pre-commit update and formatting

This commit is contained in:
SWivid
2025-03-21 23:01:00 +08:00
parent 621559cbbe
commit 4ae5347282
18 changed files with 66 additions and 75 deletions

2
.gitignore vendored
View File

@@ -7,8 +7,6 @@ ckpts/
wandb/
results/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

View File

@@ -1,7 +1,7 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.7.0
rev: v0.11.2
hooks:
# Run the linter.
- id: ruff
@@ -9,6 +9,6 @@ repos:
# Run the formatter.
- id: ruff-format
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.3.0
rev: v5.0.0
hooks:
- id: check-yaml

View File

@@ -23,9 +23,8 @@ RUN git clone https://github.com/SWivid/F5-TTS.git \
ENV SHELL=/bin/bash
# models are downloaded into this folder, so user should mount it
VOLUME /root/.cache/huggingface/hub/
# port the GUI is exposed on by default, if it is run
EXPOSE 7860
WORKDIR /workspace/F5-TTS

View File

@@ -203,7 +203,7 @@ Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
## Development
Use pre-commit to ensure code quality (will run linters and formatters automatically)
Use pre-commit to ensure code quality (will run linters and formatters automatically):
```bash
pip install pre-commit
@@ -216,7 +216,7 @@ When making a pull request, before each commit, run:
pre-commit run --all-files
```
Note: Some model components have linting exceptions for E722 to accommodate tensor notation
Note: Some model components have linting exceptions for E722 to accommodate tensor notation.
## Acknowledgements

View File

@@ -1,12 +1,3 @@
The pretrained model checkpoints can be reached at https://huggingface.co/SWivid/F5-TTS.
Pretrained model ckpts. https://huggingface.co/SWivid/F5-TTS
```
ckpts/
F5TTS_v1_Base/
model_1250000.safetensors
F5TTS_Base/
model_1200000.safetensors
E2TTS_Base/
model_1200000.safetensors
```
Scripts will automatically pull model checkpoints from Huggingface, by default to `~/.cache/huggingface/hub/`.

View File

@@ -5,6 +5,7 @@ from importlib.resources import files
import soundfile as sf
import tqdm
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
@@ -16,7 +17,6 @@ from f5_tts.infer.utils_infer import (
remove_silence_for_generated_wav,
save_spectrogram,
)
from f5_tts.model import DiT, UNetT # noqa: F401. used for config
from f5_tts.model.utils import seed_everything
@@ -33,7 +33,7 @@ class F5TTS:
hf_cache_dir=None,
):
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
model_cls = globals()[model_cfg.model.backbone]
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type

View File

@@ -10,6 +10,7 @@ from importlib.resources import files
import torch
import torchaudio
from accelerate import Accelerator
from hydra.utils import get_class
from omegaconf import OmegaConf
from tqdm import tqdm
@@ -19,7 +20,7 @@ from f5_tts.eval.utils_eval import (
get_seedtts_testset_metainfo,
)
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
from f5_tts.model import CFM, DiT, UNetT # noqa: F401. used for config
from f5_tts.model import CFM
from f5_tts.model.utils import get_tokenizer
accelerator = Accelerator()
@@ -65,7 +66,7 @@ def main():
no_ref_audio = False
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
model_cls = globals()[model_cfg.model.backbone]
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
dataset_name = model_cfg.datasets.name
@@ -195,7 +196,7 @@ def main():
accelerator.wait_for_everyone()
if accelerator.is_main_process:
timediff = time.time() - start
print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
print(f"Done batch inference in {timediff / 60:.2f} minutes.")
if __name__ == "__main__":

View File

@@ -148,9 +148,9 @@ def get_inference_prompt(
# deal with batch
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
assert (
min_tokens <= total_mel_len <= max_tokens
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
assert min_tokens <= total_mel_len <= max_tokens, (
f"Audio {utt} has duration {total_mel_len * hop_length // target_sample_rate}s out of range [{min_secs}, {max_secs}]."
)
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
utts[bucket_i].append(utt)

