add Rosenpass, the tool

Initial implementation of the Rosenpass tool, implemented by @koraa.
Includes contributions and some lints from @wucke13.

Co-authored-by: wucke13 <wucke13@gmail.com>
This commit is contained in:
Karolin Varner
2023-02-23 20:12:52 +01:00
committed by wucke13
commit 4e72c52ca0
20 changed files with 6152 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
# Rust
/target

1449
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

31
Cargo.toml Normal file
View File

@@ -0,0 +1,31 @@
[package]
name = "rosenpass"
version = "0.1.0"
authors = ["Karolin Varner <karo@cupdev.net>"]
edition = "2021"
license = "MIT OR Apache-2.0"
[[bench]]
name = "handshake"
harness = false
[dependencies]
anyhow = { version = "1.0.52", features = ["backtrace"] }
base64 = "0.13.0"
clap = { version = "3.0.0", features = ["yaml"] }
static_assertions = "1.1.0"
memoffset = "0.6.5"
libsodium-sys-stable = { version = "1.19.26", features = ["use-pkg-config"] }
oqs-sys = { version = "0.7.1", default-features = false, features = ['classic_mceliece', 'kyber'] }
lazy_static = "1.4.0"
thiserror = "1.0.38"
paste = "1.0.11"
log = { version = "0.4.17", optional = true }
env_logger = { version = "0.10.0", optional = true }
[dev-dependencies]
criterion = "0.3.5"
test_bin = "0.4.0"
[features]
default = ["log", "env_logger"]

176
LICENSE-APACHE Normal file
View File

@@ -0,0 +1,176 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

23
LICENSE-MIT Normal file
View File

@@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

82
benches/handshake.rs Normal file
View File

@@ -0,0 +1,82 @@
use anyhow::Result;
use rosenpass::{
pqkem::{CCAKEM, KEM},
protocol::{CcaPk, CcaSk, HandleMsgResult, MsgBuf, PeerPtr, Server, SymKey},
sodium::sodium_init,
};
use criterion::{black_box, criterion_group, criterion_main, Criterion};
fn handle(
tx: &mut Server,
msgb: &mut MsgBuf,
msgl: usize,
rx: &mut Server,
resb: &mut MsgBuf,
) -> Result<(Option<SymKey>, Option<SymKey>)> {
let HandleMsgResult {
exchanged_with: xch,
resp,
} = rx.handle_msg(&msgb[..msgl], &mut **resb)?;
assert!(matches!(xch, None | Some(PeerPtr(0))));
let xch = xch.map(|p| rx.osk(p).unwrap());
let (rxk, txk) = resp
.map(|resl| handle(rx, resb, resl, tx, msgb))
.transpose()?
.unwrap_or((None, None));
assert!(rxk.is_none() || xch.is_none());
Ok((txk, rxk.or(xch)))
}
fn hs(ini: &mut Server, res: &mut Server) -> Result<()> {
let (mut inib, mut resb) = (MsgBuf::zero(), MsgBuf::zero());
let sz = ini.initiate_handshake(PeerPtr(0), &mut *inib)?;
let (kini, kres) = handle(ini, &mut inib, sz, res, &mut resb)?;
assert!(kini.unwrap().secret() == kres.unwrap().secret());
Ok(())
}
fn keygen() -> Result<(CcaSk, CcaPk)> {
let (mut sk, mut pk) = (CcaSk::zero(), CcaPk::zero());
CCAKEM::keygen(sk.secret_mut(), pk.secret_mut())?;
Ok((sk, pk))
}
fn make_server_pair() -> Result<(Server, Server)> {
let psk = SymKey::random();
let ((ska, pka), (skb, pkb)) = (keygen()?, keygen()?);
let (mut a, mut b) = (Server::new(ska, pka.clone()), Server::new(skb, pkb.clone()));
a.add_peer(Some(psk.clone()), pkb)?;
b.add_peer(Some(psk), pka)?;
Ok((a, b))
}
fn criterion_benchmark(c: &mut Criterion) {
sodium_init().unwrap();
let (mut a, mut b) = make_server_pair().unwrap();
c.bench_function("cca_secret_alloc", |bench| {
bench.iter(|| {
CcaSk::zero();
})
});
c.bench_function("cca_public_alloc", |bench| {
bench.iter(|| {
CcaPk::zero();
})
});
c.bench_function("keygen", |bench| {
bench.iter(|| {
keygen().unwrap();
})
});
c.bench_function("handshake", |bench| {
bench.iter(|| {
hs(black_box(&mut a), black_box(&mut b)).unwrap();
})
});
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

333
rp Executable file
View File

@@ -0,0 +1,333 @@
#!/usr/bin/env bash
set -e
# String formatting subsystem
formatting_init() {
endl=$'\n'
}
enquote() {
while (( $# > 1 )); do
printf "%q " "${1}"; shift
done
if (( $# == 1 )); then
printf "%q" "${1}"; shift
fi
}
multiline() {
# shellcheck disable=SC1004
echo "${1} " | awk '
function pm(a, b, l) {
return length(a) > l \
&& length(b) > l \
&& substr(a, 1, l+1) == substr(b, 1, l+1) \
? pm(a, b, l+1) : l;
}
!started && $0 !~ /^[ \t]*$/ {
started=1
match($0, /^[ \t]*/)
prefix=substr($0, 1, RLENGTH)
}
started {
print(substr($0, 1 + pm($0, prefix)));
}
'
}
dbg() {
echo >&2 "$@"
}
# Cleanup subsystem (sigterm)
cleanup_init() {
cleanup_actions=()
trap cleanup_apply exit
}
cleanup_apply() {
local f
for f in "${cleanup_actions[@]}"; do
eval "${f}"
done
}
cleanup() {
cleanup_actions+=("$(multiline "${1}")")
}
# Transactional execution subsystem
frag_init() {
explain=0
frag_transaction=()
frag "
#! /bin/bash
set -e"
}
frag_apply() {
local f
for f in "${frag_transaction[@]}"; do
if (( explain == 1 )); then
dbg "${f}"
fi
eval "${f}"
done
}
frag() {
frag_transaction+=("$(multiline "${1}")")
}
frag_append() {
local len; len="${#frag_transaction[@]}"
frag_transaction=("${frag_transaction[@]:0:len-1}" "${frag_transaction[len-1]}${1}")
}
frag_append_esc() {
frag_append " \\${endl}${1}"
}
# Usage documentation subsystem
usage_init() {
usagestack=("${script}")
}
usage_snap() {
echo "${#usagestack}"
}
usage_restore() {
local n; n="${1}"
dbg REST "${1}"
usagestack=("${usagestack[@]:0:n-2}")
}
usage() {
dbg "Usage: ${usagestack[*]}"
}
fatal() {
dbg "FATAL: $*"
usage
exit 1
}
genkey() {
usagestack+=("PRIVATE_KEYS_DIR")
local skdir
skdir="${1/\//}"; shift || fatal "Required positional argument: PRIVATE_KEYS_DIR"
while (( $# > 0 )); do
local arg; arg="$1"; shift
case "${arg}" in
-h | -help | --help | help) usage; return 0 ;;
*) fatal "Unknown option ${arg}";;
esac
done
if test -e "${skdir}"; then
fatal "PRIVATE_KEYS_DIR \"${skdir}\" already exists"
fi
frag "
umask 077
mkdir -p $(enquote "${skdir}")
wg genkey > $(enquote "${skdir}"/wgsk)
$(enquote "${binary}") keygen \\
private-key $(enquote "${skdir}"/pqsk) \\
public-key $(enquote "${skdir}"/pqpk)"
}
pubkey() {
usagestack+=("PRIVATE_KEYS_DIR" "PUBLIC_KEYS_DIR")
local skdir pkdir
skdir="${1/\//}"; shift || fatal "Required positional argument: PRIVATE_KEYS_DIR"
pkdir="${1/\//}"; shift || fatal "Required positional argument: PUBLIC_KEYS_DIR"
while (( $# > 0 )); do
local arg; arg="$1"; shift
case "${arg}" in
-h | -help | --help | help) usage; exit 0;;
*) fatal "Unknown option ${arg}";;
esac
done
if test -e "${pkdir}"; then
fatal "PUBLIC_KEYS_DIR \"${pkdir}\" already exists"
fi
frag "
mkdir -p $(enquote "${pkdir}")
wg pubkey < $(enquote "${skdir}"/wgsk) > $(enquote "${pkdir}/wgpk")
cp $(enquote "${skdir}"/pqpk) $(enquote "${pkdir}/pqpk")"
}
exchange() {
usagestack+=("PRIVATE_KEYS_DIR" "[dev <device>]" "[listen <ip>:<port>]" "[peer PUBLIC_KEYS_DIR [endpoint <ip>:<port>] [persistent-keepalive <interval>] [allowed-ips <ip1>/<cidr1>[,<ip2>/<cidr2>]...]]...")
local skdir dev lport
dev="${project_name}0"
skdir="${1/\//}"; shift || fatal "Required positional argument: PRIVATE_KEYS_DIR"
while (( $# > 0 )); do
local arg; arg="$1"; shift
case "${arg}" in
dev) dev="${1}"; shift || fatal "dev option requires parameter";;
peer) set -- "peer" "$@"; break;; # Parsed down below
listen)
local listen; listen="${1}";
lip="${listen%:*}";
lport="${listen/*:/}";
if [[ "$lip" = "$lport" ]]; then
lip="[0::0]"
fi
shift;;
-h | -help | --help | help) usage; return 0;;
*) fatal "Unknown option ${arg}";;
esac
done
if (( $# == 0 )); then
fatal "Needs at least one peer specified"
fi
frag "
# Create the Wireguard interface
ip link add dev $(enquote "${dev}") type wireguard || true"
cleanup "
ip link del dev $(enquote "${dev}") || true"
frag "
ip link set dev $(enquote "${dev}") up"
frag "
# Deploy the classic wireguard private key
wg set $(enquote "${dev}") private-key $(enquote "${skdir}/wgsk")"
if test -n "${lport}"; then
frag_append "listen-port $(enquote "$(( lport + 1 ))")"
fi
frag "
# Launch the post quantum wireguard exchange daemon
$(enquote "${binary}") exchange"
if (( verbose == 1 )); then
frag_append "verbose"
fi
frag_append_esc " private-key $(enquote "${skdir}/pqsk")"
frag_append_esc " public-key $(enquote "${skdir}/pqpk")"
if test -n "${lport}"; then
frag_append_esc " listen $(enquote "${lip}:${lport}")"
fi
usagestack+=("peer" "PUBLIC_KEYS_DIR endpoint IP:PORT")
while (( $# > 0 )); do
shift; # Skip "peer" argument
local peerdir ip port keepalive allowedips
peerdir="${1/\//}"; shift || fatal "Required peer argument: PUBLIC_KEYS_DIR"
while (( $# > 0 )); do
local arg; arg="$1"; shift
case "${arg}" in
peer) set -- "peer" "$@"; break;; # Next peer
endpoint) ip="${1%:*}"; port="${1/*:/}"; shift;;
persistent-keepalive) keepalive="${1}"; shift;;
allowed-ips) allowedips="${1}"; shift;;
-h | -help | --help | help) usage; return 0;;
*) fatal "Unknown option ${arg}";;
esac
done
# Public key
frag_append_esc " peer public-key $(enquote "${peerdir}/pqpk")"
# PSK
local pskfile; pskfile="${peerdir}/psk"
if test -f "${pskfile}"; then
frag_append_esc " preshared-key $(enquote "${pskfile}")"
fi
if test -n "${ip}"; then
frag_append_esc " endpoint $(enquote "${ip}:${port}")"
fi
frag_append_esc " wireguard $(enquote "${dev}") $(enquote "$(cat "${peerdir}/wgpk")")"
if test -n "${ip}"; then
frag_append_esc " endpoint $(enquote "${ip}:$(( port + 1 ))")"
fi
if test -n "${keepalive}"; then
frag_append_esc " persistent-keepalive $(enquote "${keepalive}")"
fi
if test -n "${allowedips}"; then
frag_append_esc " allowed-ips $(enquote "${allowedips}")"
fi
done
}
main() {
formatting_init
cleanup_init
usage_init
frag_init
project_name="rosenpass"
scriptdir="$(dirname "${script}")"
verbose=0
binary="$(
find "${scriptdir}"/target/{release,debug}/"${project_name}" -printf "%T@ %p\n" 2>/dev/null \
| sort -nr \
| awk -v fallback="${project_name}" '
NR == 1 { print($2) }
END { if (NR == 0) print(fallback) }'
)"
# Parse command
usagestack+=("[explain]" "[verbose]" "genkey|pubkey|exchange" "[ARGS]...")
local cmd
while (( $# > 0 )); do
local arg; arg="$1"; shift
case "${arg}" in
genkey|pubkey|exchange) cmd="${arg}"; break;;
explain) explain=1;;
verbose) verbose=1;;
-h | -help | --help | help) usage; return 0 ;;
*) fatal "Unknown command ${arg}";;
esac
done
test -n "${cmd}" || fatal "No command supplied"
usagestack=("${script}")
# Execute command
usagestack+=("${cmd}")
"${cmd}" "$@"
usagestack=("${script}")
# Apply transaction
frag_apply
}
script="$0"
main "$@"

