WLAN Technologies

News

https://blog.lastpass.com/2024/02/warning-fraudulent-app-impersonating-lastpass-currently-available-in-apple-app-store/?is=6fa78154dbea9fd6a29caa59a8a9433f63d310cc0d643f0f38e7e9ff5be35bf6

Overview

- Describe common WLAN topologies and 802.11 standards
- Explain the basic functionality of access points
- Explain the difference between an access point and a wireless bridge
- Identify the different types of antennas, along with their uses
- Explain the reasons for, and steps behind site surveys
- Explain why wireless is vulnerable to packet analysis and describe how hackers exploit this vulnerability

How WiFi Works

• https://web.archive.org/web/20171226072425/https://www.verizoninternet.com/bookmark/how-wifi-works/

WLAN Topologies

- Radio card
 - 802.11 standards refer to as a station (STA)
 - A station can be any 802.11-capable device
 - Laptop, smartphone, tablet, plug-in card
 - If endpoint, called a client station
- Access point (AP)
 - Also a station
 - Serves as central hub that communicates with all client stations within range

Wireless Client Devices

- Any device that meets the following criteria can act as a wireless client:
 - It contains a radio card or integrated transmit (TX) and receive (RX), noted as TX/RX.
 - It contains an antenna.
 - It operates under 802.11 protocol standards.
- A client station is configured to associate with an access point by creating a Layer 2 connection

Wireless Client Devices (Cont.)

- Every access point is identified by a service set identifier (SSID)
 - SSID is a configurable name or alphanumeric code
- If multiple access points configured with the same SSID, and if the correct security credentials supplied, client will be handed over to the strongest signal
 - Access points must use different channels to avoid interference

Wireless Client Devices (Cont.)

- Before a client can connect to an access point, it must detect presence of access point
- A client does this by:
 - **Passive scanning:** Client listens for a beacon, which an access point continually emits. When client "hears" a beacon advertising an SSID for which it has been preconfigured, it selects that access point.
 - **Active scanning:** Client proactively scans the network by sending out probe pulse requests
 - View client-probe-mapping pcap

Wireshark Exploration of Beacons and Probes

Demonstration

Files: WifiOSA.pcap

802.11 Service Sets

- 802.11 standards define four topologies, called service sets:
 - Basic service set (BSS)
 - With the BSS, all communication goes through the access point. That is, in a BSS, client stations cannot communicate with each other directly.

802.11 Service Sets

- Extended service set (ESS)
 - An ESS is a combination of two or more BSSes connected via a distribution system medium such as an Ethernet network.
 - Seamless roaming: uses a 15 to 20 percent overlap in coverage areas
 - Nomadic roaming there is no overlap, with coverage areas remaining autonomous
 - Collocation model: there is 100-percent overlap between the two access point service areas Used to address client capacity issues

802.11 Service Sets

- Independent basic service set (IBSS)
 - No access point is used. Instead, client stations form peer-to-peer relationships with other client stations
- Mesh basic service set (MBSS)
 - Clients, access points, and gateways are all meshed together, enabling client-to-client and AP-to-AP communication.

Historic 802.11 Standards

- **802.11b** (Wi-Fi 1): Uses the unregulated 2.4 GHz band, with a throughput of 11 Mbps
- 802.11a (Wi-Fi 2): Operates at 5 GHz and provides data rates between 1.5 Mbps to 54 Mbps
- **802.11g (Wi-Fi 3):** Supports bandwidths of up to 54 Mbps, utilizes the 2.4 GHz frequency band, allowing greater range than 802.11a; backward-compatible with 802.11b
- 802.11n(Wi-Fi 4): Operates on 2.4 GHz and 5 GHz bands with speeds up to 600 Mbps

