5,6],phi1_max:[1,3],phi1_min:[1,3],phi1_rect:[1,3],phi2:[1,2,3,4,5,6],phi2_max:[1,2,3],phi2_min:[1,2,3],phi2_rect:[1,3],phi_1:[1,2,6],phi_2:[1,2,6],phil:7,phot_bp_mean_flux:0,phot_bp_mean_flux_error:0,phot_bp_mean_flux_over_error:0,phot_bp_mean_mag:0,phot_bp_n_ob:0,phot_bp_rp_excess_factor:0,phot_g_mean_flux:0,phot_g_mean_flux_error:0,phot_g_mean_flux_over_error:0,phot_g_mean_mag:0,phot_g_n_ob:0,phot_proc_mod:0,phot_rp_mean_flux:0,phot_rp_mean_flux_error:0,phot_rp_mean_flux_over_error:0,phot_rp_mean_mag:0,phot_rp_n_ob:0,phot_variable_flag:0,phot_variable_time_series_gfov:0,phot_variable_time_series_gfov_statistical_paramet:0,photo_df:[],photo_t:[],photometr:[0,4],photometri:[0,3,6,7],physic:[0,1,2,7],phz:1,pib:1,pibit:1,pibyt:1,pick:[1,2,4],pictur:[5,6],piec:4,pip:7,pipelin:5,pixel:[0,4],pjy:1,place:[0,2,4],placehold:0,placement:6,plain:4,plan:7,plm:1,plot:[4,7],plot_cmd:[5,6],plot_first_select:6,plot_proper_mot:[2,3,6],plot_second_select:6,plt:[2,3,4,5,6],plu:[],plx:1,plyr:1,pm1:[2,6],pm1_max:[2,3,6],pm1_min:[2,3,6],pm1_rect:[2,3,6],pm2:[2,6],pm2_max:[2,3,6],pm2_min:[2,3,6],pm2_rect:[2,3,6],pm_dec:[2,3,4],pm_mask:2,pm_phi1:[2,3,4,6],pm_phi1_cosphi2:[2,3,4],pm_phi2:[2,3,4,6],pm_point_list:[3,4],pm_ra_cosdec:[2,3,4],pm_vertic:3,pmag:1,pmdec:[0,1,2,3,4],pmdec_error:0,pmdec_poli:3,pmin:1,pmol:1,pmra:[0,1,2,3,4],pmra_error:0,pmra_pmdec_corr:0,pmra_poli:3,pohm:1,point:[0,1,2,3,4,7],point_list:[1,3,4],point_seri:[3,4],points2:[],poli:6,polygon:[2,3,4,6,7],port:[0,1],posit:[0,4,6],possibl:[0,1,3,4,6,7],poster:6,ppa:1,ppc:1,pph:1,pphoton:1,ppix:1,ppixel:1,ppmxl_best_neighbour:0,ppmxl_neighbourhood:0,ppmxl_original_valid:0,practic:7,prad:1,precis:2,predefin:6,predict:5,prefac:[],prefer:[3,6],prefix:6,prefixunit:1,prepar:[2,6,7],prerequisit:7,present:[3,4,6,7],preserv:1,press:0,pretti:4,previou:[0,1,2,3,4,5,6,7],previous:[5,6],priam_flag:0,price:[0,1,2,4,5,6,7],primari:6,prime:1,print:[0,1,2,3,4,5,6,7],prior:2,pro:2,probabl:[0,2,4],problem:[0,2,4,6,7],problemat:2,process:[0,2,3,4,6],produc:[1,5],product:[0,4],profession:6,program:[0,1],project:[2,6,7],prompt:7,prone:[0,1,7],proof:1,proper:[0,1,5,6,7],proper_mot:2,properti:[0,6],proport:2,protocol:0,provid:[0,1,2,3,4,5,6],pry:1,ps1:[0,4],ps1casjob:[0,4],ps_g:5,ps_i:5,ps_open:5,ps_r:5,ps_w:5,ps_y:5,ps_z:5,psr:1,pst:1,pswww:[0,4],pull:3,purpos:2,put:[1,2,5,6,7],pvox:1,pvoxel:1,pwb:1,pyplot:[2,3,4,5,6],pyr:1,pytabl:7,python:[0,1,2,5],qhull:3,quadrant:5,qualifi:4,qualiti:[0,4,6,7],quality_flag:[0,4],quantiti:[1,7],quantityinfo:1,quantityinfobas:1,queri:[2,4,5,7],query1:0,query2:0,query3:0,query3_bas:[0,1],query4:1,query4_bas:1,query5:[1,3],query5_bas:[1,3],query6:[3