358
src/coloring.rs Normal file
View File

@@ -0,0 +1,358 @@
//! This module contains various types for dealing with secrets
//!
//! These types use type level coloring to make accidential leackage of secrets extra hard.
//!
use crate::{
sodium::{rng, zeroize},
util::{cpy, mutating},
};
use lazy_static::lazy_static;
use libsodium_sys as libsodium;
use std::{
collections::HashMap,
convert::TryInto,
fmt,
ops::{Deref, DerefMut},
os::raw::c_void,
ptr::null_mut,
sync::Mutex,
};
// This might become a problem in library usage; it's effectively a memory
// leak which probably isn't a problem right now because most memory will
// be reused…
lazy_static! {
static ref SECRET_CACHE: Mutex<SecretMemoryPool> = Mutex::new(SecretMemoryPool::new());
}
/// Pool that stores secret memory allocations
///
/// Allocation of secret memory is expensive. Thus, this struct provides a
/// pool of secret memory, readily available to yield protected, slices of
/// memory.
///
/// Further information about the protection in place can be found in in the
/// [libsodium documentation](https://libsodium.gitbook.io/doc/memory_management#guarded-heap-allocations)
#[derive(Debug)] // TODO check on Debug derive, is that clever
pub struct SecretMemoryPool {
pool: HashMap<usize, Vec<*mut c_void>>,
}
impl SecretMemoryPool {
/// Create a new [SecretMemoryPool]
#[allow(clippy::new_without_default)]
pub fn new() -> Self {
let pool = HashMap::new();
Self { pool }
}
/// Return secrete back to the pool for future re-use
///
/// This consumes the [Secret], but its memory is re-used.
pub fn release<const N: usize>(&mut self, mut s: Secret<N>) {
unsafe {
self.release_by_ref(&mut s);
}
std::mem::forget(s);
}
/// Return secret back to the pool for future re-use, by slice
///
/// # Safety
///
/// After calling this function on a [Secret], the secret must never be
/// used again for anything.
unsafe fn release_by_ref<const N: usize>(&mut self, s: &mut Secret<N>) {
s.zeroize();
let Secret { ptr: secret } = s;
// don't call Secret::drop, that could cause a double free
self.pool.entry(N).or_default().push(*secret);
}
/// Take protected memory from the pool, allocating new one if no suitable
/// chunk is found in the inventory.
///
/// The secret is guaranteed to be full of nullbytes
///
/// # Safety
///
/// This function contains an unsafe call to [libsodium::sodium_malloc].
/// This call has no known safety invariants, thus nothing can go wrong™.
/// However, just like normal `malloc()` this can return a null ptr. Thus
/// the returned pointer is checked for null; causing the program to panic
/// if it is null.
pub fn take<const N: usize>(&mut self) -> Secret<N> {
let entry = self.pool.entry(N).or_default();
let secret = entry.pop().unwrap_or_else(|| {
let ptr = unsafe { libsodium::sodium_malloc(N) };
assert!(
!ptr.is_null(),
"libsodium::sodium_mallloc() returned a null ptr"
);
ptr
});
let mut s = Secret { ptr: secret };
s.zeroize();
s
}
}
impl Drop for SecretMemoryPool {
/// # Safety
///
/// The drop implementation frees the contained elements using
/// [libsodium::sodium_free]. This is safe as long as every `*mut c_void`
/// contained was initialized with a call to [libsodium::sodium_malloc]
fn drop(&mut self) {
for ptr in self.pool.drain().flat_map(|(_, x)| x.into_iter()) {
unsafe {
libsodium::sodium_free(ptr);
}
}
}
}
/// # Safety
///
/// No safety implications are known, since the `*mut c_void` in
/// is essentially used like a `&mut u8` [SecretMemoryPool].
unsafe impl Send for SecretMemoryPool {}
/// Store for a secret
///
/// Uses memory allocated with [libsodium::sodium_malloc],
/// esentially can do the same things as `[u8; N].as_mut_ptr()`.
pub struct Secret<const N: usize> {
ptr: *mut c_void,
}
impl<const N: usize> Clone for Secret<N> {
fn clone(&self) -> Self {
let mut new = Self::zero();
new.secret_mut().clone_from_slice(self.secret());
new
}
}
impl<const N: usize> Drop for Secret<N> {
fn drop(&mut self) {
self.zeroize();
// the invariant that the [Secret] is not used after the
// `release_by_ref` call is guaranteed, since this is a drop implementation
unsafe { SECRET_CACHE.lock().unwrap().release_by_ref(self) };
self.ptr = null_mut();
}
}
impl<const N: usize> Secret<N> {
pub fn from_slice(slice: &[u8]) -> Self {
let mut new_self = Self::zero();
new_self.secret_mut().copy_from_slice(slice);
new_self
}
/// Returns a new [Secret] that is zero initialized
pub fn zero() -> Self {
// Using [SecretMemoryPool] here because this operation is expensive,
// yet it is used in hot loops
let s = SECRET_CACHE.lock().unwrap().take();
assert_eq!(s.secret(), &[0u8; N]);
s
}
/// Returns a new [Secret] that is randomized
pub fn random() -> Self {
mutating(Self::zero(), |r| r.randomize())
}
/// Sets all data of an existing secret to null bytes
pub fn zeroize(&mut self) {
zeroize(self.secret_mut());
}
/// Sets all data an existing secret to random bytes
pub fn randomize(&mut self) {
rng(self.secret_mut());
}
/// Borrows the data
pub fn secret(&self) -> &[u8; N] {
// - calling `from_raw_parts` is safe, because `ptr` is initalized with
// as `N` byte allocation from the creation of `Secret` onwards. `ptr`
// stays valid over the full lifetime of `Secret`
//
// - calling uwnrap is safe, because we can guarantee that the slice has
// exactly the required size `N` to create an array of `N` elements.
let ptr = self.ptr as *const u8;
let slice = unsafe { std::slice::from_raw_parts(ptr, N) };
slice.try_into().unwrap()
}
/// Borrows the data mutably
pub fn secret_mut(&mut self) -> &mut [u8; N] {
// the same safety argument as for `secret()` holds
let ptr = self.ptr as *mut u8;
let slice = unsafe { std::slice::from_raw_parts_mut(ptr, N) };
slice.try_into().unwrap()
}
}
/// The Debug implementation of [Secret] does not reveal the secret data,
/// instead a placeholder `<SECRET>` is used
impl<const N: usize> fmt::Debug for Secret<N> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.write_str("<SECRET>")
}
}
/// Contains information in the form of a byte array that may be known to the
/// public
// TODO: We should get rid of the Public type; just use a normal value
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct Public<const N: usize> {
pub value: [u8; N],
}
impl<const N: usize> Public<N> {
/// Create a new [Public] from a byte slice
pub fn from_slice(value: &[u8]) -> Self {
mutating(Self::zero(), |r| cpy(value, &mut r.value))
}
/// Create a new [Public] from a byte array
pub fn new(value: [u8; N]) -> Self {
Self { value }
}
/// Create a zero initialized [Public]
pub fn zero() -> Self {
Self { value: [0u8; N] }
}
/// Create a random initialized [Public]
pub fn random() -> Self {
mutating(Self::zero(), |r| r.randomize())
}
/// Randomize all bytes in an existing [Public]
pub fn randomize(&mut self) {
rng(&mut self.value);
}
}
/// Writes the contents of an `&[u8]` as hexadecimal symbols to a [std::fmt::Formatter]
pub fn debug_crypto_array(v: &[u8], fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.write_str("[{}]=")?;
if v.len() > 64 {
for byte in &v[..32] {
std::fmt::LowerHex::fmt(byte, fmt)?;
}
fmt.write_str("")?;
for byte in &v[v.len() - 32..] {
std::fmt::LowerHex::fmt(byte, fmt)?;
}
} else {
for byte in v {
std::fmt::LowerHex::fmt(byte, fmt)?;
}
}
Ok(())
}
impl<const N: usize> fmt::Debug for Public<N> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
debug_crypto_array(&self.value, fmt)
}
}
impl<const N: usize> Deref for Public<N> {
type Target = [u8; N];
fn deref(&self) -> &[u8; N] {
&self.value
}
}
impl<const N: usize> DerefMut for Public<N> {
fn deref_mut(&mut self) -> &mut [u8; N] {
&mut self.value
}
}
#[cfg(test)]
mod test {
use super::*;
/// https://libsodium.gitbook.io/doc/memory_management#guarded-heap-allocations
/// promises us that allocated memory is initialized with this magic byte
const SODIUM_MAGIC_BYTE: u8 = 0xdb;
/// must be called before any interaction with libsodium
fn init() {
unsafe { libsodium_sys::sodium_init() };
}
/// checks that whe can malloc with libsodium
#[test]
fn sodium_malloc() {
init();
const N: usize = 8;
let ptr = unsafe { libsodium_sys::sodium_malloc(N) };
let mem = unsafe { std::slice::from_raw_parts(ptr as *mut u8, N) };
assert_eq!(mem, &[SODIUM_MAGIC_BYTE; N])
}
/// checks that whe can free with libsodium
#[test]
fn sodium_free() {
init();
const N: usize = 8;
let ptr = unsafe { libsodium_sys::sodium_malloc(N) };
unsafe { libsodium_sys::sodium_free(ptr) }
}
/// check that we can alloc using the magic pool
#[test]
fn secret_memory_pool_take() {
init();
const N: usize = 0x100;
let mut pool = SecretMemoryPool::new();
let secret: Secret<N> = pool.take();
assert_eq!(secret.secret(), &[0; N]);
}
/// check that a secrete lives, even if its [SecretMemoryPool] is deleted
#[test]
fn secret_memory_pool_drop() {
init();
const N: usize = 0x100;
let mut pool = SecretMemoryPool::new();
let secret: Secret<N> = pool.take();
std::mem::drop(pool);
assert_eq!(secret.secret(), &[0; N]);
}
/// check that a secrete can be reborn, freshly initialized with zero
#[test]
fn secret_memory_pool_release() {
init();
const N: usize = 1;
let mut pool = SecretMemoryPool::new();
let mut secret: Secret<N> = pool.take();
let old_secret_ptr = secret.ptr;
secret.secret_mut()[0] = 0x13;
pool.release(secret);
// now check that we get the same ptr
let new_secret: Secret<N> = pool.take();
assert_eq!(old_secret_ptr, new_secret.ptr);
// and that the secret was zeroized
assert_eq!(new_secret.secret(), &[0; N]);
}
}

