mirror of
https://github.com/SWivid/F5-TTS.git
synced 2026-01-03 08:38:15 -08:00
basic structure
This commit is contained in:
@@ -3,9 +3,10 @@ from __future__ import annotations
|
||||
import os
|
||||
import gc
|
||||
from tqdm import tqdm
|
||||
|
||||
import wandb
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.optim import AdamW
|
||||
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
||||
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
||||
@@ -19,6 +20,7 @@ from f5_tts.model import CFM
|
||||
from f5_tts.model.utils import exists, default
|
||||
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
||||
|
||||
|
||||
# trainer
|
||||
|
||||
|
||||
@@ -38,33 +40,32 @@ class Trainer:
|
||||
max_grad_norm=1.0,
|
||||
noise_scheduler: str | None = None,
|
||||
duration_predictor: torch.nn.Module | None = None,
|
||||
logger: str = "wandb", # Add logger parameter wandb,tensorboard , none
|
||||
log_dir: str = "logs", # Add log directory parameter
|
||||
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
|
||||
wandb_project="test_e2-tts",
|
||||
wandb_run_name="test_run",
|
||||
wandb_resume_id: str = None,
|
||||
log_samples: bool = False,
|
||||
last_per_steps=None,
|
||||
accelerate_kwargs: dict = dict(),
|
||||
ema_kwargs: dict = dict(),
|
||||
bnb_optimizer: bool = False,
|
||||
export_samples=False,
|
||||
):
|
||||
# export audio and mel
|
||||
self.export_samples = export_samples
|
||||
if export_samples:
|
||||
self.path_ckpts_project = checkpoint_path
|
||||
|
||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
||||
|
||||
if logger == "wandb" and not wandb.api.api_key:
|
||||
logger = None
|
||||
print(f"Using logger: {logger}")
|
||||
self.log_samples = log_samples
|
||||
|
||||
self.accelerator = Accelerator(
|
||||
log_with=logger if logger == "wandb" else None,
|
||||
kwargs_handlers=[ddp_kwargs],
|
||||
gradient_accumulation_steps=grad_accumulation_steps,
|
||||
**accelerate_kwargs,
|
||||
)
|
||||
|
||||
self.logger = logger
|
||||
if self.logger == "wandb":
|
||||
self.accelerator = Accelerator(
|
||||
log_with="wandb",
|
||||
kwargs_handlers=[ddp_kwargs],
|
||||
gradient_accumulation_steps=grad_accumulation_steps,
|
||||
**accelerate_kwargs,
|
||||
)
|
||||
|
||||
if exists(wandb_resume_id):
|
||||
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
||||
else:
|
||||
@@ -86,24 +87,11 @@ class Trainer:
|
||||
"noise_scheduler": noise_scheduler,
|
||||
},
|
||||
)
|
||||
|
||||
elif self.logger == "tensorboard":
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
self.accelerator = Accelerator(
|
||||
kwargs_handlers=[ddp_kwargs],
|
||||
gradient_accumulation_steps=grad_accumulation_steps,
|
||||
**accelerate_kwargs,
|
||||
)
|
||||
if self.is_main:
|
||||
path_log_dir = os.path.join(log_dir, wandb_project)
|
||||
os.makedirs(path_log_dir, exist_ok=True)
|
||||
existing_folders = [folder for folder in os.listdir(path_log_dir) if folder.startswith("exp")]
|
||||
next_number = len(existing_folders) + 2
|
||||
folder_name = f"exp{next_number}"
|
||||
folder_path = os.path.join(path_log_dir, folder_name)
|
||||
os.makedirs(folder_path, exist_ok=True)
|
||||
|
||||
self.writer = SummaryWriter(log_dir=folder_path)
|
||||
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
|
||||
|
||||
self.model = model
|
||||
|
||||
@@ -198,31 +186,13 @@ class Trainer:
|
||||
gc.collect()
|
||||
return step
|
||||
|
||||
def log(self, metrics, step):
|
||||
"""Unified logging method for both WandB and TensorBoard"""
|
||||
if self.logger == "none":
|
||||
return
|
||||
if self.logger == "wandb":
|
||||
self.accelerator.log(metrics, step=step)
|
||||
elif self.is_main:
|
||||
for key, value in metrics.items():
|
||||
self.writer.add_scalar(key, value, step)
|
||||
|
||||
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
||||
