""" LUNAR Lunar landing simulation Ported by Dave LeCompte """ import collections import math PAGE_WIDTH = 64 COLUMN_WIDTH = 2 SECONDS_WIDTH = 4 MPH_WIDTH = 6 ALT_MI_WIDTH = 6 ALT_FT_WIDTH = 4 MPH_WIDTH = 6 FUEL_WIDTH = 8 BURN_WIDTH = 10 SECONDS_LEFT = 0 SECONDS_RIGHT = SECONDS_LEFT + SECONDS_WIDTH ALT_LEFT = SECONDS_RIGHT + COLUMN_WIDTH ALT_MI_RIGHT = ALT_LEFT + ALT_MI_WIDTH ALT_FT_RIGHT = ALT_MI_RIGHT + COLUMN_WIDTH + ALT_FT_WIDTH MPH_LEFT = ALT_FT_RIGHT + COLUMN_WIDTH MPH_RIGHT = MPH_LEFT + MPH_WIDTH FUEL_LEFT = MPH_RIGHT + COLUMN_WIDTH FUEL_RIGHT = FUEL_LEFT + FUEL_WIDTH BURN_LEFT = FUEL_RIGHT + COLUMN_WIDTH BURN_RIGHT = BURN_LEFT + BURN_WIDTH PhysicalState = collections.namedtuple("PhysicalState", ["velocity", "altitude"]) def print_centered(msg): spaces = " " * ((PAGE_WIDTH - len(msg)) // 2) print(spaces + msg) def print_header(title): print_centered(title) print_centered("CREATIVE COMPUTING MORRISTOWN, NEW JERSEY") print() print() print() def add_rjust(line, s, pos): # adds a new field to a line right justified to end at pos s = str(s) slen = len(s) if len(line) + slen > pos: new_len = pos - slen line = line[:new_len] if len(line) + slen < pos: spaces = " " * (pos - slen - len(line)) line = line + spaces return line + s def add_ljust(line, s, pos): # adds a new field to a line left justified starting at pos s = str(s) slen = len(s) if len(line) > pos: line = line[:pos] if len(line) < pos: spaces = " " * (pos - len(line)) line = line + spaces return line + s def print_instructions(): # Somebody had a bad experience with Xerox. print("THIS IS A COMPUTER SIMULATION OF AN APOLLO LUNAR") print("LANDING CAPSULE.") print() print() print("THE ON-BOARD COMPUTER HAS FAILED (IT WAS MADE BY") print("XEROX) SO YOU HAVE TO LAND THE CAPSULE MANUALLY.") print() def print_intro(): print("SET BURN RATE OF RETRO ROCKETS TO ANY VALUE BETWEEN") print("0 (FREE FALL) AND 200 (MAXIMUM BURN) POUNDS PER SECOND.") print("SET NEW BURN RATE EVERY 10 SECONDS.") print() print("CAPSULE WEIGHT 32,500 LBS; FUEL WEIGHT 16,500 LBS.") print() print() print() print("GOOD LUCK") print() def show_landing(sim_clock, capsule): w = 3600 * capsule.v print( f"ON MOON AT {sim_clock.elapsed_time:.2f} SECONDS - IMPACT VELOCITY {w:.2f} MPH" ) if w < 1.2: print("PERFECT LANDING!") elif w < 10: print("GOOD LANDING (COULD BE BETTER)") elif w <= 60: print("CRAFT DAMAGE... YOU'RE STRANDED HERE UNTIL A RESCUE") print("PARTY ARRIVES. HOPE YOU HAVE ENOUGH OXYGEN!") else: print("SORRY THERE WERE NO SURVIVORS. YOU BLEW IT!") print(f"IN FACT, YOU BLASTED A NEW LUNAR CRATER {w*.227:.2f} FEET DEEP!") end_sim() def show_out_of_fuel(sim_clock, capsule): print(f"FUEL OUT AT {sim_clock.elapsed_time} SECONDS") delta_t = ( -capsule.v + math.sqrt(capsule.v**2 + 2 * capsule.a * capsule.g) ) / capsule.g capsule.v += capsule.g * delta_t sim_clock.advance(delta_t) show_landing(sim_clock, capsule) def format_line_for_report(t, miles, feet, velocity, fuel, burn_rate, is_header): line = add_rjust("", t, SECONDS_RIGHT) line = add_rjust(line, miles, ALT_MI_RIGHT) line = add_rjust(line, feet, ALT_FT_RIGHT) line = add_rjust(line, velocity, MPH_RIGHT) line = add_rjust(line, fuel, FUEL_RIGHT) if is_header: line = add_rjust(line, burn_rate, BURN_RIGHT) else: line = add_ljust(line, burn_rate, BURN_LEFT) return line class Capsule: def __init__( self, altitude=120, velocity=1, mass_with_fuel=33000, mass_without_fuel=16500, g=1e-3, z=1.8, ): self.a = altitude # in miles above the surface self.v = velocity # downward self.m = mass_with_fuel self.n = mass_without_fuel self.g = g self.z = z self.fuel_per_second = 0 def remaining_fuel(self): return self.m - self.n def is_out_of_fuel(self): return self.remaining_fuel() < 1e-3 def update_state(self, sim_clock, delta_t, new_state): sim_clock.advance(delta_t) self.m = self.m - delta_t * self.fuel_per_second self.a = new_state.altitude self.v = new_state.velocity def fuel_time_remaining(self): # extrapolates out how many