mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-05 20:40:12 -08:00
66 lines
2.2 KiB
Python
66 lines
2.2 KiB
Python
import os
|
|
import sys
|
|
|
|
sys.path.append(os.getcwd())
|
|
|
|
import json
|
|
from importlib.resources import files
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
import soundfile as sf
|
|
from datasets.arrow_writer import ArrowWriter
|
|
|
|
|
|
def main():
|
|
result = []
|
|
duration_list = []
|
|
text_vocab_set = set()
|
|
|
|
with open(meta_info, "r") as f:
|
|
lines = f.readlines()
|
|
for line in tqdm(lines):
|
|
uttr, text, norm_text = line.split("|")
|
|
norm_text = norm_text.strip()
|
|
wav_path = Path(dataset_dir) / "wavs" / f"{uttr}.wav"
|
|
duration = sf.info(wav_path).duration
|
|
if duration < 0.4 or duration > 30:
|
|
continue
|
|
result.append({"audio_path": str(wav_path), "text": norm_text, "duration": duration})
|
|
duration_list.append(duration)
|
|
text_vocab_set.update(list(norm_text))
|
|
|
|
# save preprocessed dataset to disk
|
|
if not os.path.exists(f"{save_dir}"):
|
|
os.makedirs(f"{save_dir}")
|
|
print(f"\nSaving to {save_dir} ...")
|
|
|
|
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
|
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
|
writer.write(line)
|
|
|
|
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
|
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
|
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
|
|
|
# vocab map, i.e. tokenizer
|
|
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
|
|
with open(f"{save_dir}/vocab.txt", "w") as f:
|
|
for vocab in sorted(text_vocab_set):
|
|
f.write(vocab + "\n")
|
|
|
|
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
|
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
|
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tokenizer = "char" # "pinyin" | "char"
|
|
|
|
dataset_dir = "<SOME_PATH>/LJSpeech-1.1"
|
|
dataset_name = f"LJSpeech_{tokenizer}"
|
|
meta_info = os.path.join(dataset_dir, "metadata.csv")
|
|
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
|
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
|
|
|
main()
|