# import only when export_sample True
|
||||
if self.export_samples:
|
||||
from f5_tts.infer.utils_infer import (
|
||||
target_sample_rate,
|
||||
hop_length,
|
||||
nfe_step,
|
||||
cfg_strength,
|
||||
sway_sampling_coef,
|
||||
vocos,
|
||||
)
|
||||
from f5_tts.model.utils import get_sample
|
||||
if self.log_samples:
|
||||
from f5_tts.infer.utils_infer import vocos, nfe_step, cfg_strength, sway_sampling_coef
|
||||
|
||||
self.file_path_samples = os.path.join(self.path_ckpts_project, "samples")
|
||||
os.makedirs(self.file_path_samples, exist_ok=True)
|
||||
target_sample_rate = self.model.mel_spec.mel_stft.sample_rate
|
||||
log_samples_path = f"{self.checkpoint_path}/samples"
|
||||
os.makedirs(log_samples_path, exist_ok=True)
|
||||
|
||||
if exists(resumable_with_seed):
|
||||
generator = torch.Generator()
|
||||
@@ -307,7 +277,6 @@ class Trainer:
|
||||
for batch in progress_bar:
|
||||
with self.accelerator.accumulate(self.model):
|
||||
text_inputs = batch["text"]
|
||||
|
||||
mel_spec = batch["mel"].permute(0, 2, 1)
|
||||
mel_lengths = batch["mel_lengths"]
|
||||
|
||||
@@ -319,40 +288,6 @@ class Trainer:
|
||||
loss, cond, pred = self.model(
|
||||
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
||||
)
|
||||
|
||||
# save 4 audio per save step
|
||||
if (
|
||||
self.accelerator.is_local_main_process
|
||||
and self.export_samples
|
||||
and global_step % (int(self.save_per_updates * 0.25) * self.grad_accumulation_steps) == 0
|
||||
):
|
||||
try:
|
||||
wave_org, wave_gen, mel_org, mel_gen = get_sample(
|
||||
vocos,
|
||||
self.model,
|
||||
self.file_path_samples,
|
||||
global_step,
|
||||
batch["mel"][0],
|
||||
text_inputs,
|
||||
target_sample_rate,
|
||||
hop_length,
|
||||
nfe_step,
|
||||
cfg_strength,
|
||||
sway_sampling_coef,
|
||||
)
|
||||
|
||||
if self.logger == "tensorboard":
|
||||
self.writer.add_audio(
|
||||
"Audio/original", wave_org, global_step, sample_rate=target_sample_rate
|
||||
)
|
||||
self.writer.add_audio(
|
||||
"Audio/generate", wave_gen, global_step, sample_rate=target_sample_rate
|
||||
)
|
||||
self.writer.add_image("Mel/original", mel_org, global_step, dataformats="CHW")
|
||||
self.writer.add_image("Mel/generate", mel_gen, global_step, dataformats="CHW")
|
||||
except Exception as e:
|
||||
print("An error occurred:", e)
|
||||
|
||||
self.accelerator.backward(loss)
|
||||
|
||||
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
||||
@@ -368,13 +303,32 @@ class Trainer:
|
||||
global_step += 1
|
||||
|
||||
if self.accelerator.is_local_main_process:
|
||||
self.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
||||
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
||||
if self.logger == "tensorboard":
|
||||
self.writer.add_scalar("loss", loss.item(), global_step)
|
||||
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_step)
|
||||
|
||||
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
||||
|
||||
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
|
||||
self.save_checkpoint(global_step)
|
||||
|
||||
if self.log_samples:
|
||||
ref_audio, ref_audio_len = vocos.decode([batch["mel"][0]].cpu()), mel_lengths[0]
|
||||
torchaudio.save(f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio, target_sample_rate)
|
||||
with torch.inference_mode():
|
||||
generated, _ = self.model.sample(
|
||||
cond=[mel_spec[0][:ref_audio_len]],
|
||||
text=[text_inputs[0] + [" "] + text_inputs[0]],
|
||||
duration=ref_audio_len * 2,
|
||||
steps=nfe_step,
|
||||
cfg_strength=cfg_strength,
|
||||
sway_sampling_coef=sway_sampling_coef,
|
||||
)
|
||||
generated = generated.to(torch.float32)
|
||||
gen_audio = vocos.decode(generated[:, ref_audio_len:, :].permute(0, 2, 1).cpu())
|
||||
torchaudio.save(f"{log_samples_path}/step_{global_step}_gen.wav", gen_audio, target_sample_rate)
|
||||
|
||||
if global_step % self.last_per_steps == 0:
