CPE201 Digital Design

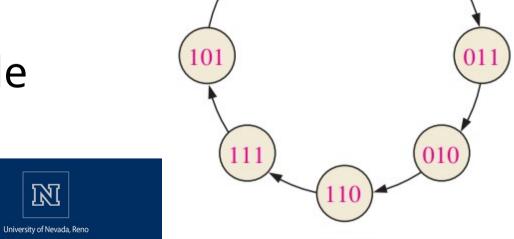
By Benjamin Haas

Class 25: Counter Design

Outline

- Designing Counters
 - Examples
- System Design Example

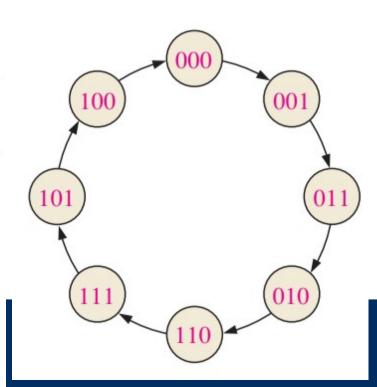
- Step 1 Create state machine
 - For counters, the state is the output
- Ex: 3-bit gray code counter



Step 2 – Next state table

Next-state table for 3-bit Gray code counter.

Present State				Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0



Step 3 – Map state transitions to circuit inputs

Next-state table for 3-bit Gray code counter.

	Present St	ate		Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

his case

Transition table for a J-K flip-flop.

	Output Tran	Flip-Flop Inputs			
Q_N		Q_{N+1}	J	K	
0	\longrightarrow	0	0	X	
0	\longrightarrow	1	1	X	
1	\longrightarrow	0	X	1	
1	\longrightarrow	1	X	0	

 Q_N : present state

 Q_{N+1} : next state X: "don't care"

Step 3b – Table of inputs to create next

Jo	K _o	Q ₂	\mathbf{Q}_1	Q_0	Q _o next
1	Χ	0	0	0	1
Χ	0	0	0	1	1
Χ	1	0	1	1	0
0	Χ	0	1	0	0
1	Χ	1	1	0	1
X	0	1	1	1	1
V	1	1	0	1	0

Transition table for a J-K flip-flop.

	Output Tran	Flip-Flop Inputs			
Q_N		Q_{N+1}	J	K	
0	\longrightarrow	0	0	X	
0	\longrightarrow	1	1	X	
1	\longrightarrow	0	X	1	
1	\longrightarrow	1	X	0	

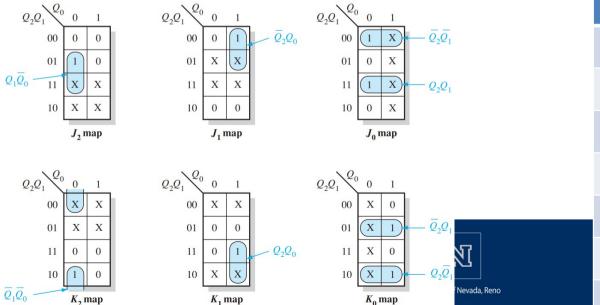
 Q_N : present state

 Q_{N+1} : next state

X: "don't care"

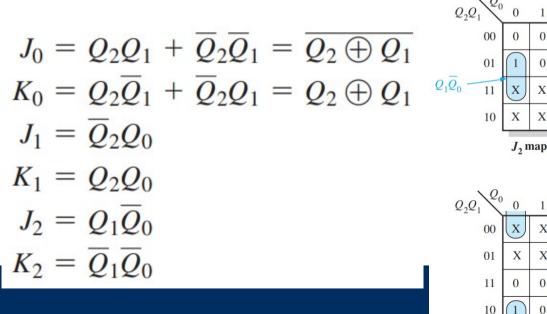
Step 4 – Karnaugh Maps

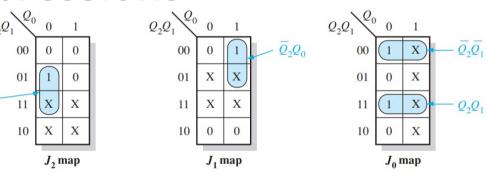
– JK FFs are ACTIVE HIGH, so !



