Removed soft inpainting, added hooks for softpainting to work instead.

This commit is contained in:
CodeHatchling
2023-12-06 21:16:27 -07:00
parent 4608f6236f
commit ac45789123
3 changed files with 118 additions and 69 deletions

View File

@@ -30,7 +30,6 @@ import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
import modules.soft_inpainting as si
from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
@@ -73,12 +72,10 @@ def uncrop(image, dest_size, paste_loc):
return image
def apply_overlay(image, paste_loc, index, overlays):
if overlays is None or index >= len(overlays):
def apply_overlay(image, paste_loc, overlay):
if overlay is None:
return image
overlay = overlays[index]
if paste_loc is not None:
image = uncrop(image, (overlay.width, overlay.height), paste_loc)
@@ -150,7 +147,6 @@ class StableDiffusionProcessing:
do_not_save_grid: bool = False
extra_generation_params: dict[str, Any] = None
overlay_images: list = None
masks_for_overlay: list = None
eta: float = None
do_not_reload_embeddings: bool = False
denoising_strength: float = None
@@ -880,31 +876,17 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
if p.scripts is not None:
ps = scripts.PostSampleArgs(samples_ddim)
p.scripts.post_sample(p, ps)
samples_ddim = pp.samples
if getattr(samples_ddim, 'already_decoded', False):
x_samples_ddim = samples_ddim
# todo: generate adaptive masks based on pixel differences.
if getattr(p, "image_mask", None) is not None and getattr(p, "soft_inpainting", None) is not None:
si.apply_masks(soft_inpainting=p.soft_inpainting,
nmask=p.nmask,
overlay_images=p.overlay_images,
masks_for_overlay=p.masks_for_overlay,
width=p.width,
height=p.height,
paste_to=p.paste_to)
else:
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
# Generate the mask(s) based on similarity between the original and denoised latent vectors
if getattr(p, "image_mask", None) is not None and getattr(p, "soft_inpainting", None) is not None:
si.apply_adaptive_masks(latent_orig=p.init_latent,
latent_processed=samples_ddim,
overlay_images=p.overlay_images,
masks_for_overlay=p.masks_for_overlay,
width=p.width,
height=p.height,
paste_to=p.paste_to)
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
@@ -955,9 +937,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image(p, pp)
image = pp.image
mask_for_overlay = p.mask_for_overlay
overlay_image = p.overlay_images[i] if p.overlay_images is not None and i < len(p.overlay_images) else None
if p.scripts is not None:
ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
p.scripts.postprocess_maskoverlay(p, ppmo)
mask_for_overlay, overlay_image = pp.mask_for_overlay, pp.overlay_image
if p.color_corrections is not None and i < len(p.color_corrections):
if save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
image_without_cc = apply_overlay(image, p.paste_to, overlay_image)
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
@@ -968,9 +959,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
original_denoised_image = image.copy()
if p.paste_to is not None:
original_denoised_image = uncrop(original_denoised_image, (p.overlay_images[i].width, p.overlay_images[i].height), p.paste_to)
original_denoised_image = uncrop(original_denoised_image, (p.overlay_image.width, p.overlay_image.height), p.paste_to)
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
image = apply_overlay(image, p.paste_to, overlay_image)
if save_samples:
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
@@ -981,13 +972,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image.info["parameters"] = text
output_images.append(image)
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
mask_for_overlay = p.mask_for_overlay
elif hasattr(p, 'masks_for_overlay') and p.masks_for_overlay and p.masks_for_overlay[i]:
mask_for_overlay = p.masks_for_overlay[i]
else:
mask_for_overlay = None
if mask_for_overlay is not None:
if opts.return_mask or opts.save_mask:
image_mask = mask_for_overlay.convert('RGB')
@@ -1401,7 +1385,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
mask_blur_x: int = 4
mask_blur_y: int = 4
mask_blur: int = None
soft_inpainting: si.SoftInpaintingParameters = si.default
mask_round: bool = True
inpainting_fill: int = 0
inpaint_full_res: bool = True
inpaint_full_res_padding: int = 0
@@ -1447,7 +1431,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if image_mask is not None:
# image_mask is passed in as RGBA by Gradio to support alpha masks,
# but we still want to support binary masks.
image_mask = create_binary_mask(image_mask, round=(self.soft_inpainting is None))
image_mask = create_binary_mask(image_mask, round=self.mask_round)
if self.inpainting_mask_invert:
image_mask = ImageOps.invert(image_mask)
@@ -1465,7 +1449,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image_mask = Image.fromarray(np_mask)
if self.inpaint_full_res:
self.mask_for_overlay = image_mask if self.soft_inpainting is None else None
self.mask_for_overlay = image_mask
mask = image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
@@ -1476,13 +1460,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.paste_to = (x1, y1, x2-x1, y2-y1)
else:
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
if self.soft_inpainting is None:
np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
self.masks_for_overlay = [] if self.soft_inpainting is not None else None
self.overlay_images = []
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
@@ -1504,15 +1485,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image = images.resize_image(self.resize_mode, image, self.width, self.height)
if image_mask is not None:
if self.soft_inpainting is not None:
# We apply the masks AFTER to adjust mask based on changed content.
self.overlay_images.append(image.convert('RGBA'))
self.masks_for_overlay.append(image_mask)
else:
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.overlay_images.append(image_masked.convert('RGBA'))
self.overlay_images.append(image_masked.convert('RGBA'))
# crop_region is not None if we are doing inpaint full res
if crop_region is not None:
@@ -1565,7 +1541,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
latmask = latmask[0]
if self.soft_inpainting is None:
if self.mask_round:
latmask = np.around(latmask)
latmask = np.tile(latmask[None], (4, 1, 1))
@@ -1578,7 +1554,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.soft_inpainting is None)
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = self.rng.next()
@@ -1589,8 +1565,14 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None and self.soft_inpainting is None:
samples = samples * self.nmask + self.init_latent * self.mask
blended_samples = samples * self.nmask + self.init_latent * self.mask
if self.scripts is not None:
mba = scripts.MaskBlendArgs(self, samples, self.nmask, self.init_latent, self.mask, blended_samples, sigma=None, is_final_blend=True)
self.scripts.on_mask_blend(self, mba)
blended_samples = mba.blended_latent
samples = blended_samples
del x
devices.torch_gc()