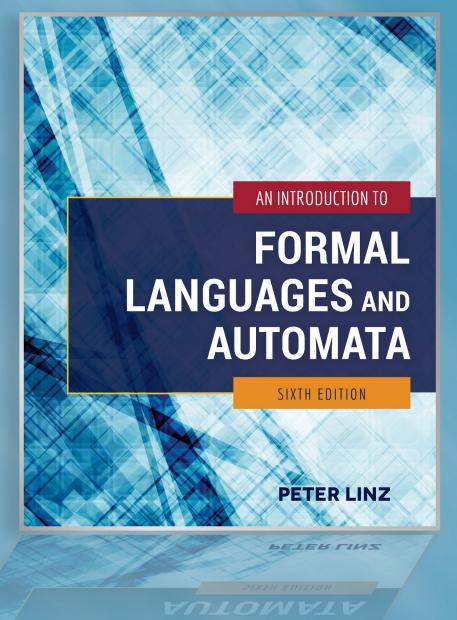
Chapter 2

FINITE AUTOMATA



Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a deterministic finite accepter (dfa)
- State whether an input string is accepted by a dfa
- Describe the language accepted by a dfa
- Construct a dfa to accept a specific language
- Show that a particular language is regular
- Describe the differences between deterministic and nondeterministic finite automata (nfa)
- State whether an input string is accepted by a nfa
- Construct a nfa to accept a specific language
- Transform an arbitrary nfa to an equivalent dfa

Deterministic Finite Accepters

Def 2.1: A <u>deterministic finite accepter</u> is defined by

Q: a finite set of *internal states*

Σ: a set of symbols called the *input alphabet*

δ: a transition function from Q X Σ to Q

q₀: the *initial state*

F: a subset of Q representing the *final states*

Example 2.1: Consider the dfa

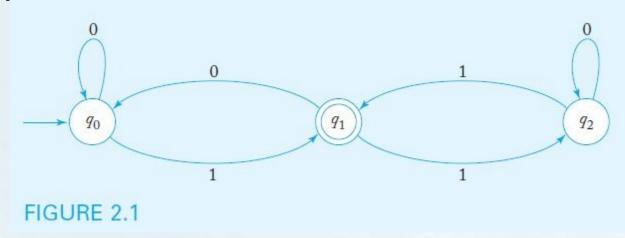
$$Q = \{ q_0, q_1, q_2 \} \Sigma = \{ 0, 1 \} F = \{ q_1 \}$$

where the transition function is given by

$$\delta(q_0, 0) = q_0$$
 $\delta(q_0, 1) = q_1$ $\delta(q_1, 0) = q_0$
 $\delta(q_1, 1) = q_2$ $\delta(q_2, 0) = q_2$ $\delta(q_2, 1) = q_1$

Transition Graphs

- A DFA can be visualized with a *Transition* Graph
- The graph below represents the dfa in Example 2.1:



Processing Input with a DFA

- A DFA starts by processing the leftmost input symbol with its control in state q_0 . The transition function determines the next state, based on current state and input symbol
- The DFA continues processing input symbols until the end of the input string is reached
- The input string is accepted if the automaton is in a final state after the last symbol is processed. Otherwise, the string is rejected.
- For example, the dfa in example 2.1 accepts the string 111 but rejects the string 110

The Language Accepted by a DFA

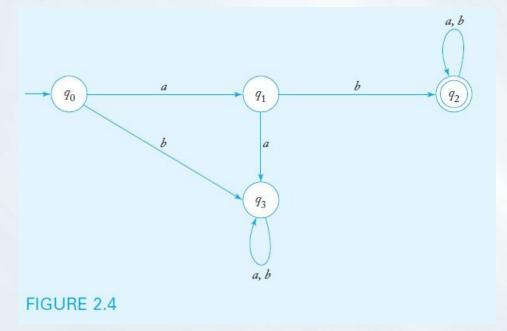
- For a given dfa, the extended transition function δ^* accepts as input a dfa state and an input string. The value of the function is the state of the automaton after the string is processed.
- Sample values of δ * for the dfa in example 2.1,

$$\delta^*(q_0, 1001) = q_1 \qquad \delta^*(q_1, 000) = q_0$$

• The language accepted by a dfa M is the set of all strings accepted by M. More precisely, the set of all strings w such that $\delta*(q_0, w)$ results in a final state.

A Sample Deterministic Finite Accepter

• Example 2.3 shows a dfa to accept the set of all strings on { a, b } that start with the prefix ab.



Regular Languages

- Finite automata accept a family of languages collectively known as regular languages.
- A language L is regular if and only if there is a DFA that accepts L. Therefore, to show that a language is regular, one must construct a DFA to accept it.
- Practice: show that L = {(ab)ⁿa, n > 0} is regular.
- Regular languages have wide applicability in problems that involve scanning input strings in search of specific patterns.

