mirror of
https://github.com/coding-horror/basic-computer-games.git
synced 2025-12-11 07:10:52 -08:00
636 lines
18 KiB
C#
636 lines
18 KiB
C#
/*********************************************************************************
|
|
* CHECKERS
|
|
* ported from BASIC https://www.atariarchives.org/basicgames/showpage.php?page=41
|
|
*
|
|
* Porting philosophy
|
|
* 1) Adhere to the original as much as possible
|
|
* 2) Attempt to be understandable by Novice progammers
|
|
*
|
|
* There are no classes or Object Oriented design patterns used in this implementation.
|
|
* Everything is written procedurally, using only top-level functions. Hopefully, this
|
|
* will be approachable for someone who wants to learn C# syntax without experience with
|
|
* Object Oriented concepts. Similarly, basic data structures have been chosen over more
|
|
* powerful collection types. Linq/lambda syntax is also excluded.
|
|
*
|
|
* C# Concepts contained in this example:
|
|
* Loops (for, foreach, while, and do)
|
|
* Multidimensional arrays
|
|
* Tuples
|
|
* Nullables
|
|
* IEnumerable (yield return / yield break)
|
|
*
|
|
* The original had multiple implementations of logic, like determining valid jump locations.
|
|
* This has been refactored to reduce unnecessary code duplication.
|
|
*********************************************************************************/
|
|
#region Display functions
|
|
void SkipLines(int count)
|
|
{
|
|
for (int i = 0; i < count; i++)
|
|
{
|
|
Console.WriteLine();
|
|
}
|
|
}
|
|
|
|
void PrintBoard(int[,] state)
|
|
{
|
|
SkipLines(3);
|
|
for (int y = 7; y >= 0; y--)
|
|
{
|
|
for (int x = 0; x < 8; x++)
|
|
{
|
|
switch(state[x,y])
|
|
{
|
|
case -2:
|
|
Console.Write("X*");
|
|
break;
|
|
case -1:
|
|
Console.Write("X ");
|
|
break;
|
|
case 0:
|
|
Console.Write(". ");
|
|
break;
|
|
case 1:
|
|
Console.Write("O ");
|
|
break;
|
|
case 2:
|
|
Console.Write("O*");
|
|
break;
|
|
}
|
|
Console.Write(" ");
|
|
}
|
|
Console.WriteLine();
|
|
}
|
|
}
|
|
|
|
void WriteCenter(string text)
|
|
{
|
|
const int LineLength = 80;
|
|
var spaces = (LineLength - text.Length) / 2;
|
|
Console.WriteLine($"{"".PadLeft(spaces)}{text}");
|
|
}
|
|
|
|
void ComputerWins()
|
|
{
|
|
Console.WriteLine("I WIN.");
|
|
}
|
|
void PlayerWins()
|
|
{
|
|
Console.WriteLine("YOU WIN.");
|
|
}
|
|
|
|
void WriteIntroduction()
|
|
{
|
|
WriteCenter("CHECKERS");
|
|
WriteCenter("CREATIVE COMPUTING MORRISTOWN, NEW JERSEY");
|
|
SkipLines(3);
|
|
Console.WriteLine("THIS IS THE GAME OF CHECKERS. THE COMPUTER IS X,");
|
|
Console.WriteLine("AND YOU ARE O. THE COMPUTER WILL MOVE FIRST.");
|
|
Console.WriteLine("SQUARES ARE REFERRED TO BY A COORDINATE SYSTEM.");
|
|
Console.WriteLine("(0,0) IS THE LOWER LEFT CORNER");
|
|
Console.WriteLine("(0,7) IS THE UPPER LEFT CORNER");
|
|
Console.WriteLine("(7,0) IS THE LOWER RIGHT CORNER");
|
|
Console.WriteLine("(7,7) IS THE UPPER RIGHT CORNER");
|
|
Console.WriteLine("THE COMPUTER WILL TYPE '+TO' WHEN YOU HAVE ANOTHER");
|
|
Console.WriteLine("JUMP. TYPE TWO NEGATIVE NUMBERS IF YOU CANNOT JUMP.");
|
|
SkipLines(3);
|
|
}
|
|
#endregion
|
|
|
|
#region State validation functions
|
|
bool IsPointOutOfBounds(int x)
|
|
{
|
|
return x < 0 || x > 7;
|
|
}
|
|
|
|
bool IsOutOfBounds((int x, int y) position)
|
|
{
|
|
return IsPointOutOfBounds(position.x) || IsPointOutOfBounds(position.y);
