mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-25 20:34:27 -08:00
548 lines
19 KiB
Python
548 lines
19 KiB
Python
from __future__ import annotations
|
||
|
||
import os
|
||
import re
|
||
import math
|
||
import random
|
||
import string
|
||
from tqdm import tqdm
|
||
from collections import defaultdict
|
||
|
||
import matplotlib
|
||
matplotlib.use("Agg")
|
||
import matplotlib.pylab as plt
|
||
|
||
import torch
|
||
import torch.nn.functional as F
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
import torchaudio
|
||
|
||
import einx
|
||
from einops import rearrange, reduce
|
||
|
||
import jieba
|
||
from pypinyin import lazy_pinyin, Style
|
||
import zhconv
|
||
from zhon.hanzi import punctuation
|
||
from jiwer import compute_measures
|
||
|
||
from funasr import AutoModel
|
||
from faster_whisper import WhisperModel
|
||
|
||
from model.ecapa_tdnn import ECAPA_TDNN_SMALL
|
||
from model.modules import MelSpec
|
||
|
||
|
||
# seed everything
|
||
|
||
def seed_everything(seed = 0):
|
||
random.seed(seed)
|
||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||
torch.manual_seed(seed)
|
||
torch.cuda.manual_seed(seed)
|
||
torch.cuda.manual_seed_all(seed)
|
||
torch.backends.cudnn.deterministic = True
|
||
torch.backends.cudnn.benchmark = False
|
||
|
||
# helpers
|
||
|
||
def exists(v):
|
||
return v is not None
|
||
|
||
def default(v, d):
|
||
return v if exists(v) else d
|
||
|
||
# tensor helpers
|
||
|
||
def lens_to_mask(
|
||
t: int['b'],
|
||
length: int | None = None
|
||
) -> bool['b n']:
|
||
|
||
if not exists(length):
|
||
length = t.amax()
|
||
|
||
seq = torch.arange(length, device = t.device)
|
||
return einx.less('n, b -> b n', seq, t)
|
||
|
||
def mask_from_start_end_indices(
|
||
seq_len: int['b'],
|
||
start: int['b'],
|
||
end: int['b']
|
||
):
|
||
max_seq_len = seq_len.max().item()
|
||
seq = torch.arange(max_seq_len, device = start.device).long()
|
||
return einx.greater_equal('n, b -> b n', seq, start) & einx.less('n, b -> b n', seq, end)
|
||
|
||
def mask_from_frac_lengths(
|
||
seq_len: int['b'],
|
||
frac_lengths: float['b']
|
||
):
|
||
lengths = (frac_lengths * seq_len).long()
|
||
max_start = seq_len - lengths
|
||
|
||
rand = torch.rand_like(frac_lengths)
|
||
start = (max_start * rand).long().clamp(min = 0)
|
||
end = start + lengths
|
||
|
||
return mask_from_start_end_indices(seq_len, start, end)
|
||
|
||
def maybe_masked_mean(
|
||
t: float['b n d'],
|
||
mask: bool['b n'] = None
|
||
) -> float['b d']:
|
||
|
||
if not exists(mask):
|
||
return t.mean(dim = 1)
|
||
|
||
t = einx.where('b n, b n d, -> b n d', mask, t, 0.)
|
||
num = reduce(t, 'b n d -> b d', 'sum')
|
||
den = reduce(mask.float(), 'b n -> b', 'sum')
|
||
|
||
return einx.divide('b d, b -> b d', num, den.clamp(min = 1.))
