mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-05 20:40:12 -08:00
790 lines
26 KiB
Python
790 lines
26 KiB
Python
"""
|
|
ein notation:
|
|
b - batch
|
|
n - sequence
|
|
nt - text sequence
|
|
nw - raw wave length
|
|
d - dimension
|
|
"""
|
|
# ruff: noqa: F722 F821
|
|
|
|
from __future__ import annotations
|
|
|
|
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
from torch import nn
|
|
from x_transformers.x_transformers import apply_rotary_pos_emb
|
|
|
|
from f5_tts.model.utils import is_package_available
|
|
|
|
|
|
# raw wav to mel spec
|
|
|
|
|
|
mel_basis_cache = {}
|
|
hann_window_cache = {}
|
|
|
|
|
|
def get_bigvgan_mel_spectrogram(
|
|
waveform,
|
|
n_fft=1024,
|
|
n_mel_channels=100,
|
|
target_sample_rate=24000,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
fmin=0,
|
|
fmax=None,
|
|
center=False,
|
|
): # Copy from https://github.com/NVIDIA/BigVGAN/tree/main
|
|
device = waveform.device
|
|
key = f"{n_fft}_{n_mel_channels}_{target_sample_rate}_{hop_length}_{win_length}_{fmin}_{fmax}_{device}"
|
|
|
|
if key not in mel_basis_cache:
|
|
mel = librosa_mel_fn(sr=target_sample_rate, n_fft=n_fft, n_mels=n_mel_channels, fmin=fmin, fmax=fmax)
|
|
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) # TODO: why they need .float()?
|
|
hann_window_cache[key] = torch.hann_window(win_length).to(device)
|
|
|
|
mel_basis = mel_basis_cache[key]
|
|
hann_window = hann_window_cache[key]
|
|
|
|
padding = (n_fft - hop_length) // 2
|
|
waveform = torch.nn.functional.pad(waveform.unsqueeze(1), (padding, padding), mode="reflect").squeeze(1)
|
|
|
|
spec = torch.stft(
|
|
waveform,
|
|
n_fft,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
window=hann_window,
|
|
center=center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=True,
|
|
)
|
|
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
|
|
|
|
mel_spec = torch.matmul(mel_basis, spec)
|
|
mel_spec = torch.log(torch.clamp(mel_spec, min=1e-5))
|
|
|
|
return mel_spec
|
|
|
|
|
|
def get_vocos_mel_spectrogram(
|
|
waveform,
|
|
n_fft=1024,
|
|
n_mel_channels=100,
|
|
target_sample_rate=24000,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
):
|
|
mel_stft = torchaudio.transforms.MelSpectrogram(
|
|
sample_rate=target_sample_rate,
|
|
n_fft=n_fft,
|
|
win_length=win_length,
|
|
hop_length=hop_length,
|
|
n_mels=n_mel_channels,
|
|
power=1,
|
|
center=True,
|
|
normalized=False,
|
|
norm=None,
|
|
).to(waveform.device)
|
|
if len(waveform.shape) == 3:
|
|
waveform = waveform.squeeze(1) # 'b 1 nw -> b nw'
|
|
|
|
assert len(waveform.shape) == 2
|
|
|
|
mel = mel_stft(waveform)
|
|
mel = mel.clamp(min=1e-5).log()
|
|
return mel
|
|
|
|
|
|
class MelSpec(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_fft=1024,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
n_mel_channels=100,
|
|
target_sample_rate=24_000,
|
|
mel_spec_type="vocos",
|
|
):
|
|
super().__init__()
|
|
assert mel_spec_type in ["vocos", "bigvgan"], print("We only support two extract mel backend: vocos or bigvgan")
|
|
|
|
self.n_fft = n_fft
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
self.n_mel_channels = n_mel_channels
|
|
self.target_sample_rate = target_sample_rate
|
|
|
|
if mel_spec_type == "vocos":
|
|
self.extractor = get_vocos_mel_spectrogram
|
|
elif mel_spec_type == "bigvgan":
|
|
self.extractor = get_bigvgan_mel_spectrogram
|
|
|
|
self.register_buffer("dummy", torch.tensor(0), persistent=False)
|
|
|
|
def forward(self, wav):
|
|
if self.dummy.device != wav.device:
|
|
self.to(wav.device)
|
|
|
|
mel = self.extractor(
|
|
waveform=wav,
|
|
n_fft=self.n_fft,
|
|
n_mel_channels=self.n_mel_channels,
|
|
target_sample_rate=self.target_sample_rate,
|
|
hop_length=self.hop_length,
|
|
win_length=self.win_length,
|
|
)
|
|
|
|
return mel
|
|
|
|
|
|
# sinusoidal position embedding
|
|
|
|
|
|
class SinusPositionEmbedding(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, x, scale=1000):
|
|
device = x.device
|
|
half_dim = self.dim // 2
|
|
