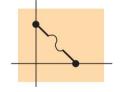
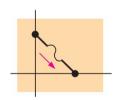

CPE201 Digital Design

By Benjamin Haas

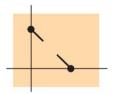
Class 7: PLDs, Boolean Laws, and Equipment

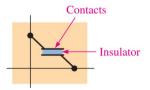


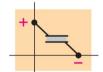
PLDs



OTPs


- One Time Programma
- Many types
- Burn it out!


(a) Fuse intact before programming


(b) Programming current

(c) Fuse open after programming

(a) Antifuse is open before programming.

Transistor turned *on* or *off* by state of input *B*

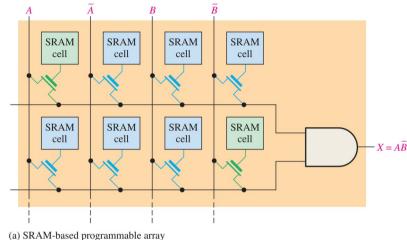
Transistor turned on or off

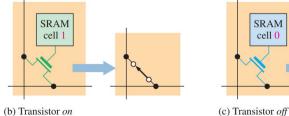
by state of input A

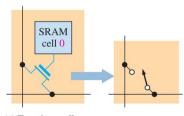
(b) Programming voltage breaks down insulation layer to create contact.

(c) Antifuse is effectively shorted after programming.

Transistor permanently

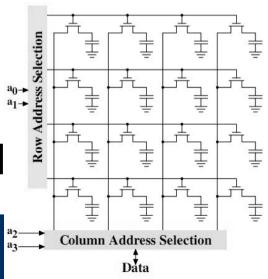

X = AB

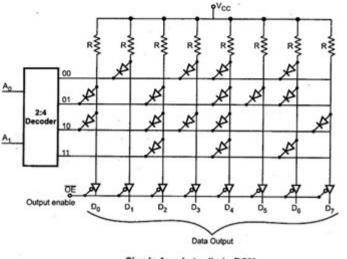

programmed off



Reprogrammable

- Different tech
- Different cost
 - More circuitry




ROM/RAM.

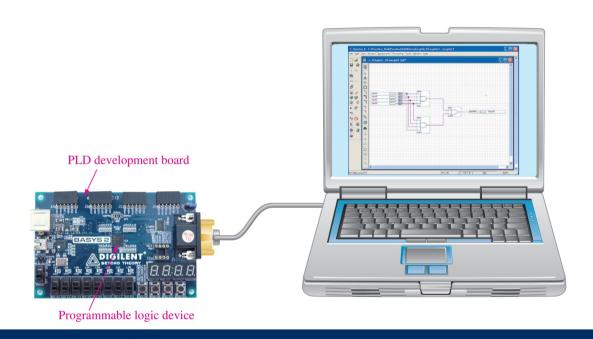
- Same concept as PLD
- Address lines in

Stores data

RAM vs ROM

Simple four byte diode ROM

Programming



Tape-out and Packing Handler

Programming/Debugging

- Development
- In-system
 - JTAG
 - SWD

Boolean Addition

- Same as OR
 - Remember that here 0=FALSE, 1=TRU

Truth tables:

a b	AND
0 0	0
0 1	0
1 0	0
1 1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Boolean Multiplication

Same as AND

Truth tables:

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Boolean Laws

- Commutative Laws
- Associative Laws
- Distributive Laws
- 12 Rules for Simplification
- Why?
 - Not every system has these laws, i.e.
 matrices

Commutative Laws

•
$$A + B = B + I$$

$$B = B + I$$

$$A + B = B + I$$

$$AB = B - BA$$

$$BA = BA$$

Associative Laws

• A + (B + C) = (A + B) + C

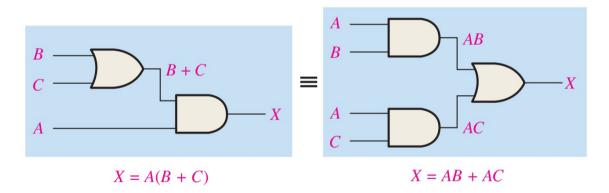
$$\begin{array}{ccc}
A & & & & & \\
B & & & & & \\
C & & & & & \\
\end{array}$$

$$A + (B + C) = B \\
C & & & & \\
C & & & & \\
\end{array}$$

$$A + B \\
C & & & \\
C & & & \\$$

$$(A + B) + C \\$$

• A(BC) = (AB)C


$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$A(BC) = B \\
C$$

$$AB \\
C$$

Distributive Laws

• A(B + C) = AB + AC

• 1.A + 0 = A

$$A = 1$$

$$0$$

$$X = 1$$

$$0$$

$$X = 0$$

• 2. A + 1 = 1

$$A = 1$$

$$1$$

$$X = 1$$

$$1$$

$$X = 1$$

• 3. A • 0 = 0

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = 0$$

• 4. A • 1 = A

$$A = 0$$

$$1$$

$$X = 0$$

$$1$$

$$X = 1$$

• 5. A + A = A

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$A = 1$$

• 6. A + A' = 1

$$A = 0$$

$$\overline{A} = 1$$

$$X = 1$$

$$\overline{A} = 0$$

$$X = 1$$

• 7. A • A = A

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$X = 1$$

• 8. $A \cdot A' = 0$

$$A = 1$$

$$\overline{A} = 0$$

$$X = 0$$

$$\overline{A} = 1$$

$$X = 0$$

• 9. A'' = A

$$A = 0$$

$$\overline{A} = 1$$

$$\overline{A} = 0$$

$$A = 1$$

$$\overline{A} = 0$$

$$\overline{A} = 0$$

• 11.
$$A + A'B = A + B$$

A	В	$\overline{A}B$	$A + \overline{A}B$	A + B	_
0	0	0	0	0	$A \rightarrow A$
0	1	1	1	1	
1	0	0	1	1	В
1	1	0	1	1	A
			eq	ual	$B \longrightarrow$

