4 Commits

Author SHA1 Message Date
Yushen CHEN
8975fca803 Merge pull request #1084 from starkwj/main
Speedup inference by batching CFG in DiT
2025-06-12 03:54:04 +08:00
SWivid
8b0053ad0c backward compatibility 2025-06-12 03:52:12 +08:00
SWivid
b3ef4ed1d7 correct imple., minor fixes 2025-06-12 03:32:19 +08:00
starkwj
b1a9438496 Batch cfg DiT forward 2025-06-11 09:03:30 +00:00
5 changed files with 147 additions and 62 deletions

View File

@@ -182,26 +182,16 @@ class DiT(nn.Module):
return ckpt_forward
def clear_cache(self):
self.text_cond, self.text_uncond = None, None
def forward(
def get_input_embed(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
cache=False,
x, # b n d
cond, # b n d
text, # b nt
drop_audio_cond: bool = False,
drop_text: bool = False,
cache: bool = True,
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning time, text: text, x: noised audio + cond audio + text
t = self.time_embed(time)
seq_len = x.shape[1]
if cache:
if drop_text:
if self.text_uncond is None:
@@ -213,8 +203,41 @@ class DiT(nn.Module):
text_embed = self.text_cond
else:
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
return x
def clear_cache(self):
self.text_cond, self.text_uncond = None, None
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
mask: bool["b n"] | None = None, # noqa: F722
drop_audio_cond: bool = False, # cfg for cond audio
drop_text: bool = False, # cfg for text
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
cache: bool = False,
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning time, text: text, x: noised audio + cond audio + text
t = self.time_embed(time)
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
x_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
x_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
x = torch.cat((x_cond, x_uncond), dim=0)
t = torch.cat((t, t), dim=0)
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
else:
x = self.get_input_embed(x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache)
rope = self.rotary_embed.forward_from_seq_len(seq_len)
if self.long_skip_connection is not None:

View File

@@ -141,26 +141,15 @@ class MMDiT(nn.Module):
nn.init.constant_(self.proj_out.weight, 0)
nn.init.constant_(self.proj_out.bias, 0)
def clear_cache(self):
self.text_cond, self.text_uncond = None, None
def forward(
def get_input_embed(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
cache=False,
x, # b n d
cond, # b n d
text, # b nt
drop_audio_cond: bool = False,
drop_text: bool = False,
cache: bool = True,
):
batch = x.shape[0]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
if cache:
if drop_text:
if self.text_uncond is None:
@@ -174,6 +163,41 @@ class MMDiT(nn.Module):
c = self.text_embed(text, drop_text=drop_text)
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
return x, c
def clear_cache(self):
self.text_cond, self.text_uncond = None, None
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
mask: bool["b n"] | None = None, # noqa: F722
drop_audio_cond: bool = False, # cfg for cond audio
drop_text: bool = False, # cfg for text
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
cache: bool = False,
):
batch = x.shape[0]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
x_cond, c_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
x_uncond, c_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
x = torch.cat((x_cond, x_uncond), dim=0)
c = torch.cat((c_cond, c_uncond), dim=0)
t = torch.cat((t, t), dim=0)
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
else:
x, c = self.get_input_embed(
x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache
)
seq_len = x.shape[1]
text_len = text.shape[1]
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)

View File

@@ -178,26 +178,16 @@ class UNetT(nn.Module):
self.norm_out = RMSNorm(dim)
self.proj_out = nn.Linear(dim, mel_dim)
def clear_cache(self):
self.text_cond, self.text_uncond = None, None
def forward(
def get_input_embed(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
cache=False,
x, # b n d
cond, # b n d
text, # b nt
drop_audio_cond: bool = False,
drop_text: bool = False,
cache: bool = True,
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
seq_len = x.shape[1]
if cache:
if drop_text:
if self.text_uncond is None:
@@ -209,8 +199,41 @@ class UNetT(nn.Module):
text_embed = self.text_cond
else:
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
return x
def clear_cache(self):
self.text_cond, self.text_uncond = None, None
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
mask: bool["b n"] | None = None, # noqa: F722
drop_audio_cond: bool = False, # cfg for cond audio
drop_text: bool = False, # cfg for text
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
cache: bool = False,
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
x_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
x_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
x = torch.cat((x_cond, x_uncond), dim=0)
t = torch.cat((t, t), dim=0)
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
else:
x = self.get_input_embed(x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache)
# postfix time t to input x, [b n d] -> [b n+1 d]
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
if mask is not None:

View File

@@ -162,16 +162,31 @@ class CFM(nn.Module):
# at each step, conditioning is fixed
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
# predict flow
pred = self.transformer(
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False, cache=True
)
# predict flow (cond)
if cfg_strength < 1e-5:
pred = self.transformer(
x=x,
cond=step_cond,
text=text,
time=t,
mask=mask,
drop_audio_cond=False,
drop_text=False,
cache=True,
)
return pred
null_pred = self.transformer(
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True, cache=True
# predict flow (cond and uncond), for classifier-free guidance
pred_cfg = self.transformer(
x=x,
cond=step_cond,
text=text,
time=t,
mask=mask,
cfg_infer=True,
cache=True,
)
pred, null_pred = torch.chunk(pred_cfg, 2, dim=0)
return pred + (pred - null_pred) * cfg_strength
# noise input

View File

@@ -443,7 +443,7 @@ class AttnProcessor:
def __init__(
self,
pe_attn_head: int | None = None, # number of attention head to apply rope, None for all
attn_backend: str = "flash_attn",
attn_backend: str = "torch", # "torch" or "flash_attn"
attn_mask_enabled: bool = True,
):
if attn_backend == "flash_attn":
@@ -655,7 +655,7 @@ class DiTBlock(nn.Module):
dropout=0.1,
qk_norm=None,
pe_attn_head=None,
attn_backend="flash_attn",
attn_backend="torch", # "torch" or "flash_attn"
attn_mask_enabled=True,
):
super().__init__()