emb = math.log(10000) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
|
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
|
return emb
|
|
|
|
|
|
# convolutional position embedding
|
|
|
|
|
|
class ConvPositionEmbedding(nn.Module):
|
|
def __init__(self, dim, kernel_size=31, groups=16):
|
|
super().__init__()
|
|
assert kernel_size % 2 != 0
|
|
self.conv1d = nn.Sequential(
|
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
|
nn.Mish(),
|
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
|
nn.Mish(),
|
|
)
|
|
self.layer_need_mask_idx = [i for i, layer in enumerate(self.conv1d) if isinstance(layer, nn.Conv1d)]
|
|
|
|
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None):
|
|
if mask is not None:
|
|
mask = mask.unsqueeze(-1)
|
|
mask_t = mask.permute(0, 2, 1)
|
|
x = x.masked_fill(~mask, 0.0)
|
|
|
|
x = x.permute(0, 2, 1)
|
|
for i, block in enumerate(self.conv1d):
|
|
x = block(x)
|
|
if mask is not None and i in self.layer_need_mask_idx:
|
|
x = x.masked_fill(~mask_t, 0.0)
|
|
out = x.permute(0, 2, 1)
|
|
|
|
if mask is not None:
|
|
out = out.masked_fill(~mask, 0.0)
|
|
|
|
return out
|
|
|
|
|
|
# rotary positional embedding related
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
|
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
|
# has some connection to NTK literature
|
|
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
|
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
|
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
|
freqs_cos = torch.cos(freqs) # real part
|
|
freqs_sin = torch.sin(freqs) # imaginary part
|
|
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
|
|
|
|
|
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
|
|
# length = length if isinstance(length, int) else length.max()
|
|
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
|
|
pos = (
|
|
start.unsqueeze(1)
|
|
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
|
|
)
|
|
# avoid extra long error.
|
|
pos = torch.where(pos < max_pos, pos, max_pos - 1)
|
|
return pos
|
|
|
|
|
|
# Global Response Normalization layer (Instance Normalization ?)
|
|
|
|
|
|
class GRN(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
|
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
|
|
|
def forward(self, x):
|
|
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
|
return self.gamma * (x * Nx) + self.beta + x
|
|
|
|
|
|
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
|
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
|
|
|
|
|
|
class ConvNeXtV2Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
dilation: int = 1,
|
|
):
|
|
super().__init__()
|
|
padding = (dilation * (7 - 1)) // 2
|
|
self.dwconv = nn.Conv1d(
|
|
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
|
) # depthwise conv
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
|
self.act = nn.GELU()
|
|
self.grn = GRN(intermediate_dim)
|
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
residual = x
|
|
x = x.transpose(1, 2) # b n d -> b d n
|
|
x = self.dwconv(x)
|
|
x = x.transpose(1, 2) # b d n -> b n d
|
|
x = self.norm(x)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.grn(x)
|
|
x = self.pwconv2(x)
|
|
return residual + x
|
|
|
|
|
|
# RMSNorm
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dim: int, eps: float):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
self.native_rms_norm = float(torch.__version__[:3]) >= 2.4
|
|
|
|
def forward(self, x):
|
|
if self.native_rms_norm:
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
|
x = x.to(self.weight.dtype)
|
|
x = F.rms_norm(x, normalized_shape=(x.shape[-1],), weight=self.weight, eps=self.eps)
|
|
else:
|
|
variance = x.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
|
x = x * torch.rsqrt(variance + self.eps)
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
|
x = x.to(self.weight.dtype)
|
|
x = x * self.weight
|
|
|
|
return x
|
|
|
|
|
|
# AdaLayerNorm
|
|
# return with modulated x for attn input, and params for later mlp modulation
|
|
