mirror of
https://github.com/SWivid/F5-TTS.git
synced 2026-01-09 03:43:19 -08:00
make a structure first
This commit is contained in:
@@ -1,15 +1,14 @@
|
||||
import random
|
||||
import sys
|
||||
import tqdm
|
||||
|
||||
import soundfile as sf
|
||||
import torch
|
||||
import tqdm
|
||||
from cached_path import cached_path
|
||||
|
||||
from f5_tts.model import DiT, UNetT
|
||||
from f5_tts.model.utils import save_spectrogram
|
||||
|
||||
from f5_tts.model.utils import seed_everything, save_spectrogram
|
||||
from f5_tts.model.utils_infer import load_vocoder, load_model, infer_process, remove_silence_for_generated_wav
|
||||
from f5_tts.model.utils import seed_everything
|
||||
import random
|
||||
import sys
|
||||
|
||||
|
||||
class F5TTS:
|
||||
|
||||
BIN
src/f5_tts/infer/examples/basic/basic_ref_en.wav
Normal file
BIN
src/f5_tts/infer/examples/basic/basic_ref_en.wav
Normal file
Binary file not shown.
BIN
src/f5_tts/infer/examples/basic/basic_ref_zh.wav
Normal file
BIN
src/f5_tts/infer/examples/basic/basic_ref_zh.wav
Normal file
Binary file not shown.
@@ -1,7 +1,7 @@
|
||||
import argparse
|
||||
import codecs
|
||||
import re
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
from importlib.resources import files
|
||||
|
||||
@@ -3,7 +3,7 @@ import os
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
from f5_tts.model import M2_TTS, DiT
|
||||
from f5_tts.model import CFM, DiT
|
||||
|
||||
import torch
|
||||
import thop
|
||||
@@ -24,7 +24,7 @@ import thop
|
||||
transformer = DiT(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
|
||||
|
||||
model = M2_TTS(transformer=transformer)
|
||||
model = CFM(transformer=transformer)
|
||||
target_sample_rate = 24000
|
||||
n_mel_channels = 100
|
||||
hop_length = 256
|
||||
|
||||
@@ -1,128 +1,128 @@
|
||||
import argparse
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from cached_path import cached_path
|
||||
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
||||
from f5_tts.model.utils import get_tokenizer
|
||||
from f5_tts.model.dataset import load_dataset
|
||||
|
||||
# -------------------------- Dataset Settings --------------------------- #
|
||||
target_sample_rate = 24000
|
||||
n_mel_channels = 100
|
||||
hop_length = 256
|
||||
|
||||
|
||||
# -------------------------- Argument Parsing --------------------------- #
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Train CFM Model")
|
||||
|
||||
parser.add_argument(
|
||||
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
||||
)
|
||||
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
||||
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
|
||||
parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
|
||||
parser.add_argument(
|
||||
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
|
||||
)
|
||||
parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
|
||||
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
||||
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
||||
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
|
||||
parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
|
||||
parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
|
||||
parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
|
||||
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
||||
|
||||
parser.add_argument(
|
||||
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
# -------------------------- Training Settings -------------------------- #
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# Model parameters based on experiment name
|
||||
if args.exp_name == "F5TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
if args.finetune:
|
||||
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
||||
elif args.exp_name == "E2TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
if args.finetune:
|
||||
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
||||
|
||||
if args.finetune:
|
||||
path_ckpt = os.path.join("ckpts", args.dataset_name)
|
||||
if not os.path.isdir(path_ckpt):
|
||||
os.makedirs(path_ckpt, exist_ok=True)
|
||||
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))
|
||||
|
||||
checkpoint_path = os.path.join("ckpts", args.dataset_name)
|
||||
|
||||
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
||||
tokenizer = args.tokenizer
|
||||
if tokenizer == "custom":
|
||||
if not args.tokenizer_path:
|
||||
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
|
||||
tokenizer_path = args.tokenizer_path
|
||||
else:
|
||||
tokenizer_path = args.dataset_name
|
||||
|
||||
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
||||
|
||||
mel_spec_kwargs = dict(
|
||||
target_sample_rate=target_sample_rate,
|
||||
n_mel_channels=n_mel_channels,
|
||||
hop_length=hop_length,
|
||||
)
|
||||
|
||||
e2tts = CFM(
|
||||
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
||||
mel_spec_kwargs=mel_spec_kwargs,
