mirror of
https://github.com/coding-horror/basic-computer-games.git
synced 2025-12-22 23:26:40 -08:00
Removed spaces from top-level directory names.
Spaces tend to cause annoyances in a Unix-style shell environment. This change fixes that.
This commit is contained in:
319
81_Splat/python/splat.py
Normal file
319
81_Splat/python/splat.py
Normal file
@@ -0,0 +1,319 @@
|
||||
"""
|
||||
SPLAT
|
||||
|
||||
Splat similates a parachute jump in which you try to open your parachute
|
||||
at the last possible moment without going splat! You may select your own
|
||||
terminal velocity or let the computer do it for you. You may also select
|
||||
the acceleration due to gravity or, again, let the computer do it
|
||||
in which case you might wind up on any one of the eight planets (out to
|
||||
Neptune), the moon, or the sun.
|
||||
|
||||
The computer then tells you the height you're jumping from and asks for
|
||||
the seconds of free fall. It then divides your free fall time into eight
|
||||
intervals and gives you progress reports on the way down. The computer
|
||||
also keeps track of all prior jumps and lets you know how you compared
|
||||
with previous successful jumps. If you want to recall information from
|
||||
previous runs, then you should store the array `successful_jumps` on
|
||||
disk and read it before each run.
|
||||
|
||||
John Yegge created this program while at the Oak Ridge Associated
|
||||
Universities.
|
||||
|
||||
Ported in 2021 by Jonas Nockert / @lemonad
|
||||
|
||||
"""
|
||||
from math import sqrt
|
||||
from random import choice, random, uniform
|
||||
|
||||
PAGE_WIDTH = 72
|
||||
|
||||
|
||||
def numeric_input(question, default=0):
|
||||
"""Ask user for a numeric value."""
|
||||
while True:
|
||||
answer = input(f"{question} [{default}]: ").strip() or default
|
||||
try:
|
||||
return float(answer)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
|
||||
def yes_no_input(question, default="YES"):
|
||||
"""Ask user a yes/no question and returns True if yes, otherwise False."""
|
||||
answer = input(f"{question} (YES OR NO) [{default}]: ").strip() or default
|
||||
while answer.lower() not in ["n", "no", "y", "yes"]:
|
||||
answer = input(f"YES OR NO [{default}]: ").strip() or default
|
||||
return answer.lower() in ["y", "yes"]
|
||||
|
||||
|
||||
def get_terminal_velocity():
|
||||
"""Terminal velocity by user or picked by computer."""
|
||||
if yes_no_input("SELECT YOUR OWN TERMINAL VELOCITY", default="NO"):
|
||||
v1 = numeric_input("WHAT TERMINAL VELOCITY (MI/HR)", default=100)
|
||||
else:
|
||||
# Computer picks 0-1000 terminal velocity.
|
||||
v1 = int(1000 * random())
|
||||
print(f"OK. TERMINAL VELOCITY = {v1} MI/HR")
|
||||
|
||||
# Convert miles/h to feet/s.
|
||||
return v1 * (5280 / 3600)
|
||||
|
||||
|
||||
def get_acceleration():
|
||||
"""Acceleration due to gravity by user or picked by computer."""
|
||||
if yes_no_input("WANT TO SELECT ACCELERATION DUE TO GRAVITY", default="NO"):
|
||||
a2 = numeric_input("WHAT ACCELERATION (FT/SEC/SEC)", default=32.16)
|
||||
else:
|
||||
body, a2 = pick_random_celestial_body()
|
||||
print(f"FINE. YOU'RE ON {body}. ACCELERATION={a2} FT/SEC/SEC.")
|
||||
return a2
|
||||
|
||||
|
||||
def get_freefall_time():
|
||||
"""User-guessed freefall time.
|
||||
|
||||
The idea of the game is to pick a freefall time, given initial
|
||||
altitude, terminal velocity and acceleration, so the parachute
|
||||
as close to the ground as possible without going splat.
