

Prove non-computability:

- ✓ I. halting problem as a counter example.
- ✓ II. show  $\exists$  more languages than tms.
- ✓ III. show relationship between recursive - recursively enumerable and their complements

II finish proof.

proof:

1. show the set of all tms (under some  $\Sigma$ ) is denumerable.  
how: represent every tm as a binary string.  
• order them by value  
• count i.e., put into 1-1 correspondence w/ natural #s.  
 $\therefore$  denumerable.

2. show the set of all languages is not denumerable.

how:

- look @  $\Sigma$  (e.g.  $\Sigma = \{a, b\}$ )  
 $\Rightarrow$  always finite.
  - look @  $\Sigma^*$  (e.g.  $\Sigma^* = \{\lambda, a, aa, ab, ba, bb, \dots\}$ )  
show denumerable by putting into shortest order and count.
  - power set of a denumerable set is not denumerable e.g.  
 $P_1 = \{a, aa, aad, \dots\}$   
 $P_2 = \{b, bb, bbb, \dots\}$   
 $P_3 = \{abb, abb, abbb, \dots\}$

look @  $P_i = a$  language.

Power set of  $\Sigma^*$  is the set of all languages (under some  $\Sigma$ )

$\therefore$  set of all languages is not denumerable

3.  $\therefore$  since set of all languages is not denumerable and set of all tms is denumerable  $\Rightarrow$  more languages than tms.  
 $\Rightarrow$   $\exists$  languages w/out a corresponding tm.

4. turing stro theis says anything that is computable can be computed by a tm.

5.  $\therefore \exists$  some languages that are not computable

III show that  $\exists$  languages that are not recursively enumerable.

1. recursive languages (tm is called a decider)

$s \in L, M_{tm}(L)$  halt in  $g_a$

$s \notin L, M_{tm}(L)$  halt in  $g_r$ .

2. recursively enumerable languages (tm is called a recognizer)

$s \in L, M_{tm}(L)$  halt in  $g_a$

$s \notin L, M_{tm}(L)$  1. halt in  $g_r$  or 2. not halt

3. recursive  $\neq$  r.e.

recursive  $\subset$  r.e.

r.e.  $\neq$  recursive

4. complement of a recursive language is recursive.  
 $\text{if } L \text{ is recursive } \Rightarrow L' \text{ is also recursive}$

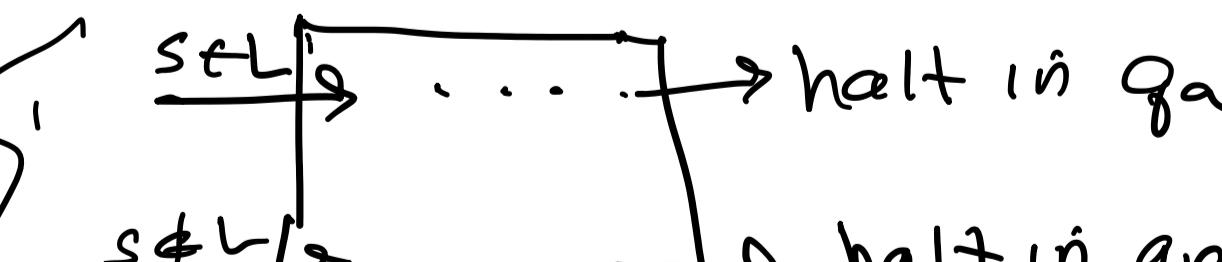
$L \quad M(L)$  is a decider



$M(L')$  is a decider

$\Rightarrow L'$  is a recursive language.

$L$  is r.e.  $\Rightarrow M(L)$  is a recognizer



$L'$  is r.e.  $\Rightarrow M(L')$  is a recognizer



$\Rightarrow$  in all cases the "M" is going to halt.  $\therefore$  "M" is a decider for both  $L$  and  $L'$

$\Rightarrow L, L'$  are both recursive

| $L$       | $L'$                       | both                    |
|-----------|----------------------------|-------------------------|
| recursive | recursive                  | $\Rightarrow$ recursive |
| r.e.      | r.e.                       | $\Rightarrow$ recursive |
| recursive | r.e.                       | $\Rightarrow$ recursive |
| r.e.      | recursive                  | $\Rightarrow$ recursive |
| r.e.      | r.e.                       | $\Rightarrow$ recursive |
| r.e.      | neither recursive nor r.e. |                         |

neither recursive nor r.e.

does not have an associated tm

$\therefore$  not computable