|
||||
vocab_char_map=vocab_char_map,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
e2tts,
|
||||
args.epochs,
|
||||
args.learning_rate,
|
||||
num_warmup_updates=args.num_warmup_updates,
|
||||
save_per_updates=args.save_per_updates,
|
||||
checkpoint_path=checkpoint_path,
|
||||
batch_size=args.batch_size_per_gpu,
|
||||
batch_size_type=args.batch_size_type,
|
||||
max_samples=args.max_samples,
|
||||
grad_accumulation_steps=args.grad_accumulation_steps,
|
||||
max_grad_norm=args.max_grad_norm,
|
||||
wandb_project="CFM-TTS",
|
||||
wandb_run_name=args.exp_name,
|
||||
wandb_resume_id=wandb_resume_id,
|
||||
last_per_steps=args.last_per_steps,
|
||||
)
|
||||
|
||||
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
||||
trainer.train(
|
||||
train_dataset,
|
||||
resumable_with_seed=666, # seed for shuffling dataset
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
import argparse
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from cached_path import cached_path
|
||||
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
||||
from f5_tts.model.utils import get_tokenizer
|
||||
from f5_tts.model.dataset import load_dataset
|
||||
|
||||
# -------------------------- Dataset Settings --------------------------- #
|
||||
target_sample_rate = 24000
|
||||
n_mel_channels = 100
|
||||
hop_length = 256
|
||||
|
||||
|
||||
# -------------------------- Argument Parsing --------------------------- #
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Train CFM Model")
|
||||
|
||||
parser.add_argument(
|
||||
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
||||
)
|
||||
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
||||
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
|
||||
parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
|
||||
parser.add_argument(
|
||||
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
|
||||
)
|
||||
parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
|
||||
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
||||
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
||||
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
|
||||
parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
|
||||
parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
|
||||
parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
|
||||
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
||||
|
||||
parser.add_argument(
|
||||
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
# -------------------------- Training Settings -------------------------- #
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# Model parameters based on experiment name
|
||||
if args.exp_name == "F5TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
if args.finetune:
|
||||
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
||||
elif args.exp_name == "E2TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
if args.finetune:
|
||||
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
||||
|
||||
if args.finetune:
|
||||
path_ckpt = os.path.join("ckpts", args.dataset_name)
|
||||
if not os.path.isdir(path_ckpt):
|
||||
os.makedirs(path_ckpt, exist_ok=True)
|
||||
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))
|
||||
|
||||
checkpoint_path = os.path.join("ckpts", args.dataset_name)
|
||||
|
||||
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
||||
tokenizer = args.tokenizer
|
||||
if tokenizer == "custom":
|
||||
if not args.tokenizer_path:
|
||||
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
|
||||
tokenizer_path = args.tokenizer_path
|
||||
else:
|
||||
tokenizer_path = args.dataset_name
|
||||
|
||||
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
||||
|
||||
mel_spec_kwargs = dict(
|
||||
target_sample_rate=target_sample_rate,
|
||||
n_mel_channels=n_mel_channels,
|
||||
hop_length=hop_length,
|
||||
)
|
||||
|
||||
e2tts = CFM(
|
||||
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
||||
mel_spec_kwargs=mel_spec_kwargs,
|
||||
vocab_char_map=vocab_char_map,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
e2tts,
|
||||
args.epochs,
|
||||
args.learning_rate,
|
||||
num_warmup_updates=args.num_warmup_updates,
|
||||
save_per_updates=args.save_per_updates,
|
||||
checkpoint_path=checkpoint_path,
|
||||
batch_size=args.batch_size_per_gpu,
|
||||
batch_size_type=args.batch_size_type,
|
||||
max_samples=args.max_samples,
|
||||
grad_accumulation_steps=args.grad_accumulation_steps,
|
||||
max_grad_norm=args.max_grad_norm,
|
||||
wandb_project="CFM-TTS",
|
||||
wandb_run_name=args.exp_name,
|
||||
wandb_resume_id=wandb_resume_id,
|
||||
last_per_steps=args.last_per_steps,
|
||||
)
|
||||
|
||||
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
||||
trainer.train(
|
||||
train_dataset,
|
||||
resumable_with_seed=666, # seed for shuffling dataset
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user