
Chapter
6

SIMPLIFICATION OF
CONTEXT-FREE

GRAMMARS AND
NORMAL FORMS

Learning Objectives
At the conclusion of the chapter, the student will be able
to:

• Simplify a context-free grammar by removing useless
productions

• Simplify a context-free grammar by removing -productions
• Simplify a context-free grammar by removing unit-

productions
• Determine whether or not a context-free grammar is in

Chomsky normal form
• Transform a context-free grammar into an equivalent

grammar in Chomsky normal form
• Determine whether or not a context-free grammar is in

Greibach normal form
• Transform a context-free grammar into an equivalent

grammar in Greibach normal form

Methods for Transforming
Grammars

• The definition of a context-free grammar
imposes no restrictions on the right side of a
production

• In some cases, it is convenient to restrict the
form of the right side of all productions

• Simplifying a grammar involves eliminating
certain types of productions while producing an
equivalent grammar, but does not necessarily
result in a reduction of the total number of
productions

• For simplicity, we focus on languages that do
not include the empty string

A Useful Substitution Rule
• Theorem 6.1 states that, If A and B are distinct

variables, a production of the form A  uBv can be
replaced by a set of productions in which B is
substituted by all strings B derives in one step.

• Consider the grammar
V = { A, B }, T = { a, b, c }, and productions
A  a | aaA | abBc
B  abbA | b

• We can replace A  abBc with two productions that
replace B (in red), obtaining an equivalent
grammar with productions
A  a | aaA | ababbAc | abbc
B  abbA | b

Useless Productions
• A variable is useful if it occurs in the derivation of at

least one string in the language
• Otherwise, the variable and any productions in

which it appears is considered useless
• A variable is useless if:

• No terminal strings can be derived from the variable
• The variable symbol cannot be reached from S

• In the grammar below, B can never be reached
from the start symbol S and is therefore considered
useless
S  A
A  aA | 
B  bA

Removing Useless Productions
It is always possible to remove useless productions from
a context-free grammar:
1. Let V1 be the set of useful variables, initialized to

empty
2. Add a variable A to V1 if there is a production of the

form
A  terminal symbols or variables in V1

(Repeat until nothing else can be added to V1)

3. Eliminate any productions containing variables not
in V1

4. Use a dependency graph to identify and eliminate
variables that are unreachable from S

Application of the Procedure for
Removing Useless Productions
• Consider the grammar from example 6.3:

S  aS | A | C
A  a
B  aa
C  aCb

• In step 2, variables A, B, and S are added to V1

• Since C is useless, it is eliminated in step 3, resulting in the
grammar with productions

S  aS | A
A  a
B  aa

• In step 4, B is identified as unreachable from S, resulting in the
grammar with productions

S  aS | A
A  a

-Productions
• A production with  on the right side is called a -

production
• A variable A is called nullable if there is a sequence of

derivations through which A produces 
• If a grammar generates a language not containing ,

any -productions can be removed
• In the grammar below, S1 is nullable

S  aS1b
S1  aS1b| 

• Since the language is -free, we have the equivalent
grammar
S  aS1b | ab
S1  aS1b | ab

Removing -Productions
It is possible to remove -productions from a context-
free grammar that does not generate :
1. Let VN be the set of nullable variables, initialized to

empty
2. Add a variable A to VN if there is a production

having one of the forms:
• A  λ
• A  variables already in VN

(Repeat until nothing else can be added to VN)

3. Eliminate -productions
4. Add productions in which nullable symbols are

replaced by λ in all possible combinations

Application of the Procedure
for Removing -Productions
• Consider the grammar from example 6.5:

S  ABaC
A  BC
B  b | 
C  D | 
D  d

• In step 2, variables B, C, and A (in that order) are added to
VN

• In step 3, -productions are eliminated
• In step 4, productions are added by replacing nullable

symbols with in  all possible combinations, resulting in
S  ABaC | BaC | AaC | Aba | aC | Aa | Ba | a
A  B | C | BC
B  b
C  D
D  d

