mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-05 20:40:12 -08:00
formatting
This commit is contained in:
@@ -66,18 +66,18 @@ class TextEmbedding(nn.Module):
|
||||
|
||||
valid_ind = torch.where(valid_mask)[0]
|
||||
valid_data = text[0, valid_ind, :] # [valid_len, text_dim]
|
||||
|
||||
|
||||
base_repeat = audio_len // valid_len
|
||||
remainder = audio_len % valid_len
|
||||
|
||||
|
||||
indices = []
|
||||
for j in range(valid_len):
|
||||
repeat_count = base_repeat + (1 if j >= valid_len - remainder else 0)
|
||||
indices.extend([j] * repeat_count)
|
||||
|
||||
|
||||
indices = torch.tensor(indices[:audio_len], device=text.device, dtype=torch.long)
|
||||
upsampled = valid_data[indices] # [audio_len, text_dim]
|
||||
|
||||
|
||||
upsampled_text[0, :audio_len, :] = upsampled
|
||||
|
||||
return upsampled_text
|
||||
@@ -245,7 +245,7 @@ class DiT(nn.Module):
|
||||
text_embed = self.text_embed(text, x.shape[1], drop_text=drop_text)
|
||||
else:
|
||||
batch = x.shape[0]
|
||||
seq_lens = audio_mask.sum(dim=1) # Calculate the actual sequence length for each sample
|
||||
seq_lens = audio_mask.sum(dim=1) # Calculate the actual sequence length for each sample
|
||||
text_embed_list = []
|
||||
for i in range(batch):
|
||||
text_embed_i = self.text_embed(
|
||||
@@ -325,4 +325,4 @@ class DiT(nn.Module):
|
||||
x = self.norm_out(x, t)
|
||||
output = self.proj_out(x)
|
||||
|
||||
return output
|
||||
return output
|
||||
|
||||
Reference in New Issue
Block a user