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
|
|
self.silu = nn.SiLU()
|
|
self.linear = nn.Linear(dim, dim * 6)
|
|
|
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
|
|
def forward(self, x, emb=None):
|
|
emb = self.linear(self.silu(emb))
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
|
|
|
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
|
|
|
|
|
# AdaLayerNorm for final layer
|
|
# return only with modulated x for attn input, cuz no more mlp modulation
|
|
|
|
|
|
class AdaLayerNorm_Final(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
|
|
self.silu = nn.SiLU()
|
|
self.linear = nn.Linear(dim, dim * 2)
|
|
|
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
|
|
def forward(self, x, emb):
|
|
emb = self.linear(self.silu(emb))
|
|
scale, shift = torch.chunk(emb, 2, dim=1)
|
|
|
|
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
|
return x
|
|
|
|
|
|
# FeedForward
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
|
|
super().__init__()
|
|
inner_dim = int(dim * mult)
|
|
dim_out = dim_out if dim_out is not None else dim
|
|
|
|
activation = nn.GELU(approximate=approximate)
|
|
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
|
|
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
|
|
|
def forward(self, x):
|
|
return self.ff(x)
|
|
|
|
|
|
# Attention with possible joint part
|
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
processor: JointAttnProcessor | AttnProcessor,
|
|
dim: int,
|
|
heads: int = 8,
|
|
dim_head: int = 64,
|
|
dropout: float = 0.0,
|
|
context_dim: Optional[int] = None, # if not None -> joint attention
|
|
context_pre_only: bool = False,
|
|
qk_norm: Optional[str] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
self.processor = processor
|
|
|
|
self.dim = dim
|
|
self.heads = heads
|
|
self.inner_dim = dim_head * heads
|
|
self.dropout = dropout
|
|
|
|
self.context_dim = context_dim
|
|
self.context_pre_only = context_pre_only
|
|
|
|
self.to_q = nn.Linear(dim, self.inner_dim)
|
|
self.to_k = nn.Linear(dim, self.inner_dim)
|
|
self.to_v = nn.Linear(dim, self.inner_dim)
|
|
|
|
if qk_norm is None:
|
|
self.q_norm = None
|
|
self.k_norm = None
|
|
elif qk_norm == "rms_norm":
|
|
self.q_norm = RMSNorm(dim_head, eps=1e-6)
|
|
self.k_norm = RMSNorm(dim_head, eps=1e-6)
|
|
else:
|
|
raise ValueError(f"Unimplemented qk_norm: {qk_norm}")
|
|
|
|
if self.context_dim is not None:
|
|
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
|
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
|
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
|
if qk_norm is None:
|
|
self.c_q_norm = None
|
|
self.c_k_norm = None
|
|
elif qk_norm == "rms_norm":
|
|
self.c_q_norm = RMSNorm(dim_head, eps=1e-6)
|
|
self.c_k_norm = RMSNorm(dim_head, eps=1e-6)
|
|
|
|
self.to_out = nn.ModuleList([])
|
|
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
|
self.to_out.append(nn.Dropout(dropout))
|
|
|
|
if self.context_dim is not None and not self.context_pre_only:
|
|
self.to_out_c = nn.Linear(self.inner_dim, context_dim)
|
|
|
|
def forward(
|
|
self,
|
|
x: float["b n d"], # noised input x
|
|
c: float["b n d"] = None, # context c
|
|
mask: bool["b n"] | None = None,
|
|
rope=None, # rotary position embedding for x
|
|
c_rope=None, # rotary position embedding for c
|
|
) -> torch.Tensor:
|
|
if c is not None:
|
|
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
|
|
else:
|
|
return self.processor(self, x, mask=mask, rope=rope)
|
|
|
|
|
|
# Attention processor
|
|
|
|
if is_package_available("flash_attn"):
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
from flash_attn.bert_padding import pad_input, unpad_input
|
|
|
|
|
|
class AttnProcessor:
|
|
def __init__(
|
|
self,
|
|
pe_attn_head: int | None = None, # number of attention head to apply rope, None for all
|
|
attn_backend: str = "torch", # "torch" or "flash_attn"
|
|
attn_mask_enabled: bool = True,
|
|
):
|
|
if attn_backend == "flash_attn":
|
|
assert is_package_available("flash_attn"), "Please install flash-attn first."
