mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-27 21:24:03 -08:00
380 lines
14 KiB
Python
380 lines
14 KiB
Python
import re
|
||
import torch
|
||
import torchaudio
|
||
import numpy as np
|
||
import tempfile
|
||
from einops import rearrange
|
||
from vocos import Vocos
|
||
from pydub import AudioSegment, silence
|
||
from model import CFM, UNetT, DiT, MMDiT
|
||
from cached_path import cached_path
|
||
from model.utils import (
|
||
load_checkpoint,
|
||
get_tokenizer,
|
||
convert_char_to_pinyin,
|
||
save_spectrogram,
|
||
)
|
||
from transformers import pipeline
|
||
import soundfile as sf
|
||
import tomli
|
||
import argparse
|
||
import tqdm
|
||
from pathlib import Path
|
||
|
||
parser = argparse.ArgumentParser(
|
||
prog="python3 inference-cli.py",
|
||
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
|
||
epilog="Specify options above to override one or more settings from config.",
|
||
)
|
||
parser.add_argument(
|
||
"-c",
|
||
"--config",
|
||
help="Configuration file. Default=cli-config.toml",
|
||
default="inference-cli.toml",
|
||
)
|
||
parser.add_argument(
|
||
"-m",
|
||
"--model",
|
||
help="F5-TTS | E2-TTS",
|
||
)
|
||
parser.add_argument(
|
||
"-r",
|
||
"--ref_audio",
|
||
type=str,
|
||
help="Reference audio file < 15 seconds."
|
||
)
|
||
parser.add_argument(
|
||
"-s",
|
||
"--ref_text",
|
||
type=str,
|
||
help="Subtitle for the reference audio."
|
||
)
|
||
parser.add_argument(
|
||
"-t",
|
||
"--gen_text",
|
||
type=str,
|
||
help="Text to generate.",
|
||
)
|
||
parser.add_argument(
|
||
"-o",
|
||
"--output_dir",
|
||
type=str,
|
||
help="Path to output folder..",
|
||
)
|
||
parser.add_argument(
|
||
"--remove_silence",
|
||
help="Remove silence.",
|
||
)
|
||
args = parser.parse_args()
|
||
|
||
config = tomli.load(open(args.config, "rb"))
|
||
|
||
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
|
||
ref_text = args.ref_text if args.ref_text else config["ref_text"]
|
||
gen_text = args.gen_text if args.gen_text else config["gen_text"]
|
||
output_dir = args.output_dir if args.output_dir else config["output_dir"]
|
||
exp_name = args.model if args.model else config["model"]
|
||
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
|
||
wave_path = Path(output_dir)/"out.wav"
|
||
spectrogram_path = Path(output_dir)/"out.png"
|
||
|
||
SPLIT_WORDS = [
|
||
"but", "however", "nevertheless", "yet", "still",
|
||
"therefore", "thus", "hence", "consequently",
|
||
"moreover", "furthermore", "additionally",
|
||
"meanwhile", "alternatively", "otherwise",
|
||
"namely", "specifically", "for example", "such as",
|
||
"in fact", "indeed", "notably",
|
||
"in contrast", "on the other hand", "conversely",
|
||
"in conclusion", "to summarize", "finally"
|
||
]
|
||
|
||
device = (
|
||
"cuda"
|
||
if torch.cuda.is_available()
|
||
else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
)
|
||
|
||
print(f"Using {device} device")
|
||
|
||
# --------------------- Settings -------------------- #
|
||
|
||
target_sample_rate = 24000
|
||
n_mel_channels = 100
|
||
hop_length = 256
|
||
target_rms = 0.1
|
||
nfe_step = 32 # 16, 32
|
||
cfg_strength = 2.0
|
||
ode_method = "euler"
|
||
sway_sampling_coef = -1.0
|
||
speed = 1.0
|
||
# fix_duration = 27 # None or float (duration in seconds)
|
||
fix_duration = None
|
||
|
||
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
||
ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.safetensors"))
|
||
# ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
|
||
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
||
model = CFM(
|
||
transformer=model_cls(
|
||
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
|
||
),
|
||
mel_spec_kwargs=dict(
|
||
target_sample_rate=target_sample_rate,
|
||
n_mel_channels=n_mel_channels,
|
||
hop_length=hop_length,
|
||
),
|
||
odeint_kwargs=dict(
|
||
method=ode_method,
|
||
),
|
||
vocab_char_map=vocab_char_map,
|
||
).to(device)
|
||
|
||
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
|
||
|
||
return model
|
||
|
||
|
||
# load models
|
||
F5TTS_model_cfg = dict(
|
||
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
|
||
)
|
||
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||
|
||
def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
|
||
if len(text.encode('utf-8')) <= max_chars:
|
||
return [text]
|
||
if text[-1] not in ['。', '.', '!', '!', '?', '?']:
|
||
text += '.'