View File

@@ -10,6 +10,7 @@ import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
@@ -27,7 +28,6 @@ from f5_tts.infer.utils_infer import (
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
)
from f5_tts.model import DiT, UNetT # noqa: F401. used for config
parser = argparse.ArgumentParser(
@@ -246,13 +246,14 @@ vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_loc
model_cfg = OmegaConf.load(
args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
).model
model_cls = globals()[model_cfg.backbone]
)
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"
if model != "F5TTS_Base":
assert vocoder_name == model_cfg.mel_spec.mel_spec_type
assert vocoder_name == model_cfg.model.mel_spec.mel_spec_type
# override for previous models
if model == "F5TTS_Base":
@@ -269,7 +270,7 @@ if not ckpt_file:
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}"))
print(f"Using {model}...")
ema_model = load_model(model_cls, model_cfg.arch, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
ema_model = load_model(model_cls, model_arc, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
# inference process
@@ -332,7 +333,7 @@ def main():
if len(gen_text_) > 200:
gen_text_ = gen_text_[:200] + " ... "
sf.write(
os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
os.path.join(output_chunk_dir, f"{len(generated_audio_segments) - 1}_{gen_text_}.wav"),
audio_segment,
final_sample_rate,
)

View File

@@ -7,10 +7,11 @@ from importlib.resources import files
import torch
import torch.nn.functional as F
import torchaudio
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
from f5_tts.model import CFM, DiT, UNetT # noqa: F401. used for config
from f5_tts.model import CFM
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
device = (
@@ -40,7 +41,7 @@ target_rms = 0.1
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
model_cls = globals()[model_cfg.model.backbone]
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
dataset_name = model_cfg.datasets.name

View File

@@ -350,7 +350,7 @@ class Trainer:
progress_bar = tqdm(
range(math.ceil(len(train_dataloader) / self.grad_accumulation_steps)),
desc=f"Epoch {epoch+1}/{self.epochs}",
desc=f"Epoch {epoch + 1}/{self.epochs}",
unit="update",
disable=not self.accelerator.is_local_main_process,
initial=progress_bar_initial,

View File

@@ -24,7 +24,7 @@ updates_per_epoch = total_hours / mini_batch_hours
# result
epochs = wanted_max_updates / updates_per_epoch
print(f"epochs should be set to: {epochs:.0f} ({epochs/grad_accum:.1f} x gd_acum {grad_accum})")
print(f"epochs should be set to: {epochs:.0f} ({epochs / grad_accum:.1f} x gd_acum {grad_accum})")
print(f"progress_bar should show approx. 0/{updates_per_epoch:.0f} updates")
# print(f" or approx. 0/{steps_per_epoch:.0f} steps")

View File

@@ -13,9 +13,9 @@ from importlib.resources import files
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.model.backbones.dit import DiT # noqa: F401. used for config
from f5_tts.infer.utils_infer import (
chunk_text,
preprocess_ref_audio_text,
@@ -80,7 +80,7 @@ class TTSStreamingProcessor:
else "cpu"
)
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
self.model_cls = globals()[model_cfg.model.backbone]
self.model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
self.model_arc = model_cfg.model.arch
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
self.sampling_rate = model_cfg.model.mel_spec.target_sample_rate

View File

@@ -122,7 +122,7 @@ def prepare_csv_wavs_dir(input_dir, num_workers=None):
for future in tqdm(
chunk_futures,
total=len(chunk),
desc=f"Processing chunk {i//CHUNK_SIZE + 1}/{(total_files + CHUNK_SIZE - 1)//CHUNK_SIZE}",
desc=f"Processing chunk {i // CHUNK_SIZE + 1}/{(total_files + CHUNK_SIZE - 1) // CHUNK_SIZE}",
):
try:
result = future.result()
@@ -233,7 +233,7 @@ def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_fine
dataset_name = out_dir.stem
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True, num_workers: int = None):

View File

@@ -198,7 +198,7 @@ def main():
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
if "ZH" in langs:
print(f"Bad zh transcription case: {total_bad_case_zh}")
if "EN" in langs:

View File

@@ -72,7 +72,7 @@ def main():
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
if __name__ == "__main__":

View File

@@ -50,7 +50,7 @@ def main():
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
if __name__ == "__main__":