45
src/labeled_prf.rs Normal file
View File

@@ -0,0 +1,45 @@
use {
crate::{prftree::PrfTree, sodium::KEY_SIZE},
anyhow::Result,
};
pub fn protocol() -> Result<PrfTree> {
PrfTree::zero().mix("Rosenpass v1 mceliece460896 Kyber512 ChaChaPoly1305 BLAKE2s".as_bytes())
}
// TODO Use labels that can serve as idents
macro_rules! prflabel {
($base:ident, $name:ident, $($lbl:expr),* ) => {
pub fn $name() -> Result<PrfTree> {
let t = $base()?;
$( let t = t.mix($lbl.as_bytes())?; )*
Ok(t)
}
}
}
prflabel!(protocol, mac, "mac");
prflabel!(protocol, cookie, "cookie");
prflabel!(protocol, peerid, "peer id");
prflabel!(protocol, biscuit_ad, "biscuit additional data");
prflabel!(protocol, ckinit, "chaining key init");
prflabel!(protocol, _ckextract, "chaining key extract");
macro_rules! prflabel_leaf {
($base:ident, $name:ident, $($lbl:expr),* ) => {
pub fn $name() -> Result<[u8; KEY_SIZE]> {
let t = $base()?;
$( let t = t.mix($lbl.as_bytes())?; )*
Ok(t.into_value())
}
}
}
prflabel_leaf!(_ckextract, mix, "mix");
prflabel_leaf!(_ckextract, hs_enc, "handshake encryption");
prflabel_leaf!(_ckextract, ini_enc, "initiator handshake encryption");
prflabel_leaf!(_ckextract, res_enc, "responder handshake encryption");
prflabel!(_ckextract, _user, "user");
prflabel!(_user, _rp, "rosenpass.eu");
prflabel_leaf!(_rp, osk, "wireguard psk");

56
src/lib.rs Normal file
View File

@@ -0,0 +1,56 @@
#[macro_use]
pub mod util;
#[macro_use]
pub mod sodium;
pub mod coloring;
pub mod labeled_prf;
pub mod msgs;
pub mod pqkem;
pub mod prftree;
pub mod protocol;
#[derive(thiserror::Error, Debug)]
pub enum RosenpassError {
#[error("error in OQS")]
Oqs,
#[error("error from external library while calling OQS")]
OqsExternalLib,
#[error("buffer size mismatch, required {required_size} but only found {actual_size}")]
BufferSizeMismatch {
required_size: usize,
actual_size: usize,
},
#[error("invalid message type")]
InvalidMessageType(u8),
}
impl RosenpassError {
/// Helper function to check a buffer size
fn check_buffer_size(required_size: usize, actual_size: usize) -> Result<(), Self> {
if required_size != actual_size {
Err(Self::BufferSizeMismatch {
required_size,
actual_size,
})
} else {
Ok(())
}
}
}
/// Extension trait to attach function calls to foreign types.
trait RosenpassMaybeError {
/// Checks whether something is an error or not
fn to_rg_error(&self) -> Result<(), RosenpassError>;
}
impl RosenpassMaybeError for oqs_sys::common::OQS_STATUS {
fn to_rg_error(&self) -> Result<(), RosenpassError> {
use oqs_sys::common::OQS_STATUS;
match self {
OQS_STATUS::OQS_SUCCESS => Ok(()),
OQS_STATUS::OQS_ERROR => Err(RosenpassError::Oqs),
OQS_STATUS::OQS_EXTERNAL_LIB_ERROR_OPENSSL => Err(RosenpassError::OqsExternalLib),
}
}
}

106
src/lprf.rs Normal file
View File

@@ -0,0 +1,106 @@
//! The rosenpass protocol relies on a special type
//! of hash function for most of its hashing or
//! message authentication needs: an incrementable
//! pseudo random function.
//!
//! This is a generalization of a PRF operating
//! on a sequence of inputs instead of a single input.
//!
//! Like a Dec function the Iprf features efficient
//! incrementability.
//!
//! You can also think of an Iprf as a Dec function with
//! a fixed size output.
//!
//! The idea behind a Iprf is that it can be efficiently
//! constructed from an Dec function as well as a PRF.
//!
//! TODO Base the construction on a proper Dec function
pub struct Iprf([u8; KEY_SIZE]);
pub struct IprfBranch([u8; KEY_SIZE]);
pub struct SecretIprf(Secret<KEY_SIZE>);
pub struct SecretIprfBranch(Secret<KEY_SIZE>);
pub fn prf_into(out: &mut [u8], key: &[u8], data: &[u8]) {
// TODO: The error handling with sodium is a scurge
hmac_into(out, key, data).unwrap()
}
pub fn prf(key: &[u8], data: &[u8]) -> [u8; KEY_SIZE]{
mutating([0u8; KEY_SIZE], |r| prf_into(r, key, data))
}
impl Iprf {
fn zero() -> Self {
Self([0u8; KEY_SIZE])
}
fn dup(self) -> IprfBranch {
IprfBranch(self.0)
}
// TODO: Protocol! Use domain separation to ensure that
fn mix(self, v: &[u8]) -> Self {
Self(prf(&self.0, v))
}
fn mix_secret<const N: usize>(self, v: Secret<N>) -> SecretIprf {
SecretIprf::prf_invoc(&self.0, v.secret())
}
fn into_value(self) -> [u8; KEY_SIZE] {
self.0
}
fn extract(self, v: &[u8], dst: &mut [u8]) {
prf_into(&self.0, v, dst)
}
}
impl IprfBranch {
fn mix(&self, v: &[u8]) -> Iprf {
Iprf(prf(self.0, v))
}
fn mix_secret<const N: usize>(&self, v: Secret<N>) -> SecretIprf {
SecretIprf::prf_incov(self.0, v.secret())
}
}
impl SecretIprf {
fn prf_invoc(k: &[u8], d: &[u8]) -> SecretIprf {
mutating(SecretIprf(Secret::zero()), |r|
prf_into(k, d, r.secret_mut()))
}
fn from_key(k: Secret<N>) -> SecretIprf {
Self(k)
}
fn mix(self, v: &[u8]) -> SecretIprf {
Self::prf_invoc(self.0.secret(), v)
}
fn mix_secret<const N: usize>(self, v: Secret<N>) -> SecretIprf {
Self::prf_invoc(self.0.secret(), v.secret())
}
fn into_secret(self) -> Secret<KEY_SIZE> {
self.0
}
fn into_secret_slice(self, v: &[u8], dst: &[u8]) {
prf_into(self.0.secret(), v, dst)
}
}
impl SecretIprfBranch {
fn mix(&self, v: &[u8]) -> SecretIprf {
SecretIprf::prf_invoc(self.0.secret(), v)
}
fn mix_secret<const N: usize>(&self, v: Secret<N>) -> SecretIprf {
SecretIprf::prf_invoc(self.0.secret(), v.secret())
}
}