|
||
|
||
|
||
# simple utf-8 tokenizer, since paper went character based
|
||
def list_str_to_tensor(
|
||
text: list[str],
|
||
padding_value = -1
|
||
) -> int['b nt']:
|
||
list_tensors = [torch.tensor([*bytes(t, 'UTF-8')]) for t in text] # ByT5 style
|
||
text = pad_sequence(list_tensors, padding_value = padding_value, batch_first = True)
|
||
return text
|
||
|
||
# char tokenizer, based on custom dataset's extracted .txt file
|
||
def list_str_to_idx(
|
||
text: list[str] | list[list[str]],
|
||
vocab_char_map: dict[str, int], # {char: idx}
|
||
padding_value = -1
|
||
) -> int['b nt']:
|
||
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
||
text = pad_sequence(list_idx_tensors, padding_value = padding_value, batch_first = True)
|
||
return text
|
||
|
||
|
||
# Get tokenizer
|
||
|
||
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
||
'''
|
||
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
||
- "char" for char-wise tokenizer, need .txt vocab_file
|
||
- "byte" for utf-8 tokenizer
|
||
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
||
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
||
- if use "byte", set to 256 (unicode byte range)
|
||
'''
|
||
if tokenizer in ["pinyin", "char"]:
|
||
with open (f"data/{dataset_name}_{tokenizer}/vocab.txt", "r") as f:
|
||
vocab_char_map = {}
|
||
for i, char in enumerate(f):
|
||
vocab_char_map[char[:-1]] = i
|
||
vocab_size = len(vocab_char_map)
|
||
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
|
||
|
||
elif tokenizer == "byte":
|
||
vocab_char_map = None
|
||
vocab_size = 256
|
||
|
||
return vocab_char_map, vocab_size
|
||
|
||
|
||
# convert char to pinyin
|
||
|
||
def convert_char_to_pinyin(text_list, polyphone = True):
|
||
final_text_list = []
|
||
god_knows_why_en_testset_contains_zh_quote = str.maketrans({'“': '"', '”': '"', '‘': "'", '’': "'"}) # in case librispeech (orig no-pc) test-clean
|
||
custom_trans = str.maketrans({';': ','}) # add custom trans here, to address oov
|
||
for text in text_list:
|
||
char_list = []
|
||
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
|
||
text = text.translate(custom_trans)
|
||
for seg in jieba.cut(text):
|
||
seg_byte_len = len(bytes(seg, 'UTF-8'))
|
||
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
||
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
||
char_list.append(" ")
|
||
char_list.extend(seg)
|
||
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
|
||
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
||
for c in seg:
|
||
if c not in "。,、;:?!《》【】—…":
|
||
char_list.append(" ")
|
||
char_list.append(c)
|
||
else: # if mixed chinese characters, alphabets and symbols
|
||
for c in seg:
|
||
if ord(c) < 256:
|
||
char_list.extend(c)
|
||
else:
|
||
if c not in "。,、;:?!《》【】—…":
|
||
char_list.append(" ")
|
||
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
|
||
else: # if is zh punc
|
||
char_list.append(c)
|
||
final_text_list.append(char_list)
|
||
|
||
return final_text_list
|
||
|
||
|
||
# save spectrogram
|
||
def save_spectrogram(spectrogram, path):
|
||
plt.figure(figsize=(12, 4))
|
||
plt.imshow(spectrogram, origin='lower', aspect='auto')
|
||
plt.colorbar()
|
||
plt.savefig(path)
|
||
plt.close()
|
||
|
||
|
||
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
||
def get_seedtts_testset_metainfo(metalst):
|
||
f = open(metalst); lines = f.readlines(); f.close()
|
||
metainfo = []
|
||
for line in lines:
|
||
if len(line.strip().split('|')) == 5:
|
||
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
|
||
elif len(line.strip().split('|')) == 4:
|
||
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')
|
||
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
|
||
if not os.path.isabs(prompt_wav):
|
||
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
||
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
|
||
return metainfo
|
||
|
||
|
||
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
|
||
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
