mirror of
https://github.com/SWivid/F5-TTS.git
synced 2026-01-11 04:36:06 -08:00
support hydra config training
This commit is contained in:
40
src/f5_tts/config/E2TTS_Base_train.yaml
Normal file
40
src/f5_tts/config/E2TTS_Base_train.yaml
Normal file
@@ -0,0 +1,40 @@
|
||||
hydra:
|
||||
run:
|
||||
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
|
||||
datasets:
|
||||
name: Emilia_ZH_EN
|
||||
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type: frame # "frame" or "sample"
|
||||
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
|
||||
optim:
|
||||
epochs: 15
|
||||
learning_rate: 7.5e-5
|
||||
num_warmup_updates: 20000 # warmup steps
|
||||
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
||||
max_grad_norm: 1.0
|
||||
|
||||
model:
|
||||
name: E2TTS
|
||||
tokenizer: char
|
||||
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
||||
arch:
|
||||
dim: 1024
|
||||
depth: 24
|
||||
heads: 16
|
||||
ff_mult: 4
|
||||
mel_spec:
|
||||
target_sample_rate: 24000
|
||||
n_mel_channels: 100
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 1024
|
||||
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
||||
is_local_vocoder: False
|
||||
local_vocoder_path: None
|
||||
|
||||
ckpts:
|
||||
save_per_updates: 50000 # save checkpoint per steps
|
||||
last_per_steps: 5000 # save last checkpoint per steps
|
||||
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
42
src/f5_tts/config/F5TTS_Base_train.yaml
Normal file
42
src/f5_tts/config/F5TTS_Base_train.yaml
Normal file
@@ -0,0 +1,42 @@
|
||||
hydra:
|
||||
run:
|
||||
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
|
||||
datasets:
|
||||
name: Emilia_ZH_EN
|
||||
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type: frame # "frame" or "sample"
|
||||
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
|
||||
optim:
|
||||
epochs: 15
|
||||
learning_rate: 7.5e-5
|
||||
num_warmup_updates: 20000 # warmup steps
|
||||
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
||||
max_grad_norm: 1.0
|
||||
|
||||
model:
|
||||
name: F5TTS
|
||||
tokenizer: char
|
||||
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
||||
arch:
|
||||
dim: 1024
|
||||
depth: 22
|
||||
heads: 16
|
||||
ff_mult: 2
|
||||
text_dim: 512
|
||||
conv_layers: 4
|
||||
mel_spec:
|
||||
target_sample_rate: 24000
|
||||
n_mel_channels: 100
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 1024
|
||||
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
||||
is_local_vocoder: False
|
||||
local_vocoder_path: None
|
||||
|
||||
ckpts:
|
||||
save_per_updates: 50000 # save checkpoint per steps
|
||||
last_per_steps: 5000 # save last checkpoint per steps
|
||||
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
@@ -35,7 +35,7 @@ Once your datasets are prepared, you can start the training process.
|
||||
# setup accelerate config, e.g. use multi-gpu ddp, fp16
|
||||
# will be to: ~/.cache/huggingface/accelerate/default_config.yaml
|
||||
accelerate config
|
||||
accelerate launch src/f5_tts/train/train.py
|
||||
accelerate launch src/f5_tts/train/train.py --config-name F5TTS_Base_train.yaml # F5TTS_Base_train.yaml | E2TTS_Base_train.yaml
