/*
* Copyright 2012 Andrew Ayer
*
* This file is part of git-crypt.
*
* git-crypt is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* git-crypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with git-crypt. If not, see .
*
* Additional permission under GNU GPL version 3 section 7:
*
* If you modify the Program, or any covered work, by linking or
* combining it with the OpenSSL project's OpenSSL library (or a
* modified version of that library), containing parts covered by the
* terms of the OpenSSL or SSLeay licenses, the licensors of the Program
* grant you additional permission to convey the resulting work.
* Corresponding Source for a non-source form of such a combination
* shall include the source code for the parts of OpenSSL used as well
* as that of the covered work.
*/
#include "commands.hpp"
#include "crypto.hpp"
#include "util.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
// Encrypt contents of stdin and write to stdout
void clean (const char* keyfile)
{
keys_t keys;
load_keys(keyfile, &keys);
// Read the entire file
hmac_sha1_state hmac(keys.hmac, HMAC_KEY_LEN); // Calculate the file's SHA1 HMAC as we go
uint64_t file_size = 0; // Keep track of the length, make sure it doesn't get too big
std::string file_contents; // First 8MB or so of the file go here
std::fstream temp_file; // The rest of the file spills into a temporary file on disk
temp_file.exceptions(std::fstream::badbit);
char buffer[1024];
while (std::cin && file_size < MAX_CRYPT_BYTES) {
std::cin.read(buffer, sizeof(buffer));
size_t bytes_read = std::cin.gcount();
hmac.add(reinterpret_cast(buffer), bytes_read);
file_size += bytes_read;
if (file_size <= 8388608) {
file_contents.append(buffer, bytes_read);
} else {
if (!temp_file.is_open()) {
open_tempfile(temp_file, std::fstream::in | std::fstream::out | std::fstream::binary | std::fstream::app);
}
temp_file.write(buffer, bytes_read);
}
}
// Make sure the file isn't so large we'll overflow the counter value (which would doom security)
if (file_size >= MAX_CRYPT_BYTES) {
std::clog << "File too long to encrypt securely\n";
std::exit(1);
}
// We use an HMAC of the file as the encryption nonce (IV) for CTR mode.
// By using a hash of the file we ensure that the encryption is
// deterministic so git doesn't think the file has changed when it really
// hasn't. CTR mode with a synthetic IV is provably semantically secure
// under deterministic CPA as long as the synthetic IV is derived from a
// secure PRF applied to the message. Since HMAC-SHA1 is a secure PRF, this
// encryption scheme is semantically secure under deterministic CPA.
//
// Informally, consider that if a file changes just a tiny bit, the IV will
// be completely different, resulting in a completely different ciphertext
// that leaks no information about the similarities of the plaintexts. Also,
// since we're using the output from a secure hash function plus a counter
// as the input to our block cipher, we should never have a situation where
// two different plaintext blocks get encrypted with the same CTR value. A
// nonce will be reused only if the entire file is the same, which leaks no
// information except that the files are the same.
//
// To prevent an attacker from building a dictionary of hash values and then
// looking up the nonce (which must be stored in the clear to allow for
// decryption), we use an HMAC as opposed to a straight hash.
uint8_t digest[SHA1_LEN];
hmac.get(digest);
// Write a header that...
std::cout.write("\0GITCRYPT\0", 10); // ...identifies this as an encrypted file
std::cout.write(reinterpret_cast(digest), NONCE_LEN); // ...includes the nonce
// Now encrypt the file and write to stdout
aes_ctr_state state(digest, NONCE_LEN);
// First read from the in-memory copy
const uint8_t* file_data = reinterpret_cast(file_contents.data());
size_t file_data_len = file_contents.size();
for (size_t i = 0; i < file_data_len; i += sizeof(buffer)) {
size_t buffer_len = std::min(sizeof(buffer), file_data_len - i);
state.process(&keys.enc, file_data + i, reinterpret_cast(buffer), buffer_len);
std::cout.write(buffer, buffer_len);
}
// Then read from the temporary file if applicable
if (temp_file.is_open()) {
temp_file.seekg(0);
while (temp_file) {
temp_file.read(buffer, sizeof(buffer));
size_t buffer_len = temp_file.gcount();
state.process(&keys.enc, reinterpret_cast(buffer), reinterpret_cast(buffer), buffer_len);
std::cout.write(buffer, buffer_len);
}
}
}
// Decrypt contents of stdin and write to stdout
void smudge (const char* keyfile)
{
keys_t keys;
load_keys(keyfile, &keys);
// Read the header to get the nonce and make sure it's actually encrypted
char header[22];
std::cin.read(header, 22);
if (!std::cin || std::cin.gcount() != 22 || memcmp(header, "\0GITCRYPT\0", 10) != 0) {
std::clog << "File not encrypted\n";
std::exit(1);
}
process_stream(std::cin, std::cout, &keys.enc, reinterpret_cast(header + 10));
}
void diff (const char* keyfile, const char* filename)
{
keys_t keys;
load_keys(keyfile, &keys);
// Open the file
std::ifstream in(filename);
if (!in) {
perror(filename);
std::exit(1);
}
in.exceptions(std::fstream::badbit);
// Read the header to get the nonce and determine if it's actually encrypted
char header[22];
in.read(header, 22);
if (!in || in.gcount() != 22 || memcmp(header, "\0GITCRYPT\0", 10) != 0) {
// File not encrypted - just copy it out to stdout
std::cout.write(header, in.gcount()); // don't forget to include the header which we read!