|
||
f = open(metalst); lines = f.readlines(); f.close()
|
||
metainfo = []
|
||
for line in lines:
|
||
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')
|
||
|
||
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
||
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-')
|
||
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')
|
||
|
||
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
||
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-')
|
||
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')
|
||
|
||
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
|
||
|
||
return metainfo
|
||
|
||
|
||
# padded to max length mel batch
|
||
def padded_mel_batch(ref_mels):
|
||
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
|
||
padded_ref_mels = []
|
||
for mel in ref_mels:
|
||
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0)
|
||
padded_ref_mels.append(padded_ref_mel)
|
||
padded_ref_mels = torch.stack(padded_ref_mels)
|
||
padded_ref_mels = rearrange(padded_ref_mels, 'b d n -> b n d')
|
||
return padded_ref_mels
|
||
|
||
|
||
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
||
|
||
def get_inference_prompt(
|
||
metainfo,
|
||
speed = 1., tokenizer = "pinyin", polyphone = True,
|
||
target_sample_rate = 24000, n_mel_channels = 100, hop_length = 256, target_rms = 0.1,
|
||
use_truth_duration = False,
|
||
infer_batch_size = 1, num_buckets = 200, min_secs = 3, max_secs = 40,
|
||
):
|
||
prompts_all = []
|
||
|
||
min_tokens = min_secs * target_sample_rate // hop_length
|
||
max_tokens = max_secs * target_sample_rate // hop_length
|
||
|
||
batch_accum = [0] * num_buckets
|
||
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = \
|
||
([[] for _ in range(num_buckets)] for _ in range(6))
|
||
|
||
mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length)
|
||
|
||
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
|
||
|
||
# Audio
|
||
ref_audio, ref_sr = torchaudio.load(prompt_wav)
|
||
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
|
||
if ref_rms < target_rms:
|
||
ref_audio = ref_audio * target_rms / ref_rms
|
||
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
|
||
if ref_sr != target_sample_rate:
|
||
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
||
ref_audio = resampler(ref_audio)
|
||
|
||
# Text
|
||
text = [prompt_text + gt_text]
|
||
if tokenizer == "pinyin":
|
||
text_list = convert_char_to_pinyin(text, polyphone = polyphone)
|
||
else:
|
||
text_list = text
|
||
|
||
# Duration, mel frame length
|
||
ref_mel_len = ref_audio.shape[-1] // hop_length
|
||
if use_truth_duration:
|
||
gt_audio, gt_sr = torchaudio.load(gt_wav)
|
||
if gt_sr != target_sample_rate:
|
||
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
|
||
gt_audio = resampler(gt_audio)
|
||
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
|
||
|
||
# # test vocoder resynthesis
|
||
# ref_audio = gt_audio
|
||
else:
|
||
zh_pause_punc = r"。,、;:?!"
|
||
ref_text_len = len(prompt_text) + len(re.findall(zh_pause_punc, prompt_text))
|
||
gen_text_len = len(gt_text) + len(re.findall(zh_pause_punc, gt_text))
|
||
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
|
||
|
||
# to mel spectrogram
|
||
ref_mel = mel_spectrogram(ref_audio)
|
||
ref_mel = rearrange(ref_mel, '1 d n -> d n')
|
||
|
||
# deal with batch
|
||
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
||
assert min_tokens <= total_mel_len <= max_tokens, \
|
||
f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
|
||
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
|
||
|
||
utts[bucket_i].append(utt)
|
||
ref_rms_list[bucket_i].append(ref_rms)
|
||
ref_mels[bucket_i].append(ref_mel)
|
||
ref_mel_lens[bucket_i].append(ref_mel_len)
|
||
total_mel_lens[bucket_i].append(total_mel_len)
|
||
final_text_list[bucket_i].extend(text_list)
|
||
|
||
batch_accum[bucket_i] += total_mel_len
|
||
|
||
if batch_accum[bucket_i] >= infer_batch_size:
|
||
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
|
||
prompts_all.append((
