Files
immich/server/src/services/smart-info.service.ts
2025-04-29 17:44:28 -04:00

133 lines
5.0 KiB
TypeScript

import { Injectable } from '@nestjs/common';
import { SystemConfig } from 'src/config';
import { JOBS_ASSET_PAGINATION_SIZE } from 'src/constants';
import { OnEvent, OnJob } from 'src/decorators';
import { DatabaseLock, ImmichWorker, JobName, JobStatus, QueueName } from 'src/enum';
import { ArgOf } from 'src/repositories/event.repository';
import { BaseService } from 'src/services/base.service';
import { JobItem, JobOf } from 'src/types';
import { getCLIPModelInfo, isSmartSearchEnabled } from 'src/utils/misc';
@Injectable()
export class SmartInfoService extends BaseService {
@OnEvent({ name: 'config.init', workers: [ImmichWorker.MICROSERVICES] })
async onConfigInit({ newConfig }: ArgOf<'config.init'>) {
await this.init(newConfig);
}
@OnEvent({ name: 'config.update', workers: [ImmichWorker.MICROSERVICES], server: true })
async onConfigUpdate({ oldConfig, newConfig }: ArgOf<'config.update'>) {
await this.init(newConfig, oldConfig);
}
@OnEvent({ name: 'config.validate' })
onConfigValidate({ newConfig }: ArgOf<'config.validate'>) {
try {
getCLIPModelInfo(newConfig.machineLearning.clip.modelName);
} catch {
throw new Error(
`Unknown CLIP model: ${newConfig.machineLearning.clip.modelName}. Please check the model name for typos and confirm this is a supported model.`,
);
}
}
private async init(newConfig: SystemConfig, oldConfig?: SystemConfig) {
if (!isSmartSearchEnabled(newConfig.machineLearning)) {
return;
}
await this.databaseRepository.withLock(DatabaseLock.CLIPDimSize, async () => {
const { dimSize } = getCLIPModelInfo(newConfig.machineLearning.clip.modelName);
const dbDimSize = await this.searchRepository.getDimensionSize();
this.logger.verbose(`Current database CLIP dimension size is ${dbDimSize}`);
const modelChange =
oldConfig && oldConfig.machineLearning.clip.modelName !== newConfig.machineLearning.clip.modelName;
const dimSizeChange = dbDimSize !== dimSize;
if (!modelChange && !dimSizeChange) {
return;
}
if (dimSizeChange) {
this.logger.log(
`Dimension size of model ${newConfig.machineLearning.clip.modelName} is ${dimSize}, but database expects ${dbDimSize}.`,
);
this.logger.log(`Updating database CLIP dimension size to ${dimSize}.`);
await this.searchRepository.setDimensionSize(dimSize);
this.logger.log(`Successfully updated database CLIP dimension size from ${dbDimSize} to ${dimSize}.`);
} else {
await this.searchRepository.deleteAllSearchEmbeddings();
}
// TODO: A job to reindex all assets should be scheduled, though user
// confirmation should probably be requested before doing that.
});
}
@OnJob({ name: JobName.QUEUE_SMART_SEARCH, queue: QueueName.SMART_SEARCH })
async handleQueueEncodeClip({ force }: JobOf<JobName.QUEUE_SMART_SEARCH>): Promise<JobStatus> {
const { machineLearning } = await this.getConfig({ withCache: false });
if (!isSmartSearchEnabled(machineLearning)) {
return JobStatus.SKIPPED;
}
if (force) {
const { dimSize } = getCLIPModelInfo(machineLearning.clip.modelName);
// in addition to deleting embeddings, update the dimension size in case it failed earlier
await this.searchRepository.setDimensionSize(dimSize);
}
let queue: JobItem[] = [];
const assets = this.assetJobRepository.streamForEncodeClip(force);
for await (const asset of assets) {
queue.push({ name: JobName.SMART_SEARCH, data: { id: asset.id } });
if (queue.length >= JOBS_ASSET_PAGINATION_SIZE) {
await this.jobRepository.queueAll(queue);
queue = [];
}
}
await this.jobRepository.queueAll(queue);
return JobStatus.SUCCESS;
}
@OnJob({ name: JobName.SMART_SEARCH, queue: QueueName.SMART_SEARCH })
async handleEncodeClip({ id }: JobOf<JobName.SMART_SEARCH>): Promise<JobStatus> {
const { machineLearning } = await this.getConfig({ withCache: true });
if (!isSmartSearchEnabled(machineLearning)) {
return JobStatus.SKIPPED;
}
const asset = await this.assetJobRepository.getForClipEncoding(id);
if (!asset || asset.files.length !== 1) {
return JobStatus.FAILED;
}
if (!asset.isVisible) {
return JobStatus.SKIPPED;
}
const embedding = await this.machineLearningRepository.encodeImage(
machineLearning.urls,
asset.files[0].path,
machineLearning.clip,
);
if (this.databaseRepository.isBusy(DatabaseLock.CLIPDimSize)) {
this.logger.verbose(`Waiting for CLIP dimension size to be updated`);
await this.databaseRepository.wait(DatabaseLock.CLIPDimSize);
}
const newConfig = await this.getConfig({ withCache: true });
if (machineLearning.clip.modelName !== newConfig.machineLearning.clip.modelName) {
// Skip the job if the the model has changed since the embedding was generated.
return JobStatus.SKIPPED;
}
await this.searchRepository.upsert(asset.id, embedding);
return JobStatus.SUCCESS;
}
}