Files
capa/scripts/profile-time.py
Ana Maria Martinez Gomez 3cd97ae9f2 [copyright + license] Fix headers
Replace the header from source code files using the following script:
```Python
for dir_path, dir_names, file_names in os.walk("capa"):
    for file_name in file_names:
        # header are only in `.py` and `.toml` files
        if file_name[-3:] not in (".py", "oml"):
            continue
        file_path = f"{dir_path}/{file_name}"
        f = open(file_path, "rb+")
        content = f.read()
        m = re.search(OLD_HEADER, content)
        if not m:
            continue
        print(f"{file_path}: {m.group('year')}")
        content = content.replace(m.group(0), NEW_HEADER % m.group("year"))
        f.seek(0)
        f.write(content)
```

Some files had the copyright headers inside a `"""` comment and needed
manual changes before applying the script. `hook-vivisect.py` and
`pyinstaller.spec` didn't include the license in the header and also
needed manual changes.

The old header had the confusing sentence `All rights reserved`, which
does not make sense for an open source license. Replace the header by
the default Google header that corrects this issue and keep capa
consistent with other Google projects.

Adapt the linter to work with the new header.

Replace also the copyright text in the `web/public/index.html` file for
consistency.
2025-01-15 08:52:42 -07:00

163 lines
5.6 KiB
Python

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Invoke capa multiple times and record profiling informations.
Use the --number and --repeat options to change the number of iterations.
By default, the script will emit a markdown table with a label pulled from git.
This script requires the additional dependency `humanize`.
usage:
usage: profile-time.py [--number NUMBER] [--repeat REPEAT] [--label LABEL] sample
Profile capa performance
positional arguments:
sample path to sample to analyze
optional arguments:
--number NUMBER batch size of profile collection
--repeat REPEAT batch count of profile collection
--label LABEL description of the profile collection
example:
$ python profile-time.py ./tests/data/kernel32.dll_.frz --number 1 --repeat 2
| label | count(evaluations) | avg(time) | min(time) | max(time) |
|--------------------------------------|----------------------|-------------|-------------|-------------|
| 18c30e4 main: remove perf debug msgs | 66,561,622 | 132.13s | 125.14s | 139.12s |
^^^ --label or git hash
"""
import sys
import timeit
import logging
import argparse
import subprocess
import humanize
from rich import box
from rich.table import Table
from rich.console import Console
import capa.main
import capa.perf
import capa.rules
import capa.engine
import capa.loader
import capa.helpers
import capa.features
import capa.features.common
import capa.features.freeze
import capa.capabilities.common
logger = logging.getLogger("capa.profile")
def subshell(cmd):
return subprocess.run(cmd, shell=True, capture_output=True, text=True).stdout.strip()
def main(argv=None):
if argv is None:
argv = sys.argv[1:]
label = subshell("git show --pretty=oneline --abbrev-commit | head -n 1").strip()
is_dirty = subshell("git status | grep 'modified: ' | grep -v 'rules' | grep -v 'tests/data'") != ""
if is_dirty:
label += " (dirty)"
parser = argparse.ArgumentParser(description="Profile capa performance")
capa.main.install_common_args(parser, wanted={"format", "backend", "os", "input_file", "signatures", "rules"})
parser.add_argument("--number", type=int, default=3, help="batch size of profile collection")
parser.add_argument("--repeat", type=int, default=30, help="batch count of profile collection")
parser.add_argument("--label", type=str, default=label, help="description of the profile collection")
args = parser.parse_args(args=argv)
try:
capa.main.handle_common_args(args)
capa.main.ensure_input_exists_from_cli(args)
input_format = capa.main.get_input_format_from_cli(args)
backend = capa.main.get_backend_from_cli(args, input_format)
with capa.main.timing("load rules"):
rules = capa.main.get_rules_from_cli(args)
extractor = capa.main.get_extractor_from_cli(args, input_format, backend)
except capa.main.ShouldExitError as e:
return e.status_code
with capa.helpers.CapaProgressBar(console=capa.helpers.log_console) as progress:
total_iterations = args.number * args.repeat
task = progress.add_task("profiling", total=total_iterations)
def do_iteration():
capa.perf.reset()
capa.capabilities.common.find_capabilities(rules, extractor, disable_progress=True)
progress.advance(task)
samples = timeit.repeat(do_iteration, number=args.number, repeat=args.repeat)
logger.debug("perf: find capabilities: min: %0.2fs", (min(samples) / float(args.number)))
logger.debug(
"perf: find capabilities: avg: %0.2fs",
(sum(samples) / float(args.repeat) / float(args.number)),
)
logger.debug("perf: find capabilities: max: %0.2fs", (max(samples) / float(args.number)))
for counter, count in capa.perf.counters.most_common():
logger.debug("perf: counter: %s: %s", counter, count)
console = Console()
table1 = Table(box=box.MARKDOWN)
table1.add_column("feature class")
table1.add_column("evaluation count")
for counter, count in capa.perf.counters.most_common():
table1.add_row(counter, humanize.intcomma(count))
console.print(table1)
console.print()
table2 = Table(box=box.MARKDOWN)
table2.add_column("label")
table2.add_column("count(evaluations)", style="magenta")
table2.add_column("min(time)", style="green")
table2.add_column("avg(time)", style="yellow")
table2.add_column("max(time)", style="red")
table2.add_row(
args.label,
# python documentation indicates that min(samples) should be preferred,
# so lets put that first.
#
# https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
"{:,}".format(capa.perf.counters["evaluate.feature"]),
f"{(min(samples) / float(args.number)):.2f}s",
f"{(sum(samples) / float(args.repeat) / float(args.number)):.2f}s",
f"{(max(samples) / float(args.number)):.2f}s",
)
console.print(table2)
return 0
if __name__ == "__main__":
sys.exit(main())