646
src/main.rs Normal file
View File

@@ -0,0 +1,646 @@
use anyhow::{bail, ensure, Context, Result};
use log::{error, info};
use rosenpass::{
attempt,
coloring::{Public, Secret},
multimatch,
pqkem::{SKEM, KEM},
protocol::{SPk, SSk, MsgBuf, PeerPtr, Server as CryptoServer, SymKey, Timing},
sodium::sodium_init,
util::{b64_reader, b64_writer, fmt_b64},
};
use std::{
fs::{File, OpenOptions},
io::{ErrorKind, Read, Write},
net::{SocketAddr, ToSocketAddrs, UdpSocket},
path::Path,
process::{exit, Command, Stdio},
time::Duration,
};
/// Open a file writable
pub fn fopen_w<P: AsRef<Path>>(path: P) -> Result<File> {
Ok(OpenOptions::new()
.read(false)
.write(true)
.create(true)
.truncate(true)
.open(path)?)
}
/// Open a file readable
pub fn fopen_r<P: AsRef<Path>>(path: P) -> Result<File> {
Ok(OpenOptions::new()
.read(true)
.write(false)
.create(false)
.truncate(false)
.open(path)?)
}
pub trait ReadExactToEnd {
fn read_exact_to_end(&mut self, buf: &mut [u8]) -> Result<()>;
}
impl<R: Read> ReadExactToEnd for R {
fn read_exact_to_end(&mut self, buf: &mut [u8]) -> Result<()> {
let mut dummy = [0u8; 8];
self.read_exact(buf)?;
ensure!(self.read(&mut dummy)? == 0, "File too long!");
Ok(())
}
}
pub trait LoadValue {
fn load<P: AsRef<Path>>(path: P) -> Result<Self>
where
Self: Sized;
}
pub trait LoadValueB64 {
fn load_b64<P: AsRef<Path>>(path: P) -> Result<Self>
where
Self: Sized;
}
trait StoreValue {
fn store<P: AsRef<Path>>(&self, path: P) -> Result<()>;
}
trait StoreSecret {
unsafe fn store_secret<P: AsRef<Path>>(&self, path: P) -> Result<()>;
}
impl<T: StoreValue> StoreSecret for T {
unsafe fn store_secret<P: AsRef<Path>>(&self, path: P) -> Result<()> {
self.store(path)
}
}
impl<const N: usize> LoadValue for Secret<N> {
fn load<P: AsRef<Path>>(path: P) -> Result<Self> {
let mut v = Self::random();
let p = path.as_ref();
fopen_r(p)?
.read_exact_to_end(v.secret_mut())
.with_context(|| format!("Could not load file {p:?}"))?;
Ok(v)
}
}
impl<const N: usize> LoadValueB64 for Secret<N> {
fn load_b64<P: AsRef<Path>>(path: P) -> Result<Self> {
let mut v = Self::random();
let p = path.as_ref();
// This might leave some fragments of the secret on the stack;
// in practice this is likely not a problem because the stack likely
// will be overwritten by something else soon but this is not exactly
// guaranteed. It would be possible to remedy this, but since the secret
// data will linger in the linux page cache anyways with the current
// implementation, going to great length to erase the secret here is
// not worth it right now.
b64_reader(&mut fopen_r(p)?)
.read_exact(v.secret_mut())
.with_context(|| format!("Could not load base64 file {p:?}"))?;
Ok(v)
}
}
impl<const N: usize> StoreSecret for Secret<N> {
unsafe fn store_secret<P: AsRef<Path>>(&self, path: P) -> Result<()> {
std::fs::write(path, self.secret())?;
Ok(())
}
}
impl<const N: usize> LoadValue for Public<N> {
fn load<P: AsRef<Path>>(path: P) -> Result<Self> {
let mut v = Self::random();
fopen_r(path)?.read_exact_to_end(&mut *v)?;
Ok(v)
}
}
impl<const N: usize> StoreValue for Public<N> {
fn store<P: AsRef<Path>>(&self, path: P) -> Result<()> {
std::fs::write(path, **self)?;
Ok(())
}
}
macro_rules! bail_usage {
($args:expr, $($pt:expr),*) => {{
error!($($pt),*);
cmd_help()?;
exit(1);
}}
}
macro_rules! ensure_usage {
($args:expr, $ck:expr, $($pt:expr),*) => {{
if !$ck {
bail_usage!($args, $($pt),*);
}
}}
}
macro_rules! mandatory_opt {
($args:expr, $val:expr, $name:expr) => {{
ensure_usage!($args, $val.is_some(), "{0} option is mandatory", $name)
}};
}
pub struct ArgsWalker {
pub argv: Vec<String>,
pub off: usize,
}
impl ArgsWalker {
pub fn get(&self) -> Option<&str> {
self.argv.get(self.off).map(|s| s as &str)
}
pub fn prev(&mut self) -> Option<&str> {
assert!(self.off > 0);
self.off -= 1;
self.get()
}
#[allow(clippy::should_implement_trait)]
pub fn next(&mut self) -> Option<&str> {
assert!(self.todo() > 0);
self.off += 1;
self.get()
}
pub fn opt(&mut self, dst: &mut Option<String>) -> Result<()> {
let cmd = &self.argv[self.off - 1];
ensure_usage!(&self, self.todo() > 0, "Option {} takes a value", cmd);
ensure_usage!(&self, dst.is_none(), "Cannot set {} multiple times.", cmd);
*dst = Some(String::from(self.next().unwrap()));
Ok(())
}
fn todo(&self) -> usize {
self.argv.len() - self.off
}
}
#[derive(Default, Debug)]
pub struct WireguardOut {
// impl KeyOutput
dev: String,
pk: String,
extra_params: Vec<String>,
}
#[derive(Default, Debug)]
pub struct AppPeer {
pub outfile: Option<String>,
pub outwg: Option<WireguardOut>,
pub tx_addr: Option<SocketAddr>,
}
#[derive(Debug)]
pub enum Verbosity {
Quiet,
Verbose,
}
/// Holds the state of the application, namely the external IO
#[derive(Debug)]
pub struct AppServer {
pub crypt: CryptoServer,
pub sock: UdpSocket,
pub peers: Vec<AppPeer>,
pub verbosity: Verbosity,
}
/// Index based pointer to a Peer
#[derive(Debug)]
pub struct AppPeerPtr(pub usize);
impl AppPeerPtr {
/// Takes an index based handle and returns the actual peer
pub fn lift(p: PeerPtr) -> Self {
Self(p.0)
}
/// Returns an index based handle to one Peer
pub fn lower(&self) -> PeerPtr {
PeerPtr(self.0)
}
pub fn get_app<'a>(&self, srv: &'a AppServer) -> &'a AppPeer {
&srv.peers[self.0]
}
pub fn get_app_mut<'a>(&self, srv: &'a mut AppServer) -> &'a mut AppPeer {
&mut srv.peers[self.0]
}
}
#[derive(Debug)]
pub enum AppPollResult {
DeleteKey(AppPeerPtr),
SendInitiation(AppPeerPtr),
SendRetransmission(AppPeerPtr),
ReceivedMessage(usize, SocketAddr),
}
#[derive(Debug)]
pub enum KeyOutputReason {
Exchanged,
Stale,
}
/// Catches errors, prints them through the logger, then exits
pub fn main() {
env_logger::init();
match rosenpass_main() {
Ok(_) => {}
Err(e) => {
error!("{e}");
exit(1);
}
}
}
/// Entry point to the whole program
pub fn rosenpass_main() -> Result<()> {
sodium_init()?;
let mut args = ArgsWalker {
argv: std::env::args().collect(),
off: 0, // skipping executable path
};
// Command parsing
match args.next() {
Some("help") | Some("-h") | Some("-help") | Some("--help") => cmd_help()?,
Some("keygen") => cmd_keygen(args)?,
Some("exchange") => cmd_exchange(args)?,
Some(cmd) => bail_usage!(&args, "No such command {}", cmd),
None => bail_usage!(&args, "Expected a command!"),
};
Ok(())
}
/// Print the usage information
pub fn cmd_help() -> Result<()> {
eprint!(include_str!("usage.md"), env!("CARGO_BIN_NAME"));
Ok(())
}
/// Generate a keypair
pub fn cmd_keygen(mut args: ArgsWalker) -> Result<()> {
let mut sf: Option<String> = None;
let mut pf: Option<String> = None;
// Arg parsing
loop {
match args.next() {
Some("private-key") => args.opt(&mut sf)?,
Some("public-key") => args.opt(&mut pf)?,
Some(opt) => bail_usage!(&args, "Unknown option `{}`", opt),
None => break,
};
}
mandatory_opt!(&args, sf, "private-key");
mandatory_opt!(&args, pf, "private-key");
// Cmd
let (mut ssk, mut spk) = (SSk::random(), SPk::random());
unsafe {
SKEM::keygen(ssk.secret_mut(), spk.secret_mut())?;
ssk.store_secret(sf.unwrap())?;
spk.store_secret(pf.unwrap())?;
}
Ok(())
}
pub fn cmd_exchange(mut args: ArgsWalker) -> Result<()> {
// Argument parsing
let mut sf: Option<String> = None;
let mut pf: Option<String> = None;
let mut listen: Option<String> = None;
let mut verbosity = Verbosity::Quiet;
// Global parameters
loop {
match args.next() {
Some("private-key") => args.opt(&mut sf)?,
Some("public-key") => args.opt(&mut pf)?,
Some("listen") => args.opt(&mut listen)?,
Some("verbose") => {
verbosity = Verbosity::Verbose;
}
Some("peer") => {
args.prev();
break;
}
Some(opt) => bail_usage!(&args, "Unknown option `{}`", opt),
None => break,
};
}
mandatory_opt!(&args, sf, "private-key");
mandatory_opt!(&args, pf, "public-key");
let mut srv = std::boxed::Box::<AppServer>::new(AppServer::new(
// sk, pk, addr
SSk::load(&sf.unwrap())?,
SPk::load(&pf.unwrap())?,
listen.as_deref().unwrap_or("[0::0]:0"),
verbosity,
)?);
// Peer parameters
'_parseAllPeers: while args.todo() > 0 {
let mut pf: Option<String> = None;
let mut outfile: Option<String> = None;
let mut outwg: Option<WireguardOut> = None;
let mut endpoint: Option<String> = None;
let mut pskf: Option<String> = None;
args.next(); // skip "peer" starter itself
'parseOnePeer: loop {
match args.next() {
// Done with this peer
Some("peer") => {
args.prev();
break 'parseOnePeer;
}
None => break 'parseOnePeer,
// Options
Some("public-key") => args.opt(&mut pf)?,
Some("endpoint") => args.opt(&mut endpoint)?,
Some("preshared-key") => args.opt(&mut pskf)?,
Some("outfile") => args.opt(&mut outfile)?,
// Wireguard out
Some("wireguard") => {
ensure_usage!(
&args,
outwg.is_none(),
"Cannot set wireguard output for the same peer multiple times."
);
ensure_usage!(&args, args.todo() >= 2, "Option wireguard takes to values");
let dev = String::from(args.next().unwrap());
let pk = String::from(args.next().unwrap());
let wg = outwg.insert(WireguardOut {
dev,
pk,
extra_params: Vec::new(),
});
'_parseWgOutExtra: loop {
match args.next() {
Some("peer") => {
args.prev();
break 'parseOnePeer;
}
None => break 'parseOnePeer,
Some(xtra) => wg.extra_params.push(xtra.to_string()),
};
}
}
// Invalid
Some(opt) => bail_usage!(&args, "Unknown peer option `{}`", opt),
};
}
mandatory_opt!(&args, pf, "private-key");
ensure_usage!(
&args,
outfile.is_some() || outwg.is_some(),
"Either of the outfile or wireguard option is mandatory"
);
let tx_addr = endpoint
.map(|e| {
e.to_socket_addrs()?
.next()
.context("Expected address in endpoint parameter")
})
.transpose()?;
srv.add_peer(
// psk, pk, outfile, outwg, tx_addr
pskf.map(SymKey::load_b64).transpose()?,
SPk::load(&pf.unwrap())?,
outfile,
outwg,
tx_addr,
)?;
}
srv.listen_loop()
}
impl AppServer {
pub fn new<A: ToSocketAddrs>(
sk: SSk,
pk: SPk,
addr: A,
verbosity: Verbosity,
) -> Result<Self> {
Ok(Self {
crypt: CryptoServer::new(sk, pk),
sock: UdpSocket::bind(addr)?,
peers: Vec::new(),
verbosity,
})
}
pub fn verbose(&self) -> bool {
matches!(self.verbosity, Verbosity::Verbose)
}
pub fn add_peer(
&mut self,
psk: Option<SymKey>,
pk: SPk,
outfile: Option<String>,
outwg: Option<WireguardOut>,
tx_addr: Option<SocketAddr>,
) -> Result<AppPeerPtr> {
let PeerPtr(pn) = self.crypt.add_peer(psk, pk)?;
assert!(pn == self.peers.len());
self.peers.push(AppPeer {
outfile,
outwg,
tx_addr,
});
Ok(AppPeerPtr(pn))
}
pub fn listen_loop(&mut self) -> Result<()> {
const INIT_SLEEP: f64 = 0.01;
const MAX_FAILURES: i32 = 10;
let mut failure_cnt = 0;
loop {
let msgs_processed = 0usize;
let err = match self.event_loop() {
Ok(()) => return Ok(()),
Err(e) => e,
};
// This should not happen…
failure_cnt = if msgs_processed > 0 {
0
} else {
failure_cnt + 1
};
let sleep = INIT_SLEEP * 2.0f64.powf(f64::from(failure_cnt - 1));
let tries_left = MAX_FAILURES - (failure_cnt - 1);
error!(
"unexpected error after processing {} messages: {:?} {}",
msgs_processed,
err,
err.backtrace()
);
if tries_left > 0 {
error!("reinitializing networking in {sleep}! {tries_left} tries left.");
std::thread::sleep(self.crypt.timebase.dur(sleep));
continue;
}
bail!("too many network failures");
}
}
pub fn event_loop(&mut self) -> Result<()> {
let (mut rx, mut tx) = (MsgBuf::zero(), MsgBuf::zero());
macro_rules! tx_maybe_with {
($peer:expr, $fn:expr) => {
attempt!({
let p = $peer.get_app(self);
if let Some(addr) = p.tx_addr {
let len = $fn()?;
self.sock.send_to(&tx[..len], addr)?;
}
Ok(())
})
};
}
loop {
use rosenpass::protocol::HandleMsgResult;
use AppPollResult::*;
use KeyOutputReason::*;
match self.poll(&mut *rx)? {
SendInitiation(peer) => tx_maybe_with!(peer, || self
.crypt
.initiate_handshake(peer.lower(), &mut *tx))?,
SendRetransmission(peer) => tx_maybe_with!(peer, || self
.crypt
.retransmit_handshake(peer.lower(), &mut *tx))?,
DeleteKey(peer) => self.output_key(peer, Stale, &SymKey::random())?,
ReceivedMessage(len, addr) => {
multimatch!(self.crypt.handle_msg(&rx[..len], &mut *tx),
Err(ref e) =>
self.verbose().then(||
info!("error processing incoming message from {:?}: {:?} {}", addr, e, e.backtrace())),
Ok(HandleMsgResult { resp: Some(len), .. }) => {
self.sock.send_to(&tx[0..len], addr)?
},
Ok(HandleMsgResult { exchanged_with: Some(p), .. }) => {
let ap = AppPeerPtr::lift(p);
ap.get_app_mut(self).tx_addr = Some(addr);
// TODO: Maybe we should rather call the key "rosenpass output"?
self.output_key(ap, Exchanged, &self.crypt.osk(p)?)?;
}
);
}
};
}
}
pub fn output_key(&self, peer: AppPeerPtr, why: KeyOutputReason, key: &SymKey) -> Result<()> {
let peerid = peer.lower().get(&self.crypt).pidt()?;
let ap = peer.get_app(self);
if self.verbose() {
let msg = match why {
KeyOutputReason::Exchanged => "Exchanged key with peer",
KeyOutputReason::Stale => "Erasing outdated key from peer",
};
info!("{} {}", msg, fmt_b64(&*peerid));
}
if let Some(of) = ap.outfile.as_ref() {
// This might leave some fragments of the secret on the stack;
// in practice this is likely not a problem because the stack likely
// will be overwritten by something else soon but this is not exactly
// guaranteed. It would be possible to remedy this, but since the secret
// data will linger in the linux page cache anyways with the current
// implementation, going to great length to erase the secret here is
// not worth it right now.
b64_writer(fopen_w(of)?).write_all(key.secret())?;
let why = match why {
KeyOutputReason::Exchanged => "exchanged",
KeyOutputReason::Stale => "stale",
};
println!(
"output-key peer {} key-file {} {}",
fmt_b64(&*peerid),
of,
why
);
}
if let Some(owg) = ap.outwg.as_ref() {
let child = Command::new("wg")
.arg("set")
.arg(&owg.dev)
.arg("peer")
.arg(&owg.pk)
.arg("preshared-key")
.arg("/dev/stdin")
.stdin(Stdio::piped())
.args(&owg.extra_params)
.spawn()?;
b64_writer(child.stdin.unwrap()).write_all(key.secret())?;
}
Ok(())
}
pub fn poll(&mut self, rx_buf: &mut [u8]) -> Result<AppPollResult> {
use rosenpass::protocol::PollResult as C;
use AppPollResult as A;
loop {
return Ok(match self.crypt.poll()? {
C::DeleteKey(PeerPtr(no)) => A::DeleteKey(AppPeerPtr(no)),
C::SendInitiation(PeerPtr(no)) => A::SendInitiation(AppPeerPtr(no)),
C::SendRetransmission(PeerPtr(no)) => A::SendRetransmission(AppPeerPtr(no)),
C::Sleep(timeout) => match self.try_recv(rx_buf, timeout)? {
Some((len, addr)) => A::ReceivedMessage(len, addr),
None => continue,
},
});
}
}
pub fn try_recv(&self, buf: &mut [u8], timeout: Timing) -> Result<Option<(usize, SocketAddr)>> {
if timeout == 0.0 {
return Ok(None);
}
self.sock
.set_read_timeout(Some(Duration::from_secs_f64(timeout)))?;
match self.sock.recv_from(buf) {
Ok(x) => Ok(Some(x)),
Err(e) => match e.kind() {
ErrorKind::WouldBlock => Ok(None),
ErrorKind::TimedOut => Ok(None),
_ => Err(anyhow::Error::new(e)),
},
}
}
}