Unit-Productions
• A production of the form A  B (where A

and B are variables) is called a unit-
production

• Unit-productions add unneeded complexity
to a grammar and can usually be removed
by simple substitution

• Theorem 6.4 states that any context-free
grammar without -productions has an
equivalent grammar without unit-
productions

• The procedure for eliminating unit-
productions assumes that all -productions
have been previously removed

Removing Unit-Productions
1. Draw a dependency graph with an edge

from A to B corresponding to every A  B
production in the grammar

2. Construct a new grammar that includes all
the productions from the original
grammar, except for the unit-productions

3. Whenever there is a path from A to B in
the dependency graph, replace B using
the substitution rule from Theorem 6.1,
but using only the productions in the new
grammar

Application of the Procedure
for Removing Unit-Productions
• Consider the grammar from example 6.6:

S  Aa | B
A  a | bc |B
B  A | bb
The dependency graph contains paths from S to
A, S to B, B to A, and A to B

• After removing unit-productions and adding the
new productions (in red), the resulting grammar
is
S  Aa | a | bc | bb
A  a | bc | bb
B  a | bc | bb

Simplification of Grammars
• Theorem 6.5 states that, for any context-

free language that does not include λ,
there is a context-free grammar without
useless, -, or unit-productions

• Since the removal of one type of
production may introduce productions of
another type, undesirable productions
should be removed in the following order:

1. Remove -productions
2. Remove unit-productions
3. Remove useless productions

Chomsky Normal Form
• In Chomsky normal form, the number of

symbols on the right side of a production is
strictly limited.

• A context-free grammar is in Chomsky normal
form if all of its productions are in one of the
forms below (A, B, C are variables; a is a terminal
symbol)

• A  BC
• A  a

• The grammar below is in Chomsky normal form
S  AS | a
A  SA| b

Transforming a Grammar into
Chomsky Normal Form
For any context-free grammar that does not
generate , it is possible to find an equivalent
grammar in Chomsky normal form:
1. Copy any productions of the form A  a
2. For other productions containing a terminal

symbol x on the right side, replace x with a
variable X and add the production X  x

3. Introduce additional variables to reduce the
lengths of the right sides of productions as
necessary, replacing long productions with
productions of the form W  YZ (W, Y, Z are
variables)

Application of the Procedure
for Removing Unit-Productions
• Consider the grammar from example 6.8, which is clearly not in

Chomsky normal form
S  ABa
A  aab
B  Ac

• After replacing terminal symbols with new variables and adding
new productions (in red), the resulting grammar is
S  AC
C  BX
A  XD
D  XY
B  AZ
X  a
Y  b
Z  c

Greibach Normal Form
• In Greibach normal form, there are restrictions

on the positions of terminal and variable
symbols

• A context-free grammar is in Greibach Normal
Form if, in all of its productions, the right side
consists of single terminal followed by any
number of variables

• The grammar below is in Greibach normal
form

S  aAB | bBB | bB
A  aA| bB | b
B  b

Transforming a Grammar into
Greibach Normal Form
• For any context-free grammar that does not

generate , it is possible to find an equivalent
grammar in Greibach normal form

• Consider the grammar from example 6.10, which
is clearly not in Greibach normal form
S  abSb | aa

• After replacing terminal symbols with new
variables and adding new productions (in red),
the resulting grammar is
S  aBSB | aA
A  a
B  b

	Chapter 6
	Learning Objectives At the conclusion of the chapter, the stude
	Methods for Transforming Grammars
	A Useful Substitution Rule
	Useless Productions
	Removing Useless Productions
	Application of the Procedure for Removing Useless Productions
	-Productions
	Removing -Productions
	Application of the Procedure for Removing -Productions
	Unit-Productions
	Removing Unit-Productions
	Application of the Procedure for Removing Unit-Productions
	Simplification of Grammars
	Chomsky Normal Form
	Transforming a Grammar into Chomsky Normal Form
	Application of the Procedure for Removing Unit-Productions (2)
	Greibach Normal Form
	Transforming a Grammar into Greibach Normal Form