|
|
}
|
|
|
|
bool IsJumpMove((int x, int y) from, (int x, int y) to)
|
|
{
|
|
return Math.Abs(from.y - to.y) == 2;
|
|
}
|
|
|
|
bool IsValidPlayerMove(int[,] state, (int x, int y) from, (int x, int y) to)
|
|
{
|
|
if (state[to.x, to.y] != 0)
|
|
{
|
|
return false;
|
|
}
|
|
var deltaX = Math.Abs(to.x - from.x);
|
|
var deltaY = Math.Abs(to.y - from.y);
|
|
if (deltaX != 1 && deltaX != 2)
|
|
{
|
|
return false;
|
|
}
|
|
if (deltaX != deltaY)
|
|
{
|
|
return false;
|
|
}
|
|
if (state[from.x, from.y] == 1 && Math.Sign(to.y - from.y) <= 0)
|
|
{
|
|
// only kings can move downwards
|
|
return false;
|
|
}
|
|
if (deltaX == 2)
|
|
{
|
|
var jump = GetJumpedPiece(from, to);
|
|
if (state[jump.x, jump.y] >= 0)
|
|
{
|
|
// no valid piece to jump
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CheckForComputerWin(int[,] state)
|
|
{
|
|
bool playerAlive = false;
|
|
foreach (var piece in state)
|
|
{
|
|
if (piece > 0)
|
|
{
|
|
playerAlive = true;
|
|
break;
|
|
}
|
|
}
|
|
return !playerAlive;
|
|
}
|
|
|
|
bool CheckForPlayerWin(int[,] state)
|
|
{
|
|
bool computerAlive = false;
|
|
foreach (var piece in state)
|
|
{
|
|
if (piece < 0)
|
|
{
|
|
computerAlive = true;
|
|
break;
|
|
}
|
|
}
|
|
return !computerAlive;
|
|
}
|
|
#endregion
|
|
|
|
#region Board "arithmetic"
|
|
/// <summary>
|
|
/// Get the Coordinates of a jumped piece
|
|
/// </summary>
|
|
(int x, int y) GetJumpedPiece((int x, int y) from, (int x, int y) to)
|
|
{
|
|
var midX = (to.x + from.x) / 2;
|
|
var midY = (to.y + from.y) / 2;
|
|
return (midX, midY);
|
|
}
|
|
/// <summary>
|
|
/// Apply a directional vector "direction" to location "from"
|
|
/// return resulting location
|
|
/// direction will contain: (-1,-1), (-1, 1), ( 1,-1), ( 1, 1)
|
|
/// /// </summary>
|
|
(int x, int y) GetLocation((int x , int y) from, (int x, int y) direction)
|
|
{
|
|
return (x: from.x + direction.x, y: from.y + direction.y);
|
|
}
|
|
#endregion
|
|
|
|
#region State change functions
|
|
/// <summary>
|
|
/// Alter current "state" by moving a piece from "from" to "to"
|
|
/// This method does not verify that the move being made is valid
|
|
/// This method works for both player moves and computer moves
|
|
/// </summary>
|
|
int[,] ApplyMove(int[,] state, (int x, int y) from, (int x, int y) to)
|
|
{
|
|
state[to.x, to.y] = state[from.x, from.y];
|
|
state[from.x, from.y] = 0;
|
|
|
|
if (IsJumpMove(from, to))
|
|
{
|
|
// a jump was made
|
|
// remove the jumped piece from the board
|
|
var jump = GetJumpedPiece(from, to);
|
|
state[jump.x, jump.y] = 0;
|
|
}
|
|
return state;
|
|
}
|
|
/// <summary>
|
|
/// At the end of a turn (either player or computer) check to see if any pieces
|
|
/// reached the final row. If so, change them to kings (crown)
|
|
/// </summary>
|
|
int[,] CrownKingPieces(int[,] state)
|
|
{
|
|
for (int x = 0; x < 8; x++)
|
|
{
|
|
// check the bottom row if computer has a piece in it
|
|
if (state[x, 0] == -1)
|
|
{
|
|
state[x, 0] = -2;
|
|
}
|
|
// check the top row if the player has a piece in it
|
|
if (state[x, 7] == 1)
|
|
{
|
|
state[x, 7] = 2;
|
|
}
|
|
}
|
|
return state;
|
|
}
|
|
#endregion
|
|
|
|
#region Computer Logic
|
|
/// <summary>
|
|
/// Given a current location "from", determine if a move exists in a given vector, "direction"
|
|
/// direction will contain: (-1,-1), (-1, 1), ( 1,-1), ( 1, 1)