|
||
utts[bucket_i],
|
||
ref_rms_list[bucket_i],
|
||
padded_mel_batch(ref_mels[bucket_i]),
|
||
ref_mel_lens[bucket_i],
|
||
total_mel_lens[bucket_i],
|
||
final_text_list[bucket_i]
|
||
))
|
||
batch_accum[bucket_i] = 0
|
||
utts[bucket_i], ref_rms_list[bucket_i], ref_mels[bucket_i], ref_mel_lens[bucket_i], total_mel_lens[bucket_i], final_text_list[bucket_i] = [], [], [], [], [], []
|
||
|
||
# add residual
|
||
for bucket_i, bucket_frames in enumerate(batch_accum):
|
||
if bucket_frames > 0:
|
||
prompts_all.append((
|
||
utts[bucket_i],
|
||
ref_rms_list[bucket_i],
|
||
padded_mel_batch(ref_mels[bucket_i]),
|
||
ref_mel_lens[bucket_i],
|
||
total_mel_lens[bucket_i],
|
||
final_text_list[bucket_i]
|
||
))
|
||
# not only leave easy work for last workers
|
||
random.seed(666)
|
||
random.shuffle(prompts_all)
|
||
|
||
return prompts_all
|
||
|
||
|
||
# get wav_res_ref_text of seed-tts test metalst
|
||
# https://github.com/BytedanceSpeech/seed-tts-eval
|
||
|
||
def get_seed_tts_test(metalst, gen_wav_dir, gpus):
|
||
f = open(metalst)
|
||
lines = f.readlines()
|
||
f.close()
|
||
|
||
test_set_ = []
|
||
for line in tqdm(lines):
|
||
if len(line.strip().split('|')) == 5:
|
||
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
|
||
elif len(line.strip().split('|')) == 4:
|
||
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')
|
||
|
||
if not os.path.exists(os.path.join(gen_wav_dir, utt + '.wav')):
|
||
continue
|
||
gen_wav = os.path.join(gen_wav_dir, utt + '.wav')
|
||
if not os.path.isabs(prompt_wav):
|
||
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
||
|
||
test_set_.append((gen_wav, prompt_wav, gt_text))
|
||
|
||
num_jobs = len(gpus)
|
||
if num_jobs == 1:
|
||
return [(gpus[0], test_set_)]
|
||
|
||
wav_per_job = len(test_set_) // num_jobs + 1
|
||
test_set = []
|
||
for i in range(num_jobs):
|
||
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))
|
||
|
||
return test_set
|
||
|
||
|
||
# get librispeech test-clean cross sentence test
|
||
|
||
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = False):
|
||
f = open(metalst)
|
||
lines = f.readlines()
|
||
f.close()
|
||
|
||
test_set_ = []
|
||
for line in tqdm(lines):
|
||
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')
|
||
|
||
if eval_ground_truth:
|
||
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-')
|
||
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')
|
||
else:
|
||
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + '.wav')):
|
||
raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
|
||
gen_wav = os.path.join(gen_wav_dir, gen_utt + '.wav')
|
||
|
||
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-')
|
||
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')
|
||
|
||
test_set_.append((gen_wav, ref_wav, gen_txt))
|
||
|
||
num_jobs = len(gpus)
|
||
if num_jobs == 1:
|
||
return [(gpus[0], test_set_)]
|
||
|
||
wav_per_job = len(test_set_) // num_jobs + 1
|
||
test_set = []
|
||
for i in range(num_jobs):
|
||
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))
|
||
|
||
return test_set
|
||
|
||
|
||
# load asr model
|
||
|
||
def load_asr_model(lang, ckpt_dir = ""):
|
||
if lang == "zh":
|
||
model = AutoModel(
|
||
model = os.path.join(ckpt_dir, "paraformer-zh"),
|
||
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
|
||
# punc_model = os.path.join(ckpt_dir, "ct-punc"),
|
||
# spk_model = os.path.join(ckpt_dir, "cam++"),
|
||
disable_update=True,
|
||
) # following seed-tts setting
|
||
elif lang == "en":
|
||
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
|
||
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
||
return model
|
||
|
||
|
||
# WER Evaluation, the way Seed-TTS does
|
||
|
||
def run_asr_wer(args):
|
||
rank, lang, test_set, ckpt_dir = args
|
||
|
||
if lang == "zh":
|
||
torch.cuda.set_device(rank)
|
||
elif lang == "en":
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
|
||
else:
|
||
raise NotImplementedError("lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now.")
