mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-25 20:34:27 -08:00
70 lines
2.0 KiB
Python
70 lines
2.0 KiB
Python
# Evaluate with Seed-TTS testset
|
|
|
|
import sys, os
|
|
sys.path.append(os.getcwd())
|
|
|
|
import multiprocessing as mp
|
|
import numpy as np
|
|
|
|
from model.utils import (
|
|
get_seed_tts_test,
|
|
run_asr_wer,
|
|
run_sim,
|
|
)
|
|
|
|
|
|
eval_task = "wer" # sim | wer
|
|
lang = "zh" # zh | en
|
|
metalst = f"data/seedtts_testset/{lang}/meta.lst" # seed-tts testset
|
|
# gen_wav_dir = f"data/seedtts_testset/{lang}/wavs" # ground truth wavs
|
|
gen_wav_dir = f"PATH_TO_GENERATED" # generated wavs
|
|
|
|
|
|
# NOTE. paraformer-zh result will be slightly different according to the number of gpus, cuz batchsize is different
|
|
# zh 1.254 seems a result of 4 workers wer_seed_tts
|
|
gpus = [0,1,2,3,4,5,6,7]
|
|
test_set = get_seed_tts_test(metalst, gen_wav_dir, gpus)
|
|
|
|
local = False
|
|
if local: # use local custom checkpoint dir
|
|
if lang == "zh":
|
|
asr_ckpt_dir = "../checkpoints/funasr" # paraformer-zh dir under funasr
|
|
elif lang == "en":
|
|
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
|
|
else:
|
|
asr_ckpt_dir = "" # auto download to cache dir
|
|
|
|
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
|
|
|
|
|
# --------------------------- WER ---------------------------
|
|
|
|
if eval_task == "wer":
|
|
wers = []
|
|
|
|
with mp.Pool(processes=len(gpus)) as pool:
|
|
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
|
results = pool.map(run_asr_wer, args)
|
|
for wers_ in results:
|
|
wers.extend(wers_)
|
|
|
|
wer = round(np.mean(wers)*100, 3)
|
|
print(f"\nTotal {len(wers)} samples")
|
|
print(f"WER : {wer}%")
|
|
|
|
|
|
# --------------------------- SIM ---------------------------
|
|
|
|
if eval_task == "sim":
|
|
sim_list = []
|
|
|
|
with mp.Pool(processes=len(gpus)) as pool:
|
|
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
|
results = pool.map(run_sim, args)
|
|
for sim_ in results:
|
|
sim_list.extend(sim_)
|
|
|
|
sim = round(sum(sim_list)/len(sim_list), 3)
|
|
print(f"\nTotal {len(sim_list)} samples")
|
|
print(f"SIM : {sim}")
|