Jo	K ₀	Q ₂	\mathbf{Q}_1	Q_0	Q ₀ next
1	X	0	0	0	1
Χ	0	0	0	1	1
Χ	1	0	1	1	0
0	Χ	0	1	0	0
1	Χ	1	1	0	1
Χ	0	1	1	1	1
Χ	1	1	0	1	0

Step 5 – Logical Expressions





01

 K_1 map

K, map

 \overline{Q}_2Q_1

 K_0 map

Design
$$J_0 = Q_2Q_1 + \overline{Q}_2\overline{Q}_1 = \overline{Q}_2 \oplus \overline{Q}_1$$

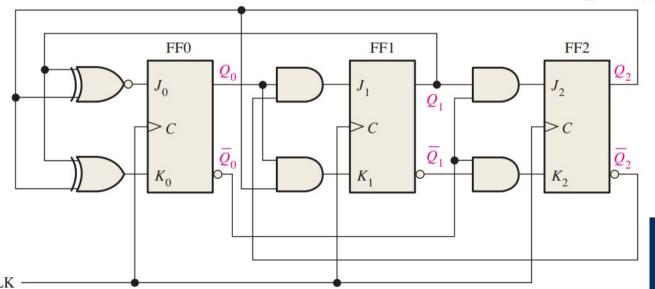
 $K_0 = Q_2\overline{Q}_1 + \overline{Q}_2Q_1 = Q_2 \oplus Q_1$
 $J_1 = \overline{Q}_2Q_0$

Step 6 - Implementation

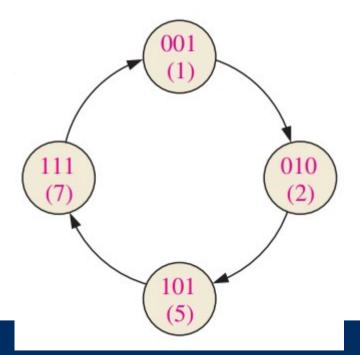
$$K_1 = Q_2 Q_0$$

$$J_2 = Q_1 \overline{Q}_0$$

$$K_2 = \overline{Q}_1 \overline{Q}_0$$



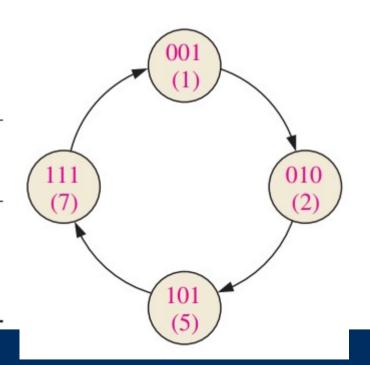
- 3-bit irregular counter
 - State machine given (step
 - Implement with D FFs



Step 2 – next state table

Next-state table.

Present State				Next State	e
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1



Step 3b - Table of inputs to create next

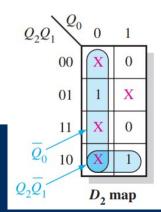
Transition table for a D flip-flop.

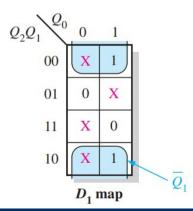
Ou	tput Trans	Flip-Flop Input	
Q_N		Q_{N+1}	D
0	\longrightarrow	0	0
0	\longrightarrow	1	1
1	\longrightarrow	0	0
1	\longrightarrow	1	1

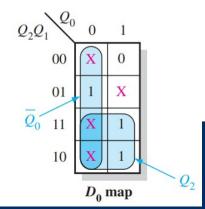
D ₀	Q ₂	Q ₁	Q_0	Q₀ next
0	0	0	1	0
1	0	1	0	1
1	1	1	1	1
1	0	0	1	1

- Step 4 Karnaugh Maps
 - Pink X's are Don't Care because the state is not in the state machine
 - D FFs are ACTIVE HIGH, so SOP