|
||||
self.save_checkpoint(global_step, last=True)
|
||||
|
||||
|
||||
@@ -11,10 +11,6 @@ from torch.nn.utils.rnn import pad_sequence
|
||||
import jieba
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import soundfile as sf
|
||||
import torchaudio
|
||||
|
||||
# seed everything
|
||||
|
||||
@@ -187,74 +183,3 @@ def repetition_found(text, length=2, tolerance=10):
|
||||
if count > tolerance:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def normalize_and_colorize_spectrogram(mel_org):
|
||||
mel_min, mel_max = mel_org.min(), mel_org.max()
|
||||
mel_norm = (mel_org - mel_min) / (mel_max - mel_min + 1e-8)
|
||||
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
|
||||
mel_colored = np.transpose(mel_colored, (2, 0, 1))
|
||||
mel_colored = np.flip(mel_colored, axis=1)
|
||||
return mel_colored
|
||||
|
||||
|
||||
def export_audio(file_out, wav, target_sample_rate):
|
||||
sf.write(file_out, wav, samplerate=target_sample_rate)
|
||||
|
||||
|
||||
def export_mel(mel_colored_hwc, file_out):
|
||||
plt.imsave(file_out, mel_colored_hwc)
|
||||
|
||||
|
||||
def gen_sample(model, vocos, file_wav_org, text_inputs, hop_length, nfe_step, cfg_strength, sway_sampling_coef):
|
||||
audio, sr = torchaudio.load(file_wav_org)
|
||||
audio = audio.to("cuda")
|
||||
ref_audio_len = audio.shape[-1] // hop_length
|
||||
text = [text_inputs[0] + [" . "] + text_inputs[0]]
|
||||
duration = int((audio.shape[1] / 256) * 2.0)
|
||||
with torch.inference_mode():
|
||||
generated_gen, _ = model.sample(
|
||||
cond=audio,
|
||||
text=text,
|
||||
duration=duration,
|
||||
steps=nfe_step,
|
||||
cfg_strength=cfg_strength,
|
||||
sway_sampling_coef=sway_sampling_coef,
|
||||
)
|
||||
generated_gen = generated_gen.to(torch.float32)
|
||||
generated_gen = generated_gen[:, ref_audio_len:, :]
|
||||
generated_mel_spec_gen = generated_gen.permute(0, 2, 1)
|
||||
generated_wave_gen = vocos.decode(generated_mel_spec_gen.cpu())
|
||||
generated_wave_gen = generated_wave_gen.squeeze().cpu().numpy()
|
||||
return generated_wave_gen, generated_mel_spec_gen
|
||||
|
||||
|
||||
def get_sample(
|
||||
vocos,
|
||||
model,
|
||||
file_path_samples,
|
||||
global_step,
|
||||
mel_org,
|
||||
text_inputs,
|
||||
target_sample_rate,
|
||||
hop_length,
|
||||
nfe_step,
|
||||
cfg_strength,
|
||||
sway_sampling_coef,
|
||||
):
|
||||
generated_wave_org = vocos.decode(mel_org.unsqueeze(0).cpu())
|
||||
generated_wave_org = generated_wave_org.squeeze().cpu().numpy()
|
||||
file_wav_org = os.path.join(file_path_samples, f"step_{global_step}_org.wav")
|
||||
export_audio(file_wav_org, generated_wave_org, target_sample_rate)
|
||||
generated_wave_gen, generated_mel_spec_gen = gen_sample(
|
||||
model, vocos, file_wav_org, text_inputs, hop_length, nfe_step, cfg_strength, sway_sampling_coef
|
||||
)
|
||||
file_wav_gen = os.path.join(file_path_samples, f"step_{global_step}_gen.wav")
|
||||
export_audio(file_wav_gen, generated_wave_gen, target_sample_rate)
|
||||
mel_org = normalize_and_colorize_spectrogram(mel_org)
|
||||
mel_gen = normalize_and_colorize_spectrogram(generated_mel_spec_gen[0])
|
||||
file_gen_org = os.path.join(file_path_samples, f"step_{global_step}_org.png")
|
||||
export_mel(np.transpose(mel_org, (1, 2, 0)), file_gen_org)
|
||||
file_gen_gen = os.path.join(file_path_samples, f"step_{global_step}_gen.png")
|
||||
export_mel(np.transpose(mel_gen, (1, 2, 0)), file_gen_gen)
|
||||
return generated_wave_org, generated_wave_gen, mel_org, mel_gen
|
||||
|
||||
@@ -57,12 +57,12 @@ def parse_args():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--export_samples",
|
||||
"--log_samples",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Export 4 audio and spect samples for the checkpoint audio, per step.",
|
||||
help="Log inferenced samples per ckpt save steps",
|
