diff --git a/src/f5_tts/train/README.md b/src/f5_tts/train/README.md index a6dfda3..420e2ff 100644 --- a/src/f5_tts/train/README.md +++ b/src/f5_tts/train/README.md @@ -16,6 +16,9 @@ python src/f5_tts/train/datasets/prepare_wenetspeech4tts.py # Prepare the LibriTTS dataset python src/f5_tts/train/datasets/prepare_libritts.py + +# Prepare the LJSpeech dataset +python src/f5_tts/train/datasets/prepare_ljspeech.py ``` ### 2. Create custom dataset with metadata.csv diff --git a/src/f5_tts/train/datasets/prepare_ljspeech.py b/src/f5_tts/train/datasets/prepare_ljspeech.py new file mode 100644 index 0000000..b1df290 --- /dev/null +++ b/src/f5_tts/train/datasets/prepare_ljspeech.py @@ -0,0 +1,64 @@ +import os +import sys + +sys.path.append(os.getcwd()) + +import json +from importlib.resources import files +from pathlib import Path +from tqdm import tqdm +import soundfile as sf +from datasets.arrow_writer import ArrowWriter + + +def main(): + result = [] + duration_list = [] + text_vocab_set = set() + + with open(meta_info, "r") as f: + lines = f.readlines() + for line in tqdm(lines): + uttr, text, norm_text = line.split("|") + wav_path = Path(dataset_dir) / "wavs" / f"{uttr}.wav" + duration = sf.info(wav_path).duration + if duration < 0.4 or duration > 30: + continue + result.append({"audio_path": str(wav_path), "text": norm_text, "duration": duration}) + duration_list.append(duration) + text_vocab_set.update(list(norm_text)) + + # save preprocessed dataset to disk + if not os.path.exists(f"{save_dir}"): + os.makedirs(f"{save_dir}") + print(f"\nSaving to {save_dir} ...") + + with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: + for line in tqdm(result, desc="Writing to raw.arrow ..."): + writer.write(line) + + # dup a json separately saving duration in case for DynamicBatchSampler ease + with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: + json.dump({"duration": duration_list}, f, ensure_ascii=False) + + # vocab map, i.e. tokenizer + # add alphabets and symbols (optional, if plan to ft on de/fr etc.) + with open(f"{save_dir}/vocab.txt", "w") as f: + for vocab in sorted(text_vocab_set): + f.write(vocab + "\n") + + print(f"\nFor {dataset_name}, sample count: {len(result)}") + print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") + print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") + + +if __name__ == "__main__": + tokenizer = "char" # "pinyin" | "char" + + dataset_dir = "/LJSpeech-1.1" + dataset_name = f"LJSpeech_{tokenizer}" + meta_info = os.path.join(dataset_dir, "metadata.csv") + save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" + print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n") + + main()