|
|
/// return "null" if no move is possible in this direction
|
|
/// </summary>
|
|
(int x, int y)? GetCandidateMove(int[,] state, (int x, int y) from, (int x, int y) direction)
|
|
{
|
|
var to = GetLocation(from, direction);
|
|
if (IsOutOfBounds(to))
|
|
return null;
|
|
if (state[to.x, to.y] > 0)
|
|
{
|
|
// potential jump
|
|
to = GetLocation(to, direction);
|
|
if (IsOutOfBounds(to))
|
|
return null;
|
|
}
|
|
if (state[to.x, to.y] != 0)
|
|
// space already occupied by another piece
|
|
return null;
|
|
|
|
return to;
|
|
}
|
|
/// <summary>
|
|
/// Calculate a rank for a given potential move
|
|
/// The higher the rank value, the better the move is considered to be
|
|
/// </summary>
|
|
int RankMove(int[,] state, (int x, int y) from, (int x, int y) to)
|
|
{
|
|
int rank = 0;
|
|
|
|
if (to.y == 0 && state[from.x, from.y] == -1)
|
|
{
|
|
// getting a king
|
|
rank += 2;
|
|
}
|
|
if (IsJumpMove(from, to))
|
|
{
|
|
// making a jump
|
|
rank += 5;
|
|
}
|
|
if (from.y == 7)
|
|
{
|
|
// leaving home row
|
|
rank -= 2;
|
|
}
|
|
if (to.x == 0 || to.x == 7)
|
|
{
|
|
// move to edge of board
|
|
rank += 1;
|
|
}
|
|
// look to the row in front of the potential destination for
|
|
for (int c = -1; c <=1; c+=2)
|
|
{
|
|
var inFront = GetLocation(to, (c, -1));
|
|
if (IsOutOfBounds(inFront))
|
|
continue;
|
|
if (state[inFront.x, inFront.y] < 0)
|
|
{
|
|
// protected by our piece in front
|
|
rank++;
|
|
continue;
|
|
}
|
|
var inBack = GetLocation(to, (-c, 1));
|
|
if (IsOutOfBounds(inBack))
|
|
{
|
|
continue;
|
|
}
|
|
if ((state[inFront.x, inFront.y] > 0) &&
|
|
(state[inBack.x, inBack.y] == 0) || (inBack == from))
|
|
{
|
|
// the player can jump us
|
|
rank -= 2;
|
|
}
|
|
}
|
|
return rank;
|
|
};
|
|
|
|
/// <summary>
|
|
/// Returns an enumeration of possible moves that can be made by the given piece "from"
|
|
/// If no moves, can be made, the enumeration will be empty
|
|
/// </summary>
|
|
IEnumerable<(int x, int y)> GetPossibleMoves(int[,] state, (int x, int y) from)
|
|
{
|
|
int maxB;
|
|
switch (state[from.x, from.y])
|
|
{
|
|
case -2:
|
|
// kings can go backwards too
|
|
maxB = 1;
|
|
break;
|
|
case -1:
|
|
maxB = -1;
|
|
break;
|
|
default:
|
|
// not one of our pieces
|
|
yield break;
|
|
}
|
|
|
|
for (int a = -1; a <= 1; a += 2)
|
|
{
|
|
// a
|
|
// -1 = left
|
|
// +1 = right
|
|
for (int b = -1; b <= maxB; b += 2)
|
|
{
|
|
// b
|
|
// -1 = forwards
|
|
// +1 = backwards (only kings allowed to make this move)
|
|
var to = GetCandidateMove(state, from, (a, b));
|
|
if (to == null)
|
|
{
|
|
// no valid move in this direction
|
|
continue;
|
|
}
|
|
yield return to.Value;
|
|
}
|
|
}
|
|
}
|
|
/// <summary>
|
|
/// Determine the best move from a list of candidate moves "possibleMoves"
|
|
/// Returns "null" if no move can be made
|
|
/// </summary>
|
|
((int x, int y) from, (int x, int y) to)? GetBestMove(int[,] state, IEnumerable<((int x, int y) from, (int x, int y) to)> possibleMoves)
|
|
{
|
|
int? bestRank = null;
|
|
((int x, int y) from, (int x, int y) to)? bestMove = null;
|
|
|
|
foreach (var move in possibleMoves)
|
|
{
|
|
int rank = RankMove(state, move.from, move.to);
|
|
|
|
if (bestRank == null || rank > bestRank)
|
|
{
|
|
bestRank = rank;
|
|
bestMove = move;
|
|
}
|
|
}
|
|
|
|
