Update dataset.py, formatting

This commit is contained in:
Yushen CHEN
2024-11-18 22:28:03 +08:00
committed by GitHub
parent 07b100e96f
commit 5f7944a748

View File

@@ -133,31 +133,30 @@ class CustomDataset(Dataset):
text = row["text"]
duration = row["duration"]
# Check if the duration is within the acceptable range
# filter by given length
if 0.3 <= duration <= 30:
break # Valid sample found, exit the loop
# Move to the next index and wrap around if necessary
break # valid
index = (index + 1) % len(self.data)
if self.preprocessed_mel:
mel_spec = torch.tensor(row["mel_spec"])
else:
audio, source_sample_rate = torchaudio.load(audio_path)
# If the audio has multiple channels, convert it to mono
# make sure mono input
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample the audio if necessary
# resample if necessary
if source_sample_rate != self.target_sample_rate:
resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
audio = resampler(audio)
# Compute the mel spectrogram
# to mel spectrogram
mel_spec = self.mel_spectrogram(audio)
mel_spec = mel_spec.squeeze(0) # Convert from (1, D, T) to (D, T)
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
return {
"mel_spec": mel_spec,
"text": text,