char buffer[1024];
while (in) {
in.read(buffer, sizeof(buffer));
std::cout.write(buffer, in.gcount());
}
return;
}
process_stream(in, std::cout, &keys.enc, reinterpret_cast(header + 10));
}
void init (const char* argv0, const char* keyfile)
{
if (access(keyfile, R_OK) == -1) {
perror(keyfile);
std::exit(1);
}
// 0. Check to see if HEAD exists. See below why we do this.
bool head_exists = system("git rev-parse HEAD >/dev/null 2>/dev/null") == 0;
// 1. Make sure working directory is clean (ignoring untracked files)
// We do this because we run 'git checkout -f HEAD' later and we don't
// want the user to lose any changes. 'git checkout -f HEAD' doesn't touch
// untracked files so it's safe to ignore those.
int status;
std::stringstream status_output;
status = exec_command("git status -uno --porcelain", status_output);
if (status != 0) {
std::clog << "git status failed - is this a git repository?\n";
std::exit(1);
} else if (status_output.peek() != -1 && head_exists) {
// We only care that the working directory is dirty if HEAD exists.
// If HEAD doesn't exist, we won't be resetting to it (see below) so
// it doesn't matter that the working directory is dirty.
std::clog << "Working directory not clean.\n";
std::clog << "Please commit your changes or 'git stash' them before setting up git-crypt.\n";
std::exit(1);
}
// 2. Determine the path to the top of the repository. We pass this as the argument
// to 'git checkout' below. (Determine the path now so in case it fails we haven't already
// mucked with the git config.)
std::stringstream cdup_output;
if (exec_command("git rev-parse --show-cdup", cdup_output) != 0) {
std::clog << "git rev-parse --show-cdup failed\n";
std::exit(1);
}
// 3. Add config options to git
std::string git_crypt_path(std::strchr(argv0, '/') ? resolve_path(argv0) : argv0);
std::string keyfile_path(resolve_path(keyfile));
// git config filter.git-crypt.smudge "git-crypt smudge /path/to/key"
std::string command("git config filter.git-crypt.smudge ");
command += escape_shell_arg(escape_shell_arg(git_crypt_path) + " smudge " + escape_shell_arg(keyfile_path));
if (system(command.c_str()) != 0) {
std::clog << "git config failed\n";
std::exit(1);
}
// git config filter.git-crypt.clean "git-crypt clean /path/to/key"
command = "git config filter.git-crypt.clean ";
command += escape_shell_arg(escape_shell_arg(git_crypt_path) + " clean " + escape_shell_arg(keyfile_path));
if (system(command.c_str()) != 0) {
std::clog << "git config failed\n";
std::exit(1);
}
// git config diff.git-crypt.textconv "git-crypt diff /path/to/key"
command = "git config diff.git-crypt.textconv ";
command += escape_shell_arg(escape_shell_arg(git_crypt_path) + " diff " + escape_shell_arg(keyfile_path));
if (system(command.c_str()) != 0) {
std::clog << "git config failed\n";
std::exit(1);
}
// 4. Do a force checkout so any files that were previously checked out encrypted
// will now be checked out decrypted.
// If HEAD doesn't exist (perhaps because this repo doesn't have any files yet)
// just skip the checkout.
if (head_exists) {
std::string path_to_top;
std::getline(cdup_output, path_to_top);
command = "git checkout -f HEAD -- ";
if (path_to_top.empty()) {
command += ".";
} else {
command += escape_shell_arg(path_to_top);
}
if (system(command.c_str()) != 0) {
std::clog << "git checkout failed\n";
std::clog << "git-crypt has been set up but existing encrypted files have not been decrypted\n";
std::exit(1);
}
}
}
void keygen (const char* keyfile)
{
if (access(keyfile, F_OK) == 0) {
std::clog << keyfile << ": File already exists - please remove before continuing\n";
std::exit(1);
}
mode_t old_umask = umask(0077); // make sure key file is protected
std::ofstream keyout(keyfile);
if (!keyout) {
perror(keyfile);
std::exit(1);
}
umask(old_umask);
std::clog << "Generating key...\n";
std::clog.flush();
unsigned char buffer[AES_KEY_BITS/8 + HMAC_KEY_LEN];
if (RAND_bytes(buffer, sizeof(buffer)) != 1) {
while (unsigned long code = ERR_get_error()) {
char error_string[120];
ERR_error_string_n(code, error_string, sizeof(error_string));
std::clog << "Error: " << error_string << '\n';
}
std::exit(1);
}
keyout.write(reinterpret_cast(buffer), sizeof(buffer));
}