D ₀	Q ₂	\mathbf{Q}_1	Q_0	Q₀ next
0	0	0	1	0
1	0	1	0	1
1	1	1	1	1



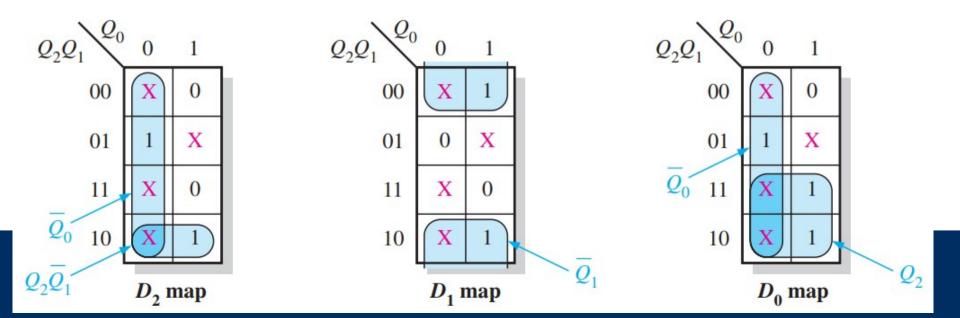




Example $D_0 = \overline{Q}_0 + Q_2$

$$D_0 = \overline{Q}_0 + Q_2$$
$$D_1 = \overline{Q}_1$$

• Step 5 – Logical Expressions $D_2 = \overline{Q}_0 + Q_2 \overline{Q}_1$

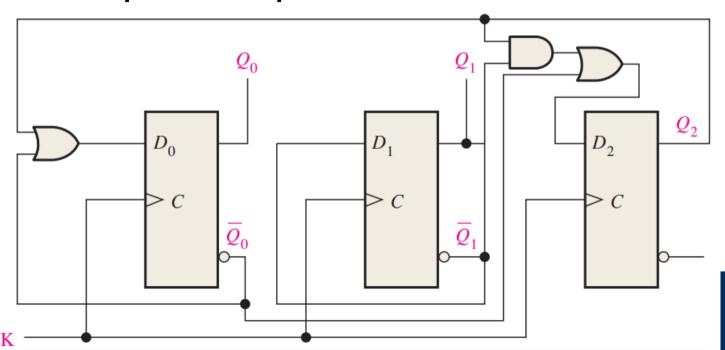


$$D_0 = \overline{Q}_0 + Q_2$$

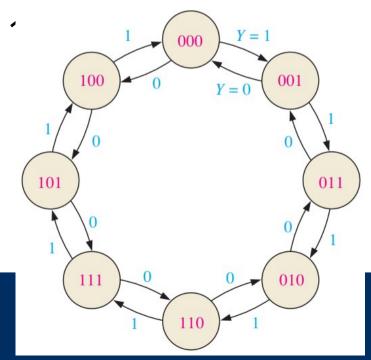
$$D_1 = \overline{Q}_1$$

Step 6 - Implementation

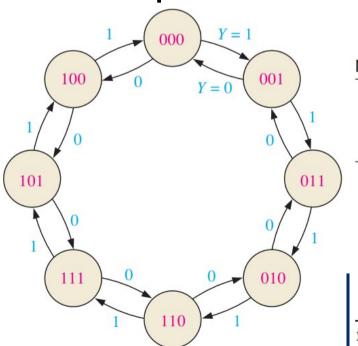
$$D_2 = \overline{\overline{Q}}_0 + Q_2 \overline{Q}_1$$



- 3-bit Gray Code up/down counter
 - State machine given (step '
 - Implement with JK FFs



Step 2 – Next state table



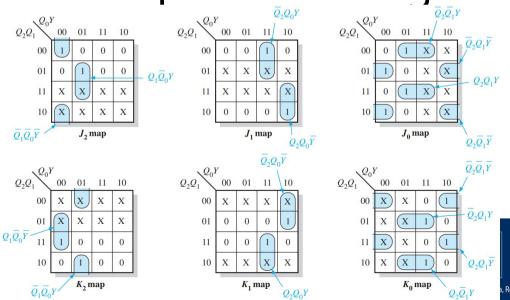
Next-state table for 3-bit up/down Gray code counter.