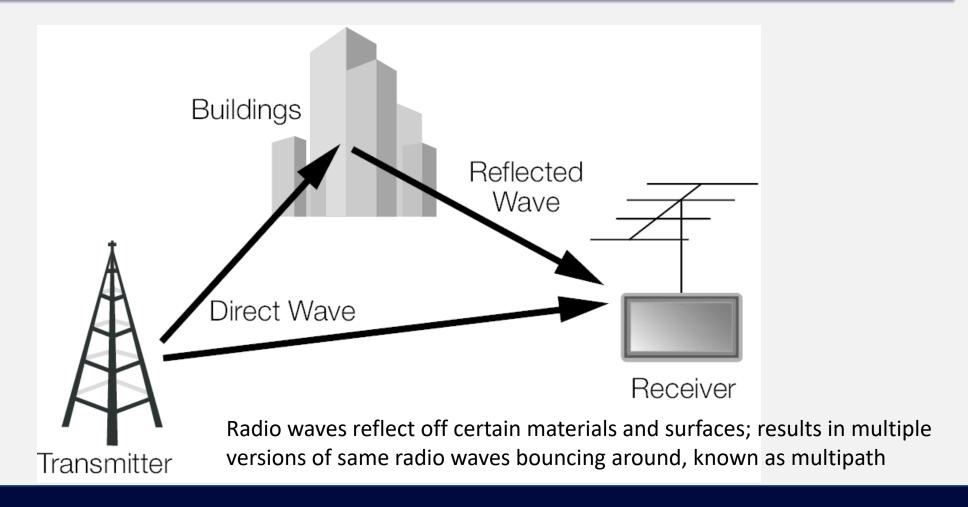
802.11 Standards (Cont.)

- 802.11ac(Wi-Fi 5): Extension of 802.11n, offers more channels and streams up to 1.3 Gbps of throughput on the 5 GHz band
- 802.11ax(Wi-Fi 6): uses the TV white-space spectrum and handles higher density by segregating channels
 - The main goal of this standard is enhancing throughput-per-area in high-density scenarios, such as corporate offices
 - Wi-FI 6e: Extends the standard to use the 6 Ghz band
- Wi-Fi 7 https://spectrum.ieee.org/wi-fi-7-stomps-on-the-gas
- Other niche standards exist

WiFi 6 Improvements

- Orthogonal Frequency Division Multiple Access (OFDMA)
 - Allows the AP to transmit multiple signals at the same time, instead of sequentially
- Overlapping Basic Service Sets (OBSS)
 - Allows the use of "colors" to uniquely identify traffic and distinguish from noise.
- Beamforming
 - Detects direction of target devices and focuses transmission in that direction, rather than broadcasting

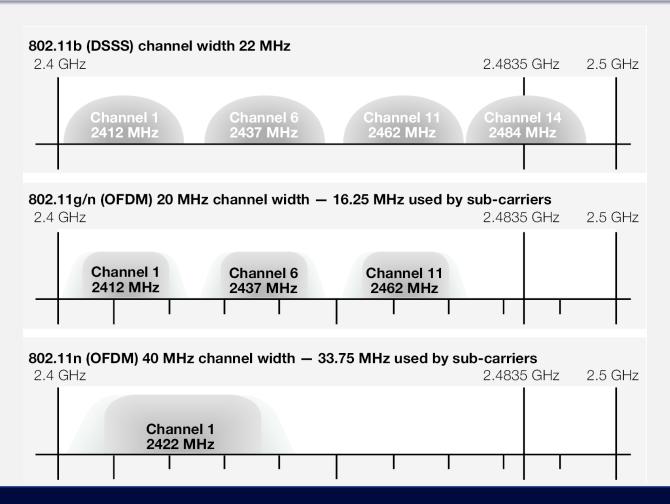
802.11 Unlicensed Bands


- Unlicensed bands: Users can operate without an FCC license
 - Must still use certified equipment and comply with power limitations
 - Unlicensed bands are subject to interference
- Narrowband: Uses little bandwidth by transmitting over a narrow beam of frequency with high power (for example, a 2 MHz wide channel at 80 watts)

802.11 Unlicensed Bands

- **Spread spectrum:** Transmission is spread across entire frequency space available (for example, over a 22 MHz band at 100 mW. 11 times the channel width but a nearly 1,000 times lower power). No license required less susceptible to multipath.
- Frequency hopping spread spectrum (FHSS): Transmits data using a small carrier space in short bursts and then continuously changing to another frequency during transmission.
- **Direct sequence spread spectrum (DSSS):** Stays a fixed channel, hopping within the frequency space on that channel. Using a technique called data encoding.