,4],query6_bas:[3,4],query7:4,query7_bas:4,query_bas:[0,4],query_con:[1,4],question:6,quick:6,quot:0,r_earth:1,r_flag:[0,4],r_jup:1,r_jupit:1,r_mean_psf_mag:[0,4],r_mean_psf_mag_error:[0,4],r_sun:1,ra_dec_corr:0,ra_error:[0,4],ra_parallax_corr:0,ra_pmdec_corr:0,ra_pmra_corr:0,radial:[0,2],radial_veloc:[0,2,3,4],radial_velocity_error:0,radiu:1,radius_percentile_low:0,radius_percentile_upp:0,radius_v:0,ramean:[0,4],ran:2,random_index:0,rang:4,rapid:[0,4],rastack:[0,4],rather:2,ratio:[5,6],ravedr5_best_neighbour:0,ravedr5_com:0,ravedr5_dr5:0,ravedr5_gra:0,ravedr5_join:0,ravedr5_neighbourhood:0,ravedr5_on:0,raw:[2,3,5,6,7],rayleigh:1,read:[0,1,2,4,5,6,7],read_back_csv:4,read_csv:4,read_hdf:[3,4,5,6],read_mist_model:5,readabl:0,reader:6,readi:[1,2,3,4,5,6],realli:0,rearth:1,reason:[0,2,4,5],recent:[0,1,2,4,5,6,7],recogn:[],recommend:7,record:[4,5],rectangl:[2,3,6],rectanglar:2,rectangular:[1,2],red:[4,5],reduc:0,ref_epoch:0,refer:[0,1,4],reflect:5,reflex_correct:[2,3,4],refresh:2,regioin:5,region:[0,2,3,5,6,7],rel:[0,1,2,3,6],relat:[4,5,6],relationship:[4,5],releas:[0,1,2,3,4],reload:[1,4,6,7],rememb:2,remind:3,remov:[1,3],repeat:[0,5],repetit:0,replac:[0,1,2,3,4],replic:[0,1,2,3,4,5,6,7],repositori:[5,6,7],repres:[0,1,2,3,4,5,6,7],represent:1,reproduc:[1,5],reproducibil:5,request:[2,3,5,6],requir:[0,3,4,6],research:5,resist:0,resourc:[],respons:[0,4,7],rest:2,restart:0,restrict:1,result:[0,2,3,4,5,6,7],results1:[],results2:[],results3:[],results_df:2,retriev:[0,4],reveal:[0,4,5,6,7],revers:[5,6],review:[2,3,6],rewrit:[],rich:4,right:[0,1,2,3,4,5],right_color:5,rix:2,rjup:1,rjupit:1,rodolfo:7,rosenfield:7,rotat:5,roughli:2,round:[2,3,4],row:[0,1,3,4,5,6],rrlyra:0,rsun:1,run:[0,1,2,3,4,5,6,7],runtim:0,russel:0,ruw:0,rv_nb_transit:0,rv_template_fe_h:0,rv_template_logg:0,rv_template_teff:0,same:[0,2,3,4,5,6,7],sampl:2,save:[3,7],saw:[1,3,4],scale:5,scan:2,scatterplot:2,schema:0,scienc:[0,2,4],scientif:[1,6],scipi:[3,7],script:5,sdss_dr9_best_neighbour:0,sdss_dr9_neighbourhood:0,sdssdr13_best_neighbour:0,sdssdr13_join:0,sdssdr13_neighbourhood:0,sdssdr13_photoprimari:0,sdssdr9_best_neighbour:0,sdssdr9_neighbourhood:0,sdssdr9_original_valid:0,seaborn:[6,7],search:[1,3,4,7],second:[0,1,2,3,4,5,6],section:[0,2,5,7],see:[0,1,2,3,4,5,6,7],seem:[0,2,6],seen:[3,6],select:[0,6,7],selected2:[],selected_df:[2,3],selected_t:2,self:0,send:[0,7],sens:[2,4],sensit:0,sensor:5,separ:[1,3,4,5,6],sequenc:[4,5,6],seri:[0,2,3,4,5,6,7],serial:[],serv:7,server:[0,1,2,3,4,5,7],set:[0,1,2,3,4,5,6,7],setup:7,seventh:6,sever:[2,3,6,7],shade:[2,4,5,6],shape:[1,2,3,5,6],shift:0,shorten:2,should:[0,1,2,3,4,5,6,7],show:[0,2,3,4,5,6],shown:[1,2],shrink:6,shut:[0,1,7],side:6,siemen:1,similar:[0,2,4,5,6],similarli:4,simpl:[0,1,2,4,6],simpler:[4,5,7],simplest:[],simul:5,sinc:[1,2,3,5,6],singl:[0,1,3,4,5,6,7],sixth:5,size:[1,2,4,5,6],skip:7,sky:[0,1,2,3,4,5,7],sky_coordin:2,skycoord:[1,2,3,4],skycoord_gd1:[2,3,4],skycoord_to_str:[1,3],skymapperdr1_mast:0,skymapperdr2_best_neighbour:0,skymapperdr2_join:0,skymapperdr2_mast:0,skymapperdr2_neighbourhood:0,slice:5,slightli:[],slow:[0,4],small:[0,2,3,6],smaller:[1,2,4,5],smallest:3,smart:4,snippet:[],societi:7,softwar:2,solar:[0,2],solarize_light2:6,solut:[0,1,2,3,4,6],solution_id:0,solv:[],some:[0,2,4,5,6,7],someon:4,someth:[0,1,2],sometim:2,sourc:[0,1,2,3,4,5],source_id:[0,1,2,3,4],source_id_2:[],source_idg_mean_psf_magi_mean_psf_mag:[],source_idnumber_of_neighboursnumber_of_matesoriginal_ext_source_id:4,source_idoriginal_ext_source_idangular_distancenumber_of_neighboursnumber_of_matesbest_neighbour_multiplicitygaia_astrometric_paramssource_id_2:[],source_idradecparallax:0,source_idradecparallaxradial_veloc:0,source_idradecpmrapmdec:[0,1,4],source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_m:4,source_idradecpmrapmdecbest_neighbour_multiplicitynumber_of_matesg_mean_psf_magi_mean_psf_mag:4,source_idradecpmrapmdecparallax:2,space:[0,1,4,5,6],span:6,spatial:3,special:7,specif:1,specifi:[0,1,2,4,5,7],specifictypequant:1,spectra:0,spectroscop:0,spheric:1,spirit:[],spot:2,spread:3,spur:6,sql:[0,1,2,4],ssdc:[0,4],ssl:[0,1],sso_observ:0,sso_sourc:0,stack:[0,4],stage:6,stand:[0,4,5,6],standard:2,star:[0,1,2,3,4,5,6,7],star_mass:5,starr:[0,3,5,6],starrs1:[0,4],start:[0,1,2,3,4,5,6,7],statement:[0,2,7],statist:2,std:[2,4],stellar:[4,5],step:[0,1,2,3,4,5,6,7],stflux:1,still:[1,3],stmag:1,stop:[5,7],store:[0,1,2,3,4,7],strang:[0,2],stream:[0,1,2,4,5,6,7],stretch:6,string:[0,1,2,3],strip:3,stripe:2,structur:[0,2,6],stsci:[0,4],sty:6,style:[0,2,3],submit:[0,1,7],submodul:0,subplot2grid:6,subplot:7,subsampl:[0,4],subset:[0,2,4,6],substanti:[1,2],success:2,successfulli:2,suffix:[],suggest:[0,4],suitabl:[],sum:[2,5],sun:1,superimpos:5,superset:2,support:7,suppos:0,sure:[0,4,5,6,7],survei:[0,4],surviv:0,symbol:0,sync_20210315090602:0,sync_20210315091929:0,synchron:0,syntax:[0,6],synthet:5,sys:[],system:[0,1,2,4,6],systemat:[0,4],tab:7,tabl:[1,2,3,5,6,7],table_ext:[],table_id:[],tableau:6,tabledata:[],tadu:1,tag:[],take:[0,1,4,5,6,7],talk:[0,6],tap:[0,1,3,4],tap_config:0,tap_schema:0,tap_upload:[],taptabl:0,taptablemeta:0,tarcmin:1,tarcsec:1,task:[],tau:1,tba:1,tbarn:1,tbeam:1,tbin:1,tbit:1,tbyte:1,tcd:1,tchan:1,tcount:1,tct:1,tdeg:1,tdyn:1,technic:6,teff_percentile_low:0,teff_percentile_upp:0,teff_val:0,