|
||||
"""
|
||||
t_freefall = 0
|
||||
# A zero or negative freefall time is not handled by the motion
|
||||
# equations during the jump.
|
||||
while t_freefall <= 0:
|
||||
t_freefall = numeric_input("HOW MANY SECONDS", default=10)
|
||||
return t_freefall
|
||||
|
||||
|
||||
def jump():
|
||||
"""Simulate a jump and returns the altitude where the chute opened.
|
||||
|
||||
The idea is to open the chute as late as possible -- but not too late.
|
||||
"""
|
||||
v = 0 # Terminal velocity.
|
||||
a = 0 # Acceleration.
|
||||
initial_altitude = int(9001 * random() + 1000)
|
||||
|
||||
v1 = get_terminal_velocity()
|
||||
# Actual terminal velocity is +/-5% of v1.
|
||||
v = v1 * uniform(0.95, 1.05)
|
||||
|
||||
a2 = get_acceleration()
|
||||
# Actual acceleration is +/-5% of a2.
|
||||
a = a2 * uniform(0.95, 1.05)
|
||||
|
||||
print(
|
||||
"\n"
|
||||
f" ALTITUDE = {initial_altitude} FT\n"
|
||||
f" TERM. VELOCITY = {v1:.2f} FT/SEC +/-5%\n"
|
||||
f" ACCELERATION = {a2:.2f} FT/SEC/SEC +/-5%\n"
|
||||
"SET THE TIMER FOR YOUR FREEFALL."
|
||||
)
|
||||
t_freefall = get_freefall_time()
|
||||
print(
|
||||
"HERE WE GO.\n\n"
|
||||
"TIME (SEC)\tDIST TO FALL (FT)\n"
|
||||
"==========\t================="
|
||||
)
|
||||
|
||||
terminal_velocity_reached = False
|
||||
is_splat = False
|
||||
for i in range(9):
|
||||
# Divide time for freefall into 8 intervals.
|
||||
t = i * (t_freefall / 8)
|
||||
# From the first equation of motion, v = v_0 + a * delta_t, with
|
||||
# initial velocity v_0 = 0, we can get the time when terminal velocity
|
||||
# is reached: delta_t = v / a.
|
||||
if t > v / a:
|
||||
if not terminal_velocity_reached:
|
||||
print(f"TERMINAL VELOCITY REACHED AT T PLUS {v / a:.2f} SECONDS.")
|
||||
terminal_velocity_reached = True
|
||||
# After having reached terminal velocity, the displacement is
|
||||
# composed of two parts:
|
||||
# 1. Displacement up to reaching terminal velocity:
|
||||
# From the third equation of motion, v^2 = v_0^2 + 2 * a * d,
|
||||
# with v_0 = 0, we can get the displacement using
|
||||
# d1 = v^2 / (2 * a).
|
||||
# 2. Displacement beyond having reached terminal velocity:
|
||||
# here, the displacement is just a function of the terminal
|
||||
# velocity and the time passed after having reached terminal
|
||||
# velocity: d2 = v * (t - t_reached_term_vel)
|
||||
d1 = (v ** 2) / (2 * a)
|
||||
d2 = v * (t - (v / a))
|
||||
altitude = initial_altitude - (d1 + d2)
|
||||
if altitude <= 0:
|
||||
# Time taken for an object to fall to the ground given
|
||||
# an initial altitude is composed of two parts after having
|
||||
# reached terminal velocity:
|
||||
# 1. time up to reaching terminal velocity: t1 = v / a
|
||||
# 2. time beyond having reached terminal velocity:
|
||||
# here, the altitude that remains after having reached
|
||||
# terminal velocity can just be divided by the constant
|
||||
# terminal velocity to get the time it takes to reach the
|
||||
# ground: t2 = altitude_remaining / v
|
||||
t1 = v / a
|
||||
t2 = (initial_altitude - d1) / v
|
||||
print_splat(t1 + t2)
|
||||
is_splat = True
|
||||
break
|
||||
else:
|
||||
# 1. Displacement before reaching terminal velocity:
|
||||
# From the second equation of motion,
|
||||
# d = v_0 * t + 0.5 * a * t^2, with v_0 = 0, we can get
|
||||
# the displacement using d1 = a / 2 * t^2
|
||||
d1 = (a / 2) * (t ** 2)
|
||||
altitude = initial_altitude - d1
|
||||
if altitude <= 0:
|
||||
# Time taken for an object to fall to the ground given that
|
||||
# it never reaches terminal velocity can be calculated by
|
||||
# using the second equation of motion:
|
||||
# d = v_0 * t + 0.5 * a * t^2, with v_0 = 0, which
|
||||
# when solved for t becomes
|
||||
# t1 = sqrt(2 * d / a).
|
||||
t1 = sqrt(2 * initial_altitude / a)
|
||||
print_splat(t1)
|
||||
is_splat = True
|
||||
break
|
||||
print(f"{t:.2f}\t\t{altitude:.1f}")
|
||||
|
||||
if not is_splat:
|
||||
print("CHUTE OPEN")
|
||||
return altitude
|
||||
|
||||
|
||||
def pick_random_celestial_body():
|
||||
"""Pick a random planet, the moon, or the sun with associated gravity."""
|
||||
body, gravity = choice(
|
||||
[
|
||||
("MERCURY", 12.2),
|
||||
("VENUS", 28.3),
|
||||
("EARTH", 32.16),
|
||||
("THE MOON", 5.15),
|
||||
("MARS", 12.5),
|
||||
("JUPITER", 85.2),
|
||||
("SATURN", 37.6),
|
||||
("URANUS", 33.8),
|
||||
("NEPTUNE", 39.6),
|
||||
("THE SUN", 896.0),
|
||||
]
|
||||
)
|
||||
return body, gravity
|
||||
|
||||
|
||||
def jump_stats(previous_jumps, chute_altitude):
|
||||
"""Compare altitude when chute opened with previous successful jumps.
|
||||
|
||||
Return the number of previous jumps and the number of times
|
||||
the current jump is better.
|
||||
"""
|
||||
n_previous_jumps = len(previous_jumps)
|
||||
n_better = sum([1 for pj in previous_jumps if chute_altitude < pj])
|
||||
return n_previous_jumps, n_better
|
||||
|
||||
|
||||
def print_splat(time_on_impact):
|
||||
"""Parachute opened too late!"""
|
||||
print(f"{time_on_impact:.2f}\t\tSPLAT")
|
||||
print(
|
||||
choice(
|
||||
[
|
||||
"REQUIESCAT IN PACE.",
|
||||
"MAY THE ANGEL OF HEAVEN LEAD YOU INTO PARADISE.",
|
||||
"REST IN PEACE.",
|
||||
"SON-OF-A-GUN.",
|
||||
"#$%&&%!$",
|
||||
"A KICK IN THE PANTS IS A BOOST IF YOU'RE HEADED RIGHT.",
|
||||
"HMMM. SHOULD HAVE PICKED A SHORTER TIME.",
|
||||
"MUTTER. MUTTER. MUTTER.",
|
||||
"PUSHING UP DAISIES.",
|
||||
"EASY COME, EASY GO.",
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def print_results(n_previous_jumps, n_better):
|
||||
"""Compare current jump to previous successful jumps."""
|
||||
k = n_previous_jumps
|
||||
k1 = n_better
|
||||
n_jumps = k + 1
|
||||
if n_jumps <= 3:
|
||||
order = ["1ST", "2ND", "3RD"]
|
||||
nth = order[n_jumps - 1]
|
||||
print(f"AMAZING!!! NOT BAD FOR YOUR {nth} SUCCESSFUL JUMP!!!")
