mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-27 21:24:03 -08:00
576 lines
19 KiB
Python
576 lines
19 KiB
Python
"""
|
|
ein notation:
|
|
b - batch
|
|
n - sequence
|
|
nt - text sequence
|
|
nw - raw wave length
|
|
d - dimension
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
from typing import Optional
|
|
import math
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
|
|
from einops import rearrange
|
|
from x_transformers.x_transformers import apply_rotary_pos_emb
|
|
|
|
|
|
# raw wav to mel spec
|
|
|
|
class MelSpec(nn.Module):
|
|
def __init__(
|
|
self,
|
|
filter_length = 1024,
|
|
hop_length = 256,
|
|
win_length = 1024,
|
|
n_mel_channels = 100,
|
|
target_sample_rate = 24_000,
|
|
normalize = False,
|
|
power = 1,
|
|
norm = None,
|
|
center = True,
|
|
):
|
|
super().__init__()
|
|
self.n_mel_channels = n_mel_channels
|
|
|
|
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
|
sample_rate = target_sample_rate,
|
|
n_fft = filter_length,
|
|
win_length = win_length,
|
|
hop_length = hop_length,
|
|
n_mels = n_mel_channels,
|
|
power = power,
|
|
center = center,
|
|
normalized = normalize,
|
|
norm = norm,
|
|
)
|
|
|
|
self.register_buffer('dummy', torch.tensor(0), persistent = False)
|
|
|
|
def forward(self, inp):
|
|
if len(inp.shape) == 3:
|
|
inp = rearrange(inp, 'b 1 nw -> b nw')
|
|
|
|
assert len(inp.shape) == 2
|
|
|
|
if self.dummy.device != inp.device:
|
|
self.to(inp.device)
|
|
|
|
mel = self.mel_stft(inp)
|
|
mel = mel.clamp(min = 1e-5).log()
|
|
return mel
|
|
|
|
|
|
# sinusoidal position embedding
|
|
|
|
class SinusPositionEmbedding(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, x, scale=1000):
|
|
device = x.device
|
|
half_dim = self.dim // 2
|
|
emb = math.log(10000) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
|
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
|
return emb
|
|
|
|
|
|
# convolutional position embedding
|
|
|
|
class ConvPositionEmbedding(nn.Module):
|
|
def __init__(self, dim, kernel_size = 31, groups = 16):
|
|
super().__init__()
|
|
assert kernel_size % 2 != 0
|
|
self.conv1d = nn.Sequential(
|
|
nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2),
|
|
nn.Mish(),
|
|
nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2),
|
|
nn.Mish(),
|
|
)
|
|
|
|
def forward(self, x: float['b n d'], mask: bool['b n'] | None = None):
|
|
if mask is not None:
|
|
mask = mask[..., None]
|
|
x = x.masked_fill(~mask, 0.)
|
|
|
|
x = rearrange(x, 'b n d -> b d n')
|
|
x = self.conv1d(x)
|
|
out = rearrange(x, 'b d n -> b n d')
|
|
|
|
if mask is not None:
|
|
out = out.masked_fill(~mask, 0.)
|
|
|
|
return out
|
|
|
|
|
|
# rotary positional embedding related
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.):
|
|
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
|
# has some connection to NTK literature
|
|
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
|
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
|
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
|
freqs_cos = torch.cos(freqs) # real part
|
|
freqs_sin = torch.sin(freqs) # imaginary part
|
|
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
|
|
|
def get_pos_embed_indices(start, length, max_pos, scale=1.):
|
|
# length = length if isinstance(length, int) else length.max()
|
|
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
|
|
pos = start.unsqueeze(1) + (
|
|
torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) *
|
|
scale.unsqueeze(1)).long()
|
|
# avoid extra long error.
|
|
pos = torch.where(pos < max_pos, pos, max_pos - 1)
