
Chapter
1

INTRODUCTION TO
THE THEORY OF
COMPUTATION

Learning Objectives
At the conclusion of the chapter, the student will be able
to:

• Define the three basic concepts in the theory of
computation: automaton, formal language, and grammar.

• Solve exercises using mathematical techniques and
notation learned in previous courses.

• Evaluate expressions involving operations on strings.
• Evaluate expressions involving operations on languages.
• Generate strings from simple grammars.
• Construct grammars to generate simple languages.
• Describe the essential components of an automaton.
• Design grammars to describe simple programming

constructs.

Theory of Computation
Basic Concepts
• Automaton: a formal construct that accepts input,

produces output, may have some temporary
storage, and can make decisions

• Formal Language: a set of sentences formed from a
set of symbols according to formal rules

• Grammar: a set of rules for generating the
sentences in a formal language

In addition, the theory of computation is concerned
with questions of computability (the types of
problems computers can solve in principle) and
complexity (the types of problems that can solved in
practice).

Review of Mathematical
Preliminaries
• Sets: basic notation, operations (union,

intersection, difference, and complementation),
disjoint sets, power set, partitions.

• Functions and Relations: domain, range, total
function, partial function, order of magnitude,
equivalence relations.

• Graphs and Trees: vertices, edges, walk, path,
simple path, cycle, loop, root vertex, parent, child,
leaves, level, height.

• Proof Techniques: proof by induction and proof by
contradiction.

Formal Languages
Basic Concepts
• Alphabet: set of symbols, i.e. Σ = {a, b}
• String: finite sequence of symbols from Σ,

such as v = aba and w = abaaa
• Empty string (λ)
• Substring, prefix, suffix

• Operations on strings:
• Concatenation: vw = abaabaaa
• Reverse: wR = aaaba
• Repetition: v2 = abaaba and v0 = λ

• Length of a string: |v| = 3 and |λ| = 0

Formal Languages
Definitions
• Σ* = set of all strings formed by

concatenating zero or more symbols in Σ
• Σ+ = set of all non-empty strings formed by

concatenating symbols in Σ
In other words, Σ+ = Σ* - { λ }
• A formal language is any subset of Σ*
 Examples: L1 = { anbn: n 0 } and L≥ 2 = { ab, aa
}
• A string in a language is also called a

sentence of the language

Formal Languages
Set Operations
• A language is a set. Therefore, set operations

are defined as usual.
• If L1 = { anbn: n 0 } ≥ and L2 = { ab, aa }

• Union: L1 ᴜ L2 = { aa, λ, ab, aabb, aaabbb, … }
• Intersection: L1 ∩ L2 = { ab }
• Difference: L1 - L2 = { λ, aabb, aaabbb, … }
• Complement: L2 = Σ* - { ab, aa }

• Practice: Find L2 – L1

Formal Languages
Other Operations

• New languages can be produced by reversing all strings
in a language, concatenating strings from two languages,
and concatenating strings from the same language.

• If L1 = { anbn: n 0 } ≥ and L2 = { ab, aa }
• Reverse: L2

R
 = { ba, aa }

• Concatenation: L1L2 = { ab, aa, abab, abaa, aabbab, aabbaa, … }
 The concatenation L2L2 or L2

2
 = { abab, abaa, aaab, aaaa }

• Star-Closure: L2* = L2
0 ᴜ L2

1 ᴜ L2
2 ᴜ L2

3 ᴜ …
• Positive Closure: L2

+ = L2
1 ᴜ L2

2 ᴜ L2
3 ᴜ …

• Practice: Find (L2 – L1)R

Grammars
Definition
• Precise mechanism to describe the strings in

a language
• Def. 1.1: A grammar G consists of:

V: a finite set of variable or non-terminal symbols
T: a finite set of terminal symbols
S: a variable called the start symbol
P: a set of productions

• Example 1.11:
V = { S }
T = { a, b }
P = { S  aSb, S  λ }

Grammars
Derivation of Strings
• Beginning with the start symbol, strings are

derived by repeatedly replacing variable symbols
with the expression on the right-hand side of any
applicable production

• Any applicable production can be used, in
arbitrary order, until the string contains no
variable symbols.

• Sample derivation using grammar in Example
1.11:

S  aSb (applying first production)
  aaSbb (applying first production)
  aabb (applying second production)

The Language Generated by a
Grammar

• Def. 1.2: For a given grammar G, the
language generated by G, L(G), is the set
of all strings derived from the start
symbol

• To show a language L is generated by G:
• Show every string in L can be generated by G
• Show every string generated by L is in G

• A given language can normally be
generated by different grammars

Equivalence of Grammars
• Two grammars are equivalent if they

generate the same language
• For convenience, productions with the

same left-hand sides are written on the
same line

• Example 1.14:
V = { A, S }, T = { a, b }, and

productions
S  aAb | λ
A  aAb | λ

• The grammars in examples 1.11 and 1.14
can be shown to be equivalent

Automata
• An automaton is an abstract model of a

digital computer
• An automaton consists of

• An input mechanism
• A control unit
• Possibly, a storage mechanism
• Possibly, an output mechanism

• Control unit can be in any number of
internal states, as determined by a next-
state or transition function.

Diagram of a General
Automaton

Application
Grammars for Programming Languages
• The syntax of constructs in a programming

language is commonly described with grammars
• Assume that in a hypothetical programming

language,
• Identifiers consist of digits and the letters a, b, or c
• Identifiers must begin with a letter

• Productions for a sample grammar:
<id>  <letter> <rest>
<rest>  <letter> <rest> | <digit> <rest> | λ
<letter>  a | b | c
<digit>  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

	Chapter 1
	Learning Objectives At the conclusion of the chapter, the stude
	Theory of Computation Basic Concepts
	Review of Mathematical Preliminaries
	Formal Languages Basic Concepts
	Formal Languages Definitions
	Formal Languages Set Operations
	Formal Languages Other Operations
	Grammars Definition
	Grammars Derivation of Strings
	The Language Generated by a Grammar
	Equivalence of Grammars
	Automata
	Diagram of a General Automaton
	Application Grammars for Programming Languages