Multipath Problem



Wireless Access Points

- Wireless access point (WAP)
 - A half-duplex switch that contains a radio card and an antenna that can be tuned to one or more unlicensed radio frequencies
 - Specifically, the 2.4 GHz and/or the 5 GHz bands
- Different WAPs can operate on several channels within each frequency
- Network designers configure WAPs to ensure that non-overlapping channel plans are used to avoid interference

Wireless Access Points (Cont.)

Install and Start WiFi on Windows

Tools

- A variety of tools are available and free versions change frequently
- Windows
 - Inssider
 - NetSpot https://www.netspotapp.com/
 - Also works on Android
 - Acrylic Suite
- Linux
 - Kismet

Using Netspot to view networks and signal strength and channels

Demonstration

How Does a WAP Work?

- Acts as a portal for another network, typically on another physical medium such as wired Ethernet
- Uses RF signals as a carrier band frequency
- Frequencies assigned to 802.11 are the unlicensed bands at 2.4 GHz and 5 GHz
- WAP radio cards are configured to work on one of the two unlicensed bands and on several channels

WAP Architecture

- Two types of WAPs:
 - Autonomous access points: Able to operate at the control and data layers, autonomous access points have switch-like intelligence.
 - Thin access points: Switch-like intelligence is stripped out and relocated in a WLAN controller device. The WLAN controller acts as a central administrator and controller for several thin access points.
 - Considerably eases the administrative burden of managing many WAPs on a WLAN

Wireless Bridges: Introduction

- Distribution system service (DSS) translates traffic between an 802.11 device and the distribution medium used for backhaul
- If backhaul medium is wireless, WAP can also serve as a wireless bridge
- 802.11 standard describes a mechanism called wireless distribution system (WDS) whereby the frame format can handle four MAC addresses
- Real-world deployments for WDS are in bridges, repeaters, and mesh networks

Wireless Workgroup Bridge

- Often used when there are several non-wireless devices, such as Ethernet-networked PCs, in a workgroup or in an office that require backup wireless connectivity to the network
- If the wired network goes down, devices with wireless access can continue to communicate

Residential Gateway

- A home wireless router that acts as a gateway to the Internet through a DSL or cable broadband connection
- Typically has a built-in hub supporting four Ethernet connections and a built-in WAP to create a WLAN

Enterprise Gateway

- Difference between a residential and an enterprise wireless gateway is a matter of capabilities
- Enterprise gateway typically has a WLAN and a LAN interface, which enables it to act as a translational bridge between the two mediums
- Is typically deployed as a guest point of access to the Internet, with no direct access to the corporate network

Wireless Antennas

Omnidirectional

• General-purpose antennas typically installed by default on WAPs; radiate radio waves equally in all directions, theoretically providing 360-degree coverage

Semi-directional

- Are used when coverage is required in a specific direction
 - RF radiance tends to be limited to 180 degrees

Start Access Points

Configure names and channels 2.4 Ghz only

Semi-directional Yagi Antenna

Semi-directional Planar Antenna

Wireless Antennas (Cont.)

- Highly directional
- Are very specific; comparable to a flashlight with a very focused beam
 - Typically used in point-to-point situations, where a very exact, high-gain beam is required
 - Examples: Grid antennas and parabolic antennas

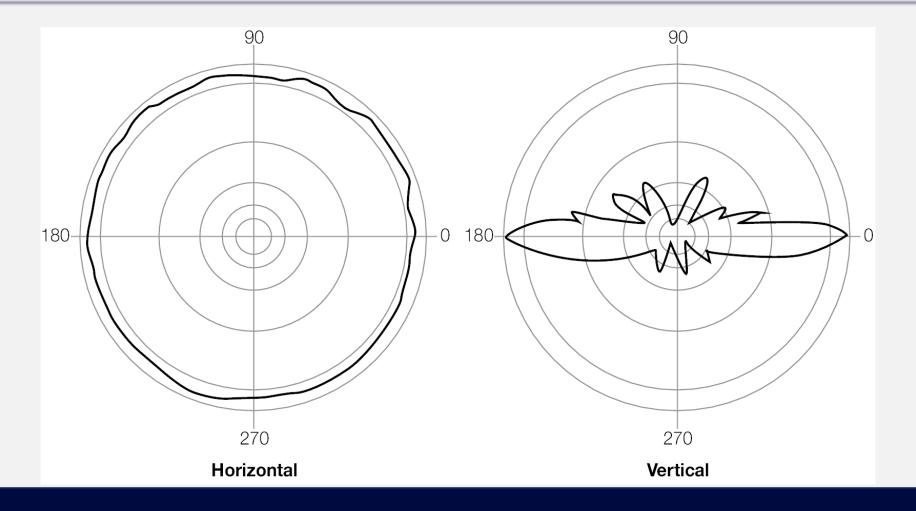
Highly Directional Grid Antenna

Highly Directional Parabolic Antenna

Wireless Antennas (Cont.)