telescop:[0,4],temperatur:0,temptat:0,tend:4,terg:1,term:4,termin:7,tesla:1,test:[0,1,5,7],test_setup:7,tev:1,texliv:6,text:[0,4,6],tgal:1,tgas_sourc:0,than:[0,1,2,3,4,5,6],thei:[0,1,2,4,5,6,7],them:[0,1,2,3,4,5,6,7],theoret:5,thi:[0,1,2,3,4,5,6,7],thing:[0,2,3,4,6],think:[2,5,6],third:[0,1],those:[2,4,7],three:[0,1,5,6],through:[5,7],thz:1,tib:1,tibit:1,tibyt:1,tick:6,tick_param:6,tidal:2,tight_layout:6,time:[0,1,2,5,6],titl:6,tjy:1,tlm:1,tlx:1,tlyr:1,tmag:1,tmass_best_neighbour:0,tmass_neighbourhood:0,tmass_original_valid:0,tmass_psc_xsc_best_neighbour:0,tmass_psc_xsc_join:0,tmass_psc_xsc_neighbourhood:0,tmass_xsc:0,tmin:1,tmol:1,to_:2,to_csv:4,to_hdf:[2,3,4,5],to_numpi:3,to_panda:[2,3,4],to_str:[1,3],todo:[],togeth:6,tohm:1,too:[0,3,4],tool:[0,1,2,4,7],toolbar:0,top:[0,1,2,4,5,6],topic:[6,7],torr:1,total:2,tpa:1,tpc:1,tph:1,tphoton:1,tpix:1,tpixel:1,track:5,trad:1,transform:7,transform_to:[1,2,3,4],translat:4,transmit:[],transpar:2,transpos:[3,6],trial:3,trick:[],tricki:4,trip:[],tripl:0,tsr:1,tst:1,tupl:[1,6],turn:0,tutori:[0,7],tvox:1,tvoxel:1,twb:1,tweak:6,twice:[2,7],two:[0,1,2,3,4,5,6,7],twocol:6,tycho2:0,tycho2_best_neighbour:0,tycho2_neighbourhood:0,tycho2tdsc_merg:0,tycho2tdsc_merge_best_neighbour:0,tycho2tdsc_merge_neighbourhood:0,type1cm:6,type:[0,1,2,4,5],typefac:6,typeset:6,tyr:1,ucac4_best_neighbour:0,ucac4_neighbourhood:0,ucac4_original_valid:0,ucd:[],uncertainti:5,under:7,undergradu:7,understand:0,undetect:6,union:1,uniqu:[0,1,2,3],unit:[0,2,3,4,5,7],unitbas:1,unitconversionerror:1,unitserror:1,unitswarn:1,unittypeerror:1,univers:[0,4],unless:6,unlik:[0,2],unnam:4,unnus:6,unpreced:6,unrecognizedunit:1,until:[1,2,3],unusu:5,upload:[4,7],upload_resourc:[],upload_table_nam:[],upper:[0,1],uppercas:0,urat1_best_neighbour:0,urat1_neighbourhood:0,urat1_original_valid:0,url:[2,3,5,6,7],urllib:[2,3,5,6],urlretriev:[2,3,5,6],use:[0,1,2,3,4,5,6,7],used:[0,1,2,3,4,5,6],useful:[0,2,3],user:[0,1,7],usernam:7,uses:[0,1,2,3,4,5,6,7],usetex:6,using:[0,1,2,3,4,5,6,7],usual:[3,4],utf:[],util:[0,1,3,4],v_crit:5,valu:[0,1,2,3,4,5,6,7],vanderpla:2,vari_cepheid:0,vari_classifier_class_definit:0,vari_classifier_definit:0,vari_classifier_result:0,vari_long_period_vari:0,vari_rotation_modul:0,vari_rrlyra:0,vari_short_timescal:0,vari_time_series_statist:0,variabl:[0,1,3,4],variable_summari:0,varieti:4,variou:7,veloc:[0,2],veri:2,versatil:2,version:[0,2,3,4,5,6,7],vertic:[3,6],vicin:[1,3,7],view:6,visibility_periods_us:0,visibl:[],visual:7,vline:6,vocabulari:2,volt:1,vot:[1,3],votabl:[],wai:[1,2,3,4,6,7],want:[0,2,3,4,6,7],warn:[],warp:[0,4],water:[0,4],watt:1,web:5,weber:1,well:[2,5,6],were:[1,2],wget:7,what:[0,1,2,3,4,5,6],whatev:7,whelan:[0,1,2,4,5,6,7],when:[0,1,2,3,4,5,6,7],whenev:0,where:[0,1,2,3,4,5,6,7],whether:[2,4],which:[0,1,2,3,4,6,7],white:6,whitegrid:6,whole:6,whose:[2,3,5,7],why:[0,2,3],wide:[0,2,4],wider:[3,5,6],width:6,window:[2,7],winner_df:[5,6],within:[0,1,2,3,7],without:[0,1,2,4,5],won:4,wonder:[0,2],word:[0,4],work:[0,2,3,4,5,6,7],workshop:7,worri:0,would:[0,1,2,3,5,6],wrap:3,write:[1,2,3,4,7],writeto:[],written:[0,1,4],wrong:[0,4],wrote:[1,2],www:[0,4],xlabel:[2,3,4,5,6],xlim:[2,3,5,6],xml:[0,2],xmln:[],xmlschema:[],xsi:[],xytext:6,y_flag:[0,4],y_mean_psf_mag:[0,4],y_mean_psf_mag_error:[0,4],yadu:1,yarcmin:1,yarcsec:1,yau:1,yba:1,ybarn:1,ybeam:1,ybin:1,ybit:1,ybyte:1,ycd:1,ychan:1,ycount:1,yct:1,ydeg:1,ydyn:1,yerg:1,yev:1,ygal:1,yhz:1,yjy:1,ylabel:[2,3,4,5,6],ylim:[2,3,5,6],ylm:1,ylx:1,ylyr:1,ymag:1,ymin:1,yml:7,ymol:1,yohm:1,you:[0,1,2,3,4,5,6,7],younger:[4,5],your:[0,4,6,7],yourself:[0,6],ypa:1,ypc:1,yph:1,yphoton:1,ypix:1,ypixel:1,yrad:1,yrma:[0,1,2,4],yrmag:4,yry:1,ysr:1,yst:1,yvox:1,yvoxel:1,ywb:1,yyr:1,z_flag:[0,4],z_mean_psf_mag:[0,4],z_mean_psf_mag_error:[0,4],zadu:1,zarcmin:1,zarcsec:1,zau:1,zba:1,zbarn:1,zbeam:1,zbin:1,zbit:1,zbyte:1,zcd:1,zchan:1,zcount:1,zct:1,zdeg:1,zdyn:1,zerg:1,zero:2,zev:1,zgal:1,zhz:1,zjy:1,zlm:1,zlx:1,zlyr:1,zmag:1,zmin:1,zmol:1,zohm:1,zone_id:[0,4],zoom:2,zpa:1,zpc:1,zph:1,zphoton:1,zpix:1,zpixel:1,zrad:1,zry:1,zsr:1,zst:1,zvox:1,zvoxel:1,zwb:1,zyr:1},titles:["1. Queries","2. Coordinates and Units","3. Proper Motion","4. Transformation and Selection","5. Joining Tables","6. Photometry","7. Visualization","Astronomical Data in Python"],titleterms:{Adding:4,That:6,The:4,Using:0,adjust:6,annot:6,assembl:[1,3],astronom:7,asynchron:0,back:2,base:[2,5],best:[0,1,2,3,4,5,6],centerlin:2,check:4,column:[0,2],connect:0,convex:3,coordin:[1,4],correct:2,csv:4,custom:6,data:[1,2,3,4,5,7],databas:0,datafram:[2,4],defin:1,exercis:[0,1,2,3,4,6],explor:2,figur:6,filter:2,font:6,format:0,gaia:0,get:[1,4],hull:3,instal:[],isochron:5,join:4,jupyt:0,languag:0,latex:6,left:6,librari:[],lower:6,make:[5,6],match:4,merg:[],more:3,motion:[2,3,4],multipl:6,neighbor:4,one:3,oper:0,outlin:[0,1,2,3,4,5,6],pan:4,panda:2,panel:6,photometri:[4,5],plot:[2,3,5,6],point:5,polygon:[1,5],practic:[0,1,2,3,4,5,6],prepar:[],proper:[2,3,4],proport:6,python:7,queri:[0,1,3],rcparam:6,rectangl:1,reflex:2,region:1,reload:[2,3,5],result:1,right:6,row:2,save:[1,2,4,5],scatter:2,select:[1,2,3,4,5],sheet:6,starr:4,stori:6,style:6,subplot:6,summari:[0,1,2,3,4,5,6],tabl:[0,4],tell:6,time:3,transform:[1,2,3,4],unit:1,upload:[],upper:6,visual:6,which:5,work:1,write:[0,5]}}) \ No newline at end of file