Files
capa/scripts/profile-time.py

155 lines
5.5 KiB
Python

# Copyright (C) 2023 Mandiant, Inc. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at: [package root]/LICENSE.txt
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
"""
Invoke capa multiple times and record profiling informations.
Use the --number and --repeat options to change the number of iterations.
By default, the script will emit a markdown table with a label pulled from git.
Note: you can run this script against pre-generated .frz files to reduce the startup time.
usage:
usage: profile-time.py [--number NUMBER] [--repeat REPEAT] [--label LABEL] sample
Profile capa performance
positional arguments:
sample path to sample to analyze
optional arguments:
--number NUMBER batch size of profile collection
--repeat REPEAT batch count of profile collection
--label LABEL description of the profile collection
example:
$ python profile-time.py ./tests/data/kernel32.dll_.frz --number 1 --repeat 2
| label | count(evaluations) | avg(time) | min(time) | max(time) |
|--------------------------------------|----------------------|-------------|-------------|-------------|
| 18c30e4 main: remove perf debug msgs | 66,561,622 | 132.13s | 125.14s | 139.12s |
^^^ --label or git hash
"""
import sys
import timeit
import logging
import argparse
import subprocess
from pathlib import Path
import tqdm
import tabulate
import capa.main
import capa.perf
import capa.rules
import capa.engine
import capa.helpers
import capa.features
import capa.features.common
import capa.features.freeze
import capa.capabilities.common
logger = logging.getLogger("capa.profile")
def subshell(cmd):
return subprocess.run(cmd, shell=True, capture_output=True, text=True).stdout.strip()
def main(argv=None):
if argv is None:
argv = sys.argv[1:]
label = subshell("git show --pretty=oneline --abbrev-commit | head -n 1").strip()
is_dirty = subshell("git status | grep 'modified: ' | grep -v 'rules' | grep -v 'tests/data'") != ""
if is_dirty:
label += " (dirty)"
parser = argparse.ArgumentParser(description="Profile capa performance")
capa.main.install_common_args(parser, wanted={"format", "os", "sample", "signatures", "rules"})
parser.add_argument("--number", type=int, default=3, help="batch size of profile collection")
parser.add_argument("--repeat", type=int, default=30, help="batch count of profile collection")
parser.add_argument("--label", type=str, default=label, help="description of the profile collection")
args = parser.parse_args(args=argv)
capa.main.handle_common_args(args)
try:
taste = capa.helpers.get_file_taste(Path(args.sample))
except IOError as e:
logger.error("%s", str(e))
return -1
try:
with capa.main.timing("load rules"):
rules = capa.main.get_rules(args.rules)
except IOError as e:
logger.error("%s", str(e))
return -1
try:
sig_paths = capa.main.get_signatures(args.signatures)
except IOError as e:
logger.error("%s", str(e))
return -1
if (args.format == "freeze") or (
args.format == capa.features.common.FORMAT_AUTO and capa.features.freeze.is_freeze(taste)
):
extractor = capa.features.freeze.load(Path(args.sample).read_bytes())
else:
extractor = capa.main.get_extractor(
args.sample, args.format, args.os, capa.main.BACKEND_VIV, sig_paths, should_save_workspace=False
)
with tqdm.tqdm(total=args.number * args.repeat, leave=False) as pbar:
def do_iteration():
capa.perf.reset()
capa.capabilities.common.find_capabilities(rules, extractor, disable_progress=True)
pbar.update(1)
samples = timeit.repeat(do_iteration, number=args.number, repeat=args.repeat)
logger.debug("perf: find capabilities: min: %0.2fs", (min(samples) / float(args.number)))
logger.debug("perf: find capabilities: avg: %0.2fs", (sum(samples) / float(args.repeat) / float(args.number)))
logger.debug("perf: find capabilities: max: %0.2fs", (max(samples) / float(args.number)))
for counter, count in capa.perf.counters.most_common():
logger.debug("perf: counter: %s: %s", counter, count)
print(
tabulate.tabulate(
[
(
args.label,
"{:,}".format(capa.perf.counters["evaluate.feature"]),
# python documentation indicates that min(samples) should be preferred,
# so lets put that first.
#
# https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
f"{(min(samples) / float(args.number)):.2f}s",
f"{(sum(samples) / float(args.repeat) / float(args.number)):.2f}s",
f"{(max(samples) / float(args.number)):.2f}s",
)
],
headers=["label", "count(evaluations)", "min(time)", "avg(time)", "max(time)"],
tablefmt="github",
)
)
return 0
if __name__ == "__main__":
sys.exit(main())