mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-05 20:40:12 -08:00
Merge pull request #1212 from QingyuLiu0521/fix/AverageUpsampling
Fix Average Upsampling conflict logic, introduced from the previous batch inference fix.
This commit is contained in:
@@ -51,43 +51,38 @@ class TextEmbedding(nn.Module):
|
||||
else:
|
||||
self.extra_modeling = False
|
||||
|
||||
def average_upsample_text_by_mask(self, text, text_mask, audio_mask):
|
||||
def average_upsample_text_by_mask(self, text, text_mask):
|
||||
batch, text_len, text_dim = text.shape
|
||||
assert batch == 1
|
||||
|
||||
if audio_mask is None:
|
||||
audio_mask = torch.ones_like(text_mask, dtype=torch.bool)
|
||||
valid_mask = audio_mask & text_mask
|
||||
audio_lens = audio_mask.sum(dim=1) # [batch]
|
||||
valid_lens = valid_mask.sum(dim=1) # [batch]
|
||||
valid_mask = text_mask[0]
|
||||
audio_len = text_len
|
||||
valid_len = valid_mask.sum().item()
|
||||
|
||||
if valid_len == 0:
|
||||
return torch.zeros_like(text)
|
||||
|
||||
upsampled_text = torch.zeros_like(text)
|
||||
|
||||
for i in range(batch):
|
||||
audio_len = audio_lens[i].item()
|
||||
valid_len = valid_lens[i].item()
|
||||
|
||||
if valid_len == 0:
|
||||
continue
|
||||
|
||||
valid_ind = torch.where(valid_mask[i])[0]
|
||||
valid_data = text[i, valid_ind, :] # [valid_len, text_dim]
|
||||
|
||||
base_repeat = audio_len // valid_len
|
||||
remainder = audio_len % valid_len
|
||||
|
||||
indices = []
|
||||
for j in range(valid_len):
|
||||
repeat_count = base_repeat + (1 if j >= valid_len - remainder else 0)
|
||||
indices.extend([j] * repeat_count)
|
||||
|
||||
indices = torch.tensor(indices[:audio_len], device=text.device, dtype=torch.long)
|
||||
upsampled = valid_data[indices] # [audio_len, text_dim]
|
||||
|
||||
upsampled_text[i, :audio_len, :] = upsampled
|
||||
valid_ind = torch.where(valid_mask)[0]
|
||||
valid_data = text[0, valid_ind, :] # [valid_len, text_dim]
|
||||
|
||||
base_repeat = audio_len // valid_len
|
||||
remainder = audio_len % valid_len
|
||||
|
||||
indices = []
|
||||
for j in range(valid_len):
|
||||
repeat_count = base_repeat + (1 if j >= valid_len - remainder else 0)
|
||||
indices.extend([j] * repeat_count)
|
||||
|
||||
indices = torch.tensor(indices[:audio_len], device=text.device, dtype=torch.long)
|
||||
upsampled = valid_data[indices] # [audio_len, text_dim]
|
||||
|
||||
upsampled_text[0, :audio_len, :] = upsampled
|
||||
|
||||
return upsampled_text
|
||||
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False, audio_mask: bool["b n"] | None = None):
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False):
|
||||
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
||||
text = F.pad(text, (0, seq_len - text.shape[1]), value=0) # (opt.) if not self.average_upsampling:
|
||||
@@ -114,7 +109,7 @@ class TextEmbedding(nn.Module):
|
||||
text = self.text_blocks(text)
|
||||
|
||||
if self.average_upsampling:
|
||||
text = self.average_upsample_text_by_mask(text, ~text_mask, audio_mask)
|
||||
text = self.average_upsample_text_by_mask(text, ~text_mask)
|
||||
|
||||
return text
|
||||
|
||||
@@ -247,17 +242,16 @@ class DiT(nn.Module):
|
||||
):
|
||||
if self.text_uncond is None or self.text_cond is None or not cache:
|
||||
if audio_mask is None:
|
||||
text_embed = self.text_embed(text, x.shape[1], drop_text=drop_text, audio_mask=audio_mask)
|
||||
text_embed = self.text_embed(text, x.shape[1], drop_text=drop_text)
|
||||
else:
|
||||
batch = x.shape[0]
|
||||
seq_lens = audio_mask.sum(dim=1)
|
||||
seq_lens = audio_mask.sum(dim=1) # Calculate the actual sequence length for each sample
|
||||
text_embed_list = []
|
||||
for i in range(batch):
|
||||
text_embed_i = self.text_embed(
|
||||
text[i].unsqueeze(0),
|
||||
seq_lens[i].item(),
|
||||
seq_len=seq_lens[i].item(),
|
||||
drop_text=drop_text,
|
||||
audio_mask=audio_mask,
|
||||
)
|
||||
text_embed_list.append(text_embed_i[0])
|
||||
text_embed = pad_sequence(text_embed_list, batch_first=True, padding_value=0)
|
||||
@@ -331,4 +325,4 @@ class DiT(nn.Module):
|
||||
x = self.norm_out(x, t)
|
||||
output = self.proj_out(x)
|
||||
|
||||
return output
|
||||
return output
|
||||
Reference in New Issue
Block a user