|
||
|
||
sentences = re.split('([。.!?!?])', text)
|
||
sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
|
||
|
||
batches = []
|
||
current_batch = ""
|
||
|
||
def split_by_words(text):
|
||
words = text.split()
|
||
current_word_part = ""
|
||
word_batches = []
|
||
for word in words:
|
||
if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
|
||
current_word_part += word + ' '
|
||
else:
|
||
if current_word_part:
|
||
# Try to find a suitable split word
|
||
for split_word in split_words:
|
||
split_index = current_word_part.rfind(' ' + split_word + ' ')
|
||
if split_index != -1:
|
||
word_batches.append(current_word_part[:split_index].strip())
|
||
current_word_part = current_word_part[split_index:].strip() + ' '
|
||
break
|
||
else:
|
||
# If no suitable split word found, just append the current part
|
||
word_batches.append(current_word_part.strip())
|
||
current_word_part = ""
|
||
current_word_part += word + ' '
|
||
if current_word_part:
|
||
word_batches.append(current_word_part.strip())
|
||
return word_batches
|
||
|
||
for sentence in sentences:
|
||
if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
|
||
current_batch += sentence
|
||
else:
|
||
# If adding this sentence would exceed the limit
|
||
if current_batch:
|
||
batches.append(current_batch)
|
||
current_batch = ""
|
||
|
||
# If the sentence itself is longer than max_chars, split it
|
||
if len(sentence.encode('utf-8')) > max_chars:
|
||
# First, try to split by colon
|
||
colon_parts = sentence.split(':')
|
||
if len(colon_parts) > 1:
|
||
for part in colon_parts:
|
||
if len(part.encode('utf-8')) <= max_chars:
|
||
batches.append(part)
|
||
else:
|
||
# If colon part is still too long, split by comma
|
||
comma_parts = re.split('[,,]', part)
|
||
if len(comma_parts) > 1:
|
||
current_comma_part = ""
|
||
for comma_part in comma_parts:
|
||
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
|
||
current_comma_part += comma_part + ','
|
||
else:
|
||
if current_comma_part:
|
||
batches.append(current_comma_part.rstrip(','))
|
||
current_comma_part = comma_part + ','
|
||
if current_comma_part:
|
||
batches.append(current_comma_part.rstrip(','))
|
||
else:
|
||
# If no comma, split by words
|
||
batches.extend(split_by_words(part))
|
||
else:
|
||
# If no colon, split by comma
|
||
comma_parts = re.split('[,,]', sentence)
|
||
if len(comma_parts) > 1:
|
||
current_comma_part = ""
|
||
for comma_part in comma_parts:
|
||
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
|
||
current_comma_part += comma_part + ','
|
||
else:
|
||
if current_comma_part:
|
||
batches.append(current_comma_part.rstrip(','))
|
||
current_comma_part = comma_part + ','
|
||
if current_comma_part:
|
||
batches.append(current_comma_part.rstrip(','))
|
||
else:
|
||
# If no comma, split by words
|
||
batches.extend(split_by_words(sentence))
|
||
else:
|
||
current_batch = sentence
|
||
|
||
if current_batch:
|
||
batches.append(current_batch)
|
||
|
||
return batches
|
||
|
||
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence):
|
||
if exp_name == "F5-TTS":
|
||
ema_model = load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
||
elif exp_name == "E2-TTS":
|
||
ema_model = load_model("E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
|
||
|
||
audio, sr = torchaudio.load(ref_audio)
|
||
if audio.shape[0] > 1:
|
||
audio = torch.mean(audio, dim=0, keepdim=True)
|
||
|
||
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
||
if rms < target_rms:
|
||
audio = audio * target_rms / rms
|
||
if sr != target_sample_rate:
|
||
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
||
audio = resampler(audio)
|
||
audio = audio.to(device)
|
||
|
||
generated_waves = []
|
||
spectrograms = []
|
||
|
||
for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)):
|
||
# Prepare the text
|
||
if len(ref_text[-1].encode('utf-8')) == 1:
|
||
ref_text = ref_text + " "
|
||
text_list = [ref_text + gen_text]
|
||
final_text_list = convert_char_to_pinyin(text_list)
|
||
|
||
# Calculate duration
|
||
ref_audio_len = audio.shape[-1] // hop_length
|
||
zh_pause_punc = r"。,、;:?!"