			Next State						
Pı	Present State			Y = 0 (DOWN)			Y = 1 (UP)		
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	
0	0	0	1	0	0	0	0	1	
0	0	1	0	0	0	0	1	1	
0	1	1	0	0	1	0	1	0	
0	1	0	0	1	1	1	1	0	
1	1	0	0	1	0	1	1	1	
1	1	1	1	1	0	1	0	1	
1	0	1	1	1	1	1	0	0	
1	0	0	1	0	1	0	0	0	

 $Y = UP/\overline{DOWN}$ control input.

					1	TOME DELLE	
	Y	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
	0	0	0	0	1	0	0
Y = 0 (DOWN)	0	0	0	1	0	0	0
	0	0	1	1	0	0	1
Y = 1 (UP)	0	0	1	0	0	1	1
	0	1	1	0	0	1	0
	0	1	1	1	1	1	0
	0	1	0	1	1	1	1
	0	1	0	0	1	0	1
	1	0	0	0	0	0	1
	1	0	0	1	0	1	1
	1	0	1	1	0	1	0
	1	0	1	0	1	1	0
	1	1	1	0	1	1	1
	1	1	1	1	1	0	1
	1	1	0	1	1	0	0
	1	1	0	0	0	0	0

- Step 3b Same process as before
- Step 4 Karnaugh Maps for 4 inputs



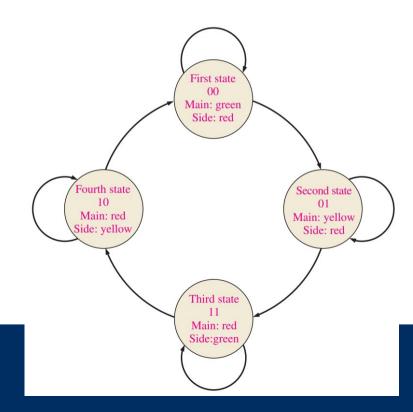
Step 5 and Step 6 are the same process as before

- Lights at a busy road perpendicular to a side street
- Requirements:
 - Green light on main for at least 25s before a change
 - Green light on side street as long as there are vehicles, up to 25s max
 - Yellow for 4s on both streets

Inputs:

- Vehicle sensor input (1 = vehicle present)
- System clock (1Hz)
- Outputs:
 - Red, yellow, green signals for both streets(1 = on)

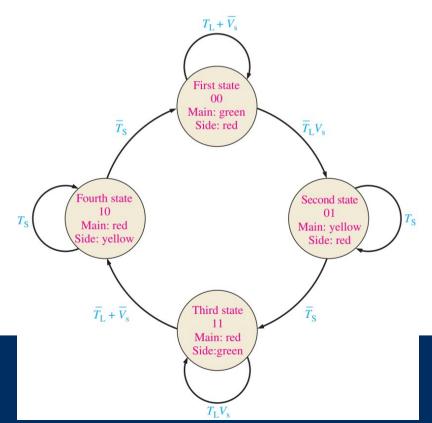
- Basic state machine
 - You know how traffic lights work
 - Also added gray code to represent each state as a number



- Let's describe the transitions
 - First state is 'normal', takes a vehicle on side street and 25s to have passed to change to next state
 - Second state, wait for 4s on yellow
 - Third state, stay here as long as a vehicle is present and it is less than 25s in this state
 - Fourth state, same as second state

- Now make some inputs/variables for the state machine
 - Make from state transitions, make vars binary
 - $-V_s$ = vehicle present on side street
 - $-T_L = long timer (25s) is on$
 - $-T_s = \text{short timer } (4s)$ on

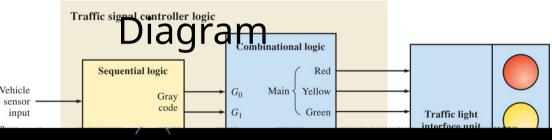
 Note that each transition condition is literally the NOT of the looping condition



- The controller can be broken into several parts
 - Sequential logic takes in all inputs on state machine and outputs state gray code
 - Combinational Logic decodes state, triggers timers, and creates light outputs
 - Timers input triggers and clock, outputs for if each timer is running (creates T_L and T_S)