384
src/msgs.rs Normal file
View File

@@ -0,0 +1,384 @@
//! # Messages
//!
//! This module contains data structures that help in the
//! serialization/deserialization (ser/de) of messages. Thats kind of a lie,
//! since no actual ser/de happens. Instead, the structures offer views into
//! mutable byte slices (`&mut [u8]`), allowing to modify the fields of an
//! always serialized instance of the data in question. This is closely related
//! to the concept of lenses in function programming; more on that here:
//! [https://sinusoid.es/misc/lager/lenses.pdf](https://sinusoid.es/misc/lager/lenses.pdf)
//!
//! # Example
//!
//! The following example uses the [`data_lense` macro](crate::data_lense) to create a lense that
//! might be useful when dealing with UDP headers.
//!
//! ```
//! use rosenpass::{data_lense, RosenpassError, msgs::LenseView};
//! # fn main() -> Result<(), RosenpassError> {
//!
//! data_lense! {UdpDatagramHeader :=
//! source_port: 2,
//! dest_port: 2,
//! length: 2,
//! checksum: 2
//! }
//!
//! let mut buf = [0u8; 8];
//!
//! // read-only lense, no check of size:
//! let lense = UdpDatagramHeader(&buf);
//! assert_eq!(lense.checksum(), &[0, 0]);
//!
//! // mutable lense, runtime check of size
//! let mut lense = buf.as_mut().udp_datagram_header()?;
//! lense.source_port_mut().copy_from_slice(&53u16.to_be_bytes()); // some DNS, anyone?
//!
//! // the original buffer is still available
//! assert_eq!(buf, [0, 53, 0, 0, 0, 0, 0, 0]);
//!
//! // read-only lense, runtime check of size
//! let lense = buf.as_ref().udp_datagram_header()?;
//! assert_eq!(lense.source_port(), &[0, 53]);
//! # Ok(())
//! # }
//! ```
use super::RosenpassError;
use crate::{pqkem::*, sodium};
// Macro magic ////////////////////////////////////////////////////////////////
/// A macro to create data lenses. Refer to the [`msgs` mod](crate::msgs) for
/// an example and further elaboration
// TODO implement TryFrom<[u8]> and From<[u8; Self::len()]>
#[macro_export]
macro_rules! data_lense(
// prefix @ offset ; optional meta ; field name : field length, ...
(token_muncher_ref @ $offset:expr ; $( $attr:meta )* ; $field:ident : $len:expr $(, $( $tail:tt )+ )?) => {
::paste::paste!{
#[allow(rustdoc::broken_intra_doc_links)]
$( #[ $attr ] )*
///
#[doc = data_lense!(maybe_docstring_link $len)]
/// bytes long
pub fn $field(&self) -> &__ContainerType::Output {
&self.0[$offset .. $offset + $len]
}
/// The bytes until the
#[doc = data_lense!(maybe_docstring_link Self::$field)]
/// field
pub fn [< until_ $field >](&self) -> &__ContainerType::Output {
&self.0[0 .. $offset]
}
// if the tail exits, consume it as well
$(
data_lense!{token_muncher_ref @ $offset + $len ; $( $tail )+ }
)?
}
};
// prefix @ offset ; optional meta ; field name : field length, ...
(token_muncher_mut @ $offset:expr ; $( $attr:meta )* ; $field:ident : $len:expr $(, $( $tail:tt )+ )?) => {
::paste::paste!{
#[allow(rustdoc::broken_intra_doc_links)]
$( #[ $attr ] )*
///
#[doc = data_lense!(maybe_docstring_link $len)]
/// bytes long
pub fn [< $field _mut >](&mut self) -> &mut __ContainerType::Output {
&mut self.0[$offset .. $offset + $len]
}
// if the tail exits, consume it as well
$(
data_lense!{token_muncher_mut @ $offset + $len ; $( $tail )+ }
)?
}
};
// switch that yields literals unchanged, but creates docstring links to
// constants
// TODO the doc string link doesn't work if $x is taken from a generic,
(maybe_docstring_link $x:literal) => (stringify!($x));
(maybe_docstring_link $x:expr) => (stringify!([$x]));
// struct name < optional generics > := optional doc string field name : field length, ...
($type:ident $( < $( $generic:ident ),+ > )? := $( $( #[ $attr:meta ] )* $field:ident : $len:expr ),+) => (::paste::paste!{
#[allow(rustdoc::broken_intra_doc_links)]
/// A data lense to manipulate byte slices.
///
//// # Fields
///
$(
/// - `
#[doc = stringify!($field)]
/// `:
#[doc = data_lense!(maybe_docstring_link $len)]
/// bytes
)+
pub struct $type<__ContainerType $(, $( $generic ),+ )? > (
__ContainerType,
// The phantom data is required, since all generics declared on a
// type need to be used on the type.
// https://doc.rust-lang.org/stable/error_codes/E0392.html
$( $( ::core::marker::PhantomData<$generic> ),+ )?
);
impl<__ContainerType $(, $( $generic: LenseView ),+ )? > $type<__ContainerType $(, $( $generic ),+ )? >{
$(
/// Size in bytes of the field `
#[doc = !($field)]
/// `
pub const fn [< $field _len >]() -> usize{
$len
}
)+
/// Verify that `len` is sufficiently long to hold [Self]
pub fn check_size(len: usize) -> Result<(), RosenpassError>{
let required_size = $( $len + )+ 0;
let actual_size = len;
if required_size < actual_size {
Err(RosenpassError::BufferSizeMismatch {
required_size,
actual_size,
})
}else{
Ok(())
}
}
}
// read-only accessor functions
impl<'a, __ContainerType $(, $( $generic: LenseView ),+ )?> $type<&'a __ContainerType $(, $( $generic ),+ )?>
where
__ContainerType: std::ops::Index<std::ops::Range<usize>> + ?Sized,
{
data_lense!{token_muncher_ref @ 0 ; $( $( $attr )* ; $field : $len ),+ }
/// View into all bytes belonging to this Lense
pub fn all_bytes(&self) -> &__ContainerType::Output {
&self.0[0..Self::LEN]
}
}
// mutable accessor functions
impl<'a, __ContainerType $(, $( $generic: LenseView ),+ )?> $type<&'a mut __ContainerType $(, $( $generic ),+ )?>
where
__ContainerType: std::ops::IndexMut<std::ops::Range<usize>> + ?Sized,
{
data_lense!{token_muncher_ref @ 0 ; $( $( $attr )* ; $field : $len ),+ }
data_lense!{token_muncher_mut @ 0 ; $( $( $attr )* ; $field : $len ),+ }
/// View into all bytes belonging to this Lense
pub fn all_bytes(&self) -> &__ContainerType::Output {
&self.0[0..Self::LEN]
}
/// View into all bytes belonging to this Lense
pub fn all_bytes_mut(&mut self) -> &mut __ContainerType::Output {
&mut self.0[0..Self::LEN]
}
}
// lense trait, allowing us to know the implementing lenses size
impl<__ContainerType $(, $( $generic: LenseView ),+ )? > LenseView for $type<__ContainerType $(, $( $generic ),+ )? >{
/// Number of bytes required to store this type in binary format
const LEN: usize = $( $len + )+ 0;
}
/// Extension trait to allow checked creation of a lense over
/// some byte slice that contains a
#[doc = data_lense!(maybe_docstring_link $type)]
pub trait [< $type Ext >] {
type __ContainerType;
/// Create a lense to the byte slice
fn [< $type:snake >] $(< $($generic),* >)? (self) -> Result< $type<Self::__ContainerType, $( $($generic),+ )? >, RosenpassError>;
}
impl<'a> [< $type Ext >] for &'a [u8] {
type __ContainerType = &'a [u8];
fn [< $type:snake >] $(< $($generic),* >)? (self) -> Result< $type<Self::__ContainerType, $( $($generic),+ )? >, RosenpassError> {
Ok($type ( self, $( $( ::core::marker::PhantomData::<$generic> ),+ )? ))
}
}
impl<'a> [< $type Ext >] for &'a mut [u8] {
type __ContainerType = &'a mut [u8];
fn [< $type:snake >] $(< $($generic),* >)? (self) -> Result< $type<Self::__ContainerType, $( $($generic),+ )? >, RosenpassError> {
Ok($type ( self, $( $( ::core::marker::PhantomData::<$generic> ),+ )? ))
}
}
});
);
/// Common trait shared by all Lenses
pub trait LenseView {
const LEN: usize;
}
data_lense! { Envelope<M> :=
/// [MsgType] of this message
msg_type: 1,
/// Reserved for future use
reserved: 3,
/// The actual Paylod
payload: M::LEN,
/// Message Authentication Code (mac) over all bytes until (exclusive)
/// `mac` itself
mac: sodium::MAC_SIZE,
/// Currently unused, TODO: do something with this
cookie: sodium::MAC_SIZE
}
data_lense! { InitHello :=
/// Randomly generated connection id
sidi: 4,
/// Kyber 512 Ephemeral Public Key
epki: EKEM::PK_LEN,
/// Classic McEliece Ciphertext
sctr: SKEM::CT_LEN,
/// Encryped: 16 byte hash of McEliece initiator static key
pidic: sodium::AEAD_TAG_LEN + 32,
/// Encrypted TAI64N Time Stamp (against replay attacks)
auth: sodium::AEAD_TAG_LEN
}
data_lense! { RespHello :=
/// Randomly generated connection id
sidr: 4,
/// Copied from InitHello
sidi: 4,
/// Kyber 512 Ephemeral Ciphertext
ecti: EKEM::CT_LEN,
/// Classic McEliece Ciphertext
scti: SKEM::CT_LEN,
/// Empty encrypted message (just an auth tag)
auth: sodium::AEAD_TAG_LEN,
/// Responders handshake state in encrypted form
biscuit: BISCUIT_CT_LEN
}
data_lense! { InitConf :=
/// Copied from InitHello
sidi: 4,
/// Copied from RespHello
sidr: 4,
/// Responders handshake state in encrypted form
biscuit: BISCUIT_CT_LEN,
/// Empty encrypted message (just an auth tag)
auth: sodium::AEAD_TAG_LEN
}
data_lense! { EmptyData :=
/// Copied from RespHello
sid: 4,
/// Nonce
ctr: 8,
/// Empty encrypted message (just an auth tag)
auth: sodium::AEAD_TAG_LEN
}
data_lense! { Biscuit :=
/// H(spki) Ident ifies the initiator
pidi: sodium::KEY_SIZE,
/// The biscuit number (replay protection)
biscuit_no: 12,
/// Chaining key
ck: sodium::KEY_SIZE
}
data_lense! { DataMsg :=
dummy: 4
}
data_lense! { CookieReply :=
dummy: 4
}
// Traits /////////////////////////////////////////////////////////////////////
pub trait WireMsg: std::fmt::Debug {
const MSG_TYPE: MsgType;
const MSG_TYPE_U8: u8 = Self::MSG_TYPE as u8;
const BYTES: usize;
}
// Constants //////////////////////////////////////////////////////////////////
pub const SESSION_ID_LEN: usize = 4;
pub const BISCUIT_ID_LEN: usize = 12;
pub const WIRE_ENVELOPE_LEN: usize = 1 + 3 + 16 + 16; // TODO verify this
/// Size required to fit any message in binary form
pub const MAX_MESSAGE_LEN: usize = 2500; // TODO fix this
/// Recognized message types
#[repr(u8)]
#[derive(Hash, PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
pub enum MsgType {
InitHello = 0x81,
RespHello = 0x82,
InitConf = 0x83,
EmptyData = 0x84,
DataMsg = 0x85,
CookieReply = 0x86,
}
impl TryFrom<u8> for MsgType {
type Error = RosenpassError;
fn try_from(value: u8) -> Result<Self, Self::Error> {
Ok(match value {
0x81 => MsgType::InitHello,
0x82 => MsgType::RespHello,
0x83 => MsgType::InitConf,
0x84 => MsgType::EmptyData,
0x85 => MsgType::DataMsg,
0x86 => MsgType::CookieReply,
_ => return Err(RosenpassError::InvalidMessageType(value)),
})
}
}
/// length in bytes of an unencrypted Biscuit (plain text)
pub const BISCUIT_PT_LEN: usize = Biscuit::<()>::LEN;
/// Length in bytes of an encrypted Biscuit (cipher text)
pub const BISCUIT_CT_LEN: usize = BISCUIT_PT_LEN + sodium::XAEAD_NONCE_LEN + sodium::XAEAD_TAG_LEN;
#[cfg(test)]
mod test_constants {
use crate::{
msgs::{BISCUIT_CT_LEN, BISCUIT_PT_LEN},
sodium,
};
#[test]
fn sodium_keysize() {
assert_eq!(sodium::KEY_SIZE, 32);
}
#[test]
fn biscuit_pt_len() {
assert_eq!(BISCUIT_PT_LEN, 2 * sodium::KEY_SIZE + 12);
}
#[test]
fn biscuit_ct_len() {
assert_eq!(
BISCUIT_CT_LEN,
BISCUIT_PT_LEN + sodium::XAEAD_NONCE_LEN + sodium::XAEAD_TAG_LEN
);
}
}