|
|
|
|
self.pe_attn_head = pe_attn_head
|
|
self.attn_backend = attn_backend
|
|
self.attn_mask_enabled = attn_mask_enabled
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
x: float["b n d"], # noised input x
|
|
mask: bool["b n"] | None = None,
|
|
rope=None, # rotary position embedding
|
|
) -> torch.FloatTensor:
|
|
batch_size = x.shape[0]
|
|
|
|
# `sample` projections
|
|
query = attn.to_q(x)
|
|
key = attn.to_k(x)
|
|
value = attn.to_v(x)
|
|
|
|
# attention
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# qk norm
|
|
if attn.q_norm is not None:
|
|
query = attn.q_norm(query)
|
|
if attn.k_norm is not None:
|
|
key = attn.k_norm(key)
|
|
|
|
# apply rotary position embedding
|
|
if rope is not None:
|
|
freqs, xpos_scale = rope
|
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
|
|
|
if self.pe_attn_head is not None:
|
|
pn = self.pe_attn_head
|
|
query[:, :pn, :, :] = apply_rotary_pos_emb(query[:, :pn, :, :], freqs, q_xpos_scale)
|
|
key[:, :pn, :, :] = apply_rotary_pos_emb(key[:, :pn, :, :], freqs, k_xpos_scale)
|
|
else:
|
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
|
|
|
if self.attn_backend == "torch":
|
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
|
if self.attn_mask_enabled and mask is not None:
|
|
attn_mask = mask
|
|
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
|
else:
|
|
attn_mask = None
|
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
|
|
elif self.attn_backend == "flash_attn":
|
|
query = query.transpose(1, 2) # [b, h, n, d] -> [b, n, h, d]
|
|
key = key.transpose(1, 2)
|
|
value = value.transpose(1, 2)
|
|
if self.attn_mask_enabled and mask is not None:
|
|
query, indices, q_cu_seqlens, q_max_seqlen_in_batch, _ = unpad_input(query, mask)
|
|
key, _, k_cu_seqlens, k_max_seqlen_in_batch, _ = unpad_input(key, mask)
|
|
value, _, _, _, _ = unpad_input(value, mask)
|
|
x = flash_attn_varlen_func(
|
|
query,
|
|
key,
|
|
value,
|
|
q_cu_seqlens,
|
|
k_cu_seqlens,
|
|
q_max_seqlen_in_batch,
|
|
k_max_seqlen_in_batch,
|
|
)
|
|
x = pad_input(x, indices, batch_size, q_max_seqlen_in_batch)
|
|
x = x.reshape(batch_size, -1, attn.heads * head_dim)
|
|
else:
|
|
x = flash_attn_func(query, key, value, dropout_p=0.0, causal=False)
|
|
x = x.reshape(batch_size, -1, attn.heads * head_dim)
|
|
|
|
x = x.to(query.dtype)
|
|
|
|
# linear proj
|
|
x = attn.to_out[0](x)
|
|
# dropout
|
|
x = attn.to_out[1](x)
|
|
|
|
if mask is not None:
|
|
mask = mask.unsqueeze(-1)
|
|
x = x.masked_fill(~mask, 0.0)
|
|
|
|
return x
|
|
|
|
|
|
# Joint Attention processor for MM-DiT
|
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
|
|
|
|
|
class JointAttnProcessor:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
x: float["b n d"], # noised input x
|
|
c: float["b nt d"] = None, # context c, here text
|
|
mask: bool["b n"] | None = None,
|
|
rope=None, # rotary position embedding for x
|
|
c_rope=None, # rotary position embedding for c
|
|
) -> torch.FloatTensor:
|
|
residual = x
|
|
|
|
batch_size = c.shape[0]
|
|
|
|
# `sample` projections
|
|
query = attn.to_q(x)
|
|
key = attn.to_k(x)
|
|
value = attn.to_v(x)
|
|
|
|
# `context` projections
|
|
c_query = attn.to_q_c(c)
|
|
c_key = attn.to_k_c(c)
|
|
c_value = attn.to_v_c(c)
|
|
|
|
# attention
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
c_query = c_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
c_key = c_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
c_value = c_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# qk norm
|
|
if attn.q_norm is not None:
|
|
query = attn.q_norm(query)
|
|
if attn.k_norm is not None:
|
|
key = attn.k_norm(key)
|
|
if attn.c_q_norm is not None:
|
|
c_query = attn.c_q_norm(c_query)
|
|
if attn.c_k_norm is not None:
|
|
c_key = attn.c_k_norm(c_key)
|
|
|
|
# apply rope for context and noised input independently
|
|
if rope is not None:
|
|
freqs, xpos_scale = rope
|
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
|
if c_rope is not None:
|
|
freqs, xpos_scale = c_rope
|
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
|
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
|
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
|
|
|
# joint attention
|
|
query = torch.cat([query, c_query], dim=2)
|
|
key = torch.cat([key, c_key], dim=2)
|
|
value = torch.cat([value, c_value], dim=2)
|
|
|
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
|
if mask is not None:
|
|
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
|
|
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
|
else:
|
|
attn_mask = None
|
|
|
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
x = x.to(query.dtype)