seconds we have at the current fuel burn rate assert self.fuel_per_second > 0 return self.remaining_fuel() / self.fuel_per_second def predict_motion(self, delta_t): # Perform an Euler's Method numerical integration of the equations of motion. q = delta_t * self.fuel_per_second / self.m # new velocity new_velocity = ( self.v + self.g * delta_t + self.z * (-q - q**2 / 2 - q**3 / 3 - q**4 / 4 - q**5 / 5) ) # new altitude new_altitude = ( self.a - self.g * delta_t**2 / 2 - self.v * delta_t + self.z * delta_t * (q / 2 + q**2 / 6 + q**3 / 12 + q**4 / 20 + q**5 / 30) ) return PhysicalState(altitude=new_altitude, velocity=new_velocity) def make_state_display_string(self, sim_clock): seconds = sim_clock.elapsed_time miles = int(self.a) feet = int(5280 * (self.a - miles)) velocity = int(3600 * self.v) fuel = int(self.remaining_fuel()) burn_rate = " ? " return format_line_for_report( seconds, miles, feet, velocity, fuel, burn_rate, False ) def prompt_for_burn(self, sim_clock): msg = self.make_state_display_string(sim_clock) self.fuel_per_second = float(input(msg)) sim_clock.time_until_next_prompt = 10 class SimulationClock: def __init__(self, elapsed_time, time_until_next_prompt): self.elapsed_time = elapsed_time self.time_until_next_prompt = time_until_next_prompt def time_for_prompt(self): return self.time_until_next_prompt < 1e-3 def advance(self, delta_t): self.elapsed_time += delta_t self.time_until_next_prompt -= delta_t def process_final_tick(delta_t, sim_clock, capsule): # When we extrapolated our position based on our velocity # and delta_t, we overshot the surface. For better # accuracy, we will back up and do shorter time advances. while True: if delta_t < 5e-3: show_landing(sim_clock, capsule) return # line 35 average_vel = ( capsule.v + math.sqrt( capsule.v**2 + 2 * capsule.a * (capsule.g - capsule.z * capsule.fuel_per_second / capsule.m) ) ) / 2 delta_t = capsule.a / average_vel new_state = capsule.predict_motion(delta_t) capsule.update_state(sim_clock, delta_t, new_state) def handle_flyaway(sim_clock, capsule): """ The user has started flying away from the moon. Since this is a lunar LANDING simulation, we wait until the capsule's velocity is positive (downward) before prompting for more input. Returns True if landed, False if simulation should continue. """ while True: w = (1 - capsule.m * capsule.g / (capsule.z * capsule.fuel_per_second)) / 2 delta_t = ( capsule.m * capsule.v / ( capsule.z * capsule.fuel_per_second * math.sqrt(w**2 + capsule.v / capsule.z) ) ) + 0.05 new_state = capsule.predict_motion(delta_t) if new_state.altitude <= 0: # have landed return True capsule.update_state(sim_clock, delta_t, new_state) if (new_state.velocity > 0) or (capsule.v <= 0): # return to normal sim return False def end_sim(): print() print() print() print("TRY AGAIN??") print() print() print() def run_simulation(): print() print( format_line_for_report("SEC", "MI", "FT", "MPH", "LB FUEL", "BURN RATE", True) ) sim_clock = SimulationClock(0, 10) capsule = Capsule() capsule.prompt_for_burn(sim_clock) while True: if capsule.is_out_of_fuel(): show_out_of_fuel(sim_clock, capsule) return if sim_clock.time_for_prompt(): capsule.prompt_for_burn(sim_clock) continue # clock advance is the shorter of the time to the next prompt, # or when we run out of fuel. if capsule.fuel_per_second > 0: delta_t = min( sim_clock.time_until_next_prompt, capsule.fuel_time_remaining() ) else: delta_t = sim_clock.time_until_next_prompt new_state = capsule.predict_motion(delta_t) if new_state.altitude <= 0: process_final_tick(delta_t, sim_clock, capsule) return if capsule.v > 0 and new_state.velocity < 0: # moving away from the moon landed = handle_flyaway(sim_clock, capsule) if landed: process_final_tick(delta_t, sim_clock, capsule) return else: capsule.update_state(sim_clock, delta_t, new_state) def main(): print_header("LUNAR") print_instructions() while True: print_intro() run_simulation() if __name__ == "__main__": main()