return bestMove;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Examine the entire board and record all possible moves
|
|
/// Return the best move found, if one exists
|
|
/// Returns "null" if no move found
|
|
/// </summary>
|
|
((int x, int y) from, (int x, int y) to)? CalculateMove(int[,] state)
|
|
{
|
|
var possibleMoves = new List<((int x, int y) from, (int x, int y) to)>();
|
|
for (int x = 0; x < 8; x++)
|
|
{
|
|
for (int y = 0; y < 8; y++)
|
|
{
|
|
var from = (x, y);
|
|
foreach (var to in GetPossibleMoves(state, from))
|
|
{
|
|
possibleMoves.Add((from, to));
|
|
}
|
|
}
|
|
}
|
|
var bestMove = GetBestMove(state, possibleMoves);
|
|
return bestMove;
|
|
}
|
|
|
|
/// <summary>
|
|
/// The logic behind the Computer's turn
|
|
/// Look for valid moves and possible subsequent moves
|
|
/// </summary>
|
|
(bool moveMade, int[,] state) ComputerTurn(int[,] state)
|
|
{
|
|
// Get best move available
|
|
var move = CalculateMove(state);
|
|
if (move == null)
|
|
{
|
|
// No move can be made
|
|
return (false, state);
|
|
}
|
|
var from = move.Value.from;
|
|
Console.Write($"FROM {from.x} {from.y} ");
|
|
// Continue to make moves until no more valid moves can be made
|
|
while (move != null)
|
|
{
|
|
var to = move.Value.to;
|
|
Console.WriteLine($"TO {to.x} {to.y}");
|
|
state = ApplyMove(state, from, to);
|
|
if (!IsJumpMove(from, to))
|
|
break;
|
|
|
|
// check for double / triple / etc. jump
|
|
var possibleMoves = new List<((int x, int y) from, (int x, int y) to)>();
|
|
from = to;
|
|
foreach (var candidate in GetPossibleMoves(state, from))
|
|
{
|
|
if (IsJumpMove(from, candidate))
|
|
{
|
|
possibleMoves.Add((from, candidate));
|
|
}
|
|
}
|
|
// Get best jump move
|
|
move = GetBestMove(state, possibleMoves);
|
|
}
|
|
// apply crowns to any new Kings
|
|
state = CrownKingPieces(state);
|
|
return (true, state);
|
|
}
|
|
#endregion
|
|
|
|
#region Player Logic
|
|
/// <summary>
|
|
/// Get input from the player in the form "x,y" where x and y are integers
|
|
/// If invalid input is received, return null
|
|
/// If input is valid, return the coordinate of the location
|
|
/// </summary>
|
|
(int x, int y)? GetCoordinate(string prompt)
|
|
{
|
|
Console.Write(prompt + "? ");
|
|
var input = Console.ReadLine();
|
|
// split the string into multiple parts
|
|
var parts = input?.Split(",");
|
|
if (parts?.Length != 2)
|
|
// must be exactly 2 parts
|
|
return null;
|
|
int x;
|
|
if (!int.TryParse(parts[0], out x))
|
|
// first part is not a number
|
|
return null;
|
|
int y;
|
|
if (!int.TryParse(parts[1], out y))
|
|
//second part is not a number
|
|
return null;
|
|
|
|
return (x, y);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the move from the player.
|
|
/// return a tuple of "from" and "to" representing a valid move
|
|
///
|
|
/// </summary>
|
|
((int x, int y) from, (int x,int y) to) GetPlayerMove(int[,] state)
|
|
{
|
|
// The original program has some issues regarding user input
|
|
// 1) There are minimal data sanity checks in the original:
|
|
// a) FROM piece must be owned by player
|
|
// b) TO location must be empty
|
|
// c) the FROM and TO x's must be less than 2 squares away
|
|
// d) the FROM and TO y's must be same distance as x's
|
|
// No checks are made for direction, if a jump is valid, or
|
|
// if the piece even moves.
|
|
// 2) Once a valid FROM is selected, a TO must be selected.