|
||
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
|
||
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
||
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
||
|
||
# inference
|
||
with torch.inference_mode():
|
||
generated, _ = ema_model.sample(
|
||
cond=audio,
|
||
text=final_text_list,
|
||
duration=duration,
|
||
steps=nfe_step,
|
||
cfg_strength=cfg_strength,
|
||
sway_sampling_coef=sway_sampling_coef,
|
||
)
|
||
|
||
generated = generated[:, ref_audio_len:, :]
|
||
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
|
||
|
||
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
||
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
||
if rms < target_rms:
|
||
generated_wave = generated_wave * rms / target_rms
|
||
|
||
# wav -> numpy
|
||
generated_wave = generated_wave.squeeze().cpu().numpy()
|
||
|
||
generated_waves.append(generated_wave)
|
||
spectrograms.append(generated_mel_spec[0].cpu().numpy())
|
||
|
||
# Combine all generated waves
|
||
final_wave = np.concatenate(generated_waves)
|
||
|
||
# Remove silence
|
||
if remove_silence:
|
||
with open(wave_path, "wb") as f:
|
||
sf.write(f.name, final_wave, target_sample_rate)
|
||
aseg = AudioSegment.from_file(f.name)
|
||
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
||
non_silent_wave = AudioSegment.silent(duration=0)
|
||
for non_silent_seg in non_silent_segs:
|
||
non_silent_wave += non_silent_seg
|
||
aseg = non_silent_wave
|
||
aseg.export(f.name, format="wav")
|
||
print(f.name)
|
||
|
||
# Create a combined spectrogram
|
||
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
||
save_spectrogram(combined_spectrogram, spectrogram_path)
|
||
print(spectrogram_path)
|
||
|
||
|
||
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words):
|
||
if not custom_split_words.strip():
|
||
custom_words = [word.strip() for word in custom_split_words.split(',')]
|
||
global SPLIT_WORDS
|
||
SPLIT_WORDS = custom_words
|
||
|
||
print(gen_text)
|
||
|
||
print("Converting audio...")
|
||
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
||
aseg = AudioSegment.from_file(ref_audio_orig)
|
||
|
||
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
||
non_silent_wave = AudioSegment.silent(duration=0)
|
||
for non_silent_seg in non_silent_segs:
|
||
non_silent_wave += non_silent_seg
|
||
aseg = non_silent_wave
|
||
|
||
audio_duration = len(aseg)
|
||
if audio_duration > 15000:
|
||
print("Audio is over 15s, clipping to only first 15s.")
|
||
aseg = aseg[:15000]
|
||
aseg.export(f.name, format="wav")
|
||
ref_audio = f.name
|
||
|
||
if not ref_text.strip():
|
||
print("No reference text provided, transcribing reference audio...")
|
||
pipe = pipeline(
|
||
"automatic-speech-recognition",
|
||
model="openai/whisper-large-v3-turbo",
|
||
torch_dtype=torch.float16,
|
||
device=device,
|
||
)
|
||
ref_text = pipe(
|
||
ref_audio,
|
||
chunk_length_s=30,
|
||
batch_size=128,
|
||
generate_kwargs={"task": "transcribe"},
|
||
return_timestamps=False,
|
||
)["text"].strip()
|
||
print("Finished transcription")
|
||
else:
|
||
print("Using custom reference text...")
|
||
|
||
# Split the input text into batches
|
||
if len(ref_text.encode('utf-8')) == len(ref_text) and len(gen_text.encode('utf-8')) == len(gen_text):
|
||
max_chars = 400-len(ref_text.encode('utf-8'))
|
||
else:
|
||
max_chars = 300-len(ref_text.encode('utf-8'))
|
||
gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
|
||
print('ref_text', ref_text)
|
||
for i, gen_text in enumerate(gen_text_batches):
|
||
print(f'gen_text {i}', gen_text)
|
||
|
||
print(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
|
||
return infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence)
|
||
|
||
|
||
infer(ref_audio, ref_text, gen_text, exp_name, remove_silence, ",".join(SPLIT_WORDS)) |