Break each block down until it does one thing

- Sequential is co
- Timers
- Combination st does too much

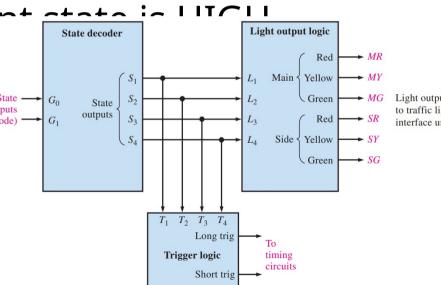


Do your thinking in blocks to simplify problems

Univers

State decoder – cur

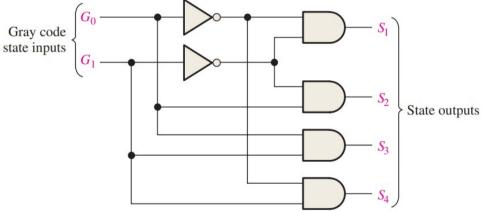
State directly ties
 to light colors and
 starts a timer



State decoder from truth table

G_1 outputs S_1 S_3 S_4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	S_1

Truth table for the state decoder.						
State Inputs (Gray Code)		State Outputs				
G_1	G_0	S_1	S_2	S_3	S_4	
0	0	1	0	0	0	
0	1	0	1	0	0	
1	1	0	0	1	0	
1	0	0	0	0	1	

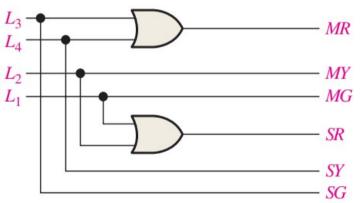


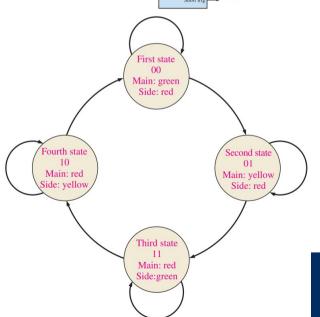
Traffic Signal Designal Designation Designation

Inputs/Outputs are not usually named the same

•
$$MR = L3 + L4$$

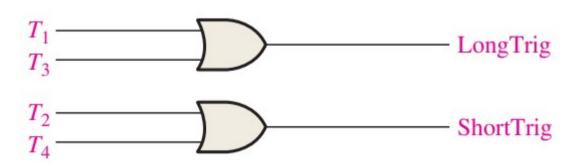
•
$$SR = L1 + L2$$

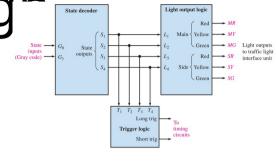


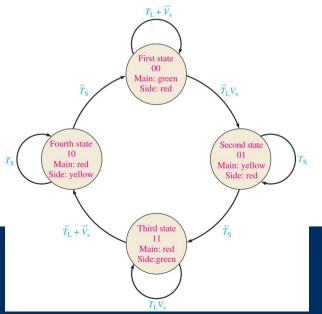


 $(Gray code) \longrightarrow G_1$

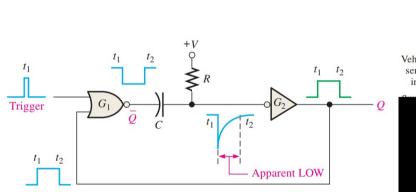
- S1 and S3 start long timer
- S2 and S4 start short timer

