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Disclaimer

● This course will require the use of Git through GitHub 
● We can’t cover everything. Use tutorials to help answer questions.
● Git tutorials and training

○ https://www.atlassian.com/git
○ https://www.coursera.org/learn/version-control-with-git
○ Many organizations offer training as part of employment

https://www.atlassian.com/git
https://www.coursera.org/learn/version-control-with-git


Why does this apply to CS425?

● As a part of Project Part 3 deliverables, each team must have a functioning public repository 
on GitHub 
○ Your database can be private (if your project has one)
○ Code under an NDA can be kept private

● Add the public repository link to your P3 assignment. That’s it!

● Please note that the teaching team will, if necessary, look at the activity in the repository to 
decide on certain aspects of grading

● This task should take you only 10-20 minutes at most. If you require help, please attend one of 
our office hours and we will walk you through it.



What is version control?

● The process of tracking and managing changes to software source code
○ Also known as source control

● Essentially, you’re storing your local changes to a remote repository
○ Do not store code on usb drives or Google Drive

● Crucial to software teams
○ Contains loads of software tools that make cooperative programming much easier

● Allows developers to essentially “undo” a mistake



● Accountability
○ Who is contributing to the project?
○ Who is responsible for a check-in (broken code, not following best practices)

● Ownership
○ Finding the creator of an old piece of code for help
○ Getting credit for your work, even years later

● Deployment Pipelines
○ Have a stable release branch that is not used for development 

● Industry Practices
○ Version control history can be part of performance reviews
○ “Rolling back” to an old version of the code can help diagnose and fix errors

Why version control?



Why should 
you care?

• If they don’t use 
version control, make 
them use it or find 
employment elsewhere

Virtually all 
forms of 

employmen
t use it

• How else would you 
code with a group of 7+ 
people?

It 
promotes 
a group 
dynamic

• Ever had a piece of 
code that was working, 
then it just didn’t?

Everyone 
makes 

mistakes



● Centralized Version Control 
System (CVCS)
○ The repository is held only on a 

central server 
○ Code is checked into the central 

repository directly 
○ Pros: More administrative powers & 

control over users and access, 
smaller local storage, easier to 
understand

○ Cons: Central point of failure, 
dependent on connection to central 
repository

○ Example: Perforce, StarTeam
Image Source: https://scmquest.com/centralized-vs-distributed-version-control-systems/

Version control models



Image Source: https://scmquest.com/centralized-vs-distributed-version-control-systems/

Version control models

● Distributed Version Control 
System (DVCS)
○ The complete repository is mirrored 

on every developer’s system 
○ Code is checked into the local 

repository then pushed to the central 
repository

○ Pros: Enables working offline, 
comparatively faster, every user has a 
repository backup

○ Cons: Higher storage requirements, 
proprietary code leaks more likely 

○ Example: Git



●The most commonly used version 
control system in the world

●It is the standard in which all 
version control systems follow
○Team Foundation Server 
○Bitbucket
○Apache Subversion

●Git contains its own set of 
commands, much like linux 
commands

●It can be a bit confusing at first, 
but it quickly becomes easier

Git Overview: What is Git?



Git Overview: Git vs GitHub

Git is the version 
control system itself

GitHub is a hosting service for 
Git repositories



Check In Code
• git add 

○ Adds a file to the staging area 
○ git add -A
○ git status
○ git reset

• git commit
○ Commit the changes in the staging area 

to the local repository with a message
• git push 

○ This action publishes your local 
repository to the remote repository 
(GitHub)

○ git push <remote> <branch>
○ Examples:

■ git push origin main
■ git push origin zach-dev

Check Out Code
• git clone

○ Copy a repository to your local machine 
for the first time

• git pull
○ Download remote repository
○ Update local repository to match remote 

repository
○ Examples:

■ git pull origin main
■ git pull origin zach-dev

Git Workflow: Check In & Check Out 



Git Workflow: Check In & Check Out 



●“The body of your message should provide detailed answers to the 
following questions: What was the motivation for the change? How 
does it differ from the previous implementation?” - Github FAQ

●The audience for your commit messages are developers looking to 
contribute to that repository

●Bad Commit : git commit –m “Some changes”
●Better Commit: git commit –m “Updated URI handlers”
●Best Commit: git commit –m “Updated URI handlers” -m “Updated 

URI handlers for photo searching, thumbnail generation, and 
deployment data streams.”

Git Workflow: Commit



mai
n

development
branch

We are here

We are here

● git checkout -b “development branch”
● checkout switches the currently active branch
● -b argument creates the new branch “development branch”

Git Workflow: Branching 



HeadCommi
tmain

development
branch

Hotfix

Git Workflow: Branching Continued



development
branch

We are here

We are here

main

● git checkout main
○ This switches back to the main branch

● git merge “development branch”
○ This merges “development branch” into the currently active main branch

● Merges will automatically commit

Git Workflow: Merging



●Sometimes we modify the same code in the same file
●(You have probably run into this already)
●git mergetool

main

development
branch

Git Workflow: Handling Conflicts



HeadCommi
t

●Resets the branch back to the last commit
●Dangerous on single branch
●What happens if I reset with staged changes (but 

uncommitted)?

Git Workflow: Git reset --hard



●git blame
○Who’s doing what and where?
○We can even see this on GitHub UI?

●git log
○Using this we can see the commit history
○Using the commit names we can reset to a 

prior commit
○git checkout <commit>

Git Workflow: Git History



● GitKraken
○ GUI application 
○ https://www.gitkraken.com/

● SourceTree
○ GUI application 
○ https://www.sourcetreeapp.com/

● TortoiseGit
○ Integrates with Windows Explorer as right-click options 
○ https://tortoisegit.org/

● Github Desktop
○ GUI Application 
○ https://desktop.github.com/

● Git Large File Storage
○ Git extension for versioning large files, such as videogame art
○ https://git-lfs.github.com/

Git Tools

https://www.gitkraken.com/
https://www.sourcetreeapp.com/
https://tortoisegit.org/
https://desktop.github.com/
https://git-lfs.github.com/


●Forking a Repository
●Modify and Pull Requests

Contributing to Open Source





Questions?
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