|
|
return pos
|
|
|
|
|
|
# Global Response Normalization layer (Instance Normalization ?)
|
|
|
|
class GRN(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
|
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
|
|
|
def forward(self, x):
|
|
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
|
return self.gamma * (x * Nx) + self.beta + x
|
|
|
|
|
|
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
|
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
|
|
|
|
class ConvNeXtV2Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
dilation: int = 1,
|
|
):
|
|
super().__init__()
|
|
padding = (dilation * (7 - 1)) // 2
|
|
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation) # depthwise conv
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
|
self.act = nn.GELU()
|
|
self.grn = GRN(intermediate_dim)
|
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
residual = x
|
|
x = x.transpose(1, 2) # b n d -> b d n
|
|
x = self.dwconv(x)
|
|
x = x.transpose(1, 2) # b d n -> b n d
|
|
x = self.norm(x)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.grn(x)
|
|
x = self.pwconv2(x)
|
|
return residual + x
|
|
|
|
|
|
# AdaLayerNormZero
|
|
# return with modulated x for attn input, and params for later mlp modulation
|
|
|
|
class AdaLayerNormZero(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
|
|
self.silu = nn.SiLU()
|
|
self.linear = nn.Linear(dim, dim * 6)
|
|
|
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
|
|
def forward(self, x, emb = None):
|
|
emb = self.linear(self.silu(emb))
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
|
|
|
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
|
|
|
|
|
# AdaLayerNormZero for final layer
|
|
# return only with modulated x for attn input, cuz no more mlp modulation
|
|
|
|
class AdaLayerNormZero_Final(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
|
|
self.silu = nn.SiLU()
|
|
self.linear = nn.Linear(dim, dim * 2)
|
|
|
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
|
|
def forward(self, x, emb):
|
|
emb = self.linear(self.silu(emb))
|
|
scale, shift = torch.chunk(emb, 2, dim=1)
|
|
|
|
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
|
return x
|
|
|
|
|
|
# FeedForward
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dim_out = None, mult = 4, dropout = 0., approximate: str = 'none'):
|
|
super().__init__()
|
|
inner_dim = int(dim * mult)
|
|
dim_out = dim_out if dim_out is not None else dim
|
|
|
|
activation = nn.GELU(approximate=approximate)
|
|
project_in = nn.Sequential(
|
|
nn.Linear(dim, inner_dim),
|
|
activation
|
|
)
|
|
self.ff = nn.Sequential(
|
|
project_in,
|
|
nn.Dropout(dropout),
|
|
nn.Linear(inner_dim, dim_out)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.ff(x)
|
|
|
|
|
|
# Attention with possible joint part
|
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
processor: JointAttnProcessor | AttnProcessor,
|
|
dim: int,
|
|
heads: int = 8,
|
|
dim_head: int = 64,
|
|
dropout: float = 0.0,
|
|
context_dim: Optional[int] = None, # if not None -> joint attention
|
|
context_pre_only = None,
|
|
):
|
|
super().__init__()
|
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
self.processor = processor
|
|
|
|
self.dim = dim
|
|
self.heads = heads
|
|
self.inner_dim = dim_head * heads
|
|
self.dropout = dropout
|
|
|
|
self.context_dim = context_dim
|
|
self.context_pre_only = context_pre_only
|
|
|
|
self.to_q = nn.Linear(dim, self.inner_dim)
|
|
self.to_k = nn.Linear(dim, self.inner_dim)
|
|
self.to_v = nn.Linear(dim, self.inner_dim)
|
|
|
|
if self.context_dim is not None:
|
|
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
|
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
|
if self.context_pre_only is not None:
|
|
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
|
|
|
self.to_out = nn.ModuleList([])
|
|
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
|
self.to_out.append(nn.Dropout(dropout))
|
|
|
|
if self.context_pre_only is not None and not self.context_pre_only:
|
|
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
|
|
|
def forward(
|
|
self,
|
|
x: float['b n d'], # noised input x
|
|
c: float['b n d'] = None, # context c
|
|
mask: bool['b n'] | None = None,
|
|
rope = None, # rotary position embedding for x
|
|
c_rope = None, # rotary position embedding for c
|
|
) -> torch.Tensor:
|
|
if c is not None:
|
|
return self.processor(self, x, c = c, mask = mask, rope = rope, c_rope = c_rope)
|
|
else:
|
|
return self.processor(self, x, mask = mask, rope = rope)
|
|
|
|
|
|
# Attention processor
|
|
|
|
class AttnProcessor:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
x: float['b n d'], # noised input x
|
|
mask: bool['b n'] | None = None,
|
|
rope = None, # rotary position embedding
|
|
) -> torch.FloatTensor:
|
|
|
|
batch_size = x.shape[0]
|
|
|
|
# `sample` projections.
|
|
query = attn.to_q(x)
|
|
key = attn.to_k(x)
|
|
value = attn.to_v(x)
|
|
|
|
# apply rotary position embedding
|
|
if rope is not None:
|
|
freqs, xpos_scale = rope
|
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
|
|
|
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
|
|
|
# attention
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
|
if mask is not None:
|
|
attn_mask = mask
|
|
attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n')
|
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
|
else:
|
|
attn_mask = None
|
|
|
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
x = x.to(query.dtype)
|
|
|
|
# linear proj
|
|
x = attn.to_out[0](x)
|
|
# dropout
|
|
x = attn.to_out[1](x)
|
|
|
|
if mask is not None:
|
|
mask = rearrange(mask, 'b n -> b n 1')
|
|
x = x.masked_fill(~mask, 0.)