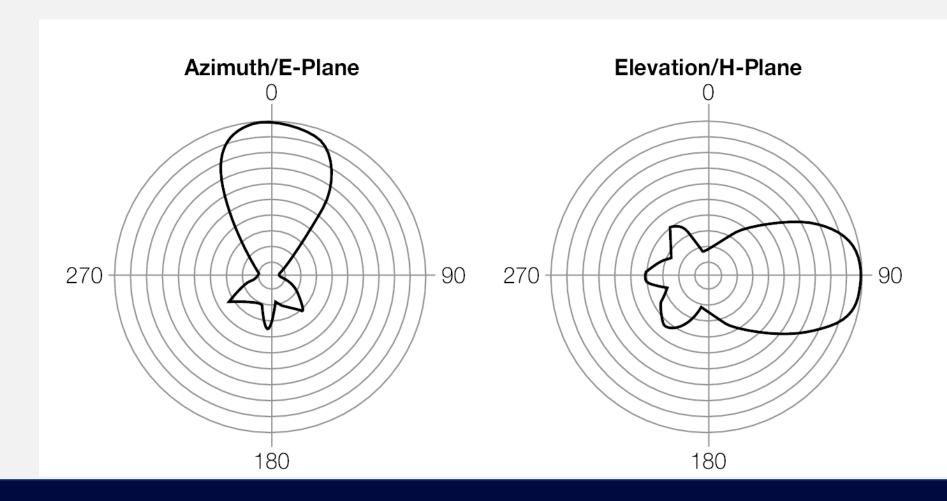
- Multiple input/multiple output (MIMO) antennas
- Architecture allows multiple antennas to transmit and receive concurrently
- MIMO technology allows complex signal-processing techniques, provides enhanced range, throughput, and reliability
- Key components in mobile 3G and 4G handsets, but also included in the 802.11n standard

Wi-Fi Router with MIMO Antennas



Determining Coverage Area

- When dealing with antennas, is important to understand antenna coverage charts from vendors
 - Often called planar charts or radiation envelopes
- Each antenna type has specific characteristics
- Shown in coverage charts from two perspectives: a heads-down azimuth or horizontal aspect, and a side-on elevation or vertical aspect



Omnidirectional Coverage Map

Semi-directional Coverage Map

Coverage Area and Wi-Fi Roaming

- Common design is overlapping coverage areas so network can support seamless roaming
 - Designer specifies overlapping access point coverage of at least 15 to 25 percent
- Nomadic roaming
- Coverage driven by need to ensure segregation and minimal overlap in coverage
- User's connection is lost and then re-established when crossing access point boundaries

Coverage Area and Wi-Fi Roaming (Cont.)

- Collocation
- A fully overlapping access point used to increase capacity
- Mesh basic service set (MBSS)
- Access points act as bridged trunks that link with other mesh mode access points to backhaul traffic from network to a distribution medium portal or gateway
- Common design in larger networks with areas inaccessible to wired connectivity

Improving Wi-Fi Signal

- Repeater (Amplifier)
 - Repeats signals to and from access point
 - Must be close enough to AP to have good signal
 - Still affected by obstacles
- Extenders
 - Wired connection to AP
 - Full power signal, but requires wiring
- Power Line Communications (PLC) Devices
 - Get signal from AP over electrical outlets
 - Outlets must be in same phase to work

Self-organizing WLANs

- Controller-based access points provide ability to dynamically reconfigure lightweight thin access points based on changing RF conditions
- Network can adjust signals, channels, power levels, and patterns to maintain optimal operating characteristics and network performance

Determining Wi-Fi Coverage

Site Survey

- Important to ensure proper coverage and detect signal leakage or pollution.
- Locate and map radio frequency (RF) footprint for each discovered access point against a default grid or an imported floor plan
- Should include capacity planning and identify possible areas of interference
- Example programs:
 - Ekahau HeatMapper
 - Netspot paid editions https://www.netspotapp.com/
 - Acrylic Wi-Fi Heatmaps offers a free education version

