replace tqdm, termcolor, tabulate with rich (#2374)

* logging: use rich handler for logging

* tqdm: remove unneeded redirecting_print_to_tqdm function

* tqdm: introduce `CapaProgressBar` rich `Progress` bar

* tqdm: replace tqdm with rich Progress bar

* tqdm: remove tqdm dependency

* termcolor: replace termcolor and update `scripts/`

* tests: update `test_render.py` to use rich.console.Console

* termcolor: remove termcolor dependency

* capa.render.utils: add `write` & `writeln` methods to subclass `Console`

* update markup util functions to use fmt strings

* tests: update `test_render.py` to use `capa.render.utils.Console`

* replace kwarg `end=""` with `write` and `writeln` methods

* tabulate: replace tabulate with `rich.table`

* tabulate: remove `tabulate` and its dependency `wcwidth`

* logging: handle logging in `capa.main`

* logging: set up logging in `capa.main`

this commit sets up logging in `capa.main` and uses a shared
`log_console` in `capa.helpers` for logging purposes

* changelog: replace packages with rich

* remove entry from pyinstaller and unneeded progress.update call

* update requirements.txt

* scripts: use `capa.helpers.log_console` in `CapaProgressBar`

* logging: configure root logger to use `RichHandler`

* remove unused import `inspect`
This commit is contained in:
Fariss
2024-09-27 09:34:21 +02:00
committed by GitHub
parent 558bf0fbf2
commit 51a4eb46b8
16 changed files with 890 additions and 806 deletions

View File

@@ -42,9 +42,10 @@ import logging
import argparse
import subprocess
import tqdm
import humanize
import tabulate
from rich import box
from rich.table import Table
from rich.console import Console
import capa.main
import capa.perf
@@ -92,51 +93,61 @@ def main(argv=None):
except capa.main.ShouldExitError as e:
return e.status_code
with tqdm.tqdm(total=args.number * args.repeat, leave=False) as pbar:
with capa.helpers.CapaProgressBar(console=capa.helpers.log_console) as progress:
total_iterations = args.number * args.repeat
task = progress.add_task("profiling", total=total_iterations)
def do_iteration():
capa.perf.reset()
capa.capabilities.common.find_capabilities(rules, extractor, disable_progress=True)
pbar.update(1)
progress.advance(task)
samples = timeit.repeat(do_iteration, number=args.number, repeat=args.repeat)
logger.debug("perf: find capabilities: min: %0.2fs", (min(samples) / float(args.number)))
logger.debug("perf: find capabilities: avg: %0.2fs", (sum(samples) / float(args.repeat) / float(args.number)))
logger.debug(
"perf: find capabilities: avg: %0.2fs",
(sum(samples) / float(args.repeat) / float(args.number)),
)
logger.debug("perf: find capabilities: max: %0.2fs", (max(samples) / float(args.number)))
for counter, count in capa.perf.counters.most_common():
logger.debug("perf: counter: %s: %s", counter, count)
print(
tabulate.tabulate(
[(counter, humanize.intcomma(count)) for counter, count in capa.perf.counters.most_common()],
headers=["feature class", "evaluation count"],
tablefmt="github",
)
)
print()
console = Console()
print(
tabulate.tabulate(
[
(
args.label,
"{:,}".format(capa.perf.counters["evaluate.feature"]),
# python documentation indicates that min(samples) should be preferred,
# so lets put that first.
#
# https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
f"{(min(samples) / float(args.number)):.2f}s",
f"{(sum(samples) / float(args.repeat) / float(args.number)):.2f}s",
f"{(max(samples) / float(args.number)):.2f}s",
)
],
headers=["label", "count(evaluations)", "min(time)", "avg(time)", "max(time)"],
tablefmt="github",
)
table1 = Table(box=box.MARKDOWN)
table1.add_column("feature class")
table1.add_column("evaluation count")
for counter, count in capa.perf.counters.most_common():
table1.add_row(counter, humanize.intcomma(count))
console.print(table1)
console.print()
table2 = Table(box=box.MARKDOWN)
table2.add_column("label")
table2.add_column("count(evaluations)", style="magenta")
table2.add_column("min(time)", style="green")
table2.add_column("avg(time)", style="yellow")
table2.add_column("max(time)", style="red")
table2.add_row(
args.label,
# python documentation indicates that min(samples) should be preferred,
# so lets put that first.
#
# https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
"{:,}".format(capa.perf.counters["evaluate.feature"]),
f"{(min(samples) / float(args.number)):.2f}s",
f"{(sum(samples) / float(args.repeat) / float(args.number)):.2f}s",
f"{(max(samples) / float(args.number)):.2f}s",
)
console.print(table2)
return 0