|
|
|
|
return x
|
|
|
|
|
|
# Joint Attention processor for MM-DiT
|
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
|
|
|
class JointAttnProcessor:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
x: float['b n d'], # noised input x
|
|
c: float['b nt d'] = None, # context c, here text
|
|
mask: bool['b n'] | None = None,
|
|
rope = None, # rotary position embedding for x
|
|
c_rope = None, # rotary position embedding for c
|
|
) -> torch.FloatTensor:
|
|
residual = x
|
|
|
|
batch_size = c.shape[0]
|
|
|
|
# `sample` projections.
|
|
query = attn.to_q(x)
|
|
key = attn.to_k(x)
|
|
value = attn.to_v(x)
|
|
|
|
# `context` projections.
|
|
c_query = attn.to_q_c(c)
|
|
c_key = attn.to_k_c(c)
|
|
c_value = attn.to_v_c(c)
|
|
|
|
# apply rope for context and noised input independently
|
|
if rope is not None:
|
|
freqs, xpos_scale = rope
|
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
|
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
|
if c_rope is not None:
|
|
freqs, xpos_scale = c_rope
|
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
|
|
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
|
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
|
|
|
# attention
|
|
query = torch.cat([query, c_query], dim=1)
|
|
key = torch.cat([key, c_key], dim=1)
|
|
value = torch.cat([value, c_value], dim=1)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
|
if mask is not None:
|
|
attn_mask = F.pad(mask, (0, c.shape[1]), value = True) # no mask for c (text)
|
|
attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n')
|
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
|
else:
|
|
attn_mask = None
|
|
|
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
x = x.to(query.dtype)
|
|
|
|
# Split the attention outputs.
|
|
x, c = (
|
|
x[:, :residual.shape[1]],
|
|
x[:, residual.shape[1]:],
|
|
)
|
|
|
|
# linear proj
|
|
x = attn.to_out[0](x)
|
|
# dropout
|
|
x = attn.to_out[1](x)
|
|
if not attn.context_pre_only:
|
|
c = attn.to_out_c(c)
|
|
|
|
if mask is not None:
|
|
mask = rearrange(mask, 'b n -> b n 1')
|
|
x = x.masked_fill(~mask, 0.)
|
|
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
|
|
|
return x, c
|
|
|
|
|
|
# DiT Block
|
|
|
|
class DiTBlock(nn.Module):
|
|
|
|
def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1):
|
|
super().__init__()
|
|
|
|
self.attn_norm = AdaLayerNormZero(dim)
|
|
self.attn = Attention(
|
|
processor = AttnProcessor(),
|
|
dim = dim,
|
|
heads = heads,
|
|
dim_head = dim_head,
|
|
dropout = dropout,
|
|
)
|
|
|
|
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
|
|
|
|
def forward(self, x, t, mask = None, rope = None): # x: noised input, t: time embedding
|
|
# pre-norm & modulation for attention input
|
|
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
|
|
|
# attention
|
|
attn_output = self.attn(x=norm, mask=mask, rope=rope)
|
|
|
|
# process attention output for input x
|
|
x = x + gate_msa.unsqueeze(1) * attn_output
|
|
|
|
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
ff_output = self.ff(norm)
|
|
x = x + gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
return x
|
|
|
|
|
|
# MMDiT Block https://arxiv.org/abs/2403.03206
|
|
|
|
class MMDiTBlock(nn.Module):
|
|
r"""
|
|
modified from diffusers/src/diffusers/models/attention.py
|
|
|
|
notes.
|
|
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
|
|
_x: noised input related. (right part)
|
|
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
|
"""
|
|
|
|
def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1, context_pre_only = False):
|
|
super().__init__()
|
|
|
|
self.context_pre_only = context_pre_only
|
|
|
|
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
|
self.attn_norm_x = AdaLayerNormZero(dim)
|
|
self.attn = Attention(
|
|
processor = JointAttnProcessor(),
|
|
dim = dim,
|
|
heads = heads,
|
|
dim_head = dim_head,
|
|
dropout = dropout,
|
|
context_dim = dim,
|
|
context_pre_only = context_pre_only,
|
|
)
|
|
|
|
if not context_pre_only:
|
|
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff_c = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
|
|
else:
|
|
self.ff_norm_c = None
|
|
self.ff_c = None
|
|
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff_x = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
|
|
|
|
def forward(self, x, c, t, mask = None, rope = None, c_rope = None): # x: noised input, c: context, t: time embedding
|
|
# pre-norm & modulation for attention input
|
|
if self.context_pre_only:
|
|
norm_c = self.attn_norm_c(c, t)
|
|
else:
|
|
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
|
|
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
|
|
|
|
# attention
|
|
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
|
|
|
|
# process attention output for context c
|
|
if self.context_pre_only:
|
|
c = None
|
|
else: # if not last layer
|
|
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
|
|
|
|
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
|
c_ff_output = self.ff_c(norm_c)
|
|
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
|
|
|
|
# process attention output for input x
|
|
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
|
|
|
|
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
|
|
x_ff_output = self.ff_x(norm_x)
|
|
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
|
|
|
|
return c, x
|
|
|
|
|
|
# time step conditioning embedding
|
|
|
|
class TimestepEmbedding(nn.Module):
|
|
def __init__(self, dim, freq_embed_dim=256):
|
|
super().__init__()
|
|
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
|
self.time_mlp = nn.Sequential(
|
|
nn.Linear(freq_embed_dim, dim),
|
|
nn.SiLU(),
|
|
nn.Linear(dim, dim)
|
|
)
|
|
|
|
def forward(self, timestep: float['b']):
|
|
time_hidden = self.time_embed(timestep)
|
|
time = self.time_mlp(time_hidden) # b d
|
|
return time
|