mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-05 20:40:12 -08:00
Compare commits
4 Commits
0914170e98
...
8975fca803
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8975fca803 | ||
|
|
8b0053ad0c | ||
|
|
b3ef4ed1d7 | ||
|
|
b1a9438496 |
@@ -182,26 +182,16 @@ class DiT(nn.Module):
|
||||
|
||||
return ckpt_forward
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
def get_input_embed(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
cache=False,
|
||||
x, # b n d
|
||||
cond, # b n d
|
||||
text, # b nt
|
||||
drop_audio_cond: bool = False,
|
||||
drop_text: bool = False,
|
||||
cache: bool = True,
|
||||
):
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning time, text: text, x: noised audio + cond audio + text
|
||||
t = self.time_embed(time)
|
||||
seq_len = x.shape[1]
|
||||
if cache:
|
||||
if drop_text:
|
||||
if self.text_uncond is None:
|
||||
@@ -213,8 +203,41 @@ class DiT(nn.Module):
|
||||
text_embed = self.text_cond
|
||||
else:
|
||||
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
||||
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
return x
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
drop_audio_cond: bool = False, # cfg for cond audio
|
||||
drop_text: bool = False, # cfg for text
|
||||
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
||||
cache: bool = False,
|
||||
):
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning time, text: text, x: noised audio + cond audio + text
|
||||
t = self.time_embed(time)
|
||||
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
||||
x_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
||||
x_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
||||
x = torch.cat((x_cond, x_uncond), dim=0)
|
||||
t = torch.cat((t, t), dim=0)
|
||||
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
||||
else:
|
||||
x = self.get_input_embed(x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache)
|
||||
|
||||
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||
|
||||
if self.long_skip_connection is not None:
|
||||
|
||||
@@ -141,26 +141,15 @@ class MMDiT(nn.Module):
|
||||
nn.init.constant_(self.proj_out.weight, 0)
|
||||
nn.init.constant_(self.proj_out.bias, 0)
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
def get_input_embed(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
cache=False,
|
||||
x, # b n d
|
||||
cond, # b n d
|
||||
text, # b nt
|
||||
drop_audio_cond: bool = False,
|
||||
drop_text: bool = False,
|
||||
cache: bool = True,
|
||||
):
|
||||
batch = x.shape[0]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
if cache:
|
||||
if drop_text:
|
||||
if self.text_uncond is None:
|
||||
@@ -174,6 +163,41 @@ class MMDiT(nn.Module):
|
||||
c = self.text_embed(text, drop_text=drop_text)
|
||||
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
return x, c
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
drop_audio_cond: bool = False, # cfg for cond audio
|
||||
drop_text: bool = False, # cfg for text
|
||||
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
||||
cache: bool = False,
|
||||
):
|
||||
batch = x.shape[0]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
||||
x_cond, c_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
||||
x_uncond, c_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
||||
x = torch.cat((x_cond, x_uncond), dim=0)
|
||||
c = torch.cat((c_cond, c_uncond), dim=0)
|
||||
t = torch.cat((t, t), dim=0)
|
||||
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
||||
else:
|
||||
x, c = self.get_input_embed(
|
||||
x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache
|
||||
)
|
||||
|
||||
seq_len = x.shape[1]
|
||||
text_len = text.shape[1]
|
||||
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||
|
||||
@@ -178,26 +178,16 @@ class UNetT(nn.Module):
|
||||
self.norm_out = RMSNorm(dim)
|
||||
self.proj_out = nn.Linear(dim, mel_dim)
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
def get_input_embed(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
cache=False,
|
||||
x, # b n d
|
||||
cond, # b n d
|
||||
text, # b nt
|
||||
drop_audio_cond: bool = False,
|
||||
drop_text: bool = False,
|
||||
cache: bool = True,
|
||||
):
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
seq_len = x.shape[1]
|
||||
if cache:
|
||||
if drop_text:
|
||||
if self.text_uncond is None:
|
||||
@@ -209,8 +199,41 @@ class UNetT(nn.Module):
|
||||
text_embed = self.text_cond
|
||||
else:
|
||||
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
||||
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
return x
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
drop_audio_cond: bool = False, # cfg for cond audio
|
||||
drop_text: bool = False, # cfg for text
|
||||
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
||||
cache: bool = False,
|
||||
):
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
||||
x_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
||||
x_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
||||
x = torch.cat((x_cond, x_uncond), dim=0)
|
||||
t = torch.cat((t, t), dim=0)
|
||||
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
||||
else:
|
||||
x = self.get_input_embed(x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache)
|
||||
|
||||
# postfix time t to input x, [b n d] -> [b n+1 d]
|
||||
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
||||
if mask is not None:
|
||||
|
||||
@@ -162,16 +162,31 @@ class CFM(nn.Module):
|
||||
# at each step, conditioning is fixed
|
||||
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
||||
|
||||
# predict flow
|
||||
pred = self.transformer(
|
||||
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False, cache=True
|
||||
)
|
||||
# predict flow (cond)
|
||||
if cfg_strength < 1e-5:
|
||||
pred = self.transformer(
|
||||
x=x,
|
||||
cond=step_cond,
|
||||
text=text,
|
||||
time=t,
|
||||
mask=mask,
|
||||
drop_audio_cond=False,
|
||||
drop_text=False,
|
||||
cache=True,
|
||||
)
|
||||
return pred
|
||||
|
||||
null_pred = self.transformer(
|
||||
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True, cache=True
|
||||
# predict flow (cond and uncond), for classifier-free guidance
|
||||
pred_cfg = self.transformer(
|
||||
x=x,
|
||||
cond=step_cond,
|
||||
text=text,
|
||||
time=t,
|
||||
mask=mask,
|
||||
cfg_infer=True,
|
||||
cache=True,
|
||||
)
|
||||
pred, null_pred = torch.chunk(pred_cfg, 2, dim=0)
|
||||
return pred + (pred - null_pred) * cfg_strength
|
||||
|
||||
# noise input
|
||||
|
||||
@@ -443,7 +443,7 @@ class AttnProcessor:
|
||||
def __init__(
|
||||
self,
|
||||
pe_attn_head: int | None = None, # number of attention head to apply rope, None for all
|
||||
attn_backend: str = "flash_attn",
|
||||
attn_backend: str = "torch", # "torch" or "flash_attn"
|
||||
attn_mask_enabled: bool = True,
|
||||
):
|
||||
if attn_backend == "flash_attn":
|
||||
@@ -655,7 +655,7 @@ class DiTBlock(nn.Module):
|
||||
dropout=0.1,
|
||||
qk_norm=None,
|
||||
pe_attn_head=None,
|
||||
attn_backend="flash_attn",
|
||||
attn_backend="torch", # "torch" or "flash_attn"
|
||||
attn_mask_enabled=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
Reference in New Issue
Block a user