|
||||
```
|
||||
|
||||
### 2. Finetuning practice
|
||||
|
||||
@@ -1,98 +1,64 @@
|
||||
# training script.
|
||||
|
||||
import os
|
||||
from importlib.resources import files
|
||||
|
||||
import hydra
|
||||
|
||||
from f5_tts.model import CFM, DiT, Trainer, UNetT
|
||||
from f5_tts.model.dataset import load_dataset
|
||||
from f5_tts.model.utils import get_tokenizer
|
||||
|
||||
# -------------------------- Dataset Settings --------------------------- #
|
||||
|
||||
target_sample_rate = 24000
|
||||
n_mel_channels = 100
|
||||
hop_length = 256
|
||||
win_length = 1024
|
||||
n_fft = 1024
|
||||
mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
||||
@hydra.main(config_path=os.path.join("..", "configs"), config_name=None)
|
||||
def main(cfg):
|
||||
tokenizer = cfg.model.tokenizer
|
||||
mel_spec_type = cfg.model.mel_spec.mel_spec_type
|
||||
exp_name = f"{cfg.model.name}_{mel_spec_type}_{cfg.model.tokenizer}_{cfg.datasets.name}"
|
||||
|
||||
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
|
||||
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
||||
dataset_name = "Emilia_ZH_EN"
|
||||
|
||||
# -------------------------- Training Settings -------------------------- #
|
||||
|
||||
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
||||
|
||||
learning_rate = 7.5e-5
|
||||
|
||||
batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type = "frame" # "frame" or "sample"
|
||||
max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps
|
||||
max_grad_norm = 1.0
|
||||
|
||||
epochs = 11 # use linear decay, thus epochs control the slope
|
||||
num_warmup_updates = 20000 # warmup steps
|
||||
save_per_updates = 50000 # save checkpoint per steps
|
||||
last_per_steps = 5000 # save last checkpoint per steps
|
||||
|
||||
# model params
|
||||
if exp_name == "F5TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
elif exp_name == "E2TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------- #
|
||||
|
||||
|
||||
def main():
|
||||
if tokenizer == "custom":
|
||||
tokenizer_path = tokenizer_path
|
||||
# set text tokenizer
|
||||
if tokenizer != "custom":
|
||||
tokenizer_path = cfg.datasets.name
|
||||
else:
|
||||
tokenizer_path = dataset_name
|
||||
tokenizer_path = cfg.model.tokenizer_path
|
||||
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
||||
|
||||
mel_spec_kwargs = dict(
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
n_mel_channels=n_mel_channels,
|
||||
target_sample_rate=target_sample_rate,
|
||||
mel_spec_type=mel_spec_type,
|
||||
)
|
||||
# set model
|
||||
if "F5TTS" in cfg.model.name:
|
||||
model_cls = DiT
|
||||
elif "E2TTS" in cfg.model.name:
|
||||
model_cls = UNetT
|
||||
wandb_resume_id = None
|
||||
|
||||
model = CFM(
|
||||
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
||||
mel_spec_kwargs=mel_spec_kwargs,
|
||||
transformer=model_cls(**cfg.model.arch, text_num_embeds=vocab_size, mel_dim=cfg.model.mel_spec.n_mel_channels),
|
||||
mel_spec_kwargs=cfg.model.mel_spec,
|
||||
vocab_char_map=vocab_char_map,
|
||||
)
|
||||
|
||||
# init trainer
|
||||
trainer = Trainer(
|
||||
model,
|
||||
epochs,
|
||||
learning_rate,
|
||||
num_warmup_updates=num_warmup_updates,
|
||||
save_per_updates=save_per_updates,
|
||||
checkpoint_path=str(files("f5_tts").joinpath(f"../../ckpts/{exp_name}")),
|
||||
batch_size=batch_size_per_gpu,
|
||||
batch_size_type=batch_size_type,
|
||||
max_samples=max_samples,
|
||||
grad_accumulation_steps=grad_accumulation_steps,
|
||||
max_grad_norm=max_grad_norm,
|
||||
epochs=cfg.optim.epochs,
|
||||
learning_rate=cfg.optim.learning_rate,
|
||||
num_warmup_updates=cfg.optim.num_warmup_updates,
|
||||
save_per_updates=cfg.ckpts.save_per_updates,
|
||||
checkpoint_path=str(files("f5_tts").joinpath(f"../../{cfg.ckpts.save_dir}")),
|
||||
batch_size=cfg.datasets.batch_size_per_gpu,
|
||||
batch_size_type=cfg.datasets.batch_size_type,
|
||||
max_samples=cfg.datasets.max_samples,
|
||||
grad_accumulation_steps=cfg.optim.grad_accumulation_steps,
|
||||
max_grad_norm=cfg.optim.max_grad_norm,
|
||||
wandb_project="CFM-TTS",
|
||||
wandb_run_name=exp_name,
|
||||
wandb_resume_id=wandb_resume_id,
|
||||
last_per_steps=last_per_steps,
|
||||
last_per_steps=cfg.ckpts.last_per_steps,
|
||||
log_samples=True,
|
||||
mel_spec_type=mel_spec_type,
|
||||
is_local_vocoder=cfg.model.mel_spec.is_local_vocoder,
|
||||
local_vocoder_path=cfg.model.mel_spec.local_vocoder_path,
|
||||
)
|
||||
|
||||
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
||||
train_dataset = load_dataset(cfg.datasets.name, tokenizer, mel_spec_kwargs=cfg.model.mel_spec)
|
||||
trainer.train(
|
||||
train_dataset,
|
||||
resumable_with_seed=666, # seed for shuffling dataset
|
||||
|
||||
Reference in New Issue
Block a user