176
src/pqkem.rs Normal file
View File

@@ -0,0 +1,176 @@
//! This module contains Traits and implementations for Key Encapsulation
//! Mechanisms (KEM). KEMs are the interface provided by almost all post-quantum
//! secure key exchange mechanisms.
//!
//! Conceptually KEMs are akin to public-key encryption, but instead of encrypting
//! arbitrary data, KEMs are limited to the transmission of keys, randomly chosen during
//!
//! encapsulation.
//! The [KEM] Trait describes the basic API offered by a Key Encapsulation
//! Mechanism. Two implementations for it are provided, [SKEM] and [EKEM].
use crate::{RosenpassError, RosenpassMaybeError};
/// Key Encapsulation Mechanism
///
/// The KEM interface defines three operations: Key generation, key encapsulation and key
/// decapsulation.
pub trait KEM {
/// Secrete Key length
const SK_LEN: usize;
/// Public Key length
const PK_LEN: usize;
/// Ciphertext length
const CT_LEN: usize;
/// Shared Secret length
const SHK_LEN: usize;
/// Generate a keypair consisting of secret key (`sk`) and public key (`pk`)
///
/// `keygen() -> sk, pk`
fn keygen(sk: &mut [u8], pk: &mut [u8]) -> Result<(), RosenpassError>;
/// From a public key (`pk`), generate a shared key (`shk`, for local use)
/// and a cipher text (`ct`, to be sent to the owner of the `pk`).
///
/// `encaps(pk) -> shk, ct`
fn encaps(shk: &mut [u8], ct: &mut [u8], pk: &[u8]) -> Result<(), RosenpassError>;
/// From a secret key (`sk`) and a cipher text (`ct`) derive a shared key
/// (`shk`)
///
/// `decaps(sk, ct) -> shk`
fn decaps(shk: &mut [u8], sk: &[u8], ct: &[u8]) -> Result<(), RosenpassError>;
}
/// A KEM that is secure against Chosen Ciphertext Attacks (CCA).
/// In the context of rosenpass this is used for static keys.
/// Uses [Classic McEliece](https://classic.mceliece.org/) 460896 from liboqs.
///
/// Classic McEliece is chosen because of its high security margin and its small
/// ciphertexts. The public keys are humongous, but (being static keys) the are never transmitted over
/// the wire so this is not a big problem.
pub struct SKEM;
/// # Safety
///
/// This Trait impl calls unsafe [oqs_sys] functions, that write to byte
/// slices only identified using raw pointers. It must be ensured that the raw
/// pointers point into byte slices of sufficient length, to avoid UB through
/// overwriting of arbitrary data. This is checked in the following code before
/// the unsafe calls, and an early return with an Err occurs if the byte slice
/// size does not match the required size.
///
/// __Note__: This requirement is stricter than necessary, it would suffice
/// to only check that the buffers are big enough, allowing them to be even
/// bigger. However, from a correctness point of view it does not make sense to
/// allow bigger buffers.
impl KEM for SKEM {
const SK_LEN: usize = oqs_sys::kem::OQS_KEM_classic_mceliece_460896_length_secret_key as usize;
const PK_LEN: usize = oqs_sys::kem::OQS_KEM_classic_mceliece_460896_length_public_key as usize;
const CT_LEN: usize = oqs_sys::kem::OQS_KEM_classic_mceliece_460896_length_ciphertext as usize;
const SHK_LEN: usize =
oqs_sys::kem::OQS_KEM_classic_mceliece_460896_length_shared_secret as usize;
fn keygen(sk: &mut [u8], pk: &mut [u8]) -> Result<(), RosenpassError> {
RosenpassError::check_buffer_size(sk.len(), Self::SK_LEN)?;
RosenpassError::check_buffer_size(pk.len(), Self::PK_LEN)?;
unsafe {
oqs_sys::kem::OQS_KEM_classic_mceliece_460896_keypair(pk.as_mut_ptr(), sk.as_mut_ptr())
.to_rg_error()
}
}
fn encaps(shk: &mut [u8], ct: &mut [u8], pk: &[u8]) -> Result<(), RosenpassError> {
RosenpassError::check_buffer_size(shk.len(), Self::SHK_LEN)?;
RosenpassError::check_buffer_size(ct.len(), Self::CT_LEN)?;
RosenpassError::check_buffer_size(pk.len(), Self::PK_LEN)?;
unsafe {
oqs_sys::kem::OQS_KEM_classic_mceliece_460896_encaps(
ct.as_mut_ptr(),
shk.as_mut_ptr(),
pk.as_ptr(),
)
.to_rg_error()
}
}
fn decaps(shk: &mut [u8], sk: &[u8], ct: &[u8]) -> Result<(), RosenpassError> {
RosenpassError::check_buffer_size(shk.len(), Self::SHK_LEN)?;
RosenpassError::check_buffer_size(sk.len(), Self::SK_LEN)?;
RosenpassError::check_buffer_size(ct.len(), Self::CT_LEN)?;
unsafe {
oqs_sys::kem::OQS_KEM_classic_mceliece_460896_decaps(
shk.as_mut_ptr(),
ct.as_ptr(),
sk.as_ptr(),
)
.to_rg_error()
}
}
}
/// Implements a KEM that is secure against Chosen Plaintext Attacks (CPA).
/// In the context of rosenpass this is used for ephemeral keys.
/// Currently the implementation uses
/// [Kyber 512](https://openquantumsafe.org/liboqs/algorithms/kem/kyber) from liboqs.
///
/// This is being used for ephemeral keys; since these are use-once the first post quantum
/// wireguard paper claimed that CPA security would be sufficient. Nonetheless we choose kyber
/// which provides CCA security since there are no publicly vetted KEMs out there which provide
/// only CPA security.
pub struct EKEM;
/// # Safety
///
/// This Trait impl calls unsafe [oqs_sys] functions, that write to byte
/// slices only identified using raw pointers. It must be ensured that the raw
/// pointers point into byte slices of sufficient length, to avoid UB through
/// overwriting of arbitrary data. This is checked in the following code before
/// the unsafe calls, and an early return with an Err occurs if the byte slice
/// size does not match the required size.
///
/// __Note__: This requirement is stricter than necessary, it would suffice
/// to only check that the buffers are big enough, allowing them to be even
/// bigger. However, from a correctness point of view it does not make sense to
/// allow bigger buffers.
impl KEM for EKEM {
const SK_LEN: usize = oqs_sys::kem::OQS_KEM_kyber_512_length_secret_key as usize;
const PK_LEN: usize = oqs_sys::kem::OQS_KEM_kyber_512_length_public_key as usize;
const CT_LEN: usize = oqs_sys::kem::OQS_KEM_kyber_512_length_ciphertext as usize;
const SHK_LEN: usize = oqs_sys::kem::OQS_KEM_kyber_512_length_shared_secret as usize;
fn keygen(sk: &mut [u8], pk: &mut [u8]) -> Result<(), RosenpassError> {
RosenpassError::check_buffer_size(sk.len(), Self::SK_LEN)?;
RosenpassError::check_buffer_size(pk.len(), Self::PK_LEN)?;
unsafe {
oqs_sys::kem::OQS_KEM_kyber_512_keypair(pk.as_mut_ptr(), sk.as_mut_ptr())
.to_rg_error()
}
}
fn encaps(shk: &mut [u8], ct: &mut [u8], pk: &[u8]) -> Result<(), RosenpassError> {
RosenpassError::check_buffer_size(shk.len(), Self::SHK_LEN)?;
RosenpassError::check_buffer_size(ct.len(), Self::CT_LEN)?;
RosenpassError::check_buffer_size(pk.len(), Self::PK_LEN)?;
unsafe {
oqs_sys::kem::OQS_KEM_kyber_512_encaps(
ct.as_mut_ptr(),
shk.as_mut_ptr(),
pk.as_ptr(),
)
.to_rg_error()
}
}
fn decaps(shk: &mut [u8], sk: &[u8], ct: &[u8]) -> Result<(), RosenpassError> {
RosenpassError::check_buffer_size(shk.len(), Self::SHK_LEN)?;
RosenpassError::check_buffer_size(sk.len(), Self::SK_LEN)?;
RosenpassError::check_buffer_size(ct.len(), Self::CT_LEN)?;
unsafe {
oqs_sys::kem::OQS_KEM_kyber_512_decaps(
shk.as_mut_ptr(),
ct.as_ptr(),
sk.as_ptr(),
)
.to_rg_error()
}
}
}