||||
)
|
||||
parser.add_argument("--logger", type=str, default="wandb", choices=["none", "wandb", "tensorboard"], help="logger")
|
||||
parser.add_argument("--logger", type=str, default=None, choices=["wandb", "tensorboard"], help="logger")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
@@ -141,12 +141,12 @@ def main():
|
||||
max_samples=args.max_samples,
|
||||
grad_accumulation_steps=args.grad_accumulation_steps,
|
||||
max_grad_norm=args.max_grad_norm,
|
||||
logger=args.logger,
|
||||
wandb_project=args.dataset_name,
|
||||
wandb_run_name=args.exp_name,
|
||||
wandb_resume_id=wandb_resume_id,
|
||||
log_samples=args.log_samples,
|
||||
last_per_steps=args.last_per_steps,
|
||||
logger=args.logger,
|
||||
export_samples=args.export_samples,
|
||||
)
|
||||
|
||||
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
||||
|
||||
@@ -453,7 +453,7 @@ def start_training(
|
||||
|
||||
cmd += f" --tokenizer {tokenizer_type} "
|
||||
|
||||
cmd += f" --export_samples True --logger {logger} "
|
||||
cmd += f" --log_samples True --logger {logger} "
|
||||
|
||||
print(cmd)
|
||||
|
||||
@@ -1321,18 +1321,14 @@ def get_combined_stats():
|
||||
|
||||
|
||||
def get_audio_select(file_sample):
|
||||
select_audio_org = file_sample
|
||||
select_audio_ref = file_sample
|
||||
select_audio_gen = file_sample
|
||||
select_image_org = file_sample
|
||||
select_image_gen = file_sample
|
||||
|
||||
if file_sample is not None:
|
||||
select_audio_org += "_org.wav"
|
||||
select_audio_ref += "_ref.wav"
|
||||
select_audio_gen += "_gen.wav"
|
||||
select_image_org += "_org.png"
|
||||
select_image_gen += "_gen.png"
|
||||
|
||||
return select_audio_org, select_audio_gen, select_image_org, select_image_gen
|
||||
return select_audio_ref, select_audio_gen
|
||||
|
||||
|
||||
with gr.Blocks() as app:
|
||||
@@ -1515,7 +1511,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
|
||||
with gr.Row():
|
||||
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
|
||||
cd_logger = gr.Radio(label="logger", choices=["none", "wandb", "tensorboard"], value="wandb")
|
||||
cd_logger = gr.Radio(label="logger", choices=["wandb", "tensorboard"], value="wandb")
|
||||
start_button = gr.Button("Start Training")
|
||||
stop_button = gr.Button("Stop Training", interactive=False)
|
||||
|
||||
@@ -1562,16 +1558,12 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
|
||||
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
||||
|
||||
select_audio_org = select_audio
|
||||
select_audio_ref = select_audio
|
||||
select_audio_gen = select_audio
|
||||
select_image_org = select_audio
|
||||
select_image_gen = select_audio
|
||||
|
||||
if select_audio is not None:
|
||||
select_audio_org += "_org.wav"
|
||||
select_audio_ref += "_ref.wav"
|
||||
select_audio_gen += "_gen.wav"
|
||||
select_image_org += "_org.png"
|
||||
select_image_gen += "_gen.png"
|
||||
|
||||
with gr.Row():
|
||||
ch_list_audio = gr.Dropdown(
|
||||
@@ -1587,17 +1579,13 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
||||
|
||||
with gr.Row():
|
||||
audio_org_stream = gr.Audio(label="original", type="filepath", value=select_audio_org)
|
||||
mel_org_stream = gr.Image(label="original", type="filepath", value=select_image_org)
|
||||
|
||||
with gr.Row():
|
||||
audio_ref_stream = gr.Audio(label="original", type="filepath", value=select_audio_ref)
|
||||
audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)
|
||||
mel_gen_stream = gr.Image(label="generate", type="filepath", value=select_image_gen)
|
||||
|
||||
ch_list_audio.change(
|
||||
fn=get_audio_select,
|
||||
inputs=[ch_list_audio],
|
||||
outputs=[audio_org_stream, audio_gen_stream, mel_org_stream, mel_gen_stream],
|
||||
outputs=[audio_ref_stream, audio_gen_stream],
|
||||
)
|
||||
|
||||
start_button.click(
|
||||
|
||||
Reference in New Issue
Block a user