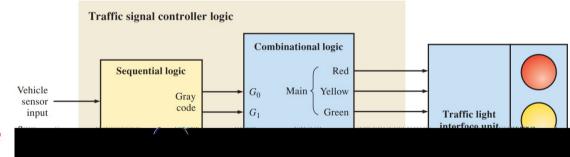






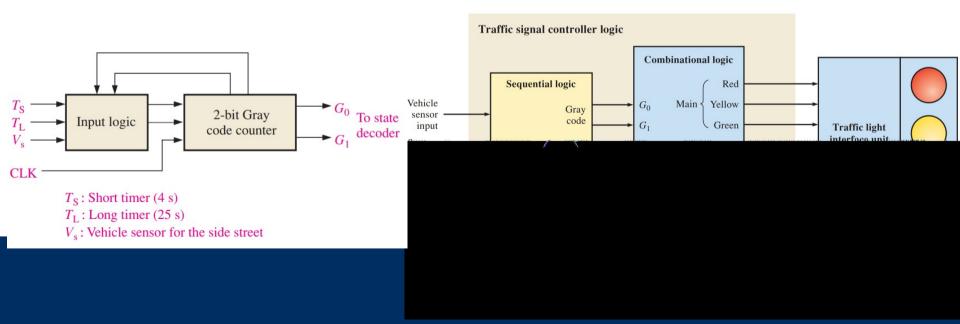
 TS and TL are high when timer is running, just like a one shot





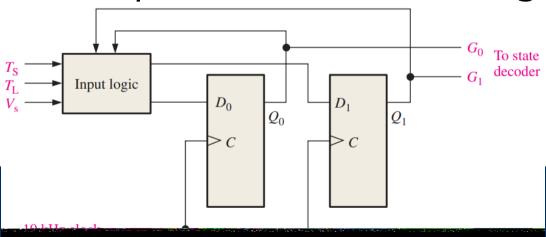
- $t_w = 0.7RC$
- $4s = 0.7R_{4s}C_{4s}$
- If $C_{4s} = 1000 \mu F$, then $R_{4s} = 5,714 \Omega$
- $25s = 0.7R_{25s}C_{25s}$
- If $C_{25s} = 1000 \mu F$, then $R_{25s} = 35,714 \Omega$

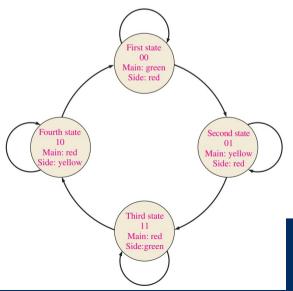
One chunk left, it's a 2-bit counter



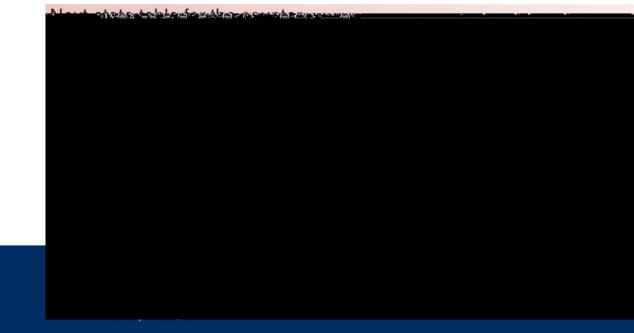
- We'll use D FFs
 - Arbitrarily pick system clock at 10kHz

Step 1 - State machine is giver





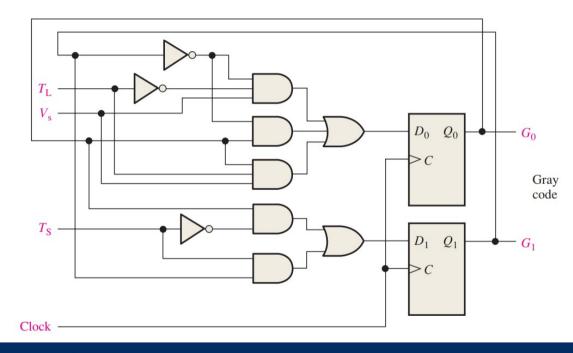
Step 2- Next state table



- Karnaugh maps would be very complicated with 5 variables (G₁, G₀, V_s, T_L, T_s)
 - Also a sparse table, so you can opt to not simplify the circuit to be quick
 - Write out the terms that make $D_0 = 1$

- $D_0 = G_1G_0'T_L'V_S + G_1G_0'T_S + G_1G_0T_S' + G_1G_0T_LV_S$

That's all the pieces!



Reading

- This lecture
 - 9.5, Ch6 and Ch7 Applied Logic
- Next lecture
 - Sections 12.1-12.3