Nondeterministic Finite Accepters

- An automaton is nondeterministic if it has a choice of actions for given conditions
- Basic differences between deterministic and nondeterministic finite automata:
 - In an nfa, a (state, symbol) combination may lead to several states <u>simultaneously</u>
 - If a transition is labeled with the empty string as its input symbol, the nfa may change states without consuming input
 - an nfa may have <u>undefined transitions</u>

Nondeterministic FA Example 2.7

• Example 2.7 shows a nondeterministic fa in which there are two transitions labeled a out of state q_{o}

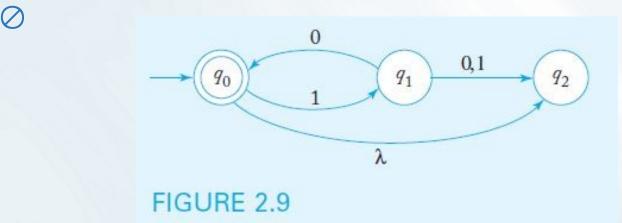
• More pr q_1 q_2 q_3 q_4 q_4 q_5 q_5

FIGURE 2.8

Nondeterministic FA Example 2.8

• Example 2.8 shows a nondeterministic fa which contains both a λ -transition as well as undefined transitions

• More precisely, $\delta(q_0, \lambda) = \{ q_2 \}$ and $\delta(q_2, 0) =$



The Language Accepted by a Nondeterministic FA

- For a given nfa, the value of the extended transition function $\delta^*(q_i, w)$ is the set of all possible states for the control unit after processing w, having started in q_i
- Sample values of δ^* for the nfa in example 2.8:

$$\delta^*(q_0, 10) = \{ q_0, q_2 \}$$
 $\delta^*(q_0, 101) = \{ q_1 \}$

- A string w is accepted if $\delta^*(q_0, w)$ contains a final state. In the example above, 10 would be accepted but 101 would be rejected.
- As is the case with dfa, the language accepted by a nondeterministic fa M is the set of all accepted strings.
 The machine in example 2.8 accepts L = { (10)ⁿ: n ≥ 0 }

Equivalence of Deterministic and Nondeterministic Finite

- Accept languages that deterministic fa cannot recognize?
- As it turns out, per Theorem 2.2: For <u>any</u> nondeterministic finite accepter, there is an equivalent deterministic finite accepter
- Therefore, every language accepted by a nondeterministic finite accepter is regular
- To prove theorem 2.2, a constructive proof is given. The algorithm outlines the steps to follow when building a dfa equivalent to a particular nfa

Procedure: nfa-to-dfa Conversion

- 1. Beginning with the start state, define input transitions for the dfa as follows:
 - If the nfa input transition leads to a single state, replicate for the dfa
 - If the nfa input transition leads to more than one state, create a new state in the dfa labeled $\{q_i, ..., q_j\}$, where $q_i, ..., q_i$ are all the states the nfa transition can lead to.
 - If the nfa input transition is not defined, the corresponding dfa transition should lead to a trap state.
- 2. Repeat step 1 for all newly created dfa states, until no new states are created.
- 3. Any dfa state containing an nfa final state in its label should be labeled as final.
- 4. If the nfa accepts the empty string, label the start dfa state a final state.

nfa-to-dfa Conversion Example

 Example
 When applying the conversion procedure to the nfa below, we note the following nfa transitions

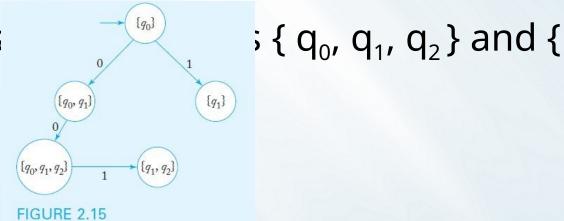
$$\delta(q_0, 0) = \{ q_0, q_1 \}$$
 $\delta(q_0, 1) = \{ q_1 \}$
 $\delta(q_1, 0) = \{ q_2 \}$ $\delta(q_1, 1) = \{ q_2 \}$
 $= \{ q_2 \}$
FIGURE 2.14

nfa-to-dfa Conversion Example (cont.)

- We add transitions from q_0 to states { q_0 , q_1 } and { q_1 }
- Note that $\delta(q_0, 0) \cup \delta(q_1, 0) = \{ q_0, q_1, q_2 \}$ and

$$\delta(q_0, 1) \cup \delta(q_1, 1) \cup \delta(q_2, 1) = \{ q_1, q_2 \}$$

• So we add trans q_1, q_2



nfa-to-dfa Conversion Example (cont.)

• Note that $\delta(q_1, 0) \cup \delta(q_2, 0) = \{ q_2 \}$ and

$$\delta(q_1, 1) \cup \delta(q_2, 1) = \{ q_2 \}$$

- So we add 0-1 transitions from $\{q_1, q_2\}$ to $\{q_2\}$
- Similarly, we add 0-1 transitions from $\{q_1\}$ to $\{q_2\}$
- Since $\delta(q_2, 1) = \{q_2\}$, we add the corresponding transition
- Since $\delta(q_2, 0)$ is undefined, we add a trap state (labeled \emptyset) as well as the corresponding transitions.

nfa-to-dfa Conversion Example (cont.)

• Since there are no dfa states with undefined transitions, the process stops. All states containing q₁ in their label are designated as final states.