|
|
// If there are no valid TO locations, you are soft-locked
|
|
// This approach is intentionally different from the original
|
|
// but maintains the original intent as much as possible
|
|
// 1) Select a FROM location
|
|
// 2) If FROM is invalid, return to step 1
|
|
// 3) Select a TO location
|
|
// 4) If TO is invalid or the implied move is invalid,
|
|
// return to step 1
|
|
|
|
|
|
// There is still currently no way for the player to indicate that no move can be made
|
|
// This matches the original logic, but is a candidate for a refactor
|
|
|
|
do
|
|
{
|
|
var from = GetCoordinate("FROM");
|
|
if ((from != null)
|
|
&& !IsOutOfBounds(from.Value)
|
|
&& (state[from.Value.x, from.Value.y] > 0))
|
|
{
|
|
// we have a valid "from" location
|
|
var to = GetCoordinate("TO");
|
|
if ((to != null)
|
|
&& !IsOutOfBounds(to.Value)
|
|
&& IsValidPlayerMove(state, from.Value, to.Value))
|
|
{
|
|
// we have a valid "to" location
|
|
return (from.Value, to.Value);
|
|
}
|
|
}
|
|
} while (true);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get a subsequent jump from the player if they can / want to
|
|
/// returns a move ("from", "to") if a player jumps
|
|
/// returns null if a player does not make another move
|
|
/// The player must input negative numbers for the coordinates to indicate
|
|
/// that no more moves are to be made. This matches the original implementation
|
|
/// </summary>
|
|
((int x, int y) from, (int x, int y) to)? GetPlayerSubsequentJump(int[,] state, (int x, int y) from)
|
|
{
|
|
do
|
|
{
|
|
var to = GetCoordinate("+TO");
|
|
if ((to != null)
|
|
&& !IsOutOfBounds(to.Value)
|
|
&& IsValidPlayerMove(state, from, to.Value)
|
|
&& IsJumpMove(from, to.Value))
|
|
{
|
|
// we have a valid "to" location
|
|
return (from, to.Value); ;
|
|
}
|
|
|
|
if (to != null && to.Value.x < 0 && to.Value.y < 0)
|
|
{
|
|
// player has indicated to not make any more moves
|
|
return null;
|
|
}
|
|
}
|
|
while (true);
|
|
}
|
|
|
|
/// <summary>
|
|
/// The logic behind the Player's turn
|
|
/// Get the player input for a move
|
|
/// Get subsequent jumps, if possible
|
|
/// </summary>
|
|
int [,] PlayerTurn(int[,] state)
|
|
{
|
|
var move = GetPlayerMove(state);
|
|
do
|
|
{
|
|
state = ApplyMove(state, move.from, move.to);
|
|
if (!IsJumpMove(move.from, move.to))
|
|
{
|
|
// If player doesn't make a jump move, no further moves are possible
|
|
break;
|
|
}
|
|
var nextMove = GetPlayerSubsequentJump(state, move.to);
|
|
if (nextMove == null)
|
|
{
|
|
// another jump is not made
|
|
break;
|
|
}
|
|
move = nextMove.Value;
|
|
}
|
|
while (true);
|
|
// check to see if any kings need crowning
|
|
state = CrownKingPieces(state);
|
|
return state;
|
|
}
|
|
#endregion
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Main program starts here
|
|
*
|
|
****************************************************************************/
|
|
|
|
WriteIntroduction();
|
|
|
|
// initalize state - empty spots initialize to 0
|
|
// set player pieces to 1, computer pieces to -1
|
|
// turn your head to the right to visualize the board.
|
|
// kings will be represented by -2 (for computer) and 2 (for player)
|
|
int[,] state = new int[8, 8] {
|
|
{ 1, 0, 1, 0, 0, 0,-1, 0 },
|
|
{ 0, 1, 0, 0, 0,-1, 0,-1 },
|
|
{ 1, 0, 1, 0, 0, 0,-1, 0 },
|
|
{ 0, 1, 0, 0, 0,-1, 0,-1 },
|
|
{ 1, 0, 1, 0, 0, 0,-1, 0 },
|
|
{ 0, 1, 0, 0, 0,-1, 0,-1 },
|
|
{ 1, 0, 1, 0, 0, 0,-1, 0 },
|
|
{ 0, 1, 0, 0, 0,-1, 0,-1 },
|
|
};
|
|
|
|
while (true)
|
|
{
|
|
bool moveMade;
|
|
(moveMade, state) = ComputerTurn(state);
|
|
if (!moveMade)
|
|
{
|
|
// In the original program the computer wins if it cannot make a move
|
|
// I believe the player should win in this case, assuming the player can make a move.
|
|
// if neither player can make a move, the game should be draw.
|
|
// I have left it as the original logic for now.
|
|
ComputerWins();
|
|
break;
|
|
}
|
|
PrintBoard(state);
|
|
if (CheckForComputerWin(state))
|
|
{
|
|
ComputerWins();
|
|
break;
|
|
}
|
|
state = PlayerTurn(state);
|
|
if (CheckForPlayerWin(state))
|
|
{
|
|
PlayerWins();
|
|
break;
|
|
}
|
|
}
|