|
|
|
|
# Split the attention outputs.
|
|
x, c = (
|
|
x[:, : residual.shape[1]],
|
|
x[:, residual.shape[1] :],
|
|
)
|
|
|
|
# linear proj
|
|
x = attn.to_out[0](x)
|
|
# dropout
|
|
x = attn.to_out[1](x)
|
|
if not attn.context_pre_only:
|
|
c = attn.to_out_c(c)
|
|
|
|
if mask is not None:
|
|
mask = mask.unsqueeze(-1)
|
|
x = x.masked_fill(~mask, 0.0)
|
|
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
|
|
|
return x, c
|
|
|
|
|
|
# DiT Block
|
|
|
|
|
|
class DiTBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
heads,
|
|
dim_head,
|
|
ff_mult=4,
|
|
dropout=0.1,
|
|
qk_norm=None,
|
|
pe_attn_head=None,
|
|
attn_backend="torch", # "torch" or "flash_attn"
|
|
attn_mask_enabled=True,
|
|
):
|
|
super().__init__()
|
|
|
|
self.attn_norm = AdaLayerNorm(dim)
|
|
self.attn = Attention(
|
|
processor=AttnProcessor(
|
|
pe_attn_head=pe_attn_head,
|
|
attn_backend=attn_backend,
|
|
attn_mask_enabled=attn_mask_enabled,
|
|
),
|
|
dim=dim,
|
|
heads=heads,
|
|
dim_head=dim_head,
|
|
dropout=dropout,
|
|
qk_norm=qk_norm,
|
|
)
|
|
|
|
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
|
|
|
def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
|
|
# pre-norm & modulation for attention input
|
|
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
|
|
|
# attention
|
|
attn_output = self.attn(x=norm, mask=mask, rope=rope)
|
|
|
|
# process attention output for input x
|
|
x = x + gate_msa.unsqueeze(1) * attn_output
|
|
|
|
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
ff_output = self.ff(norm)
|
|
x = x + gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
return x
|
|
|
|
|
|
# MMDiT Block https://arxiv.org/abs/2403.03206
|
|
|
|
|
|
class MMDiTBlock(nn.Module):
|
|
r"""
|
|
modified from diffusers/src/diffusers/models/attention.py
|
|
|
|
notes.
|
|
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
|
|
_x: noised input related. (right part)
|
|
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
|
"""
|
|
|
|
def __init__(
|
|
self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_dim=None, context_pre_only=False, qk_norm=None
|
|
):
|
|
super().__init__()
|
|
if context_dim is None:
|
|
context_dim = dim
|
|
self.context_pre_only = context_pre_only
|
|
|
|
self.attn_norm_c = AdaLayerNorm_Final(context_dim) if context_pre_only else AdaLayerNorm(context_dim)
|
|
self.attn_norm_x = AdaLayerNorm(dim)
|
|
self.attn = Attention(
|
|
processor=JointAttnProcessor(),
|
|
dim=dim,
|
|
heads=heads,
|
|
dim_head=dim_head,
|
|
dropout=dropout,
|
|
context_dim=context_dim,
|
|
context_pre_only=context_pre_only,
|
|
qk_norm=qk_norm,
|
|
)
|
|
|
|
if not context_pre_only:
|
|
self.ff_norm_c = nn.LayerNorm(context_dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff_c = FeedForward(dim=context_dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
|
else:
|
|
self.ff_norm_c = None
|
|
self.ff_c = None
|
|
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
|
|
|
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
|
|
# pre-norm & modulation for attention input
|
|
if self.context_pre_only:
|
|
norm_c = self.attn_norm_c(c, t)
|
|
else:
|
|
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
|
|
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
|
|
|
|
# attention
|
|
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
|
|
|
|
# process attention output for context c
|
|
if self.context_pre_only:
|
|
c = None
|
|
else: # if not last layer
|
|
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
|
|
|
|
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
|
c_ff_output = self.ff_c(norm_c)
|
|
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
|
|
|
|
# process attention output for input x
|
|
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
|
|
|
|
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
|
|
x_ff_output = self.ff_x(norm_x)
|
|
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
|
|
|
|
return c, x
|
|
|
|
|
|
# time step conditioning embedding
|
|
|
|
|
|
class TimestepEmbedding(nn.Module):
|
|
def __init__(self, dim, freq_embed_dim=256):
|
|
super().__init__()
|
|
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
|
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
|
|
|
def forward(self, timestep: float["b"]):
|
|
time_hidden = self.time_embed(timestep)
|
|
time_hidden = time_hidden.to(timestep.dtype)
|
|
time = self.time_mlp(time_hidden) # b d
|
|
return time
|