107
src/prftree.rs Normal file
View File

@@ -0,0 +1,107 @@
use {
crate::{
coloring::Secret,
sodium::{hmac, hmac_into, KEY_SIZE},
},
anyhow::Result,
};
// TODO Use a proper Dec interface
#[derive(Clone, Debug)]
pub struct PrfTree([u8; KEY_SIZE]);
#[derive(Clone, Debug)]
pub struct PrfTreeBranch([u8; KEY_SIZE]);
#[derive(Clone, Debug)]
pub struct SecretPrfTree(Secret<KEY_SIZE>);
#[derive(Clone, Debug)]
pub struct SecretPrfTreeBranch(Secret<KEY_SIZE>);
impl PrfTree {
pub fn zero() -> Self {
Self([0u8; KEY_SIZE])
}
pub fn dup(self) -> PrfTreeBranch {
PrfTreeBranch(self.0)
}
pub fn into_secret_prf_tree(self) -> SecretPrfTree {
SecretPrfTree(Secret::from_slice(&self.0))
}
// TODO: Protocol! Use domain separation to ensure that
pub fn mix(self, v: &[u8]) -> Result<Self> {
Ok(Self(hmac(&self.0, v)?))
}
pub fn mix_secret<const N: usize>(self, v: Secret<N>) -> Result<SecretPrfTree> {
SecretPrfTree::prf_invoc(&self.0, v.secret())
}
pub fn into_value(self) -> [u8; KEY_SIZE] {
self.0
}
}
impl PrfTreeBranch {
pub fn mix(&self, v: &[u8]) -> Result<PrfTree> {
Ok(PrfTree(hmac(&self.0, v)?))
}
pub fn mix_secret<const N: usize>(&self, v: Secret<N>) -> Result<SecretPrfTree> {
SecretPrfTree::prf_invoc(&self.0, v.secret())
}
}
impl SecretPrfTree {
pub fn prf_invoc(k: &[u8], d: &[u8]) -> Result<SecretPrfTree> {
let mut r = SecretPrfTree(Secret::zero());
hmac_into(r.0.secret_mut(), k, d)?;
Ok(r)
}
pub fn zero() -> Self {
Self(Secret::zero())
}
pub fn dup(self) -> SecretPrfTreeBranch {
SecretPrfTreeBranch(self.0)
}
pub fn danger_from_secret(k: Secret<KEY_SIZE>) -> Self {
Self(k)
}
pub fn mix(self, v: &[u8]) -> Result<SecretPrfTree> {
Self::prf_invoc(self.0.secret(), v)
}
pub fn mix_secret<const N: usize>(self, v: Secret<N>) -> Result<SecretPrfTree> {
Self::prf_invoc(self.0.secret(), v.secret())
}
pub fn into_secret(self) -> Secret<KEY_SIZE> {
self.0
}
pub fn into_secret_slice(mut self, v: &[u8], dst: &[u8]) -> Result<()> {
hmac_into(self.0.secret_mut(), v, dst)
}
}
impl SecretPrfTreeBranch {
pub fn mix(&self, v: &[u8]) -> Result<SecretPrfTree> {
SecretPrfTree::prf_invoc(self.0.secret(), v)
}
pub fn mix_secret<const N: usize>(&self, v: Secret<N>) -> Result<SecretPrfTree> {
SecretPrfTree::prf_invoc(self.0.secret(), v.secret())
}
// TODO: This entire API is not very nice; we need this for biscuits, but
// it might be better to extract a special "biscuit"
// labeled subkey and reinitialize the chain with this
pub fn danger_into_secret(self) -> Secret<KEY_SIZE> {
self.0
}
}

1601
src/protocol.rs Normal file

File diff suppressed because it is too large Load Diff

283
src/sodium.rs Normal file
View File

@@ -0,0 +1,283 @@
use crate::util::*;
use anyhow::{ensure, Result};
use libsodium_sys as libsodium;
use log::trace;
use static_assertions::const_assert_eq;
use std::os::raw::{c_ulonglong, c_void};
use std::ptr::{null as nullptr, null_mut as nullptr_mut};
pub const AEAD_TAG_LEN: usize = libsodium::crypto_aead_chacha20poly1305_IETF_ABYTES as usize;
pub const AEAD_NONCE_LEN: usize = libsodium::crypto_aead_chacha20poly1305_IETF_NPUBBYTES as usize;
pub const XAEAD_TAG_LEN: usize = libsodium::crypto_aead_xchacha20poly1305_ietf_ABYTES as usize;
pub const XAEAD_NONCE_LEN: usize = libsodium::crypto_aead_xchacha20poly1305_IETF_NPUBBYTES as usize;
pub const NONCE0: [u8; libsodium::crypto_aead_chacha20poly1305_IETF_NPUBBYTES as usize] =
[0u8; libsodium::crypto_aead_chacha20poly1305_IETF_NPUBBYTES as usize];
pub const NOTHING: [u8; 0] = [0u8; 0];
pub const KEY_SIZE: usize = 32;
pub const MAC_SIZE: usize = 16;
const_assert_eq!(
KEY_SIZE,
libsodium::crypto_aead_chacha20poly1305_IETF_KEYBYTES as usize
);
const_assert_eq!(KEY_SIZE, libsodium::crypto_generichash_BYTES as usize);
macro_rules! sodium_call {
($name:ident, $($args:expr),*) => { attempt!({
ensure!(unsafe{libsodium::$name($($args),*)} > -1,
"Error in libsodium's {}.", stringify!($name));
Ok(())
})};
($name:ident) => { sodium_call!($name, ) };
}
#[inline]
pub fn sodium_init() -> Result<()> {
trace!("initializing libsodium");
sodium_call!(sodium_init)
}
#[inline]
pub fn sodium_memcmp(a: &[u8], b: &[u8]) -> bool {
a.len() == b.len()
&& unsafe {
let r = libsodium::sodium_memcmp(
a.as_ptr() as *const c_void,
b.as_ptr() as *const c_void,
a.len(),
);
r == 0
}
}
#[inline]
pub fn sodium_bigint_cmp(a: &[u8], b: &[u8]) -> i32 {
assert!(a.len() == b.len());
unsafe { libsodium::sodium_compare(a.as_ptr(), b.as_ptr(), a.len()) }
}
#[inline]
pub fn sodium_bigint_inc(v: &mut [u8]) {
unsafe {
libsodium::sodium_increment(v.as_mut_ptr(), v.len());
}
}
#[inline]
pub fn rng(buf: &mut [u8]) {
unsafe { libsodium::randombytes_buf(buf.as_mut_ptr() as *mut c_void, buf.len()) };
}
#[inline]
pub fn zeroize(buf: &mut [u8]) {
unsafe { libsodium::sodium_memzero(buf.as_mut_ptr() as *mut c_void, buf.len()) };
}
#[inline]
pub fn aead_enc_into(
ciphertext: &mut [u8],
key: &[u8],
nonce: &[u8],
ad: &[u8],
plaintext: &[u8],
) -> Result<()> {
assert!(ciphertext.len() == plaintext.len() + AEAD_TAG_LEN);
assert!(key.len() == libsodium::crypto_aead_chacha20poly1305_IETF_KEYBYTES as usize);
assert!(nonce.len() == libsodium::crypto_aead_chacha20poly1305_IETF_NPUBBYTES as usize);
let mut clen: u64 = 0;
sodium_call!(
crypto_aead_chacha20poly1305_ietf_encrypt,
ciphertext.as_mut_ptr(),
&mut clen,
plaintext.as_ptr(),
plaintext.len() as c_ulonglong,
ad.as_ptr(),
ad.len() as c_ulonglong,
nullptr(), // nsec is not used
nonce.as_ptr(),
key.as_ptr()
)?;
assert!(clen as usize == ciphertext.len());
Ok(())
}
#[inline]
pub fn aead_dec_into(
plaintext: &mut [u8],
key: &[u8],
nonce: &[u8],
ad: &[u8],
ciphertext: &[u8],
) -> Result<()> {
assert!(ciphertext.len() == plaintext.len() + AEAD_TAG_LEN);
assert!(key.len() == libsodium::crypto_aead_chacha20poly1305_IETF_KEYBYTES as usize);
assert!(nonce.len() == libsodium::crypto_aead_chacha20poly1305_IETF_NPUBBYTES as usize);
let mut mlen: u64 = 0;
sodium_call!(
crypto_aead_chacha20poly1305_ietf_decrypt,
plaintext.as_mut_ptr(),
&mut mlen as *mut c_ulonglong,
nullptr_mut(), // nsec is not used
ciphertext.as_ptr(),
ciphertext.len() as c_ulonglong,
ad.as_ptr(),
ad.len() as c_ulonglong,
nonce.as_ptr(),
key.as_ptr()
)?;
assert!(mlen as usize == plaintext.len());
Ok(())
}
#[inline]
pub fn xaead_enc_into(
ciphertext: &mut [u8],
key: &[u8],
nonce: &[u8],
ad: &[u8],
plaintext: &[u8],
) -> Result<()> {
assert!(ciphertext.len() == plaintext.len() + XAEAD_NONCE_LEN + XAEAD_TAG_LEN);
assert!(key.len() == libsodium::crypto_aead_xchacha20poly1305_IETF_KEYBYTES as usize);
let (n, ct) = ciphertext.split_at_mut(XAEAD_NONCE_LEN);
n.copy_from_slice(nonce);
let mut clen: u64 = 0;
sodium_call!(
crypto_aead_xchacha20poly1305_ietf_encrypt,
ct.as_mut_ptr(),
&mut clen,
plaintext.as_ptr(),
plaintext.len() as c_ulonglong,
ad.as_ptr(),
ad.len() as c_ulonglong,
nullptr(), // nsec is not used
nonce.as_ptr(),
key.as_ptr()
)?;
assert!(clen as usize == ct.len());
Ok(())
}
#[inline]
pub fn xaead_dec_into(
plaintext: &mut [u8],
key: &[u8],
ad: &[u8],
ciphertext: &[u8],
) -> Result<()> {
assert!(ciphertext.len() == plaintext.len() + XAEAD_NONCE_LEN + XAEAD_TAG_LEN);
assert!(key.len() == libsodium::crypto_aead_xchacha20poly1305_IETF_KEYBYTES as usize);
let (n, ct) = ciphertext.split_at(XAEAD_NONCE_LEN);
let mut mlen: u64 = 0;
sodium_call!(
crypto_aead_xchacha20poly1305_ietf_decrypt,
plaintext.as_mut_ptr(),
&mut mlen as *mut c_ulonglong,
nullptr_mut(), // nsec is not used
ct.as_ptr(),
ct.len() as c_ulonglong,
ad.as_ptr(),
ad.len() as c_ulonglong,
n.as_ptr(),
key.as_ptr()
)?;
assert!(mlen as usize == plaintext.len());
Ok(())
}
#[inline]
fn blake2b_flexible(out: &mut [u8], key: &[u8], data: &[u8]) -> Result<()> {
const KEY_MIN: usize = libsodium::crypto_generichash_KEYBYTES_MIN as usize;
const KEY_MAX: usize = libsodium::crypto_generichash_KEYBYTES_MAX as usize;
const OUT_MIN: usize = libsodium::crypto_generichash_BYTES_MIN as usize;
const OUT_MAX: usize = libsodium::crypto_generichash_BYTES_MAX as usize;
assert!(key.is_empty() || (KEY_MIN <= key.len() && key.len() <= KEY_MAX));
assert!(OUT_MIN <= out.len() && out.len() <= OUT_MAX);
let kptr = match key.len() {
// NULL key
0 => nullptr(),
_ => key.as_ptr(),
};
sodium_call!(
crypto_generichash_blake2b,
out.as_mut_ptr(),
out.len(),
data.as_ptr(),
data.len() as c_ulonglong,
kptr,
key.len()
)
}
// TODO: Use proper streaming hash; for mix_hash too.
#[inline]
pub fn hash_into(out: &mut [u8], data: &[u8]) -> Result<()> {
assert!(out.len() == KEY_SIZE);
blake2b_flexible(out, &NOTHING, data)
}
#[inline]
pub fn hash(data: &[u8]) -> Result<[u8; KEY_SIZE]> {
let mut r = [0u8; KEY_SIZE];
hash_into(&mut r, data)?;
Ok(r)
}
#[inline]
pub fn mac_into(out: &mut [u8], key: &[u8], data: &[u8]) -> Result<()> {
assert!(out.len() == KEY_SIZE);
assert!(key.len() == KEY_SIZE);
blake2b_flexible(out, key, data)
}
#[inline]
pub fn mac(key: &[u8], data: &[u8]) -> Result<[u8; KEY_SIZE]> {
let mut r = [0u8; KEY_SIZE];
mac_into(&mut r, key, data)?;
Ok(r)
}
#[inline]
pub fn mac16(key: &[u8], data: &[u8]) -> Result<[u8; 16]> {
assert!(key.len() == KEY_SIZE);
let mut out = [0u8; 16];
blake2b_flexible(&mut out, key, data)?;
Ok(out)
}
#[inline]
pub fn hmac_into(out: &mut [u8], key: &[u8], data: &[u8]) -> Result<()> {
// Not bothering with padding; the implementation
// uses appropriately sized keys.
ensure!(key.len() == KEY_SIZE);
const IPAD: [u8; KEY_SIZE] = [0x36u8; KEY_SIZE];
let mut temp_key = [0u8; KEY_SIZE];
temp_key.copy_from_slice(key);
xor_into(&mut temp_key, &IPAD);
let outer_data = mac(&temp_key, data)?;
const OPAD: [u8; KEY_SIZE] = [0x5Cu8; KEY_SIZE];
temp_key.copy_from_slice(key);
xor_into(&mut temp_key, &OPAD);
mac_into(out, &temp_key, &outer_data)
}
#[inline]
pub fn hmac(key: &[u8], data: &[u8]) -> Result<[u8; KEY_SIZE]> {
let mut r = [0u8; KEY_SIZE];
hmac_into(&mut r, key, data)?;
Ok(r)
}
// Choose a fully random u64
pub fn rand_u64() -> u64 {
let mut buf = [0u8; 8];
rng(&mut buf);
u64::from_le_bytes(buf)
}
// Choose a random f64 in [0; 1] inclusive; quick and dirty
pub fn rand_f64() -> f64 {
(rand_u64() as f64) / (u64::MAX as f64)
}