View File

@@ -6,7 +6,7 @@ from importlib.resources import files
import hydra
from omegaconf import OmegaConf
from f5_tts.model import CFM, DiT, UNetT, Trainer # noqa: F401. used for config
from f5_tts.model import CFM, Trainer
from f5_tts.model.dataset import load_dataset
from f5_tts.model.utils import get_tokenizer
@@ -14,60 +14,60 @@ os.chdir(str(files("f5_tts").joinpath("../.."))) # change working directory to
@hydra.main(version_base="1.3", config_path=str(files("f5_tts").joinpath("configs")), config_name=None)
def main(cfg):
model_cls = globals()[cfg.model.backbone]
model_arc = cfg.model.arch
tokenizer = cfg.model.tokenizer
mel_spec_type = cfg.model.mel_spec.mel_spec_type
def main(model_cfg):
model_cls = hydra.utils.get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
tokenizer = model_cfg.model.tokenizer
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
exp_name = f"{cfg.model.name}_{mel_spec_type}_{cfg.model.tokenizer}_{cfg.datasets.name}"
exp_name = f"{model_cfg.model.name}_{mel_spec_type}_{model_cfg.model.tokenizer}_{model_cfg.datasets.name}"
wandb_resume_id = None
# set text tokenizer
if tokenizer != "custom":
tokenizer_path = cfg.datasets.name
tokenizer_path = model_cfg.datasets.name
else:
tokenizer_path = cfg.model.tokenizer_path
tokenizer_path = model_cfg.model.tokenizer_path
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
# set model
model = CFM(
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=cfg.model.mel_spec.n_mel_channels),
mel_spec_kwargs=cfg.model.mel_spec,
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=model_cfg.model.mel_spec.n_mel_channels),
mel_spec_kwargs=model_cfg.model.mel_spec,
vocab_char_map=vocab_char_map,
)
# init trainer
trainer = Trainer(
model,
epochs=cfg.optim.epochs,
learning_rate=cfg.optim.learning_rate,
num_warmup_updates=cfg.optim.num_warmup_updates,
save_per_updates=cfg.ckpts.save_per_updates,
keep_last_n_checkpoints=cfg.ckpts.keep_last_n_checkpoints,
checkpoint_path=str(files("f5_tts").joinpath(f"../../{cfg.ckpts.save_dir}")),
batch_size_per_gpu=cfg.datasets.batch_size_per_gpu,
batch_size_type=cfg.datasets.batch_size_type,
max_samples=cfg.datasets.max_samples,
grad_accumulation_steps=cfg.optim.grad_accumulation_steps,
max_grad_norm=cfg.optim.max_grad_norm,
logger=cfg.ckpts.logger,
epochs=model_cfg.optim.epochs,
learning_rate=model_cfg.optim.learning_rate,
num_warmup_updates=model_cfg.optim.num_warmup_updates,
save_per_updates=model_cfg.ckpts.save_per_updates,
keep_last_n_checkpoints=model_cfg.ckpts.keep_last_n_checkpoints,
checkpoint_path=str(files("f5_tts").joinpath(f"../../{model_cfg.ckpts.save_dir}")),
batch_size_per_gpu=model_cfg.datasets.batch_size_per_gpu,
batch_size_type=model_cfg.datasets.batch_size_type,
max_samples=model_cfg.datasets.max_samples,
grad_accumulation_steps=model_cfg.optim.grad_accumulation_steps,
max_grad_norm=model_cfg.optim.max_grad_norm,
logger=model_cfg.ckpts.logger,
wandb_project="CFM-TTS",
wandb_run_name=exp_name,
wandb_resume_id=wandb_resume_id,
last_per_updates=cfg.ckpts.last_per_updates,
log_samples=cfg.ckpts.log_samples,
bnb_optimizer=cfg.optim.bnb_optimizer,
last_per_updates=model_cfg.ckpts.last_per_updates,
log_samples=model_cfg.ckpts.log_samples,
bnb_optimizer=model_cfg.optim.bnb_optimizer,
mel_spec_type=mel_spec_type,
is_local_vocoder=cfg.model.vocoder.is_local,
local_vocoder_path=cfg.model.vocoder.local_path,
cfg_dict=OmegaConf.to_container(cfg, resolve=True),
is_local_vocoder=model_cfg.model.vocoder.is_local,
local_vocoder_path=model_cfg.model.vocoder.local_path,
model_cfg_dict=OmegaConf.to_container(model_cfg, resolve=True),
)
train_dataset = load_dataset(cfg.datasets.name, tokenizer, mel_spec_kwargs=cfg.model.mel_spec)
train_dataset = load_dataset(model_cfg.datasets.name, tokenizer, mel_spec_kwargs=model_cfg.model.mel_spec)
trainer.train(
train_dataset,
num_workers=cfg.datasets.num_workers,
num_workers=model_cfg.datasets.num_workers,
resumable_with_seed=666, # seed for shuffling dataset
)