Spectrum Analysis

- Helps detect RF interference that might conflict with WLAN
- Spectrum analyzer is used
 - A test device that measures the amplitude and frequency of electromagnetic signals (radio waves)
- Spectrum analysis enables you to visualize and map what RF activity already exists within the 2.4 and 5.0 GHz spectrums
- If background noise (unwanted radiation on those channels) exceeds 85 dBm, wireless network performance suffers

Sources of Noise and Interference

Microwave ovens

Cordless phones

Fluorescent bulbs

Elevator motors

Bluetooth radios

Other 802.11 wireless networks

Malicious transmitters (jammers)

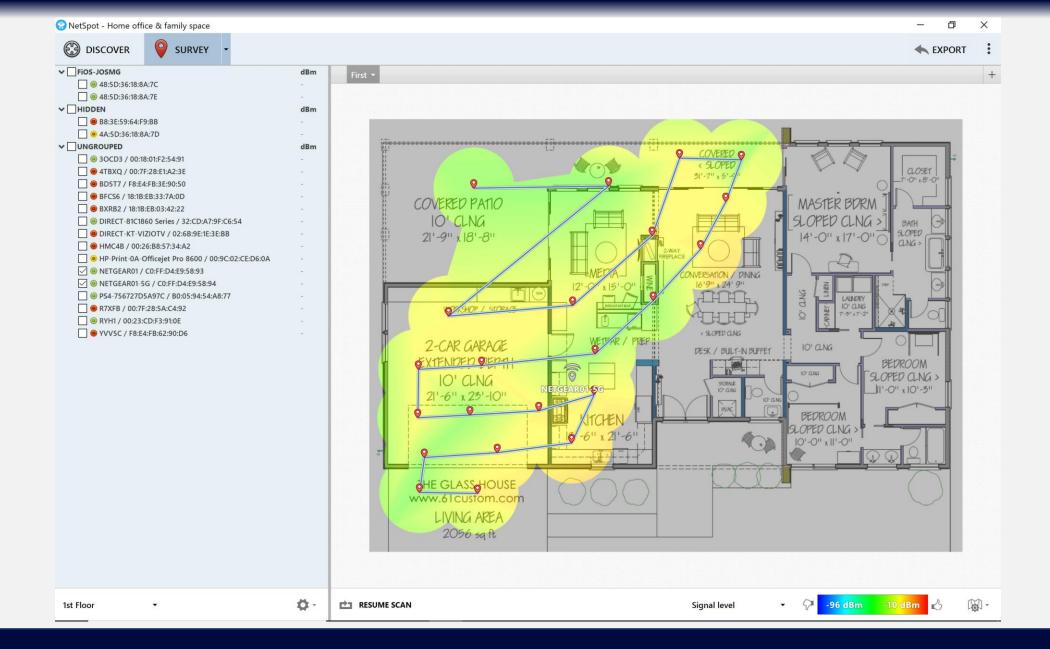
Coverage Analysis

- Conduct site coverage and capacity-planning interviews
 - Information-gathering exercises to establish the capacity and coverage requirements based on the population density in certain areas, which may determine the need for smaller or larger cells or even collocation
- No special tools are required other than the RF signal strength indicator on a laptop or other 802.11-enabled device

Access Point Placement

- Site survey dictates location and boundaries of access points
- Position of each access point must be checked to ensure it is within reach of a wiring closet
 - Ethernet has a distance restriction of 100 meters with Cat 5 cabling
- Use mixture of omnidirectional and semi-directional antennas

Coverage Assessment


- After access points are placed and enabled, assess coverage:
 - Manually
 - Through use of predictive analytics

Coverage Assessment (Cont.)

- Example tool: https://www.netspotapp.com/
- Another example: Ekahau heat mapper
- Manual method
 - Passive mode: A client card is used to collect the RF measurement of receive signal levels, signal noise, and signal-to-noise ratios
 - Active mode: Client station authenticates and associates with access points, working at Layer 1, Layer 2, and Layer 3
- Predictive method
 - Uses predictive modeling applications and simulation software to create visual models of RF cell coverage