51
src/usage.md Normal file
View File

@@ -0,0 +1,51 @@
NAME
{0} Perform post-quantum secure key exchanges for wireguard and other services.
SYNOPSIS
{0} [ COMMAND ] [ OPTIONS ]... [ ARGS ]...
DESCRIPTION
{0} performs cryptographic key exchanges that are secure against quantum-computers and outputs the keys.
These keys can then be passed to various services such as wireguard or other vpn services
as pre-shared-keys to achieve security against attackers with quantum computers.
This is a research project and quantum computers are not thought to become practical in less than ten years.
If you are not specifically tasked with developing post-quantum secure systems, you probably do not need this tool.
COMMANDS
keygen private-key <file-path> public-key <file-path>
Generate a keypair to use in the exchange command later. Send the public-key file to your communication partner
and keep the private-key file a secret!
exchange private-key <file-path> public-key <file-path> [ OPTIONS ]... PEER...\n"
Start a process to exchange keys with the specified peers. You should specify at least one peer.
OPTIONS
listen <ip>[:<port>]
Instructs {0} to listen on the specified interface and port. By default {0} will listen on all interfaces and select a random port.
verbose
Extra logging
PEER := peer public-key <file-path> [endpoint <ip>[:<port>]] [preshared-key <file-path>] [outfile <file-path>] [wireguard <dev> <peer> <extra_params>]
Instructs {0} to exchange keys with the given peer and write the resulting PSK into the given output file.
You must either specify the outfile or wireguard output option.
endpoint <ip>[:<port>]
Specifies the address where the peer can be reached. This will be automatically updated after the first sucessfull
key exchange with the peer. If this is unspecified, the peer must initiate the connection.
preshared-key <file-path>
You may specifie a pre-shared key which will be mixied into the final secret.
outfile <file-path>
You may specify a file to write the exchanged keys to. If this option is specified, {0} will
write a notification to standard out every time the key is updated.
wireguard <dev> <peer> <extra_params>
This allows you to directly specify a wireguard peer to deploy the pre-shared-key to.
You may specify extra parameters you would pass to `wg set` besides the preshared-key parameter which is used by {0}.
This makes it possible to add peers entirely from {0}.

123
src/util.rs Normal file
View File

@@ -0,0 +1,123 @@
use base64::{
display::Base64Display as B64Display, read::DecoderReader as B64Reader,
write::EncoderWriter as B64Writer,
};
use std::{
borrow::{Borrow, BorrowMut},
cmp::min,
io::{Read, Write},
time::{Duration, Instant},
};
#[inline]
pub fn xor_into(a: &mut [u8], b: &[u8]) {
assert!(a.len() == b.len());
for (av, bv) in a.iter_mut().zip(b.iter()) {
*av ^= *bv;
}
}
// TODO: Zeroize result?
/** Concatenate two byte arrays */
#[macro_export]
macro_rules! cat {
($len:expr; $($toks:expr),+) => {{
let mut buf = [0u8; $len];
let mut off = 0;
$({
let tok = $toks;
let tr = ::std::borrow::Borrow::<[u8]>::borrow(tok);
(&mut buf[off..(off + tr.len())]).copy_from_slice(tr);
off += tr.len();
})+
assert!(off == buf.len(), "Size mismatch in cat!()");
buf
}}
}
// TODO: consistent inout ordering
pub fn cpy<T: BorrowMut<[u8]> + ?Sized, F: Borrow<[u8]> + ?Sized>(src: &F, dst: &mut T) {
dst.borrow_mut().copy_from_slice(src.borrow());
}
pub fn cpy_min<T: BorrowMut<[u8]> + ?Sized, F: Borrow<[u8]> + ?Sized>(src: &F, to: &mut T) {
let src = src.borrow();
let dst = to.borrow_mut();
let len = min(src.len(), dst.len());
dst[..len].copy_from_slice(&src[..len]);
}
/// Try block basically…returns a result and allows the use of the question mark operator inside
#[macro_export]
macro_rules! attempt {
($block:expr) => {
(|| -> ::anyhow::Result<_> { $block })()
};
}
const B64TYPE: base64::Config = base64::STANDARD;
pub fn fmt_b64<'a>(payload: &'a [u8]) -> B64Display<'a> {
B64Display::<'a>::with_config(payload, B64TYPE)
}
pub fn b64_writer<W: Write>(w: W) -> B64Writer<W> {
B64Writer::new(w, B64TYPE)
}
pub fn b64_reader<R: Read>(r: &mut R) -> B64Reader<'_, R> {
B64Reader::new(r, B64TYPE)
}
// TODO remove this once std::cmp::max becomes const
pub const fn max_usize(a: usize, b: usize) -> usize {
if a > b {
a
} else {
b
}
}
#[derive(Clone, Debug)]
pub struct Timebase(Instant);
impl Default for Timebase {
fn default() -> Self {
Self(Instant::now())
}
}
impl Timebase {
pub fn now(&self) -> f64 {
self.0.elapsed().as_secs_f64()
}
pub fn dur(&self, t: f64) -> Duration {
Duration::from_secs_f64(t)
}
}
#[macro_export]
macro_rules! multimatch {
($val:expr) => {{ () }};
($val:expr, $($p:pat => $thn:expr),*) => {{
let v = $val;
($(if let $p = v { Some($thn) } else { None }),*)
}};
}
pub fn mutating<T, F>(mut v: T, f: F) -> T
where
F: Fn(&mut T),
{
f(&mut v);
v
}
pub fn sideeffect<T, F>(v: T, f: F) -> T
where
F: Fn(&T),
{
f(&v);
v
}

120
tests/integration_test.rs Normal file
View File

@@ -0,0 +1,120 @@
use std::{fs, net::UdpSocket, path::PathBuf, process::Stdio, time::Duration};
const BIN: &str = "rosenpass";
// check that we can generate keys
#[test]
fn generate_keys() {
let tmpdir = PathBuf::from(env!("CARGO_TARGET_TMPDIR")).join("keygen");
fs::create_dir_all(&tmpdir).unwrap();
let priv_key_path = tmpdir.join("private-key");
let pub_key_path = tmpdir.join("public-key");
let output = test_bin::get_test_bin(BIN)
.args(["keygen", "private-key"])
.arg(&priv_key_path)
.arg("public-key")
.arg(&pub_key_path)
.output()
.expect("Failed to start {BIN}");
assert_eq!(String::from_utf8_lossy(&output.stdout), "");
assert!(priv_key_path.is_file());
assert!(pub_key_path.is_file());
// cleanup
fs::remove_dir_all(&tmpdir).unwrap();
}
fn find_udp_socket() -> u16 {
for port in 1025..=u16::MAX {
match UdpSocket::bind(("127.0.0.1", port)) {
Ok(_) => {
return port;
}
_ => {}
}
}
panic!("no free UDP port found");
}
// check that we can exchange keys
#[test]
fn check_exchange() {
let tmpdir = PathBuf::from(env!("CARGO_TARGET_TMPDIR")).join("exchange");
fs::create_dir_all(&tmpdir).unwrap();
let priv_key_paths = [tmpdir.join("private-key-0"), tmpdir.join("private-key-1")];
let pub_key_paths = [tmpdir.join("public-key-0"), tmpdir.join("public-key-1")];
let shared_key_paths = [tmpdir.join("shared-key-0"), tmpdir.join("shared-key-1")];
// generate key pairs
for (priv_key_path, pub_key_path) in priv_key_paths.iter().zip(pub_key_paths.iter()) {
let output = test_bin::get_test_bin(BIN)
.args(["keygen", "private-key"])
.arg(&priv_key_path)
.arg("public-key")
.arg(&pub_key_path)
.output()
.expect("Failed to start {BIN}");
assert_eq!(String::from_utf8_lossy(&output.stdout), "");
assert!(priv_key_path.is_file());
assert!(pub_key_path.is_file());
}
// start first process, the server
let port = find_udp_socket();
let listen_addr = format!("localhost:{port}");
let mut server = test_bin::get_test_bin(BIN)
.args(["exchange", "private-key"])
.arg(&priv_key_paths[0])
.arg("public-key")
.arg(&pub_key_paths[0])
.args(["listen", &listen_addr, "verbose", "peer", "public-key"])
.arg(&pub_key_paths[1])
.arg("outfile")
.arg(&shared_key_paths[0])
.stdout(Stdio::null())
.stderr(Stdio::null())
.spawn()
.expect("Failed to start {BIN}");
// start second process, the client
let mut client = test_bin::get_test_bin(BIN)
.args(["exchange", "private-key"])
.arg(&priv_key_paths[1])
.arg("public-key")
.arg(&pub_key_paths[1])
.args(["verbose", "peer", "public-key"])
.arg(&pub_key_paths[0])
.args(["endpoint", &listen_addr])
.arg("outfile")
.arg(&shared_key_paths[1])
.stdout(Stdio::null())
.stderr(Stdio::null())
.spawn()
.expect("Failed to start {BIN}");
// give them some time to do the key exchange
std::thread::sleep(Duration::from_secs(2));
// time's up, kill the childs
server.kill().unwrap();
client.kill().unwrap();
// read the shared keys they created
let shared_keys: Vec<_> = shared_key_paths
.iter()
.map(|p| fs::read_to_string(p).unwrap())
.collect();
// check that they created two equal keys
assert_eq!(shared_keys.len(), 2);
assert_eq!(shared_keys[0], shared_keys[1]);
// cleanup
fs::remove_dir_all(&tmpdir).unwrap();
}