|
||||
elif k - k1 <= 0.1 * k:
|
||||
print(
|
||||
f"WOW! THAT'S SOME JUMPING. OF THE {k} SUCCESSFUL JUMPS\n"
|
||||
f"BEFORE YOURS, ONLY {k - k1} OPENED THEIR CHUTES LOWER THAN\n"
|
||||
"YOU DID."
|
||||
)
|
||||
elif k - k1 <= 0.25 * k:
|
||||
print(
|
||||
f"PRETTY GOOD! {k} SUCCESSFUL JUMPS PRECEDED YOURS AND ONLY\n"
|
||||
f"{k - k1} OF THEM GOT LOWER THAN YOU DID BEFORE THEIR CHUTES\n"
|
||||
"OPENED."
|
||||
)
|
||||
elif k - k1 <= 0.5 * k:
|
||||
print(
|
||||
f"NOT BAD. THERE HAVE BEEN {k} SUCCESSFUL JUMPS BEFORE YOURS.\n"
|
||||
f"YOU WERE BEATEN OUT BY {k - k1} OF THEM."
|
||||
)
|
||||
elif k - k1 <= 0.75 * k:
|
||||
print(
|
||||
f"CONSERVATIVE, AREN'T YOU? YOU RANKED ONLY {k - k1} IN THE\n"
|
||||
f"{k} SUCCESSFUL JUMPS BEFORE YOURS."
|
||||
)
|
||||
elif k - k1 <= 0.9 * k:
|
||||
print(
|
||||
"HUMPH! DON'T YOU HAVE ANY SPORTING BLOOD? THERE WERE\n"
|
||||
f"{k} SUCCESSFUL JUMPS BEFORE YOURS AND YOU CAME IN {k1} JUMPS\n"
|
||||
"BETTER THAN THE WORST. SHAPE UP!!!"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"HEY! YOU PULLED THE RIP CORD MUCH TOO SOON. {k} SUCCESSFUL\n"
|
||||
f"JUMPS BEFORE YOURS AND YOU CAME IN NUMBER {k - k1}!"
|
||||
" GET WITH IT!"
|
||||
)
|
||||
|
||||
|
||||
def print_centered(msg):
|
||||
"""Print centered text."""
|
||||
spaces = " " * ((PAGE_WIDTH - len(msg)) // 2)
|
||||
print(spaces + msg)
|
||||
|
||||
|
||||
def print_header():
|
||||
print_centered("SPLAT")
|
||||
print_centered("CREATIVE COMPUTING MORRISTOWN, NEW JERSEY")
|
||||
print(
|
||||
"\n\n\n"
|
||||
"WELCOME TO 'SPLAT' -- THE GAME THAT SIMULATES A PARACHUTE\n"
|
||||
"JUMP. TRY TO OPEN YOUR CHUTE AT THE LAST POSSIBLE\n"
|
||||
"MOMENT WITHOUT GOING SPLAT.\n\n"
|
||||
)
|
||||
|
||||
|
||||
#
|
||||
# Main program.
|
||||
#
|
||||
|
||||
print_header()
|
||||
|
||||
successful_jumps = []
|
||||
while True:
|
||||
chute_altitude = jump()
|
||||
if chute_altitude > 0:
|
||||
# We want the statistics on previous jumps (i.e. not including the
|
||||
# current jump.)
|
||||
n_previous_jumps, n_better = jump_stats(successful_jumps, chute_altitude)
|
||||
successful_jumps.append(chute_altitude)
|
||||
print_results(n_previous_jumps, n_better)
|
||||
else:
|
||||
# Splat!
|
||||
print("I'LL GIVE YOU ANOTHER CHANCE.")
|
||||
z = yes_no_input("DO YOU WANT TO PLAY AGAIN")
|
||||
if not z:
|
||||
z = yes_no_input("PLEASE")
|
||||
if not z:
|
||||
print("SSSSSSSSSS.")
|
||||
break
|
||||
Reference in New Issue
Block a user