
Version Control

Topics covered

● Disclaimer
● Application to CS425
● What is version control?
● Why version control?
● Version Control Models
● Git Overview
● Git Workflow
● Git Tools
● Contributing to Open Source
● Questions/Comments

Disclaimer

● This course will require the use of Git through GitHub
● We can’t cover everything. Use tutorials to help answer questions.
● Git tutorials and training

○ https://www.atlassian.com/git
○ https://www.coursera.org/learn/version-control-with-git
○ Many organizations offer training as part of employment

https://www.atlassian.com/git
https://www.coursera.org/learn/version-control-with-git

Why does this apply to CS425?

● As a part of Project Part 3 deliverables, each team must have a functioning public repository
on GitHub
○ Your database can be private (if your project has one)
○ Code under an NDA can be kept private

● Add the public repository link to your P3 assignment. That’s it!

● Please note that the teaching team will, if necessary, look at the activity in the repository to
decide on certain aspects of grading

● This task should take you only 10-20 minutes at most. If you require help, please attend one of
our office hours and we will walk you through it.

What is version control?

● The process of tracking and managing changes to software source code
○ Also known as source control

● Essentially, you’re storing your local changes to a remote repository
○ Do not store code on usb drives or Google Drive

● Crucial to software teams
○ Contains loads of software tools that make cooperative programming much easier

● Allows developers to essentially “undo” a mistake

● Accountability
○ Who is contributing to the project?
○ Who is responsible for a check-in (broken code, not following best practices)

● Ownership
○ Finding the creator of an old piece of code for help
○ Getting credit for your work, even years later

● Deployment Pipelines
○ Have a stable release branch that is not used for development

● Industry Practices
○ Version control history can be part of performance reviews
○ “Rolling back” to an old version of the code can help diagnose and fix errors

Why version control?

Why should
you care?

• If they don’t use
version control, make
them use it or find
employment elsewhere

Virtually all
forms of

employmen
t use it

• How else would you
code with a group of 7+
people?

It
promotes
a group
dynamic

• Ever had a piece of
code that was working,
then it just didn’t?

Everyone
makes

mistakes

● Centralized Version Control
System (CVCS)
○ The repository is held only on a

central server
○ Code is checked into the central

repository directly
○ Pros: More administrative powers &

control over users and access,
smaller local storage, easier to
understand

○ Cons: Central point of failure,
dependent on connection to central
repository

○ Example: Perforce, StarTeam
Image Source: https://scmquest.com/centralized-vs-distributed-version-control-systems/

Version control models

Image Source: https://scmquest.com/centralized-vs-distributed-version-control-systems/

Version control models

● Distributed Version Control
System (DVCS)
○ The complete repository is mirrored

on every developer’s system
○ Code is checked into the local

repository then pushed to the central
repository

○ Pros: Enables working offline,
comparatively faster, every user has a
repository backup

○ Cons: Higher storage requirements,
proprietary code leaks more likely

○ Example: Git

●The most commonly used version
control system in the world

●It is the standard in which all
version control systems follow
○Team Foundation Server
○Bitbucket
○Apache Subversion

●Git contains its own set of
commands, much like linux
commands

●It can be a bit confusing at first,
but it quickly becomes easier

Git Overview: What is Git?

Git Overview: Git vs GitHub

Git is the version
control system itself

GitHub is a hosting service for
Git repositories

Check In Code
• git add

○ Adds a file to the staging area
○ git add -A
○ git status
○ git reset

• git commit
○ Commit the changes in the staging area

to the local repository with a message
• git push

○ This action publishes your local
repository to the remote repository
(GitHub)

○ git push <remote> <branch>
○ Examples:

■ git push origin main
■ git push origin zach-dev

Check Out Code
• git clone

○ Copy a repository to your local machine
for the first time

• git pull
○ Download remote repository
○ Update local repository to match remote

repository
○ Examples:

■ git pull origin main
■ git pull origin zach-dev

Git Workflow: Check In & Check Out

Git Workflow: Check In & Check Out

●“The body of your message should provide detailed answers to the
following questions: What was the motivation for the change? How
does it differ from the previous implementation?” - Github FAQ

●The audience for your commit messages are developers looking to
contribute to that repository

●Bad Commit : git commit –m “Some changes”
●Better Commit: git commit –m “Updated URI handlers”
●Best Commit: git commit –m “Updated URI handlers” -m “Updated

URI handlers for photo searching, thumbnail generation, and
deployment data streams.”

Git Workflow: Commit

mai
n

development
branch

We are here

We are here

● git checkout -b “development branch”
● checkout switches the currently active branch
● -b argument creates the new branch “development branch”

Git Workflow: Branching

HeadCommi
tmain

development
branch

Hotfix

Git Workflow: Branching Continued

development
branch

We are here

We are here

main

● git checkout main
○ This switches back to the main branch

● git merge “development branch”
○ This merges “development branch” into the currently active main branch

● Merges will automatically commit

Git Workflow: Merging

●Sometimes we modify the same code in the same file
●(You have probably run into this already)
●git mergetool

main

development
branch

Git Workflow: Handling Conflicts

HeadCommi
t

●Resets the branch back to the last commit
●Dangerous on single branch
●What happens if I reset with staged changes (but

uncommitted)?

Git Workflow: Git reset --hard

●git blame
○Who’s doing what and where?
○We can even see this on GitHub UI?

●git log
○Using this we can see the commit history
○Using the commit names we can reset to a

prior commit
○git checkout <commit>

Git Workflow: Git History

● GitKraken
○ GUI application
○ https://www.gitkraken.com/

● SourceTree
○ GUI application
○ https://www.sourcetreeapp.com/

● TortoiseGit
○ Integrates with Windows Explorer as right-click options
○ https://tortoisegit.org/

● Github Desktop
○ GUI Application
○ https://desktop.github.com/

● Git Large File Storage
○ Git extension for versioning large files, such as videogame art
○ https://git-lfs.github.com/

Git Tools

https://www.gitkraken.com/
https://www.sourcetreeapp.com/
https://tortoisegit.org/
https://desktop.github.com/
https://git-lfs.github.com/

●Forking a Repository
●Modify and Pull Requests

Contributing to Open Source

Questions?

	Version Control
	Topics covered
	Disclaimer
	Why does this apply to CS425?
	What is version control?
	Why version control?
	Why should you care?
	Version control models
	Version control models (2)
	Git Overview: What is Git?
	Git Overview: Git vs GitHub
	Git Workflow: Check In & Check Out
	Git Workflow: Check In & Check Out (2)
	Git Workflow: Commit
	Git Workflow: Branching
	Git Workflow: Branching Continued
	Git Workflow: Merging
	Git Workflow: Handling Conflicts
	Git Workflow: Git reset --hard
	Git Workflow: Git History
	Git Tools
	Contributing to Open Source
	Slide 23
	Questions?