|
||
|
||
asr_model = load_asr_model(lang, ckpt_dir = ckpt_dir)
|
||
|
||
punctuation_all = punctuation + string.punctuation
|
||
wers = []
|
||
|
||
for gen_wav, prompt_wav, truth in tqdm(test_set):
|
||
if lang == "zh":
|
||
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
|
||
hypo = res[0]["text"]
|
||
hypo = zhconv.convert(hypo, 'zh-cn')
|
||
elif lang == "en":
|
||
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
|
||
hypo = ''
|
||
for segment in segments:
|
||
hypo = hypo + ' ' + segment.text
|
||
|
||
# raw_truth = truth
|
||
# raw_hypo = hypo
|
||
|
||
for x in punctuation_all:
|
||
truth = truth.replace(x, '')
|
||
hypo = hypo.replace(x, '')
|
||
|
||
truth = truth.replace(' ', ' ')
|
||
hypo = hypo.replace(' ', ' ')
|
||
|
||
if lang == "zh":
|
||
truth = " ".join([x for x in truth])
|
||
hypo = " ".join([x for x in hypo])
|
||
elif lang == "en":
|
||
truth = truth.lower()
|
||
hypo = hypo.lower()
|
||
|
||
measures = compute_measures(truth, hypo)
|
||
wer = measures["wer"]
|
||
|
||
# ref_list = truth.split(" ")
|
||
# subs = measures["substitutions"] / len(ref_list)
|
||
# dele = measures["deletions"] / len(ref_list)
|
||
# inse = measures["insertions"] / len(ref_list)
|
||
|
||
wers.append(wer)
|
||
|
||
return wers
|
||
|
||
|
||
# SIM Evaluation
|
||
|
||
def run_sim(args):
|
||
rank, test_set, ckpt_dir = args
|
||
device = f"cuda:{rank}"
|
||
|
||
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=None)
|
||
state_dict = torch.load(ckpt_dir, map_location=lambda storage, loc: storage)
|
||
model.load_state_dict(state_dict['model'], strict=False)
|
||
|
||
use_gpu=True if torch.cuda.is_available() else False
|
||
if use_gpu:
|
||
model = model.cuda(device)
|
||
model.eval()
|
||
|
||
sim_list = []
|
||
for wav1, wav2, truth in tqdm(test_set):
|
||
|
||
wav1, sr1 = torchaudio.load(wav1)
|
||
wav2, sr2 = torchaudio.load(wav2)
|
||
|
||
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
||
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
||
wav1 = resample1(wav1)
|
||
wav2 = resample2(wav2)
|
||
|
||
if use_gpu:
|
||
wav1 = wav1.cuda(device)
|
||
wav2 = wav2.cuda(device)
|
||
with torch.no_grad():
|
||
emb1 = model(wav1)
|
||
emb2 = model(wav2)
|
||
|
||
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
||
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
||
sim_list.append(sim)
|
||
|
||
return sim_list
|
||
|
||
|
||
# filter func for dirty data with many repetitions
|
||
|
||
def repetition_found(text, length = 2, tolerance = 10):
|
||
pattern_count = defaultdict(int)
|
||
for i in range(len(text) - length + 1):
|
||
pattern = text[i:i + length]
|
||
pattern_count[pattern] += 1
|
||
for pattern, count in pattern_count.items():
|
||
if count > tolerance:
|
||
return True
|
||
return False
|