mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-26 20:53:37 -08:00
159 lines
5.2 KiB
Python
159 lines
5.2 KiB
Python
"""
|
|
ein notation:
|
|
b - batch
|
|
n - sequence
|
|
nt - text sequence
|
|
nw - raw wave length
|
|
d - dimension
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
from einops import repeat
|
|
|
|
from x_transformers.x_transformers import RotaryEmbedding
|
|
|
|
from model.modules import (
|
|
TimestepEmbedding,
|
|
ConvNeXtV2Block,
|
|
ConvPositionEmbedding,
|
|
DiTBlock,
|
|
AdaLayerNormZero_Final,
|
|
precompute_freqs_cis, get_pos_embed_indices,
|
|
)
|
|
|
|
|
|
# Text embedding
|
|
|
|
class TextEmbedding(nn.Module):
|
|
def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2):
|
|
super().__init__()
|
|
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
|
|
|
if conv_layers > 0:
|
|
self.extra_modeling = True
|
|
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
|
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
|
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
|
|
else:
|
|
self.extra_modeling = False
|
|
|
|
def forward(self, text: int['b nt'], seq_len, drop_text = False):
|
|
batch, text_len = text.shape[0], text.shape[1]
|
|
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
|
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
|
text = F.pad(text, (0, seq_len - text_len), value = 0)
|
|
|
|
if drop_text: # cfg for text
|
|
text = torch.zeros_like(text)
|
|
|
|
text = self.text_embed(text) # b n -> b n d
|
|
|
|
# possible extra modeling
|
|
if self.extra_modeling:
|
|
# sinus pos emb
|
|
batch_start = torch.zeros((batch,), dtype=torch.long)
|
|
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
|
text_pos_embed = self.freqs_cis[pos_idx]
|
|
text = text + text_pos_embed
|
|
|
|
# convnextv2 blocks
|
|
text = self.text_blocks(text)
|
|
|
|
return text
|
|
|
|
|
|
# noised input audio and context mixing embedding
|
|
|
|
class InputEmbedding(nn.Module):
|
|
def __init__(self, mel_dim, text_dim, out_dim):
|
|
super().__init__()
|
|
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
|
self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim)
|
|
|
|
def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False):
|
|
if drop_audio_cond: # cfg for cond audio
|
|
cond = torch.zeros_like(cond)
|
|
|
|
x = self.proj(torch.cat((x, cond, text_embed), dim = -1))
|
|
x = self.conv_pos_embed(x) + x
|
|
return x
|
|
|
|
|
|
# Transformer backbone using DiT blocks
|
|
|
|
class DiT(nn.Module):
|
|
def __init__(self, *,
|
|
dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4,
|
|
mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0,
|
|
long_skip_connection = False,
|
|
):
|
|
super().__init__()
|
|
|
|
self.time_embed = TimestepEmbedding(dim)
|
|
if text_dim is None:
|
|
text_dim = mel_dim
|
|
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers)
|
|
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
|
|
|
self.rotary_embed = RotaryEmbedding(dim_head)
|
|
|
|
self.dim = dim
|
|
self.depth = depth
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
DiTBlock(
|
|
dim = dim,
|
|
heads = heads,
|
|
dim_head = dim_head,
|
|
ff_mult = ff_mult,
|
|
dropout = dropout
|
|
)
|
|
for _ in range(depth)
|
|
]
|
|
)
|
|
self.long_skip_connection = nn.Linear(dim * 2, dim, bias = False) if long_skip_connection else None
|
|
|
|
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
|
self.proj_out = nn.Linear(dim, mel_dim)
|
|
|
|
def forward(
|
|
self,
|
|
x: float['b n d'], # nosied input audio
|
|
cond: float['b n d'], # masked cond audio
|
|
text: int['b nt'], # text
|
|
time: float['b'] | float[''], # time step
|
|
drop_audio_cond, # cfg for cond audio
|
|
drop_text, # cfg for text
|
|
mask: bool['b n'] | None = None,
|
|
):
|
|
batch, seq_len = x.shape[0], x.shape[1]
|
|
if time.ndim == 0:
|
|
time = repeat(time, ' -> b', b = batch)
|
|
|
|
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
|
t = self.time_embed(time)
|
|
text_embed = self.text_embed(text, seq_len, drop_text = drop_text)
|
|
x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond)
|
|
|
|
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
|
|
|
if self.long_skip_connection is not None:
|
|
residual = x
|
|
|
|
for block in self.transformer_blocks:
|
|
x = block(x, t, mask = mask, rope = rope)
|
|
|
|
if self.long_skip_connection is not None:
|
|
x = self.long_skip_connection(torch.cat((x, residual), dim = -1))
|
|
|
|
x = self.norm_out(x, t)
|
|
output = self.proj_out(x)
|
|
|
|
return output
|