- 12. (A + P)(A + C) = A + BC
 - Also follows from distribution, Rule 7, and Rule
 10
 - Diagram in book

Equipment

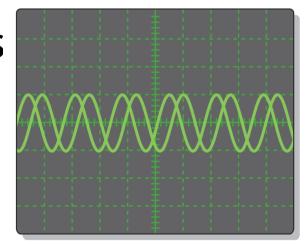
- Test and debugging equipment
- Debugging origin
 - Literal bugs

Multimeter

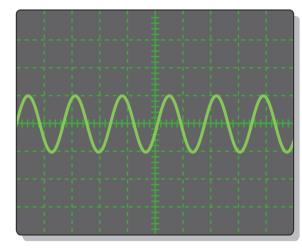
- Your best friend!
 - Voltage
 - Current
 - Resistance
 - Continuity

(a) Bench-type DMM

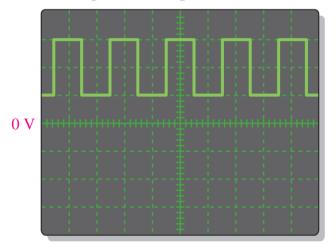
(b) Handheld DMM

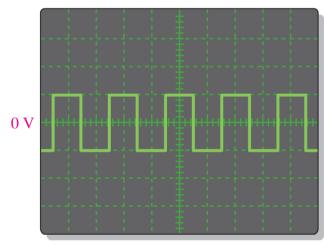

Oscilloscope

- Oscope or scope
 - Measures and displays signals
- The fastest ADC you'll typically use

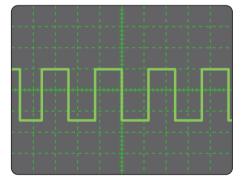


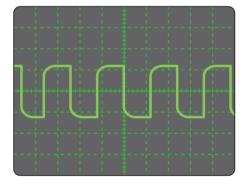
- Vertical and Horizontal controls
- Triggers

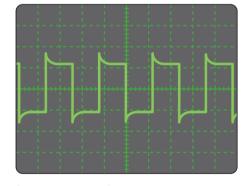

(a) Untriggered waveform display


(b) Triggered waveform display

AC vs DC coupling

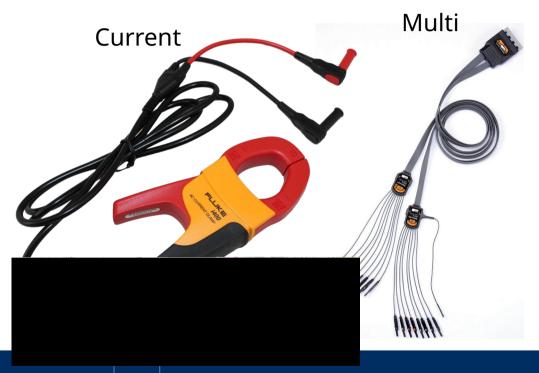

(a) DC coupled waveform


(b) AC coupled waveform


- Compensation and Loading
- Shopping cart example

Properly compensated

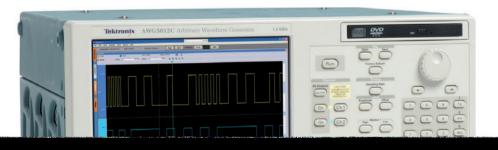
Undercompensated



Overcompensated

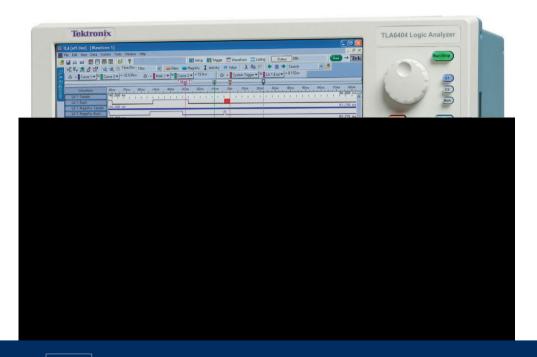
Probes

Voltage


Power Supply

- DC Voltages
 - Circuit power
 - Very stable

Generators


Arbitrary vs Function

Logic Analyzer

- Oscope+
- Can measure
 - And decode!
- Costs extra

Others

- Frequency Analyzer
- RLC meters
- Fiber optics
- Anything you could want, pretty much

Reading

- This lecture
 - Sections 3.7, 1.7, 4.1-4.2
- Next lecture
 - Sections 4.3-4.6